~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/ref-verify.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2014 Facebook.  All rights reserved.
  4  */
  5 
  6 #include <linux/sched.h>
  7 #include <linux/stacktrace.h>
  8 #include "messages.h"
  9 #include "ctree.h"
 10 #include "disk-io.h"
 11 #include "locking.h"
 12 #include "delayed-ref.h"
 13 #include "ref-verify.h"
 14 #include "fs.h"
 15 #include "accessors.h"
 16 
 17 /*
 18  * Used to keep track the roots and number of refs each root has for a given
 19  * bytenr.  This just tracks the number of direct references, no shared
 20  * references.
 21  */
 22 struct root_entry {
 23         u64 root_objectid;
 24         u64 num_refs;
 25         struct rb_node node;
 26 };
 27 
 28 /*
 29  * These are meant to represent what should exist in the extent tree, these can
 30  * be used to verify the extent tree is consistent as these should all match
 31  * what the extent tree says.
 32  */
 33 struct ref_entry {
 34         u64 root_objectid;
 35         u64 parent;
 36         u64 owner;
 37         u64 offset;
 38         u64 num_refs;
 39         struct rb_node node;
 40 };
 41 
 42 #define MAX_TRACE       16
 43 
 44 /*
 45  * Whenever we add/remove a reference we record the action.  The action maps
 46  * back to the delayed ref action.  We hold the ref we are changing in the
 47  * action so we can account for the history properly, and we record the root we
 48  * were called with since it could be different from ref_root.  We also store
 49  * stack traces because that's how I roll.
 50  */
 51 struct ref_action {
 52         int action;
 53         u64 root;
 54         struct ref_entry ref;
 55         struct list_head list;
 56         unsigned long trace[MAX_TRACE];
 57         unsigned int trace_len;
 58 };
 59 
 60 /*
 61  * One of these for every block we reference, it holds the roots and references
 62  * to it as well as all of the ref actions that have occurred to it.  We never
 63  * free it until we unmount the file system in order to make sure re-allocations
 64  * are happening properly.
 65  */
 66 struct block_entry {
 67         u64 bytenr;
 68         u64 len;
 69         u64 num_refs;
 70         int metadata;
 71         int from_disk;
 72         struct rb_root roots;
 73         struct rb_root refs;
 74         struct rb_node node;
 75         struct list_head actions;
 76 };
 77 
 78 static struct block_entry *insert_block_entry(struct rb_root *root,
 79                                               struct block_entry *be)
 80 {
 81         struct rb_node **p = &root->rb_node;
 82         struct rb_node *parent_node = NULL;
 83         struct block_entry *entry;
 84 
 85         while (*p) {
 86                 parent_node = *p;
 87                 entry = rb_entry(parent_node, struct block_entry, node);
 88                 if (entry->bytenr > be->bytenr)
 89                         p = &(*p)->rb_left;
 90                 else if (entry->bytenr < be->bytenr)
 91                         p = &(*p)->rb_right;
 92                 else
 93                         return entry;
 94         }
 95 
 96         rb_link_node(&be->node, parent_node, p);
 97         rb_insert_color(&be->node, root);
 98         return NULL;
 99 }
100 
101 static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
102 {
103         struct rb_node *n;
104         struct block_entry *entry = NULL;
105 
106         n = root->rb_node;
107         while (n) {
108                 entry = rb_entry(n, struct block_entry, node);
109                 if (entry->bytenr < bytenr)
110                         n = n->rb_right;
111                 else if (entry->bytenr > bytenr)
112                         n = n->rb_left;
113                 else
114                         return entry;
115         }
116         return NULL;
117 }
118 
119 static struct root_entry *insert_root_entry(struct rb_root *root,
120                                             struct root_entry *re)
121 {
122         struct rb_node **p = &root->rb_node;
123         struct rb_node *parent_node = NULL;
124         struct root_entry *entry;
125 
126         while (*p) {
127                 parent_node = *p;
128                 entry = rb_entry(parent_node, struct root_entry, node);
129                 if (entry->root_objectid > re->root_objectid)
130                         p = &(*p)->rb_left;
131                 else if (entry->root_objectid < re->root_objectid)
132                         p = &(*p)->rb_right;
133                 else
134                         return entry;
135         }
136 
137         rb_link_node(&re->node, parent_node, p);
138         rb_insert_color(&re->node, root);
139         return NULL;
140 
141 }
142 
143 static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
144 {
145         if (ref1->root_objectid < ref2->root_objectid)
146                 return -1;
147         if (ref1->root_objectid > ref2->root_objectid)
148                 return 1;
149         if (ref1->parent < ref2->parent)
150                 return -1;
151         if (ref1->parent > ref2->parent)
152                 return 1;
153         if (ref1->owner < ref2->owner)
154                 return -1;
155         if (ref1->owner > ref2->owner)
156                 return 1;
157         if (ref1->offset < ref2->offset)
158                 return -1;
159         if (ref1->offset > ref2->offset)
160                 return 1;
161         return 0;
162 }
163 
164 static struct ref_entry *insert_ref_entry(struct rb_root *root,
165                                           struct ref_entry *ref)
166 {
167         struct rb_node **p = &root->rb_node;
168         struct rb_node *parent_node = NULL;
169         struct ref_entry *entry;
170         int cmp;
171 
172         while (*p) {
173                 parent_node = *p;
174                 entry = rb_entry(parent_node, struct ref_entry, node);
175                 cmp = comp_refs(entry, ref);
176                 if (cmp > 0)
177                         p = &(*p)->rb_left;
178                 else if (cmp < 0)
179                         p = &(*p)->rb_right;
180                 else
181                         return entry;
182         }
183 
184         rb_link_node(&ref->node, parent_node, p);
185         rb_insert_color(&ref->node, root);
186         return NULL;
187 
188 }
189 
190 static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
191 {
192         struct rb_node *n;
193         struct root_entry *entry = NULL;
194 
195         n = root->rb_node;
196         while (n) {
197                 entry = rb_entry(n, struct root_entry, node);
198                 if (entry->root_objectid < objectid)
199                         n = n->rb_right;
200                 else if (entry->root_objectid > objectid)
201                         n = n->rb_left;
202                 else
203                         return entry;
204         }
205         return NULL;
206 }
207 
208 #ifdef CONFIG_STACKTRACE
209 static void __save_stack_trace(struct ref_action *ra)
210 {
211         ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2);
212 }
213 
214 static void __print_stack_trace(struct btrfs_fs_info *fs_info,
215                                 struct ref_action *ra)
216 {
217         if (ra->trace_len == 0) {
218                 btrfs_err(fs_info, "  ref-verify: no stacktrace");
219                 return;
220         }
221         stack_trace_print(ra->trace, ra->trace_len, 2);
222 }
223 #else
224 static inline void __save_stack_trace(struct ref_action *ra)
225 {
226 }
227 
228 static inline void __print_stack_trace(struct btrfs_fs_info *fs_info,
229                                        struct ref_action *ra)
230 {
231         btrfs_err(fs_info, "  ref-verify: no stacktrace support");
232 }
233 #endif
234 
235 static void free_block_entry(struct block_entry *be)
236 {
237         struct root_entry *re;
238         struct ref_entry *ref;
239         struct ref_action *ra;
240         struct rb_node *n;
241 
242         while ((n = rb_first(&be->roots))) {
243                 re = rb_entry(n, struct root_entry, node);
244                 rb_erase(&re->node, &be->roots);
245                 kfree(re);
246         }
247 
248         while((n = rb_first(&be->refs))) {
249                 ref = rb_entry(n, struct ref_entry, node);
250                 rb_erase(&ref->node, &be->refs);
251                 kfree(ref);
252         }
253 
254         while (!list_empty(&be->actions)) {
255                 ra = list_first_entry(&be->actions, struct ref_action,
256                                       list);
257                 list_del(&ra->list);
258                 kfree(ra);
259         }
260         kfree(be);
261 }
262 
263 static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
264                                            u64 bytenr, u64 len,
265                                            u64 root_objectid)
266 {
267         struct block_entry *be = NULL, *exist;
268         struct root_entry *re = NULL;
269 
270         re = kzalloc(sizeof(struct root_entry), GFP_NOFS);
271         be = kzalloc(sizeof(struct block_entry), GFP_NOFS);
272         if (!be || !re) {
273                 kfree(re);
274                 kfree(be);
275                 return ERR_PTR(-ENOMEM);
276         }
277         be->bytenr = bytenr;
278         be->len = len;
279 
280         re->root_objectid = root_objectid;
281         re->num_refs = 0;
282 
283         spin_lock(&fs_info->ref_verify_lock);
284         exist = insert_block_entry(&fs_info->block_tree, be);
285         if (exist) {
286                 if (root_objectid) {
287                         struct root_entry *exist_re;
288 
289                         exist_re = insert_root_entry(&exist->roots, re);
290                         if (exist_re)
291                                 kfree(re);
292                 } else {
293                         kfree(re);
294                 }
295                 kfree(be);
296                 return exist;
297         }
298 
299         be->num_refs = 0;
300         be->metadata = 0;
301         be->from_disk = 0;
302         be->roots = RB_ROOT;
303         be->refs = RB_ROOT;
304         INIT_LIST_HEAD(&be->actions);
305         if (root_objectid)
306                 insert_root_entry(&be->roots, re);
307         else
308                 kfree(re);
309         return be;
310 }
311 
312 static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
313                           u64 parent, u64 bytenr, int level)
314 {
315         struct block_entry *be;
316         struct root_entry *re;
317         struct ref_entry *ref = NULL, *exist;
318 
319         ref = kmalloc(sizeof(struct ref_entry), GFP_NOFS);
320         if (!ref)
321                 return -ENOMEM;
322 
323         if (parent)
324                 ref->root_objectid = 0;
325         else
326                 ref->root_objectid = ref_root;
327         ref->parent = parent;
328         ref->owner = level;
329         ref->offset = 0;
330         ref->num_refs = 1;
331 
332         be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
333         if (IS_ERR(be)) {
334                 kfree(ref);
335                 return PTR_ERR(be);
336         }
337         be->num_refs++;
338         be->from_disk = 1;
339         be->metadata = 1;
340 
341         if (!parent) {
342                 ASSERT(ref_root);
343                 re = lookup_root_entry(&be->roots, ref_root);
344                 ASSERT(re);
345                 re->num_refs++;
346         }
347         exist = insert_ref_entry(&be->refs, ref);
348         if (exist) {
349                 exist->num_refs++;
350                 kfree(ref);
351         }
352         spin_unlock(&fs_info->ref_verify_lock);
353 
354         return 0;
355 }
356 
357 static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
358                                u64 parent, u32 num_refs, u64 bytenr,
359                                u64 num_bytes)
360 {
361         struct block_entry *be;
362         struct ref_entry *ref;
363 
364         ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
365         if (!ref)
366                 return -ENOMEM;
367         be = add_block_entry(fs_info, bytenr, num_bytes, 0);
368         if (IS_ERR(be)) {
369                 kfree(ref);
370                 return PTR_ERR(be);
371         }
372         be->num_refs += num_refs;
373 
374         ref->parent = parent;
375         ref->num_refs = num_refs;
376         if (insert_ref_entry(&be->refs, ref)) {
377                 spin_unlock(&fs_info->ref_verify_lock);
378                 btrfs_err(fs_info, "existing shared ref when reading from disk?");
379                 kfree(ref);
380                 return -EINVAL;
381         }
382         spin_unlock(&fs_info->ref_verify_lock);
383         return 0;
384 }
385 
386 static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
387                                struct extent_buffer *leaf,
388                                struct btrfs_extent_data_ref *dref,
389                                u64 bytenr, u64 num_bytes)
390 {
391         struct block_entry *be;
392         struct ref_entry *ref;
393         struct root_entry *re;
394         u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
395         u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
396         u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
397         u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
398 
399         ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
400         if (!ref)
401                 return -ENOMEM;
402         be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
403         if (IS_ERR(be)) {
404                 kfree(ref);
405                 return PTR_ERR(be);
406         }
407         be->num_refs += num_refs;
408 
409         ref->parent = 0;
410         ref->owner = owner;
411         ref->root_objectid = ref_root;
412         ref->offset = offset;
413         ref->num_refs = num_refs;
414         if (insert_ref_entry(&be->refs, ref)) {
415                 spin_unlock(&fs_info->ref_verify_lock);
416                 btrfs_err(fs_info, "existing ref when reading from disk?");
417                 kfree(ref);
418                 return -EINVAL;
419         }
420 
421         re = lookup_root_entry(&be->roots, ref_root);
422         if (!re) {
423                 spin_unlock(&fs_info->ref_verify_lock);
424                 btrfs_err(fs_info, "missing root in new block entry?");
425                 return -EINVAL;
426         }
427         re->num_refs += num_refs;
428         spin_unlock(&fs_info->ref_verify_lock);
429         return 0;
430 }
431 
432 static int process_extent_item(struct btrfs_fs_info *fs_info,
433                                struct btrfs_path *path, struct btrfs_key *key,
434                                int slot, int *tree_block_level)
435 {
436         struct btrfs_extent_item *ei;
437         struct btrfs_extent_inline_ref *iref;
438         struct btrfs_extent_data_ref *dref;
439         struct btrfs_shared_data_ref *sref;
440         struct extent_buffer *leaf = path->nodes[0];
441         u32 item_size = btrfs_item_size(leaf, slot);
442         unsigned long end, ptr;
443         u64 offset, flags, count;
444         int type;
445         int ret = 0;
446 
447         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
448         flags = btrfs_extent_flags(leaf, ei);
449 
450         if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
451             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
452                 struct btrfs_tree_block_info *info;
453 
454                 info = (struct btrfs_tree_block_info *)(ei + 1);
455                 *tree_block_level = btrfs_tree_block_level(leaf, info);
456                 iref = (struct btrfs_extent_inline_ref *)(info + 1);
457         } else {
458                 if (key->type == BTRFS_METADATA_ITEM_KEY)
459                         *tree_block_level = key->offset;
460                 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
461         }
462 
463         ptr = (unsigned long)iref;
464         end = (unsigned long)ei + item_size;
465         while (ptr < end) {
466                 iref = (struct btrfs_extent_inline_ref *)ptr;
467                 type = btrfs_extent_inline_ref_type(leaf, iref);
468                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
469                 switch (type) {
470                 case BTRFS_TREE_BLOCK_REF_KEY:
471                         ret = add_tree_block(fs_info, offset, 0, key->objectid,
472                                              *tree_block_level);
473                         break;
474                 case BTRFS_SHARED_BLOCK_REF_KEY:
475                         ret = add_tree_block(fs_info, 0, offset, key->objectid,
476                                              *tree_block_level);
477                         break;
478                 case BTRFS_EXTENT_DATA_REF_KEY:
479                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
480                         ret = add_extent_data_ref(fs_info, leaf, dref,
481                                                   key->objectid, key->offset);
482                         break;
483                 case BTRFS_SHARED_DATA_REF_KEY:
484                         sref = (struct btrfs_shared_data_ref *)(iref + 1);
485                         count = btrfs_shared_data_ref_count(leaf, sref);
486                         ret = add_shared_data_ref(fs_info, offset, count,
487                                                   key->objectid, key->offset);
488                         break;
489                 case BTRFS_EXTENT_OWNER_REF_KEY:
490                         if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) {
491                                 btrfs_err(fs_info,
492                           "found extent owner ref without simple quotas enabled");
493                                 ret = -EINVAL;
494                         }
495                         break;
496                 default:
497                         btrfs_err(fs_info, "invalid key type in iref");
498                         ret = -EINVAL;
499                         break;
500                 }
501                 if (ret)
502                         break;
503                 ptr += btrfs_extent_inline_ref_size(type);
504         }
505         return ret;
506 }
507 
508 static int process_leaf(struct btrfs_root *root,
509                         struct btrfs_path *path, u64 *bytenr, u64 *num_bytes,
510                         int *tree_block_level)
511 {
512         struct btrfs_fs_info *fs_info = root->fs_info;
513         struct extent_buffer *leaf = path->nodes[0];
514         struct btrfs_extent_data_ref *dref;
515         struct btrfs_shared_data_ref *sref;
516         u32 count;
517         int i = 0, ret = 0;
518         struct btrfs_key key;
519         int nritems = btrfs_header_nritems(leaf);
520 
521         for (i = 0; i < nritems; i++) {
522                 btrfs_item_key_to_cpu(leaf, &key, i);
523                 switch (key.type) {
524                 case BTRFS_EXTENT_ITEM_KEY:
525                         *num_bytes = key.offset;
526                         fallthrough;
527                 case BTRFS_METADATA_ITEM_KEY:
528                         *bytenr = key.objectid;
529                         ret = process_extent_item(fs_info, path, &key, i,
530                                                   tree_block_level);
531                         break;
532                 case BTRFS_TREE_BLOCK_REF_KEY:
533                         ret = add_tree_block(fs_info, key.offset, 0,
534                                              key.objectid, *tree_block_level);
535                         break;
536                 case BTRFS_SHARED_BLOCK_REF_KEY:
537                         ret = add_tree_block(fs_info, 0, key.offset,
538                                              key.objectid, *tree_block_level);
539                         break;
540                 case BTRFS_EXTENT_DATA_REF_KEY:
541                         dref = btrfs_item_ptr(leaf, i,
542                                               struct btrfs_extent_data_ref);
543                         ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
544                                                   *num_bytes);
545                         break;
546                 case BTRFS_SHARED_DATA_REF_KEY:
547                         sref = btrfs_item_ptr(leaf, i,
548                                               struct btrfs_shared_data_ref);
549                         count = btrfs_shared_data_ref_count(leaf, sref);
550                         ret = add_shared_data_ref(fs_info, key.offset, count,
551                                                   *bytenr, *num_bytes);
552                         break;
553                 default:
554                         break;
555                 }
556                 if (ret)
557                         break;
558         }
559         return ret;
560 }
561 
562 /* Walk down to the leaf from the given level */
563 static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
564                           int level, u64 *bytenr, u64 *num_bytes,
565                           int *tree_block_level)
566 {
567         struct extent_buffer *eb;
568         int ret = 0;
569 
570         while (level >= 0) {
571                 if (level) {
572                         eb = btrfs_read_node_slot(path->nodes[level],
573                                                   path->slots[level]);
574                         if (IS_ERR(eb))
575                                 return PTR_ERR(eb);
576                         btrfs_tree_read_lock(eb);
577                         path->nodes[level-1] = eb;
578                         path->slots[level-1] = 0;
579                         path->locks[level-1] = BTRFS_READ_LOCK;
580                 } else {
581                         ret = process_leaf(root, path, bytenr, num_bytes,
582                                            tree_block_level);
583                         if (ret)
584                                 break;
585                 }
586                 level--;
587         }
588         return ret;
589 }
590 
591 /* Walk up to the next node that needs to be processed */
592 static int walk_up_tree(struct btrfs_path *path, int *level)
593 {
594         int l;
595 
596         for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
597                 if (!path->nodes[l])
598                         continue;
599                 if (l) {
600                         path->slots[l]++;
601                         if (path->slots[l] <
602                             btrfs_header_nritems(path->nodes[l])) {
603                                 *level = l;
604                                 return 0;
605                         }
606                 }
607                 btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
608                 free_extent_buffer(path->nodes[l]);
609                 path->nodes[l] = NULL;
610                 path->slots[l] = 0;
611                 path->locks[l] = 0;
612         }
613 
614         return 1;
615 }
616 
617 static void dump_ref_action(struct btrfs_fs_info *fs_info,
618                             struct ref_action *ra)
619 {
620         btrfs_err(fs_info,
621 "  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
622                   ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
623                   ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
624         __print_stack_trace(fs_info, ra);
625 }
626 
627 /*
628  * Dumps all the information from the block entry to printk, it's going to be
629  * awesome.
630  */
631 static void dump_block_entry(struct btrfs_fs_info *fs_info,
632                              struct block_entry *be)
633 {
634         struct ref_entry *ref;
635         struct root_entry *re;
636         struct ref_action *ra;
637         struct rb_node *n;
638 
639         btrfs_err(fs_info,
640 "dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
641                   be->bytenr, be->len, be->num_refs, be->metadata,
642                   be->from_disk);
643 
644         for (n = rb_first(&be->refs); n; n = rb_next(n)) {
645                 ref = rb_entry(n, struct ref_entry, node);
646                 btrfs_err(fs_info,
647 "  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
648                           ref->root_objectid, ref->parent, ref->owner,
649                           ref->offset, ref->num_refs);
650         }
651 
652         for (n = rb_first(&be->roots); n; n = rb_next(n)) {
653                 re = rb_entry(n, struct root_entry, node);
654                 btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
655                           re->root_objectid, re->num_refs);
656         }
657 
658         list_for_each_entry(ra, &be->actions, list)
659                 dump_ref_action(fs_info, ra);
660 }
661 
662 /*
663  * Called when we modify a ref for a bytenr.
664  *
665  * This will add an action item to the given bytenr and do sanity checks to make
666  * sure we haven't messed something up.  If we are making a new allocation and
667  * this block entry has history we will delete all previous actions as long as
668  * our sanity checks pass as they are no longer needed.
669  */
670 int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info,
671                        struct btrfs_ref *generic_ref)
672 {
673         struct ref_entry *ref = NULL, *exist;
674         struct ref_action *ra = NULL;
675         struct block_entry *be = NULL;
676         struct root_entry *re = NULL;
677         int action = generic_ref->action;
678         int ret = 0;
679         bool metadata;
680         u64 bytenr = generic_ref->bytenr;
681         u64 num_bytes = generic_ref->num_bytes;
682         u64 parent = generic_ref->parent;
683         u64 ref_root = 0;
684         u64 owner = 0;
685         u64 offset = 0;
686 
687         if (!btrfs_test_opt(fs_info, REF_VERIFY))
688                 return 0;
689 
690         if (generic_ref->type == BTRFS_REF_METADATA) {
691                 if (!parent)
692                         ref_root = generic_ref->ref_root;
693                 owner = generic_ref->tree_ref.level;
694         } else if (!parent) {
695                 ref_root = generic_ref->ref_root;
696                 owner = generic_ref->data_ref.objectid;
697                 offset = generic_ref->data_ref.offset;
698         }
699         metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
700 
701         ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
702         ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
703         if (!ra || !ref) {
704                 kfree(ref);
705                 kfree(ra);
706                 ret = -ENOMEM;
707                 goto out;
708         }
709 
710         ref->parent = parent;
711         ref->owner = owner;
712         ref->root_objectid = ref_root;
713         ref->offset = offset;
714         ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
715 
716         memcpy(&ra->ref, ref, sizeof(struct ref_entry));
717         /*
718          * Save the extra info from the delayed ref in the ref action to make it
719          * easier to figure out what is happening.  The real ref's we add to the
720          * ref tree need to reflect what we save on disk so it matches any
721          * on-disk refs we pre-loaded.
722          */
723         ra->ref.owner = owner;
724         ra->ref.offset = offset;
725         ra->ref.root_objectid = ref_root;
726         __save_stack_trace(ra);
727 
728         INIT_LIST_HEAD(&ra->list);
729         ra->action = action;
730         ra->root = generic_ref->real_root;
731 
732         /*
733          * This is an allocation, preallocate the block_entry in case we haven't
734          * used it before.
735          */
736         ret = -EINVAL;
737         if (action == BTRFS_ADD_DELAYED_EXTENT) {
738                 /*
739                  * For subvol_create we'll just pass in whatever the parent root
740                  * is and the new root objectid, so let's not treat the passed
741                  * in root as if it really has a ref for this bytenr.
742                  */
743                 be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
744                 if (IS_ERR(be)) {
745                         kfree(ref);
746                         kfree(ra);
747                         ret = PTR_ERR(be);
748                         goto out;
749                 }
750                 be->num_refs++;
751                 if (metadata)
752                         be->metadata = 1;
753 
754                 if (be->num_refs != 1) {
755                         btrfs_err(fs_info,
756                         "re-allocated a block that still has references to it!");
757                         dump_block_entry(fs_info, be);
758                         dump_ref_action(fs_info, ra);
759                         kfree(ref);
760                         kfree(ra);
761                         goto out_unlock;
762                 }
763 
764                 while (!list_empty(&be->actions)) {
765                         struct ref_action *tmp;
766 
767                         tmp = list_first_entry(&be->actions, struct ref_action,
768                                                list);
769                         list_del(&tmp->list);
770                         kfree(tmp);
771                 }
772         } else {
773                 struct root_entry *tmp;
774 
775                 if (!parent) {
776                         re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
777                         if (!re) {
778                                 kfree(ref);
779                                 kfree(ra);
780                                 ret = -ENOMEM;
781                                 goto out;
782                         }
783                         /*
784                          * This is the root that is modifying us, so it's the
785                          * one we want to lookup below when we modify the
786                          * re->num_refs.
787                          */
788                         ref_root = generic_ref->real_root;
789                         re->root_objectid = generic_ref->real_root;
790                         re->num_refs = 0;
791                 }
792 
793                 spin_lock(&fs_info->ref_verify_lock);
794                 be = lookup_block_entry(&fs_info->block_tree, bytenr);
795                 if (!be) {
796                         btrfs_err(fs_info,
797 "trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
798                                   action, bytenr, num_bytes);
799                         dump_ref_action(fs_info, ra);
800                         kfree(ref);
801                         kfree(ra);
802                         kfree(re);
803                         goto out_unlock;
804                 } else if (be->num_refs == 0) {
805                         btrfs_err(fs_info,
806                 "trying to do action %d for a bytenr that has 0 total references",
807                                 action);
808                         dump_block_entry(fs_info, be);
809                         dump_ref_action(fs_info, ra);
810                         kfree(ref);
811                         kfree(ra);
812                         kfree(re);
813                         goto out_unlock;
814                 }
815 
816                 if (!parent) {
817                         tmp = insert_root_entry(&be->roots, re);
818                         if (tmp) {
819                                 kfree(re);
820                                 re = tmp;
821                         }
822                 }
823         }
824 
825         exist = insert_ref_entry(&be->refs, ref);
826         if (exist) {
827                 if (action == BTRFS_DROP_DELAYED_REF) {
828                         if (exist->num_refs == 0) {
829                                 btrfs_err(fs_info,
830 "dropping a ref for a existing root that doesn't have a ref on the block");
831                                 dump_block_entry(fs_info, be);
832                                 dump_ref_action(fs_info, ra);
833                                 kfree(ref);
834                                 kfree(ra);
835                                 goto out_unlock;
836                         }
837                         exist->num_refs--;
838                         if (exist->num_refs == 0) {
839                                 rb_erase(&exist->node, &be->refs);
840                                 kfree(exist);
841                         }
842                 } else if (!be->metadata) {
843                         exist->num_refs++;
844                 } else {
845                         btrfs_err(fs_info,
846 "attempting to add another ref for an existing ref on a tree block");
847                         dump_block_entry(fs_info, be);
848                         dump_ref_action(fs_info, ra);
849                         kfree(ref);
850                         kfree(ra);
851                         goto out_unlock;
852                 }
853                 kfree(ref);
854         } else {
855                 if (action == BTRFS_DROP_DELAYED_REF) {
856                         btrfs_err(fs_info,
857 "dropping a ref for a root that doesn't have a ref on the block");
858                         dump_block_entry(fs_info, be);
859                         dump_ref_action(fs_info, ra);
860                         kfree(ref);
861                         kfree(ra);
862                         goto out_unlock;
863                 }
864         }
865 
866         if (!parent && !re) {
867                 re = lookup_root_entry(&be->roots, ref_root);
868                 if (!re) {
869                         /*
870                          * This shouldn't happen because we will add our re
871                          * above when we lookup the be with !parent, but just in
872                          * case catch this case so we don't panic because I
873                          * didn't think of some other corner case.
874                          */
875                         btrfs_err(fs_info, "failed to find root %llu for %llu",
876                                   generic_ref->real_root, be->bytenr);
877                         dump_block_entry(fs_info, be);
878                         dump_ref_action(fs_info, ra);
879                         kfree(ra);
880                         goto out_unlock;
881                 }
882         }
883         if (action == BTRFS_DROP_DELAYED_REF) {
884                 if (re)
885                         re->num_refs--;
886                 be->num_refs--;
887         } else if (action == BTRFS_ADD_DELAYED_REF) {
888                 be->num_refs++;
889                 if (re)
890                         re->num_refs++;
891         }
892         list_add_tail(&ra->list, &be->actions);
893         ret = 0;
894 out_unlock:
895         spin_unlock(&fs_info->ref_verify_lock);
896 out:
897         if (ret) {
898                 btrfs_free_ref_cache(fs_info);
899                 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
900         }
901         return ret;
902 }
903 
904 /* Free up the ref cache */
905 void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
906 {
907         struct block_entry *be;
908         struct rb_node *n;
909 
910         if (!btrfs_test_opt(fs_info, REF_VERIFY))
911                 return;
912 
913         spin_lock(&fs_info->ref_verify_lock);
914         while ((n = rb_first(&fs_info->block_tree))) {
915                 be = rb_entry(n, struct block_entry, node);
916                 rb_erase(&be->node, &fs_info->block_tree);
917                 free_block_entry(be);
918                 cond_resched_lock(&fs_info->ref_verify_lock);
919         }
920         spin_unlock(&fs_info->ref_verify_lock);
921 }
922 
923 void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
924                                u64 len)
925 {
926         struct block_entry *be = NULL, *entry;
927         struct rb_node *n;
928 
929         if (!btrfs_test_opt(fs_info, REF_VERIFY))
930                 return;
931 
932         spin_lock(&fs_info->ref_verify_lock);
933         n = fs_info->block_tree.rb_node;
934         while (n) {
935                 entry = rb_entry(n, struct block_entry, node);
936                 if (entry->bytenr < start) {
937                         n = n->rb_right;
938                 } else if (entry->bytenr > start) {
939                         n = n->rb_left;
940                 } else {
941                         be = entry;
942                         break;
943                 }
944                 /* We want to get as close to start as possible */
945                 if (be == NULL ||
946                     (entry->bytenr < start && be->bytenr > start) ||
947                     (entry->bytenr < start && entry->bytenr > be->bytenr))
948                         be = entry;
949         }
950 
951         /*
952          * Could have an empty block group, maybe have something to check for
953          * this case to verify we were actually empty?
954          */
955         if (!be) {
956                 spin_unlock(&fs_info->ref_verify_lock);
957                 return;
958         }
959 
960         n = &be->node;
961         while (n) {
962                 be = rb_entry(n, struct block_entry, node);
963                 n = rb_next(n);
964                 if (be->bytenr < start && be->bytenr + be->len > start) {
965                         btrfs_err(fs_info,
966                                 "block entry overlaps a block group [%llu,%llu]!",
967                                 start, len);
968                         dump_block_entry(fs_info, be);
969                         continue;
970                 }
971                 if (be->bytenr < start)
972                         continue;
973                 if (be->bytenr >= start + len)
974                         break;
975                 if (be->bytenr + be->len > start + len) {
976                         btrfs_err(fs_info,
977                                 "block entry overlaps a block group [%llu,%llu]!",
978                                 start, len);
979                         dump_block_entry(fs_info, be);
980                 }
981                 rb_erase(&be->node, &fs_info->block_tree);
982                 free_block_entry(be);
983         }
984         spin_unlock(&fs_info->ref_verify_lock);
985 }
986 
987 /* Walk down all roots and build the ref tree, meant to be called at mount */
988 int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
989 {
990         struct btrfs_root *extent_root;
991         struct btrfs_path *path;
992         struct extent_buffer *eb;
993         int tree_block_level = 0;
994         u64 bytenr = 0, num_bytes = 0;
995         int ret, level;
996 
997         if (!btrfs_test_opt(fs_info, REF_VERIFY))
998                 return 0;
999 
1000         path = btrfs_alloc_path();
1001         if (!path)
1002                 return -ENOMEM;
1003 
1004         extent_root = btrfs_extent_root(fs_info, 0);
1005         eb = btrfs_read_lock_root_node(extent_root);
1006         level = btrfs_header_level(eb);
1007         path->nodes[level] = eb;
1008         path->slots[level] = 0;
1009         path->locks[level] = BTRFS_READ_LOCK;
1010 
1011         while (1) {
1012                 /*
1013                  * We have to keep track of the bytenr/num_bytes we last hit
1014                  * because we could have run out of space for an inline ref, and
1015                  * would have had to added a ref key item which may appear on a
1016                  * different leaf from the original extent item.
1017                  */
1018                 ret = walk_down_tree(extent_root, path, level,
1019                                      &bytenr, &num_bytes, &tree_block_level);
1020                 if (ret)
1021                         break;
1022                 ret = walk_up_tree(path, &level);
1023                 if (ret < 0)
1024                         break;
1025                 if (ret > 0) {
1026                         ret = 0;
1027                         break;
1028                 }
1029         }
1030         if (ret) {
1031                 btrfs_free_ref_cache(fs_info);
1032                 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1033         }
1034         btrfs_free_path(path);
1035         return ret;
1036 }
1037 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php