~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/relocation.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2009 Oracle.  All rights reserved.
  4  */
  5 
  6 #include <linux/sched.h>
  7 #include <linux/pagemap.h>
  8 #include <linux/writeback.h>
  9 #include <linux/blkdev.h>
 10 #include <linux/rbtree.h>
 11 #include <linux/slab.h>
 12 #include <linux/error-injection.h>
 13 #include "ctree.h"
 14 #include "disk-io.h"
 15 #include "transaction.h"
 16 #include "volumes.h"
 17 #include "locking.h"
 18 #include "btrfs_inode.h"
 19 #include "async-thread.h"
 20 #include "free-space-cache.h"
 21 #include "qgroup.h"
 22 #include "print-tree.h"
 23 #include "delalloc-space.h"
 24 #include "block-group.h"
 25 #include "backref.h"
 26 #include "misc.h"
 27 #include "subpage.h"
 28 #include "zoned.h"
 29 #include "inode-item.h"
 30 #include "space-info.h"
 31 #include "fs.h"
 32 #include "accessors.h"
 33 #include "extent-tree.h"
 34 #include "root-tree.h"
 35 #include "file-item.h"
 36 #include "relocation.h"
 37 #include "super.h"
 38 #include "tree-checker.h"
 39 #include "raid-stripe-tree.h"
 40 
 41 /*
 42  * Relocation overview
 43  *
 44  * [What does relocation do]
 45  *
 46  * The objective of relocation is to relocate all extents of the target block
 47  * group to other block groups.
 48  * This is utilized by resize (shrink only), profile converting, compacting
 49  * space, or balance routine to spread chunks over devices.
 50  *
 51  *              Before          |               After
 52  * ------------------------------------------------------------------
 53  *  BG A: 10 data extents       | BG A: deleted
 54  *  BG B:  2 data extents       | BG B: 10 data extents (2 old + 8 relocated)
 55  *  BG C:  1 extents            | BG C:  3 data extents (1 old + 2 relocated)
 56  *
 57  * [How does relocation work]
 58  *
 59  * 1.   Mark the target block group read-only
 60  *      New extents won't be allocated from the target block group.
 61  *
 62  * 2.1  Record each extent in the target block group
 63  *      To build a proper map of extents to be relocated.
 64  *
 65  * 2.2  Build data reloc tree and reloc trees
 66  *      Data reloc tree will contain an inode, recording all newly relocated
 67  *      data extents.
 68  *      There will be only one data reloc tree for one data block group.
 69  *
 70  *      Reloc tree will be a special snapshot of its source tree, containing
 71  *      relocated tree blocks.
 72  *      Each tree referring to a tree block in target block group will get its
 73  *      reloc tree built.
 74  *
 75  * 2.3  Swap source tree with its corresponding reloc tree
 76  *      Each involved tree only refers to new extents after swap.
 77  *
 78  * 3.   Cleanup reloc trees and data reloc tree.
 79  *      As old extents in the target block group are still referenced by reloc
 80  *      trees, we need to clean them up before really freeing the target block
 81  *      group.
 82  *
 83  * The main complexity is in steps 2.2 and 2.3.
 84  *
 85  * The entry point of relocation is relocate_block_group() function.
 86  */
 87 
 88 #define RELOCATION_RESERVED_NODES       256
 89 /*
 90  * map address of tree root to tree
 91  */
 92 struct mapping_node {
 93         struct {
 94                 struct rb_node rb_node;
 95                 u64 bytenr;
 96         }; /* Use rb_simle_node for search/insert */
 97         void *data;
 98 };
 99 
100 struct mapping_tree {
101         struct rb_root rb_root;
102         spinlock_t lock;
103 };
104 
105 /*
106  * present a tree block to process
107  */
108 struct tree_block {
109         struct {
110                 struct rb_node rb_node;
111                 u64 bytenr;
112         }; /* Use rb_simple_node for search/insert */
113         u64 owner;
114         struct btrfs_key key;
115         u8 level;
116         bool key_ready;
117 };
118 
119 #define MAX_EXTENTS 128
120 
121 struct file_extent_cluster {
122         u64 start;
123         u64 end;
124         u64 boundary[MAX_EXTENTS];
125         unsigned int nr;
126         u64 owning_root;
127 };
128 
129 /* Stages of data relocation. */
130 enum reloc_stage {
131         MOVE_DATA_EXTENTS,
132         UPDATE_DATA_PTRS
133 };
134 
135 struct reloc_control {
136         /* block group to relocate */
137         struct btrfs_block_group *block_group;
138         /* extent tree */
139         struct btrfs_root *extent_root;
140         /* inode for moving data */
141         struct inode *data_inode;
142 
143         struct btrfs_block_rsv *block_rsv;
144 
145         struct btrfs_backref_cache backref_cache;
146 
147         struct file_extent_cluster cluster;
148         /* tree blocks have been processed */
149         struct extent_io_tree processed_blocks;
150         /* map start of tree root to corresponding reloc tree */
151         struct mapping_tree reloc_root_tree;
152         /* list of reloc trees */
153         struct list_head reloc_roots;
154         /* list of subvolume trees that get relocated */
155         struct list_head dirty_subvol_roots;
156         /* size of metadata reservation for merging reloc trees */
157         u64 merging_rsv_size;
158         /* size of relocated tree nodes */
159         u64 nodes_relocated;
160         /* reserved size for block group relocation*/
161         u64 reserved_bytes;
162 
163         u64 search_start;
164         u64 extents_found;
165 
166         enum reloc_stage stage;
167         bool create_reloc_tree;
168         bool merge_reloc_tree;
169         bool found_file_extent;
170 };
171 
172 static void mark_block_processed(struct reloc_control *rc,
173                                  struct btrfs_backref_node *node)
174 {
175         u32 blocksize;
176 
177         if (node->level == 0 ||
178             in_range(node->bytenr, rc->block_group->start,
179                      rc->block_group->length)) {
180                 blocksize = rc->extent_root->fs_info->nodesize;
181                 set_extent_bit(&rc->processed_blocks, node->bytenr,
182                                node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
183         }
184         node->processed = 1;
185 }
186 
187 /*
188  * walk up backref nodes until reach node presents tree root
189  */
190 static struct btrfs_backref_node *walk_up_backref(
191                 struct btrfs_backref_node *node,
192                 struct btrfs_backref_edge *edges[], int *index)
193 {
194         struct btrfs_backref_edge *edge;
195         int idx = *index;
196 
197         while (!list_empty(&node->upper)) {
198                 edge = list_entry(node->upper.next,
199                                   struct btrfs_backref_edge, list[LOWER]);
200                 edges[idx++] = edge;
201                 node = edge->node[UPPER];
202         }
203         BUG_ON(node->detached);
204         *index = idx;
205         return node;
206 }
207 
208 /*
209  * walk down backref nodes to find start of next reference path
210  */
211 static struct btrfs_backref_node *walk_down_backref(
212                 struct btrfs_backref_edge *edges[], int *index)
213 {
214         struct btrfs_backref_edge *edge;
215         struct btrfs_backref_node *lower;
216         int idx = *index;
217 
218         while (idx > 0) {
219                 edge = edges[idx - 1];
220                 lower = edge->node[LOWER];
221                 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
222                         idx--;
223                         continue;
224                 }
225                 edge = list_entry(edge->list[LOWER].next,
226                                   struct btrfs_backref_edge, list[LOWER]);
227                 edges[idx - 1] = edge;
228                 *index = idx;
229                 return edge->node[UPPER];
230         }
231         *index = 0;
232         return NULL;
233 }
234 
235 static bool reloc_root_is_dead(const struct btrfs_root *root)
236 {
237         /*
238          * Pair with set_bit/clear_bit in clean_dirty_subvols and
239          * btrfs_update_reloc_root. We need to see the updated bit before
240          * trying to access reloc_root
241          */
242         smp_rmb();
243         if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
244                 return true;
245         return false;
246 }
247 
248 /*
249  * Check if this subvolume tree has valid reloc tree.
250  *
251  * Reloc tree after swap is considered dead, thus not considered as valid.
252  * This is enough for most callers, as they don't distinguish dead reloc root
253  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
254  * special case.
255  */
256 static bool have_reloc_root(const struct btrfs_root *root)
257 {
258         if (reloc_root_is_dead(root))
259                 return false;
260         if (!root->reloc_root)
261                 return false;
262         return true;
263 }
264 
265 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
266 {
267         struct btrfs_root *reloc_root;
268 
269         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
270                 return false;
271 
272         /* This root has been merged with its reloc tree, we can ignore it */
273         if (reloc_root_is_dead(root))
274                 return true;
275 
276         reloc_root = root->reloc_root;
277         if (!reloc_root)
278                 return false;
279 
280         if (btrfs_header_generation(reloc_root->commit_root) ==
281             root->fs_info->running_transaction->transid)
282                 return false;
283         /*
284          * If there is reloc tree and it was created in previous transaction
285          * backref lookup can find the reloc tree, so backref node for the fs
286          * tree root is useless for relocation.
287          */
288         return true;
289 }
290 
291 /*
292  * find reloc tree by address of tree root
293  */
294 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
295 {
296         struct reloc_control *rc = fs_info->reloc_ctl;
297         struct rb_node *rb_node;
298         struct mapping_node *node;
299         struct btrfs_root *root = NULL;
300 
301         ASSERT(rc);
302         spin_lock(&rc->reloc_root_tree.lock);
303         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
304         if (rb_node) {
305                 node = rb_entry(rb_node, struct mapping_node, rb_node);
306                 root = node->data;
307         }
308         spin_unlock(&rc->reloc_root_tree.lock);
309         return btrfs_grab_root(root);
310 }
311 
312 /*
313  * For useless nodes, do two major clean ups:
314  *
315  * - Cleanup the children edges and nodes
316  *   If child node is also orphan (no parent) during cleanup, then the child
317  *   node will also be cleaned up.
318  *
319  * - Freeing up leaves (level 0), keeps nodes detached
320  *   For nodes, the node is still cached as "detached"
321  *
322  * Return false if @node is not in the @useless_nodes list.
323  * Return true if @node is in the @useless_nodes list.
324  */
325 static bool handle_useless_nodes(struct reloc_control *rc,
326                                  struct btrfs_backref_node *node)
327 {
328         struct btrfs_backref_cache *cache = &rc->backref_cache;
329         struct list_head *useless_node = &cache->useless_node;
330         bool ret = false;
331 
332         while (!list_empty(useless_node)) {
333                 struct btrfs_backref_node *cur;
334 
335                 cur = list_first_entry(useless_node, struct btrfs_backref_node,
336                                  list);
337                 list_del_init(&cur->list);
338 
339                 /* Only tree root nodes can be added to @useless_nodes */
340                 ASSERT(list_empty(&cur->upper));
341 
342                 if (cur == node)
343                         ret = true;
344 
345                 /* The node is the lowest node */
346                 if (cur->lowest) {
347                         list_del_init(&cur->lower);
348                         cur->lowest = 0;
349                 }
350 
351                 /* Cleanup the lower edges */
352                 while (!list_empty(&cur->lower)) {
353                         struct btrfs_backref_edge *edge;
354                         struct btrfs_backref_node *lower;
355 
356                         edge = list_entry(cur->lower.next,
357                                         struct btrfs_backref_edge, list[UPPER]);
358                         list_del(&edge->list[UPPER]);
359                         list_del(&edge->list[LOWER]);
360                         lower = edge->node[LOWER];
361                         btrfs_backref_free_edge(cache, edge);
362 
363                         /* Child node is also orphan, queue for cleanup */
364                         if (list_empty(&lower->upper))
365                                 list_add(&lower->list, useless_node);
366                 }
367                 /* Mark this block processed for relocation */
368                 mark_block_processed(rc, cur);
369 
370                 /*
371                  * Backref nodes for tree leaves are deleted from the cache.
372                  * Backref nodes for upper level tree blocks are left in the
373                  * cache to avoid unnecessary backref lookup.
374                  */
375                 if (cur->level > 0) {
376                         list_add(&cur->list, &cache->detached);
377                         cur->detached = 1;
378                 } else {
379                         rb_erase(&cur->rb_node, &cache->rb_root);
380                         btrfs_backref_free_node(cache, cur);
381                 }
382         }
383         return ret;
384 }
385 
386 /*
387  * Build backref tree for a given tree block. Root of the backref tree
388  * corresponds the tree block, leaves of the backref tree correspond roots of
389  * b-trees that reference the tree block.
390  *
391  * The basic idea of this function is check backrefs of a given block to find
392  * upper level blocks that reference the block, and then check backrefs of
393  * these upper level blocks recursively. The recursion stops when tree root is
394  * reached or backrefs for the block is cached.
395  *
396  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
397  * all upper level blocks that directly/indirectly reference the block are also
398  * cached.
399  */
400 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
401                         struct btrfs_trans_handle *trans,
402                         struct reloc_control *rc, struct btrfs_key *node_key,
403                         int level, u64 bytenr)
404 {
405         struct btrfs_backref_iter *iter;
406         struct btrfs_backref_cache *cache = &rc->backref_cache;
407         /* For searching parent of TREE_BLOCK_REF */
408         struct btrfs_path *path;
409         struct btrfs_backref_node *cur;
410         struct btrfs_backref_node *node = NULL;
411         struct btrfs_backref_edge *edge;
412         int ret;
413 
414         iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
415         if (!iter)
416                 return ERR_PTR(-ENOMEM);
417         path = btrfs_alloc_path();
418         if (!path) {
419                 ret = -ENOMEM;
420                 goto out;
421         }
422 
423         node = btrfs_backref_alloc_node(cache, bytenr, level);
424         if (!node) {
425                 ret = -ENOMEM;
426                 goto out;
427         }
428 
429         node->lowest = 1;
430         cur = node;
431 
432         /* Breadth-first search to build backref cache */
433         do {
434                 ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
435                                                   node_key, cur);
436                 if (ret < 0)
437                         goto out;
438 
439                 edge = list_first_entry_or_null(&cache->pending_edge,
440                                 struct btrfs_backref_edge, list[UPPER]);
441                 /*
442                  * The pending list isn't empty, take the first block to
443                  * process
444                  */
445                 if (edge) {
446                         list_del_init(&edge->list[UPPER]);
447                         cur = edge->node[UPPER];
448                 }
449         } while (edge);
450 
451         /* Finish the upper linkage of newly added edges/nodes */
452         ret = btrfs_backref_finish_upper_links(cache, node);
453         if (ret < 0)
454                 goto out;
455 
456         if (handle_useless_nodes(rc, node))
457                 node = NULL;
458 out:
459         btrfs_free_path(iter->path);
460         kfree(iter);
461         btrfs_free_path(path);
462         if (ret) {
463                 btrfs_backref_error_cleanup(cache, node);
464                 return ERR_PTR(ret);
465         }
466         ASSERT(!node || !node->detached);
467         ASSERT(list_empty(&cache->useless_node) &&
468                list_empty(&cache->pending_edge));
469         return node;
470 }
471 
472 /*
473  * helper to add backref node for the newly created snapshot.
474  * the backref node is created by cloning backref node that
475  * corresponds to root of source tree
476  */
477 static int clone_backref_node(struct btrfs_trans_handle *trans,
478                               struct reloc_control *rc,
479                               const struct btrfs_root *src,
480                               struct btrfs_root *dest)
481 {
482         struct btrfs_root *reloc_root = src->reloc_root;
483         struct btrfs_backref_cache *cache = &rc->backref_cache;
484         struct btrfs_backref_node *node = NULL;
485         struct btrfs_backref_node *new_node;
486         struct btrfs_backref_edge *edge;
487         struct btrfs_backref_edge *new_edge;
488         struct rb_node *rb_node;
489 
490         rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
491         if (rb_node) {
492                 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
493                 if (node->detached)
494                         node = NULL;
495                 else
496                         BUG_ON(node->new_bytenr != reloc_root->node->start);
497         }
498 
499         if (!node) {
500                 rb_node = rb_simple_search(&cache->rb_root,
501                                            reloc_root->commit_root->start);
502                 if (rb_node) {
503                         node = rb_entry(rb_node, struct btrfs_backref_node,
504                                         rb_node);
505                         BUG_ON(node->detached);
506                 }
507         }
508 
509         if (!node)
510                 return 0;
511 
512         new_node = btrfs_backref_alloc_node(cache, dest->node->start,
513                                             node->level);
514         if (!new_node)
515                 return -ENOMEM;
516 
517         new_node->lowest = node->lowest;
518         new_node->checked = 1;
519         new_node->root = btrfs_grab_root(dest);
520         ASSERT(new_node->root);
521 
522         if (!node->lowest) {
523                 list_for_each_entry(edge, &node->lower, list[UPPER]) {
524                         new_edge = btrfs_backref_alloc_edge(cache);
525                         if (!new_edge)
526                                 goto fail;
527 
528                         btrfs_backref_link_edge(new_edge, edge->node[LOWER],
529                                                 new_node, LINK_UPPER);
530                 }
531         } else {
532                 list_add_tail(&new_node->lower, &cache->leaves);
533         }
534 
535         rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
536                                    &new_node->rb_node);
537         if (rb_node)
538                 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
539 
540         if (!new_node->lowest) {
541                 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
542                         list_add_tail(&new_edge->list[LOWER],
543                                       &new_edge->node[LOWER]->upper);
544                 }
545         }
546         return 0;
547 fail:
548         while (!list_empty(&new_node->lower)) {
549                 new_edge = list_entry(new_node->lower.next,
550                                       struct btrfs_backref_edge, list[UPPER]);
551                 list_del(&new_edge->list[UPPER]);
552                 btrfs_backref_free_edge(cache, new_edge);
553         }
554         btrfs_backref_free_node(cache, new_node);
555         return -ENOMEM;
556 }
557 
558 /*
559  * helper to add 'address of tree root -> reloc tree' mapping
560  */
561 static int __add_reloc_root(struct btrfs_root *root)
562 {
563         struct btrfs_fs_info *fs_info = root->fs_info;
564         struct rb_node *rb_node;
565         struct mapping_node *node;
566         struct reloc_control *rc = fs_info->reloc_ctl;
567 
568         node = kmalloc(sizeof(*node), GFP_NOFS);
569         if (!node)
570                 return -ENOMEM;
571 
572         node->bytenr = root->commit_root->start;
573         node->data = root;
574 
575         spin_lock(&rc->reloc_root_tree.lock);
576         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
577                                    node->bytenr, &node->rb_node);
578         spin_unlock(&rc->reloc_root_tree.lock);
579         if (rb_node) {
580                 btrfs_err(fs_info,
581                             "Duplicate root found for start=%llu while inserting into relocation tree",
582                             node->bytenr);
583                 return -EEXIST;
584         }
585 
586         list_add_tail(&root->root_list, &rc->reloc_roots);
587         return 0;
588 }
589 
590 /*
591  * helper to delete the 'address of tree root -> reloc tree'
592  * mapping
593  */
594 static void __del_reloc_root(struct btrfs_root *root)
595 {
596         struct btrfs_fs_info *fs_info = root->fs_info;
597         struct rb_node *rb_node;
598         struct mapping_node *node = NULL;
599         struct reloc_control *rc = fs_info->reloc_ctl;
600         bool put_ref = false;
601 
602         if (rc && root->node) {
603                 spin_lock(&rc->reloc_root_tree.lock);
604                 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
605                                            root->commit_root->start);
606                 if (rb_node) {
607                         node = rb_entry(rb_node, struct mapping_node, rb_node);
608                         rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
609                         RB_CLEAR_NODE(&node->rb_node);
610                 }
611                 spin_unlock(&rc->reloc_root_tree.lock);
612                 ASSERT(!node || (struct btrfs_root *)node->data == root);
613         }
614 
615         /*
616          * We only put the reloc root here if it's on the list.  There's a lot
617          * of places where the pattern is to splice the rc->reloc_roots, process
618          * the reloc roots, and then add the reloc root back onto
619          * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
620          * list we don't want the reference being dropped, because the guy
621          * messing with the list is in charge of the reference.
622          */
623         spin_lock(&fs_info->trans_lock);
624         if (!list_empty(&root->root_list)) {
625                 put_ref = true;
626                 list_del_init(&root->root_list);
627         }
628         spin_unlock(&fs_info->trans_lock);
629         if (put_ref)
630                 btrfs_put_root(root);
631         kfree(node);
632 }
633 
634 /*
635  * helper to update the 'address of tree root -> reloc tree'
636  * mapping
637  */
638 static int __update_reloc_root(struct btrfs_root *root)
639 {
640         struct btrfs_fs_info *fs_info = root->fs_info;
641         struct rb_node *rb_node;
642         struct mapping_node *node = NULL;
643         struct reloc_control *rc = fs_info->reloc_ctl;
644 
645         spin_lock(&rc->reloc_root_tree.lock);
646         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
647                                    root->commit_root->start);
648         if (rb_node) {
649                 node = rb_entry(rb_node, struct mapping_node, rb_node);
650                 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
651         }
652         spin_unlock(&rc->reloc_root_tree.lock);
653 
654         if (!node)
655                 return 0;
656         BUG_ON((struct btrfs_root *)node->data != root);
657 
658         spin_lock(&rc->reloc_root_tree.lock);
659         node->bytenr = root->node->start;
660         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
661                                    node->bytenr, &node->rb_node);
662         spin_unlock(&rc->reloc_root_tree.lock);
663         if (rb_node)
664                 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
665         return 0;
666 }
667 
668 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
669                                         struct btrfs_root *root, u64 objectid)
670 {
671         struct btrfs_fs_info *fs_info = root->fs_info;
672         struct btrfs_root *reloc_root;
673         struct extent_buffer *eb;
674         struct btrfs_root_item *root_item;
675         struct btrfs_key root_key;
676         int ret = 0;
677         bool must_abort = false;
678 
679         root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
680         if (!root_item)
681                 return ERR_PTR(-ENOMEM);
682 
683         root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
684         root_key.type = BTRFS_ROOT_ITEM_KEY;
685         root_key.offset = objectid;
686 
687         if (btrfs_root_id(root) == objectid) {
688                 u64 commit_root_gen;
689 
690                 /* called by btrfs_init_reloc_root */
691                 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
692                                       BTRFS_TREE_RELOC_OBJECTID);
693                 if (ret)
694                         goto fail;
695 
696                 /*
697                  * Set the last_snapshot field to the generation of the commit
698                  * root - like this ctree.c:btrfs_block_can_be_shared() behaves
699                  * correctly (returns true) when the relocation root is created
700                  * either inside the critical section of a transaction commit
701                  * (through transaction.c:qgroup_account_snapshot()) and when
702                  * it's created before the transaction commit is started.
703                  */
704                 commit_root_gen = btrfs_header_generation(root->commit_root);
705                 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
706         } else {
707                 /*
708                  * called by btrfs_reloc_post_snapshot_hook.
709                  * the source tree is a reloc tree, all tree blocks
710                  * modified after it was created have RELOC flag
711                  * set in their headers. so it's OK to not update
712                  * the 'last_snapshot'.
713                  */
714                 ret = btrfs_copy_root(trans, root, root->node, &eb,
715                                       BTRFS_TREE_RELOC_OBJECTID);
716                 if (ret)
717                         goto fail;
718         }
719 
720         /*
721          * We have changed references at this point, we must abort the
722          * transaction if anything fails.
723          */
724         must_abort = true;
725 
726         memcpy(root_item, &root->root_item, sizeof(*root_item));
727         btrfs_set_root_bytenr(root_item, eb->start);
728         btrfs_set_root_level(root_item, btrfs_header_level(eb));
729         btrfs_set_root_generation(root_item, trans->transid);
730 
731         if (btrfs_root_id(root) == objectid) {
732                 btrfs_set_root_refs(root_item, 0);
733                 memset(&root_item->drop_progress, 0,
734                        sizeof(struct btrfs_disk_key));
735                 btrfs_set_root_drop_level(root_item, 0);
736         }
737 
738         btrfs_tree_unlock(eb);
739         free_extent_buffer(eb);
740 
741         ret = btrfs_insert_root(trans, fs_info->tree_root,
742                                 &root_key, root_item);
743         if (ret)
744                 goto fail;
745 
746         kfree(root_item);
747 
748         reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
749         if (IS_ERR(reloc_root)) {
750                 ret = PTR_ERR(reloc_root);
751                 goto abort;
752         }
753         set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
754         btrfs_set_root_last_trans(reloc_root, trans->transid);
755         return reloc_root;
756 fail:
757         kfree(root_item);
758 abort:
759         if (must_abort)
760                 btrfs_abort_transaction(trans, ret);
761         return ERR_PTR(ret);
762 }
763 
764 /*
765  * create reloc tree for a given fs tree. reloc tree is just a
766  * snapshot of the fs tree with special root objectid.
767  *
768  * The reloc_root comes out of here with two references, one for
769  * root->reloc_root, and another for being on the rc->reloc_roots list.
770  */
771 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
772                           struct btrfs_root *root)
773 {
774         struct btrfs_fs_info *fs_info = root->fs_info;
775         struct btrfs_root *reloc_root;
776         struct reloc_control *rc = fs_info->reloc_ctl;
777         struct btrfs_block_rsv *rsv;
778         int clear_rsv = 0;
779         int ret;
780 
781         if (!rc)
782                 return 0;
783 
784         /*
785          * The subvolume has reloc tree but the swap is finished, no need to
786          * create/update the dead reloc tree
787          */
788         if (reloc_root_is_dead(root))
789                 return 0;
790 
791         /*
792          * This is subtle but important.  We do not do
793          * record_root_in_transaction for reloc roots, instead we record their
794          * corresponding fs root, and then here we update the last trans for the
795          * reloc root.  This means that we have to do this for the entire life
796          * of the reloc root, regardless of which stage of the relocation we are
797          * in.
798          */
799         if (root->reloc_root) {
800                 reloc_root = root->reloc_root;
801                 btrfs_set_root_last_trans(reloc_root, trans->transid);
802                 return 0;
803         }
804 
805         /*
806          * We are merging reloc roots, we do not need new reloc trees.  Also
807          * reloc trees never need their own reloc tree.
808          */
809         if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
810                 return 0;
811 
812         if (!trans->reloc_reserved) {
813                 rsv = trans->block_rsv;
814                 trans->block_rsv = rc->block_rsv;
815                 clear_rsv = 1;
816         }
817         reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
818         if (clear_rsv)
819                 trans->block_rsv = rsv;
820         if (IS_ERR(reloc_root))
821                 return PTR_ERR(reloc_root);
822 
823         ret = __add_reloc_root(reloc_root);
824         ASSERT(ret != -EEXIST);
825         if (ret) {
826                 /* Pairs with create_reloc_root */
827                 btrfs_put_root(reloc_root);
828                 return ret;
829         }
830         root->reloc_root = btrfs_grab_root(reloc_root);
831         return 0;
832 }
833 
834 /*
835  * update root item of reloc tree
836  */
837 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
838                             struct btrfs_root *root)
839 {
840         struct btrfs_fs_info *fs_info = root->fs_info;
841         struct btrfs_root *reloc_root;
842         struct btrfs_root_item *root_item;
843         int ret;
844 
845         if (!have_reloc_root(root))
846                 return 0;
847 
848         reloc_root = root->reloc_root;
849         root_item = &reloc_root->root_item;
850 
851         /*
852          * We are probably ok here, but __del_reloc_root() will drop its ref of
853          * the root.  We have the ref for root->reloc_root, but just in case
854          * hold it while we update the reloc root.
855          */
856         btrfs_grab_root(reloc_root);
857 
858         /* root->reloc_root will stay until current relocation finished */
859         if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree &&
860             btrfs_root_refs(root_item) == 0) {
861                 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
862                 /*
863                  * Mark the tree as dead before we change reloc_root so
864                  * have_reloc_root will not touch it from now on.
865                  */
866                 smp_wmb();
867                 __del_reloc_root(reloc_root);
868         }
869 
870         if (reloc_root->commit_root != reloc_root->node) {
871                 __update_reloc_root(reloc_root);
872                 btrfs_set_root_node(root_item, reloc_root->node);
873                 free_extent_buffer(reloc_root->commit_root);
874                 reloc_root->commit_root = btrfs_root_node(reloc_root);
875         }
876 
877         ret = btrfs_update_root(trans, fs_info->tree_root,
878                                 &reloc_root->root_key, root_item);
879         btrfs_put_root(reloc_root);
880         return ret;
881 }
882 
883 /*
884  * get new location of data
885  */
886 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
887                             u64 bytenr, u64 num_bytes)
888 {
889         struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
890         struct btrfs_path *path;
891         struct btrfs_file_extent_item *fi;
892         struct extent_buffer *leaf;
893         int ret;
894 
895         path = btrfs_alloc_path();
896         if (!path)
897                 return -ENOMEM;
898 
899         bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
900         ret = btrfs_lookup_file_extent(NULL, root, path,
901                         btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
902         if (ret < 0)
903                 goto out;
904         if (ret > 0) {
905                 ret = -ENOENT;
906                 goto out;
907         }
908 
909         leaf = path->nodes[0];
910         fi = btrfs_item_ptr(leaf, path->slots[0],
911                             struct btrfs_file_extent_item);
912 
913         BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
914                btrfs_file_extent_compression(leaf, fi) ||
915                btrfs_file_extent_encryption(leaf, fi) ||
916                btrfs_file_extent_other_encoding(leaf, fi));
917 
918         if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
919                 ret = -EINVAL;
920                 goto out;
921         }
922 
923         *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
924         ret = 0;
925 out:
926         btrfs_free_path(path);
927         return ret;
928 }
929 
930 /*
931  * update file extent items in the tree leaf to point to
932  * the new locations.
933  */
934 static noinline_for_stack
935 int replace_file_extents(struct btrfs_trans_handle *trans,
936                          struct reloc_control *rc,
937                          struct btrfs_root *root,
938                          struct extent_buffer *leaf)
939 {
940         struct btrfs_fs_info *fs_info = root->fs_info;
941         struct btrfs_key key;
942         struct btrfs_file_extent_item *fi;
943         struct btrfs_inode *inode = NULL;
944         u64 parent;
945         u64 bytenr;
946         u64 new_bytenr = 0;
947         u64 num_bytes;
948         u64 end;
949         u32 nritems;
950         u32 i;
951         int ret = 0;
952         int first = 1;
953         int dirty = 0;
954 
955         if (rc->stage != UPDATE_DATA_PTRS)
956                 return 0;
957 
958         /* reloc trees always use full backref */
959         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
960                 parent = leaf->start;
961         else
962                 parent = 0;
963 
964         nritems = btrfs_header_nritems(leaf);
965         for (i = 0; i < nritems; i++) {
966                 struct btrfs_ref ref = { 0 };
967 
968                 cond_resched();
969                 btrfs_item_key_to_cpu(leaf, &key, i);
970                 if (key.type != BTRFS_EXTENT_DATA_KEY)
971                         continue;
972                 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
973                 if (btrfs_file_extent_type(leaf, fi) ==
974                     BTRFS_FILE_EXTENT_INLINE)
975                         continue;
976                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
977                 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
978                 if (bytenr == 0)
979                         continue;
980                 if (!in_range(bytenr, rc->block_group->start,
981                               rc->block_group->length))
982                         continue;
983 
984                 /*
985                  * if we are modifying block in fs tree, wait for read_folio
986                  * to complete and drop the extent cache
987                  */
988                 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
989                         if (first) {
990                                 inode = btrfs_find_first_inode(root, key.objectid);
991                                 first = 0;
992                         } else if (inode && btrfs_ino(inode) < key.objectid) {
993                                 btrfs_add_delayed_iput(inode);
994                                 inode = btrfs_find_first_inode(root, key.objectid);
995                         }
996                         if (inode && btrfs_ino(inode) == key.objectid) {
997                                 struct extent_state *cached_state = NULL;
998 
999                                 end = key.offset +
1000                                       btrfs_file_extent_num_bytes(leaf, fi);
1001                                 WARN_ON(!IS_ALIGNED(key.offset,
1002                                                     fs_info->sectorsize));
1003                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1004                                 end--;
1005                                 /* Take mmap lock to serialize with reflinks. */
1006                                 if (!down_read_trylock(&inode->i_mmap_lock))
1007                                         continue;
1008                                 ret = try_lock_extent(&inode->io_tree, key.offset,
1009                                                       end, &cached_state);
1010                                 if (!ret) {
1011                                         up_read(&inode->i_mmap_lock);
1012                                         continue;
1013                                 }
1014 
1015                                 btrfs_drop_extent_map_range(inode, key.offset, end, true);
1016                                 unlock_extent(&inode->io_tree, key.offset, end,
1017                                               &cached_state);
1018                                 up_read(&inode->i_mmap_lock);
1019                         }
1020                 }
1021 
1022                 ret = get_new_location(rc->data_inode, &new_bytenr,
1023                                        bytenr, num_bytes);
1024                 if (ret) {
1025                         /*
1026                          * Don't have to abort since we've not changed anything
1027                          * in the file extent yet.
1028                          */
1029                         break;
1030                 }
1031 
1032                 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1033                 dirty = 1;
1034 
1035                 key.offset -= btrfs_file_extent_offset(leaf, fi);
1036                 ref.action = BTRFS_ADD_DELAYED_REF;
1037                 ref.bytenr = new_bytenr;
1038                 ref.num_bytes = num_bytes;
1039                 ref.parent = parent;
1040                 ref.owning_root = btrfs_root_id(root);
1041                 ref.ref_root = btrfs_header_owner(leaf);
1042                 btrfs_init_data_ref(&ref, key.objectid, key.offset,
1043                                     btrfs_root_id(root), false);
1044                 ret = btrfs_inc_extent_ref(trans, &ref);
1045                 if (ret) {
1046                         btrfs_abort_transaction(trans, ret);
1047                         break;
1048                 }
1049 
1050                 ref.action = BTRFS_DROP_DELAYED_REF;
1051                 ref.bytenr = bytenr;
1052                 ref.num_bytes = num_bytes;
1053                 ref.parent = parent;
1054                 ref.owning_root = btrfs_root_id(root);
1055                 ref.ref_root = btrfs_header_owner(leaf);
1056                 btrfs_init_data_ref(&ref, key.objectid, key.offset,
1057                                     btrfs_root_id(root), false);
1058                 ret = btrfs_free_extent(trans, &ref);
1059                 if (ret) {
1060                         btrfs_abort_transaction(trans, ret);
1061                         break;
1062                 }
1063         }
1064         if (dirty)
1065                 btrfs_mark_buffer_dirty(trans, leaf);
1066         if (inode)
1067                 btrfs_add_delayed_iput(inode);
1068         return ret;
1069 }
1070 
1071 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
1072                                                int slot, const struct btrfs_path *path,
1073                                                int level)
1074 {
1075         struct btrfs_disk_key key1;
1076         struct btrfs_disk_key key2;
1077         btrfs_node_key(eb, &key1, slot);
1078         btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1079         return memcmp(&key1, &key2, sizeof(key1));
1080 }
1081 
1082 /*
1083  * try to replace tree blocks in fs tree with the new blocks
1084  * in reloc tree. tree blocks haven't been modified since the
1085  * reloc tree was create can be replaced.
1086  *
1087  * if a block was replaced, level of the block + 1 is returned.
1088  * if no block got replaced, 0 is returned. if there are other
1089  * errors, a negative error number is returned.
1090  */
1091 static noinline_for_stack
1092 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1093                  struct btrfs_root *dest, struct btrfs_root *src,
1094                  struct btrfs_path *path, struct btrfs_key *next_key,
1095                  int lowest_level, int max_level)
1096 {
1097         struct btrfs_fs_info *fs_info = dest->fs_info;
1098         struct extent_buffer *eb;
1099         struct extent_buffer *parent;
1100         struct btrfs_ref ref = { 0 };
1101         struct btrfs_key key;
1102         u64 old_bytenr;
1103         u64 new_bytenr;
1104         u64 old_ptr_gen;
1105         u64 new_ptr_gen;
1106         u64 last_snapshot;
1107         u32 blocksize;
1108         int cow = 0;
1109         int level;
1110         int ret;
1111         int slot;
1112 
1113         ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1114         ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1115 
1116         last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1117 again:
1118         slot = path->slots[lowest_level];
1119         btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1120 
1121         eb = btrfs_lock_root_node(dest);
1122         level = btrfs_header_level(eb);
1123 
1124         if (level < lowest_level) {
1125                 btrfs_tree_unlock(eb);
1126                 free_extent_buffer(eb);
1127                 return 0;
1128         }
1129 
1130         if (cow) {
1131                 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1132                                       BTRFS_NESTING_COW);
1133                 if (ret) {
1134                         btrfs_tree_unlock(eb);
1135                         free_extent_buffer(eb);
1136                         return ret;
1137                 }
1138         }
1139 
1140         if (next_key) {
1141                 next_key->objectid = (u64)-1;
1142                 next_key->type = (u8)-1;
1143                 next_key->offset = (u64)-1;
1144         }
1145 
1146         parent = eb;
1147         while (1) {
1148                 level = btrfs_header_level(parent);
1149                 ASSERT(level >= lowest_level);
1150 
1151                 ret = btrfs_bin_search(parent, 0, &key, &slot);
1152                 if (ret < 0)
1153                         break;
1154                 if (ret && slot > 0)
1155                         slot--;
1156 
1157                 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1158                         btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1159 
1160                 old_bytenr = btrfs_node_blockptr(parent, slot);
1161                 blocksize = fs_info->nodesize;
1162                 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1163 
1164                 if (level <= max_level) {
1165                         eb = path->nodes[level];
1166                         new_bytenr = btrfs_node_blockptr(eb,
1167                                                         path->slots[level]);
1168                         new_ptr_gen = btrfs_node_ptr_generation(eb,
1169                                                         path->slots[level]);
1170                 } else {
1171                         new_bytenr = 0;
1172                         new_ptr_gen = 0;
1173                 }
1174 
1175                 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1176                         ret = level;
1177                         break;
1178                 }
1179 
1180                 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1181                     memcmp_node_keys(parent, slot, path, level)) {
1182                         if (level <= lowest_level) {
1183                                 ret = 0;
1184                                 break;
1185                         }
1186 
1187                         eb = btrfs_read_node_slot(parent, slot);
1188                         if (IS_ERR(eb)) {
1189                                 ret = PTR_ERR(eb);
1190                                 break;
1191                         }
1192                         btrfs_tree_lock(eb);
1193                         if (cow) {
1194                                 ret = btrfs_cow_block(trans, dest, eb, parent,
1195                                                       slot, &eb,
1196                                                       BTRFS_NESTING_COW);
1197                                 if (ret) {
1198                                         btrfs_tree_unlock(eb);
1199                                         free_extent_buffer(eb);
1200                                         break;
1201                                 }
1202                         }
1203 
1204                         btrfs_tree_unlock(parent);
1205                         free_extent_buffer(parent);
1206 
1207                         parent = eb;
1208                         continue;
1209                 }
1210 
1211                 if (!cow) {
1212                         btrfs_tree_unlock(parent);
1213                         free_extent_buffer(parent);
1214                         cow = 1;
1215                         goto again;
1216                 }
1217 
1218                 btrfs_node_key_to_cpu(path->nodes[level], &key,
1219                                       path->slots[level]);
1220                 btrfs_release_path(path);
1221 
1222                 path->lowest_level = level;
1223                 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1224                 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1225                 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1226                 path->lowest_level = 0;
1227                 if (ret) {
1228                         if (ret > 0)
1229                                 ret = -ENOENT;
1230                         break;
1231                 }
1232 
1233                 /*
1234                  * Info qgroup to trace both subtrees.
1235                  *
1236                  * We must trace both trees.
1237                  * 1) Tree reloc subtree
1238                  *    If not traced, we will leak data numbers
1239                  * 2) Fs subtree
1240                  *    If not traced, we will double count old data
1241                  *
1242                  * We don't scan the subtree right now, but only record
1243                  * the swapped tree blocks.
1244                  * The real subtree rescan is delayed until we have new
1245                  * CoW on the subtree root node before transaction commit.
1246                  */
1247                 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1248                                 rc->block_group, parent, slot,
1249                                 path->nodes[level], path->slots[level],
1250                                 last_snapshot);
1251                 if (ret < 0)
1252                         break;
1253                 /*
1254                  * swap blocks in fs tree and reloc tree.
1255                  */
1256                 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1257                 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1258                 btrfs_mark_buffer_dirty(trans, parent);
1259 
1260                 btrfs_set_node_blockptr(path->nodes[level],
1261                                         path->slots[level], old_bytenr);
1262                 btrfs_set_node_ptr_generation(path->nodes[level],
1263                                               path->slots[level], old_ptr_gen);
1264                 btrfs_mark_buffer_dirty(trans, path->nodes[level]);
1265 
1266                 ref.action = BTRFS_ADD_DELAYED_REF;
1267                 ref.bytenr = old_bytenr;
1268                 ref.num_bytes = blocksize;
1269                 ref.parent = path->nodes[level]->start;
1270                 ref.owning_root = btrfs_root_id(src);
1271                 ref.ref_root = btrfs_root_id(src);
1272                 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1273                 ret = btrfs_inc_extent_ref(trans, &ref);
1274                 if (ret) {
1275                         btrfs_abort_transaction(trans, ret);
1276                         break;
1277                 }
1278 
1279                 ref.action = BTRFS_ADD_DELAYED_REF;
1280                 ref.bytenr = new_bytenr;
1281                 ref.num_bytes = blocksize;
1282                 ref.parent = 0;
1283                 ref.owning_root = btrfs_root_id(dest);
1284                 ref.ref_root = btrfs_root_id(dest);
1285                 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1286                 ret = btrfs_inc_extent_ref(trans, &ref);
1287                 if (ret) {
1288                         btrfs_abort_transaction(trans, ret);
1289                         break;
1290                 }
1291 
1292                 /* We don't know the real owning_root, use 0. */
1293                 ref.action = BTRFS_DROP_DELAYED_REF;
1294                 ref.bytenr = new_bytenr;
1295                 ref.num_bytes = blocksize;
1296                 ref.parent = path->nodes[level]->start;
1297                 ref.owning_root = 0;
1298                 ref.ref_root = btrfs_root_id(src);
1299                 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1300                 ret = btrfs_free_extent(trans, &ref);
1301                 if (ret) {
1302                         btrfs_abort_transaction(trans, ret);
1303                         break;
1304                 }
1305 
1306                 /* We don't know the real owning_root, use 0. */
1307                 ref.action = BTRFS_DROP_DELAYED_REF;
1308                 ref.bytenr = old_bytenr;
1309                 ref.num_bytes = blocksize;
1310                 ref.parent = 0;
1311                 ref.owning_root = 0;
1312                 ref.ref_root = btrfs_root_id(dest);
1313                 btrfs_init_tree_ref(&ref, level - 1, 0, true);
1314                 ret = btrfs_free_extent(trans, &ref);
1315                 if (ret) {
1316                         btrfs_abort_transaction(trans, ret);
1317                         break;
1318                 }
1319 
1320                 btrfs_unlock_up_safe(path, 0);
1321 
1322                 ret = level;
1323                 break;
1324         }
1325         btrfs_tree_unlock(parent);
1326         free_extent_buffer(parent);
1327         return ret;
1328 }
1329 
1330 /*
1331  * helper to find next relocated block in reloc tree
1332  */
1333 static noinline_for_stack
1334 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1335                        int *level)
1336 {
1337         struct extent_buffer *eb;
1338         int i;
1339         u64 last_snapshot;
1340         u32 nritems;
1341 
1342         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1343 
1344         for (i = 0; i < *level; i++) {
1345                 free_extent_buffer(path->nodes[i]);
1346                 path->nodes[i] = NULL;
1347         }
1348 
1349         for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1350                 eb = path->nodes[i];
1351                 nritems = btrfs_header_nritems(eb);
1352                 while (path->slots[i] + 1 < nritems) {
1353                         path->slots[i]++;
1354                         if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1355                             last_snapshot)
1356                                 continue;
1357 
1358                         *level = i;
1359                         return 0;
1360                 }
1361                 free_extent_buffer(path->nodes[i]);
1362                 path->nodes[i] = NULL;
1363         }
1364         return 1;
1365 }
1366 
1367 /*
1368  * walk down reloc tree to find relocated block of lowest level
1369  */
1370 static noinline_for_stack
1371 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1372                          int *level)
1373 {
1374         struct extent_buffer *eb = NULL;
1375         int i;
1376         u64 ptr_gen = 0;
1377         u64 last_snapshot;
1378         u32 nritems;
1379 
1380         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1381 
1382         for (i = *level; i > 0; i--) {
1383                 eb = path->nodes[i];
1384                 nritems = btrfs_header_nritems(eb);
1385                 while (path->slots[i] < nritems) {
1386                         ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1387                         if (ptr_gen > last_snapshot)
1388                                 break;
1389                         path->slots[i]++;
1390                 }
1391                 if (path->slots[i] >= nritems) {
1392                         if (i == *level)
1393                                 break;
1394                         *level = i + 1;
1395                         return 0;
1396                 }
1397                 if (i == 1) {
1398                         *level = i;
1399                         return 0;
1400                 }
1401 
1402                 eb = btrfs_read_node_slot(eb, path->slots[i]);
1403                 if (IS_ERR(eb))
1404                         return PTR_ERR(eb);
1405                 BUG_ON(btrfs_header_level(eb) != i - 1);
1406                 path->nodes[i - 1] = eb;
1407                 path->slots[i - 1] = 0;
1408         }
1409         return 1;
1410 }
1411 
1412 /*
1413  * invalidate extent cache for file extents whose key in range of
1414  * [min_key, max_key)
1415  */
1416 static int invalidate_extent_cache(struct btrfs_root *root,
1417                                    const struct btrfs_key *min_key,
1418                                    const struct btrfs_key *max_key)
1419 {
1420         struct btrfs_fs_info *fs_info = root->fs_info;
1421         struct btrfs_inode *inode = NULL;
1422         u64 objectid;
1423         u64 start, end;
1424         u64 ino;
1425 
1426         objectid = min_key->objectid;
1427         while (1) {
1428                 struct extent_state *cached_state = NULL;
1429 
1430                 cond_resched();
1431                 if (inode)
1432                         iput(&inode->vfs_inode);
1433 
1434                 if (objectid > max_key->objectid)
1435                         break;
1436 
1437                 inode = btrfs_find_first_inode(root, objectid);
1438                 if (!inode)
1439                         break;
1440                 ino = btrfs_ino(inode);
1441 
1442                 if (ino > max_key->objectid) {
1443                         iput(&inode->vfs_inode);
1444                         break;
1445                 }
1446 
1447                 objectid = ino + 1;
1448                 if (!S_ISREG(inode->vfs_inode.i_mode))
1449                         continue;
1450 
1451                 if (unlikely(min_key->objectid == ino)) {
1452                         if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1453                                 continue;
1454                         if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1455                                 start = 0;
1456                         else {
1457                                 start = min_key->offset;
1458                                 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1459                         }
1460                 } else {
1461                         start = 0;
1462                 }
1463 
1464                 if (unlikely(max_key->objectid == ino)) {
1465                         if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1466                                 continue;
1467                         if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1468                                 end = (u64)-1;
1469                         } else {
1470                                 if (max_key->offset == 0)
1471                                         continue;
1472                                 end = max_key->offset;
1473                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1474                                 end--;
1475                         }
1476                 } else {
1477                         end = (u64)-1;
1478                 }
1479 
1480                 /* the lock_extent waits for read_folio to complete */
1481                 lock_extent(&inode->io_tree, start, end, &cached_state);
1482                 btrfs_drop_extent_map_range(inode, start, end, true);
1483                 unlock_extent(&inode->io_tree, start, end, &cached_state);
1484         }
1485         return 0;
1486 }
1487 
1488 static int find_next_key(struct btrfs_path *path, int level,
1489                          struct btrfs_key *key)
1490 
1491 {
1492         while (level < BTRFS_MAX_LEVEL) {
1493                 if (!path->nodes[level])
1494                         break;
1495                 if (path->slots[level] + 1 <
1496                     btrfs_header_nritems(path->nodes[level])) {
1497                         btrfs_node_key_to_cpu(path->nodes[level], key,
1498                                               path->slots[level] + 1);
1499                         return 0;
1500                 }
1501                 level++;
1502         }
1503         return 1;
1504 }
1505 
1506 /*
1507  * Insert current subvolume into reloc_control::dirty_subvol_roots
1508  */
1509 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1510                                struct reloc_control *rc,
1511                                struct btrfs_root *root)
1512 {
1513         struct btrfs_root *reloc_root = root->reloc_root;
1514         struct btrfs_root_item *reloc_root_item;
1515         int ret;
1516 
1517         /* @root must be a subvolume tree root with a valid reloc tree */
1518         ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1519         ASSERT(reloc_root);
1520 
1521         reloc_root_item = &reloc_root->root_item;
1522         memset(&reloc_root_item->drop_progress, 0,
1523                 sizeof(reloc_root_item->drop_progress));
1524         btrfs_set_root_drop_level(reloc_root_item, 0);
1525         btrfs_set_root_refs(reloc_root_item, 0);
1526         ret = btrfs_update_reloc_root(trans, root);
1527         if (ret)
1528                 return ret;
1529 
1530         if (list_empty(&root->reloc_dirty_list)) {
1531                 btrfs_grab_root(root);
1532                 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1533         }
1534 
1535         return 0;
1536 }
1537 
1538 static int clean_dirty_subvols(struct reloc_control *rc)
1539 {
1540         struct btrfs_root *root;
1541         struct btrfs_root *next;
1542         int ret = 0;
1543         int ret2;
1544 
1545         list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1546                                  reloc_dirty_list) {
1547                 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1548                         /* Merged subvolume, cleanup its reloc root */
1549                         struct btrfs_root *reloc_root = root->reloc_root;
1550 
1551                         list_del_init(&root->reloc_dirty_list);
1552                         root->reloc_root = NULL;
1553                         /*
1554                          * Need barrier to ensure clear_bit() only happens after
1555                          * root->reloc_root = NULL. Pairs with have_reloc_root.
1556                          */
1557                         smp_wmb();
1558                         clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1559                         if (reloc_root) {
1560                                 /*
1561                                  * btrfs_drop_snapshot drops our ref we hold for
1562                                  * ->reloc_root.  If it fails however we must
1563                                  * drop the ref ourselves.
1564                                  */
1565                                 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1566                                 if (ret2 < 0) {
1567                                         btrfs_put_root(reloc_root);
1568                                         if (!ret)
1569                                                 ret = ret2;
1570                                 }
1571                         }
1572                         btrfs_put_root(root);
1573                 } else {
1574                         /* Orphan reloc tree, just clean it up */
1575                         ret2 = btrfs_drop_snapshot(root, 0, 1);
1576                         if (ret2 < 0) {
1577                                 btrfs_put_root(root);
1578                                 if (!ret)
1579                                         ret = ret2;
1580                         }
1581                 }
1582         }
1583         return ret;
1584 }
1585 
1586 /*
1587  * merge the relocated tree blocks in reloc tree with corresponding
1588  * fs tree.
1589  */
1590 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1591                                                struct btrfs_root *root)
1592 {
1593         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1594         struct btrfs_key key;
1595         struct btrfs_key next_key;
1596         struct btrfs_trans_handle *trans = NULL;
1597         struct btrfs_root *reloc_root;
1598         struct btrfs_root_item *root_item;
1599         struct btrfs_path *path;
1600         struct extent_buffer *leaf;
1601         int reserve_level;
1602         int level;
1603         int max_level;
1604         int replaced = 0;
1605         int ret = 0;
1606         u32 min_reserved;
1607 
1608         path = btrfs_alloc_path();
1609         if (!path)
1610                 return -ENOMEM;
1611         path->reada = READA_FORWARD;
1612 
1613         reloc_root = root->reloc_root;
1614         root_item = &reloc_root->root_item;
1615 
1616         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1617                 level = btrfs_root_level(root_item);
1618                 atomic_inc(&reloc_root->node->refs);
1619                 path->nodes[level] = reloc_root->node;
1620                 path->slots[level] = 0;
1621         } else {
1622                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1623 
1624                 level = btrfs_root_drop_level(root_item);
1625                 BUG_ON(level == 0);
1626                 path->lowest_level = level;
1627                 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1628                 path->lowest_level = 0;
1629                 if (ret < 0) {
1630                         btrfs_free_path(path);
1631                         return ret;
1632                 }
1633 
1634                 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1635                                       path->slots[level]);
1636                 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1637 
1638                 btrfs_unlock_up_safe(path, 0);
1639         }
1640 
1641         /*
1642          * In merge_reloc_root(), we modify the upper level pointer to swap the
1643          * tree blocks between reloc tree and subvolume tree.  Thus for tree
1644          * block COW, we COW at most from level 1 to root level for each tree.
1645          *
1646          * Thus the needed metadata size is at most root_level * nodesize,
1647          * and * 2 since we have two trees to COW.
1648          */
1649         reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1650         min_reserved = fs_info->nodesize * reserve_level * 2;
1651         memset(&next_key, 0, sizeof(next_key));
1652 
1653         while (1) {
1654                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1655                                              min_reserved,
1656                                              BTRFS_RESERVE_FLUSH_LIMIT);
1657                 if (ret)
1658                         goto out;
1659                 trans = btrfs_start_transaction(root, 0);
1660                 if (IS_ERR(trans)) {
1661                         ret = PTR_ERR(trans);
1662                         trans = NULL;
1663                         goto out;
1664                 }
1665 
1666                 /*
1667                  * At this point we no longer have a reloc_control, so we can't
1668                  * depend on btrfs_init_reloc_root to update our last_trans.
1669                  *
1670                  * But that's ok, we started the trans handle on our
1671                  * corresponding fs_root, which means it's been added to the
1672                  * dirty list.  At commit time we'll still call
1673                  * btrfs_update_reloc_root() and update our root item
1674                  * appropriately.
1675                  */
1676                 btrfs_set_root_last_trans(reloc_root, trans->transid);
1677                 trans->block_rsv = rc->block_rsv;
1678 
1679                 replaced = 0;
1680                 max_level = level;
1681 
1682                 ret = walk_down_reloc_tree(reloc_root, path, &level);
1683                 if (ret < 0)
1684                         goto out;
1685                 if (ret > 0)
1686                         break;
1687 
1688                 if (!find_next_key(path, level, &key) &&
1689                     btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1690                         ret = 0;
1691                 } else {
1692                         ret = replace_path(trans, rc, root, reloc_root, path,
1693                                            &next_key, level, max_level);
1694                 }
1695                 if (ret < 0)
1696                         goto out;
1697                 if (ret > 0) {
1698                         level = ret;
1699                         btrfs_node_key_to_cpu(path->nodes[level], &key,
1700                                               path->slots[level]);
1701                         replaced = 1;
1702                 }
1703 
1704                 ret = walk_up_reloc_tree(reloc_root, path, &level);
1705                 if (ret > 0)
1706                         break;
1707 
1708                 BUG_ON(level == 0);
1709                 /*
1710                  * save the merging progress in the drop_progress.
1711                  * this is OK since root refs == 1 in this case.
1712                  */
1713                 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1714                                path->slots[level]);
1715                 btrfs_set_root_drop_level(root_item, level);
1716 
1717                 btrfs_end_transaction_throttle(trans);
1718                 trans = NULL;
1719 
1720                 btrfs_btree_balance_dirty(fs_info);
1721 
1722                 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1723                         invalidate_extent_cache(root, &key, &next_key);
1724         }
1725 
1726         /*
1727          * handle the case only one block in the fs tree need to be
1728          * relocated and the block is tree root.
1729          */
1730         leaf = btrfs_lock_root_node(root);
1731         ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1732                               BTRFS_NESTING_COW);
1733         btrfs_tree_unlock(leaf);
1734         free_extent_buffer(leaf);
1735 out:
1736         btrfs_free_path(path);
1737 
1738         if (ret == 0) {
1739                 ret = insert_dirty_subvol(trans, rc, root);
1740                 if (ret)
1741                         btrfs_abort_transaction(trans, ret);
1742         }
1743 
1744         if (trans)
1745                 btrfs_end_transaction_throttle(trans);
1746 
1747         btrfs_btree_balance_dirty(fs_info);
1748 
1749         if (replaced && rc->stage == UPDATE_DATA_PTRS)
1750                 invalidate_extent_cache(root, &key, &next_key);
1751 
1752         return ret;
1753 }
1754 
1755 static noinline_for_stack
1756 int prepare_to_merge(struct reloc_control *rc, int err)
1757 {
1758         struct btrfs_root *root = rc->extent_root;
1759         struct btrfs_fs_info *fs_info = root->fs_info;
1760         struct btrfs_root *reloc_root;
1761         struct btrfs_trans_handle *trans;
1762         LIST_HEAD(reloc_roots);
1763         u64 num_bytes = 0;
1764         int ret;
1765 
1766         mutex_lock(&fs_info->reloc_mutex);
1767         rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1768         rc->merging_rsv_size += rc->nodes_relocated * 2;
1769         mutex_unlock(&fs_info->reloc_mutex);
1770 
1771 again:
1772         if (!err) {
1773                 num_bytes = rc->merging_rsv_size;
1774                 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1775                                           BTRFS_RESERVE_FLUSH_ALL);
1776                 if (ret)
1777                         err = ret;
1778         }
1779 
1780         trans = btrfs_join_transaction(rc->extent_root);
1781         if (IS_ERR(trans)) {
1782                 if (!err)
1783                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1784                                                 num_bytes, NULL);
1785                 return PTR_ERR(trans);
1786         }
1787 
1788         if (!err) {
1789                 if (num_bytes != rc->merging_rsv_size) {
1790                         btrfs_end_transaction(trans);
1791                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1792                                                 num_bytes, NULL);
1793                         goto again;
1794                 }
1795         }
1796 
1797         rc->merge_reloc_tree = true;
1798 
1799         while (!list_empty(&rc->reloc_roots)) {
1800                 reloc_root = list_entry(rc->reloc_roots.next,
1801                                         struct btrfs_root, root_list);
1802                 list_del_init(&reloc_root->root_list);
1803 
1804                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1805                                 false);
1806                 if (IS_ERR(root)) {
1807                         /*
1808                          * Even if we have an error we need this reloc root
1809                          * back on our list so we can clean up properly.
1810                          */
1811                         list_add(&reloc_root->root_list, &reloc_roots);
1812                         btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1813                         if (!err)
1814                                 err = PTR_ERR(root);
1815                         break;
1816                 }
1817 
1818                 if (unlikely(root->reloc_root != reloc_root)) {
1819                         if (root->reloc_root) {
1820                                 btrfs_err(fs_info,
1821 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1822                                           btrfs_root_id(root),
1823                                           btrfs_root_id(root->reloc_root),
1824                                           root->reloc_root->root_key.type,
1825                                           root->reloc_root->root_key.offset,
1826                                           btrfs_root_generation(
1827                                                   &root->reloc_root->root_item),
1828                                           btrfs_root_id(reloc_root),
1829                                           reloc_root->root_key.type,
1830                                           reloc_root->root_key.offset,
1831                                           btrfs_root_generation(
1832                                                   &reloc_root->root_item));
1833                         } else {
1834                                 btrfs_err(fs_info,
1835 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1836                                           btrfs_root_id(root),
1837                                           btrfs_root_id(reloc_root),
1838                                           reloc_root->root_key.type,
1839                                           reloc_root->root_key.offset,
1840                                           btrfs_root_generation(
1841                                                   &reloc_root->root_item));
1842                         }
1843                         list_add(&reloc_root->root_list, &reloc_roots);
1844                         btrfs_put_root(root);
1845                         btrfs_abort_transaction(trans, -EUCLEAN);
1846                         if (!err)
1847                                 err = -EUCLEAN;
1848                         break;
1849                 }
1850 
1851                 /*
1852                  * set reference count to 1, so btrfs_recover_relocation
1853                  * knows it should resumes merging
1854                  */
1855                 if (!err)
1856                         btrfs_set_root_refs(&reloc_root->root_item, 1);
1857                 ret = btrfs_update_reloc_root(trans, root);
1858 
1859                 /*
1860                  * Even if we have an error we need this reloc root back on our
1861                  * list so we can clean up properly.
1862                  */
1863                 list_add(&reloc_root->root_list, &reloc_roots);
1864                 btrfs_put_root(root);
1865 
1866                 if (ret) {
1867                         btrfs_abort_transaction(trans, ret);
1868                         if (!err)
1869                                 err = ret;
1870                         break;
1871                 }
1872         }
1873 
1874         list_splice(&reloc_roots, &rc->reloc_roots);
1875 
1876         if (!err)
1877                 err = btrfs_commit_transaction(trans);
1878         else
1879                 btrfs_end_transaction(trans);
1880         return err;
1881 }
1882 
1883 static noinline_for_stack
1884 void free_reloc_roots(struct list_head *list)
1885 {
1886         struct btrfs_root *reloc_root, *tmp;
1887 
1888         list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1889                 __del_reloc_root(reloc_root);
1890 }
1891 
1892 static noinline_for_stack
1893 void merge_reloc_roots(struct reloc_control *rc)
1894 {
1895         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1896         struct btrfs_root *root;
1897         struct btrfs_root *reloc_root;
1898         LIST_HEAD(reloc_roots);
1899         int found = 0;
1900         int ret = 0;
1901 again:
1902         root = rc->extent_root;
1903 
1904         /*
1905          * this serializes us with btrfs_record_root_in_transaction,
1906          * we have to make sure nobody is in the middle of
1907          * adding their roots to the list while we are
1908          * doing this splice
1909          */
1910         mutex_lock(&fs_info->reloc_mutex);
1911         list_splice_init(&rc->reloc_roots, &reloc_roots);
1912         mutex_unlock(&fs_info->reloc_mutex);
1913 
1914         while (!list_empty(&reloc_roots)) {
1915                 found = 1;
1916                 reloc_root = list_entry(reloc_roots.next,
1917                                         struct btrfs_root, root_list);
1918 
1919                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1920                                          false);
1921                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1922                         if (WARN_ON(IS_ERR(root))) {
1923                                 /*
1924                                  * For recovery we read the fs roots on mount,
1925                                  * and if we didn't find the root then we marked
1926                                  * the reloc root as a garbage root.  For normal
1927                                  * relocation obviously the root should exist in
1928                                  * memory.  However there's no reason we can't
1929                                  * handle the error properly here just in case.
1930                                  */
1931                                 ret = PTR_ERR(root);
1932                                 goto out;
1933                         }
1934                         if (WARN_ON(root->reloc_root != reloc_root)) {
1935                                 /*
1936                                  * This can happen if on-disk metadata has some
1937                                  * corruption, e.g. bad reloc tree key offset.
1938                                  */
1939                                 ret = -EINVAL;
1940                                 goto out;
1941                         }
1942                         ret = merge_reloc_root(rc, root);
1943                         btrfs_put_root(root);
1944                         if (ret) {
1945                                 if (list_empty(&reloc_root->root_list))
1946                                         list_add_tail(&reloc_root->root_list,
1947                                                       &reloc_roots);
1948                                 goto out;
1949                         }
1950                 } else {
1951                         if (!IS_ERR(root)) {
1952                                 if (root->reloc_root == reloc_root) {
1953                                         root->reloc_root = NULL;
1954                                         btrfs_put_root(reloc_root);
1955                                 }
1956                                 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1957                                           &root->state);
1958                                 btrfs_put_root(root);
1959                         }
1960 
1961                         list_del_init(&reloc_root->root_list);
1962                         /* Don't forget to queue this reloc root for cleanup */
1963                         list_add_tail(&reloc_root->reloc_dirty_list,
1964                                       &rc->dirty_subvol_roots);
1965                 }
1966         }
1967 
1968         if (found) {
1969                 found = 0;
1970                 goto again;
1971         }
1972 out:
1973         if (ret) {
1974                 btrfs_handle_fs_error(fs_info, ret, NULL);
1975                 free_reloc_roots(&reloc_roots);
1976 
1977                 /* new reloc root may be added */
1978                 mutex_lock(&fs_info->reloc_mutex);
1979                 list_splice_init(&rc->reloc_roots, &reloc_roots);
1980                 mutex_unlock(&fs_info->reloc_mutex);
1981                 free_reloc_roots(&reloc_roots);
1982         }
1983 
1984         /*
1985          * We used to have
1986          *
1987          * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1988          *
1989          * here, but it's wrong.  If we fail to start the transaction in
1990          * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1991          * have actually been removed from the reloc_root_tree rb tree.  This is
1992          * fine because we're bailing here, and we hold a reference on the root
1993          * for the list that holds it, so these roots will be cleaned up when we
1994          * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1995          * will be cleaned up on unmount.
1996          *
1997          * The remaining nodes will be cleaned up by free_reloc_control.
1998          */
1999 }
2000 
2001 static void free_block_list(struct rb_root *blocks)
2002 {
2003         struct tree_block *block;
2004         struct rb_node *rb_node;
2005         while ((rb_node = rb_first(blocks))) {
2006                 block = rb_entry(rb_node, struct tree_block, rb_node);
2007                 rb_erase(rb_node, blocks);
2008                 kfree(block);
2009         }
2010 }
2011 
2012 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2013                                       struct btrfs_root *reloc_root)
2014 {
2015         struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2016         struct btrfs_root *root;
2017         int ret;
2018 
2019         if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
2020                 return 0;
2021 
2022         root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2023 
2024         /*
2025          * This should succeed, since we can't have a reloc root without having
2026          * already looked up the actual root and created the reloc root for this
2027          * root.
2028          *
2029          * However if there's some sort of corruption where we have a ref to a
2030          * reloc root without a corresponding root this could return ENOENT.
2031          */
2032         if (IS_ERR(root)) {
2033                 ASSERT(0);
2034                 return PTR_ERR(root);
2035         }
2036         if (root->reloc_root != reloc_root) {
2037                 ASSERT(0);
2038                 btrfs_err(fs_info,
2039                           "root %llu has two reloc roots associated with it",
2040                           reloc_root->root_key.offset);
2041                 btrfs_put_root(root);
2042                 return -EUCLEAN;
2043         }
2044         ret = btrfs_record_root_in_trans(trans, root);
2045         btrfs_put_root(root);
2046 
2047         return ret;
2048 }
2049 
2050 static noinline_for_stack
2051 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2052                                      struct reloc_control *rc,
2053                                      struct btrfs_backref_node *node,
2054                                      struct btrfs_backref_edge *edges[])
2055 {
2056         struct btrfs_backref_node *next;
2057         struct btrfs_root *root;
2058         int index = 0;
2059         int ret;
2060 
2061         next = node;
2062         while (1) {
2063                 cond_resched();
2064                 next = walk_up_backref(next, edges, &index);
2065                 root = next->root;
2066 
2067                 /*
2068                  * If there is no root, then our references for this block are
2069                  * incomplete, as we should be able to walk all the way up to a
2070                  * block that is owned by a root.
2071                  *
2072                  * This path is only for SHAREABLE roots, so if we come upon a
2073                  * non-SHAREABLE root then we have backrefs that resolve
2074                  * improperly.
2075                  *
2076                  * Both of these cases indicate file system corruption, or a bug
2077                  * in the backref walking code.
2078                  */
2079                 if (!root) {
2080                         ASSERT(0);
2081                         btrfs_err(trans->fs_info,
2082                 "bytenr %llu doesn't have a backref path ending in a root",
2083                                   node->bytenr);
2084                         return ERR_PTR(-EUCLEAN);
2085                 }
2086                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2087                         ASSERT(0);
2088                         btrfs_err(trans->fs_info,
2089         "bytenr %llu has multiple refs with one ending in a non-shareable root",
2090                                   node->bytenr);
2091                         return ERR_PTR(-EUCLEAN);
2092                 }
2093 
2094                 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
2095                         ret = record_reloc_root_in_trans(trans, root);
2096                         if (ret)
2097                                 return ERR_PTR(ret);
2098                         break;
2099                 }
2100 
2101                 ret = btrfs_record_root_in_trans(trans, root);
2102                 if (ret)
2103                         return ERR_PTR(ret);
2104                 root = root->reloc_root;
2105 
2106                 /*
2107                  * We could have raced with another thread which failed, so
2108                  * root->reloc_root may not be set, return ENOENT in this case.
2109                  */
2110                 if (!root)
2111                         return ERR_PTR(-ENOENT);
2112 
2113                 if (next->new_bytenr != root->node->start) {
2114                         /*
2115                          * We just created the reloc root, so we shouldn't have
2116                          * ->new_bytenr set and this shouldn't be in the changed
2117                          *  list.  If it is then we have multiple roots pointing
2118                          *  at the same bytenr which indicates corruption, or
2119                          *  we've made a mistake in the backref walking code.
2120                          */
2121                         ASSERT(next->new_bytenr == 0);
2122                         ASSERT(list_empty(&next->list));
2123                         if (next->new_bytenr || !list_empty(&next->list)) {
2124                                 btrfs_err(trans->fs_info,
2125         "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2126                                           node->bytenr, next->bytenr);
2127                                 return ERR_PTR(-EUCLEAN);
2128                         }
2129 
2130                         next->new_bytenr = root->node->start;
2131                         btrfs_put_root(next->root);
2132                         next->root = btrfs_grab_root(root);
2133                         ASSERT(next->root);
2134                         list_add_tail(&next->list,
2135                                       &rc->backref_cache.changed);
2136                         mark_block_processed(rc, next);
2137                         break;
2138                 }
2139 
2140                 WARN_ON(1);
2141                 root = NULL;
2142                 next = walk_down_backref(edges, &index);
2143                 if (!next || next->level <= node->level)
2144                         break;
2145         }
2146         if (!root) {
2147                 /*
2148                  * This can happen if there's fs corruption or if there's a bug
2149                  * in the backref lookup code.
2150                  */
2151                 ASSERT(0);
2152                 return ERR_PTR(-ENOENT);
2153         }
2154 
2155         next = node;
2156         /* setup backref node path for btrfs_reloc_cow_block */
2157         while (1) {
2158                 rc->backref_cache.path[next->level] = next;
2159                 if (--index < 0)
2160                         break;
2161                 next = edges[index]->node[UPPER];
2162         }
2163         return root;
2164 }
2165 
2166 /*
2167  * Select a tree root for relocation.
2168  *
2169  * Return NULL if the block is not shareable. We should use do_relocation() in
2170  * this case.
2171  *
2172  * Return a tree root pointer if the block is shareable.
2173  * Return -ENOENT if the block is root of reloc tree.
2174  */
2175 static noinline_for_stack
2176 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2177 {
2178         struct btrfs_backref_node *next;
2179         struct btrfs_root *root;
2180         struct btrfs_root *fs_root = NULL;
2181         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2182         int index = 0;
2183 
2184         next = node;
2185         while (1) {
2186                 cond_resched();
2187                 next = walk_up_backref(next, edges, &index);
2188                 root = next->root;
2189 
2190                 /*
2191                  * This can occur if we have incomplete extent refs leading all
2192                  * the way up a particular path, in this case return -EUCLEAN.
2193                  */
2194                 if (!root)
2195                         return ERR_PTR(-EUCLEAN);
2196 
2197                 /* No other choice for non-shareable tree */
2198                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2199                         return root;
2200 
2201                 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2202                         fs_root = root;
2203 
2204                 if (next != node)
2205                         return NULL;
2206 
2207                 next = walk_down_backref(edges, &index);
2208                 if (!next || next->level <= node->level)
2209                         break;
2210         }
2211 
2212         if (!fs_root)
2213                 return ERR_PTR(-ENOENT);
2214         return fs_root;
2215 }
2216 
2217 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2218                                                   struct btrfs_backref_node *node)
2219 {
2220         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2221         struct btrfs_backref_node *next = node;
2222         struct btrfs_backref_edge *edge;
2223         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2224         u64 num_bytes = 0;
2225         int index = 0;
2226 
2227         BUG_ON(node->processed);
2228 
2229         while (next) {
2230                 cond_resched();
2231                 while (1) {
2232                         if (next->processed)
2233                                 break;
2234 
2235                         num_bytes += fs_info->nodesize;
2236 
2237                         if (list_empty(&next->upper))
2238                                 break;
2239 
2240                         edge = list_entry(next->upper.next,
2241                                         struct btrfs_backref_edge, list[LOWER]);
2242                         edges[index++] = edge;
2243                         next = edge->node[UPPER];
2244                 }
2245                 next = walk_down_backref(edges, &index);
2246         }
2247         return num_bytes;
2248 }
2249 
2250 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2251                                   struct reloc_control *rc,
2252                                   struct btrfs_backref_node *node)
2253 {
2254         struct btrfs_root *root = rc->extent_root;
2255         struct btrfs_fs_info *fs_info = root->fs_info;
2256         u64 num_bytes;
2257         int ret;
2258         u64 tmp;
2259 
2260         num_bytes = calcu_metadata_size(rc, node) * 2;
2261 
2262         trans->block_rsv = rc->block_rsv;
2263         rc->reserved_bytes += num_bytes;
2264 
2265         /*
2266          * We are under a transaction here so we can only do limited flushing.
2267          * If we get an enospc just kick back -EAGAIN so we know to drop the
2268          * transaction and try to refill when we can flush all the things.
2269          */
2270         ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2271                                      BTRFS_RESERVE_FLUSH_LIMIT);
2272         if (ret) {
2273                 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2274                 while (tmp <= rc->reserved_bytes)
2275                         tmp <<= 1;
2276                 /*
2277                  * only one thread can access block_rsv at this point,
2278                  * so we don't need hold lock to protect block_rsv.
2279                  * we expand more reservation size here to allow enough
2280                  * space for relocation and we will return earlier in
2281                  * enospc case.
2282                  */
2283                 rc->block_rsv->size = tmp + fs_info->nodesize *
2284                                       RELOCATION_RESERVED_NODES;
2285                 return -EAGAIN;
2286         }
2287 
2288         return 0;
2289 }
2290 
2291 /*
2292  * relocate a block tree, and then update pointers in upper level
2293  * blocks that reference the block to point to the new location.
2294  *
2295  * if called by link_to_upper, the block has already been relocated.
2296  * in that case this function just updates pointers.
2297  */
2298 static int do_relocation(struct btrfs_trans_handle *trans,
2299                          struct reloc_control *rc,
2300                          struct btrfs_backref_node *node,
2301                          struct btrfs_key *key,
2302                          struct btrfs_path *path, int lowest)
2303 {
2304         struct btrfs_backref_node *upper;
2305         struct btrfs_backref_edge *edge;
2306         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2307         struct btrfs_root *root;
2308         struct extent_buffer *eb;
2309         u32 blocksize;
2310         u64 bytenr;
2311         int slot;
2312         int ret = 0;
2313 
2314         /*
2315          * If we are lowest then this is the first time we're processing this
2316          * block, and thus shouldn't have an eb associated with it yet.
2317          */
2318         ASSERT(!lowest || !node->eb);
2319 
2320         path->lowest_level = node->level + 1;
2321         rc->backref_cache.path[node->level] = node;
2322         list_for_each_entry(edge, &node->upper, list[LOWER]) {
2323                 cond_resched();
2324 
2325                 upper = edge->node[UPPER];
2326                 root = select_reloc_root(trans, rc, upper, edges);
2327                 if (IS_ERR(root)) {
2328                         ret = PTR_ERR(root);
2329                         goto next;
2330                 }
2331 
2332                 if (upper->eb && !upper->locked) {
2333                         if (!lowest) {
2334                                 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2335                                 if (ret < 0)
2336                                         goto next;
2337                                 BUG_ON(ret);
2338                                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2339                                 if (node->eb->start == bytenr)
2340                                         goto next;
2341                         }
2342                         btrfs_backref_drop_node_buffer(upper);
2343                 }
2344 
2345                 if (!upper->eb) {
2346                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2347                         if (ret) {
2348                                 if (ret > 0)
2349                                         ret = -ENOENT;
2350 
2351                                 btrfs_release_path(path);
2352                                 break;
2353                         }
2354 
2355                         if (!upper->eb) {
2356                                 upper->eb = path->nodes[upper->level];
2357                                 path->nodes[upper->level] = NULL;
2358                         } else {
2359                                 BUG_ON(upper->eb != path->nodes[upper->level]);
2360                         }
2361 
2362                         upper->locked = 1;
2363                         path->locks[upper->level] = 0;
2364 
2365                         slot = path->slots[upper->level];
2366                         btrfs_release_path(path);
2367                 } else {
2368                         ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2369                         if (ret < 0)
2370                                 goto next;
2371                         BUG_ON(ret);
2372                 }
2373 
2374                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2375                 if (lowest) {
2376                         if (bytenr != node->bytenr) {
2377                                 btrfs_err(root->fs_info,
2378                 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2379                                           bytenr, node->bytenr, slot,
2380                                           upper->eb->start);
2381                                 ret = -EIO;
2382                                 goto next;
2383                         }
2384                 } else {
2385                         if (node->eb->start == bytenr)
2386                                 goto next;
2387                 }
2388 
2389                 blocksize = root->fs_info->nodesize;
2390                 eb = btrfs_read_node_slot(upper->eb, slot);
2391                 if (IS_ERR(eb)) {
2392                         ret = PTR_ERR(eb);
2393                         goto next;
2394                 }
2395                 btrfs_tree_lock(eb);
2396 
2397                 if (!node->eb) {
2398                         ret = btrfs_cow_block(trans, root, eb, upper->eb,
2399                                               slot, &eb, BTRFS_NESTING_COW);
2400                         btrfs_tree_unlock(eb);
2401                         free_extent_buffer(eb);
2402                         if (ret < 0)
2403                                 goto next;
2404                         /*
2405                          * We've just COWed this block, it should have updated
2406                          * the correct backref node entry.
2407                          */
2408                         ASSERT(node->eb == eb);
2409                 } else {
2410                         struct btrfs_ref ref = {
2411                                 .action = BTRFS_ADD_DELAYED_REF,
2412                                 .bytenr = node->eb->start,
2413                                 .num_bytes = blocksize,
2414                                 .parent = upper->eb->start,
2415                                 .owning_root = btrfs_header_owner(upper->eb),
2416                                 .ref_root = btrfs_header_owner(upper->eb),
2417                         };
2418 
2419                         btrfs_set_node_blockptr(upper->eb, slot,
2420                                                 node->eb->start);
2421                         btrfs_set_node_ptr_generation(upper->eb, slot,
2422                                                       trans->transid);
2423                         btrfs_mark_buffer_dirty(trans, upper->eb);
2424 
2425                         btrfs_init_tree_ref(&ref, node->level,
2426                                             btrfs_root_id(root), false);
2427                         ret = btrfs_inc_extent_ref(trans, &ref);
2428                         if (!ret)
2429                                 ret = btrfs_drop_subtree(trans, root, eb,
2430                                                          upper->eb);
2431                         if (ret)
2432                                 btrfs_abort_transaction(trans, ret);
2433                 }
2434 next:
2435                 if (!upper->pending)
2436                         btrfs_backref_drop_node_buffer(upper);
2437                 else
2438                         btrfs_backref_unlock_node_buffer(upper);
2439                 if (ret)
2440                         break;
2441         }
2442 
2443         if (!ret && node->pending) {
2444                 btrfs_backref_drop_node_buffer(node);
2445                 list_move_tail(&node->list, &rc->backref_cache.changed);
2446                 node->pending = 0;
2447         }
2448 
2449         path->lowest_level = 0;
2450 
2451         /*
2452          * We should have allocated all of our space in the block rsv and thus
2453          * shouldn't ENOSPC.
2454          */
2455         ASSERT(ret != -ENOSPC);
2456         return ret;
2457 }
2458 
2459 static int link_to_upper(struct btrfs_trans_handle *trans,
2460                          struct reloc_control *rc,
2461                          struct btrfs_backref_node *node,
2462                          struct btrfs_path *path)
2463 {
2464         struct btrfs_key key;
2465 
2466         btrfs_node_key_to_cpu(node->eb, &key, 0);
2467         return do_relocation(trans, rc, node, &key, path, 0);
2468 }
2469 
2470 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2471                                 struct reloc_control *rc,
2472                                 struct btrfs_path *path, int err)
2473 {
2474         LIST_HEAD(list);
2475         struct btrfs_backref_cache *cache = &rc->backref_cache;
2476         struct btrfs_backref_node *node;
2477         int level;
2478         int ret;
2479 
2480         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2481                 while (!list_empty(&cache->pending[level])) {
2482                         node = list_entry(cache->pending[level].next,
2483                                           struct btrfs_backref_node, list);
2484                         list_move_tail(&node->list, &list);
2485                         BUG_ON(!node->pending);
2486 
2487                         if (!err) {
2488                                 ret = link_to_upper(trans, rc, node, path);
2489                                 if (ret < 0)
2490                                         err = ret;
2491                         }
2492                 }
2493                 list_splice_init(&list, &cache->pending[level]);
2494         }
2495         return err;
2496 }
2497 
2498 /*
2499  * mark a block and all blocks directly/indirectly reference the block
2500  * as processed.
2501  */
2502 static void update_processed_blocks(struct reloc_control *rc,
2503                                     struct btrfs_backref_node *node)
2504 {
2505         struct btrfs_backref_node *next = node;
2506         struct btrfs_backref_edge *edge;
2507         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2508         int index = 0;
2509 
2510         while (next) {
2511                 cond_resched();
2512                 while (1) {
2513                         if (next->processed)
2514                                 break;
2515 
2516                         mark_block_processed(rc, next);
2517 
2518                         if (list_empty(&next->upper))
2519                                 break;
2520 
2521                         edge = list_entry(next->upper.next,
2522                                         struct btrfs_backref_edge, list[LOWER]);
2523                         edges[index++] = edge;
2524                         next = edge->node[UPPER];
2525                 }
2526                 next = walk_down_backref(edges, &index);
2527         }
2528 }
2529 
2530 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2531 {
2532         u32 blocksize = rc->extent_root->fs_info->nodesize;
2533 
2534         if (test_range_bit(&rc->processed_blocks, bytenr,
2535                            bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2536                 return 1;
2537         return 0;
2538 }
2539 
2540 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2541                               struct tree_block *block)
2542 {
2543         struct btrfs_tree_parent_check check = {
2544                 .level = block->level,
2545                 .owner_root = block->owner,
2546                 .transid = block->key.offset
2547         };
2548         struct extent_buffer *eb;
2549 
2550         eb = read_tree_block(fs_info, block->bytenr, &check);
2551         if (IS_ERR(eb))
2552                 return PTR_ERR(eb);
2553         if (!extent_buffer_uptodate(eb)) {
2554                 free_extent_buffer(eb);
2555                 return -EIO;
2556         }
2557         if (block->level == 0)
2558                 btrfs_item_key_to_cpu(eb, &block->key, 0);
2559         else
2560                 btrfs_node_key_to_cpu(eb, &block->key, 0);
2561         free_extent_buffer(eb);
2562         block->key_ready = true;
2563         return 0;
2564 }
2565 
2566 /*
2567  * helper function to relocate a tree block
2568  */
2569 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2570                                 struct reloc_control *rc,
2571                                 struct btrfs_backref_node *node,
2572                                 struct btrfs_key *key,
2573                                 struct btrfs_path *path)
2574 {
2575         struct btrfs_root *root;
2576         int ret = 0;
2577 
2578         if (!node)
2579                 return 0;
2580 
2581         /*
2582          * If we fail here we want to drop our backref_node because we are going
2583          * to start over and regenerate the tree for it.
2584          */
2585         ret = reserve_metadata_space(trans, rc, node);
2586         if (ret)
2587                 goto out;
2588 
2589         BUG_ON(node->processed);
2590         root = select_one_root(node);
2591         if (IS_ERR(root)) {
2592                 ret = PTR_ERR(root);
2593 
2594                 /* See explanation in select_one_root for the -EUCLEAN case. */
2595                 ASSERT(ret == -ENOENT);
2596                 if (ret == -ENOENT) {
2597                         ret = 0;
2598                         update_processed_blocks(rc, node);
2599                 }
2600                 goto out;
2601         }
2602 
2603         if (root) {
2604                 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2605                         /*
2606                          * This block was the root block of a root, and this is
2607                          * the first time we're processing the block and thus it
2608                          * should not have had the ->new_bytenr modified and
2609                          * should have not been included on the changed list.
2610                          *
2611                          * However in the case of corruption we could have
2612                          * multiple refs pointing to the same block improperly,
2613                          * and thus we would trip over these checks.  ASSERT()
2614                          * for the developer case, because it could indicate a
2615                          * bug in the backref code, however error out for a
2616                          * normal user in the case of corruption.
2617                          */
2618                         ASSERT(node->new_bytenr == 0);
2619                         ASSERT(list_empty(&node->list));
2620                         if (node->new_bytenr || !list_empty(&node->list)) {
2621                                 btrfs_err(root->fs_info,
2622                                   "bytenr %llu has improper references to it",
2623                                           node->bytenr);
2624                                 ret = -EUCLEAN;
2625                                 goto out;
2626                         }
2627                         ret = btrfs_record_root_in_trans(trans, root);
2628                         if (ret)
2629                                 goto out;
2630                         /*
2631                          * Another thread could have failed, need to check if we
2632                          * have reloc_root actually set.
2633                          */
2634                         if (!root->reloc_root) {
2635                                 ret = -ENOENT;
2636                                 goto out;
2637                         }
2638                         root = root->reloc_root;
2639                         node->new_bytenr = root->node->start;
2640                         btrfs_put_root(node->root);
2641                         node->root = btrfs_grab_root(root);
2642                         ASSERT(node->root);
2643                         list_add_tail(&node->list, &rc->backref_cache.changed);
2644                 } else {
2645                         path->lowest_level = node->level;
2646                         if (root == root->fs_info->chunk_root)
2647                                 btrfs_reserve_chunk_metadata(trans, false);
2648                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2649                         btrfs_release_path(path);
2650                         if (root == root->fs_info->chunk_root)
2651                                 btrfs_trans_release_chunk_metadata(trans);
2652                         if (ret > 0)
2653                                 ret = 0;
2654                 }
2655                 if (!ret)
2656                         update_processed_blocks(rc, node);
2657         } else {
2658                 ret = do_relocation(trans, rc, node, key, path, 1);
2659         }
2660 out:
2661         if (ret || node->level == 0 || node->cowonly)
2662                 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2663         return ret;
2664 }
2665 
2666 /*
2667  * relocate a list of blocks
2668  */
2669 static noinline_for_stack
2670 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2671                          struct reloc_control *rc, struct rb_root *blocks)
2672 {
2673         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2674         struct btrfs_backref_node *node;
2675         struct btrfs_path *path;
2676         struct tree_block *block;
2677         struct tree_block *next;
2678         int ret = 0;
2679 
2680         path = btrfs_alloc_path();
2681         if (!path) {
2682                 ret = -ENOMEM;
2683                 goto out_free_blocks;
2684         }
2685 
2686         /* Kick in readahead for tree blocks with missing keys */
2687         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2688                 if (!block->key_ready)
2689                         btrfs_readahead_tree_block(fs_info, block->bytenr,
2690                                                    block->owner, 0,
2691                                                    block->level);
2692         }
2693 
2694         /* Get first keys */
2695         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2696                 if (!block->key_ready) {
2697                         ret = get_tree_block_key(fs_info, block);
2698                         if (ret)
2699                                 goto out_free_path;
2700                 }
2701         }
2702 
2703         /* Do tree relocation */
2704         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2705                 node = build_backref_tree(trans, rc, &block->key,
2706                                           block->level, block->bytenr);
2707                 if (IS_ERR(node)) {
2708                         ret = PTR_ERR(node);
2709                         goto out;
2710                 }
2711 
2712                 ret = relocate_tree_block(trans, rc, node, &block->key,
2713                                           path);
2714                 if (ret < 0)
2715                         break;
2716         }
2717 out:
2718         ret = finish_pending_nodes(trans, rc, path, ret);
2719 
2720 out_free_path:
2721         btrfs_free_path(path);
2722 out_free_blocks:
2723         free_block_list(blocks);
2724         return ret;
2725 }
2726 
2727 static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
2728 {
2729         const struct file_extent_cluster *cluster = &rc->cluster;
2730         struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2731         u64 alloc_hint = 0;
2732         u64 start;
2733         u64 end;
2734         u64 offset = inode->reloc_block_group_start;
2735         u64 num_bytes;
2736         int nr;
2737         int ret = 0;
2738         u64 i_size = i_size_read(&inode->vfs_inode);
2739         u64 prealloc_start = cluster->start - offset;
2740         u64 prealloc_end = cluster->end - offset;
2741         u64 cur_offset = prealloc_start;
2742 
2743         /*
2744          * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2745          * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2746          * btrfs_do_readpage() call of previously relocated file cluster.
2747          *
2748          * If the current cluster starts in the above range, btrfs_do_readpage()
2749          * will skip the read, and relocate_one_folio() will later writeback
2750          * the padding zeros as new data, causing data corruption.
2751          *
2752          * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2753          */
2754         if (!PAGE_ALIGNED(i_size)) {
2755                 struct address_space *mapping = inode->vfs_inode.i_mapping;
2756                 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2757                 const u32 sectorsize = fs_info->sectorsize;
2758                 struct folio *folio;
2759 
2760                 ASSERT(sectorsize < PAGE_SIZE);
2761                 ASSERT(IS_ALIGNED(i_size, sectorsize));
2762 
2763                 /*
2764                  * Subpage can't handle page with DIRTY but without UPTODATE
2765                  * bit as it can lead to the following deadlock:
2766                  *
2767                  * btrfs_read_folio()
2768                  * | Page already *locked*
2769                  * |- btrfs_lock_and_flush_ordered_range()
2770                  *    |- btrfs_start_ordered_extent()
2771                  *       |- extent_write_cache_pages()
2772                  *          |- lock_page()
2773                  *             We try to lock the page we already hold.
2774                  *
2775                  * Here we just writeback the whole data reloc inode, so that
2776                  * we will be ensured to have no dirty range in the page, and
2777                  * are safe to clear the uptodate bits.
2778                  *
2779                  * This shouldn't cause too much overhead, as we need to write
2780                  * the data back anyway.
2781                  */
2782                 ret = filemap_write_and_wait(mapping);
2783                 if (ret < 0)
2784                         return ret;
2785 
2786                 clear_extent_bits(&inode->io_tree, i_size,
2787                                   round_up(i_size, PAGE_SIZE) - 1,
2788                                   EXTENT_UPTODATE);
2789                 folio = filemap_lock_folio(mapping, i_size >> PAGE_SHIFT);
2790                 /*
2791                  * If page is freed we don't need to do anything then, as we
2792                  * will re-read the whole page anyway.
2793                  */
2794                 if (!IS_ERR(folio)) {
2795                         btrfs_subpage_clear_uptodate(fs_info, folio, i_size,
2796                                         round_up(i_size, PAGE_SIZE) - i_size);
2797                         folio_unlock(folio);
2798                         folio_put(folio);
2799                 }
2800         }
2801 
2802         BUG_ON(cluster->start != cluster->boundary[0]);
2803         ret = btrfs_alloc_data_chunk_ondemand(inode,
2804                                               prealloc_end + 1 - prealloc_start);
2805         if (ret)
2806                 return ret;
2807 
2808         btrfs_inode_lock(inode, 0);
2809         for (nr = 0; nr < cluster->nr; nr++) {
2810                 struct extent_state *cached_state = NULL;
2811 
2812                 start = cluster->boundary[nr] - offset;
2813                 if (nr + 1 < cluster->nr)
2814                         end = cluster->boundary[nr + 1] - 1 - offset;
2815                 else
2816                         end = cluster->end - offset;
2817 
2818                 lock_extent(&inode->io_tree, start, end, &cached_state);
2819                 num_bytes = end + 1 - start;
2820                 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2821                                                 num_bytes, num_bytes,
2822                                                 end + 1, &alloc_hint);
2823                 cur_offset = end + 1;
2824                 unlock_extent(&inode->io_tree, start, end, &cached_state);
2825                 if (ret)
2826                         break;
2827         }
2828         btrfs_inode_unlock(inode, 0);
2829 
2830         if (cur_offset < prealloc_end)
2831                 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2832                                                prealloc_end + 1 - cur_offset);
2833         return ret;
2834 }
2835 
2836 static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
2837 {
2838         struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2839         struct extent_map *em;
2840         struct extent_state *cached_state = NULL;
2841         u64 offset = inode->reloc_block_group_start;
2842         u64 start = rc->cluster.start - offset;
2843         u64 end = rc->cluster.end - offset;
2844         int ret = 0;
2845 
2846         em = alloc_extent_map();
2847         if (!em)
2848                 return -ENOMEM;
2849 
2850         em->start = start;
2851         em->len = end + 1 - start;
2852         em->disk_bytenr = rc->cluster.start;
2853         em->disk_num_bytes = em->len;
2854         em->ram_bytes = em->len;
2855         em->flags |= EXTENT_FLAG_PINNED;
2856 
2857         lock_extent(&inode->io_tree, start, end, &cached_state);
2858         ret = btrfs_replace_extent_map_range(inode, em, false);
2859         unlock_extent(&inode->io_tree, start, end, &cached_state);
2860         free_extent_map(em);
2861 
2862         return ret;
2863 }
2864 
2865 /*
2866  * Allow error injection to test balance/relocation cancellation
2867  */
2868 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2869 {
2870         return atomic_read(&fs_info->balance_cancel_req) ||
2871                 atomic_read(&fs_info->reloc_cancel_req) ||
2872                 fatal_signal_pending(current);
2873 }
2874 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2875 
2876 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2877                                     int cluster_nr)
2878 {
2879         /* Last extent, use cluster end directly */
2880         if (cluster_nr >= cluster->nr - 1)
2881                 return cluster->end;
2882 
2883         /* Use next boundary start*/
2884         return cluster->boundary[cluster_nr + 1] - 1;
2885 }
2886 
2887 static int relocate_one_folio(struct reloc_control *rc,
2888                               struct file_ra_state *ra,
2889                               int *cluster_nr, unsigned long index)
2890 {
2891         const struct file_extent_cluster *cluster = &rc->cluster;
2892         struct inode *inode = rc->data_inode;
2893         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2894         u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2895         const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2896         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2897         struct folio *folio;
2898         u64 folio_start;
2899         u64 folio_end;
2900         u64 cur;
2901         int ret;
2902         const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
2903 
2904         ASSERT(index <= last_index);
2905         folio = filemap_lock_folio(inode->i_mapping, index);
2906         if (IS_ERR(folio)) {
2907 
2908                 /*
2909                  * On relocation we're doing readahead on the relocation inode,
2910                  * but if the filesystem is backed by a RAID stripe tree we can
2911                  * get ENOENT (e.g. due to preallocated extents not being
2912                  * mapped in the RST) from the lookup.
2913                  *
2914                  * But readahead doesn't handle the error and submits invalid
2915                  * reads to the device, causing a assertion failures.
2916                  */
2917                 if (!use_rst)
2918                         page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2919                                                   index, last_index + 1 - index);
2920                 folio = __filemap_get_folio(inode->i_mapping, index,
2921                                             FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
2922                                             mask);
2923                 if (IS_ERR(folio))
2924                         return PTR_ERR(folio);
2925         }
2926 
2927         WARN_ON(folio_order(folio));
2928 
2929         if (folio_test_readahead(folio) && !use_rst)
2930                 page_cache_async_readahead(inode->i_mapping, ra, NULL,
2931                                            folio, last_index + 1 - index);
2932 
2933         if (!folio_test_uptodate(folio)) {
2934                 btrfs_read_folio(NULL, folio);
2935                 folio_lock(folio);
2936                 if (!folio_test_uptodate(folio)) {
2937                         ret = -EIO;
2938                         goto release_folio;
2939                 }
2940         }
2941 
2942         /*
2943          * We could have lost folio private when we dropped the lock to read the
2944          * folio above, make sure we set_page_extent_mapped here so we have any
2945          * of the subpage blocksize stuff we need in place.
2946          */
2947         ret = set_folio_extent_mapped(folio);
2948         if (ret < 0)
2949                 goto release_folio;
2950 
2951         folio_start = folio_pos(folio);
2952         folio_end = folio_start + PAGE_SIZE - 1;
2953 
2954         /*
2955          * Start from the cluster, as for subpage case, the cluster can start
2956          * inside the folio.
2957          */
2958         cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
2959         while (cur <= folio_end) {
2960                 struct extent_state *cached_state = NULL;
2961                 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2962                 u64 extent_end = get_cluster_boundary_end(cluster,
2963                                                 *cluster_nr) - offset;
2964                 u64 clamped_start = max(folio_start, extent_start);
2965                 u64 clamped_end = min(folio_end, extent_end);
2966                 u32 clamped_len = clamped_end + 1 - clamped_start;
2967 
2968                 /* Reserve metadata for this range */
2969                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2970                                                       clamped_len, clamped_len,
2971                                                       false);
2972                 if (ret)
2973                         goto release_folio;
2974 
2975                 /* Mark the range delalloc and dirty for later writeback */
2976                 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2977                             &cached_state);
2978                 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
2979                                                 clamped_end, 0, &cached_state);
2980                 if (ret) {
2981                         clear_extent_bit(&BTRFS_I(inode)->io_tree,
2982                                          clamped_start, clamped_end,
2983                                          EXTENT_LOCKED | EXTENT_BOUNDARY,
2984                                          &cached_state);
2985                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
2986                                                         clamped_len, true);
2987                         btrfs_delalloc_release_extents(BTRFS_I(inode),
2988                                                        clamped_len);
2989                         goto release_folio;
2990                 }
2991                 btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
2992 
2993                 /*
2994                  * Set the boundary if it's inside the folio.
2995                  * Data relocation requires the destination extents to have the
2996                  * same size as the source.
2997                  * EXTENT_BOUNDARY bit prevents current extent from being merged
2998                  * with previous extent.
2999                  */
3000                 if (in_range(cluster->boundary[*cluster_nr] - offset, folio_start, PAGE_SIZE)) {
3001                         u64 boundary_start = cluster->boundary[*cluster_nr] -
3002                                                 offset;
3003                         u64 boundary_end = boundary_start +
3004                                            fs_info->sectorsize - 1;
3005 
3006                         set_extent_bit(&BTRFS_I(inode)->io_tree,
3007                                        boundary_start, boundary_end,
3008                                        EXTENT_BOUNDARY, NULL);
3009                 }
3010                 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3011                               &cached_state);
3012                 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3013                 cur += clamped_len;
3014 
3015                 /* Crossed extent end, go to next extent */
3016                 if (cur >= extent_end) {
3017                         (*cluster_nr)++;
3018                         /* Just finished the last extent of the cluster, exit. */
3019                         if (*cluster_nr >= cluster->nr)
3020                                 break;
3021                 }
3022         }
3023         folio_unlock(folio);
3024         folio_put(folio);
3025 
3026         balance_dirty_pages_ratelimited(inode->i_mapping);
3027         btrfs_throttle(fs_info);
3028         if (btrfs_should_cancel_balance(fs_info))
3029                 ret = -ECANCELED;
3030         return ret;
3031 
3032 release_folio:
3033         folio_unlock(folio);
3034         folio_put(folio);
3035         return ret;
3036 }
3037 
3038 static int relocate_file_extent_cluster(struct reloc_control *rc)
3039 {
3040         struct inode *inode = rc->data_inode;
3041         const struct file_extent_cluster *cluster = &rc->cluster;
3042         u64 offset = BTRFS_I(inode)->reloc_block_group_start;
3043         unsigned long index;
3044         unsigned long last_index;
3045         struct file_ra_state *ra;
3046         int cluster_nr = 0;
3047         int ret = 0;
3048 
3049         if (!cluster->nr)
3050                 return 0;
3051 
3052         ra = kzalloc(sizeof(*ra), GFP_NOFS);
3053         if (!ra)
3054                 return -ENOMEM;
3055 
3056         ret = prealloc_file_extent_cluster(rc);
3057         if (ret)
3058                 goto out;
3059 
3060         file_ra_state_init(ra, inode->i_mapping);
3061 
3062         ret = setup_relocation_extent_mapping(rc);
3063         if (ret)
3064                 goto out;
3065 
3066         last_index = (cluster->end - offset) >> PAGE_SHIFT;
3067         for (index = (cluster->start - offset) >> PAGE_SHIFT;
3068              index <= last_index && !ret; index++)
3069                 ret = relocate_one_folio(rc, ra, &cluster_nr, index);
3070         if (ret == 0)
3071                 WARN_ON(cluster_nr != cluster->nr);
3072 out:
3073         kfree(ra);
3074         return ret;
3075 }
3076 
3077 static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
3078                                            const struct btrfs_key *extent_key)
3079 {
3080         struct inode *inode = rc->data_inode;
3081         struct file_extent_cluster *cluster = &rc->cluster;
3082         int ret;
3083         struct btrfs_root *root = BTRFS_I(inode)->root;
3084 
3085         if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3086                 ret = relocate_file_extent_cluster(rc);
3087                 if (ret)
3088                         return ret;
3089                 cluster->nr = 0;
3090         }
3091 
3092         /*
3093          * Under simple quotas, we set root->relocation_src_root when we find
3094          * the extent. If adjacent extents have different owners, we can't merge
3095          * them while relocating. Handle this by storing the owning root that
3096          * started a cluster and if we see an extent from a different root break
3097          * cluster formation (just like the above case of non-adjacent extents).
3098          *
3099          * Without simple quotas, relocation_src_root is always 0, so we should
3100          * never see a mismatch, and it should have no effect on relocation
3101          * clusters.
3102          */
3103         if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3104                 u64 tmp = root->relocation_src_root;
3105 
3106                 /*
3107                  * root->relocation_src_root is the state that actually affects
3108                  * the preallocation we do here, so set it to the root owning
3109                  * the cluster we need to relocate.
3110                  */
3111                 root->relocation_src_root = cluster->owning_root;
3112                 ret = relocate_file_extent_cluster(rc);
3113                 if (ret)
3114                         return ret;
3115                 cluster->nr = 0;
3116                 /* And reset it back for the current extent's owning root. */
3117                 root->relocation_src_root = tmp;
3118         }
3119 
3120         if (!cluster->nr) {
3121                 cluster->start = extent_key->objectid;
3122                 cluster->owning_root = root->relocation_src_root;
3123         }
3124         else
3125                 BUG_ON(cluster->nr >= MAX_EXTENTS);
3126         cluster->end = extent_key->objectid + extent_key->offset - 1;
3127         cluster->boundary[cluster->nr] = extent_key->objectid;
3128         cluster->nr++;
3129 
3130         if (cluster->nr >= MAX_EXTENTS) {
3131                 ret = relocate_file_extent_cluster(rc);
3132                 if (ret)
3133                         return ret;
3134                 cluster->nr = 0;
3135         }
3136         return 0;
3137 }
3138 
3139 /*
3140  * helper to add a tree block to the list.
3141  * the major work is getting the generation and level of the block
3142  */
3143 static int add_tree_block(struct reloc_control *rc,
3144                           const struct btrfs_key *extent_key,
3145                           struct btrfs_path *path,
3146                           struct rb_root *blocks)
3147 {
3148         struct extent_buffer *eb;
3149         struct btrfs_extent_item *ei;
3150         struct btrfs_tree_block_info *bi;
3151         struct tree_block *block;
3152         struct rb_node *rb_node;
3153         u32 item_size;
3154         int level = -1;
3155         u64 generation;
3156         u64 owner = 0;
3157 
3158         eb =  path->nodes[0];
3159         item_size = btrfs_item_size(eb, path->slots[0]);
3160 
3161         if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3162             item_size >= sizeof(*ei) + sizeof(*bi)) {
3163                 unsigned long ptr = 0, end;
3164 
3165                 ei = btrfs_item_ptr(eb, path->slots[0],
3166                                 struct btrfs_extent_item);
3167                 end = (unsigned long)ei + item_size;
3168                 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3169                         bi = (struct btrfs_tree_block_info *)(ei + 1);
3170                         level = btrfs_tree_block_level(eb, bi);
3171                         ptr = (unsigned long)(bi + 1);
3172                 } else {
3173                         level = (int)extent_key->offset;
3174                         ptr = (unsigned long)(ei + 1);
3175                 }
3176                 generation = btrfs_extent_generation(eb, ei);
3177 
3178                 /*
3179                  * We're reading random blocks without knowing their owner ahead
3180                  * of time.  This is ok most of the time, as all reloc roots and
3181                  * fs roots have the same lock type.  However normal trees do
3182                  * not, and the only way to know ahead of time is to read the
3183                  * inline ref offset.  We know it's an fs root if
3184                  *
3185                  * 1. There's more than one ref.
3186                  * 2. There's a SHARED_DATA_REF_KEY set.
3187                  * 3. FULL_BACKREF is set on the flags.
3188                  *
3189                  * Otherwise it's safe to assume that the ref offset == the
3190                  * owner of this block, so we can use that when calling
3191                  * read_tree_block.
3192                  */
3193                 if (btrfs_extent_refs(eb, ei) == 1 &&
3194                     !(btrfs_extent_flags(eb, ei) &
3195                       BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3196                     ptr < end) {
3197                         struct btrfs_extent_inline_ref *iref;
3198                         int type;
3199 
3200                         iref = (struct btrfs_extent_inline_ref *)ptr;
3201                         type = btrfs_get_extent_inline_ref_type(eb, iref,
3202                                                         BTRFS_REF_TYPE_BLOCK);
3203                         if (type == BTRFS_REF_TYPE_INVALID)
3204                                 return -EINVAL;
3205                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
3206                                 owner = btrfs_extent_inline_ref_offset(eb, iref);
3207                 }
3208         } else {
3209                 btrfs_print_leaf(eb);
3210                 btrfs_err(rc->block_group->fs_info,
3211                           "unrecognized tree backref at tree block %llu slot %u",
3212                           eb->start, path->slots[0]);
3213                 btrfs_release_path(path);
3214                 return -EUCLEAN;
3215         }
3216 
3217         btrfs_release_path(path);
3218 
3219         BUG_ON(level == -1);
3220 
3221         block = kmalloc(sizeof(*block), GFP_NOFS);
3222         if (!block)
3223                 return -ENOMEM;
3224 
3225         block->bytenr = extent_key->objectid;
3226         block->key.objectid = rc->extent_root->fs_info->nodesize;
3227         block->key.offset = generation;
3228         block->level = level;
3229         block->key_ready = false;
3230         block->owner = owner;
3231 
3232         rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3233         if (rb_node)
3234                 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3235                                     -EEXIST);
3236 
3237         return 0;
3238 }
3239 
3240 /*
3241  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3242  */
3243 static int __add_tree_block(struct reloc_control *rc,
3244                             u64 bytenr, u32 blocksize,
3245                             struct rb_root *blocks)
3246 {
3247         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3248         struct btrfs_path *path;
3249         struct btrfs_key key;
3250         int ret;
3251         bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3252 
3253         if (tree_block_processed(bytenr, rc))
3254                 return 0;
3255 
3256         if (rb_simple_search(blocks, bytenr))
3257                 return 0;
3258 
3259         path = btrfs_alloc_path();
3260         if (!path)
3261                 return -ENOMEM;
3262 again:
3263         key.objectid = bytenr;
3264         if (skinny) {
3265                 key.type = BTRFS_METADATA_ITEM_KEY;
3266                 key.offset = (u64)-1;
3267         } else {
3268                 key.type = BTRFS_EXTENT_ITEM_KEY;
3269                 key.offset = blocksize;
3270         }
3271 
3272         path->search_commit_root = 1;
3273         path->skip_locking = 1;
3274         ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3275         if (ret < 0)
3276                 goto out;
3277 
3278         if (ret > 0 && skinny) {
3279                 if (path->slots[0]) {
3280                         path->slots[0]--;
3281                         btrfs_item_key_to_cpu(path->nodes[0], &key,
3282                                               path->slots[0]);
3283                         if (key.objectid == bytenr &&
3284                             (key.type == BTRFS_METADATA_ITEM_KEY ||
3285                              (key.type == BTRFS_EXTENT_ITEM_KEY &&
3286                               key.offset == blocksize)))
3287                                 ret = 0;
3288                 }
3289 
3290                 if (ret) {
3291                         skinny = false;
3292                         btrfs_release_path(path);
3293                         goto again;
3294                 }
3295         }
3296         if (ret) {
3297                 ASSERT(ret == 1);
3298                 btrfs_print_leaf(path->nodes[0]);
3299                 btrfs_err(fs_info,
3300              "tree block extent item (%llu) is not found in extent tree",
3301                      bytenr);
3302                 WARN_ON(1);
3303                 ret = -EINVAL;
3304                 goto out;
3305         }
3306 
3307         ret = add_tree_block(rc, &key, path, blocks);
3308 out:
3309         btrfs_free_path(path);
3310         return ret;
3311 }
3312 
3313 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3314                                     struct btrfs_block_group *block_group,
3315                                     struct inode *inode,
3316                                     u64 ino)
3317 {
3318         struct btrfs_root *root = fs_info->tree_root;
3319         struct btrfs_trans_handle *trans;
3320         int ret = 0;
3321 
3322         if (inode)
3323                 goto truncate;
3324 
3325         inode = btrfs_iget(ino, root);
3326         if (IS_ERR(inode))
3327                 return -ENOENT;
3328 
3329 truncate:
3330         ret = btrfs_check_trunc_cache_free_space(fs_info,
3331                                                  &fs_info->global_block_rsv);
3332         if (ret)
3333                 goto out;
3334 
3335         trans = btrfs_join_transaction(root);
3336         if (IS_ERR(trans)) {
3337                 ret = PTR_ERR(trans);
3338                 goto out;
3339         }
3340 
3341         ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3342 
3343         btrfs_end_transaction(trans);
3344         btrfs_btree_balance_dirty(fs_info);
3345 out:
3346         iput(inode);
3347         return ret;
3348 }
3349 
3350 /*
3351  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3352  * cache inode, to avoid free space cache data extent blocking data relocation.
3353  */
3354 static int delete_v1_space_cache(struct extent_buffer *leaf,
3355                                  struct btrfs_block_group *block_group,
3356                                  u64 data_bytenr)
3357 {
3358         u64 space_cache_ino;
3359         struct btrfs_file_extent_item *ei;
3360         struct btrfs_key key;
3361         bool found = false;
3362         int i;
3363         int ret;
3364 
3365         if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3366                 return 0;
3367 
3368         for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3369                 u8 type;
3370 
3371                 btrfs_item_key_to_cpu(leaf, &key, i);
3372                 if (key.type != BTRFS_EXTENT_DATA_KEY)
3373                         continue;
3374                 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3375                 type = btrfs_file_extent_type(leaf, ei);
3376 
3377                 if ((type == BTRFS_FILE_EXTENT_REG ||
3378                      type == BTRFS_FILE_EXTENT_PREALLOC) &&
3379                     btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3380                         found = true;
3381                         space_cache_ino = key.objectid;
3382                         break;
3383                 }
3384         }
3385         if (!found)
3386                 return -ENOENT;
3387         ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3388                                         space_cache_ino);
3389         return ret;
3390 }
3391 
3392 /*
3393  * helper to find all tree blocks that reference a given data extent
3394  */
3395 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3396                                                   const struct btrfs_key *extent_key,
3397                                                   struct btrfs_path *path,
3398                                                   struct rb_root *blocks)
3399 {
3400         struct btrfs_backref_walk_ctx ctx = { 0 };
3401         struct ulist_iterator leaf_uiter;
3402         struct ulist_node *ref_node = NULL;
3403         const u32 blocksize = rc->extent_root->fs_info->nodesize;
3404         int ret = 0;
3405 
3406         btrfs_release_path(path);
3407 
3408         ctx.bytenr = extent_key->objectid;
3409         ctx.skip_inode_ref_list = true;
3410         ctx.fs_info = rc->extent_root->fs_info;
3411 
3412         ret = btrfs_find_all_leafs(&ctx);
3413         if (ret < 0)
3414                 return ret;
3415 
3416         ULIST_ITER_INIT(&leaf_uiter);
3417         while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3418                 struct btrfs_tree_parent_check check = { 0 };
3419                 struct extent_buffer *eb;
3420 
3421                 eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3422                 if (IS_ERR(eb)) {
3423                         ret = PTR_ERR(eb);
3424                         break;
3425                 }
3426                 ret = delete_v1_space_cache(eb, rc->block_group,
3427                                             extent_key->objectid);
3428                 free_extent_buffer(eb);
3429                 if (ret < 0)
3430                         break;
3431                 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3432                 if (ret < 0)
3433                         break;
3434         }
3435         if (ret < 0)
3436                 free_block_list(blocks);
3437         ulist_free(ctx.refs);
3438         return ret;
3439 }
3440 
3441 /*
3442  * helper to find next unprocessed extent
3443  */
3444 static noinline_for_stack
3445 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3446                      struct btrfs_key *extent_key)
3447 {
3448         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3449         struct btrfs_key key;
3450         struct extent_buffer *leaf;
3451         u64 start, end, last;
3452         int ret;
3453 
3454         last = rc->block_group->start + rc->block_group->length;
3455         while (1) {
3456                 bool block_found;
3457 
3458                 cond_resched();
3459                 if (rc->search_start >= last) {
3460                         ret = 1;
3461                         break;
3462                 }
3463 
3464                 key.objectid = rc->search_start;
3465                 key.type = BTRFS_EXTENT_ITEM_KEY;
3466                 key.offset = 0;
3467 
3468                 path->search_commit_root = 1;
3469                 path->skip_locking = 1;
3470                 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3471                                         0, 0);
3472                 if (ret < 0)
3473                         break;
3474 next:
3475                 leaf = path->nodes[0];
3476                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3477                         ret = btrfs_next_leaf(rc->extent_root, path);
3478                         if (ret != 0)
3479                                 break;
3480                         leaf = path->nodes[0];
3481                 }
3482 
3483                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3484                 if (key.objectid >= last) {
3485                         ret = 1;
3486                         break;
3487                 }
3488 
3489                 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3490                     key.type != BTRFS_METADATA_ITEM_KEY) {
3491                         path->slots[0]++;
3492                         goto next;
3493                 }
3494 
3495                 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3496                     key.objectid + key.offset <= rc->search_start) {
3497                         path->slots[0]++;
3498                         goto next;
3499                 }
3500 
3501                 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3502                     key.objectid + fs_info->nodesize <=
3503                     rc->search_start) {
3504                         path->slots[0]++;
3505                         goto next;
3506                 }
3507 
3508                 block_found = find_first_extent_bit(&rc->processed_blocks,
3509                                                     key.objectid, &start, &end,
3510                                                     EXTENT_DIRTY, NULL);
3511 
3512                 if (block_found && start <= key.objectid) {
3513                         btrfs_release_path(path);
3514                         rc->search_start = end + 1;
3515                 } else {
3516                         if (key.type == BTRFS_EXTENT_ITEM_KEY)
3517                                 rc->search_start = key.objectid + key.offset;
3518                         else
3519                                 rc->search_start = key.objectid +
3520                                         fs_info->nodesize;
3521                         memcpy(extent_key, &key, sizeof(key));
3522                         return 0;
3523                 }
3524         }
3525         btrfs_release_path(path);
3526         return ret;
3527 }
3528 
3529 static void set_reloc_control(struct reloc_control *rc)
3530 {
3531         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3532 
3533         mutex_lock(&fs_info->reloc_mutex);
3534         fs_info->reloc_ctl = rc;
3535         mutex_unlock(&fs_info->reloc_mutex);
3536 }
3537 
3538 static void unset_reloc_control(struct reloc_control *rc)
3539 {
3540         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3541 
3542         mutex_lock(&fs_info->reloc_mutex);
3543         fs_info->reloc_ctl = NULL;
3544         mutex_unlock(&fs_info->reloc_mutex);
3545 }
3546 
3547 static noinline_for_stack
3548 int prepare_to_relocate(struct reloc_control *rc)
3549 {
3550         struct btrfs_trans_handle *trans;
3551         int ret;
3552 
3553         rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3554                                               BTRFS_BLOCK_RSV_TEMP);
3555         if (!rc->block_rsv)
3556                 return -ENOMEM;
3557 
3558         memset(&rc->cluster, 0, sizeof(rc->cluster));
3559         rc->search_start = rc->block_group->start;
3560         rc->extents_found = 0;
3561         rc->nodes_relocated = 0;
3562         rc->merging_rsv_size = 0;
3563         rc->reserved_bytes = 0;
3564         rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3565                               RELOCATION_RESERVED_NODES;
3566         ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3567                                      rc->block_rsv, rc->block_rsv->size,
3568                                      BTRFS_RESERVE_FLUSH_ALL);
3569         if (ret)
3570                 return ret;
3571 
3572         rc->create_reloc_tree = true;
3573         set_reloc_control(rc);
3574 
3575         trans = btrfs_join_transaction(rc->extent_root);
3576         if (IS_ERR(trans)) {
3577                 unset_reloc_control(rc);
3578                 /*
3579                  * extent tree is not a ref_cow tree and has no reloc_root to
3580                  * cleanup.  And callers are responsible to free the above
3581                  * block rsv.
3582                  */
3583                 return PTR_ERR(trans);
3584         }
3585 
3586         ret = btrfs_commit_transaction(trans);
3587         if (ret)
3588                 unset_reloc_control(rc);
3589 
3590         return ret;
3591 }
3592 
3593 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3594 {
3595         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3596         struct rb_root blocks = RB_ROOT;
3597         struct btrfs_key key;
3598         struct btrfs_trans_handle *trans = NULL;
3599         struct btrfs_path *path;
3600         struct btrfs_extent_item *ei;
3601         u64 flags;
3602         int ret;
3603         int err = 0;
3604         int progress = 0;
3605 
3606         path = btrfs_alloc_path();
3607         if (!path)
3608                 return -ENOMEM;
3609         path->reada = READA_FORWARD;
3610 
3611         ret = prepare_to_relocate(rc);
3612         if (ret) {
3613                 err = ret;
3614                 goto out_free;
3615         }
3616 
3617         while (1) {
3618                 rc->reserved_bytes = 0;
3619                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3620                                              rc->block_rsv->size,
3621                                              BTRFS_RESERVE_FLUSH_ALL);
3622                 if (ret) {
3623                         err = ret;
3624                         break;
3625                 }
3626                 progress++;
3627                 trans = btrfs_start_transaction(rc->extent_root, 0);
3628                 if (IS_ERR(trans)) {
3629                         err = PTR_ERR(trans);
3630                         trans = NULL;
3631                         break;
3632                 }
3633 restart:
3634                 if (rc->backref_cache.last_trans != trans->transid)
3635                         btrfs_backref_release_cache(&rc->backref_cache);
3636                 rc->backref_cache.last_trans = trans->transid;
3637 
3638                 ret = find_next_extent(rc, path, &key);
3639                 if (ret < 0)
3640                         err = ret;
3641                 if (ret != 0)
3642                         break;
3643 
3644                 rc->extents_found++;
3645 
3646                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3647                                     struct btrfs_extent_item);
3648                 flags = btrfs_extent_flags(path->nodes[0], ei);
3649 
3650                 /*
3651                  * If we are relocating a simple quota owned extent item, we
3652                  * need to note the owner on the reloc data root so that when
3653                  * we allocate the replacement item, we can attribute it to the
3654                  * correct eventual owner (rather than the reloc data root).
3655                  */
3656                 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3657                         struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3658                         u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3659                                                                  path->nodes[0],
3660                                                                  path->slots[0]);
3661 
3662                         root->relocation_src_root = owning_root_id;
3663                 }
3664 
3665                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3666                         ret = add_tree_block(rc, &key, path, &blocks);
3667                 } else if (rc->stage == UPDATE_DATA_PTRS &&
3668                            (flags & BTRFS_EXTENT_FLAG_DATA)) {
3669                         ret = add_data_references(rc, &key, path, &blocks);
3670                 } else {
3671                         btrfs_release_path(path);
3672                         ret = 0;
3673                 }
3674                 if (ret < 0) {
3675                         err = ret;
3676                         break;
3677                 }
3678 
3679                 if (!RB_EMPTY_ROOT(&blocks)) {
3680                         ret = relocate_tree_blocks(trans, rc, &blocks);
3681                         if (ret < 0) {
3682                                 if (ret != -EAGAIN) {
3683                                         err = ret;
3684                                         break;
3685                                 }
3686                                 rc->extents_found--;
3687                                 rc->search_start = key.objectid;
3688                         }
3689                 }
3690 
3691                 btrfs_end_transaction_throttle(trans);
3692                 btrfs_btree_balance_dirty(fs_info);
3693                 trans = NULL;
3694 
3695                 if (rc->stage == MOVE_DATA_EXTENTS &&
3696                     (flags & BTRFS_EXTENT_FLAG_DATA)) {
3697                         rc->found_file_extent = true;
3698                         ret = relocate_data_extent(rc, &key);
3699                         if (ret < 0) {
3700                                 err = ret;
3701                                 break;
3702                         }
3703                 }
3704                 if (btrfs_should_cancel_balance(fs_info)) {
3705                         err = -ECANCELED;
3706                         break;
3707                 }
3708         }
3709         if (trans && progress && err == -ENOSPC) {
3710                 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3711                 if (ret == 1) {
3712                         err = 0;
3713                         progress = 0;
3714                         goto restart;
3715                 }
3716         }
3717 
3718         btrfs_release_path(path);
3719         clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3720 
3721         if (trans) {
3722                 btrfs_end_transaction_throttle(trans);
3723                 btrfs_btree_balance_dirty(fs_info);
3724         }
3725 
3726         if (!err) {
3727                 ret = relocate_file_extent_cluster(rc);
3728                 if (ret < 0)
3729                         err = ret;
3730         }
3731 
3732         rc->create_reloc_tree = false;
3733         set_reloc_control(rc);
3734 
3735         btrfs_backref_release_cache(&rc->backref_cache);
3736         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3737 
3738         /*
3739          * Even in the case when the relocation is cancelled, we should all go
3740          * through prepare_to_merge() and merge_reloc_roots().
3741          *
3742          * For error (including cancelled balance), prepare_to_merge() will
3743          * mark all reloc trees orphan, then queue them for cleanup in
3744          * merge_reloc_roots()
3745          */
3746         err = prepare_to_merge(rc, err);
3747 
3748         merge_reloc_roots(rc);
3749 
3750         rc->merge_reloc_tree = false;
3751         unset_reloc_control(rc);
3752         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3753 
3754         /* get rid of pinned extents */
3755         trans = btrfs_join_transaction(rc->extent_root);
3756         if (IS_ERR(trans)) {
3757                 err = PTR_ERR(trans);
3758                 goto out_free;
3759         }
3760         ret = btrfs_commit_transaction(trans);
3761         if (ret && !err)
3762                 err = ret;
3763 out_free:
3764         ret = clean_dirty_subvols(rc);
3765         if (ret < 0 && !err)
3766                 err = ret;
3767         btrfs_free_block_rsv(fs_info, rc->block_rsv);
3768         btrfs_free_path(path);
3769         return err;
3770 }
3771 
3772 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3773                                  struct btrfs_root *root, u64 objectid)
3774 {
3775         struct btrfs_path *path;
3776         struct btrfs_inode_item *item;
3777         struct extent_buffer *leaf;
3778         int ret;
3779 
3780         path = btrfs_alloc_path();
3781         if (!path)
3782                 return -ENOMEM;
3783 
3784         ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3785         if (ret)
3786                 goto out;
3787 
3788         leaf = path->nodes[0];
3789         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3790         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3791         btrfs_set_inode_generation(leaf, item, 1);
3792         btrfs_set_inode_size(leaf, item, 0);
3793         btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3794         btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3795                                           BTRFS_INODE_PREALLOC);
3796         btrfs_mark_buffer_dirty(trans, leaf);
3797 out:
3798         btrfs_free_path(path);
3799         return ret;
3800 }
3801 
3802 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3803                                 struct btrfs_root *root, u64 objectid)
3804 {
3805         struct btrfs_path *path;
3806         struct btrfs_key key;
3807         int ret = 0;
3808 
3809         path = btrfs_alloc_path();
3810         if (!path) {
3811                 ret = -ENOMEM;
3812                 goto out;
3813         }
3814 
3815         key.objectid = objectid;
3816         key.type = BTRFS_INODE_ITEM_KEY;
3817         key.offset = 0;
3818         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3819         if (ret) {
3820                 if (ret > 0)
3821                         ret = -ENOENT;
3822                 goto out;
3823         }
3824         ret = btrfs_del_item(trans, root, path);
3825 out:
3826         if (ret)
3827                 btrfs_abort_transaction(trans, ret);
3828         btrfs_free_path(path);
3829 }
3830 
3831 /*
3832  * helper to create inode for data relocation.
3833  * the inode is in data relocation tree and its link count is 0
3834  */
3835 static noinline_for_stack struct inode *create_reloc_inode(
3836                                         struct btrfs_fs_info *fs_info,
3837                                         const struct btrfs_block_group *group)
3838 {
3839         struct inode *inode = NULL;
3840         struct btrfs_trans_handle *trans;
3841         struct btrfs_root *root;
3842         u64 objectid;
3843         int ret = 0;
3844 
3845         root = btrfs_grab_root(fs_info->data_reloc_root);
3846         trans = btrfs_start_transaction(root, 6);
3847         if (IS_ERR(trans)) {
3848                 btrfs_put_root(root);
3849                 return ERR_CAST(trans);
3850         }
3851 
3852         ret = btrfs_get_free_objectid(root, &objectid);
3853         if (ret)
3854                 goto out;
3855 
3856         ret = __insert_orphan_inode(trans, root, objectid);
3857         if (ret)
3858                 goto out;
3859 
3860         inode = btrfs_iget(objectid, root);
3861         if (IS_ERR(inode)) {
3862                 delete_orphan_inode(trans, root, objectid);
3863                 ret = PTR_ERR(inode);
3864                 inode = NULL;
3865                 goto out;
3866         }
3867         BTRFS_I(inode)->reloc_block_group_start = group->start;
3868 
3869         ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3870 out:
3871         btrfs_put_root(root);
3872         btrfs_end_transaction(trans);
3873         btrfs_btree_balance_dirty(fs_info);
3874         if (ret) {
3875                 iput(inode);
3876                 inode = ERR_PTR(ret);
3877         }
3878         return inode;
3879 }
3880 
3881 /*
3882  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3883  * has been requested meanwhile and don't start in that case.
3884  *
3885  * Return:
3886  *   0             success
3887  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3888  *   -ECANCELED    cancellation request was set before the operation started
3889  */
3890 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3891 {
3892         if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3893                 /* This should not happen */
3894                 btrfs_err(fs_info, "reloc already running, cannot start");
3895                 return -EINPROGRESS;
3896         }
3897 
3898         if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3899                 btrfs_info(fs_info, "chunk relocation canceled on start");
3900                 /*
3901                  * On cancel, clear all requests but let the caller mark
3902                  * the end after cleanup operations.
3903                  */
3904                 atomic_set(&fs_info->reloc_cancel_req, 0);
3905                 return -ECANCELED;
3906         }
3907         return 0;
3908 }
3909 
3910 /*
3911  * Mark end of chunk relocation that is cancellable and wake any waiters.
3912  */
3913 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3914 {
3915         /* Requested after start, clear bit first so any waiters can continue */
3916         if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3917                 btrfs_info(fs_info, "chunk relocation canceled during operation");
3918         clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3919         atomic_set(&fs_info->reloc_cancel_req, 0);
3920 }
3921 
3922 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3923 {
3924         struct reloc_control *rc;
3925 
3926         rc = kzalloc(sizeof(*rc), GFP_NOFS);
3927         if (!rc)
3928                 return NULL;
3929 
3930         INIT_LIST_HEAD(&rc->reloc_roots);
3931         INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3932         btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
3933         rc->reloc_root_tree.rb_root = RB_ROOT;
3934         spin_lock_init(&rc->reloc_root_tree.lock);
3935         extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3936         return rc;
3937 }
3938 
3939 static void free_reloc_control(struct reloc_control *rc)
3940 {
3941         struct mapping_node *node, *tmp;
3942 
3943         free_reloc_roots(&rc->reloc_roots);
3944         rbtree_postorder_for_each_entry_safe(node, tmp,
3945                         &rc->reloc_root_tree.rb_root, rb_node)
3946                 kfree(node);
3947 
3948         kfree(rc);
3949 }
3950 
3951 /*
3952  * Print the block group being relocated
3953  */
3954 static void describe_relocation(struct btrfs_block_group *block_group)
3955 {
3956         char buf[128] = {'\0'};
3957 
3958         btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3959 
3960         btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
3961                    block_group->start, buf);
3962 }
3963 
3964 static const char *stage_to_string(enum reloc_stage stage)
3965 {
3966         if (stage == MOVE_DATA_EXTENTS)
3967                 return "move data extents";
3968         if (stage == UPDATE_DATA_PTRS)
3969                 return "update data pointers";
3970         return "unknown";
3971 }
3972 
3973 /*
3974  * function to relocate all extents in a block group.
3975  */
3976 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3977 {
3978         struct btrfs_block_group *bg;
3979         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3980         struct reloc_control *rc;
3981         struct inode *inode;
3982         struct btrfs_path *path;
3983         int ret;
3984         int rw = 0;
3985         int err = 0;
3986 
3987         /*
3988          * This only gets set if we had a half-deleted snapshot on mount.  We
3989          * cannot allow relocation to start while we're still trying to clean up
3990          * these pending deletions.
3991          */
3992         ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3993         if (ret)
3994                 return ret;
3995 
3996         /* We may have been woken up by close_ctree, so bail if we're closing. */
3997         if (btrfs_fs_closing(fs_info))
3998                 return -EINTR;
3999 
4000         bg = btrfs_lookup_block_group(fs_info, group_start);
4001         if (!bg)
4002                 return -ENOENT;
4003 
4004         /*
4005          * Relocation of a data block group creates ordered extents.  Without
4006          * sb_start_write(), we can freeze the filesystem while unfinished
4007          * ordered extents are left. Such ordered extents can cause a deadlock
4008          * e.g. when syncfs() is waiting for their completion but they can't
4009          * finish because they block when joining a transaction, due to the
4010          * fact that the freeze locks are being held in write mode.
4011          */
4012         if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4013                 ASSERT(sb_write_started(fs_info->sb));
4014 
4015         if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4016                 btrfs_put_block_group(bg);
4017                 return -ETXTBSY;
4018         }
4019 
4020         rc = alloc_reloc_control(fs_info);
4021         if (!rc) {
4022                 btrfs_put_block_group(bg);
4023                 return -ENOMEM;
4024         }
4025 
4026         ret = reloc_chunk_start(fs_info);
4027         if (ret < 0) {
4028                 err = ret;
4029                 goto out_put_bg;
4030         }
4031 
4032         rc->extent_root = extent_root;
4033         rc->block_group = bg;
4034 
4035         ret = btrfs_inc_block_group_ro(rc->block_group, true);
4036         if (ret) {
4037                 err = ret;
4038                 goto out;
4039         }
4040         rw = 1;
4041 
4042         path = btrfs_alloc_path();
4043         if (!path) {
4044                 err = -ENOMEM;
4045                 goto out;
4046         }
4047 
4048         inode = lookup_free_space_inode(rc->block_group, path);
4049         btrfs_free_path(path);
4050 
4051         if (!IS_ERR(inode))
4052                 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4053         else
4054                 ret = PTR_ERR(inode);
4055 
4056         if (ret && ret != -ENOENT) {
4057                 err = ret;
4058                 goto out;
4059         }
4060 
4061         rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4062         if (IS_ERR(rc->data_inode)) {
4063                 err = PTR_ERR(rc->data_inode);
4064                 rc->data_inode = NULL;
4065                 goto out;
4066         }
4067 
4068         describe_relocation(rc->block_group);
4069 
4070         btrfs_wait_block_group_reservations(rc->block_group);
4071         btrfs_wait_nocow_writers(rc->block_group);
4072         btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
4073 
4074         ret = btrfs_zone_finish(rc->block_group);
4075         WARN_ON(ret && ret != -EAGAIN);
4076 
4077         while (1) {
4078                 enum reloc_stage finishes_stage;
4079 
4080                 mutex_lock(&fs_info->cleaner_mutex);
4081                 ret = relocate_block_group(rc);
4082                 mutex_unlock(&fs_info->cleaner_mutex);
4083                 if (ret < 0)
4084                         err = ret;
4085 
4086                 finishes_stage = rc->stage;
4087                 /*
4088                  * We may have gotten ENOSPC after we already dirtied some
4089                  * extents.  If writeout happens while we're relocating a
4090                  * different block group we could end up hitting the
4091                  * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4092                  * btrfs_reloc_cow_block.  Make sure we write everything out
4093                  * properly so we don't trip over this problem, and then break
4094                  * out of the loop if we hit an error.
4095                  */
4096                 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4097                         ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
4098                                                        (u64)-1);
4099                         if (ret)
4100                                 err = ret;
4101                         invalidate_mapping_pages(rc->data_inode->i_mapping,
4102                                                  0, -1);
4103                         rc->stage = UPDATE_DATA_PTRS;
4104                 }
4105 
4106                 if (err < 0)
4107                         goto out;
4108 
4109                 if (rc->extents_found == 0)
4110                         break;
4111 
4112                 btrfs_info(fs_info, "found %llu extents, stage: %s",
4113                            rc->extents_found, stage_to_string(finishes_stage));
4114         }
4115 
4116         WARN_ON(rc->block_group->pinned > 0);
4117         WARN_ON(rc->block_group->reserved > 0);
4118         WARN_ON(rc->block_group->used > 0);
4119 out:
4120         if (err && rw)
4121                 btrfs_dec_block_group_ro(rc->block_group);
4122         iput(rc->data_inode);
4123 out_put_bg:
4124         btrfs_put_block_group(bg);
4125         reloc_chunk_end(fs_info);
4126         free_reloc_control(rc);
4127         return err;
4128 }
4129 
4130 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4131 {
4132         struct btrfs_fs_info *fs_info = root->fs_info;
4133         struct btrfs_trans_handle *trans;
4134         int ret, err;
4135 
4136         trans = btrfs_start_transaction(fs_info->tree_root, 0);
4137         if (IS_ERR(trans))
4138                 return PTR_ERR(trans);
4139 
4140         memset(&root->root_item.drop_progress, 0,
4141                 sizeof(root->root_item.drop_progress));
4142         btrfs_set_root_drop_level(&root->root_item, 0);
4143         btrfs_set_root_refs(&root->root_item, 0);
4144         ret = btrfs_update_root(trans, fs_info->tree_root,
4145                                 &root->root_key, &root->root_item);
4146 
4147         err = btrfs_end_transaction(trans);
4148         if (err)
4149                 return err;
4150         return ret;
4151 }
4152 
4153 /*
4154  * recover relocation interrupted by system crash.
4155  *
4156  * this function resumes merging reloc trees with corresponding fs trees.
4157  * this is important for keeping the sharing of tree blocks
4158  */
4159 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4160 {
4161         LIST_HEAD(reloc_roots);
4162         struct btrfs_key key;
4163         struct btrfs_root *fs_root;
4164         struct btrfs_root *reloc_root;
4165         struct btrfs_path *path;
4166         struct extent_buffer *leaf;
4167         struct reloc_control *rc = NULL;
4168         struct btrfs_trans_handle *trans;
4169         int ret2;
4170         int ret = 0;
4171 
4172         path = btrfs_alloc_path();
4173         if (!path)
4174                 return -ENOMEM;
4175         path->reada = READA_BACK;
4176 
4177         key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4178         key.type = BTRFS_ROOT_ITEM_KEY;
4179         key.offset = (u64)-1;
4180 
4181         while (1) {
4182                 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4183                                         path, 0, 0);
4184                 if (ret < 0)
4185                         goto out;
4186                 if (ret > 0) {
4187                         if (path->slots[0] == 0)
4188                                 break;
4189                         path->slots[0]--;
4190                 }
4191                 ret = 0;
4192                 leaf = path->nodes[0];
4193                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4194                 btrfs_release_path(path);
4195 
4196                 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4197                     key.type != BTRFS_ROOT_ITEM_KEY)
4198                         break;
4199 
4200                 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4201                 if (IS_ERR(reloc_root)) {
4202                         ret = PTR_ERR(reloc_root);
4203                         goto out;
4204                 }
4205 
4206                 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4207                 list_add(&reloc_root->root_list, &reloc_roots);
4208 
4209                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4210                         fs_root = btrfs_get_fs_root(fs_info,
4211                                         reloc_root->root_key.offset, false);
4212                         if (IS_ERR(fs_root)) {
4213                                 ret = PTR_ERR(fs_root);
4214                                 if (ret != -ENOENT)
4215                                         goto out;
4216                                 ret = mark_garbage_root(reloc_root);
4217                                 if (ret < 0)
4218                                         goto out;
4219                                 ret = 0;
4220                         } else {
4221                                 btrfs_put_root(fs_root);
4222                         }
4223                 }
4224 
4225                 if (key.offset == 0)
4226                         break;
4227 
4228                 key.offset--;
4229         }
4230         btrfs_release_path(path);
4231 
4232         if (list_empty(&reloc_roots))
4233                 goto out;
4234 
4235         rc = alloc_reloc_control(fs_info);
4236         if (!rc) {
4237                 ret = -ENOMEM;
4238                 goto out;
4239         }
4240 
4241         ret = reloc_chunk_start(fs_info);
4242         if (ret < 0)
4243                 goto out_end;
4244 
4245         rc->extent_root = btrfs_extent_root(fs_info, 0);
4246 
4247         set_reloc_control(rc);
4248 
4249         trans = btrfs_join_transaction(rc->extent_root);
4250         if (IS_ERR(trans)) {
4251                 ret = PTR_ERR(trans);
4252                 goto out_unset;
4253         }
4254 
4255         rc->merge_reloc_tree = true;
4256 
4257         while (!list_empty(&reloc_roots)) {
4258                 reloc_root = list_entry(reloc_roots.next,
4259                                         struct btrfs_root, root_list);
4260                 list_del(&reloc_root->root_list);
4261 
4262                 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4263                         list_add_tail(&reloc_root->root_list,
4264                                       &rc->reloc_roots);
4265                         continue;
4266                 }
4267 
4268                 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4269                                             false);
4270                 if (IS_ERR(fs_root)) {
4271                         ret = PTR_ERR(fs_root);
4272                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4273                         btrfs_end_transaction(trans);
4274                         goto out_unset;
4275                 }
4276 
4277                 ret = __add_reloc_root(reloc_root);
4278                 ASSERT(ret != -EEXIST);
4279                 if (ret) {
4280                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4281                         btrfs_put_root(fs_root);
4282                         btrfs_end_transaction(trans);
4283                         goto out_unset;
4284                 }
4285                 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4286                 btrfs_put_root(fs_root);
4287         }
4288 
4289         ret = btrfs_commit_transaction(trans);
4290         if (ret)
4291                 goto out_unset;
4292 
4293         merge_reloc_roots(rc);
4294 
4295         unset_reloc_control(rc);
4296 
4297         trans = btrfs_join_transaction(rc->extent_root);
4298         if (IS_ERR(trans)) {
4299                 ret = PTR_ERR(trans);
4300                 goto out_clean;
4301         }
4302         ret = btrfs_commit_transaction(trans);
4303 out_clean:
4304         ret2 = clean_dirty_subvols(rc);
4305         if (ret2 < 0 && !ret)
4306                 ret = ret2;
4307 out_unset:
4308         unset_reloc_control(rc);
4309 out_end:
4310         reloc_chunk_end(fs_info);
4311         free_reloc_control(rc);
4312 out:
4313         free_reloc_roots(&reloc_roots);
4314 
4315         btrfs_free_path(path);
4316 
4317         if (ret == 0) {
4318                 /* cleanup orphan inode in data relocation tree */
4319                 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4320                 ASSERT(fs_root);
4321                 ret = btrfs_orphan_cleanup(fs_root);
4322                 btrfs_put_root(fs_root);
4323         }
4324         return ret;
4325 }
4326 
4327 /*
4328  * helper to add ordered checksum for data relocation.
4329  *
4330  * cloning checksum properly handles the nodatasum extents.
4331  * it also saves CPU time to re-calculate the checksum.
4332  */
4333 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4334 {
4335         struct btrfs_inode *inode = ordered->inode;
4336         struct btrfs_fs_info *fs_info = inode->root->fs_info;
4337         u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
4338         struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4339         LIST_HEAD(list);
4340         int ret;
4341 
4342         ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4343                                       disk_bytenr + ordered->num_bytes - 1,
4344                                       &list, false);
4345         if (ret < 0) {
4346                 btrfs_mark_ordered_extent_error(ordered);
4347                 return ret;
4348         }
4349 
4350         while (!list_empty(&list)) {
4351                 struct btrfs_ordered_sum *sums =
4352                         list_entry(list.next, struct btrfs_ordered_sum, list);
4353 
4354                 list_del_init(&sums->list);
4355 
4356                 /*
4357                  * We need to offset the new_bytenr based on where the csum is.
4358                  * We need to do this because we will read in entire prealloc
4359                  * extents but we may have written to say the middle of the
4360                  * prealloc extent, so we need to make sure the csum goes with
4361                  * the right disk offset.
4362                  *
4363                  * We can do this because the data reloc inode refers strictly
4364                  * to the on disk bytes, so we don't have to worry about
4365                  * disk_len vs real len like with real inodes since it's all
4366                  * disk length.
4367                  */
4368                 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4369                 btrfs_add_ordered_sum(ordered, sums);
4370         }
4371 
4372         return 0;
4373 }
4374 
4375 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4376                           struct btrfs_root *root,
4377                           const struct extent_buffer *buf,
4378                           struct extent_buffer *cow)
4379 {
4380         struct btrfs_fs_info *fs_info = root->fs_info;
4381         struct reloc_control *rc;
4382         struct btrfs_backref_node *node;
4383         int first_cow = 0;
4384         int level;
4385         int ret = 0;
4386 
4387         rc = fs_info->reloc_ctl;
4388         if (!rc)
4389                 return 0;
4390 
4391         BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4392 
4393         level = btrfs_header_level(buf);
4394         if (btrfs_header_generation(buf) <=
4395             btrfs_root_last_snapshot(&root->root_item))
4396                 first_cow = 1;
4397 
4398         if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
4399                 WARN_ON(!first_cow && level == 0);
4400 
4401                 node = rc->backref_cache.path[level];
4402                 BUG_ON(node->bytenr != buf->start &&
4403                        node->new_bytenr != buf->start);
4404 
4405                 btrfs_backref_drop_node_buffer(node);
4406                 atomic_inc(&cow->refs);
4407                 node->eb = cow;
4408                 node->new_bytenr = cow->start;
4409 
4410                 if (!node->pending) {
4411                         list_move_tail(&node->list,
4412                                        &rc->backref_cache.pending[level]);
4413                         node->pending = 1;
4414                 }
4415 
4416                 if (first_cow)
4417                         mark_block_processed(rc, node);
4418 
4419                 if (first_cow && level > 0)
4420                         rc->nodes_relocated += buf->len;
4421         }
4422 
4423         if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4424                 ret = replace_file_extents(trans, rc, root, cow);
4425         return ret;
4426 }
4427 
4428 /*
4429  * called before creating snapshot. it calculates metadata reservation
4430  * required for relocating tree blocks in the snapshot
4431  */
4432 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4433                               u64 *bytes_to_reserve)
4434 {
4435         struct btrfs_root *root = pending->root;
4436         struct reloc_control *rc = root->fs_info->reloc_ctl;
4437 
4438         if (!rc || !have_reloc_root(root))
4439                 return;
4440 
4441         if (!rc->merge_reloc_tree)
4442                 return;
4443 
4444         root = root->reloc_root;
4445         BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4446         /*
4447          * relocation is in the stage of merging trees. the space
4448          * used by merging a reloc tree is twice the size of
4449          * relocated tree nodes in the worst case. half for cowing
4450          * the reloc tree, half for cowing the fs tree. the space
4451          * used by cowing the reloc tree will be freed after the
4452          * tree is dropped. if we create snapshot, cowing the fs
4453          * tree may use more space than it frees. so we need
4454          * reserve extra space.
4455          */
4456         *bytes_to_reserve += rc->nodes_relocated;
4457 }
4458 
4459 /*
4460  * called after snapshot is created. migrate block reservation
4461  * and create reloc root for the newly created snapshot
4462  *
4463  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4464  * references held on the reloc_root, one for root->reloc_root and one for
4465  * rc->reloc_roots.
4466  */
4467 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4468                                struct btrfs_pending_snapshot *pending)
4469 {
4470         struct btrfs_root *root = pending->root;
4471         struct btrfs_root *reloc_root;
4472         struct btrfs_root *new_root;
4473         struct reloc_control *rc = root->fs_info->reloc_ctl;
4474         int ret;
4475 
4476         if (!rc || !have_reloc_root(root))
4477                 return 0;
4478 
4479         rc = root->fs_info->reloc_ctl;
4480         rc->merging_rsv_size += rc->nodes_relocated;
4481 
4482         if (rc->merge_reloc_tree) {
4483                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4484                                               rc->block_rsv,
4485                                               rc->nodes_relocated, true);
4486                 if (ret)
4487                         return ret;
4488         }
4489 
4490         new_root = pending->snap;
4491         reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
4492         if (IS_ERR(reloc_root))
4493                 return PTR_ERR(reloc_root);
4494 
4495         ret = __add_reloc_root(reloc_root);
4496         ASSERT(ret != -EEXIST);
4497         if (ret) {
4498                 /* Pairs with create_reloc_root */
4499                 btrfs_put_root(reloc_root);
4500                 return ret;
4501         }
4502         new_root->reloc_root = btrfs_grab_root(reloc_root);
4503 
4504         if (rc->create_reloc_tree)
4505                 ret = clone_backref_node(trans, rc, root, reloc_root);
4506         return ret;
4507 }
4508 
4509 /*
4510  * Get the current bytenr for the block group which is being relocated.
4511  *
4512  * Return U64_MAX if no running relocation.
4513  */
4514 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4515 {
4516         u64 logical = U64_MAX;
4517 
4518         lockdep_assert_held(&fs_info->reloc_mutex);
4519 
4520         if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4521                 logical = fs_info->reloc_ctl->block_group->start;
4522         return logical;
4523 }
4524 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php