~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/scrub.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
  4  */
  5 
  6 #include <linux/blkdev.h>
  7 #include <linux/ratelimit.h>
  8 #include <linux/sched/mm.h>
  9 #include <crypto/hash.h>
 10 #include "ctree.h"
 11 #include "discard.h"
 12 #include "volumes.h"
 13 #include "disk-io.h"
 14 #include "ordered-data.h"
 15 #include "transaction.h"
 16 #include "backref.h"
 17 #include "extent_io.h"
 18 #include "dev-replace.h"
 19 #include "raid56.h"
 20 #include "block-group.h"
 21 #include "zoned.h"
 22 #include "fs.h"
 23 #include "accessors.h"
 24 #include "file-item.h"
 25 #include "scrub.h"
 26 #include "raid-stripe-tree.h"
 27 
 28 /*
 29  * This is only the first step towards a full-features scrub. It reads all
 30  * extent and super block and verifies the checksums. In case a bad checksum
 31  * is found or the extent cannot be read, good data will be written back if
 32  * any can be found.
 33  *
 34  * Future enhancements:
 35  *  - In case an unrepairable extent is encountered, track which files are
 36  *    affected and report them
 37  *  - track and record media errors, throw out bad devices
 38  *  - add a mode to also read unallocated space
 39  */
 40 
 41 struct scrub_ctx;
 42 
 43 /*
 44  * The following value only influences the performance.
 45  *
 46  * This determines how many stripes would be submitted in one go,
 47  * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
 48  */
 49 #define SCRUB_STRIPES_PER_GROUP         8
 50 
 51 /*
 52  * How many groups we have for each sctx.
 53  *
 54  * This would be 8M per device, the same value as the old scrub in-flight bios
 55  * size limit.
 56  */
 57 #define SCRUB_GROUPS_PER_SCTX           16
 58 
 59 #define SCRUB_TOTAL_STRIPES             (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
 60 
 61 /*
 62  * The following value times PAGE_SIZE needs to be large enough to match the
 63  * largest node/leaf/sector size that shall be supported.
 64  */
 65 #define SCRUB_MAX_SECTORS_PER_BLOCK     (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
 66 
 67 /* Represent one sector and its needed info to verify the content. */
 68 struct scrub_sector_verification {
 69         bool is_metadata;
 70 
 71         union {
 72                 /*
 73                  * Csum pointer for data csum verification.  Should point to a
 74                  * sector csum inside scrub_stripe::csums.
 75                  *
 76                  * NULL if this data sector has no csum.
 77                  */
 78                 u8 *csum;
 79 
 80                 /*
 81                  * Extra info for metadata verification.  All sectors inside a
 82                  * tree block share the same generation.
 83                  */
 84                 u64 generation;
 85         };
 86 };
 87 
 88 enum scrub_stripe_flags {
 89         /* Set when @mirror_num, @dev, @physical and @logical are set. */
 90         SCRUB_STRIPE_FLAG_INITIALIZED,
 91 
 92         /* Set when the read-repair is finished. */
 93         SCRUB_STRIPE_FLAG_REPAIR_DONE,
 94 
 95         /*
 96          * Set for data stripes if it's triggered from P/Q stripe.
 97          * During such scrub, we should not report errors in data stripes, nor
 98          * update the accounting.
 99          */
100         SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102 
103 #define SCRUB_STRIPE_PAGES              (BTRFS_STRIPE_LEN / PAGE_SIZE)
104 
105 /*
106  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107  */
108 struct scrub_stripe {
109         struct scrub_ctx *sctx;
110         struct btrfs_block_group *bg;
111 
112         struct page *pages[SCRUB_STRIPE_PAGES];
113         struct scrub_sector_verification *sectors;
114 
115         struct btrfs_device *dev;
116         u64 logical;
117         u64 physical;
118 
119         u16 mirror_num;
120 
121         /* Should be BTRFS_STRIPE_LEN / sectorsize. */
122         u16 nr_sectors;
123 
124         /*
125          * How many data/meta extents are in this stripe.  Only for scrub status
126          * reporting purposes.
127          */
128         u16 nr_data_extents;
129         u16 nr_meta_extents;
130 
131         atomic_t pending_io;
132         wait_queue_head_t io_wait;
133         wait_queue_head_t repair_wait;
134 
135         /*
136          * Indicate the states of the stripe.  Bits are defined in
137          * scrub_stripe_flags enum.
138          */
139         unsigned long state;
140 
141         /* Indicate which sectors are covered by extent items. */
142         unsigned long extent_sector_bitmap;
143 
144         /*
145          * The errors hit during the initial read of the stripe.
146          *
147          * Would be utilized for error reporting and repair.
148          *
149          * The remaining init_nr_* records the number of errors hit, only used
150          * by error reporting.
151          */
152         unsigned long init_error_bitmap;
153         unsigned int init_nr_io_errors;
154         unsigned int init_nr_csum_errors;
155         unsigned int init_nr_meta_errors;
156 
157         /*
158          * The following error bitmaps are all for the current status.
159          * Every time we submit a new read, these bitmaps may be updated.
160          *
161          * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162          *
163          * IO and csum errors can happen for both metadata and data.
164          */
165         unsigned long error_bitmap;
166         unsigned long io_error_bitmap;
167         unsigned long csum_error_bitmap;
168         unsigned long meta_error_bitmap;
169 
170         /* For writeback (repair or replace) error reporting. */
171         unsigned long write_error_bitmap;
172 
173         /* Writeback can be concurrent, thus we need to protect the bitmap. */
174         spinlock_t write_error_lock;
175 
176         /*
177          * Checksum for the whole stripe if this stripe is inside a data block
178          * group.
179          */
180         u8 *csums;
181 
182         struct work_struct work;
183 };
184 
185 struct scrub_ctx {
186         struct scrub_stripe     stripes[SCRUB_TOTAL_STRIPES];
187         struct scrub_stripe     *raid56_data_stripes;
188         struct btrfs_fs_info    *fs_info;
189         struct btrfs_path       extent_path;
190         struct btrfs_path       csum_path;
191         int                     first_free;
192         int                     cur_stripe;
193         atomic_t                cancel_req;
194         int                     readonly;
195 
196         /* State of IO submission throttling affecting the associated device */
197         ktime_t                 throttle_deadline;
198         u64                     throttle_sent;
199 
200         int                     is_dev_replace;
201         u64                     write_pointer;
202 
203         struct mutex            wr_lock;
204         struct btrfs_device     *wr_tgtdev;
205 
206         /*
207          * statistics
208          */
209         struct btrfs_scrub_progress stat;
210         spinlock_t              stat_lock;
211 
212         /*
213          * Use a ref counter to avoid use-after-free issues. Scrub workers
214          * decrement bios_in_flight and workers_pending and then do a wakeup
215          * on the list_wait wait queue. We must ensure the main scrub task
216          * doesn't free the scrub context before or while the workers are
217          * doing the wakeup() call.
218          */
219         refcount_t              refs;
220 };
221 
222 struct scrub_warning {
223         struct btrfs_path       *path;
224         u64                     extent_item_size;
225         const char              *errstr;
226         u64                     physical;
227         u64                     logical;
228         struct btrfs_device     *dev;
229 };
230 
231 static void release_scrub_stripe(struct scrub_stripe *stripe)
232 {
233         if (!stripe)
234                 return;
235 
236         for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
237                 if (stripe->pages[i])
238                         __free_page(stripe->pages[i]);
239                 stripe->pages[i] = NULL;
240         }
241         kfree(stripe->sectors);
242         kfree(stripe->csums);
243         stripe->sectors = NULL;
244         stripe->csums = NULL;
245         stripe->sctx = NULL;
246         stripe->state = 0;
247 }
248 
249 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
250                              struct scrub_stripe *stripe)
251 {
252         int ret;
253 
254         memset(stripe, 0, sizeof(*stripe));
255 
256         stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
257         stripe->state = 0;
258 
259         init_waitqueue_head(&stripe->io_wait);
260         init_waitqueue_head(&stripe->repair_wait);
261         atomic_set(&stripe->pending_io, 0);
262         spin_lock_init(&stripe->write_error_lock);
263 
264         ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, false);
265         if (ret < 0)
266                 goto error;
267 
268         stripe->sectors = kcalloc(stripe->nr_sectors,
269                                   sizeof(struct scrub_sector_verification),
270                                   GFP_KERNEL);
271         if (!stripe->sectors)
272                 goto error;
273 
274         stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
275                                 fs_info->csum_size, GFP_KERNEL);
276         if (!stripe->csums)
277                 goto error;
278         return 0;
279 error:
280         release_scrub_stripe(stripe);
281         return -ENOMEM;
282 }
283 
284 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
285 {
286         wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
287 }
288 
289 static void scrub_put_ctx(struct scrub_ctx *sctx);
290 
291 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
292 {
293         while (atomic_read(&fs_info->scrub_pause_req)) {
294                 mutex_unlock(&fs_info->scrub_lock);
295                 wait_event(fs_info->scrub_pause_wait,
296                    atomic_read(&fs_info->scrub_pause_req) == 0);
297                 mutex_lock(&fs_info->scrub_lock);
298         }
299 }
300 
301 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
302 {
303         atomic_inc(&fs_info->scrubs_paused);
304         wake_up(&fs_info->scrub_pause_wait);
305 }
306 
307 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
308 {
309         mutex_lock(&fs_info->scrub_lock);
310         __scrub_blocked_if_needed(fs_info);
311         atomic_dec(&fs_info->scrubs_paused);
312         mutex_unlock(&fs_info->scrub_lock);
313 
314         wake_up(&fs_info->scrub_pause_wait);
315 }
316 
317 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
318 {
319         scrub_pause_on(fs_info);
320         scrub_pause_off(fs_info);
321 }
322 
323 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
324 {
325         int i;
326 
327         if (!sctx)
328                 return;
329 
330         for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
331                 release_scrub_stripe(&sctx->stripes[i]);
332 
333         kvfree(sctx);
334 }
335 
336 static void scrub_put_ctx(struct scrub_ctx *sctx)
337 {
338         if (refcount_dec_and_test(&sctx->refs))
339                 scrub_free_ctx(sctx);
340 }
341 
342 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
343                 struct btrfs_fs_info *fs_info, int is_dev_replace)
344 {
345         struct scrub_ctx *sctx;
346         int             i;
347 
348         /* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
349          * kvzalloc().
350          */
351         sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
352         if (!sctx)
353                 goto nomem;
354         refcount_set(&sctx->refs, 1);
355         sctx->is_dev_replace = is_dev_replace;
356         sctx->fs_info = fs_info;
357         sctx->extent_path.search_commit_root = 1;
358         sctx->extent_path.skip_locking = 1;
359         sctx->csum_path.search_commit_root = 1;
360         sctx->csum_path.skip_locking = 1;
361         for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
362                 int ret;
363 
364                 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
365                 if (ret < 0)
366                         goto nomem;
367                 sctx->stripes[i].sctx = sctx;
368         }
369         sctx->first_free = 0;
370         atomic_set(&sctx->cancel_req, 0);
371 
372         spin_lock_init(&sctx->stat_lock);
373         sctx->throttle_deadline = 0;
374 
375         mutex_init(&sctx->wr_lock);
376         if (is_dev_replace) {
377                 WARN_ON(!fs_info->dev_replace.tgtdev);
378                 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
379         }
380 
381         return sctx;
382 
383 nomem:
384         scrub_free_ctx(sctx);
385         return ERR_PTR(-ENOMEM);
386 }
387 
388 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
389                                      u64 root, void *warn_ctx)
390 {
391         u32 nlink;
392         int ret;
393         int i;
394         unsigned nofs_flag;
395         struct extent_buffer *eb;
396         struct btrfs_inode_item *inode_item;
397         struct scrub_warning *swarn = warn_ctx;
398         struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
399         struct inode_fs_paths *ipath = NULL;
400         struct btrfs_root *local_root;
401         struct btrfs_key key;
402 
403         local_root = btrfs_get_fs_root(fs_info, root, true);
404         if (IS_ERR(local_root)) {
405                 ret = PTR_ERR(local_root);
406                 goto err;
407         }
408 
409         /*
410          * this makes the path point to (inum INODE_ITEM ioff)
411          */
412         key.objectid = inum;
413         key.type = BTRFS_INODE_ITEM_KEY;
414         key.offset = 0;
415 
416         ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
417         if (ret) {
418                 btrfs_put_root(local_root);
419                 btrfs_release_path(swarn->path);
420                 goto err;
421         }
422 
423         eb = swarn->path->nodes[0];
424         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
425                                         struct btrfs_inode_item);
426         nlink = btrfs_inode_nlink(eb, inode_item);
427         btrfs_release_path(swarn->path);
428 
429         /*
430          * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
431          * uses GFP_NOFS in this context, so we keep it consistent but it does
432          * not seem to be strictly necessary.
433          */
434         nofs_flag = memalloc_nofs_save();
435         ipath = init_ipath(4096, local_root, swarn->path);
436         memalloc_nofs_restore(nofs_flag);
437         if (IS_ERR(ipath)) {
438                 btrfs_put_root(local_root);
439                 ret = PTR_ERR(ipath);
440                 ipath = NULL;
441                 goto err;
442         }
443         ret = paths_from_inode(inum, ipath);
444 
445         if (ret < 0)
446                 goto err;
447 
448         /*
449          * we deliberately ignore the bit ipath might have been too small to
450          * hold all of the paths here
451          */
452         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
453                 btrfs_warn_in_rcu(fs_info,
454 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
455                                   swarn->errstr, swarn->logical,
456                                   btrfs_dev_name(swarn->dev),
457                                   swarn->physical,
458                                   root, inum, offset,
459                                   fs_info->sectorsize, nlink,
460                                   (char *)(unsigned long)ipath->fspath->val[i]);
461 
462         btrfs_put_root(local_root);
463         free_ipath(ipath);
464         return 0;
465 
466 err:
467         btrfs_warn_in_rcu(fs_info,
468                           "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
469                           swarn->errstr, swarn->logical,
470                           btrfs_dev_name(swarn->dev),
471                           swarn->physical,
472                           root, inum, offset, ret);
473 
474         free_ipath(ipath);
475         return 0;
476 }
477 
478 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
479                                        bool is_super, u64 logical, u64 physical)
480 {
481         struct btrfs_fs_info *fs_info = dev->fs_info;
482         struct btrfs_path *path;
483         struct btrfs_key found_key;
484         struct extent_buffer *eb;
485         struct btrfs_extent_item *ei;
486         struct scrub_warning swarn;
487         u64 flags = 0;
488         u32 item_size;
489         int ret;
490 
491         /* Super block error, no need to search extent tree. */
492         if (is_super) {
493                 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
494                                   errstr, btrfs_dev_name(dev), physical);
495                 return;
496         }
497         path = btrfs_alloc_path();
498         if (!path)
499                 return;
500 
501         swarn.physical = physical;
502         swarn.logical = logical;
503         swarn.errstr = errstr;
504         swarn.dev = NULL;
505 
506         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
507                                   &flags);
508         if (ret < 0)
509                 goto out;
510 
511         swarn.extent_item_size = found_key.offset;
512 
513         eb = path->nodes[0];
514         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
515         item_size = btrfs_item_size(eb, path->slots[0]);
516 
517         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
518                 unsigned long ptr = 0;
519                 u8 ref_level;
520                 u64 ref_root;
521 
522                 while (true) {
523                         ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
524                                                       item_size, &ref_root,
525                                                       &ref_level);
526                         if (ret < 0) {
527                                 btrfs_warn(fs_info,
528                                 "failed to resolve tree backref for logical %llu: %d",
529                                                   swarn.logical, ret);
530                                 break;
531                         }
532                         if (ret > 0)
533                                 break;
534                         btrfs_warn_in_rcu(fs_info,
535 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
536                                 errstr, swarn.logical, btrfs_dev_name(dev),
537                                 swarn.physical, (ref_level ? "node" : "leaf"),
538                                 ref_level, ref_root);
539                 }
540                 btrfs_release_path(path);
541         } else {
542                 struct btrfs_backref_walk_ctx ctx = { 0 };
543 
544                 btrfs_release_path(path);
545 
546                 ctx.bytenr = found_key.objectid;
547                 ctx.extent_item_pos = swarn.logical - found_key.objectid;
548                 ctx.fs_info = fs_info;
549 
550                 swarn.path = path;
551                 swarn.dev = dev;
552 
553                 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
554         }
555 
556 out:
557         btrfs_free_path(path);
558 }
559 
560 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
561 {
562         int ret = 0;
563         u64 length;
564 
565         if (!btrfs_is_zoned(sctx->fs_info))
566                 return 0;
567 
568         if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
569                 return 0;
570 
571         if (sctx->write_pointer < physical) {
572                 length = physical - sctx->write_pointer;
573 
574                 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
575                                                 sctx->write_pointer, length);
576                 if (!ret)
577                         sctx->write_pointer = physical;
578         }
579         return ret;
580 }
581 
582 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
583 {
584         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
585         int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
586 
587         return stripe->pages[page_index];
588 }
589 
590 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
591                                                  int sector_nr)
592 {
593         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
594 
595         return offset_in_page(sector_nr << fs_info->sectorsize_bits);
596 }
597 
598 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
599 {
600         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
601         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
602         const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
603         const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
604         const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
605         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
606         u8 on_disk_csum[BTRFS_CSUM_SIZE];
607         u8 calculated_csum[BTRFS_CSUM_SIZE];
608         struct btrfs_header *header;
609 
610         /*
611          * Here we don't have a good way to attach the pages (and subpages)
612          * to a dummy extent buffer, thus we have to directly grab the members
613          * from pages.
614          */
615         header = (struct btrfs_header *)(page_address(first_page) + first_off);
616         memcpy(on_disk_csum, header->csum, fs_info->csum_size);
617 
618         if (logical != btrfs_stack_header_bytenr(header)) {
619                 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
620                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
621                 btrfs_warn_rl(fs_info,
622                 "tree block %llu mirror %u has bad bytenr, has %llu want %llu",
623                               logical, stripe->mirror_num,
624                               btrfs_stack_header_bytenr(header), logical);
625                 return;
626         }
627         if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
628                    BTRFS_FSID_SIZE) != 0) {
629                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
630                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
631                 btrfs_warn_rl(fs_info,
632                 "tree block %llu mirror %u has bad fsid, has %pU want %pU",
633                               logical, stripe->mirror_num,
634                               header->fsid, fs_info->fs_devices->fsid);
635                 return;
636         }
637         if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
638                    BTRFS_UUID_SIZE) != 0) {
639                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
640                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
641                 btrfs_warn_rl(fs_info,
642                 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
643                               logical, stripe->mirror_num,
644                               header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
645                 return;
646         }
647 
648         /* Now check tree block csum. */
649         shash->tfm = fs_info->csum_shash;
650         crypto_shash_init(shash);
651         crypto_shash_update(shash, page_address(first_page) + first_off +
652                             BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
653 
654         for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
655                 struct page *page = scrub_stripe_get_page(stripe, i);
656                 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
657 
658                 crypto_shash_update(shash, page_address(page) + page_off,
659                                     fs_info->sectorsize);
660         }
661 
662         crypto_shash_final(shash, calculated_csum);
663         if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
664                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
665                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
666                 btrfs_warn_rl(fs_info,
667                 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
668                               logical, stripe->mirror_num,
669                               CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
670                               CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
671                 return;
672         }
673         if (stripe->sectors[sector_nr].generation !=
674             btrfs_stack_header_generation(header)) {
675                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
676                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
677                 btrfs_warn_rl(fs_info,
678                 "tree block %llu mirror %u has bad generation, has %llu want %llu",
679                               logical, stripe->mirror_num,
680                               btrfs_stack_header_generation(header),
681                               stripe->sectors[sector_nr].generation);
682                 return;
683         }
684         bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
685         bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
686         bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
687 }
688 
689 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
690 {
691         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
692         struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
693         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
694         struct page *page = scrub_stripe_get_page(stripe, sector_nr);
695         unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
696         u8 csum_buf[BTRFS_CSUM_SIZE];
697         int ret;
698 
699         ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
700 
701         /* Sector not utilized, skip it. */
702         if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
703                 return;
704 
705         /* IO error, no need to check. */
706         if (test_bit(sector_nr, &stripe->io_error_bitmap))
707                 return;
708 
709         /* Metadata, verify the full tree block. */
710         if (sector->is_metadata) {
711                 /*
712                  * Check if the tree block crosses the stripe boundary.  If
713                  * crossed the boundary, we cannot verify it but only give a
714                  * warning.
715                  *
716                  * This can only happen on a very old filesystem where chunks
717                  * are not ensured to be stripe aligned.
718                  */
719                 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
720                         btrfs_warn_rl(fs_info,
721                         "tree block at %llu crosses stripe boundary %llu",
722                                       stripe->logical +
723                                       (sector_nr << fs_info->sectorsize_bits),
724                                       stripe->logical);
725                         return;
726                 }
727                 scrub_verify_one_metadata(stripe, sector_nr);
728                 return;
729         }
730 
731         /*
732          * Data is easier, we just verify the data csum (if we have it).  For
733          * cases without csum, we have no other choice but to trust it.
734          */
735         if (!sector->csum) {
736                 clear_bit(sector_nr, &stripe->error_bitmap);
737                 return;
738         }
739 
740         ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
741         if (ret < 0) {
742                 set_bit(sector_nr, &stripe->csum_error_bitmap);
743                 set_bit(sector_nr, &stripe->error_bitmap);
744         } else {
745                 clear_bit(sector_nr, &stripe->csum_error_bitmap);
746                 clear_bit(sector_nr, &stripe->error_bitmap);
747         }
748 }
749 
750 /* Verify specified sectors of a stripe. */
751 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
752 {
753         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
754         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
755         int sector_nr;
756 
757         for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
758                 scrub_verify_one_sector(stripe, sector_nr);
759                 if (stripe->sectors[sector_nr].is_metadata)
760                         sector_nr += sectors_per_tree - 1;
761         }
762 }
763 
764 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
765 {
766         int i;
767 
768         for (i = 0; i < stripe->nr_sectors; i++) {
769                 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
770                     scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
771                         break;
772         }
773         ASSERT(i < stripe->nr_sectors);
774         return i;
775 }
776 
777 /*
778  * Repair read is different to the regular read:
779  *
780  * - Only reads the failed sectors
781  * - May have extra blocksize limits
782  */
783 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
784 {
785         struct scrub_stripe *stripe = bbio->private;
786         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
787         struct bio_vec *bvec;
788         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
789         u32 bio_size = 0;
790         int i;
791 
792         ASSERT(sector_nr < stripe->nr_sectors);
793 
794         bio_for_each_bvec_all(bvec, &bbio->bio, i)
795                 bio_size += bvec->bv_len;
796 
797         if (bbio->bio.bi_status) {
798                 bitmap_set(&stripe->io_error_bitmap, sector_nr,
799                            bio_size >> fs_info->sectorsize_bits);
800                 bitmap_set(&stripe->error_bitmap, sector_nr,
801                            bio_size >> fs_info->sectorsize_bits);
802         } else {
803                 bitmap_clear(&stripe->io_error_bitmap, sector_nr,
804                              bio_size >> fs_info->sectorsize_bits);
805         }
806         bio_put(&bbio->bio);
807         if (atomic_dec_and_test(&stripe->pending_io))
808                 wake_up(&stripe->io_wait);
809 }
810 
811 static int calc_next_mirror(int mirror, int num_copies)
812 {
813         ASSERT(mirror <= num_copies);
814         return (mirror + 1 > num_copies) ? 1 : mirror + 1;
815 }
816 
817 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
818                                             int mirror, int blocksize, bool wait)
819 {
820         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
821         struct btrfs_bio *bbio = NULL;
822         const unsigned long old_error_bitmap = stripe->error_bitmap;
823         int i;
824 
825         ASSERT(stripe->mirror_num >= 1);
826         ASSERT(atomic_read(&stripe->pending_io) == 0);
827 
828         for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
829                 struct page *page;
830                 int pgoff;
831                 int ret;
832 
833                 page = scrub_stripe_get_page(stripe, i);
834                 pgoff = scrub_stripe_get_page_offset(stripe, i);
835 
836                 /* The current sector cannot be merged, submit the bio. */
837                 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
838                              bbio->bio.bi_iter.bi_size >= blocksize)) {
839                         ASSERT(bbio->bio.bi_iter.bi_size);
840                         atomic_inc(&stripe->pending_io);
841                         btrfs_submit_bio(bbio, mirror);
842                         if (wait)
843                                 wait_scrub_stripe_io(stripe);
844                         bbio = NULL;
845                 }
846 
847                 if (!bbio) {
848                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
849                                 fs_info, scrub_repair_read_endio, stripe);
850                         bbio->bio.bi_iter.bi_sector = (stripe->logical +
851                                 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
852                 }
853 
854                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
855                 ASSERT(ret == fs_info->sectorsize);
856         }
857         if (bbio) {
858                 ASSERT(bbio->bio.bi_iter.bi_size);
859                 atomic_inc(&stripe->pending_io);
860                 btrfs_submit_bio(bbio, mirror);
861                 if (wait)
862                         wait_scrub_stripe_io(stripe);
863         }
864 }
865 
866 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
867                                        struct scrub_stripe *stripe)
868 {
869         static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
870                                       DEFAULT_RATELIMIT_BURST);
871         struct btrfs_fs_info *fs_info = sctx->fs_info;
872         struct btrfs_device *dev = NULL;
873         u64 physical = 0;
874         int nr_data_sectors = 0;
875         int nr_meta_sectors = 0;
876         int nr_nodatacsum_sectors = 0;
877         int nr_repaired_sectors = 0;
878         int sector_nr;
879 
880         if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
881                 return;
882 
883         /*
884          * Init needed infos for error reporting.
885          *
886          * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
887          * thus no need for dev/physical, error reporting still needs dev and physical.
888          */
889         if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
890                 u64 mapped_len = fs_info->sectorsize;
891                 struct btrfs_io_context *bioc = NULL;
892                 int stripe_index = stripe->mirror_num - 1;
893                 int ret;
894 
895                 /* For scrub, our mirror_num should always start at 1. */
896                 ASSERT(stripe->mirror_num >= 1);
897                 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
898                                       stripe->logical, &mapped_len, &bioc,
899                                       NULL, NULL);
900                 /*
901                  * If we failed, dev will be NULL, and later detailed reports
902                  * will just be skipped.
903                  */
904                 if (ret < 0)
905                         goto skip;
906                 physical = bioc->stripes[stripe_index].physical;
907                 dev = bioc->stripes[stripe_index].dev;
908                 btrfs_put_bioc(bioc);
909         }
910 
911 skip:
912         for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
913                 bool repaired = false;
914 
915                 if (stripe->sectors[sector_nr].is_metadata) {
916                         nr_meta_sectors++;
917                 } else {
918                         nr_data_sectors++;
919                         if (!stripe->sectors[sector_nr].csum)
920                                 nr_nodatacsum_sectors++;
921                 }
922 
923                 if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
924                     !test_bit(sector_nr, &stripe->error_bitmap)) {
925                         nr_repaired_sectors++;
926                         repaired = true;
927                 }
928 
929                 /* Good sector from the beginning, nothing need to be done. */
930                 if (!test_bit(sector_nr, &stripe->init_error_bitmap))
931                         continue;
932 
933                 /*
934                  * Report error for the corrupted sectors.  If repaired, just
935                  * output the message of repaired message.
936                  */
937                 if (repaired) {
938                         if (dev) {
939                                 btrfs_err_rl_in_rcu(fs_info,
940                         "fixed up error at logical %llu on dev %s physical %llu",
941                                             stripe->logical, btrfs_dev_name(dev),
942                                             physical);
943                         } else {
944                                 btrfs_err_rl_in_rcu(fs_info,
945                         "fixed up error at logical %llu on mirror %u",
946                                             stripe->logical, stripe->mirror_num);
947                         }
948                         continue;
949                 }
950 
951                 /* The remaining are all for unrepaired. */
952                 if (dev) {
953                         btrfs_err_rl_in_rcu(fs_info,
954         "unable to fixup (regular) error at logical %llu on dev %s physical %llu",
955                                             stripe->logical, btrfs_dev_name(dev),
956                                             physical);
957                 } else {
958                         btrfs_err_rl_in_rcu(fs_info,
959         "unable to fixup (regular) error at logical %llu on mirror %u",
960                                             stripe->logical, stripe->mirror_num);
961                 }
962 
963                 if (test_bit(sector_nr, &stripe->io_error_bitmap))
964                         if (__ratelimit(&rs) && dev)
965                                 scrub_print_common_warning("i/o error", dev, false,
966                                                      stripe->logical, physical);
967                 if (test_bit(sector_nr, &stripe->csum_error_bitmap))
968                         if (__ratelimit(&rs) && dev)
969                                 scrub_print_common_warning("checksum error", dev, false,
970                                                      stripe->logical, physical);
971                 if (test_bit(sector_nr, &stripe->meta_error_bitmap))
972                         if (__ratelimit(&rs) && dev)
973                                 scrub_print_common_warning("header error", dev, false,
974                                                      stripe->logical, physical);
975         }
976 
977         spin_lock(&sctx->stat_lock);
978         sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
979         sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
980         sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
981         sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
982         sctx->stat.no_csum += nr_nodatacsum_sectors;
983         sctx->stat.read_errors += stripe->init_nr_io_errors;
984         sctx->stat.csum_errors += stripe->init_nr_csum_errors;
985         sctx->stat.verify_errors += stripe->init_nr_meta_errors;
986         sctx->stat.uncorrectable_errors +=
987                 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
988         sctx->stat.corrected_errors += nr_repaired_sectors;
989         spin_unlock(&sctx->stat_lock);
990 }
991 
992 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
993                                 unsigned long write_bitmap, bool dev_replace);
994 
995 /*
996  * The main entrance for all read related scrub work, including:
997  *
998  * - Wait for the initial read to finish
999  * - Verify and locate any bad sectors
1000  * - Go through the remaining mirrors and try to read as large blocksize as
1001  *   possible
1002  * - Go through all mirrors (including the failed mirror) sector-by-sector
1003  * - Submit writeback for repaired sectors
1004  *
1005  * Writeback for dev-replace does not happen here, it needs extra
1006  * synchronization for zoned devices.
1007  */
1008 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009 {
1010         struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011         struct scrub_ctx *sctx = stripe->sctx;
1012         struct btrfs_fs_info *fs_info = sctx->fs_info;
1013         int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014                                           stripe->bg->length);
1015         unsigned long repaired;
1016         int mirror;
1017         int i;
1018 
1019         ASSERT(stripe->mirror_num > 0);
1020 
1021         wait_scrub_stripe_io(stripe);
1022         scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1023         /* Save the initial failed bitmap for later repair and report usage. */
1024         stripe->init_error_bitmap = stripe->error_bitmap;
1025         stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1026                                                   stripe->nr_sectors);
1027         stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1028                                                     stripe->nr_sectors);
1029         stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1030                                                     stripe->nr_sectors);
1031 
1032         if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1033                 goto out;
1034 
1035         /*
1036          * Try all remaining mirrors.
1037          *
1038          * Here we still try to read as large block as possible, as this is
1039          * faster and we have extra safety nets to rely on.
1040          */
1041         for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1042              mirror != stripe->mirror_num;
1043              mirror = calc_next_mirror(mirror, num_copies)) {
1044                 const unsigned long old_error_bitmap = stripe->error_bitmap;
1045 
1046                 scrub_stripe_submit_repair_read(stripe, mirror,
1047                                                 BTRFS_STRIPE_LEN, false);
1048                 wait_scrub_stripe_io(stripe);
1049                 scrub_verify_one_stripe(stripe, old_error_bitmap);
1050                 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1051                         goto out;
1052         }
1053 
1054         /*
1055          * Last safety net, try re-checking all mirrors, including the failed
1056          * one, sector-by-sector.
1057          *
1058          * As if one sector failed the drive's internal csum, the whole read
1059          * containing the offending sector would be marked as error.
1060          * Thus here we do sector-by-sector read.
1061          *
1062          * This can be slow, thus we only try it as the last resort.
1063          */
1064 
1065         for (i = 0, mirror = stripe->mirror_num;
1066              i < num_copies;
1067              i++, mirror = calc_next_mirror(mirror, num_copies)) {
1068                 const unsigned long old_error_bitmap = stripe->error_bitmap;
1069 
1070                 scrub_stripe_submit_repair_read(stripe, mirror,
1071                                                 fs_info->sectorsize, true);
1072                 wait_scrub_stripe_io(stripe);
1073                 scrub_verify_one_stripe(stripe, old_error_bitmap);
1074                 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1075                         goto out;
1076         }
1077 out:
1078         /*
1079          * Submit the repaired sectors.  For zoned case, we cannot do repair
1080          * in-place, but queue the bg to be relocated.
1081          */
1082         bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap,
1083                       stripe->nr_sectors);
1084         if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1085                 if (btrfs_is_zoned(fs_info)) {
1086                         btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1087                 } else {
1088                         scrub_write_sectors(sctx, stripe, repaired, false);
1089                         wait_scrub_stripe_io(stripe);
1090                 }
1091         }
1092 
1093         scrub_stripe_report_errors(sctx, stripe);
1094         set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095         wake_up(&stripe->repair_wait);
1096 }
1097 
1098 static void scrub_read_endio(struct btrfs_bio *bbio)
1099 {
1100         struct scrub_stripe *stripe = bbio->private;
1101         struct bio_vec *bvec;
1102         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103         int num_sectors;
1104         u32 bio_size = 0;
1105         int i;
1106 
1107         ASSERT(sector_nr < stripe->nr_sectors);
1108         bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109                 bio_size += bvec->bv_len;
1110         num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111 
1112         if (bbio->bio.bi_status) {
1113                 bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114                 bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1115         } else {
1116                 bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1117         }
1118         bio_put(&bbio->bio);
1119         if (atomic_dec_and_test(&stripe->pending_io)) {
1120                 wake_up(&stripe->io_wait);
1121                 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122                 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123         }
1124 }
1125 
1126 static void scrub_write_endio(struct btrfs_bio *bbio)
1127 {
1128         struct scrub_stripe *stripe = bbio->private;
1129         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130         struct bio_vec *bvec;
1131         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132         u32 bio_size = 0;
1133         int i;
1134 
1135         bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136                 bio_size += bvec->bv_len;
1137 
1138         if (bbio->bio.bi_status) {
1139                 unsigned long flags;
1140 
1141                 spin_lock_irqsave(&stripe->write_error_lock, flags);
1142                 bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143                            bio_size >> fs_info->sectorsize_bits);
1144                 spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1145         }
1146         bio_put(&bbio->bio);
1147 
1148         if (atomic_dec_and_test(&stripe->pending_io))
1149                 wake_up(&stripe->io_wait);
1150 }
1151 
1152 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153                                    struct scrub_stripe *stripe,
1154                                    struct btrfs_bio *bbio, bool dev_replace)
1155 {
1156         struct btrfs_fs_info *fs_info = sctx->fs_info;
1157         u32 bio_len = bbio->bio.bi_iter.bi_size;
1158         u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159                       stripe->logical;
1160 
1161         fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162         atomic_inc(&stripe->pending_io);
1163         btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164         if (!btrfs_is_zoned(fs_info))
1165                 return;
1166         /*
1167          * For zoned writeback, queue depth must be 1, thus we must wait for
1168          * the write to finish before the next write.
1169          */
1170         wait_scrub_stripe_io(stripe);
1171 
1172         /*
1173          * And also need to update the write pointer if write finished
1174          * successfully.
1175          */
1176         if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177                       &stripe->write_error_bitmap))
1178                 sctx->write_pointer += bio_len;
1179 }
1180 
1181 /*
1182  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183  *
1184  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185  *
1186  * - Only needs logical bytenr and mirror_num
1187  *   Just like the scrub read path
1188  *
1189  * - Would only result in writes to the specified mirror
1190  *   Unlike the regular writeback path, which would write back to all stripes
1191  *
1192  * - Handle dev-replace and read-repair writeback differently
1193  */
1194 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195                                 unsigned long write_bitmap, bool dev_replace)
1196 {
1197         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198         struct btrfs_bio *bbio = NULL;
1199         int sector_nr;
1200 
1201         for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202                 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204                 int ret;
1205 
1206                 /* We should only writeback sectors covered by an extent. */
1207                 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1208 
1209                 /* Cannot merge with previous sector, submit the current one. */
1210                 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211                         scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212                         bbio = NULL;
1213                 }
1214                 if (!bbio) {
1215                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216                                                fs_info, scrub_write_endio, stripe);
1217                         bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218                                 (sector_nr << fs_info->sectorsize_bits)) >>
1219                                 SECTOR_SHIFT;
1220                 }
1221                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222                 ASSERT(ret == fs_info->sectorsize);
1223         }
1224         if (bbio)
1225                 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1226 }
1227 
1228 /*
1229  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231  */
1232 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233                                   unsigned int bio_size)
1234 {
1235         const int time_slice = 1000;
1236         s64 delta;
1237         ktime_t now;
1238         u32 div;
1239         u64 bwlimit;
1240 
1241         bwlimit = READ_ONCE(device->scrub_speed_max);
1242         if (bwlimit == 0)
1243                 return;
1244 
1245         /*
1246          * Slice is divided into intervals when the IO is submitted, adjust by
1247          * bwlimit and maximum of 64 intervals.
1248          */
1249         div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250         div = min_t(u32, 64, div);
1251 
1252         /* Start new epoch, set deadline */
1253         now = ktime_get();
1254         if (sctx->throttle_deadline == 0) {
1255                 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256                 sctx->throttle_sent = 0;
1257         }
1258 
1259         /* Still in the time to send? */
1260         if (ktime_before(now, sctx->throttle_deadline)) {
1261                 /* If current bio is within the limit, send it */
1262                 sctx->throttle_sent += bio_size;
1263                 if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264                         return;
1265 
1266                 /* We're over the limit, sleep until the rest of the slice */
1267                 delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268         } else {
1269                 /* New request after deadline, start new epoch */
1270                 delta = 0;
1271         }
1272 
1273         if (delta) {
1274                 long timeout;
1275 
1276                 timeout = div_u64(delta * HZ, 1000);
1277                 schedule_timeout_interruptible(timeout);
1278         }
1279 
1280         /* Next call will start the deadline period */
1281         sctx->throttle_deadline = 0;
1282 }
1283 
1284 /*
1285  * Given a physical address, this will calculate it's
1286  * logical offset. if this is a parity stripe, it will return
1287  * the most left data stripe's logical offset.
1288  *
1289  * return 0 if it is a data stripe, 1 means parity stripe.
1290  */
1291 static int get_raid56_logic_offset(u64 physical, int num,
1292                                    struct btrfs_chunk_map *map, u64 *offset,
1293                                    u64 *stripe_start)
1294 {
1295         int i;
1296         int j = 0;
1297         u64 last_offset;
1298         const int data_stripes = nr_data_stripes(map);
1299 
1300         last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301         if (stripe_start)
1302                 *stripe_start = last_offset;
1303 
1304         *offset = last_offset;
1305         for (i = 0; i < data_stripes; i++) {
1306                 u32 stripe_nr;
1307                 u32 stripe_index;
1308                 u32 rot;
1309 
1310                 *offset = last_offset + btrfs_stripe_nr_to_offset(i);
1311 
1312                 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1313 
1314                 /* Work out the disk rotation on this stripe-set */
1315                 rot = stripe_nr % map->num_stripes;
1316                 /* calculate which stripe this data locates */
1317                 rot += i;
1318                 stripe_index = rot % map->num_stripes;
1319                 if (stripe_index == num)
1320                         return 0;
1321                 if (stripe_index < num)
1322                         j++;
1323         }
1324         *offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325         return 1;
1326 }
1327 
1328 /*
1329  * Return 0 if the extent item range covers any byte of the range.
1330  * Return <0 if the extent item is before @search_start.
1331  * Return >0 if the extent item is after @start_start + @search_len.
1332  */
1333 static int compare_extent_item_range(struct btrfs_path *path,
1334                                      u64 search_start, u64 search_len)
1335 {
1336         struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337         u64 len;
1338         struct btrfs_key key;
1339 
1340         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341         ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342                key.type == BTRFS_METADATA_ITEM_KEY);
1343         if (key.type == BTRFS_METADATA_ITEM_KEY)
1344                 len = fs_info->nodesize;
1345         else
1346                 len = key.offset;
1347 
1348         if (key.objectid + len <= search_start)
1349                 return -1;
1350         if (key.objectid >= search_start + search_len)
1351                 return 1;
1352         return 0;
1353 }
1354 
1355 /*
1356  * Locate one extent item which covers any byte in range
1357  * [@search_start, @search_start + @search_length)
1358  *
1359  * If the path is not initialized, we will initialize the search by doing
1360  * a btrfs_search_slot().
1361  * If the path is already initialized, we will use the path as the initial
1362  * slot, to avoid duplicated btrfs_search_slot() calls.
1363  *
1364  * NOTE: If an extent item starts before @search_start, we will still
1365  * return the extent item. This is for data extent crossing stripe boundary.
1366  *
1367  * Return 0 if we found such extent item, and @path will point to the extent item.
1368  * Return >0 if no such extent item can be found, and @path will be released.
1369  * Return <0 if hit fatal error, and @path will be released.
1370  */
1371 static int find_first_extent_item(struct btrfs_root *extent_root,
1372                                   struct btrfs_path *path,
1373                                   u64 search_start, u64 search_len)
1374 {
1375         struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376         struct btrfs_key key;
1377         int ret;
1378 
1379         /* Continue using the existing path */
1380         if (path->nodes[0])
1381                 goto search_forward;
1382 
1383         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384                 key.type = BTRFS_METADATA_ITEM_KEY;
1385         else
1386                 key.type = BTRFS_EXTENT_ITEM_KEY;
1387         key.objectid = search_start;
1388         key.offset = (u64)-1;
1389 
1390         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391         if (ret < 0)
1392                 return ret;
1393         if (ret == 0) {
1394                 /*
1395                  * Key with offset -1 found, there would have to exist an extent
1396                  * item with such offset, but this is out of the valid range.
1397                  */
1398                 btrfs_release_path(path);
1399                 return -EUCLEAN;
1400         }
1401 
1402         /*
1403          * Here we intentionally pass 0 as @min_objectid, as there could be
1404          * an extent item starting before @search_start.
1405          */
1406         ret = btrfs_previous_extent_item(extent_root, path, 0);
1407         if (ret < 0)
1408                 return ret;
1409         /*
1410          * No matter whether we have found an extent item, the next loop will
1411          * properly do every check on the key.
1412          */
1413 search_forward:
1414         while (true) {
1415                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1416                 if (key.objectid >= search_start + search_len)
1417                         break;
1418                 if (key.type != BTRFS_METADATA_ITEM_KEY &&
1419                     key.type != BTRFS_EXTENT_ITEM_KEY)
1420                         goto next;
1421 
1422                 ret = compare_extent_item_range(path, search_start, search_len);
1423                 if (ret == 0)
1424                         return ret;
1425                 if (ret > 0)
1426                         break;
1427 next:
1428                 ret = btrfs_next_item(extent_root, path);
1429                 if (ret) {
1430                         /* Either no more items or a fatal error. */
1431                         btrfs_release_path(path);
1432                         return ret;
1433                 }
1434         }
1435         btrfs_release_path(path);
1436         return 1;
1437 }
1438 
1439 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1440                             u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1441 {
1442         struct btrfs_key key;
1443         struct btrfs_extent_item *ei;
1444 
1445         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1446         ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1447                key.type == BTRFS_EXTENT_ITEM_KEY);
1448         *extent_start_ret = key.objectid;
1449         if (key.type == BTRFS_METADATA_ITEM_KEY)
1450                 *size_ret = path->nodes[0]->fs_info->nodesize;
1451         else
1452                 *size_ret = key.offset;
1453         ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1454         *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1455         *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1456 }
1457 
1458 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1459                                         u64 physical, u64 physical_end)
1460 {
1461         struct btrfs_fs_info *fs_info = sctx->fs_info;
1462         int ret = 0;
1463 
1464         if (!btrfs_is_zoned(fs_info))
1465                 return 0;
1466 
1467         mutex_lock(&sctx->wr_lock);
1468         if (sctx->write_pointer < physical_end) {
1469                 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1470                                                     physical,
1471                                                     sctx->write_pointer);
1472                 if (ret)
1473                         btrfs_err(fs_info,
1474                                   "zoned: failed to recover write pointer");
1475         }
1476         mutex_unlock(&sctx->wr_lock);
1477         btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1478 
1479         return ret;
1480 }
1481 
1482 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1483                                  struct scrub_stripe *stripe,
1484                                  u64 extent_start, u64 extent_len,
1485                                  u64 extent_flags, u64 extent_gen)
1486 {
1487         for (u64 cur_logical = max(stripe->logical, extent_start);
1488              cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1489                                extent_start + extent_len);
1490              cur_logical += fs_info->sectorsize) {
1491                 const int nr_sector = (cur_logical - stripe->logical) >>
1492                                       fs_info->sectorsize_bits;
1493                 struct scrub_sector_verification *sector =
1494                                                 &stripe->sectors[nr_sector];
1495 
1496                 set_bit(nr_sector, &stripe->extent_sector_bitmap);
1497                 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1498                         sector->is_metadata = true;
1499                         sector->generation = extent_gen;
1500                 }
1501         }
1502 }
1503 
1504 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1505 {
1506         stripe->extent_sector_bitmap = 0;
1507         stripe->init_error_bitmap = 0;
1508         stripe->init_nr_io_errors = 0;
1509         stripe->init_nr_csum_errors = 0;
1510         stripe->init_nr_meta_errors = 0;
1511         stripe->error_bitmap = 0;
1512         stripe->io_error_bitmap = 0;
1513         stripe->csum_error_bitmap = 0;
1514         stripe->meta_error_bitmap = 0;
1515 }
1516 
1517 /*
1518  * Locate one stripe which has at least one extent in its range.
1519  *
1520  * Return 0 if found such stripe, and store its info into @stripe.
1521  * Return >0 if there is no such stripe in the specified range.
1522  * Return <0 for error.
1523  */
1524 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1525                                         struct btrfs_path *extent_path,
1526                                         struct btrfs_path *csum_path,
1527                                         struct btrfs_device *dev, u64 physical,
1528                                         int mirror_num, u64 logical_start,
1529                                         u32 logical_len,
1530                                         struct scrub_stripe *stripe)
1531 {
1532         struct btrfs_fs_info *fs_info = bg->fs_info;
1533         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1534         struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1535         const u64 logical_end = logical_start + logical_len;
1536         u64 cur_logical = logical_start;
1537         u64 stripe_end;
1538         u64 extent_start;
1539         u64 extent_len;
1540         u64 extent_flags;
1541         u64 extent_gen;
1542         int ret;
1543 
1544         memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1545                                    stripe->nr_sectors);
1546         scrub_stripe_reset_bitmaps(stripe);
1547 
1548         /* The range must be inside the bg. */
1549         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1550 
1551         ret = find_first_extent_item(extent_root, extent_path, logical_start,
1552                                      logical_len);
1553         /* Either error or not found. */
1554         if (ret)
1555                 goto out;
1556         get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1557                         &extent_gen);
1558         if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1559                 stripe->nr_meta_extents++;
1560         if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1561                 stripe->nr_data_extents++;
1562         cur_logical = max(extent_start, cur_logical);
1563 
1564         /*
1565          * Round down to stripe boundary.
1566          *
1567          * The extra calculation against bg->start is to handle block groups
1568          * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1569          */
1570         stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1571                           bg->start;
1572         stripe->physical = physical + stripe->logical - logical_start;
1573         stripe->dev = dev;
1574         stripe->bg = bg;
1575         stripe->mirror_num = mirror_num;
1576         stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1577 
1578         /* Fill the first extent info into stripe->sectors[] array. */
1579         fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1580                              extent_flags, extent_gen);
1581         cur_logical = extent_start + extent_len;
1582 
1583         /* Fill the extent info for the remaining sectors. */
1584         while (cur_logical <= stripe_end) {
1585                 ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1586                                              stripe_end - cur_logical + 1);
1587                 if (ret < 0)
1588                         goto out;
1589                 if (ret > 0) {
1590                         ret = 0;
1591                         break;
1592                 }
1593                 get_extent_info(extent_path, &extent_start, &extent_len,
1594                                 &extent_flags, &extent_gen);
1595                 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1596                         stripe->nr_meta_extents++;
1597                 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1598                         stripe->nr_data_extents++;
1599                 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1600                                      extent_flags, extent_gen);
1601                 cur_logical = extent_start + extent_len;
1602         }
1603 
1604         /* Now fill the data csum. */
1605         if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1606                 int sector_nr;
1607                 unsigned long csum_bitmap = 0;
1608 
1609                 /* Csum space should have already been allocated. */
1610                 ASSERT(stripe->csums);
1611 
1612                 /*
1613                  * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1614                  * should contain at most 16 sectors.
1615                  */
1616                 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1617 
1618                 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1619                                                 stripe->logical, stripe_end,
1620                                                 stripe->csums, &csum_bitmap);
1621                 if (ret < 0)
1622                         goto out;
1623                 if (ret > 0)
1624                         ret = 0;
1625 
1626                 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1627                         stripe->sectors[sector_nr].csum = stripe->csums +
1628                                 sector_nr * fs_info->csum_size;
1629                 }
1630         }
1631         set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1632 out:
1633         return ret;
1634 }
1635 
1636 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1637 {
1638         scrub_stripe_reset_bitmaps(stripe);
1639 
1640         stripe->nr_meta_extents = 0;
1641         stripe->nr_data_extents = 0;
1642         stripe->state = 0;
1643 
1644         for (int i = 0; i < stripe->nr_sectors; i++) {
1645                 stripe->sectors[i].is_metadata = false;
1646                 stripe->sectors[i].csum = NULL;
1647                 stripe->sectors[i].generation = 0;
1648         }
1649 }
1650 
1651 static u32 stripe_length(const struct scrub_stripe *stripe)
1652 {
1653         ASSERT(stripe->bg);
1654 
1655         return min(BTRFS_STRIPE_LEN,
1656                    stripe->bg->start + stripe->bg->length - stripe->logical);
1657 }
1658 
1659 static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1660                                             struct scrub_stripe *stripe)
1661 {
1662         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1663         struct btrfs_bio *bbio = NULL;
1664         unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1665         u64 stripe_len = BTRFS_STRIPE_LEN;
1666         int mirror = stripe->mirror_num;
1667         int i;
1668 
1669         atomic_inc(&stripe->pending_io);
1670 
1671         for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1672                 struct page *page = scrub_stripe_get_page(stripe, i);
1673                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1674 
1675                 /* We're beyond the chunk boundary, no need to read anymore. */
1676                 if (i >= nr_sectors)
1677                         break;
1678 
1679                 /* The current sector cannot be merged, submit the bio. */
1680                 if (bbio &&
1681                     ((i > 0 &&
1682                       !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1683                      bbio->bio.bi_iter.bi_size >= stripe_len)) {
1684                         ASSERT(bbio->bio.bi_iter.bi_size);
1685                         atomic_inc(&stripe->pending_io);
1686                         btrfs_submit_bio(bbio, mirror);
1687                         bbio = NULL;
1688                 }
1689 
1690                 if (!bbio) {
1691                         struct btrfs_io_stripe io_stripe = {};
1692                         struct btrfs_io_context *bioc = NULL;
1693                         const u64 logical = stripe->logical +
1694                                             (i << fs_info->sectorsize_bits);
1695                         int err;
1696 
1697                         io_stripe.is_scrub = true;
1698                         stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits;
1699                         /*
1700                          * For RST cases, we need to manually split the bbio to
1701                          * follow the RST boundary.
1702                          */
1703                         err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1704                                               &stripe_len, &bioc, &io_stripe, &mirror);
1705                         btrfs_put_bioc(bioc);
1706                         if (err < 0) {
1707                                 set_bit(i, &stripe->io_error_bitmap);
1708                                 set_bit(i, &stripe->error_bitmap);
1709                                 continue;
1710                         }
1711 
1712                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1713                                                fs_info, scrub_read_endio, stripe);
1714                         bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1715                 }
1716 
1717                 __bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1718         }
1719 
1720         if (bbio) {
1721                 ASSERT(bbio->bio.bi_iter.bi_size);
1722                 atomic_inc(&stripe->pending_io);
1723                 btrfs_submit_bio(bbio, mirror);
1724         }
1725 
1726         if (atomic_dec_and_test(&stripe->pending_io)) {
1727                 wake_up(&stripe->io_wait);
1728                 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1729                 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1730         }
1731 }
1732 
1733 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1734                                       struct scrub_stripe *stripe)
1735 {
1736         struct btrfs_fs_info *fs_info = sctx->fs_info;
1737         struct btrfs_bio *bbio;
1738         unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1739         int mirror = stripe->mirror_num;
1740 
1741         ASSERT(stripe->bg);
1742         ASSERT(stripe->mirror_num > 0);
1743         ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1744 
1745         if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1746                 scrub_submit_extent_sector_read(sctx, stripe);
1747                 return;
1748         }
1749 
1750         bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1751                                scrub_read_endio, stripe);
1752 
1753         bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1754         /* Read the whole range inside the chunk boundary. */
1755         for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1756                 struct page *page = scrub_stripe_get_page(stripe, cur);
1757                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1758                 int ret;
1759 
1760                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1761                 /* We should have allocated enough bio vectors. */
1762                 ASSERT(ret == fs_info->sectorsize);
1763         }
1764         atomic_inc(&stripe->pending_io);
1765 
1766         /*
1767          * For dev-replace, either user asks to avoid the source dev, or
1768          * the device is missing, we try the next mirror instead.
1769          */
1770         if (sctx->is_dev_replace &&
1771             (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1772              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1773              !stripe->dev->bdev)) {
1774                 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1775                                                   stripe->bg->length);
1776 
1777                 mirror = calc_next_mirror(mirror, num_copies);
1778         }
1779         btrfs_submit_bio(bbio, mirror);
1780 }
1781 
1782 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1783 {
1784         int i;
1785 
1786         for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1787                 if (stripe->sectors[i].is_metadata) {
1788                         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1789 
1790                         btrfs_err(fs_info,
1791                         "stripe %llu has unrepaired metadata sector at %llu",
1792                                   stripe->logical,
1793                                   stripe->logical + (i << fs_info->sectorsize_bits));
1794                         return true;
1795                 }
1796         }
1797         return false;
1798 }
1799 
1800 static void submit_initial_group_read(struct scrub_ctx *sctx,
1801                                       unsigned int first_slot,
1802                                       unsigned int nr_stripes)
1803 {
1804         struct blk_plug plug;
1805 
1806         ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1807         ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1808 
1809         scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1810                               btrfs_stripe_nr_to_offset(nr_stripes));
1811         blk_start_plug(&plug);
1812         for (int i = 0; i < nr_stripes; i++) {
1813                 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1814 
1815                 /* Those stripes should be initialized. */
1816                 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1817                 scrub_submit_initial_read(sctx, stripe);
1818         }
1819         blk_finish_plug(&plug);
1820 }
1821 
1822 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1823 {
1824         struct btrfs_fs_info *fs_info = sctx->fs_info;
1825         struct scrub_stripe *stripe;
1826         const int nr_stripes = sctx->cur_stripe;
1827         int ret = 0;
1828 
1829         if (!nr_stripes)
1830                 return 0;
1831 
1832         ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1833 
1834         /* Submit the stripes which are populated but not submitted. */
1835         if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1836                 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1837 
1838                 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1839         }
1840 
1841         for (int i = 0; i < nr_stripes; i++) {
1842                 stripe = &sctx->stripes[i];
1843 
1844                 wait_event(stripe->repair_wait,
1845                            test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1846         }
1847 
1848         /* Submit for dev-replace. */
1849         if (sctx->is_dev_replace) {
1850                 /*
1851                  * For dev-replace, if we know there is something wrong with
1852                  * metadata, we should immediately abort.
1853                  */
1854                 for (int i = 0; i < nr_stripes; i++) {
1855                         if (stripe_has_metadata_error(&sctx->stripes[i])) {
1856                                 ret = -EIO;
1857                                 goto out;
1858                         }
1859                 }
1860                 for (int i = 0; i < nr_stripes; i++) {
1861                         unsigned long good;
1862 
1863                         stripe = &sctx->stripes[i];
1864 
1865                         ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1866 
1867                         bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1868                                       &stripe->error_bitmap, stripe->nr_sectors);
1869                         scrub_write_sectors(sctx, stripe, good, true);
1870                 }
1871         }
1872 
1873         /* Wait for the above writebacks to finish. */
1874         for (int i = 0; i < nr_stripes; i++) {
1875                 stripe = &sctx->stripes[i];
1876 
1877                 wait_scrub_stripe_io(stripe);
1878                 spin_lock(&sctx->stat_lock);
1879                 sctx->stat.last_physical = stripe->physical + stripe_length(stripe);
1880                 spin_unlock(&sctx->stat_lock);
1881                 scrub_reset_stripe(stripe);
1882         }
1883 out:
1884         sctx->cur_stripe = 0;
1885         return ret;
1886 }
1887 
1888 static void raid56_scrub_wait_endio(struct bio *bio)
1889 {
1890         complete(bio->bi_private);
1891 }
1892 
1893 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1894                               struct btrfs_device *dev, int mirror_num,
1895                               u64 logical, u32 length, u64 physical,
1896                               u64 *found_logical_ret)
1897 {
1898         struct scrub_stripe *stripe;
1899         int ret;
1900 
1901         /*
1902          * There should always be one slot left, as caller filling the last
1903          * slot should flush them all.
1904          */
1905         ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1906 
1907         /* @found_logical_ret must be specified. */
1908         ASSERT(found_logical_ret);
1909 
1910         stripe = &sctx->stripes[sctx->cur_stripe];
1911         scrub_reset_stripe(stripe);
1912         ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1913                                            &sctx->csum_path, dev, physical,
1914                                            mirror_num, logical, length, stripe);
1915         /* Either >0 as no more extents or <0 for error. */
1916         if (ret)
1917                 return ret;
1918         *found_logical_ret = stripe->logical;
1919         sctx->cur_stripe++;
1920 
1921         /* We filled one group, submit it. */
1922         if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1923                 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1924 
1925                 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1926         }
1927 
1928         /* Last slot used, flush them all. */
1929         if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1930                 return flush_scrub_stripes(sctx);
1931         return 0;
1932 }
1933 
1934 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1935                                       struct btrfs_device *scrub_dev,
1936                                       struct btrfs_block_group *bg,
1937                                       struct btrfs_chunk_map *map,
1938                                       u64 full_stripe_start)
1939 {
1940         DECLARE_COMPLETION_ONSTACK(io_done);
1941         struct btrfs_fs_info *fs_info = sctx->fs_info;
1942         struct btrfs_raid_bio *rbio;
1943         struct btrfs_io_context *bioc = NULL;
1944         struct btrfs_path extent_path = { 0 };
1945         struct btrfs_path csum_path = { 0 };
1946         struct bio *bio;
1947         struct scrub_stripe *stripe;
1948         bool all_empty = true;
1949         const int data_stripes = nr_data_stripes(map);
1950         unsigned long extent_bitmap = 0;
1951         u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1952         int ret;
1953 
1954         ASSERT(sctx->raid56_data_stripes);
1955 
1956         /*
1957          * For data stripe search, we cannot re-use the same extent/csum paths,
1958          * as the data stripe bytenr may be smaller than previous extent.  Thus
1959          * we have to use our own extent/csum paths.
1960          */
1961         extent_path.search_commit_root = 1;
1962         extent_path.skip_locking = 1;
1963         csum_path.search_commit_root = 1;
1964         csum_path.skip_locking = 1;
1965 
1966         for (int i = 0; i < data_stripes; i++) {
1967                 int stripe_index;
1968                 int rot;
1969                 u64 physical;
1970 
1971                 stripe = &sctx->raid56_data_stripes[i];
1972                 rot = div_u64(full_stripe_start - bg->start,
1973                               data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1974                 stripe_index = (i + rot) % map->num_stripes;
1975                 physical = map->stripes[stripe_index].physical +
1976                            btrfs_stripe_nr_to_offset(rot);
1977 
1978                 scrub_reset_stripe(stripe);
1979                 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1980                 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1981                                 map->stripes[stripe_index].dev, physical, 1,
1982                                 full_stripe_start + btrfs_stripe_nr_to_offset(i),
1983                                 BTRFS_STRIPE_LEN, stripe);
1984                 if (ret < 0)
1985                         goto out;
1986                 /*
1987                  * No extent in this data stripe, need to manually mark them
1988                  * initialized to make later read submission happy.
1989                  */
1990                 if (ret > 0) {
1991                         stripe->logical = full_stripe_start +
1992                                           btrfs_stripe_nr_to_offset(i);
1993                         stripe->dev = map->stripes[stripe_index].dev;
1994                         stripe->mirror_num = 1;
1995                         set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1996                 }
1997         }
1998 
1999         /* Check if all data stripes are empty. */
2000         for (int i = 0; i < data_stripes; i++) {
2001                 stripe = &sctx->raid56_data_stripes[i];
2002                 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
2003                         all_empty = false;
2004                         break;
2005                 }
2006         }
2007         if (all_empty) {
2008                 ret = 0;
2009                 goto out;
2010         }
2011 
2012         for (int i = 0; i < data_stripes; i++) {
2013                 stripe = &sctx->raid56_data_stripes[i];
2014                 scrub_submit_initial_read(sctx, stripe);
2015         }
2016         for (int i = 0; i < data_stripes; i++) {
2017                 stripe = &sctx->raid56_data_stripes[i];
2018 
2019                 wait_event(stripe->repair_wait,
2020                            test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2021         }
2022         /* For now, no zoned support for RAID56. */
2023         ASSERT(!btrfs_is_zoned(sctx->fs_info));
2024 
2025         /*
2026          * Now all data stripes are properly verified. Check if we have any
2027          * unrepaired, if so abort immediately or we could further corrupt the
2028          * P/Q stripes.
2029          *
2030          * During the loop, also populate extent_bitmap.
2031          */
2032         for (int i = 0; i < data_stripes; i++) {
2033                 unsigned long error;
2034 
2035                 stripe = &sctx->raid56_data_stripes[i];
2036 
2037                 /*
2038                  * We should only check the errors where there is an extent.
2039                  * As we may hit an empty data stripe while it's missing.
2040                  */
2041                 bitmap_and(&error, &stripe->error_bitmap,
2042                            &stripe->extent_sector_bitmap, stripe->nr_sectors);
2043                 if (!bitmap_empty(&error, stripe->nr_sectors)) {
2044                         btrfs_err(fs_info,
2045 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2046                                   full_stripe_start, i, stripe->nr_sectors,
2047                                   &error);
2048                         ret = -EIO;
2049                         goto out;
2050                 }
2051                 bitmap_or(&extent_bitmap, &extent_bitmap,
2052                           &stripe->extent_sector_bitmap, stripe->nr_sectors);
2053         }
2054 
2055         /* Now we can check and regenerate the P/Q stripe. */
2056         bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2057         bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2058         bio->bi_private = &io_done;
2059         bio->bi_end_io = raid56_scrub_wait_endio;
2060 
2061         btrfs_bio_counter_inc_blocked(fs_info);
2062         ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2063                               &length, &bioc, NULL, NULL);
2064         if (ret < 0) {
2065                 btrfs_put_bioc(bioc);
2066                 btrfs_bio_counter_dec(fs_info);
2067                 goto out;
2068         }
2069         rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2070                                 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2071         btrfs_put_bioc(bioc);
2072         if (!rbio) {
2073                 ret = -ENOMEM;
2074                 btrfs_bio_counter_dec(fs_info);
2075                 goto out;
2076         }
2077         /* Use the recovered stripes as cache to avoid read them from disk again. */
2078         for (int i = 0; i < data_stripes; i++) {
2079                 stripe = &sctx->raid56_data_stripes[i];
2080 
2081                 raid56_parity_cache_data_pages(rbio, stripe->pages,
2082                                 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2083         }
2084         raid56_parity_submit_scrub_rbio(rbio);
2085         wait_for_completion_io(&io_done);
2086         ret = blk_status_to_errno(bio->bi_status);
2087         bio_put(bio);
2088         btrfs_bio_counter_dec(fs_info);
2089 
2090         btrfs_release_path(&extent_path);
2091         btrfs_release_path(&csum_path);
2092 out:
2093         return ret;
2094 }
2095 
2096 /*
2097  * Scrub one range which can only has simple mirror based profile.
2098  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2099  *  RAID0/RAID10).
2100  *
2101  * Since we may need to handle a subset of block group, we need @logical_start
2102  * and @logical_length parameter.
2103  */
2104 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2105                                struct btrfs_block_group *bg,
2106                                struct btrfs_chunk_map *map,
2107                                u64 logical_start, u64 logical_length,
2108                                struct btrfs_device *device,
2109                                u64 physical, int mirror_num)
2110 {
2111         struct btrfs_fs_info *fs_info = sctx->fs_info;
2112         const u64 logical_end = logical_start + logical_length;
2113         u64 cur_logical = logical_start;
2114         int ret = 0;
2115 
2116         /* The range must be inside the bg */
2117         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2118 
2119         /* Go through each extent items inside the logical range */
2120         while (cur_logical < logical_end) {
2121                 u64 found_logical = U64_MAX;
2122                 u64 cur_physical = physical + cur_logical - logical_start;
2123 
2124                 /* Canceled? */
2125                 if (atomic_read(&fs_info->scrub_cancel_req) ||
2126                     atomic_read(&sctx->cancel_req)) {
2127                         ret = -ECANCELED;
2128                         break;
2129                 }
2130                 /* Paused? */
2131                 if (atomic_read(&fs_info->scrub_pause_req)) {
2132                         /* Push queued extents */
2133                         scrub_blocked_if_needed(fs_info);
2134                 }
2135                 /* Block group removed? */
2136                 spin_lock(&bg->lock);
2137                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2138                         spin_unlock(&bg->lock);
2139                         ret = 0;
2140                         break;
2141                 }
2142                 spin_unlock(&bg->lock);
2143 
2144                 ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2145                                          cur_logical, logical_end - cur_logical,
2146                                          cur_physical, &found_logical);
2147                 if (ret > 0) {
2148                         /* No more extent, just update the accounting */
2149                         spin_lock(&sctx->stat_lock);
2150                         sctx->stat.last_physical = physical + logical_length;
2151                         spin_unlock(&sctx->stat_lock);
2152                         ret = 0;
2153                         break;
2154                 }
2155                 if (ret < 0)
2156                         break;
2157 
2158                 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2159                 ASSERT(found_logical != U64_MAX);
2160                 cur_logical = found_logical + BTRFS_STRIPE_LEN;
2161 
2162                 /* Don't hold CPU for too long time */
2163                 cond_resched();
2164         }
2165         return ret;
2166 }
2167 
2168 /* Calculate the full stripe length for simple stripe based profiles */
2169 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2170 {
2171         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2172                             BTRFS_BLOCK_GROUP_RAID10));
2173 
2174         return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2175 }
2176 
2177 /* Get the logical bytenr for the stripe */
2178 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2179                                      struct btrfs_block_group *bg,
2180                                      int stripe_index)
2181 {
2182         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2183                             BTRFS_BLOCK_GROUP_RAID10));
2184         ASSERT(stripe_index < map->num_stripes);
2185 
2186         /*
2187          * (stripe_index / sub_stripes) gives how many data stripes we need to
2188          * skip.
2189          */
2190         return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2191                bg->start;
2192 }
2193 
2194 /* Get the mirror number for the stripe */
2195 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2196 {
2197         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2198                             BTRFS_BLOCK_GROUP_RAID10));
2199         ASSERT(stripe_index < map->num_stripes);
2200 
2201         /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2202         return stripe_index % map->sub_stripes + 1;
2203 }
2204 
2205 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2206                                struct btrfs_block_group *bg,
2207                                struct btrfs_chunk_map *map,
2208                                struct btrfs_device *device,
2209                                int stripe_index)
2210 {
2211         const u64 logical_increment = simple_stripe_full_stripe_len(map);
2212         const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2213         const u64 orig_physical = map->stripes[stripe_index].physical;
2214         const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2215         u64 cur_logical = orig_logical;
2216         u64 cur_physical = orig_physical;
2217         int ret = 0;
2218 
2219         while (cur_logical < bg->start + bg->length) {
2220                 /*
2221                  * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2222                  * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2223                  * this stripe.
2224                  */
2225                 ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2226                                           BTRFS_STRIPE_LEN, device, cur_physical,
2227                                           mirror_num);
2228                 if (ret)
2229                         return ret;
2230                 /* Skip to next stripe which belongs to the target device */
2231                 cur_logical += logical_increment;
2232                 /* For physical offset, we just go to next stripe */
2233                 cur_physical += BTRFS_STRIPE_LEN;
2234         }
2235         return ret;
2236 }
2237 
2238 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2239                                            struct btrfs_block_group *bg,
2240                                            struct btrfs_chunk_map *map,
2241                                            struct btrfs_device *scrub_dev,
2242                                            int stripe_index)
2243 {
2244         struct btrfs_fs_info *fs_info = sctx->fs_info;
2245         const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2246         const u64 chunk_logical = bg->start;
2247         int ret;
2248         int ret2;
2249         u64 physical = map->stripes[stripe_index].physical;
2250         const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2251         const u64 physical_end = physical + dev_stripe_len;
2252         u64 logical;
2253         u64 logic_end;
2254         /* The logical increment after finishing one stripe */
2255         u64 increment;
2256         /* Offset inside the chunk */
2257         u64 offset;
2258         u64 stripe_logical;
2259         int stop_loop = 0;
2260 
2261         /* Extent_path should be released by now. */
2262         ASSERT(sctx->extent_path.nodes[0] == NULL);
2263 
2264         scrub_blocked_if_needed(fs_info);
2265 
2266         if (sctx->is_dev_replace &&
2267             btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2268                 mutex_lock(&sctx->wr_lock);
2269                 sctx->write_pointer = physical;
2270                 mutex_unlock(&sctx->wr_lock);
2271         }
2272 
2273         /* Prepare the extra data stripes used by RAID56. */
2274         if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2275                 ASSERT(sctx->raid56_data_stripes == NULL);
2276 
2277                 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2278                                                     sizeof(struct scrub_stripe),
2279                                                     GFP_KERNEL);
2280                 if (!sctx->raid56_data_stripes) {
2281                         ret = -ENOMEM;
2282                         goto out;
2283                 }
2284                 for (int i = 0; i < nr_data_stripes(map); i++) {
2285                         ret = init_scrub_stripe(fs_info,
2286                                                 &sctx->raid56_data_stripes[i]);
2287                         if (ret < 0)
2288                                 goto out;
2289                         sctx->raid56_data_stripes[i].bg = bg;
2290                         sctx->raid56_data_stripes[i].sctx = sctx;
2291                 }
2292         }
2293         /*
2294          * There used to be a big double loop to handle all profiles using the
2295          * same routine, which grows larger and more gross over time.
2296          *
2297          * So here we handle each profile differently, so simpler profiles
2298          * have simpler scrubbing function.
2299          */
2300         if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2301                          BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2302                 /*
2303                  * Above check rules out all complex profile, the remaining
2304                  * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2305                  * mirrored duplication without stripe.
2306                  *
2307                  * Only @physical and @mirror_num needs to calculated using
2308                  * @stripe_index.
2309                  */
2310                 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2311                                 scrub_dev, map->stripes[stripe_index].physical,
2312                                 stripe_index + 1);
2313                 offset = 0;
2314                 goto out;
2315         }
2316         if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2317                 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2318                 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2319                 goto out;
2320         }
2321 
2322         /* Only RAID56 goes through the old code */
2323         ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2324         ret = 0;
2325 
2326         /* Calculate the logical end of the stripe */
2327         get_raid56_logic_offset(physical_end, stripe_index,
2328                                 map, &logic_end, NULL);
2329         logic_end += chunk_logical;
2330 
2331         /* Initialize @offset in case we need to go to out: label */
2332         get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2333         increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2334 
2335         /*
2336          * Due to the rotation, for RAID56 it's better to iterate each stripe
2337          * using their physical offset.
2338          */
2339         while (physical < physical_end) {
2340                 ret = get_raid56_logic_offset(physical, stripe_index, map,
2341                                               &logical, &stripe_logical);
2342                 logical += chunk_logical;
2343                 if (ret) {
2344                         /* it is parity strip */
2345                         stripe_logical += chunk_logical;
2346                         ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2347                                                          map, stripe_logical);
2348                         spin_lock(&sctx->stat_lock);
2349                         sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN,
2350                                                        physical_end);
2351                         spin_unlock(&sctx->stat_lock);
2352                         if (ret)
2353                                 goto out;
2354                         goto next;
2355                 }
2356 
2357                 /*
2358                  * Now we're at a data stripe, scrub each extents in the range.
2359                  *
2360                  * At this stage, if we ignore the repair part, inside each data
2361                  * stripe it is no different than SINGLE profile.
2362                  * We can reuse scrub_simple_mirror() here, as the repair part
2363                  * is still based on @mirror_num.
2364                  */
2365                 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2366                                           scrub_dev, physical, 1);
2367                 if (ret < 0)
2368                         goto out;
2369 next:
2370                 logical += increment;
2371                 physical += BTRFS_STRIPE_LEN;
2372                 spin_lock(&sctx->stat_lock);
2373                 if (stop_loop)
2374                         sctx->stat.last_physical =
2375                                 map->stripes[stripe_index].physical + dev_stripe_len;
2376                 else
2377                         sctx->stat.last_physical = physical;
2378                 spin_unlock(&sctx->stat_lock);
2379                 if (stop_loop)
2380                         break;
2381         }
2382 out:
2383         ret2 = flush_scrub_stripes(sctx);
2384         if (!ret)
2385                 ret = ret2;
2386         btrfs_release_path(&sctx->extent_path);
2387         btrfs_release_path(&sctx->csum_path);
2388 
2389         if (sctx->raid56_data_stripes) {
2390                 for (int i = 0; i < nr_data_stripes(map); i++)
2391                         release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2392                 kfree(sctx->raid56_data_stripes);
2393                 sctx->raid56_data_stripes = NULL;
2394         }
2395 
2396         if (sctx->is_dev_replace && ret >= 0) {
2397                 int ret2;
2398 
2399                 ret2 = sync_write_pointer_for_zoned(sctx,
2400                                 chunk_logical + offset,
2401                                 map->stripes[stripe_index].physical,
2402                                 physical_end);
2403                 if (ret2)
2404                         ret = ret2;
2405         }
2406 
2407         return ret < 0 ? ret : 0;
2408 }
2409 
2410 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2411                                           struct btrfs_block_group *bg,
2412                                           struct btrfs_device *scrub_dev,
2413                                           u64 dev_offset,
2414                                           u64 dev_extent_len)
2415 {
2416         struct btrfs_fs_info *fs_info = sctx->fs_info;
2417         struct btrfs_chunk_map *map;
2418         int i;
2419         int ret = 0;
2420 
2421         map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2422         if (!map) {
2423                 /*
2424                  * Might have been an unused block group deleted by the cleaner
2425                  * kthread or relocation.
2426                  */
2427                 spin_lock(&bg->lock);
2428                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2429                         ret = -EINVAL;
2430                 spin_unlock(&bg->lock);
2431 
2432                 return ret;
2433         }
2434         if (map->start != bg->start)
2435                 goto out;
2436         if (map->chunk_len < dev_extent_len)
2437                 goto out;
2438 
2439         for (i = 0; i < map->num_stripes; ++i) {
2440                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2441                     map->stripes[i].physical == dev_offset) {
2442                         ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2443                         if (ret)
2444                                 goto out;
2445                 }
2446         }
2447 out:
2448         btrfs_free_chunk_map(map);
2449 
2450         return ret;
2451 }
2452 
2453 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2454                                           struct btrfs_block_group *cache)
2455 {
2456         struct btrfs_fs_info *fs_info = cache->fs_info;
2457 
2458         if (!btrfs_is_zoned(fs_info))
2459                 return 0;
2460 
2461         btrfs_wait_block_group_reservations(cache);
2462         btrfs_wait_nocow_writers(cache);
2463         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2464 
2465         return btrfs_commit_current_transaction(root);
2466 }
2467 
2468 static noinline_for_stack
2469 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2470                            struct btrfs_device *scrub_dev, u64 start, u64 end)
2471 {
2472         struct btrfs_dev_extent *dev_extent = NULL;
2473         struct btrfs_path *path;
2474         struct btrfs_fs_info *fs_info = sctx->fs_info;
2475         struct btrfs_root *root = fs_info->dev_root;
2476         u64 chunk_offset;
2477         int ret = 0;
2478         int ro_set;
2479         int slot;
2480         struct extent_buffer *l;
2481         struct btrfs_key key;
2482         struct btrfs_key found_key;
2483         struct btrfs_block_group *cache;
2484         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2485 
2486         path = btrfs_alloc_path();
2487         if (!path)
2488                 return -ENOMEM;
2489 
2490         path->reada = READA_FORWARD;
2491         path->search_commit_root = 1;
2492         path->skip_locking = 1;
2493 
2494         key.objectid = scrub_dev->devid;
2495         key.offset = 0ull;
2496         key.type = BTRFS_DEV_EXTENT_KEY;
2497 
2498         while (1) {
2499                 u64 dev_extent_len;
2500 
2501                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2502                 if (ret < 0)
2503                         break;
2504                 if (ret > 0) {
2505                         if (path->slots[0] >=
2506                             btrfs_header_nritems(path->nodes[0])) {
2507                                 ret = btrfs_next_leaf(root, path);
2508                                 if (ret < 0)
2509                                         break;
2510                                 if (ret > 0) {
2511                                         ret = 0;
2512                                         break;
2513                                 }
2514                         } else {
2515                                 ret = 0;
2516                         }
2517                 }
2518 
2519                 l = path->nodes[0];
2520                 slot = path->slots[0];
2521 
2522                 btrfs_item_key_to_cpu(l, &found_key, slot);
2523 
2524                 if (found_key.objectid != scrub_dev->devid)
2525                         break;
2526 
2527                 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2528                         break;
2529 
2530                 if (found_key.offset >= end)
2531                         break;
2532 
2533                 if (found_key.offset < key.offset)
2534                         break;
2535 
2536                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2537                 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2538 
2539                 if (found_key.offset + dev_extent_len <= start)
2540                         goto skip;
2541 
2542                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2543 
2544                 /*
2545                  * get a reference on the corresponding block group to prevent
2546                  * the chunk from going away while we scrub it
2547                  */
2548                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2549 
2550                 /* some chunks are removed but not committed to disk yet,
2551                  * continue scrubbing */
2552                 if (!cache)
2553                         goto skip;
2554 
2555                 ASSERT(cache->start <= chunk_offset);
2556                 /*
2557                  * We are using the commit root to search for device extents, so
2558                  * that means we could have found a device extent item from a
2559                  * block group that was deleted in the current transaction. The
2560                  * logical start offset of the deleted block group, stored at
2561                  * @chunk_offset, might be part of the logical address range of
2562                  * a new block group (which uses different physical extents).
2563                  * In this case btrfs_lookup_block_group() has returned the new
2564                  * block group, and its start address is less than @chunk_offset.
2565                  *
2566                  * We skip such new block groups, because it's pointless to
2567                  * process them, as we won't find their extents because we search
2568                  * for them using the commit root of the extent tree. For a device
2569                  * replace it's also fine to skip it, we won't miss copying them
2570                  * to the target device because we have the write duplication
2571                  * setup through the regular write path (by btrfs_map_block()),
2572                  * and we have committed a transaction when we started the device
2573                  * replace, right after setting up the device replace state.
2574                  */
2575                 if (cache->start < chunk_offset) {
2576                         btrfs_put_block_group(cache);
2577                         goto skip;
2578                 }
2579 
2580                 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2581                         if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2582                                 btrfs_put_block_group(cache);
2583                                 goto skip;
2584                         }
2585                 }
2586 
2587                 /*
2588                  * Make sure that while we are scrubbing the corresponding block
2589                  * group doesn't get its logical address and its device extents
2590                  * reused for another block group, which can possibly be of a
2591                  * different type and different profile. We do this to prevent
2592                  * false error detections and crashes due to bogus attempts to
2593                  * repair extents.
2594                  */
2595                 spin_lock(&cache->lock);
2596                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2597                         spin_unlock(&cache->lock);
2598                         btrfs_put_block_group(cache);
2599                         goto skip;
2600                 }
2601                 btrfs_freeze_block_group(cache);
2602                 spin_unlock(&cache->lock);
2603 
2604                 /*
2605                  * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2606                  * to avoid deadlock caused by:
2607                  * btrfs_inc_block_group_ro()
2608                  * -> btrfs_wait_for_commit()
2609                  * -> btrfs_commit_transaction()
2610                  * -> btrfs_scrub_pause()
2611                  */
2612                 scrub_pause_on(fs_info);
2613 
2614                 /*
2615                  * Don't do chunk preallocation for scrub.
2616                  *
2617                  * This is especially important for SYSTEM bgs, or we can hit
2618                  * -EFBIG from btrfs_finish_chunk_alloc() like:
2619                  * 1. The only SYSTEM bg is marked RO.
2620                  *    Since SYSTEM bg is small, that's pretty common.
2621                  * 2. New SYSTEM bg will be allocated
2622                  *    Due to regular version will allocate new chunk.
2623                  * 3. New SYSTEM bg is empty and will get cleaned up
2624                  *    Before cleanup really happens, it's marked RO again.
2625                  * 4. Empty SYSTEM bg get scrubbed
2626                  *    We go back to 2.
2627                  *
2628                  * This can easily boost the amount of SYSTEM chunks if cleaner
2629                  * thread can't be triggered fast enough, and use up all space
2630                  * of btrfs_super_block::sys_chunk_array
2631                  *
2632                  * While for dev replace, we need to try our best to mark block
2633                  * group RO, to prevent race between:
2634                  * - Write duplication
2635                  *   Contains latest data
2636                  * - Scrub copy
2637                  *   Contains data from commit tree
2638                  *
2639                  * If target block group is not marked RO, nocow writes can
2640                  * be overwritten by scrub copy, causing data corruption.
2641                  * So for dev-replace, it's not allowed to continue if a block
2642                  * group is not RO.
2643                  */
2644                 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2645                 if (!ret && sctx->is_dev_replace) {
2646                         ret = finish_extent_writes_for_zoned(root, cache);
2647                         if (ret) {
2648                                 btrfs_dec_block_group_ro(cache);
2649                                 scrub_pause_off(fs_info);
2650                                 btrfs_put_block_group(cache);
2651                                 break;
2652                         }
2653                 }
2654 
2655                 if (ret == 0) {
2656                         ro_set = 1;
2657                 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2658                            !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2659                         /*
2660                          * btrfs_inc_block_group_ro return -ENOSPC when it
2661                          * failed in creating new chunk for metadata.
2662                          * It is not a problem for scrub, because
2663                          * metadata are always cowed, and our scrub paused
2664                          * commit_transactions.
2665                          *
2666                          * For RAID56 chunks, we have to mark them read-only
2667                          * for scrub, as later we would use our own cache
2668                          * out of RAID56 realm.
2669                          * Thus we want the RAID56 bg to be marked RO to
2670                          * prevent RMW from screwing up out cache.
2671                          */
2672                         ro_set = 0;
2673                 } else if (ret == -ETXTBSY) {
2674                         btrfs_warn(fs_info,
2675                    "skipping scrub of block group %llu due to active swapfile",
2676                                    cache->start);
2677                         scrub_pause_off(fs_info);
2678                         ret = 0;
2679                         goto skip_unfreeze;
2680                 } else {
2681                         btrfs_warn(fs_info,
2682                                    "failed setting block group ro: %d", ret);
2683                         btrfs_unfreeze_block_group(cache);
2684                         btrfs_put_block_group(cache);
2685                         scrub_pause_off(fs_info);
2686                         break;
2687                 }
2688 
2689                 /*
2690                  * Now the target block is marked RO, wait for nocow writes to
2691                  * finish before dev-replace.
2692                  * COW is fine, as COW never overwrites extents in commit tree.
2693                  */
2694                 if (sctx->is_dev_replace) {
2695                         btrfs_wait_nocow_writers(cache);
2696                         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2697                 }
2698 
2699                 scrub_pause_off(fs_info);
2700                 down_write(&dev_replace->rwsem);
2701                 dev_replace->cursor_right = found_key.offset + dev_extent_len;
2702                 dev_replace->cursor_left = found_key.offset;
2703                 dev_replace->item_needs_writeback = 1;
2704                 up_write(&dev_replace->rwsem);
2705 
2706                 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2707                                   dev_extent_len);
2708                 if (sctx->is_dev_replace &&
2709                     !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2710                                                       cache, found_key.offset))
2711                         ro_set = 0;
2712 
2713                 down_write(&dev_replace->rwsem);
2714                 dev_replace->cursor_left = dev_replace->cursor_right;
2715                 dev_replace->item_needs_writeback = 1;
2716                 up_write(&dev_replace->rwsem);
2717 
2718                 if (ro_set)
2719                         btrfs_dec_block_group_ro(cache);
2720 
2721                 /*
2722                  * We might have prevented the cleaner kthread from deleting
2723                  * this block group if it was already unused because we raced
2724                  * and set it to RO mode first. So add it back to the unused
2725                  * list, otherwise it might not ever be deleted unless a manual
2726                  * balance is triggered or it becomes used and unused again.
2727                  */
2728                 spin_lock(&cache->lock);
2729                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2730                     !cache->ro && cache->reserved == 0 && cache->used == 0) {
2731                         spin_unlock(&cache->lock);
2732                         if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2733                                 btrfs_discard_queue_work(&fs_info->discard_ctl,
2734                                                          cache);
2735                         else
2736                                 btrfs_mark_bg_unused(cache);
2737                 } else {
2738                         spin_unlock(&cache->lock);
2739                 }
2740 skip_unfreeze:
2741                 btrfs_unfreeze_block_group(cache);
2742                 btrfs_put_block_group(cache);
2743                 if (ret)
2744                         break;
2745                 if (sctx->is_dev_replace &&
2746                     atomic64_read(&dev_replace->num_write_errors) > 0) {
2747                         ret = -EIO;
2748                         break;
2749                 }
2750                 if (sctx->stat.malloc_errors > 0) {
2751                         ret = -ENOMEM;
2752                         break;
2753                 }
2754 skip:
2755                 key.offset = found_key.offset + dev_extent_len;
2756                 btrfs_release_path(path);
2757         }
2758 
2759         btrfs_free_path(path);
2760 
2761         return ret;
2762 }
2763 
2764 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2765                            struct page *page, u64 physical, u64 generation)
2766 {
2767         struct btrfs_fs_info *fs_info = sctx->fs_info;
2768         struct bio_vec bvec;
2769         struct bio bio;
2770         struct btrfs_super_block *sb = page_address(page);
2771         int ret;
2772 
2773         bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2774         bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2775         __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2776         ret = submit_bio_wait(&bio);
2777         bio_uninit(&bio);
2778 
2779         if (ret < 0)
2780                 return ret;
2781         ret = btrfs_check_super_csum(fs_info, sb);
2782         if (ret != 0) {
2783                 btrfs_err_rl(fs_info,
2784                         "super block at physical %llu devid %llu has bad csum",
2785                         physical, dev->devid);
2786                 return -EIO;
2787         }
2788         if (btrfs_super_generation(sb) != generation) {
2789                 btrfs_err_rl(fs_info,
2790 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2791                              physical, dev->devid,
2792                              btrfs_super_generation(sb), generation);
2793                 return -EUCLEAN;
2794         }
2795 
2796         return btrfs_validate_super(fs_info, sb, -1);
2797 }
2798 
2799 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2800                                            struct btrfs_device *scrub_dev)
2801 {
2802         int     i;
2803         u64     bytenr;
2804         u64     gen;
2805         int ret = 0;
2806         struct page *page;
2807         struct btrfs_fs_info *fs_info = sctx->fs_info;
2808 
2809         if (BTRFS_FS_ERROR(fs_info))
2810                 return -EROFS;
2811 
2812         page = alloc_page(GFP_KERNEL);
2813         if (!page) {
2814                 spin_lock(&sctx->stat_lock);
2815                 sctx->stat.malloc_errors++;
2816                 spin_unlock(&sctx->stat_lock);
2817                 return -ENOMEM;
2818         }
2819 
2820         /* Seed devices of a new filesystem has their own generation. */
2821         if (scrub_dev->fs_devices != fs_info->fs_devices)
2822                 gen = scrub_dev->generation;
2823         else
2824                 gen = btrfs_get_last_trans_committed(fs_info);
2825 
2826         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2827                 ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2828                 if (ret == -ENOENT)
2829                         break;
2830 
2831                 if (ret) {
2832                         spin_lock(&sctx->stat_lock);
2833                         sctx->stat.super_errors++;
2834                         spin_unlock(&sctx->stat_lock);
2835                         continue;
2836                 }
2837 
2838                 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2839                     scrub_dev->commit_total_bytes)
2840                         break;
2841                 if (!btrfs_check_super_location(scrub_dev, bytenr))
2842                         continue;
2843 
2844                 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2845                 if (ret) {
2846                         spin_lock(&sctx->stat_lock);
2847                         sctx->stat.super_errors++;
2848                         spin_unlock(&sctx->stat_lock);
2849                 }
2850         }
2851         __free_page(page);
2852         return 0;
2853 }
2854 
2855 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2856 {
2857         if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2858                                         &fs_info->scrub_lock)) {
2859                 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2860 
2861                 fs_info->scrub_workers = NULL;
2862                 mutex_unlock(&fs_info->scrub_lock);
2863 
2864                 if (scrub_workers)
2865                         destroy_workqueue(scrub_workers);
2866         }
2867 }
2868 
2869 /*
2870  * get a reference count on fs_info->scrub_workers. start worker if necessary
2871  */
2872 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2873 {
2874         struct workqueue_struct *scrub_workers = NULL;
2875         unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2876         int max_active = fs_info->thread_pool_size;
2877         int ret = -ENOMEM;
2878 
2879         if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2880                 return 0;
2881 
2882         scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2883         if (!scrub_workers)
2884                 return -ENOMEM;
2885 
2886         mutex_lock(&fs_info->scrub_lock);
2887         if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2888                 ASSERT(fs_info->scrub_workers == NULL);
2889                 fs_info->scrub_workers = scrub_workers;
2890                 refcount_set(&fs_info->scrub_workers_refcnt, 1);
2891                 mutex_unlock(&fs_info->scrub_lock);
2892                 return 0;
2893         }
2894         /* Other thread raced in and created the workers for us */
2895         refcount_inc(&fs_info->scrub_workers_refcnt);
2896         mutex_unlock(&fs_info->scrub_lock);
2897 
2898         ret = 0;
2899 
2900         destroy_workqueue(scrub_workers);
2901         return ret;
2902 }
2903 
2904 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2905                     u64 end, struct btrfs_scrub_progress *progress,
2906                     int readonly, int is_dev_replace)
2907 {
2908         struct btrfs_dev_lookup_args args = { .devid = devid };
2909         struct scrub_ctx *sctx;
2910         int ret;
2911         struct btrfs_device *dev;
2912         unsigned int nofs_flag;
2913         bool need_commit = false;
2914 
2915         if (btrfs_fs_closing(fs_info))
2916                 return -EAGAIN;
2917 
2918         /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2919         ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2920 
2921         /*
2922          * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2923          * value (max nodesize / min sectorsize), thus nodesize should always
2924          * be fine.
2925          */
2926         ASSERT(fs_info->nodesize <=
2927                SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2928 
2929         /* Allocate outside of device_list_mutex */
2930         sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2931         if (IS_ERR(sctx))
2932                 return PTR_ERR(sctx);
2933 
2934         ret = scrub_workers_get(fs_info);
2935         if (ret)
2936                 goto out_free_ctx;
2937 
2938         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2939         dev = btrfs_find_device(fs_info->fs_devices, &args);
2940         if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2941                      !is_dev_replace)) {
2942                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2943                 ret = -ENODEV;
2944                 goto out;
2945         }
2946 
2947         if (!is_dev_replace && !readonly &&
2948             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2949                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2950                 btrfs_err_in_rcu(fs_info,
2951                         "scrub on devid %llu: filesystem on %s is not writable",
2952                                  devid, btrfs_dev_name(dev));
2953                 ret = -EROFS;
2954                 goto out;
2955         }
2956 
2957         mutex_lock(&fs_info->scrub_lock);
2958         if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2959             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2960                 mutex_unlock(&fs_info->scrub_lock);
2961                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2962                 ret = -EIO;
2963                 goto out;
2964         }
2965 
2966         down_read(&fs_info->dev_replace.rwsem);
2967         if (dev->scrub_ctx ||
2968             (!is_dev_replace &&
2969              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2970                 up_read(&fs_info->dev_replace.rwsem);
2971                 mutex_unlock(&fs_info->scrub_lock);
2972                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2973                 ret = -EINPROGRESS;
2974                 goto out;
2975         }
2976         up_read(&fs_info->dev_replace.rwsem);
2977 
2978         sctx->readonly = readonly;
2979         dev->scrub_ctx = sctx;
2980         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2981 
2982         /*
2983          * checking @scrub_pause_req here, we can avoid
2984          * race between committing transaction and scrubbing.
2985          */
2986         __scrub_blocked_if_needed(fs_info);
2987         atomic_inc(&fs_info->scrubs_running);
2988         mutex_unlock(&fs_info->scrub_lock);
2989 
2990         /*
2991          * In order to avoid deadlock with reclaim when there is a transaction
2992          * trying to pause scrub, make sure we use GFP_NOFS for all the
2993          * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2994          * invoked by our callees. The pausing request is done when the
2995          * transaction commit starts, and it blocks the transaction until scrub
2996          * is paused (done at specific points at scrub_stripe() or right above
2997          * before incrementing fs_info->scrubs_running).
2998          */
2999         nofs_flag = memalloc_nofs_save();
3000         if (!is_dev_replace) {
3001                 u64 old_super_errors;
3002 
3003                 spin_lock(&sctx->stat_lock);
3004                 old_super_errors = sctx->stat.super_errors;
3005                 spin_unlock(&sctx->stat_lock);
3006 
3007                 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3008                 /*
3009                  * by holding device list mutex, we can
3010                  * kick off writing super in log tree sync.
3011                  */
3012                 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3013                 ret = scrub_supers(sctx, dev);
3014                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3015 
3016                 spin_lock(&sctx->stat_lock);
3017                 /*
3018                  * Super block errors found, but we can not commit transaction
3019                  * at current context, since btrfs_commit_transaction() needs
3020                  * to pause the current running scrub (hold by ourselves).
3021                  */
3022                 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
3023                         need_commit = true;
3024                 spin_unlock(&sctx->stat_lock);
3025         }
3026 
3027         if (!ret)
3028                 ret = scrub_enumerate_chunks(sctx, dev, start, end);
3029         memalloc_nofs_restore(nofs_flag);
3030 
3031         atomic_dec(&fs_info->scrubs_running);
3032         wake_up(&fs_info->scrub_pause_wait);
3033 
3034         if (progress)
3035                 memcpy(progress, &sctx->stat, sizeof(*progress));
3036 
3037         if (!is_dev_replace)
3038                 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3039                         ret ? "not finished" : "finished", devid, ret);
3040 
3041         mutex_lock(&fs_info->scrub_lock);
3042         dev->scrub_ctx = NULL;
3043         mutex_unlock(&fs_info->scrub_lock);
3044 
3045         scrub_workers_put(fs_info);
3046         scrub_put_ctx(sctx);
3047 
3048         /*
3049          * We found some super block errors before, now try to force a
3050          * transaction commit, as scrub has finished.
3051          */
3052         if (need_commit) {
3053                 struct btrfs_trans_handle *trans;
3054 
3055                 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3056                 if (IS_ERR(trans)) {
3057                         ret = PTR_ERR(trans);
3058                         btrfs_err(fs_info,
3059         "scrub: failed to start transaction to fix super block errors: %d", ret);
3060                         return ret;
3061                 }
3062                 ret = btrfs_commit_transaction(trans);
3063                 if (ret < 0)
3064                         btrfs_err(fs_info,
3065         "scrub: failed to commit transaction to fix super block errors: %d", ret);
3066         }
3067         return ret;
3068 out:
3069         scrub_workers_put(fs_info);
3070 out_free_ctx:
3071         scrub_free_ctx(sctx);
3072 
3073         return ret;
3074 }
3075 
3076 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3077 {
3078         mutex_lock(&fs_info->scrub_lock);
3079         atomic_inc(&fs_info->scrub_pause_req);
3080         while (atomic_read(&fs_info->scrubs_paused) !=
3081                atomic_read(&fs_info->scrubs_running)) {
3082                 mutex_unlock(&fs_info->scrub_lock);
3083                 wait_event(fs_info->scrub_pause_wait,
3084                            atomic_read(&fs_info->scrubs_paused) ==
3085                            atomic_read(&fs_info->scrubs_running));
3086                 mutex_lock(&fs_info->scrub_lock);
3087         }
3088         mutex_unlock(&fs_info->scrub_lock);
3089 }
3090 
3091 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3092 {
3093         atomic_dec(&fs_info->scrub_pause_req);
3094         wake_up(&fs_info->scrub_pause_wait);
3095 }
3096 
3097 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3098 {
3099         mutex_lock(&fs_info->scrub_lock);
3100         if (!atomic_read(&fs_info->scrubs_running)) {
3101                 mutex_unlock(&fs_info->scrub_lock);
3102                 return -ENOTCONN;
3103         }
3104 
3105         atomic_inc(&fs_info->scrub_cancel_req);
3106         while (atomic_read(&fs_info->scrubs_running)) {
3107                 mutex_unlock(&fs_info->scrub_lock);
3108                 wait_event(fs_info->scrub_pause_wait,
3109                            atomic_read(&fs_info->scrubs_running) == 0);
3110                 mutex_lock(&fs_info->scrub_lock);
3111         }
3112         atomic_dec(&fs_info->scrub_cancel_req);
3113         mutex_unlock(&fs_info->scrub_lock);
3114 
3115         return 0;
3116 }
3117 
3118 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3119 {
3120         struct btrfs_fs_info *fs_info = dev->fs_info;
3121         struct scrub_ctx *sctx;
3122 
3123         mutex_lock(&fs_info->scrub_lock);
3124         sctx = dev->scrub_ctx;
3125         if (!sctx) {
3126                 mutex_unlock(&fs_info->scrub_lock);
3127                 return -ENOTCONN;
3128         }
3129         atomic_inc(&sctx->cancel_req);
3130         while (dev->scrub_ctx) {
3131                 mutex_unlock(&fs_info->scrub_lock);
3132                 wait_event(fs_info->scrub_pause_wait,
3133                            dev->scrub_ctx == NULL);
3134                 mutex_lock(&fs_info->scrub_lock);
3135         }
3136         mutex_unlock(&fs_info->scrub_lock);
3137 
3138         return 0;
3139 }
3140 
3141 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3142                          struct btrfs_scrub_progress *progress)
3143 {
3144         struct btrfs_dev_lookup_args args = { .devid = devid };
3145         struct btrfs_device *dev;
3146         struct scrub_ctx *sctx = NULL;
3147 
3148         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3149         dev = btrfs_find_device(fs_info->fs_devices, &args);
3150         if (dev)
3151                 sctx = dev->scrub_ctx;
3152         if (sctx)
3153                 memcpy(progress, &sctx->stat, sizeof(*progress));
3154         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3155 
3156         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3157 }
3158 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php