~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/raid56.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2012 Fusion-io  All rights reserved.
  4  * Copyright (C) 2012 Intel Corp. All rights reserved.
  5  */
  6 
  7 #include <linux/sched.h>
  8 #include <linux/bio.h>
  9 #include <linux/slab.h>
 10 #include <linux/blkdev.h>
 11 #include <linux/raid/pq.h>
 12 #include <linux/hash.h>
 13 #include <linux/list_sort.h>
 14 #include <linux/raid/xor.h>
 15 #include <linux/mm.h>
 16 #include "messages.h"
 17 #include "ctree.h"
 18 #include "disk-io.h"
 19 #include "volumes.h"
 20 #include "raid56.h"
 21 #include "async-thread.h"
 22 #include "file-item.h"
 23 #include "btrfs_inode.h"
 24 
 25 /* set when additional merges to this rbio are not allowed */
 26 #define RBIO_RMW_LOCKED_BIT     1
 27 
 28 /*
 29  * set when this rbio is sitting in the hash, but it is just a cache
 30  * of past RMW
 31  */
 32 #define RBIO_CACHE_BIT          2
 33 
 34 /*
 35  * set when it is safe to trust the stripe_pages for caching
 36  */
 37 #define RBIO_CACHE_READY_BIT    3
 38 
 39 #define RBIO_CACHE_SIZE 1024
 40 
 41 #define BTRFS_STRIPE_HASH_TABLE_BITS                            11
 42 
 43 static void dump_bioc(const struct btrfs_fs_info *fs_info, const struct btrfs_io_context *bioc)
 44 {
 45         if (unlikely(!bioc)) {
 46                 btrfs_crit(fs_info, "bioc=NULL");
 47                 return;
 48         }
 49         btrfs_crit(fs_info,
 50 "bioc logical=%llu full_stripe=%llu size=%llu map_type=0x%llx mirror=%u replace_nr_stripes=%u replace_stripe_src=%d num_stripes=%u",
 51                 bioc->logical, bioc->full_stripe_logical, bioc->size,
 52                 bioc->map_type, bioc->mirror_num, bioc->replace_nr_stripes,
 53                 bioc->replace_stripe_src, bioc->num_stripes);
 54         for (int i = 0; i < bioc->num_stripes; i++) {
 55                 btrfs_crit(fs_info, "    nr=%d devid=%llu physical=%llu",
 56                            i, bioc->stripes[i].dev->devid,
 57                            bioc->stripes[i].physical);
 58         }
 59 }
 60 
 61 static void btrfs_dump_rbio(const struct btrfs_fs_info *fs_info,
 62                             const struct btrfs_raid_bio *rbio)
 63 {
 64         if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
 65                 return;
 66 
 67         dump_bioc(fs_info, rbio->bioc);
 68         btrfs_crit(fs_info,
 69 "rbio flags=0x%lx nr_sectors=%u nr_data=%u real_stripes=%u stripe_nsectors=%u scrubp=%u dbitmap=0x%lx",
 70                 rbio->flags, rbio->nr_sectors, rbio->nr_data,
 71                 rbio->real_stripes, rbio->stripe_nsectors,
 72                 rbio->scrubp, rbio->dbitmap);
 73 }
 74 
 75 #define ASSERT_RBIO(expr, rbio)                                         \
 76 ({                                                                      \
 77         if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {     \
 78                 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?  \
 79                                         (rbio)->bioc->fs_info : NULL;   \
 80                                                                         \
 81                 btrfs_dump_rbio(__fs_info, (rbio));                     \
 82         }                                                               \
 83         ASSERT((expr));                                                 \
 84 })
 85 
 86 #define ASSERT_RBIO_STRIPE(expr, rbio, stripe_nr)                       \
 87 ({                                                                      \
 88         if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {     \
 89                 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?  \
 90                                         (rbio)->bioc->fs_info : NULL;   \
 91                                                                         \
 92                 btrfs_dump_rbio(__fs_info, (rbio));                     \
 93                 btrfs_crit(__fs_info, "stripe_nr=%d", (stripe_nr));     \
 94         }                                                               \
 95         ASSERT((expr));                                                 \
 96 })
 97 
 98 #define ASSERT_RBIO_SECTOR(expr, rbio, sector_nr)                       \
 99 ({                                                                      \
100         if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {     \
101                 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?  \
102                                         (rbio)->bioc->fs_info : NULL;   \
103                                                                         \
104                 btrfs_dump_rbio(__fs_info, (rbio));                     \
105                 btrfs_crit(__fs_info, "sector_nr=%d", (sector_nr));     \
106         }                                                               \
107         ASSERT((expr));                                                 \
108 })
109 
110 #define ASSERT_RBIO_LOGICAL(expr, rbio, logical)                        \
111 ({                                                                      \
112         if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {     \
113                 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?  \
114                                         (rbio)->bioc->fs_info : NULL;   \
115                                                                         \
116                 btrfs_dump_rbio(__fs_info, (rbio));                     \
117                 btrfs_crit(__fs_info, "logical=%llu", (logical));               \
118         }                                                               \
119         ASSERT((expr));                                                 \
120 })
121 
122 /* Used by the raid56 code to lock stripes for read/modify/write */
123 struct btrfs_stripe_hash {
124         struct list_head hash_list;
125         spinlock_t lock;
126 };
127 
128 /* Used by the raid56 code to lock stripes for read/modify/write */
129 struct btrfs_stripe_hash_table {
130         struct list_head stripe_cache;
131         spinlock_t cache_lock;
132         int cache_size;
133         struct btrfs_stripe_hash table[];
134 };
135 
136 /*
137  * A bvec like structure to present a sector inside a page.
138  *
139  * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
140  */
141 struct sector_ptr {
142         struct page *page;
143         unsigned int pgoff:24;
144         unsigned int uptodate:8;
145 };
146 
147 static void rmw_rbio_work(struct work_struct *work);
148 static void rmw_rbio_work_locked(struct work_struct *work);
149 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
150 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
151 
152 static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
153 static void scrub_rbio_work_locked(struct work_struct *work);
154 
155 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
156 {
157         bitmap_free(rbio->error_bitmap);
158         kfree(rbio->stripe_pages);
159         kfree(rbio->bio_sectors);
160         kfree(rbio->stripe_sectors);
161         kfree(rbio->finish_pointers);
162 }
163 
164 static void free_raid_bio(struct btrfs_raid_bio *rbio)
165 {
166         int i;
167 
168         if (!refcount_dec_and_test(&rbio->refs))
169                 return;
170 
171         WARN_ON(!list_empty(&rbio->stripe_cache));
172         WARN_ON(!list_empty(&rbio->hash_list));
173         WARN_ON(!bio_list_empty(&rbio->bio_list));
174 
175         for (i = 0; i < rbio->nr_pages; i++) {
176                 if (rbio->stripe_pages[i]) {
177                         __free_page(rbio->stripe_pages[i]);
178                         rbio->stripe_pages[i] = NULL;
179                 }
180         }
181 
182         btrfs_put_bioc(rbio->bioc);
183         free_raid_bio_pointers(rbio);
184         kfree(rbio);
185 }
186 
187 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
188 {
189         INIT_WORK(&rbio->work, work_func);
190         queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
191 }
192 
193 /*
194  * the stripe hash table is used for locking, and to collect
195  * bios in hopes of making a full stripe
196  */
197 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
198 {
199         struct btrfs_stripe_hash_table *table;
200         struct btrfs_stripe_hash_table *x;
201         struct btrfs_stripe_hash *cur;
202         struct btrfs_stripe_hash *h;
203         int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
204         int i;
205 
206         if (info->stripe_hash_table)
207                 return 0;
208 
209         /*
210          * The table is large, starting with order 4 and can go as high as
211          * order 7 in case lock debugging is turned on.
212          *
213          * Try harder to allocate and fallback to vmalloc to lower the chance
214          * of a failing mount.
215          */
216         table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
217         if (!table)
218                 return -ENOMEM;
219 
220         spin_lock_init(&table->cache_lock);
221         INIT_LIST_HEAD(&table->stripe_cache);
222 
223         h = table->table;
224 
225         for (i = 0; i < num_entries; i++) {
226                 cur = h + i;
227                 INIT_LIST_HEAD(&cur->hash_list);
228                 spin_lock_init(&cur->lock);
229         }
230 
231         x = cmpxchg(&info->stripe_hash_table, NULL, table);
232         kvfree(x);
233         return 0;
234 }
235 
236 /*
237  * caching an rbio means to copy anything from the
238  * bio_sectors array into the stripe_pages array.  We
239  * use the page uptodate bit in the stripe cache array
240  * to indicate if it has valid data
241  *
242  * once the caching is done, we set the cache ready
243  * bit.
244  */
245 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
246 {
247         int i;
248         int ret;
249 
250         ret = alloc_rbio_pages(rbio);
251         if (ret)
252                 return;
253 
254         for (i = 0; i < rbio->nr_sectors; i++) {
255                 /* Some range not covered by bio (partial write), skip it */
256                 if (!rbio->bio_sectors[i].page) {
257                         /*
258                          * Even if the sector is not covered by bio, if it is
259                          * a data sector it should still be uptodate as it is
260                          * read from disk.
261                          */
262                         if (i < rbio->nr_data * rbio->stripe_nsectors)
263                                 ASSERT(rbio->stripe_sectors[i].uptodate);
264                         continue;
265                 }
266 
267                 ASSERT(rbio->stripe_sectors[i].page);
268                 memcpy_page(rbio->stripe_sectors[i].page,
269                             rbio->stripe_sectors[i].pgoff,
270                             rbio->bio_sectors[i].page,
271                             rbio->bio_sectors[i].pgoff,
272                             rbio->bioc->fs_info->sectorsize);
273                 rbio->stripe_sectors[i].uptodate = 1;
274         }
275         set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
276 }
277 
278 /*
279  * we hash on the first logical address of the stripe
280  */
281 static int rbio_bucket(struct btrfs_raid_bio *rbio)
282 {
283         u64 num = rbio->bioc->full_stripe_logical;
284 
285         /*
286          * we shift down quite a bit.  We're using byte
287          * addressing, and most of the lower bits are zeros.
288          * This tends to upset hash_64, and it consistently
289          * returns just one or two different values.
290          *
291          * shifting off the lower bits fixes things.
292          */
293         return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
294 }
295 
296 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
297                                        unsigned int page_nr)
298 {
299         const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
300         const u32 sectors_per_page = PAGE_SIZE / sectorsize;
301         int i;
302 
303         ASSERT(page_nr < rbio->nr_pages);
304 
305         for (i = sectors_per_page * page_nr;
306              i < sectors_per_page * page_nr + sectors_per_page;
307              i++) {
308                 if (!rbio->stripe_sectors[i].uptodate)
309                         return false;
310         }
311         return true;
312 }
313 
314 /*
315  * Update the stripe_sectors[] array to use correct page and pgoff
316  *
317  * Should be called every time any page pointer in stripes_pages[] got modified.
318  */
319 static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
320 {
321         const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
322         u32 offset;
323         int i;
324 
325         for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
326                 int page_index = offset >> PAGE_SHIFT;
327 
328                 ASSERT(page_index < rbio->nr_pages);
329                 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
330                 rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
331         }
332 }
333 
334 static void steal_rbio_page(struct btrfs_raid_bio *src,
335                             struct btrfs_raid_bio *dest, int page_nr)
336 {
337         const u32 sectorsize = src->bioc->fs_info->sectorsize;
338         const u32 sectors_per_page = PAGE_SIZE / sectorsize;
339         int i;
340 
341         if (dest->stripe_pages[page_nr])
342                 __free_page(dest->stripe_pages[page_nr]);
343         dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
344         src->stripe_pages[page_nr] = NULL;
345 
346         /* Also update the sector->uptodate bits. */
347         for (i = sectors_per_page * page_nr;
348              i < sectors_per_page * page_nr + sectors_per_page; i++)
349                 dest->stripe_sectors[i].uptodate = true;
350 }
351 
352 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
353 {
354         const int sector_nr = (page_nr << PAGE_SHIFT) >>
355                               rbio->bioc->fs_info->sectorsize_bits;
356 
357         /*
358          * We have ensured PAGE_SIZE is aligned with sectorsize, thus
359          * we won't have a page which is half data half parity.
360          *
361          * Thus if the first sector of the page belongs to data stripes, then
362          * the full page belongs to data stripes.
363          */
364         return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
365 }
366 
367 /*
368  * Stealing an rbio means taking all the uptodate pages from the stripe array
369  * in the source rbio and putting them into the destination rbio.
370  *
371  * This will also update the involved stripe_sectors[] which are referring to
372  * the old pages.
373  */
374 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
375 {
376         int i;
377 
378         if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
379                 return;
380 
381         for (i = 0; i < dest->nr_pages; i++) {
382                 struct page *p = src->stripe_pages[i];
383 
384                 /*
385                  * We don't need to steal P/Q pages as they will always be
386                  * regenerated for RMW or full write anyway.
387                  */
388                 if (!is_data_stripe_page(src, i))
389                         continue;
390 
391                 /*
392                  * If @src already has RBIO_CACHE_READY_BIT, it should have
393                  * all data stripe pages present and uptodate.
394                  */
395                 ASSERT(p);
396                 ASSERT(full_page_sectors_uptodate(src, i));
397                 steal_rbio_page(src, dest, i);
398         }
399         index_stripe_sectors(dest);
400         index_stripe_sectors(src);
401 }
402 
403 /*
404  * merging means we take the bio_list from the victim and
405  * splice it into the destination.  The victim should
406  * be discarded afterwards.
407  *
408  * must be called with dest->rbio_list_lock held
409  */
410 static void merge_rbio(struct btrfs_raid_bio *dest,
411                        struct btrfs_raid_bio *victim)
412 {
413         bio_list_merge_init(&dest->bio_list, &victim->bio_list);
414         dest->bio_list_bytes += victim->bio_list_bytes;
415         /* Also inherit the bitmaps from @victim. */
416         bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
417                   dest->stripe_nsectors);
418 }
419 
420 /*
421  * used to prune items that are in the cache.  The caller
422  * must hold the hash table lock.
423  */
424 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
425 {
426         int bucket = rbio_bucket(rbio);
427         struct btrfs_stripe_hash_table *table;
428         struct btrfs_stripe_hash *h;
429         int freeit = 0;
430 
431         /*
432          * check the bit again under the hash table lock.
433          */
434         if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
435                 return;
436 
437         table = rbio->bioc->fs_info->stripe_hash_table;
438         h = table->table + bucket;
439 
440         /* hold the lock for the bucket because we may be
441          * removing it from the hash table
442          */
443         spin_lock(&h->lock);
444 
445         /*
446          * hold the lock for the bio list because we need
447          * to make sure the bio list is empty
448          */
449         spin_lock(&rbio->bio_list_lock);
450 
451         if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
452                 list_del_init(&rbio->stripe_cache);
453                 table->cache_size -= 1;
454                 freeit = 1;
455 
456                 /* if the bio list isn't empty, this rbio is
457                  * still involved in an IO.  We take it out
458                  * of the cache list, and drop the ref that
459                  * was held for the list.
460                  *
461                  * If the bio_list was empty, we also remove
462                  * the rbio from the hash_table, and drop
463                  * the corresponding ref
464                  */
465                 if (bio_list_empty(&rbio->bio_list)) {
466                         if (!list_empty(&rbio->hash_list)) {
467                                 list_del_init(&rbio->hash_list);
468                                 refcount_dec(&rbio->refs);
469                                 BUG_ON(!list_empty(&rbio->plug_list));
470                         }
471                 }
472         }
473 
474         spin_unlock(&rbio->bio_list_lock);
475         spin_unlock(&h->lock);
476 
477         if (freeit)
478                 free_raid_bio(rbio);
479 }
480 
481 /*
482  * prune a given rbio from the cache
483  */
484 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
485 {
486         struct btrfs_stripe_hash_table *table;
487 
488         if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
489                 return;
490 
491         table = rbio->bioc->fs_info->stripe_hash_table;
492 
493         spin_lock(&table->cache_lock);
494         __remove_rbio_from_cache(rbio);
495         spin_unlock(&table->cache_lock);
496 }
497 
498 /*
499  * remove everything in the cache
500  */
501 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
502 {
503         struct btrfs_stripe_hash_table *table;
504         struct btrfs_raid_bio *rbio;
505 
506         table = info->stripe_hash_table;
507 
508         spin_lock(&table->cache_lock);
509         while (!list_empty(&table->stripe_cache)) {
510                 rbio = list_entry(table->stripe_cache.next,
511                                   struct btrfs_raid_bio,
512                                   stripe_cache);
513                 __remove_rbio_from_cache(rbio);
514         }
515         spin_unlock(&table->cache_lock);
516 }
517 
518 /*
519  * remove all cached entries and free the hash table
520  * used by unmount
521  */
522 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
523 {
524         if (!info->stripe_hash_table)
525                 return;
526         btrfs_clear_rbio_cache(info);
527         kvfree(info->stripe_hash_table);
528         info->stripe_hash_table = NULL;
529 }
530 
531 /*
532  * insert an rbio into the stripe cache.  It
533  * must have already been prepared by calling
534  * cache_rbio_pages
535  *
536  * If this rbio was already cached, it gets
537  * moved to the front of the lru.
538  *
539  * If the size of the rbio cache is too big, we
540  * prune an item.
541  */
542 static void cache_rbio(struct btrfs_raid_bio *rbio)
543 {
544         struct btrfs_stripe_hash_table *table;
545 
546         if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
547                 return;
548 
549         table = rbio->bioc->fs_info->stripe_hash_table;
550 
551         spin_lock(&table->cache_lock);
552         spin_lock(&rbio->bio_list_lock);
553 
554         /* bump our ref if we were not in the list before */
555         if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
556                 refcount_inc(&rbio->refs);
557 
558         if (!list_empty(&rbio->stripe_cache)){
559                 list_move(&rbio->stripe_cache, &table->stripe_cache);
560         } else {
561                 list_add(&rbio->stripe_cache, &table->stripe_cache);
562                 table->cache_size += 1;
563         }
564 
565         spin_unlock(&rbio->bio_list_lock);
566 
567         if (table->cache_size > RBIO_CACHE_SIZE) {
568                 struct btrfs_raid_bio *found;
569 
570                 found = list_entry(table->stripe_cache.prev,
571                                   struct btrfs_raid_bio,
572                                   stripe_cache);
573 
574                 if (found != rbio)
575                         __remove_rbio_from_cache(found);
576         }
577 
578         spin_unlock(&table->cache_lock);
579 }
580 
581 /*
582  * helper function to run the xor_blocks api.  It is only
583  * able to do MAX_XOR_BLOCKS at a time, so we need to
584  * loop through.
585  */
586 static void run_xor(void **pages, int src_cnt, ssize_t len)
587 {
588         int src_off = 0;
589         int xor_src_cnt = 0;
590         void *dest = pages[src_cnt];
591 
592         while(src_cnt > 0) {
593                 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
594                 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
595 
596                 src_cnt -= xor_src_cnt;
597                 src_off += xor_src_cnt;
598         }
599 }
600 
601 /*
602  * Returns true if the bio list inside this rbio covers an entire stripe (no
603  * rmw required).
604  */
605 static int rbio_is_full(struct btrfs_raid_bio *rbio)
606 {
607         unsigned long size = rbio->bio_list_bytes;
608         int ret = 1;
609 
610         spin_lock(&rbio->bio_list_lock);
611         if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
612                 ret = 0;
613         BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
614         spin_unlock(&rbio->bio_list_lock);
615 
616         return ret;
617 }
618 
619 /*
620  * returns 1 if it is safe to merge two rbios together.
621  * The merging is safe if the two rbios correspond to
622  * the same stripe and if they are both going in the same
623  * direction (read vs write), and if neither one is
624  * locked for final IO
625  *
626  * The caller is responsible for locking such that
627  * rmw_locked is safe to test
628  */
629 static int rbio_can_merge(struct btrfs_raid_bio *last,
630                           struct btrfs_raid_bio *cur)
631 {
632         if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
633             test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
634                 return 0;
635 
636         /*
637          * we can't merge with cached rbios, since the
638          * idea is that when we merge the destination
639          * rbio is going to run our IO for us.  We can
640          * steal from cached rbios though, other functions
641          * handle that.
642          */
643         if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
644             test_bit(RBIO_CACHE_BIT, &cur->flags))
645                 return 0;
646 
647         if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
648                 return 0;
649 
650         /* we can't merge with different operations */
651         if (last->operation != cur->operation)
652                 return 0;
653         /*
654          * We've need read the full stripe from the drive.
655          * check and repair the parity and write the new results.
656          *
657          * We're not allowed to add any new bios to the
658          * bio list here, anyone else that wants to
659          * change this stripe needs to do their own rmw.
660          */
661         if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
662                 return 0;
663 
664         if (last->operation == BTRFS_RBIO_READ_REBUILD)
665                 return 0;
666 
667         return 1;
668 }
669 
670 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
671                                              unsigned int stripe_nr,
672                                              unsigned int sector_nr)
673 {
674         ASSERT_RBIO_STRIPE(stripe_nr < rbio->real_stripes, rbio, stripe_nr);
675         ASSERT_RBIO_SECTOR(sector_nr < rbio->stripe_nsectors, rbio, sector_nr);
676 
677         return stripe_nr * rbio->stripe_nsectors + sector_nr;
678 }
679 
680 /* Return a sector from rbio->stripe_sectors, not from the bio list */
681 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
682                                              unsigned int stripe_nr,
683                                              unsigned int sector_nr)
684 {
685         return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
686                                                               sector_nr)];
687 }
688 
689 /* Grab a sector inside P stripe */
690 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
691                                               unsigned int sector_nr)
692 {
693         return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
694 }
695 
696 /* Grab a sector inside Q stripe, return NULL if not RAID6 */
697 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
698                                               unsigned int sector_nr)
699 {
700         if (rbio->nr_data + 1 == rbio->real_stripes)
701                 return NULL;
702         return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
703 }
704 
705 /*
706  * The first stripe in the table for a logical address
707  * has the lock.  rbios are added in one of three ways:
708  *
709  * 1) Nobody has the stripe locked yet.  The rbio is given
710  * the lock and 0 is returned.  The caller must start the IO
711  * themselves.
712  *
713  * 2) Someone has the stripe locked, but we're able to merge
714  * with the lock owner.  The rbio is freed and the IO will
715  * start automatically along with the existing rbio.  1 is returned.
716  *
717  * 3) Someone has the stripe locked, but we're not able to merge.
718  * The rbio is added to the lock owner's plug list, or merged into
719  * an rbio already on the plug list.  When the lock owner unlocks,
720  * the next rbio on the list is run and the IO is started automatically.
721  * 1 is returned
722  *
723  * If we return 0, the caller still owns the rbio and must continue with
724  * IO submission.  If we return 1, the caller must assume the rbio has
725  * already been freed.
726  */
727 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
728 {
729         struct btrfs_stripe_hash *h;
730         struct btrfs_raid_bio *cur;
731         struct btrfs_raid_bio *pending;
732         struct btrfs_raid_bio *freeit = NULL;
733         struct btrfs_raid_bio *cache_drop = NULL;
734         int ret = 0;
735 
736         h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
737 
738         spin_lock(&h->lock);
739         list_for_each_entry(cur, &h->hash_list, hash_list) {
740                 if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
741                         continue;
742 
743                 spin_lock(&cur->bio_list_lock);
744 
745                 /* Can we steal this cached rbio's pages? */
746                 if (bio_list_empty(&cur->bio_list) &&
747                     list_empty(&cur->plug_list) &&
748                     test_bit(RBIO_CACHE_BIT, &cur->flags) &&
749                     !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
750                         list_del_init(&cur->hash_list);
751                         refcount_dec(&cur->refs);
752 
753                         steal_rbio(cur, rbio);
754                         cache_drop = cur;
755                         spin_unlock(&cur->bio_list_lock);
756 
757                         goto lockit;
758                 }
759 
760                 /* Can we merge into the lock owner? */
761                 if (rbio_can_merge(cur, rbio)) {
762                         merge_rbio(cur, rbio);
763                         spin_unlock(&cur->bio_list_lock);
764                         freeit = rbio;
765                         ret = 1;
766                         goto out;
767                 }
768 
769 
770                 /*
771                  * We couldn't merge with the running rbio, see if we can merge
772                  * with the pending ones.  We don't have to check for rmw_locked
773                  * because there is no way they are inside finish_rmw right now
774                  */
775                 list_for_each_entry(pending, &cur->plug_list, plug_list) {
776                         if (rbio_can_merge(pending, rbio)) {
777                                 merge_rbio(pending, rbio);
778                                 spin_unlock(&cur->bio_list_lock);
779                                 freeit = rbio;
780                                 ret = 1;
781                                 goto out;
782                         }
783                 }
784 
785                 /*
786                  * No merging, put us on the tail of the plug list, our rbio
787                  * will be started with the currently running rbio unlocks
788                  */
789                 list_add_tail(&rbio->plug_list, &cur->plug_list);
790                 spin_unlock(&cur->bio_list_lock);
791                 ret = 1;
792                 goto out;
793         }
794 lockit:
795         refcount_inc(&rbio->refs);
796         list_add(&rbio->hash_list, &h->hash_list);
797 out:
798         spin_unlock(&h->lock);
799         if (cache_drop)
800                 remove_rbio_from_cache(cache_drop);
801         if (freeit)
802                 free_raid_bio(freeit);
803         return ret;
804 }
805 
806 static void recover_rbio_work_locked(struct work_struct *work);
807 
808 /*
809  * called as rmw or parity rebuild is completed.  If the plug list has more
810  * rbios waiting for this stripe, the next one on the list will be started
811  */
812 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
813 {
814         int bucket;
815         struct btrfs_stripe_hash *h;
816         int keep_cache = 0;
817 
818         bucket = rbio_bucket(rbio);
819         h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
820 
821         if (list_empty(&rbio->plug_list))
822                 cache_rbio(rbio);
823 
824         spin_lock(&h->lock);
825         spin_lock(&rbio->bio_list_lock);
826 
827         if (!list_empty(&rbio->hash_list)) {
828                 /*
829                  * if we're still cached and there is no other IO
830                  * to perform, just leave this rbio here for others
831                  * to steal from later
832                  */
833                 if (list_empty(&rbio->plug_list) &&
834                     test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
835                         keep_cache = 1;
836                         clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
837                         BUG_ON(!bio_list_empty(&rbio->bio_list));
838                         goto done;
839                 }
840 
841                 list_del_init(&rbio->hash_list);
842                 refcount_dec(&rbio->refs);
843 
844                 /*
845                  * we use the plug list to hold all the rbios
846                  * waiting for the chance to lock this stripe.
847                  * hand the lock over to one of them.
848                  */
849                 if (!list_empty(&rbio->plug_list)) {
850                         struct btrfs_raid_bio *next;
851                         struct list_head *head = rbio->plug_list.next;
852 
853                         next = list_entry(head, struct btrfs_raid_bio,
854                                           plug_list);
855 
856                         list_del_init(&rbio->plug_list);
857 
858                         list_add(&next->hash_list, &h->hash_list);
859                         refcount_inc(&next->refs);
860                         spin_unlock(&rbio->bio_list_lock);
861                         spin_unlock(&h->lock);
862 
863                         if (next->operation == BTRFS_RBIO_READ_REBUILD) {
864                                 start_async_work(next, recover_rbio_work_locked);
865                         } else if (next->operation == BTRFS_RBIO_WRITE) {
866                                 steal_rbio(rbio, next);
867                                 start_async_work(next, rmw_rbio_work_locked);
868                         } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
869                                 steal_rbio(rbio, next);
870                                 start_async_work(next, scrub_rbio_work_locked);
871                         }
872 
873                         goto done_nolock;
874                 }
875         }
876 done:
877         spin_unlock(&rbio->bio_list_lock);
878         spin_unlock(&h->lock);
879 
880 done_nolock:
881         if (!keep_cache)
882                 remove_rbio_from_cache(rbio);
883 }
884 
885 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
886 {
887         struct bio *next;
888 
889         while (cur) {
890                 next = cur->bi_next;
891                 cur->bi_next = NULL;
892                 cur->bi_status = err;
893                 bio_endio(cur);
894                 cur = next;
895         }
896 }
897 
898 /*
899  * this frees the rbio and runs through all the bios in the
900  * bio_list and calls end_io on them
901  */
902 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
903 {
904         struct bio *cur = bio_list_get(&rbio->bio_list);
905         struct bio *extra;
906 
907         kfree(rbio->csum_buf);
908         bitmap_free(rbio->csum_bitmap);
909         rbio->csum_buf = NULL;
910         rbio->csum_bitmap = NULL;
911 
912         /*
913          * Clear the data bitmap, as the rbio may be cached for later usage.
914          * do this before before unlock_stripe() so there will be no new bio
915          * for this bio.
916          */
917         bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
918 
919         /*
920          * At this moment, rbio->bio_list is empty, however since rbio does not
921          * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
922          * hash list, rbio may be merged with others so that rbio->bio_list
923          * becomes non-empty.
924          * Once unlock_stripe() is done, rbio->bio_list will not be updated any
925          * more and we can call bio_endio() on all queued bios.
926          */
927         unlock_stripe(rbio);
928         extra = bio_list_get(&rbio->bio_list);
929         free_raid_bio(rbio);
930 
931         rbio_endio_bio_list(cur, err);
932         if (extra)
933                 rbio_endio_bio_list(extra, err);
934 }
935 
936 /*
937  * Get a sector pointer specified by its @stripe_nr and @sector_nr.
938  *
939  * @rbio:               The raid bio
940  * @stripe_nr:          Stripe number, valid range [0, real_stripe)
941  * @sector_nr:          Sector number inside the stripe,
942  *                      valid range [0, stripe_nsectors)
943  * @bio_list_only:      Whether to use sectors inside the bio list only.
944  *
945  * The read/modify/write code wants to reuse the original bio page as much
946  * as possible, and only use stripe_sectors as fallback.
947  */
948 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
949                                          int stripe_nr, int sector_nr,
950                                          bool bio_list_only)
951 {
952         struct sector_ptr *sector;
953         int index;
954 
955         ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->real_stripes,
956                            rbio, stripe_nr);
957         ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
958                            rbio, sector_nr);
959 
960         index = stripe_nr * rbio->stripe_nsectors + sector_nr;
961         ASSERT(index >= 0 && index < rbio->nr_sectors);
962 
963         spin_lock(&rbio->bio_list_lock);
964         sector = &rbio->bio_sectors[index];
965         if (sector->page || bio_list_only) {
966                 /* Don't return sector without a valid page pointer */
967                 if (!sector->page)
968                         sector = NULL;
969                 spin_unlock(&rbio->bio_list_lock);
970                 return sector;
971         }
972         spin_unlock(&rbio->bio_list_lock);
973 
974         return &rbio->stripe_sectors[index];
975 }
976 
977 /*
978  * allocation and initial setup for the btrfs_raid_bio.  Not
979  * this does not allocate any pages for rbio->pages.
980  */
981 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
982                                          struct btrfs_io_context *bioc)
983 {
984         const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
985         const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
986         const unsigned int num_pages = stripe_npages * real_stripes;
987         const unsigned int stripe_nsectors =
988                 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
989         const unsigned int num_sectors = stripe_nsectors * real_stripes;
990         struct btrfs_raid_bio *rbio;
991 
992         /* PAGE_SIZE must also be aligned to sectorsize for subpage support */
993         ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
994         /*
995          * Our current stripe len should be fixed to 64k thus stripe_nsectors
996          * (at most 16) should be no larger than BITS_PER_LONG.
997          */
998         ASSERT(stripe_nsectors <= BITS_PER_LONG);
999 
1000         /*
1001          * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256
1002          * (limited by u8).
1003          */
1004         ASSERT(real_stripes >= 2);
1005         ASSERT(real_stripes <= U8_MAX);
1006 
1007         rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
1008         if (!rbio)
1009                 return ERR_PTR(-ENOMEM);
1010         rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
1011                                      GFP_NOFS);
1012         rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
1013                                     GFP_NOFS);
1014         rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
1015                                        GFP_NOFS);
1016         rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
1017         rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
1018 
1019         if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
1020             !rbio->finish_pointers || !rbio->error_bitmap) {
1021                 free_raid_bio_pointers(rbio);
1022                 kfree(rbio);
1023                 return ERR_PTR(-ENOMEM);
1024         }
1025 
1026         bio_list_init(&rbio->bio_list);
1027         init_waitqueue_head(&rbio->io_wait);
1028         INIT_LIST_HEAD(&rbio->plug_list);
1029         spin_lock_init(&rbio->bio_list_lock);
1030         INIT_LIST_HEAD(&rbio->stripe_cache);
1031         INIT_LIST_HEAD(&rbio->hash_list);
1032         btrfs_get_bioc(bioc);
1033         rbio->bioc = bioc;
1034         rbio->nr_pages = num_pages;
1035         rbio->nr_sectors = num_sectors;
1036         rbio->real_stripes = real_stripes;
1037         rbio->stripe_npages = stripe_npages;
1038         rbio->stripe_nsectors = stripe_nsectors;
1039         refcount_set(&rbio->refs, 1);
1040         atomic_set(&rbio->stripes_pending, 0);
1041 
1042         ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
1043         rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
1044         ASSERT(rbio->nr_data > 0);
1045 
1046         return rbio;
1047 }
1048 
1049 /* allocate pages for all the stripes in the bio, including parity */
1050 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1051 {
1052         int ret;
1053 
1054         ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, false);
1055         if (ret < 0)
1056                 return ret;
1057         /* Mapping all sectors */
1058         index_stripe_sectors(rbio);
1059         return 0;
1060 }
1061 
1062 /* only allocate pages for p/q stripes */
1063 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1064 {
1065         const int data_pages = rbio->nr_data * rbio->stripe_npages;
1066         int ret;
1067 
1068         ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
1069                                      rbio->stripe_pages + data_pages, false);
1070         if (ret < 0)
1071                 return ret;
1072 
1073         index_stripe_sectors(rbio);
1074         return 0;
1075 }
1076 
1077 /*
1078  * Return the total number of errors found in the vertical stripe of @sector_nr.
1079  *
1080  * @faila and @failb will also be updated to the first and second stripe
1081  * number of the errors.
1082  */
1083 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1084                                      int *faila, int *failb)
1085 {
1086         int stripe_nr;
1087         int found_errors = 0;
1088 
1089         if (faila || failb) {
1090                 /*
1091                  * Both @faila and @failb should be valid pointers if any of
1092                  * them is specified.
1093                  */
1094                 ASSERT(faila && failb);
1095                 *faila = -1;
1096                 *failb = -1;
1097         }
1098 
1099         for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1100                 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1101 
1102                 if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1103                         found_errors++;
1104                         if (faila) {
1105                                 /* Update faila and failb. */
1106                                 if (*faila < 0)
1107                                         *faila = stripe_nr;
1108                                 else if (*failb < 0)
1109                                         *failb = stripe_nr;
1110                         }
1111                 }
1112         }
1113         return found_errors;
1114 }
1115 
1116 /*
1117  * Add a single sector @sector into our list of bios for IO.
1118  *
1119  * Return 0 if everything went well.
1120  * Return <0 for error.
1121  */
1122 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1123                               struct bio_list *bio_list,
1124                               struct sector_ptr *sector,
1125                               unsigned int stripe_nr,
1126                               unsigned int sector_nr,
1127                               enum req_op op)
1128 {
1129         const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1130         struct bio *last = bio_list->tail;
1131         int ret;
1132         struct bio *bio;
1133         struct btrfs_io_stripe *stripe;
1134         u64 disk_start;
1135 
1136         /*
1137          * Note: here stripe_nr has taken device replace into consideration,
1138          * thus it can be larger than rbio->real_stripe.
1139          * So here we check against bioc->num_stripes, not rbio->real_stripes.
1140          */
1141         ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes,
1142                            rbio, stripe_nr);
1143         ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
1144                            rbio, sector_nr);
1145         ASSERT(sector->page);
1146 
1147         stripe = &rbio->bioc->stripes[stripe_nr];
1148         disk_start = stripe->physical + sector_nr * sectorsize;
1149 
1150         /* if the device is missing, just fail this stripe */
1151         if (!stripe->dev->bdev) {
1152                 int found_errors;
1153 
1154                 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1155                         rbio->error_bitmap);
1156 
1157                 /* Check if we have reached tolerance early. */
1158                 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1159                                                          NULL, NULL);
1160                 if (found_errors > rbio->bioc->max_errors)
1161                         return -EIO;
1162                 return 0;
1163         }
1164 
1165         /* see if we can add this page onto our existing bio */
1166         if (last) {
1167                 u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1168                 last_end += last->bi_iter.bi_size;
1169 
1170                 /*
1171                  * we can't merge these if they are from different
1172                  * devices or if they are not contiguous
1173                  */
1174                 if (last_end == disk_start && !last->bi_status &&
1175                     last->bi_bdev == stripe->dev->bdev) {
1176                         ret = bio_add_page(last, sector->page, sectorsize,
1177                                            sector->pgoff);
1178                         if (ret == sectorsize)
1179                                 return 0;
1180                 }
1181         }
1182 
1183         /* put a new bio on the list */
1184         bio = bio_alloc(stripe->dev->bdev,
1185                         max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1186                         op, GFP_NOFS);
1187         bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1188         bio->bi_private = rbio;
1189 
1190         __bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1191         bio_list_add(bio_list, bio);
1192         return 0;
1193 }
1194 
1195 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1196 {
1197         const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1198         struct bio_vec bvec;
1199         struct bvec_iter iter;
1200         u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1201                      rbio->bioc->full_stripe_logical;
1202 
1203         bio_for_each_segment(bvec, bio, iter) {
1204                 u32 bvec_offset;
1205 
1206                 for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1207                      bvec_offset += sectorsize, offset += sectorsize) {
1208                         int index = offset / sectorsize;
1209                         struct sector_ptr *sector = &rbio->bio_sectors[index];
1210 
1211                         sector->page = bvec.bv_page;
1212                         sector->pgoff = bvec.bv_offset + bvec_offset;
1213                         ASSERT(sector->pgoff < PAGE_SIZE);
1214                 }
1215         }
1216 }
1217 
1218 /*
1219  * helper function to walk our bio list and populate the bio_pages array with
1220  * the result.  This seems expensive, but it is faster than constantly
1221  * searching through the bio list as we setup the IO in finish_rmw or stripe
1222  * reconstruction.
1223  *
1224  * This must be called before you trust the answers from page_in_rbio
1225  */
1226 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1227 {
1228         struct bio *bio;
1229 
1230         spin_lock(&rbio->bio_list_lock);
1231         bio_list_for_each(bio, &rbio->bio_list)
1232                 index_one_bio(rbio, bio);
1233 
1234         spin_unlock(&rbio->bio_list_lock);
1235 }
1236 
1237 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1238                                struct raid56_bio_trace_info *trace_info)
1239 {
1240         const struct btrfs_io_context *bioc = rbio->bioc;
1241         int i;
1242 
1243         ASSERT(bioc);
1244 
1245         /* We rely on bio->bi_bdev to find the stripe number. */
1246         if (!bio->bi_bdev)
1247                 goto not_found;
1248 
1249         for (i = 0; i < bioc->num_stripes; i++) {
1250                 if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1251                         continue;
1252                 trace_info->stripe_nr = i;
1253                 trace_info->devid = bioc->stripes[i].dev->devid;
1254                 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1255                                      bioc->stripes[i].physical;
1256                 return;
1257         }
1258 
1259 not_found:
1260         trace_info->devid = -1;
1261         trace_info->offset = -1;
1262         trace_info->stripe_nr = -1;
1263 }
1264 
1265 static inline void bio_list_put(struct bio_list *bio_list)
1266 {
1267         struct bio *bio;
1268 
1269         while ((bio = bio_list_pop(bio_list)))
1270                 bio_put(bio);
1271 }
1272 
1273 static void assert_rbio(struct btrfs_raid_bio *rbio)
1274 {
1275         if (!IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
1276             !IS_ENABLED(CONFIG_BTRFS_ASSERT))
1277                 return;
1278 
1279         /*
1280          * At least two stripes (2 disks RAID5), and since real_stripes is U8,
1281          * we won't go beyond 256 disks anyway.
1282          */
1283         ASSERT_RBIO(rbio->real_stripes >= 2, rbio);
1284         ASSERT_RBIO(rbio->nr_data > 0, rbio);
1285 
1286         /*
1287          * This is another check to make sure nr data stripes is smaller
1288          * than total stripes.
1289          */
1290         ASSERT_RBIO(rbio->nr_data < rbio->real_stripes, rbio);
1291 }
1292 
1293 /* Generate PQ for one vertical stripe. */
1294 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1295 {
1296         void **pointers = rbio->finish_pointers;
1297         const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1298         struct sector_ptr *sector;
1299         int stripe;
1300         const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1301 
1302         /* First collect one sector from each data stripe */
1303         for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1304                 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1305                 pointers[stripe] = kmap_local_page(sector->page) +
1306                                    sector->pgoff;
1307         }
1308 
1309         /* Then add the parity stripe */
1310         sector = rbio_pstripe_sector(rbio, sectornr);
1311         sector->uptodate = 1;
1312         pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1313 
1314         if (has_qstripe) {
1315                 /*
1316                  * RAID6, add the qstripe and call the library function
1317                  * to fill in our p/q
1318                  */
1319                 sector = rbio_qstripe_sector(rbio, sectornr);
1320                 sector->uptodate = 1;
1321                 pointers[stripe++] = kmap_local_page(sector->page) +
1322                                      sector->pgoff;
1323 
1324                 assert_rbio(rbio);
1325                 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1326                                         pointers);
1327         } else {
1328                 /* raid5 */
1329                 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1330                 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1331         }
1332         for (stripe = stripe - 1; stripe >= 0; stripe--)
1333                 kunmap_local(pointers[stripe]);
1334 }
1335 
1336 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1337                                    struct bio_list *bio_list)
1338 {
1339         /* The total sector number inside the full stripe. */
1340         int total_sector_nr;
1341         int sectornr;
1342         int stripe;
1343         int ret;
1344 
1345         ASSERT(bio_list_size(bio_list) == 0);
1346 
1347         /* We should have at least one data sector. */
1348         ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1349 
1350         /*
1351          * Reset errors, as we may have errors inherited from from degraded
1352          * write.
1353          */
1354         bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1355 
1356         /*
1357          * Start assembly.  Make bios for everything from the higher layers (the
1358          * bio_list in our rbio) and our P/Q.  Ignore everything else.
1359          */
1360         for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1361              total_sector_nr++) {
1362                 struct sector_ptr *sector;
1363 
1364                 stripe = total_sector_nr / rbio->stripe_nsectors;
1365                 sectornr = total_sector_nr % rbio->stripe_nsectors;
1366 
1367                 /* This vertical stripe has no data, skip it. */
1368                 if (!test_bit(sectornr, &rbio->dbitmap))
1369                         continue;
1370 
1371                 if (stripe < rbio->nr_data) {
1372                         sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1373                         if (!sector)
1374                                 continue;
1375                 } else {
1376                         sector = rbio_stripe_sector(rbio, stripe, sectornr);
1377                 }
1378 
1379                 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1380                                          sectornr, REQ_OP_WRITE);
1381                 if (ret)
1382                         goto error;
1383         }
1384 
1385         if (likely(!rbio->bioc->replace_nr_stripes))
1386                 return 0;
1387 
1388         /*
1389          * Make a copy for the replace target device.
1390          *
1391          * Thus the source stripe number (in replace_stripe_src) should be valid.
1392          */
1393         ASSERT(rbio->bioc->replace_stripe_src >= 0);
1394 
1395         for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1396              total_sector_nr++) {
1397                 struct sector_ptr *sector;
1398 
1399                 stripe = total_sector_nr / rbio->stripe_nsectors;
1400                 sectornr = total_sector_nr % rbio->stripe_nsectors;
1401 
1402                 /*
1403                  * For RAID56, there is only one device that can be replaced,
1404                  * and replace_stripe_src[0] indicates the stripe number we
1405                  * need to copy from.
1406                  */
1407                 if (stripe != rbio->bioc->replace_stripe_src) {
1408                         /*
1409                          * We can skip the whole stripe completely, note
1410                          * total_sector_nr will be increased by one anyway.
1411                          */
1412                         ASSERT(sectornr == 0);
1413                         total_sector_nr += rbio->stripe_nsectors - 1;
1414                         continue;
1415                 }
1416 
1417                 /* This vertical stripe has no data, skip it. */
1418                 if (!test_bit(sectornr, &rbio->dbitmap))
1419                         continue;
1420 
1421                 if (stripe < rbio->nr_data) {
1422                         sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1423                         if (!sector)
1424                                 continue;
1425                 } else {
1426                         sector = rbio_stripe_sector(rbio, stripe, sectornr);
1427                 }
1428 
1429                 ret = rbio_add_io_sector(rbio, bio_list, sector,
1430                                          rbio->real_stripes,
1431                                          sectornr, REQ_OP_WRITE);
1432                 if (ret)
1433                         goto error;
1434         }
1435 
1436         return 0;
1437 error:
1438         bio_list_put(bio_list);
1439         return -EIO;
1440 }
1441 
1442 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1443 {
1444         struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1445         u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1446                      rbio->bioc->full_stripe_logical;
1447         int total_nr_sector = offset >> fs_info->sectorsize_bits;
1448 
1449         ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1450 
1451         bitmap_set(rbio->error_bitmap, total_nr_sector,
1452                    bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1453 
1454         /*
1455          * Special handling for raid56_alloc_missing_rbio() used by
1456          * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1457          * pass an empty bio here.  Thus we have to find out the missing device
1458          * and mark the stripe error instead.
1459          */
1460         if (bio->bi_iter.bi_size == 0) {
1461                 bool found_missing = false;
1462                 int stripe_nr;
1463 
1464                 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1465                         if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1466                                 found_missing = true;
1467                                 bitmap_set(rbio->error_bitmap,
1468                                            stripe_nr * rbio->stripe_nsectors,
1469                                            rbio->stripe_nsectors);
1470                         }
1471                 }
1472                 ASSERT(found_missing);
1473         }
1474 }
1475 
1476 /*
1477  * For subpage case, we can no longer set page Up-to-date directly for
1478  * stripe_pages[], thus we need to locate the sector.
1479  */
1480 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1481                                              struct page *page,
1482                                              unsigned int pgoff)
1483 {
1484         int i;
1485 
1486         for (i = 0; i < rbio->nr_sectors; i++) {
1487                 struct sector_ptr *sector = &rbio->stripe_sectors[i];
1488 
1489                 if (sector->page == page && sector->pgoff == pgoff)
1490                         return sector;
1491         }
1492         return NULL;
1493 }
1494 
1495 /*
1496  * this sets each page in the bio uptodate.  It should only be used on private
1497  * rbio pages, nothing that comes in from the higher layers
1498  */
1499 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1500 {
1501         const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1502         struct bio_vec *bvec;
1503         struct bvec_iter_all iter_all;
1504 
1505         ASSERT(!bio_flagged(bio, BIO_CLONED));
1506 
1507         bio_for_each_segment_all(bvec, bio, iter_all) {
1508                 struct sector_ptr *sector;
1509                 int pgoff;
1510 
1511                 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1512                      pgoff += sectorsize) {
1513                         sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1514                         ASSERT(sector);
1515                         if (sector)
1516                                 sector->uptodate = 1;
1517                 }
1518         }
1519 }
1520 
1521 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1522 {
1523         struct bio_vec *bv = bio_first_bvec_all(bio);
1524         int i;
1525 
1526         for (i = 0; i < rbio->nr_sectors; i++) {
1527                 struct sector_ptr *sector;
1528 
1529                 sector = &rbio->stripe_sectors[i];
1530                 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1531                         break;
1532                 sector = &rbio->bio_sectors[i];
1533                 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1534                         break;
1535         }
1536         ASSERT(i < rbio->nr_sectors);
1537         return i;
1538 }
1539 
1540 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1541 {
1542         int total_sector_nr = get_bio_sector_nr(rbio, bio);
1543         u32 bio_size = 0;
1544         struct bio_vec *bvec;
1545         int i;
1546 
1547         bio_for_each_bvec_all(bvec, bio, i)
1548                 bio_size += bvec->bv_len;
1549 
1550         /*
1551          * Since we can have multiple bios touching the error_bitmap, we cannot
1552          * call bitmap_set() without protection.
1553          *
1554          * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1555          */
1556         for (i = total_sector_nr; i < total_sector_nr +
1557              (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1558                 set_bit(i, rbio->error_bitmap);
1559 }
1560 
1561 /* Verify the data sectors at read time. */
1562 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1563                                     struct bio *bio)
1564 {
1565         struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1566         int total_sector_nr = get_bio_sector_nr(rbio, bio);
1567         struct bio_vec *bvec;
1568         struct bvec_iter_all iter_all;
1569 
1570         /* No data csum for the whole stripe, no need to verify. */
1571         if (!rbio->csum_bitmap || !rbio->csum_buf)
1572                 return;
1573 
1574         /* P/Q stripes, they have no data csum to verify against. */
1575         if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1576                 return;
1577 
1578         bio_for_each_segment_all(bvec, bio, iter_all) {
1579                 int bv_offset;
1580 
1581                 for (bv_offset = bvec->bv_offset;
1582                      bv_offset < bvec->bv_offset + bvec->bv_len;
1583                      bv_offset += fs_info->sectorsize, total_sector_nr++) {
1584                         u8 csum_buf[BTRFS_CSUM_SIZE];
1585                         u8 *expected_csum = rbio->csum_buf +
1586                                             total_sector_nr * fs_info->csum_size;
1587                         int ret;
1588 
1589                         /* No csum for this sector, skip to the next sector. */
1590                         if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1591                                 continue;
1592 
1593                         ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1594                                 bv_offset, csum_buf, expected_csum);
1595                         if (ret < 0)
1596                                 set_bit(total_sector_nr, rbio->error_bitmap);
1597                 }
1598         }
1599 }
1600 
1601 static void raid_wait_read_end_io(struct bio *bio)
1602 {
1603         struct btrfs_raid_bio *rbio = bio->bi_private;
1604 
1605         if (bio->bi_status) {
1606                 rbio_update_error_bitmap(rbio, bio);
1607         } else {
1608                 set_bio_pages_uptodate(rbio, bio);
1609                 verify_bio_data_sectors(rbio, bio);
1610         }
1611 
1612         bio_put(bio);
1613         if (atomic_dec_and_test(&rbio->stripes_pending))
1614                 wake_up(&rbio->io_wait);
1615 }
1616 
1617 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1618                              struct bio_list *bio_list)
1619 {
1620         struct bio *bio;
1621 
1622         atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1623         while ((bio = bio_list_pop(bio_list))) {
1624                 bio->bi_end_io = raid_wait_read_end_io;
1625 
1626                 if (trace_raid56_read_enabled()) {
1627                         struct raid56_bio_trace_info trace_info = { 0 };
1628 
1629                         bio_get_trace_info(rbio, bio, &trace_info);
1630                         trace_raid56_read(rbio, bio, &trace_info);
1631                 }
1632                 submit_bio(bio);
1633         }
1634 
1635         wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1636 }
1637 
1638 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1639 {
1640         const int data_pages = rbio->nr_data * rbio->stripe_npages;
1641         int ret;
1642 
1643         ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, false);
1644         if (ret < 0)
1645                 return ret;
1646 
1647         index_stripe_sectors(rbio);
1648         return 0;
1649 }
1650 
1651 /*
1652  * We use plugging call backs to collect full stripes.
1653  * Any time we get a partial stripe write while plugged
1654  * we collect it into a list.  When the unplug comes down,
1655  * we sort the list by logical block number and merge
1656  * everything we can into the same rbios
1657  */
1658 struct btrfs_plug_cb {
1659         struct blk_plug_cb cb;
1660         struct btrfs_fs_info *info;
1661         struct list_head rbio_list;
1662 };
1663 
1664 /*
1665  * rbios on the plug list are sorted for easier merging.
1666  */
1667 static int plug_cmp(void *priv, const struct list_head *a,
1668                     const struct list_head *b)
1669 {
1670         const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1671                                                        plug_list);
1672         const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1673                                                        plug_list);
1674         u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1675         u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1676 
1677         if (a_sector < b_sector)
1678                 return -1;
1679         if (a_sector > b_sector)
1680                 return 1;
1681         return 0;
1682 }
1683 
1684 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1685 {
1686         struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1687         struct btrfs_raid_bio *cur;
1688         struct btrfs_raid_bio *last = NULL;
1689 
1690         list_sort(NULL, &plug->rbio_list, plug_cmp);
1691 
1692         while (!list_empty(&plug->rbio_list)) {
1693                 cur = list_entry(plug->rbio_list.next,
1694                                  struct btrfs_raid_bio, plug_list);
1695                 list_del_init(&cur->plug_list);
1696 
1697                 if (rbio_is_full(cur)) {
1698                         /* We have a full stripe, queue it down. */
1699                         start_async_work(cur, rmw_rbio_work);
1700                         continue;
1701                 }
1702                 if (last) {
1703                         if (rbio_can_merge(last, cur)) {
1704                                 merge_rbio(last, cur);
1705                                 free_raid_bio(cur);
1706                                 continue;
1707                         }
1708                         start_async_work(last, rmw_rbio_work);
1709                 }
1710                 last = cur;
1711         }
1712         if (last)
1713                 start_async_work(last, rmw_rbio_work);
1714         kfree(plug);
1715 }
1716 
1717 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1718 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1719 {
1720         const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1721         const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1722         const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1723         const u32 orig_len = orig_bio->bi_iter.bi_size;
1724         const u32 sectorsize = fs_info->sectorsize;
1725         u64 cur_logical;
1726 
1727         ASSERT_RBIO_LOGICAL(orig_logical >= full_stripe_start &&
1728                             orig_logical + orig_len <= full_stripe_start +
1729                             rbio->nr_data * BTRFS_STRIPE_LEN,
1730                             rbio, orig_logical);
1731 
1732         bio_list_add(&rbio->bio_list, orig_bio);
1733         rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1734 
1735         /* Update the dbitmap. */
1736         for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1737              cur_logical += sectorsize) {
1738                 int bit = ((u32)(cur_logical - full_stripe_start) >>
1739                            fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1740 
1741                 set_bit(bit, &rbio->dbitmap);
1742         }
1743 }
1744 
1745 /*
1746  * our main entry point for writes from the rest of the FS.
1747  */
1748 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
1749 {
1750         struct btrfs_fs_info *fs_info = bioc->fs_info;
1751         struct btrfs_raid_bio *rbio;
1752         struct btrfs_plug_cb *plug = NULL;
1753         struct blk_plug_cb *cb;
1754 
1755         rbio = alloc_rbio(fs_info, bioc);
1756         if (IS_ERR(rbio)) {
1757                 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1758                 bio_endio(bio);
1759                 return;
1760         }
1761         rbio->operation = BTRFS_RBIO_WRITE;
1762         rbio_add_bio(rbio, bio);
1763 
1764         /*
1765          * Don't plug on full rbios, just get them out the door
1766          * as quickly as we can
1767          */
1768         if (!rbio_is_full(rbio)) {
1769                 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1770                 if (cb) {
1771                         plug = container_of(cb, struct btrfs_plug_cb, cb);
1772                         if (!plug->info) {
1773                                 plug->info = fs_info;
1774                                 INIT_LIST_HEAD(&plug->rbio_list);
1775                         }
1776                         list_add_tail(&rbio->plug_list, &plug->rbio_list);
1777                         return;
1778                 }
1779         }
1780 
1781         /*
1782          * Either we don't have any existing plug, or we're doing a full stripe,
1783          * queue the rmw work now.
1784          */
1785         start_async_work(rbio, rmw_rbio_work);
1786 }
1787 
1788 static int verify_one_sector(struct btrfs_raid_bio *rbio,
1789                              int stripe_nr, int sector_nr)
1790 {
1791         struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1792         struct sector_ptr *sector;
1793         u8 csum_buf[BTRFS_CSUM_SIZE];
1794         u8 *csum_expected;
1795         int ret;
1796 
1797         if (!rbio->csum_bitmap || !rbio->csum_buf)
1798                 return 0;
1799 
1800         /* No way to verify P/Q as they are not covered by data csum. */
1801         if (stripe_nr >= rbio->nr_data)
1802                 return 0;
1803         /*
1804          * If we're rebuilding a read, we have to use pages from the
1805          * bio list if possible.
1806          */
1807         if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1808                 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1809         } else {
1810                 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1811         }
1812 
1813         ASSERT(sector->page);
1814 
1815         csum_expected = rbio->csum_buf +
1816                         (stripe_nr * rbio->stripe_nsectors + sector_nr) *
1817                         fs_info->csum_size;
1818         ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1819                                       csum_buf, csum_expected);
1820         return ret;
1821 }
1822 
1823 /*
1824  * Recover a vertical stripe specified by @sector_nr.
1825  * @*pointers are the pre-allocated pointers by the caller, so we don't
1826  * need to allocate/free the pointers again and again.
1827  */
1828 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1829                             void **pointers, void **unmap_array)
1830 {
1831         struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1832         struct sector_ptr *sector;
1833         const u32 sectorsize = fs_info->sectorsize;
1834         int found_errors;
1835         int faila;
1836         int failb;
1837         int stripe_nr;
1838         int ret = 0;
1839 
1840         /*
1841          * Now we just use bitmap to mark the horizontal stripes in
1842          * which we have data when doing parity scrub.
1843          */
1844         if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1845             !test_bit(sector_nr, &rbio->dbitmap))
1846                 return 0;
1847 
1848         found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1849                                                  &failb);
1850         /*
1851          * No errors in the vertical stripe, skip it.  Can happen for recovery
1852          * which only part of a stripe failed csum check.
1853          */
1854         if (!found_errors)
1855                 return 0;
1856 
1857         if (found_errors > rbio->bioc->max_errors)
1858                 return -EIO;
1859 
1860         /*
1861          * Setup our array of pointers with sectors from each stripe
1862          *
1863          * NOTE: store a duplicate array of pointers to preserve the
1864          * pointer order.
1865          */
1866         for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1867                 /*
1868                  * If we're rebuilding a read, we have to use pages from the
1869                  * bio list if possible.
1870                  */
1871                 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1872                         sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1873                 } else {
1874                         sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1875                 }
1876                 ASSERT(sector->page);
1877                 pointers[stripe_nr] = kmap_local_page(sector->page) +
1878                                    sector->pgoff;
1879                 unmap_array[stripe_nr] = pointers[stripe_nr];
1880         }
1881 
1882         /* All raid6 handling here */
1883         if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1884                 /* Single failure, rebuild from parity raid5 style */
1885                 if (failb < 0) {
1886                         if (faila == rbio->nr_data)
1887                                 /*
1888                                  * Just the P stripe has failed, without
1889                                  * a bad data or Q stripe.
1890                                  * We have nothing to do, just skip the
1891                                  * recovery for this stripe.
1892                                  */
1893                                 goto cleanup;
1894                         /*
1895                          * a single failure in raid6 is rebuilt
1896                          * in the pstripe code below
1897                          */
1898                         goto pstripe;
1899                 }
1900 
1901                 /*
1902                  * If the q stripe is failed, do a pstripe reconstruction from
1903                  * the xors.
1904                  * If both the q stripe and the P stripe are failed, we're
1905                  * here due to a crc mismatch and we can't give them the
1906                  * data they want.
1907                  */
1908                 if (failb == rbio->real_stripes - 1) {
1909                         if (faila == rbio->real_stripes - 2)
1910                                 /*
1911                                  * Only P and Q are corrupted.
1912                                  * We only care about data stripes recovery,
1913                                  * can skip this vertical stripe.
1914                                  */
1915                                 goto cleanup;
1916                         /*
1917                          * Otherwise we have one bad data stripe and
1918                          * a good P stripe.  raid5!
1919                          */
1920                         goto pstripe;
1921                 }
1922 
1923                 if (failb == rbio->real_stripes - 2) {
1924                         raid6_datap_recov(rbio->real_stripes, sectorsize,
1925                                           faila, pointers);
1926                 } else {
1927                         raid6_2data_recov(rbio->real_stripes, sectorsize,
1928                                           faila, failb, pointers);
1929                 }
1930         } else {
1931                 void *p;
1932 
1933                 /* Rebuild from P stripe here (raid5 or raid6). */
1934                 ASSERT(failb == -1);
1935 pstripe:
1936                 /* Copy parity block into failed block to start with */
1937                 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1938 
1939                 /* Rearrange the pointer array */
1940                 p = pointers[faila];
1941                 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1942                      stripe_nr++)
1943                         pointers[stripe_nr] = pointers[stripe_nr + 1];
1944                 pointers[rbio->nr_data - 1] = p;
1945 
1946                 /* Xor in the rest */
1947                 run_xor(pointers, rbio->nr_data - 1, sectorsize);
1948 
1949         }
1950 
1951         /*
1952          * No matter if this is a RMW or recovery, we should have all
1953          * failed sectors repaired in the vertical stripe, thus they are now
1954          * uptodate.
1955          * Especially if we determine to cache the rbio, we need to
1956          * have at least all data sectors uptodate.
1957          *
1958          * If possible, also check if the repaired sector matches its data
1959          * checksum.
1960          */
1961         if (faila >= 0) {
1962                 ret = verify_one_sector(rbio, faila, sector_nr);
1963                 if (ret < 0)
1964                         goto cleanup;
1965 
1966                 sector = rbio_stripe_sector(rbio, faila, sector_nr);
1967                 sector->uptodate = 1;
1968         }
1969         if (failb >= 0) {
1970                 ret = verify_one_sector(rbio, failb, sector_nr);
1971                 if (ret < 0)
1972                         goto cleanup;
1973 
1974                 sector = rbio_stripe_sector(rbio, failb, sector_nr);
1975                 sector->uptodate = 1;
1976         }
1977 
1978 cleanup:
1979         for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1980                 kunmap_local(unmap_array[stripe_nr]);
1981         return ret;
1982 }
1983 
1984 static int recover_sectors(struct btrfs_raid_bio *rbio)
1985 {
1986         void **pointers = NULL;
1987         void **unmap_array = NULL;
1988         int sectornr;
1989         int ret = 0;
1990 
1991         /*
1992          * @pointers array stores the pointer for each sector.
1993          *
1994          * @unmap_array stores copy of pointers that does not get reordered
1995          * during reconstruction so that kunmap_local works.
1996          */
1997         pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1998         unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1999         if (!pointers || !unmap_array) {
2000                 ret = -ENOMEM;
2001                 goto out;
2002         }
2003 
2004         if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
2005                 spin_lock(&rbio->bio_list_lock);
2006                 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2007                 spin_unlock(&rbio->bio_list_lock);
2008         }
2009 
2010         index_rbio_pages(rbio);
2011 
2012         for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2013                 ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
2014                 if (ret < 0)
2015                         break;
2016         }
2017 
2018 out:
2019         kfree(pointers);
2020         kfree(unmap_array);
2021         return ret;
2022 }
2023 
2024 static void recover_rbio(struct btrfs_raid_bio *rbio)
2025 {
2026         struct bio_list bio_list = BIO_EMPTY_LIST;
2027         int total_sector_nr;
2028         int ret = 0;
2029 
2030         /*
2031          * Either we're doing recover for a read failure or degraded write,
2032          * caller should have set error bitmap correctly.
2033          */
2034         ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
2035 
2036         /* For recovery, we need to read all sectors including P/Q. */
2037         ret = alloc_rbio_pages(rbio);
2038         if (ret < 0)
2039                 goto out;
2040 
2041         index_rbio_pages(rbio);
2042 
2043         /*
2044          * Read everything that hasn't failed. However this time we will
2045          * not trust any cached sector.
2046          * As we may read out some stale data but higher layer is not reading
2047          * that stale part.
2048          *
2049          * So here we always re-read everything in recovery path.
2050          */
2051         for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2052              total_sector_nr++) {
2053                 int stripe = total_sector_nr / rbio->stripe_nsectors;
2054                 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2055                 struct sector_ptr *sector;
2056 
2057                 /*
2058                  * Skip the range which has error.  It can be a range which is
2059                  * marked error (for csum mismatch), or it can be a missing
2060                  * device.
2061                  */
2062                 if (!rbio->bioc->stripes[stripe].dev->bdev ||
2063                     test_bit(total_sector_nr, rbio->error_bitmap)) {
2064                         /*
2065                          * Also set the error bit for missing device, which
2066                          * may not yet have its error bit set.
2067                          */
2068                         set_bit(total_sector_nr, rbio->error_bitmap);
2069                         continue;
2070                 }
2071 
2072                 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2073                 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2074                                          sectornr, REQ_OP_READ);
2075                 if (ret < 0) {
2076                         bio_list_put(&bio_list);
2077                         goto out;
2078                 }
2079         }
2080 
2081         submit_read_wait_bio_list(rbio, &bio_list);
2082         ret = recover_sectors(rbio);
2083 out:
2084         rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2085 }
2086 
2087 static void recover_rbio_work(struct work_struct *work)
2088 {
2089         struct btrfs_raid_bio *rbio;
2090 
2091         rbio = container_of(work, struct btrfs_raid_bio, work);
2092         if (!lock_stripe_add(rbio))
2093                 recover_rbio(rbio);
2094 }
2095 
2096 static void recover_rbio_work_locked(struct work_struct *work)
2097 {
2098         recover_rbio(container_of(work, struct btrfs_raid_bio, work));
2099 }
2100 
2101 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2102 {
2103         bool found = false;
2104         int sector_nr;
2105 
2106         /*
2107          * This is for RAID6 extra recovery tries, thus mirror number should
2108          * be large than 2.
2109          * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2110          * RAID5 methods.
2111          */
2112         ASSERT(mirror_num > 2);
2113         for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2114                 int found_errors;
2115                 int faila;
2116                 int failb;
2117 
2118                 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2119                                                          &faila, &failb);
2120                 /* This vertical stripe doesn't have errors. */
2121                 if (!found_errors)
2122                         continue;
2123 
2124                 /*
2125                  * If we found errors, there should be only one error marked
2126                  * by previous set_rbio_range_error().
2127                  */
2128                 ASSERT(found_errors == 1);
2129                 found = true;
2130 
2131                 /* Now select another stripe to mark as error. */
2132                 failb = rbio->real_stripes - (mirror_num - 1);
2133                 if (failb <= faila)
2134                         failb--;
2135 
2136                 /* Set the extra bit in error bitmap. */
2137                 if (failb >= 0)
2138                         set_bit(failb * rbio->stripe_nsectors + sector_nr,
2139                                 rbio->error_bitmap);
2140         }
2141 
2142         /* We should found at least one vertical stripe with error.*/
2143         ASSERT(found);
2144 }
2145 
2146 /*
2147  * the main entry point for reads from the higher layers.  This
2148  * is really only called when the normal read path had a failure,
2149  * so we assume the bio they send down corresponds to a failed part
2150  * of the drive.
2151  */
2152 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2153                            int mirror_num)
2154 {
2155         struct btrfs_fs_info *fs_info = bioc->fs_info;
2156         struct btrfs_raid_bio *rbio;
2157 
2158         rbio = alloc_rbio(fs_info, bioc);
2159         if (IS_ERR(rbio)) {
2160                 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2161                 bio_endio(bio);
2162                 return;
2163         }
2164 
2165         rbio->operation = BTRFS_RBIO_READ_REBUILD;
2166         rbio_add_bio(rbio, bio);
2167 
2168         set_rbio_range_error(rbio, bio);
2169 
2170         /*
2171          * Loop retry:
2172          * for 'mirror == 2', reconstruct from all other stripes.
2173          * for 'mirror_num > 2', select a stripe to fail on every retry.
2174          */
2175         if (mirror_num > 2)
2176                 set_rbio_raid6_extra_error(rbio, mirror_num);
2177 
2178         start_async_work(rbio, recover_rbio_work);
2179 }
2180 
2181 static void fill_data_csums(struct btrfs_raid_bio *rbio)
2182 {
2183         struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2184         struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2185                                                        rbio->bioc->full_stripe_logical);
2186         const u64 start = rbio->bioc->full_stripe_logical;
2187         const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2188                         fs_info->sectorsize_bits;
2189         int ret;
2190 
2191         /* The rbio should not have its csum buffer initialized. */
2192         ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2193 
2194         /*
2195          * Skip the csum search if:
2196          *
2197          * - The rbio doesn't belong to data block groups
2198          *   Then we are doing IO for tree blocks, no need to search csums.
2199          *
2200          * - The rbio belongs to mixed block groups
2201          *   This is to avoid deadlock, as we're already holding the full
2202          *   stripe lock, if we trigger a metadata read, and it needs to do
2203          *   raid56 recovery, we will deadlock.
2204          */
2205         if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2206             rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2207                 return;
2208 
2209         rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2210                                  fs_info->csum_size, GFP_NOFS);
2211         rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2212                                           GFP_NOFS);
2213         if (!rbio->csum_buf || !rbio->csum_bitmap) {
2214                 ret = -ENOMEM;
2215                 goto error;
2216         }
2217 
2218         ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2219                                         rbio->csum_buf, rbio->csum_bitmap);
2220         if (ret < 0)
2221                 goto error;
2222         if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2223                 goto no_csum;
2224         return;
2225 
2226 error:
2227         /*
2228          * We failed to allocate memory or grab the csum, but it's not fatal,
2229          * we can still continue.  But better to warn users that RMW is no
2230          * longer safe for this particular sub-stripe write.
2231          */
2232         btrfs_warn_rl(fs_info,
2233 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2234                         rbio->bioc->full_stripe_logical, ret);
2235 no_csum:
2236         kfree(rbio->csum_buf);
2237         bitmap_free(rbio->csum_bitmap);
2238         rbio->csum_buf = NULL;
2239         rbio->csum_bitmap = NULL;
2240 }
2241 
2242 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2243 {
2244         struct bio_list bio_list = BIO_EMPTY_LIST;
2245         int total_sector_nr;
2246         int ret = 0;
2247 
2248         /*
2249          * Fill the data csums we need for data verification.  We need to fill
2250          * the csum_bitmap/csum_buf first, as our endio function will try to
2251          * verify the data sectors.
2252          */
2253         fill_data_csums(rbio);
2254 
2255         /*
2256          * Build a list of bios to read all sectors (including data and P/Q).
2257          *
2258          * This behavior is to compensate the later csum verification and recovery.
2259          */
2260         for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2261              total_sector_nr++) {
2262                 struct sector_ptr *sector;
2263                 int stripe = total_sector_nr / rbio->stripe_nsectors;
2264                 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2265 
2266                 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2267                 ret = rbio_add_io_sector(rbio, &bio_list, sector,
2268                                stripe, sectornr, REQ_OP_READ);
2269                 if (ret) {
2270                         bio_list_put(&bio_list);
2271                         return ret;
2272                 }
2273         }
2274 
2275         /*
2276          * We may or may not have any corrupted sectors (including missing dev
2277          * and csum mismatch), just let recover_sectors() to handle them all.
2278          */
2279         submit_read_wait_bio_list(rbio, &bio_list);
2280         return recover_sectors(rbio);
2281 }
2282 
2283 static void raid_wait_write_end_io(struct bio *bio)
2284 {
2285         struct btrfs_raid_bio *rbio = bio->bi_private;
2286         blk_status_t err = bio->bi_status;
2287 
2288         if (err)
2289                 rbio_update_error_bitmap(rbio, bio);
2290         bio_put(bio);
2291         if (atomic_dec_and_test(&rbio->stripes_pending))
2292                 wake_up(&rbio->io_wait);
2293 }
2294 
2295 static void submit_write_bios(struct btrfs_raid_bio *rbio,
2296                               struct bio_list *bio_list)
2297 {
2298         struct bio *bio;
2299 
2300         atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2301         while ((bio = bio_list_pop(bio_list))) {
2302                 bio->bi_end_io = raid_wait_write_end_io;
2303 
2304                 if (trace_raid56_write_enabled()) {
2305                         struct raid56_bio_trace_info trace_info = { 0 };
2306 
2307                         bio_get_trace_info(rbio, bio, &trace_info);
2308                         trace_raid56_write(rbio, bio, &trace_info);
2309                 }
2310                 submit_bio(bio);
2311         }
2312 }
2313 
2314 /*
2315  * To determine if we need to read any sector from the disk.
2316  * Should only be utilized in RMW path, to skip cached rbio.
2317  */
2318 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2319 {
2320         int i;
2321 
2322         for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2323                 struct sector_ptr *sector = &rbio->stripe_sectors[i];
2324 
2325                 /*
2326                  * We have a sector which doesn't have page nor uptodate,
2327                  * thus this rbio can not be cached one, as cached one must
2328                  * have all its data sectors present and uptodate.
2329                  */
2330                 if (!sector->page || !sector->uptodate)
2331                         return true;
2332         }
2333         return false;
2334 }
2335 
2336 static void rmw_rbio(struct btrfs_raid_bio *rbio)
2337 {
2338         struct bio_list bio_list;
2339         int sectornr;
2340         int ret = 0;
2341 
2342         /*
2343          * Allocate the pages for parity first, as P/Q pages will always be
2344          * needed for both full-stripe and sub-stripe writes.
2345          */
2346         ret = alloc_rbio_parity_pages(rbio);
2347         if (ret < 0)
2348                 goto out;
2349 
2350         /*
2351          * Either full stripe write, or we have every data sector already
2352          * cached, can go to write path immediately.
2353          */
2354         if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2355                 /*
2356                  * Now we're doing sub-stripe write, also need all data stripes
2357                  * to do the full RMW.
2358                  */
2359                 ret = alloc_rbio_data_pages(rbio);
2360                 if (ret < 0)
2361                         goto out;
2362 
2363                 index_rbio_pages(rbio);
2364 
2365                 ret = rmw_read_wait_recover(rbio);
2366                 if (ret < 0)
2367                         goto out;
2368         }
2369 
2370         /*
2371          * At this stage we're not allowed to add any new bios to the
2372          * bio list any more, anyone else that wants to change this stripe
2373          * needs to do their own rmw.
2374          */
2375         spin_lock(&rbio->bio_list_lock);
2376         set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2377         spin_unlock(&rbio->bio_list_lock);
2378 
2379         bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2380 
2381         index_rbio_pages(rbio);
2382 
2383         /*
2384          * We don't cache full rbios because we're assuming
2385          * the higher layers are unlikely to use this area of
2386          * the disk again soon.  If they do use it again,
2387          * hopefully they will send another full bio.
2388          */
2389         if (!rbio_is_full(rbio))
2390                 cache_rbio_pages(rbio);
2391         else
2392                 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2393 
2394         for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2395                 generate_pq_vertical(rbio, sectornr);
2396 
2397         bio_list_init(&bio_list);
2398         ret = rmw_assemble_write_bios(rbio, &bio_list);
2399         if (ret < 0)
2400                 goto out;
2401 
2402         /* We should have at least one bio assembled. */
2403         ASSERT(bio_list_size(&bio_list));
2404         submit_write_bios(rbio, &bio_list);
2405         wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2406 
2407         /* We may have more errors than our tolerance during the read. */
2408         for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2409                 int found_errors;
2410 
2411                 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2412                 if (found_errors > rbio->bioc->max_errors) {
2413                         ret = -EIO;
2414                         break;
2415                 }
2416         }
2417 out:
2418         rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2419 }
2420 
2421 static void rmw_rbio_work(struct work_struct *work)
2422 {
2423         struct btrfs_raid_bio *rbio;
2424 
2425         rbio = container_of(work, struct btrfs_raid_bio, work);
2426         if (lock_stripe_add(rbio) == 0)
2427                 rmw_rbio(rbio);
2428 }
2429 
2430 static void rmw_rbio_work_locked(struct work_struct *work)
2431 {
2432         rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
2433 }
2434 
2435 /*
2436  * The following code is used to scrub/replace the parity stripe
2437  *
2438  * Caller must have already increased bio_counter for getting @bioc.
2439  *
2440  * Note: We need make sure all the pages that add into the scrub/replace
2441  * raid bio are correct and not be changed during the scrub/replace. That
2442  * is those pages just hold metadata or file data with checksum.
2443  */
2444 
2445 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2446                                 struct btrfs_io_context *bioc,
2447                                 struct btrfs_device *scrub_dev,
2448                                 unsigned long *dbitmap, int stripe_nsectors)
2449 {
2450         struct btrfs_fs_info *fs_info = bioc->fs_info;
2451         struct btrfs_raid_bio *rbio;
2452         int i;
2453 
2454         rbio = alloc_rbio(fs_info, bioc);
2455         if (IS_ERR(rbio))
2456                 return NULL;
2457         bio_list_add(&rbio->bio_list, bio);
2458         /*
2459          * This is a special bio which is used to hold the completion handler
2460          * and make the scrub rbio is similar to the other types
2461          */
2462         ASSERT(!bio->bi_iter.bi_size);
2463         rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2464 
2465         /*
2466          * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2467          * to the end position, so this search can start from the first parity
2468          * stripe.
2469          */
2470         for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2471                 if (bioc->stripes[i].dev == scrub_dev) {
2472                         rbio->scrubp = i;
2473                         break;
2474                 }
2475         }
2476         ASSERT_RBIO_STRIPE(i < rbio->real_stripes, rbio, i);
2477 
2478         bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2479         return rbio;
2480 }
2481 
2482 /*
2483  * We just scrub the parity that we have correct data on the same horizontal,
2484  * so we needn't allocate all pages for all the stripes.
2485  */
2486 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2487 {
2488         const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2489         int total_sector_nr;
2490 
2491         for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2492              total_sector_nr++) {
2493                 struct page *page;
2494                 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2495                 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2496 
2497                 if (!test_bit(sectornr, &rbio->dbitmap))
2498                         continue;
2499                 if (rbio->stripe_pages[index])
2500                         continue;
2501                 page = alloc_page(GFP_NOFS);
2502                 if (!page)
2503                         return -ENOMEM;
2504                 rbio->stripe_pages[index] = page;
2505         }
2506         index_stripe_sectors(rbio);
2507         return 0;
2508 }
2509 
2510 static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
2511 {
2512         struct btrfs_io_context *bioc = rbio->bioc;
2513         const u32 sectorsize = bioc->fs_info->sectorsize;
2514         void **pointers = rbio->finish_pointers;
2515         unsigned long *pbitmap = &rbio->finish_pbitmap;
2516         int nr_data = rbio->nr_data;
2517         int stripe;
2518         int sectornr;
2519         bool has_qstripe;
2520         struct sector_ptr p_sector = { 0 };
2521         struct sector_ptr q_sector = { 0 };
2522         struct bio_list bio_list;
2523         int is_replace = 0;
2524         int ret;
2525 
2526         bio_list_init(&bio_list);
2527 
2528         if (rbio->real_stripes - rbio->nr_data == 1)
2529                 has_qstripe = false;
2530         else if (rbio->real_stripes - rbio->nr_data == 2)
2531                 has_qstripe = true;
2532         else
2533                 BUG();
2534 
2535         /*
2536          * Replace is running and our P/Q stripe is being replaced, then we
2537          * need to duplicate the final write to replace target.
2538          */
2539         if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2540                 is_replace = 1;
2541                 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2542         }
2543 
2544         /*
2545          * Because the higher layers(scrubber) are unlikely to
2546          * use this area of the disk again soon, so don't cache
2547          * it.
2548          */
2549         clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2550 
2551         p_sector.page = alloc_page(GFP_NOFS);
2552         if (!p_sector.page)
2553                 return -ENOMEM;
2554         p_sector.pgoff = 0;
2555         p_sector.uptodate = 1;
2556 
2557         if (has_qstripe) {
2558                 /* RAID6, allocate and map temp space for the Q stripe */
2559                 q_sector.page = alloc_page(GFP_NOFS);
2560                 if (!q_sector.page) {
2561                         __free_page(p_sector.page);
2562                         p_sector.page = NULL;
2563                         return -ENOMEM;
2564                 }
2565                 q_sector.pgoff = 0;
2566                 q_sector.uptodate = 1;
2567                 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2568         }
2569 
2570         bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2571 
2572         /* Map the parity stripe just once */
2573         pointers[nr_data] = kmap_local_page(p_sector.page);
2574 
2575         for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2576                 struct sector_ptr *sector;
2577                 void *parity;
2578 
2579                 /* first collect one page from each data stripe */
2580                 for (stripe = 0; stripe < nr_data; stripe++) {
2581                         sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2582                         pointers[stripe] = kmap_local_page(sector->page) +
2583                                            sector->pgoff;
2584                 }
2585 
2586                 if (has_qstripe) {
2587                         assert_rbio(rbio);
2588                         /* RAID6, call the library function to fill in our P/Q */
2589                         raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2590                                                 pointers);
2591                 } else {
2592                         /* raid5 */
2593                         memcpy(pointers[nr_data], pointers[0], sectorsize);
2594                         run_xor(pointers + 1, nr_data - 1, sectorsize);
2595                 }
2596 
2597                 /* Check scrubbing parity and repair it */
2598                 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2599                 parity = kmap_local_page(sector->page) + sector->pgoff;
2600                 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2601                         memcpy(parity, pointers[rbio->scrubp], sectorsize);
2602                 else
2603                         /* Parity is right, needn't writeback */
2604                         bitmap_clear(&rbio->dbitmap, sectornr, 1);
2605                 kunmap_local(parity);
2606 
2607                 for (stripe = nr_data - 1; stripe >= 0; stripe--)
2608                         kunmap_local(pointers[stripe]);
2609         }
2610 
2611         kunmap_local(pointers[nr_data]);
2612         __free_page(p_sector.page);
2613         p_sector.page = NULL;
2614         if (q_sector.page) {
2615                 kunmap_local(pointers[rbio->real_stripes - 1]);
2616                 __free_page(q_sector.page);
2617                 q_sector.page = NULL;
2618         }
2619 
2620         /*
2621          * time to start writing.  Make bios for everything from the
2622          * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2623          * everything else.
2624          */
2625         for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2626                 struct sector_ptr *sector;
2627 
2628                 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2629                 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2630                                          sectornr, REQ_OP_WRITE);
2631                 if (ret)
2632                         goto cleanup;
2633         }
2634 
2635         if (!is_replace)
2636                 goto submit_write;
2637 
2638         /*
2639          * Replace is running and our parity stripe needs to be duplicated to
2640          * the target device.  Check we have a valid source stripe number.
2641          */
2642         ASSERT_RBIO(rbio->bioc->replace_stripe_src >= 0, rbio);
2643         for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2644                 struct sector_ptr *sector;
2645 
2646                 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2647                 ret = rbio_add_io_sector(rbio, &bio_list, sector,
2648                                          rbio->real_stripes,
2649                                          sectornr, REQ_OP_WRITE);
2650                 if (ret)
2651                         goto cleanup;
2652         }
2653 
2654 submit_write:
2655         submit_write_bios(rbio, &bio_list);
2656         return 0;
2657 
2658 cleanup:
2659         bio_list_put(&bio_list);
2660         return ret;
2661 }
2662 
2663 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2664 {
2665         if (stripe >= 0 && stripe < rbio->nr_data)
2666                 return 1;
2667         return 0;
2668 }
2669 
2670 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2671 {
2672         void **pointers = NULL;
2673         void **unmap_array = NULL;
2674         int sector_nr;
2675         int ret = 0;
2676 
2677         /*
2678          * @pointers array stores the pointer for each sector.
2679          *
2680          * @unmap_array stores copy of pointers that does not get reordered
2681          * during reconstruction so that kunmap_local works.
2682          */
2683         pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2684         unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2685         if (!pointers || !unmap_array) {
2686                 ret = -ENOMEM;
2687                 goto out;
2688         }
2689 
2690         for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2691                 int dfail = 0, failp = -1;
2692                 int faila;
2693                 int failb;
2694                 int found_errors;
2695 
2696                 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2697                                                          &faila, &failb);
2698                 if (found_errors > rbio->bioc->max_errors) {
2699                         ret = -EIO;
2700                         goto out;
2701                 }
2702                 if (found_errors == 0)
2703                         continue;
2704 
2705                 /* We should have at least one error here. */
2706                 ASSERT(faila >= 0 || failb >= 0);
2707 
2708                 if (is_data_stripe(rbio, faila))
2709                         dfail++;
2710                 else if (is_parity_stripe(faila))
2711                         failp = faila;
2712 
2713                 if (is_data_stripe(rbio, failb))
2714                         dfail++;
2715                 else if (is_parity_stripe(failb))
2716                         failp = failb;
2717                 /*
2718                  * Because we can not use a scrubbing parity to repair the
2719                  * data, so the capability of the repair is declined.  (In the
2720                  * case of RAID5, we can not repair anything.)
2721                  */
2722                 if (dfail > rbio->bioc->max_errors - 1) {
2723                         ret = -EIO;
2724                         goto out;
2725                 }
2726                 /*
2727                  * If all data is good, only parity is correctly, just repair
2728                  * the parity, no need to recover data stripes.
2729                  */
2730                 if (dfail == 0)
2731                         continue;
2732 
2733                 /*
2734                  * Here means we got one corrupted data stripe and one
2735                  * corrupted parity on RAID6, if the corrupted parity is
2736                  * scrubbing parity, luckily, use the other one to repair the
2737                  * data, or we can not repair the data stripe.
2738                  */
2739                 if (failp != rbio->scrubp) {
2740                         ret = -EIO;
2741                         goto out;
2742                 }
2743 
2744                 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2745                 if (ret < 0)
2746                         goto out;
2747         }
2748 out:
2749         kfree(pointers);
2750         kfree(unmap_array);
2751         return ret;
2752 }
2753 
2754 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2755 {
2756         struct bio_list bio_list = BIO_EMPTY_LIST;
2757         int total_sector_nr;
2758         int ret = 0;
2759 
2760         /* Build a list of bios to read all the missing parts. */
2761         for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2762              total_sector_nr++) {
2763                 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2764                 int stripe = total_sector_nr / rbio->stripe_nsectors;
2765                 struct sector_ptr *sector;
2766 
2767                 /* No data in the vertical stripe, no need to read. */
2768                 if (!test_bit(sectornr, &rbio->dbitmap))
2769                         continue;
2770 
2771                 /*
2772                  * We want to find all the sectors missing from the rbio and
2773                  * read them from the disk. If sector_in_rbio() finds a sector
2774                  * in the bio list we don't need to read it off the stripe.
2775                  */
2776                 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2777                 if (sector)
2778                         continue;
2779 
2780                 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2781                 /*
2782                  * The bio cache may have handed us an uptodate sector.  If so,
2783                  * use it.
2784                  */
2785                 if (sector->uptodate)
2786                         continue;
2787 
2788                 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2789                                          sectornr, REQ_OP_READ);
2790                 if (ret) {
2791                         bio_list_put(&bio_list);
2792                         return ret;
2793                 }
2794         }
2795 
2796         submit_read_wait_bio_list(rbio, &bio_list);
2797         return 0;
2798 }
2799 
2800 static void scrub_rbio(struct btrfs_raid_bio *rbio)
2801 {
2802         int sector_nr;
2803         int ret;
2804 
2805         ret = alloc_rbio_essential_pages(rbio);
2806         if (ret)
2807                 goto out;
2808 
2809         bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2810 
2811         ret = scrub_assemble_read_bios(rbio);
2812         if (ret < 0)
2813                 goto out;
2814 
2815         /* We may have some failures, recover the failed sectors first. */
2816         ret = recover_scrub_rbio(rbio);
2817         if (ret < 0)
2818                 goto out;
2819 
2820         /*
2821          * We have every sector properly prepared. Can finish the scrub
2822          * and writeback the good content.
2823          */
2824         ret = finish_parity_scrub(rbio);
2825         wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2826         for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2827                 int found_errors;
2828 
2829                 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2830                 if (found_errors > rbio->bioc->max_errors) {
2831                         ret = -EIO;
2832                         break;
2833                 }
2834         }
2835 out:
2836         rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2837 }
2838 
2839 static void scrub_rbio_work_locked(struct work_struct *work)
2840 {
2841         scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2842 }
2843 
2844 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2845 {
2846         if (!lock_stripe_add(rbio))
2847                 start_async_work(rbio, scrub_rbio_work_locked);
2848 }
2849 
2850 /*
2851  * This is for scrub call sites where we already have correct data contents.
2852  * This allows us to avoid reading data stripes again.
2853  *
2854  * Unfortunately here we have to do page copy, other than reusing the pages.
2855  * This is due to the fact rbio has its own page management for its cache.
2856  */
2857 void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2858                                     struct page **data_pages, u64 data_logical)
2859 {
2860         const u64 offset_in_full_stripe = data_logical -
2861                                           rbio->bioc->full_stripe_logical;
2862         const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2863         const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2864         const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2865         int ret;
2866 
2867         /*
2868          * If we hit ENOMEM temporarily, but later at
2869          * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2870          * the extra read, not a big deal.
2871          *
2872          * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2873          * the bio would got proper error number set.
2874          */
2875         ret = alloc_rbio_data_pages(rbio);
2876         if (ret < 0)
2877                 return;
2878 
2879         /* data_logical must be at stripe boundary and inside the full stripe. */
2880         ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2881         ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2882 
2883         for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2884                 struct page *dst = rbio->stripe_pages[page_nr + page_index];
2885                 struct page *src = data_pages[page_nr];
2886 
2887                 memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2888                 for (int sector_nr = sectors_per_page * page_index;
2889                      sector_nr < sectors_per_page * (page_index + 1);
2890                      sector_nr++)
2891                         rbio->stripe_sectors[sector_nr].uptodate = true;
2892         }
2893 }
2894 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php