1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 #include <linux/fsverity.h> 19 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "print-tree.h" 29 #include "accessors.h" 30 #include "dir-item.h" 31 #include "file-item.h" 32 #include "ioctl.h" 33 #include "verity.h" 34 #include "lru_cache.h" 35 36 /* 37 * Maximum number of references an extent can have in order for us to attempt to 38 * issue clone operations instead of write operations. This currently exists to 39 * avoid hitting limitations of the backreference walking code (taking a lot of 40 * time and using too much memory for extents with large number of references). 41 */ 42 #define SEND_MAX_EXTENT_REFS 1024 43 44 /* 45 * A fs_path is a helper to dynamically build path names with unknown size. 46 * It reallocates the internal buffer on demand. 47 * It allows fast adding of path elements on the right side (normal path) and 48 * fast adding to the left side (reversed path). A reversed path can also be 49 * unreversed if needed. 50 */ 51 struct fs_path { 52 union { 53 struct { 54 char *start; 55 char *end; 56 57 char *buf; 58 unsigned short buf_len:15; 59 unsigned short reversed:1; 60 char inline_buf[]; 61 }; 62 /* 63 * Average path length does not exceed 200 bytes, we'll have 64 * better packing in the slab and higher chance to satisfy 65 * a allocation later during send. 66 */ 67 char pad[256]; 68 }; 69 }; 70 #define FS_PATH_INLINE_SIZE \ 71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 72 73 74 /* reused for each extent */ 75 struct clone_root { 76 struct btrfs_root *root; 77 u64 ino; 78 u64 offset; 79 u64 num_bytes; 80 bool found_ref; 81 }; 82 83 #define SEND_MAX_NAME_CACHE_SIZE 256 84 85 /* 86 * Limit the root_ids array of struct backref_cache_entry to 17 elements. 87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which 88 * can be satisfied from the kmalloc-192 slab, without wasting any space. 89 * The most common case is to have a single root for cloning, which corresponds 90 * to the send root. Having the user specify more than 16 clone roots is not 91 * common, and in such rare cases we simply don't use caching if the number of 92 * cloning roots that lead down to a leaf is more than 17. 93 */ 94 #define SEND_MAX_BACKREF_CACHE_ROOTS 17 95 96 /* 97 * Max number of entries in the cache. 98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding 99 * maple tree's internal nodes, is 24K. 100 */ 101 #define SEND_MAX_BACKREF_CACHE_SIZE 128 102 103 /* 104 * A backref cache entry maps a leaf to a list of IDs of roots from which the 105 * leaf is accessible and we can use for clone operations. 106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on 107 * x86_64). 108 */ 109 struct backref_cache_entry { 110 struct btrfs_lru_cache_entry entry; 111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; 112 /* Number of valid elements in the root_ids array. */ 113 int num_roots; 114 }; 115 116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 117 static_assert(offsetof(struct backref_cache_entry, entry) == 0); 118 119 /* 120 * Max number of entries in the cache that stores directories that were already 121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 124 */ 125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64 126 127 /* 128 * Max number of entries in the cache that stores directories that were already 129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 132 */ 133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64 134 135 struct send_ctx { 136 struct file *send_filp; 137 loff_t send_off; 138 char *send_buf; 139 u32 send_size; 140 u32 send_max_size; 141 /* 142 * Whether BTRFS_SEND_A_DATA attribute was already added to current 143 * command (since protocol v2, data must be the last attribute). 144 */ 145 bool put_data; 146 struct page **send_buf_pages; 147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 148 /* Protocol version compatibility requested */ 149 u32 proto; 150 151 struct btrfs_root *send_root; 152 struct btrfs_root *parent_root; 153 struct clone_root *clone_roots; 154 int clone_roots_cnt; 155 156 /* current state of the compare_tree call */ 157 struct btrfs_path *left_path; 158 struct btrfs_path *right_path; 159 struct btrfs_key *cmp_key; 160 161 /* 162 * Keep track of the generation of the last transaction that was used 163 * for relocating a block group. This is periodically checked in order 164 * to detect if a relocation happened since the last check, so that we 165 * don't operate on stale extent buffers for nodes (level >= 1) or on 166 * stale disk_bytenr values of file extent items. 167 */ 168 u64 last_reloc_trans; 169 170 /* 171 * infos of the currently processed inode. In case of deleted inodes, 172 * these are the values from the deleted inode. 173 */ 174 u64 cur_ino; 175 u64 cur_inode_gen; 176 u64 cur_inode_size; 177 u64 cur_inode_mode; 178 u64 cur_inode_rdev; 179 u64 cur_inode_last_extent; 180 u64 cur_inode_next_write_offset; 181 bool cur_inode_new; 182 bool cur_inode_new_gen; 183 bool cur_inode_deleted; 184 bool ignore_cur_inode; 185 bool cur_inode_needs_verity; 186 void *verity_descriptor; 187 188 u64 send_progress; 189 190 struct list_head new_refs; 191 struct list_head deleted_refs; 192 193 struct btrfs_lru_cache name_cache; 194 195 /* 196 * The inode we are currently processing. It's not NULL only when we 197 * need to issue write commands for data extents from this inode. 198 */ 199 struct inode *cur_inode; 200 struct file_ra_state ra; 201 u64 page_cache_clear_start; 202 bool clean_page_cache; 203 204 /* 205 * We process inodes by their increasing order, so if before an 206 * incremental send we reverse the parent/child relationship of 207 * directories such that a directory with a lower inode number was 208 * the parent of a directory with a higher inode number, and the one 209 * becoming the new parent got renamed too, we can't rename/move the 210 * directory with lower inode number when we finish processing it - we 211 * must process the directory with higher inode number first, then 212 * rename/move it and then rename/move the directory with lower inode 213 * number. Example follows. 214 * 215 * Tree state when the first send was performed: 216 * 217 * . 218 * |-- a (ino 257) 219 * |-- b (ino 258) 220 * | 221 * | 222 * |-- c (ino 259) 223 * | |-- d (ino 260) 224 * | 225 * |-- c2 (ino 261) 226 * 227 * Tree state when the second (incremental) send is performed: 228 * 229 * . 230 * |-- a (ino 257) 231 * |-- b (ino 258) 232 * |-- c2 (ino 261) 233 * |-- d2 (ino 260) 234 * |-- cc (ino 259) 235 * 236 * The sequence of steps that lead to the second state was: 237 * 238 * mv /a/b/c/d /a/b/c2/d2 239 * mv /a/b/c /a/b/c2/d2/cc 240 * 241 * "c" has lower inode number, but we can't move it (2nd mv operation) 242 * before we move "d", which has higher inode number. 243 * 244 * So we just memorize which move/rename operations must be performed 245 * later when their respective parent is processed and moved/renamed. 246 */ 247 248 /* Indexed by parent directory inode number. */ 249 struct rb_root pending_dir_moves; 250 251 /* 252 * Reverse index, indexed by the inode number of a directory that 253 * is waiting for the move/rename of its immediate parent before its 254 * own move/rename can be performed. 255 */ 256 struct rb_root waiting_dir_moves; 257 258 /* 259 * A directory that is going to be rm'ed might have a child directory 260 * which is in the pending directory moves index above. In this case, 261 * the directory can only be removed after the move/rename of its child 262 * is performed. Example: 263 * 264 * Parent snapshot: 265 * 266 * . (ino 256) 267 * |-- a/ (ino 257) 268 * |-- b/ (ino 258) 269 * |-- c/ (ino 259) 270 * | |-- x/ (ino 260) 271 * | 272 * |-- y/ (ino 261) 273 * 274 * Send snapshot: 275 * 276 * . (ino 256) 277 * |-- a/ (ino 257) 278 * |-- b/ (ino 258) 279 * |-- YY/ (ino 261) 280 * |-- x/ (ino 260) 281 * 282 * Sequence of steps that lead to the send snapshot: 283 * rm -f /a/b/c/foo.txt 284 * mv /a/b/y /a/b/YY 285 * mv /a/b/c/x /a/b/YY 286 * rmdir /a/b/c 287 * 288 * When the child is processed, its move/rename is delayed until its 289 * parent is processed (as explained above), but all other operations 290 * like update utimes, chown, chgrp, etc, are performed and the paths 291 * that it uses for those operations must use the orphanized name of 292 * its parent (the directory we're going to rm later), so we need to 293 * memorize that name. 294 * 295 * Indexed by the inode number of the directory to be deleted. 296 */ 297 struct rb_root orphan_dirs; 298 299 struct rb_root rbtree_new_refs; 300 struct rb_root rbtree_deleted_refs; 301 302 struct btrfs_lru_cache backref_cache; 303 u64 backref_cache_last_reloc_trans; 304 305 struct btrfs_lru_cache dir_created_cache; 306 struct btrfs_lru_cache dir_utimes_cache; 307 }; 308 309 struct pending_dir_move { 310 struct rb_node node; 311 struct list_head list; 312 u64 parent_ino; 313 u64 ino; 314 u64 gen; 315 struct list_head update_refs; 316 }; 317 318 struct waiting_dir_move { 319 struct rb_node node; 320 u64 ino; 321 /* 322 * There might be some directory that could not be removed because it 323 * was waiting for this directory inode to be moved first. Therefore 324 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 325 */ 326 u64 rmdir_ino; 327 u64 rmdir_gen; 328 bool orphanized; 329 }; 330 331 struct orphan_dir_info { 332 struct rb_node node; 333 u64 ino; 334 u64 gen; 335 u64 last_dir_index_offset; 336 u64 dir_high_seq_ino; 337 }; 338 339 struct name_cache_entry { 340 /* 341 * The key in the entry is an inode number, and the generation matches 342 * the inode's generation. 343 */ 344 struct btrfs_lru_cache_entry entry; 345 u64 parent_ino; 346 u64 parent_gen; 347 int ret; 348 int need_later_update; 349 /* Name length without NUL terminator. */ 350 int name_len; 351 /* Not NUL terminated. */ 352 char name[] __counted_by(name_len) __nonstring; 353 }; 354 355 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 356 static_assert(offsetof(struct name_cache_entry, entry) == 0); 357 358 #define ADVANCE 1 359 #define ADVANCE_ONLY_NEXT -1 360 361 enum btrfs_compare_tree_result { 362 BTRFS_COMPARE_TREE_NEW, 363 BTRFS_COMPARE_TREE_DELETED, 364 BTRFS_COMPARE_TREE_CHANGED, 365 BTRFS_COMPARE_TREE_SAME, 366 }; 367 368 __cold 369 static void inconsistent_snapshot_error(struct send_ctx *sctx, 370 enum btrfs_compare_tree_result result, 371 const char *what) 372 { 373 const char *result_string; 374 375 switch (result) { 376 case BTRFS_COMPARE_TREE_NEW: 377 result_string = "new"; 378 break; 379 case BTRFS_COMPARE_TREE_DELETED: 380 result_string = "deleted"; 381 break; 382 case BTRFS_COMPARE_TREE_CHANGED: 383 result_string = "updated"; 384 break; 385 case BTRFS_COMPARE_TREE_SAME: 386 ASSERT(0); 387 result_string = "unchanged"; 388 break; 389 default: 390 ASSERT(0); 391 result_string = "unexpected"; 392 } 393 394 btrfs_err(sctx->send_root->fs_info, 395 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 396 result_string, what, sctx->cmp_key->objectid, 397 btrfs_root_id(sctx->send_root), 398 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0)); 399 } 400 401 __maybe_unused 402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 403 { 404 switch (sctx->proto) { 405 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 406 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 407 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 408 default: return false; 409 } 410 } 411 412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 413 414 static struct waiting_dir_move * 415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 416 417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 418 419 static int need_send_hole(struct send_ctx *sctx) 420 { 421 return (sctx->parent_root && !sctx->cur_inode_new && 422 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 423 S_ISREG(sctx->cur_inode_mode)); 424 } 425 426 static void fs_path_reset(struct fs_path *p) 427 { 428 if (p->reversed) { 429 p->start = p->buf + p->buf_len - 1; 430 p->end = p->start; 431 *p->start = 0; 432 } else { 433 p->start = p->buf; 434 p->end = p->start; 435 *p->start = 0; 436 } 437 } 438 439 static struct fs_path *fs_path_alloc(void) 440 { 441 struct fs_path *p; 442 443 p = kmalloc(sizeof(*p), GFP_KERNEL); 444 if (!p) 445 return NULL; 446 p->reversed = 0; 447 p->buf = p->inline_buf; 448 p->buf_len = FS_PATH_INLINE_SIZE; 449 fs_path_reset(p); 450 return p; 451 } 452 453 static struct fs_path *fs_path_alloc_reversed(void) 454 { 455 struct fs_path *p; 456 457 p = fs_path_alloc(); 458 if (!p) 459 return NULL; 460 p->reversed = 1; 461 fs_path_reset(p); 462 return p; 463 } 464 465 static void fs_path_free(struct fs_path *p) 466 { 467 if (!p) 468 return; 469 if (p->buf != p->inline_buf) 470 kfree(p->buf); 471 kfree(p); 472 } 473 474 static int fs_path_len(struct fs_path *p) 475 { 476 return p->end - p->start; 477 } 478 479 static int fs_path_ensure_buf(struct fs_path *p, int len) 480 { 481 char *tmp_buf; 482 int path_len; 483 int old_buf_len; 484 485 len++; 486 487 if (p->buf_len >= len) 488 return 0; 489 490 if (len > PATH_MAX) { 491 WARN_ON(1); 492 return -ENOMEM; 493 } 494 495 path_len = p->end - p->start; 496 old_buf_len = p->buf_len; 497 498 /* 499 * Allocate to the next largest kmalloc bucket size, to let 500 * the fast path happen most of the time. 501 */ 502 len = kmalloc_size_roundup(len); 503 /* 504 * First time the inline_buf does not suffice 505 */ 506 if (p->buf == p->inline_buf) { 507 tmp_buf = kmalloc(len, GFP_KERNEL); 508 if (tmp_buf) 509 memcpy(tmp_buf, p->buf, old_buf_len); 510 } else { 511 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 512 } 513 if (!tmp_buf) 514 return -ENOMEM; 515 p->buf = tmp_buf; 516 p->buf_len = len; 517 518 if (p->reversed) { 519 tmp_buf = p->buf + old_buf_len - path_len - 1; 520 p->end = p->buf + p->buf_len - 1; 521 p->start = p->end - path_len; 522 memmove(p->start, tmp_buf, path_len + 1); 523 } else { 524 p->start = p->buf; 525 p->end = p->start + path_len; 526 } 527 return 0; 528 } 529 530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 531 char **prepared) 532 { 533 int ret; 534 int new_len; 535 536 new_len = p->end - p->start + name_len; 537 if (p->start != p->end) 538 new_len++; 539 ret = fs_path_ensure_buf(p, new_len); 540 if (ret < 0) 541 goto out; 542 543 if (p->reversed) { 544 if (p->start != p->end) 545 *--p->start = '/'; 546 p->start -= name_len; 547 *prepared = p->start; 548 } else { 549 if (p->start != p->end) 550 *p->end++ = '/'; 551 *prepared = p->end; 552 p->end += name_len; 553 *p->end = 0; 554 } 555 556 out: 557 return ret; 558 } 559 560 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 561 { 562 int ret; 563 char *prepared; 564 565 ret = fs_path_prepare_for_add(p, name_len, &prepared); 566 if (ret < 0) 567 goto out; 568 memcpy(prepared, name, name_len); 569 570 out: 571 return ret; 572 } 573 574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 575 { 576 int ret; 577 char *prepared; 578 579 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 580 if (ret < 0) 581 goto out; 582 memcpy(prepared, p2->start, p2->end - p2->start); 583 584 out: 585 return ret; 586 } 587 588 static int fs_path_add_from_extent_buffer(struct fs_path *p, 589 struct extent_buffer *eb, 590 unsigned long off, int len) 591 { 592 int ret; 593 char *prepared; 594 595 ret = fs_path_prepare_for_add(p, len, &prepared); 596 if (ret < 0) 597 goto out; 598 599 read_extent_buffer(eb, prepared, off, len); 600 601 out: 602 return ret; 603 } 604 605 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 606 { 607 p->reversed = from->reversed; 608 fs_path_reset(p); 609 610 return fs_path_add_path(p, from); 611 } 612 613 static void fs_path_unreverse(struct fs_path *p) 614 { 615 char *tmp; 616 int len; 617 618 if (!p->reversed) 619 return; 620 621 tmp = p->start; 622 len = p->end - p->start; 623 p->start = p->buf; 624 p->end = p->start + len; 625 memmove(p->start, tmp, len + 1); 626 p->reversed = 0; 627 } 628 629 static struct btrfs_path *alloc_path_for_send(void) 630 { 631 struct btrfs_path *path; 632 633 path = btrfs_alloc_path(); 634 if (!path) 635 return NULL; 636 path->search_commit_root = 1; 637 path->skip_locking = 1; 638 path->need_commit_sem = 1; 639 return path; 640 } 641 642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 643 { 644 int ret; 645 u32 pos = 0; 646 647 while (pos < len) { 648 ret = kernel_write(filp, buf + pos, len - pos, off); 649 if (ret < 0) 650 return ret; 651 if (ret == 0) 652 return -EIO; 653 pos += ret; 654 } 655 656 return 0; 657 } 658 659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 660 { 661 struct btrfs_tlv_header *hdr; 662 int total_len = sizeof(*hdr) + len; 663 int left = sctx->send_max_size - sctx->send_size; 664 665 if (WARN_ON_ONCE(sctx->put_data)) 666 return -EINVAL; 667 668 if (unlikely(left < total_len)) 669 return -EOVERFLOW; 670 671 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 672 put_unaligned_le16(attr, &hdr->tlv_type); 673 put_unaligned_le16(len, &hdr->tlv_len); 674 memcpy(hdr + 1, data, len); 675 sctx->send_size += total_len; 676 677 return 0; 678 } 679 680 #define TLV_PUT_DEFINE_INT(bits) \ 681 static int tlv_put_u##bits(struct send_ctx *sctx, \ 682 u##bits attr, u##bits value) \ 683 { \ 684 __le##bits __tmp = cpu_to_le##bits(value); \ 685 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 686 } 687 688 TLV_PUT_DEFINE_INT(8) 689 TLV_PUT_DEFINE_INT(32) 690 TLV_PUT_DEFINE_INT(64) 691 692 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 693 const char *str, int len) 694 { 695 if (len == -1) 696 len = strlen(str); 697 return tlv_put(sctx, attr, str, len); 698 } 699 700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 701 const u8 *uuid) 702 { 703 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 704 } 705 706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 707 struct extent_buffer *eb, 708 struct btrfs_timespec *ts) 709 { 710 struct btrfs_timespec bts; 711 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 712 return tlv_put(sctx, attr, &bts, sizeof(bts)); 713 } 714 715 716 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 717 do { \ 718 ret = tlv_put(sctx, attrtype, data, attrlen); \ 719 if (ret < 0) \ 720 goto tlv_put_failure; \ 721 } while (0) 722 723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 724 do { \ 725 ret = tlv_put_u##bits(sctx, attrtype, value); \ 726 if (ret < 0) \ 727 goto tlv_put_failure; \ 728 } while (0) 729 730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 735 do { \ 736 ret = tlv_put_string(sctx, attrtype, str, len); \ 737 if (ret < 0) \ 738 goto tlv_put_failure; \ 739 } while (0) 740 #define TLV_PUT_PATH(sctx, attrtype, p) \ 741 do { \ 742 ret = tlv_put_string(sctx, attrtype, p->start, \ 743 p->end - p->start); \ 744 if (ret < 0) \ 745 goto tlv_put_failure; \ 746 } while(0) 747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 748 do { \ 749 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 750 if (ret < 0) \ 751 goto tlv_put_failure; \ 752 } while (0) 753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 754 do { \ 755 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 756 if (ret < 0) \ 757 goto tlv_put_failure; \ 758 } while (0) 759 760 static int send_header(struct send_ctx *sctx) 761 { 762 struct btrfs_stream_header hdr; 763 764 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 765 hdr.version = cpu_to_le32(sctx->proto); 766 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 767 &sctx->send_off); 768 } 769 770 /* 771 * For each command/item we want to send to userspace, we call this function. 772 */ 773 static int begin_cmd(struct send_ctx *sctx, int cmd) 774 { 775 struct btrfs_cmd_header *hdr; 776 777 if (WARN_ON(!sctx->send_buf)) 778 return -EINVAL; 779 780 if (unlikely(sctx->send_size != 0)) { 781 btrfs_err(sctx->send_root->fs_info, 782 "send: command header buffer not empty cmd %d offset %llu", 783 cmd, sctx->send_off); 784 return -EINVAL; 785 } 786 787 sctx->send_size += sizeof(*hdr); 788 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 789 put_unaligned_le16(cmd, &hdr->cmd); 790 791 return 0; 792 } 793 794 static int send_cmd(struct send_ctx *sctx) 795 { 796 int ret; 797 struct btrfs_cmd_header *hdr; 798 u32 crc; 799 800 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 801 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 802 put_unaligned_le32(0, &hdr->crc); 803 804 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 805 put_unaligned_le32(crc, &hdr->crc); 806 807 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 808 &sctx->send_off); 809 810 sctx->send_size = 0; 811 sctx->put_data = false; 812 813 return ret; 814 } 815 816 /* 817 * Sends a move instruction to user space 818 */ 819 static int send_rename(struct send_ctx *sctx, 820 struct fs_path *from, struct fs_path *to) 821 { 822 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 823 int ret; 824 825 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 826 827 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 828 if (ret < 0) 829 goto out; 830 831 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 832 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 833 834 ret = send_cmd(sctx); 835 836 tlv_put_failure: 837 out: 838 return ret; 839 } 840 841 /* 842 * Sends a link instruction to user space 843 */ 844 static int send_link(struct send_ctx *sctx, 845 struct fs_path *path, struct fs_path *lnk) 846 { 847 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 848 int ret; 849 850 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 851 852 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 853 if (ret < 0) 854 goto out; 855 856 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 857 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 858 859 ret = send_cmd(sctx); 860 861 tlv_put_failure: 862 out: 863 return ret; 864 } 865 866 /* 867 * Sends an unlink instruction to user space 868 */ 869 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 870 { 871 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 872 int ret; 873 874 btrfs_debug(fs_info, "send_unlink %s", path->start); 875 876 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 877 if (ret < 0) 878 goto out; 879 880 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 881 882 ret = send_cmd(sctx); 883 884 tlv_put_failure: 885 out: 886 return ret; 887 } 888 889 /* 890 * Sends a rmdir instruction to user space 891 */ 892 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 893 { 894 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 895 int ret; 896 897 btrfs_debug(fs_info, "send_rmdir %s", path->start); 898 899 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 900 if (ret < 0) 901 goto out; 902 903 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 904 905 ret = send_cmd(sctx); 906 907 tlv_put_failure: 908 out: 909 return ret; 910 } 911 912 struct btrfs_inode_info { 913 u64 size; 914 u64 gen; 915 u64 mode; 916 u64 uid; 917 u64 gid; 918 u64 rdev; 919 u64 fileattr; 920 u64 nlink; 921 }; 922 923 /* 924 * Helper function to retrieve some fields from an inode item. 925 */ 926 static int get_inode_info(struct btrfs_root *root, u64 ino, 927 struct btrfs_inode_info *info) 928 { 929 int ret; 930 struct btrfs_path *path; 931 struct btrfs_inode_item *ii; 932 struct btrfs_key key; 933 934 path = alloc_path_for_send(); 935 if (!path) 936 return -ENOMEM; 937 938 key.objectid = ino; 939 key.type = BTRFS_INODE_ITEM_KEY; 940 key.offset = 0; 941 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 942 if (ret) { 943 if (ret > 0) 944 ret = -ENOENT; 945 goto out; 946 } 947 948 if (!info) 949 goto out; 950 951 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 952 struct btrfs_inode_item); 953 info->size = btrfs_inode_size(path->nodes[0], ii); 954 info->gen = btrfs_inode_generation(path->nodes[0], ii); 955 info->mode = btrfs_inode_mode(path->nodes[0], ii); 956 info->uid = btrfs_inode_uid(path->nodes[0], ii); 957 info->gid = btrfs_inode_gid(path->nodes[0], ii); 958 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 959 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 960 /* 961 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 962 * otherwise logically split to 32/32 parts. 963 */ 964 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 965 966 out: 967 btrfs_free_path(path); 968 return ret; 969 } 970 971 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 972 { 973 int ret; 974 struct btrfs_inode_info info = { 0 }; 975 976 ASSERT(gen); 977 978 ret = get_inode_info(root, ino, &info); 979 *gen = info.gen; 980 return ret; 981 } 982 983 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 984 struct fs_path *p, 985 void *ctx); 986 987 /* 988 * Helper function to iterate the entries in ONE btrfs_inode_ref or 989 * btrfs_inode_extref. 990 * The iterate callback may return a non zero value to stop iteration. This can 991 * be a negative value for error codes or 1 to simply stop it. 992 * 993 * path must point to the INODE_REF or INODE_EXTREF when called. 994 */ 995 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 996 struct btrfs_key *found_key, int resolve, 997 iterate_inode_ref_t iterate, void *ctx) 998 { 999 struct extent_buffer *eb = path->nodes[0]; 1000 struct btrfs_inode_ref *iref; 1001 struct btrfs_inode_extref *extref; 1002 struct btrfs_path *tmp_path; 1003 struct fs_path *p; 1004 u32 cur = 0; 1005 u32 total; 1006 int slot = path->slots[0]; 1007 u32 name_len; 1008 char *start; 1009 int ret = 0; 1010 int num = 0; 1011 int index; 1012 u64 dir; 1013 unsigned long name_off; 1014 unsigned long elem_size; 1015 unsigned long ptr; 1016 1017 p = fs_path_alloc_reversed(); 1018 if (!p) 1019 return -ENOMEM; 1020 1021 tmp_path = alloc_path_for_send(); 1022 if (!tmp_path) { 1023 fs_path_free(p); 1024 return -ENOMEM; 1025 } 1026 1027 1028 if (found_key->type == BTRFS_INODE_REF_KEY) { 1029 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 1030 struct btrfs_inode_ref); 1031 total = btrfs_item_size(eb, slot); 1032 elem_size = sizeof(*iref); 1033 } else { 1034 ptr = btrfs_item_ptr_offset(eb, slot); 1035 total = btrfs_item_size(eb, slot); 1036 elem_size = sizeof(*extref); 1037 } 1038 1039 while (cur < total) { 1040 fs_path_reset(p); 1041 1042 if (found_key->type == BTRFS_INODE_REF_KEY) { 1043 iref = (struct btrfs_inode_ref *)(ptr + cur); 1044 name_len = btrfs_inode_ref_name_len(eb, iref); 1045 name_off = (unsigned long)(iref + 1); 1046 index = btrfs_inode_ref_index(eb, iref); 1047 dir = found_key->offset; 1048 } else { 1049 extref = (struct btrfs_inode_extref *)(ptr + cur); 1050 name_len = btrfs_inode_extref_name_len(eb, extref); 1051 name_off = (unsigned long)&extref->name; 1052 index = btrfs_inode_extref_index(eb, extref); 1053 dir = btrfs_inode_extref_parent(eb, extref); 1054 } 1055 1056 if (resolve) { 1057 start = btrfs_ref_to_path(root, tmp_path, name_len, 1058 name_off, eb, dir, 1059 p->buf, p->buf_len); 1060 if (IS_ERR(start)) { 1061 ret = PTR_ERR(start); 1062 goto out; 1063 } 1064 if (start < p->buf) { 1065 /* overflow , try again with larger buffer */ 1066 ret = fs_path_ensure_buf(p, 1067 p->buf_len + p->buf - start); 1068 if (ret < 0) 1069 goto out; 1070 start = btrfs_ref_to_path(root, tmp_path, 1071 name_len, name_off, 1072 eb, dir, 1073 p->buf, p->buf_len); 1074 if (IS_ERR(start)) { 1075 ret = PTR_ERR(start); 1076 goto out; 1077 } 1078 if (unlikely(start < p->buf)) { 1079 btrfs_err(root->fs_info, 1080 "send: path ref buffer underflow for key (%llu %u %llu)", 1081 found_key->objectid, 1082 found_key->type, 1083 found_key->offset); 1084 ret = -EINVAL; 1085 goto out; 1086 } 1087 } 1088 p->start = start; 1089 } else { 1090 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1091 name_len); 1092 if (ret < 0) 1093 goto out; 1094 } 1095 1096 cur += elem_size + name_len; 1097 ret = iterate(num, dir, index, p, ctx); 1098 if (ret) 1099 goto out; 1100 num++; 1101 } 1102 1103 out: 1104 btrfs_free_path(tmp_path); 1105 fs_path_free(p); 1106 return ret; 1107 } 1108 1109 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1110 const char *name, int name_len, 1111 const char *data, int data_len, 1112 void *ctx); 1113 1114 /* 1115 * Helper function to iterate the entries in ONE btrfs_dir_item. 1116 * The iterate callback may return a non zero value to stop iteration. This can 1117 * be a negative value for error codes or 1 to simply stop it. 1118 * 1119 * path must point to the dir item when called. 1120 */ 1121 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1122 iterate_dir_item_t iterate, void *ctx) 1123 { 1124 int ret = 0; 1125 struct extent_buffer *eb; 1126 struct btrfs_dir_item *di; 1127 struct btrfs_key di_key; 1128 char *buf = NULL; 1129 int buf_len; 1130 u32 name_len; 1131 u32 data_len; 1132 u32 cur; 1133 u32 len; 1134 u32 total; 1135 int slot; 1136 int num; 1137 1138 /* 1139 * Start with a small buffer (1 page). If later we end up needing more 1140 * space, which can happen for xattrs on a fs with a leaf size greater 1141 * then the page size, attempt to increase the buffer. Typically xattr 1142 * values are small. 1143 */ 1144 buf_len = PATH_MAX; 1145 buf = kmalloc(buf_len, GFP_KERNEL); 1146 if (!buf) { 1147 ret = -ENOMEM; 1148 goto out; 1149 } 1150 1151 eb = path->nodes[0]; 1152 slot = path->slots[0]; 1153 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1154 cur = 0; 1155 len = 0; 1156 total = btrfs_item_size(eb, slot); 1157 1158 num = 0; 1159 while (cur < total) { 1160 name_len = btrfs_dir_name_len(eb, di); 1161 data_len = btrfs_dir_data_len(eb, di); 1162 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1163 1164 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { 1165 if (name_len > XATTR_NAME_MAX) { 1166 ret = -ENAMETOOLONG; 1167 goto out; 1168 } 1169 if (name_len + data_len > 1170 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1171 ret = -E2BIG; 1172 goto out; 1173 } 1174 } else { 1175 /* 1176 * Path too long 1177 */ 1178 if (name_len + data_len > PATH_MAX) { 1179 ret = -ENAMETOOLONG; 1180 goto out; 1181 } 1182 } 1183 1184 if (name_len + data_len > buf_len) { 1185 buf_len = name_len + data_len; 1186 if (is_vmalloc_addr(buf)) { 1187 vfree(buf); 1188 buf = NULL; 1189 } else { 1190 char *tmp = krealloc(buf, buf_len, 1191 GFP_KERNEL | __GFP_NOWARN); 1192 1193 if (!tmp) 1194 kfree(buf); 1195 buf = tmp; 1196 } 1197 if (!buf) { 1198 buf = kvmalloc(buf_len, GFP_KERNEL); 1199 if (!buf) { 1200 ret = -ENOMEM; 1201 goto out; 1202 } 1203 } 1204 } 1205 1206 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1207 name_len + data_len); 1208 1209 len = sizeof(*di) + name_len + data_len; 1210 di = (struct btrfs_dir_item *)((char *)di + len); 1211 cur += len; 1212 1213 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1214 data_len, ctx); 1215 if (ret < 0) 1216 goto out; 1217 if (ret) { 1218 ret = 0; 1219 goto out; 1220 } 1221 1222 num++; 1223 } 1224 1225 out: 1226 kvfree(buf); 1227 return ret; 1228 } 1229 1230 static int __copy_first_ref(int num, u64 dir, int index, 1231 struct fs_path *p, void *ctx) 1232 { 1233 int ret; 1234 struct fs_path *pt = ctx; 1235 1236 ret = fs_path_copy(pt, p); 1237 if (ret < 0) 1238 return ret; 1239 1240 /* we want the first only */ 1241 return 1; 1242 } 1243 1244 /* 1245 * Retrieve the first path of an inode. If an inode has more then one 1246 * ref/hardlink, this is ignored. 1247 */ 1248 static int get_inode_path(struct btrfs_root *root, 1249 u64 ino, struct fs_path *path) 1250 { 1251 int ret; 1252 struct btrfs_key key, found_key; 1253 struct btrfs_path *p; 1254 1255 p = alloc_path_for_send(); 1256 if (!p) 1257 return -ENOMEM; 1258 1259 fs_path_reset(path); 1260 1261 key.objectid = ino; 1262 key.type = BTRFS_INODE_REF_KEY; 1263 key.offset = 0; 1264 1265 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1266 if (ret < 0) 1267 goto out; 1268 if (ret) { 1269 ret = 1; 1270 goto out; 1271 } 1272 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1273 if (found_key.objectid != ino || 1274 (found_key.type != BTRFS_INODE_REF_KEY && 1275 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1276 ret = -ENOENT; 1277 goto out; 1278 } 1279 1280 ret = iterate_inode_ref(root, p, &found_key, 1, 1281 __copy_first_ref, path); 1282 if (ret < 0) 1283 goto out; 1284 ret = 0; 1285 1286 out: 1287 btrfs_free_path(p); 1288 return ret; 1289 } 1290 1291 struct backref_ctx { 1292 struct send_ctx *sctx; 1293 1294 /* number of total found references */ 1295 u64 found; 1296 1297 /* 1298 * used for clones found in send_root. clones found behind cur_objectid 1299 * and cur_offset are not considered as allowed clones. 1300 */ 1301 u64 cur_objectid; 1302 u64 cur_offset; 1303 1304 /* may be truncated in case it's the last extent in a file */ 1305 u64 extent_len; 1306 1307 /* The bytenr the file extent item we are processing refers to. */ 1308 u64 bytenr; 1309 /* The owner (root id) of the data backref for the current extent. */ 1310 u64 backref_owner; 1311 /* The offset of the data backref for the current extent. */ 1312 u64 backref_offset; 1313 }; 1314 1315 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1316 { 1317 u64 root = (u64)(uintptr_t)key; 1318 const struct clone_root *cr = elt; 1319 1320 if (root < btrfs_root_id(cr->root)) 1321 return -1; 1322 if (root > btrfs_root_id(cr->root)) 1323 return 1; 1324 return 0; 1325 } 1326 1327 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1328 { 1329 const struct clone_root *cr1 = e1; 1330 const struct clone_root *cr2 = e2; 1331 1332 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root)) 1333 return -1; 1334 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root)) 1335 return 1; 1336 return 0; 1337 } 1338 1339 /* 1340 * Called for every backref that is found for the current extent. 1341 * Results are collected in sctx->clone_roots->ino/offset. 1342 */ 1343 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, 1344 void *ctx_) 1345 { 1346 struct backref_ctx *bctx = ctx_; 1347 struct clone_root *clone_root; 1348 1349 /* First check if the root is in the list of accepted clone sources */ 1350 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, 1351 bctx->sctx->clone_roots_cnt, 1352 sizeof(struct clone_root), 1353 __clone_root_cmp_bsearch); 1354 if (!clone_root) 1355 return 0; 1356 1357 /* This is our own reference, bail out as we can't clone from it. */ 1358 if (clone_root->root == bctx->sctx->send_root && 1359 ino == bctx->cur_objectid && 1360 offset == bctx->cur_offset) 1361 return 0; 1362 1363 /* 1364 * Make sure we don't consider clones from send_root that are 1365 * behind the current inode/offset. 1366 */ 1367 if (clone_root->root == bctx->sctx->send_root) { 1368 /* 1369 * If the source inode was not yet processed we can't issue a 1370 * clone operation, as the source extent does not exist yet at 1371 * the destination of the stream. 1372 */ 1373 if (ino > bctx->cur_objectid) 1374 return 0; 1375 /* 1376 * We clone from the inode currently being sent as long as the 1377 * source extent is already processed, otherwise we could try 1378 * to clone from an extent that does not exist yet at the 1379 * destination of the stream. 1380 */ 1381 if (ino == bctx->cur_objectid && 1382 offset + bctx->extent_len > 1383 bctx->sctx->cur_inode_next_write_offset) 1384 return 0; 1385 } 1386 1387 bctx->found++; 1388 clone_root->found_ref = true; 1389 1390 /* 1391 * If the given backref refers to a file extent item with a larger 1392 * number of bytes than what we found before, use the new one so that 1393 * we clone more optimally and end up doing less writes and getting 1394 * less exclusive, non-shared extents at the destination. 1395 */ 1396 if (num_bytes > clone_root->num_bytes) { 1397 clone_root->ino = ino; 1398 clone_root->offset = offset; 1399 clone_root->num_bytes = num_bytes; 1400 1401 /* 1402 * Found a perfect candidate, so there's no need to continue 1403 * backref walking. 1404 */ 1405 if (num_bytes >= bctx->extent_len) 1406 return BTRFS_ITERATE_EXTENT_INODES_STOP; 1407 } 1408 1409 return 0; 1410 } 1411 1412 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, 1413 const u64 **root_ids_ret, int *root_count_ret) 1414 { 1415 struct backref_ctx *bctx = ctx; 1416 struct send_ctx *sctx = bctx->sctx; 1417 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1418 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits; 1419 struct btrfs_lru_cache_entry *raw_entry; 1420 struct backref_cache_entry *entry; 1421 1422 if (sctx->backref_cache.size == 0) 1423 return false; 1424 1425 /* 1426 * If relocation happened since we first filled the cache, then we must 1427 * empty the cache and can not use it, because even though we operate on 1428 * read-only roots, their leaves and nodes may have been reallocated and 1429 * now be used for different nodes/leaves of the same tree or some other 1430 * tree. 1431 * 1432 * We are called from iterate_extent_inodes() while either holding a 1433 * transaction handle or holding fs_info->commit_root_sem, so no need 1434 * to take any lock here. 1435 */ 1436 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { 1437 btrfs_lru_cache_clear(&sctx->backref_cache); 1438 return false; 1439 } 1440 1441 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); 1442 if (!raw_entry) 1443 return false; 1444 1445 entry = container_of(raw_entry, struct backref_cache_entry, entry); 1446 *root_ids_ret = entry->root_ids; 1447 *root_count_ret = entry->num_roots; 1448 1449 return true; 1450 } 1451 1452 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, 1453 void *ctx) 1454 { 1455 struct backref_ctx *bctx = ctx; 1456 struct send_ctx *sctx = bctx->sctx; 1457 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1458 struct backref_cache_entry *new_entry; 1459 struct ulist_iterator uiter; 1460 struct ulist_node *node; 1461 int ret; 1462 1463 /* 1464 * We're called while holding a transaction handle or while holding 1465 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a 1466 * NOFS allocation. 1467 */ 1468 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); 1469 /* No worries, cache is optional. */ 1470 if (!new_entry) 1471 return; 1472 1473 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits; 1474 new_entry->entry.gen = 0; 1475 new_entry->num_roots = 0; 1476 ULIST_ITER_INIT(&uiter); 1477 while ((node = ulist_next(root_ids, &uiter)) != NULL) { 1478 const u64 root_id = node->val; 1479 struct clone_root *root; 1480 1481 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, 1482 sctx->clone_roots_cnt, sizeof(struct clone_root), 1483 __clone_root_cmp_bsearch); 1484 if (!root) 1485 continue; 1486 1487 /* Too many roots, just exit, no worries as caching is optional. */ 1488 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { 1489 kfree(new_entry); 1490 return; 1491 } 1492 1493 new_entry->root_ids[new_entry->num_roots] = root_id; 1494 new_entry->num_roots++; 1495 } 1496 1497 /* 1498 * We may have not added any roots to the new cache entry, which means 1499 * none of the roots is part of the list of roots from which we are 1500 * allowed to clone. Cache the new entry as it's still useful to avoid 1501 * backref walking to determine which roots have a path to the leaf. 1502 * 1503 * Also use GFP_NOFS because we're called while holding a transaction 1504 * handle or while holding fs_info->commit_root_sem. 1505 */ 1506 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, 1507 GFP_NOFS); 1508 ASSERT(ret == 0 || ret == -ENOMEM); 1509 if (ret) { 1510 /* Caching is optional, no worries. */ 1511 kfree(new_entry); 1512 return; 1513 } 1514 1515 /* 1516 * We are called from iterate_extent_inodes() while either holding a 1517 * transaction handle or holding fs_info->commit_root_sem, so no need 1518 * to take any lock here. 1519 */ 1520 if (sctx->backref_cache.size == 1) 1521 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; 1522 } 1523 1524 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, 1525 const struct extent_buffer *leaf, void *ctx) 1526 { 1527 const u64 refs = btrfs_extent_refs(leaf, ei); 1528 const struct backref_ctx *bctx = ctx; 1529 const struct send_ctx *sctx = bctx->sctx; 1530 1531 if (bytenr == bctx->bytenr) { 1532 const u64 flags = btrfs_extent_flags(leaf, ei); 1533 1534 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 1535 return -EUCLEAN; 1536 1537 /* 1538 * If we have only one reference and only the send root as a 1539 * clone source - meaning no clone roots were given in the 1540 * struct btrfs_ioctl_send_args passed to the send ioctl - then 1541 * it's our reference and there's no point in doing backref 1542 * walking which is expensive, so exit early. 1543 */ 1544 if (refs == 1 && sctx->clone_roots_cnt == 1) 1545 return -ENOENT; 1546 } 1547 1548 /* 1549 * Backreference walking (iterate_extent_inodes() below) is currently 1550 * too expensive when an extent has a large number of references, both 1551 * in time spent and used memory. So for now just fallback to write 1552 * operations instead of clone operations when an extent has more than 1553 * a certain amount of references. 1554 */ 1555 if (refs > SEND_MAX_EXTENT_REFS) 1556 return -ENOENT; 1557 1558 return 0; 1559 } 1560 1561 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) 1562 { 1563 const struct backref_ctx *bctx = ctx; 1564 1565 if (ino == bctx->cur_objectid && 1566 root == bctx->backref_owner && 1567 offset == bctx->backref_offset) 1568 return true; 1569 1570 return false; 1571 } 1572 1573 /* 1574 * Given an inode, offset and extent item, it finds a good clone for a clone 1575 * instruction. Returns -ENOENT when none could be found. The function makes 1576 * sure that the returned clone is usable at the point where sending is at the 1577 * moment. This means, that no clones are accepted which lie behind the current 1578 * inode+offset. 1579 * 1580 * path must point to the extent item when called. 1581 */ 1582 static int find_extent_clone(struct send_ctx *sctx, 1583 struct btrfs_path *path, 1584 u64 ino, u64 data_offset, 1585 u64 ino_size, 1586 struct clone_root **found) 1587 { 1588 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1589 int ret; 1590 int extent_type; 1591 u64 logical; 1592 u64 disk_byte; 1593 u64 num_bytes; 1594 struct btrfs_file_extent_item *fi; 1595 struct extent_buffer *eb = path->nodes[0]; 1596 struct backref_ctx backref_ctx = { 0 }; 1597 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; 1598 struct clone_root *cur_clone_root; 1599 int compressed; 1600 u32 i; 1601 1602 /* 1603 * With fallocate we can get prealloc extents beyond the inode's i_size, 1604 * so we don't do anything here because clone operations can not clone 1605 * to a range beyond i_size without increasing the i_size of the 1606 * destination inode. 1607 */ 1608 if (data_offset >= ino_size) 1609 return 0; 1610 1611 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); 1612 extent_type = btrfs_file_extent_type(eb, fi); 1613 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1614 return -ENOENT; 1615 1616 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1617 if (disk_byte == 0) 1618 return -ENOENT; 1619 1620 compressed = btrfs_file_extent_compression(eb, fi); 1621 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1622 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1623 1624 /* 1625 * Setup the clone roots. 1626 */ 1627 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1628 cur_clone_root = sctx->clone_roots + i; 1629 cur_clone_root->ino = (u64)-1; 1630 cur_clone_root->offset = 0; 1631 cur_clone_root->num_bytes = 0; 1632 cur_clone_root->found_ref = false; 1633 } 1634 1635 backref_ctx.sctx = sctx; 1636 backref_ctx.cur_objectid = ino; 1637 backref_ctx.cur_offset = data_offset; 1638 backref_ctx.bytenr = disk_byte; 1639 /* 1640 * Use the header owner and not the send root's id, because in case of a 1641 * snapshot we can have shared subtrees. 1642 */ 1643 backref_ctx.backref_owner = btrfs_header_owner(eb); 1644 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); 1645 1646 /* 1647 * The last extent of a file may be too large due to page alignment. 1648 * We need to adjust extent_len in this case so that the checks in 1649 * iterate_backrefs() work. 1650 */ 1651 if (data_offset + num_bytes >= ino_size) 1652 backref_ctx.extent_len = ino_size - data_offset; 1653 else 1654 backref_ctx.extent_len = num_bytes; 1655 1656 /* 1657 * Now collect all backrefs. 1658 */ 1659 backref_walk_ctx.bytenr = disk_byte; 1660 if (compressed == BTRFS_COMPRESS_NONE) 1661 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); 1662 backref_walk_ctx.fs_info = fs_info; 1663 backref_walk_ctx.cache_lookup = lookup_backref_cache; 1664 backref_walk_ctx.cache_store = store_backref_cache; 1665 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; 1666 backref_walk_ctx.check_extent_item = check_extent_item; 1667 backref_walk_ctx.user_ctx = &backref_ctx; 1668 1669 /* 1670 * If have a single clone root, then it's the send root and we can tell 1671 * the backref walking code to skip our own backref and not resolve it, 1672 * since we can not use it for cloning - the source and destination 1673 * ranges can't overlap and in case the leaf is shared through a subtree 1674 * due to snapshots, we can't use those other roots since they are not 1675 * in the list of clone roots. 1676 */ 1677 if (sctx->clone_roots_cnt == 1) 1678 backref_walk_ctx.skip_data_ref = skip_self_data_ref; 1679 1680 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, 1681 &backref_ctx); 1682 if (ret < 0) 1683 return ret; 1684 1685 down_read(&fs_info->commit_root_sem); 1686 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1687 /* 1688 * A transaction commit for a transaction in which block group 1689 * relocation was done just happened. 1690 * The disk_bytenr of the file extent item we processed is 1691 * possibly stale, referring to the extent's location before 1692 * relocation. So act as if we haven't found any clone sources 1693 * and fallback to write commands, which will read the correct 1694 * data from the new extent location. Otherwise we will fail 1695 * below because we haven't found our own back reference or we 1696 * could be getting incorrect sources in case the old extent 1697 * was already reallocated after the relocation. 1698 */ 1699 up_read(&fs_info->commit_root_sem); 1700 return -ENOENT; 1701 } 1702 up_read(&fs_info->commit_root_sem); 1703 1704 btrfs_debug(fs_info, 1705 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1706 data_offset, ino, num_bytes, logical); 1707 1708 if (!backref_ctx.found) { 1709 btrfs_debug(fs_info, "no clones found"); 1710 return -ENOENT; 1711 } 1712 1713 cur_clone_root = NULL; 1714 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1715 struct clone_root *clone_root = &sctx->clone_roots[i]; 1716 1717 if (!clone_root->found_ref) 1718 continue; 1719 1720 /* 1721 * Choose the root from which we can clone more bytes, to 1722 * minimize write operations and therefore have more extent 1723 * sharing at the destination (the same as in the source). 1724 */ 1725 if (!cur_clone_root || 1726 clone_root->num_bytes > cur_clone_root->num_bytes) { 1727 cur_clone_root = clone_root; 1728 1729 /* 1730 * We found an optimal clone candidate (any inode from 1731 * any root is fine), so we're done. 1732 */ 1733 if (clone_root->num_bytes >= backref_ctx.extent_len) 1734 break; 1735 } 1736 } 1737 1738 if (cur_clone_root) { 1739 *found = cur_clone_root; 1740 ret = 0; 1741 } else { 1742 ret = -ENOENT; 1743 } 1744 1745 return ret; 1746 } 1747 1748 static int read_symlink(struct btrfs_root *root, 1749 u64 ino, 1750 struct fs_path *dest) 1751 { 1752 int ret; 1753 struct btrfs_path *path; 1754 struct btrfs_key key; 1755 struct btrfs_file_extent_item *ei; 1756 u8 type; 1757 u8 compression; 1758 unsigned long off; 1759 int len; 1760 1761 path = alloc_path_for_send(); 1762 if (!path) 1763 return -ENOMEM; 1764 1765 key.objectid = ino; 1766 key.type = BTRFS_EXTENT_DATA_KEY; 1767 key.offset = 0; 1768 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1769 if (ret < 0) 1770 goto out; 1771 if (ret) { 1772 /* 1773 * An empty symlink inode. Can happen in rare error paths when 1774 * creating a symlink (transaction committed before the inode 1775 * eviction handler removed the symlink inode items and a crash 1776 * happened in between or the subvol was snapshoted in between). 1777 * Print an informative message to dmesg/syslog so that the user 1778 * can delete the symlink. 1779 */ 1780 btrfs_err(root->fs_info, 1781 "Found empty symlink inode %llu at root %llu", 1782 ino, btrfs_root_id(root)); 1783 ret = -EIO; 1784 goto out; 1785 } 1786 1787 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1788 struct btrfs_file_extent_item); 1789 type = btrfs_file_extent_type(path->nodes[0], ei); 1790 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { 1791 ret = -EUCLEAN; 1792 btrfs_crit(root->fs_info, 1793 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", 1794 ino, btrfs_root_id(root), type); 1795 goto out; 1796 } 1797 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1798 if (unlikely(compression != BTRFS_COMPRESS_NONE)) { 1799 ret = -EUCLEAN; 1800 btrfs_crit(root->fs_info, 1801 "send: found symlink extent with compression, ino %llu root %llu compression type %d", 1802 ino, btrfs_root_id(root), compression); 1803 goto out; 1804 } 1805 1806 off = btrfs_file_extent_inline_start(ei); 1807 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1808 1809 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1810 1811 out: 1812 btrfs_free_path(path); 1813 return ret; 1814 } 1815 1816 /* 1817 * Helper function to generate a file name that is unique in the root of 1818 * send_root and parent_root. This is used to generate names for orphan inodes. 1819 */ 1820 static int gen_unique_name(struct send_ctx *sctx, 1821 u64 ino, u64 gen, 1822 struct fs_path *dest) 1823 { 1824 int ret = 0; 1825 struct btrfs_path *path; 1826 struct btrfs_dir_item *di; 1827 char tmp[64]; 1828 int len; 1829 u64 idx = 0; 1830 1831 path = alloc_path_for_send(); 1832 if (!path) 1833 return -ENOMEM; 1834 1835 while (1) { 1836 struct fscrypt_str tmp_name; 1837 1838 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1839 ino, gen, idx); 1840 ASSERT(len < sizeof(tmp)); 1841 tmp_name.name = tmp; 1842 tmp_name.len = strlen(tmp); 1843 1844 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1845 path, BTRFS_FIRST_FREE_OBJECTID, 1846 &tmp_name, 0); 1847 btrfs_release_path(path); 1848 if (IS_ERR(di)) { 1849 ret = PTR_ERR(di); 1850 goto out; 1851 } 1852 if (di) { 1853 /* not unique, try again */ 1854 idx++; 1855 continue; 1856 } 1857 1858 if (!sctx->parent_root) { 1859 /* unique */ 1860 ret = 0; 1861 break; 1862 } 1863 1864 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1865 path, BTRFS_FIRST_FREE_OBJECTID, 1866 &tmp_name, 0); 1867 btrfs_release_path(path); 1868 if (IS_ERR(di)) { 1869 ret = PTR_ERR(di); 1870 goto out; 1871 } 1872 if (di) { 1873 /* not unique, try again */ 1874 idx++; 1875 continue; 1876 } 1877 /* unique */ 1878 break; 1879 } 1880 1881 ret = fs_path_add(dest, tmp, strlen(tmp)); 1882 1883 out: 1884 btrfs_free_path(path); 1885 return ret; 1886 } 1887 1888 enum inode_state { 1889 inode_state_no_change, 1890 inode_state_will_create, 1891 inode_state_did_create, 1892 inode_state_will_delete, 1893 inode_state_did_delete, 1894 }; 1895 1896 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, 1897 u64 *send_gen, u64 *parent_gen) 1898 { 1899 int ret; 1900 int left_ret; 1901 int right_ret; 1902 u64 left_gen; 1903 u64 right_gen = 0; 1904 struct btrfs_inode_info info; 1905 1906 ret = get_inode_info(sctx->send_root, ino, &info); 1907 if (ret < 0 && ret != -ENOENT) 1908 goto out; 1909 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1910 left_gen = info.gen; 1911 if (send_gen) 1912 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); 1913 1914 if (!sctx->parent_root) { 1915 right_ret = -ENOENT; 1916 } else { 1917 ret = get_inode_info(sctx->parent_root, ino, &info); 1918 if (ret < 0 && ret != -ENOENT) 1919 goto out; 1920 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1921 right_gen = info.gen; 1922 if (parent_gen) 1923 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); 1924 } 1925 1926 if (!left_ret && !right_ret) { 1927 if (left_gen == gen && right_gen == gen) { 1928 ret = inode_state_no_change; 1929 } else if (left_gen == gen) { 1930 if (ino < sctx->send_progress) 1931 ret = inode_state_did_create; 1932 else 1933 ret = inode_state_will_create; 1934 } else if (right_gen == gen) { 1935 if (ino < sctx->send_progress) 1936 ret = inode_state_did_delete; 1937 else 1938 ret = inode_state_will_delete; 1939 } else { 1940 ret = -ENOENT; 1941 } 1942 } else if (!left_ret) { 1943 if (left_gen == gen) { 1944 if (ino < sctx->send_progress) 1945 ret = inode_state_did_create; 1946 else 1947 ret = inode_state_will_create; 1948 } else { 1949 ret = -ENOENT; 1950 } 1951 } else if (!right_ret) { 1952 if (right_gen == gen) { 1953 if (ino < sctx->send_progress) 1954 ret = inode_state_did_delete; 1955 else 1956 ret = inode_state_will_delete; 1957 } else { 1958 ret = -ENOENT; 1959 } 1960 } else { 1961 ret = -ENOENT; 1962 } 1963 1964 out: 1965 return ret; 1966 } 1967 1968 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, 1969 u64 *send_gen, u64 *parent_gen) 1970 { 1971 int ret; 1972 1973 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1974 return 1; 1975 1976 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); 1977 if (ret < 0) 1978 goto out; 1979 1980 if (ret == inode_state_no_change || 1981 ret == inode_state_did_create || 1982 ret == inode_state_will_delete) 1983 ret = 1; 1984 else 1985 ret = 0; 1986 1987 out: 1988 return ret; 1989 } 1990 1991 /* 1992 * Helper function to lookup a dir item in a dir. 1993 */ 1994 static int lookup_dir_item_inode(struct btrfs_root *root, 1995 u64 dir, const char *name, int name_len, 1996 u64 *found_inode) 1997 { 1998 int ret = 0; 1999 struct btrfs_dir_item *di; 2000 struct btrfs_key key; 2001 struct btrfs_path *path; 2002 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); 2003 2004 path = alloc_path_for_send(); 2005 if (!path) 2006 return -ENOMEM; 2007 2008 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); 2009 if (IS_ERR_OR_NULL(di)) { 2010 ret = di ? PTR_ERR(di) : -ENOENT; 2011 goto out; 2012 } 2013 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 2014 if (key.type == BTRFS_ROOT_ITEM_KEY) { 2015 ret = -ENOENT; 2016 goto out; 2017 } 2018 *found_inode = key.objectid; 2019 2020 out: 2021 btrfs_free_path(path); 2022 return ret; 2023 } 2024 2025 /* 2026 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 2027 * generation of the parent dir and the name of the dir entry. 2028 */ 2029 static int get_first_ref(struct btrfs_root *root, u64 ino, 2030 u64 *dir, u64 *dir_gen, struct fs_path *name) 2031 { 2032 int ret; 2033 struct btrfs_key key; 2034 struct btrfs_key found_key; 2035 struct btrfs_path *path; 2036 int len; 2037 u64 parent_dir; 2038 2039 path = alloc_path_for_send(); 2040 if (!path) 2041 return -ENOMEM; 2042 2043 key.objectid = ino; 2044 key.type = BTRFS_INODE_REF_KEY; 2045 key.offset = 0; 2046 2047 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 2048 if (ret < 0) 2049 goto out; 2050 if (!ret) 2051 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2052 path->slots[0]); 2053 if (ret || found_key.objectid != ino || 2054 (found_key.type != BTRFS_INODE_REF_KEY && 2055 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 2056 ret = -ENOENT; 2057 goto out; 2058 } 2059 2060 if (found_key.type == BTRFS_INODE_REF_KEY) { 2061 struct btrfs_inode_ref *iref; 2062 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2063 struct btrfs_inode_ref); 2064 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 2065 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2066 (unsigned long)(iref + 1), 2067 len); 2068 parent_dir = found_key.offset; 2069 } else { 2070 struct btrfs_inode_extref *extref; 2071 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2072 struct btrfs_inode_extref); 2073 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 2074 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2075 (unsigned long)&extref->name, len); 2076 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 2077 } 2078 if (ret < 0) 2079 goto out; 2080 btrfs_release_path(path); 2081 2082 if (dir_gen) { 2083 ret = get_inode_gen(root, parent_dir, dir_gen); 2084 if (ret < 0) 2085 goto out; 2086 } 2087 2088 *dir = parent_dir; 2089 2090 out: 2091 btrfs_free_path(path); 2092 return ret; 2093 } 2094 2095 static int is_first_ref(struct btrfs_root *root, 2096 u64 ino, u64 dir, 2097 const char *name, int name_len) 2098 { 2099 int ret; 2100 struct fs_path *tmp_name; 2101 u64 tmp_dir; 2102 2103 tmp_name = fs_path_alloc(); 2104 if (!tmp_name) 2105 return -ENOMEM; 2106 2107 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 2108 if (ret < 0) 2109 goto out; 2110 2111 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 2112 ret = 0; 2113 goto out; 2114 } 2115 2116 ret = !memcmp(tmp_name->start, name, name_len); 2117 2118 out: 2119 fs_path_free(tmp_name); 2120 return ret; 2121 } 2122 2123 /* 2124 * Used by process_recorded_refs to determine if a new ref would overwrite an 2125 * already existing ref. In case it detects an overwrite, it returns the 2126 * inode/gen in who_ino/who_gen. 2127 * When an overwrite is detected, process_recorded_refs does proper orphanizing 2128 * to make sure later references to the overwritten inode are possible. 2129 * Orphanizing is however only required for the first ref of an inode. 2130 * process_recorded_refs does an additional is_first_ref check to see if 2131 * orphanizing is really required. 2132 */ 2133 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2134 const char *name, int name_len, 2135 u64 *who_ino, u64 *who_gen, u64 *who_mode) 2136 { 2137 int ret; 2138 u64 parent_root_dir_gen; 2139 u64 other_inode = 0; 2140 struct btrfs_inode_info info; 2141 2142 if (!sctx->parent_root) 2143 return 0; 2144 2145 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); 2146 if (ret <= 0) 2147 return 0; 2148 2149 /* 2150 * If we have a parent root we need to verify that the parent dir was 2151 * not deleted and then re-created, if it was then we have no overwrite 2152 * and we can just unlink this entry. 2153 * 2154 * @parent_root_dir_gen was set to 0 if the inode does not exist in the 2155 * parent root. 2156 */ 2157 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && 2158 parent_root_dir_gen != dir_gen) 2159 return 0; 2160 2161 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 2162 &other_inode); 2163 if (ret == -ENOENT) 2164 return 0; 2165 else if (ret < 0) 2166 return ret; 2167 2168 /* 2169 * Check if the overwritten ref was already processed. If yes, the ref 2170 * was already unlinked/moved, so we can safely assume that we will not 2171 * overwrite anything at this point in time. 2172 */ 2173 if (other_inode > sctx->send_progress || 2174 is_waiting_for_move(sctx, other_inode)) { 2175 ret = get_inode_info(sctx->parent_root, other_inode, &info); 2176 if (ret < 0) 2177 return ret; 2178 2179 *who_ino = other_inode; 2180 *who_gen = info.gen; 2181 *who_mode = info.mode; 2182 return 1; 2183 } 2184 2185 return 0; 2186 } 2187 2188 /* 2189 * Checks if the ref was overwritten by an already processed inode. This is 2190 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 2191 * thus the orphan name needs be used. 2192 * process_recorded_refs also uses it to avoid unlinking of refs that were 2193 * overwritten. 2194 */ 2195 static int did_overwrite_ref(struct send_ctx *sctx, 2196 u64 dir, u64 dir_gen, 2197 u64 ino, u64 ino_gen, 2198 const char *name, int name_len) 2199 { 2200 int ret; 2201 u64 ow_inode; 2202 u64 ow_gen = 0; 2203 u64 send_root_dir_gen; 2204 2205 if (!sctx->parent_root) 2206 return 0; 2207 2208 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); 2209 if (ret <= 0) 2210 return ret; 2211 2212 /* 2213 * @send_root_dir_gen was set to 0 if the inode does not exist in the 2214 * send root. 2215 */ 2216 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) 2217 return 0; 2218 2219 /* check if the ref was overwritten by another ref */ 2220 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 2221 &ow_inode); 2222 if (ret == -ENOENT) { 2223 /* was never and will never be overwritten */ 2224 return 0; 2225 } else if (ret < 0) { 2226 return ret; 2227 } 2228 2229 if (ow_inode == ino) { 2230 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2231 if (ret < 0) 2232 return ret; 2233 2234 /* It's the same inode, so no overwrite happened. */ 2235 if (ow_gen == ino_gen) 2236 return 0; 2237 } 2238 2239 /* 2240 * We know that it is or will be overwritten. Check this now. 2241 * The current inode being processed might have been the one that caused 2242 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2243 * the current inode being processed. 2244 */ 2245 if (ow_inode < sctx->send_progress) 2246 return 1; 2247 2248 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { 2249 if (ow_gen == 0) { 2250 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2251 if (ret < 0) 2252 return ret; 2253 } 2254 if (ow_gen == sctx->cur_inode_gen) 2255 return 1; 2256 } 2257 2258 return 0; 2259 } 2260 2261 /* 2262 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2263 * that got overwritten. This is used by process_recorded_refs to determine 2264 * if it has to use the path as returned by get_cur_path or the orphan name. 2265 */ 2266 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2267 { 2268 int ret = 0; 2269 struct fs_path *name = NULL; 2270 u64 dir; 2271 u64 dir_gen; 2272 2273 if (!sctx->parent_root) 2274 goto out; 2275 2276 name = fs_path_alloc(); 2277 if (!name) 2278 return -ENOMEM; 2279 2280 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2281 if (ret < 0) 2282 goto out; 2283 2284 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2285 name->start, fs_path_len(name)); 2286 2287 out: 2288 fs_path_free(name); 2289 return ret; 2290 } 2291 2292 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2293 u64 ino, u64 gen) 2294 { 2295 struct btrfs_lru_cache_entry *entry; 2296 2297 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); 2298 if (!entry) 2299 return NULL; 2300 2301 return container_of(entry, struct name_cache_entry, entry); 2302 } 2303 2304 /* 2305 * Used by get_cur_path for each ref up to the root. 2306 * Returns 0 if it succeeded. 2307 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2308 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2309 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2310 * Returns <0 in case of error. 2311 */ 2312 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2313 u64 ino, u64 gen, 2314 u64 *parent_ino, 2315 u64 *parent_gen, 2316 struct fs_path *dest) 2317 { 2318 int ret; 2319 int nce_ret; 2320 struct name_cache_entry *nce; 2321 2322 /* 2323 * First check if we already did a call to this function with the same 2324 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2325 * return the cached result. 2326 */ 2327 nce = name_cache_search(sctx, ino, gen); 2328 if (nce) { 2329 if (ino < sctx->send_progress && nce->need_later_update) { 2330 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); 2331 nce = NULL; 2332 } else { 2333 *parent_ino = nce->parent_ino; 2334 *parent_gen = nce->parent_gen; 2335 ret = fs_path_add(dest, nce->name, nce->name_len); 2336 if (ret < 0) 2337 goto out; 2338 ret = nce->ret; 2339 goto out; 2340 } 2341 } 2342 2343 /* 2344 * If the inode is not existent yet, add the orphan name and return 1. 2345 * This should only happen for the parent dir that we determine in 2346 * record_new_ref_if_needed(). 2347 */ 2348 ret = is_inode_existent(sctx, ino, gen, NULL, NULL); 2349 if (ret < 0) 2350 goto out; 2351 2352 if (!ret) { 2353 ret = gen_unique_name(sctx, ino, gen, dest); 2354 if (ret < 0) 2355 goto out; 2356 ret = 1; 2357 goto out_cache; 2358 } 2359 2360 /* 2361 * Depending on whether the inode was already processed or not, use 2362 * send_root or parent_root for ref lookup. 2363 */ 2364 if (ino < sctx->send_progress) 2365 ret = get_first_ref(sctx->send_root, ino, 2366 parent_ino, parent_gen, dest); 2367 else 2368 ret = get_first_ref(sctx->parent_root, ino, 2369 parent_ino, parent_gen, dest); 2370 if (ret < 0) 2371 goto out; 2372 2373 /* 2374 * Check if the ref was overwritten by an inode's ref that was processed 2375 * earlier. If yes, treat as orphan and return 1. 2376 */ 2377 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2378 dest->start, dest->end - dest->start); 2379 if (ret < 0) 2380 goto out; 2381 if (ret) { 2382 fs_path_reset(dest); 2383 ret = gen_unique_name(sctx, ino, gen, dest); 2384 if (ret < 0) 2385 goto out; 2386 ret = 1; 2387 } 2388 2389 out_cache: 2390 /* 2391 * Store the result of the lookup in the name cache. 2392 */ 2393 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL); 2394 if (!nce) { 2395 ret = -ENOMEM; 2396 goto out; 2397 } 2398 2399 nce->entry.key = ino; 2400 nce->entry.gen = gen; 2401 nce->parent_ino = *parent_ino; 2402 nce->parent_gen = *parent_gen; 2403 nce->name_len = fs_path_len(dest); 2404 nce->ret = ret; 2405 memcpy(nce->name, dest->start, nce->name_len); 2406 2407 if (ino < sctx->send_progress) 2408 nce->need_later_update = 0; 2409 else 2410 nce->need_later_update = 1; 2411 2412 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); 2413 if (nce_ret < 0) { 2414 kfree(nce); 2415 ret = nce_ret; 2416 } 2417 2418 out: 2419 return ret; 2420 } 2421 2422 /* 2423 * Magic happens here. This function returns the first ref to an inode as it 2424 * would look like while receiving the stream at this point in time. 2425 * We walk the path up to the root. For every inode in between, we check if it 2426 * was already processed/sent. If yes, we continue with the parent as found 2427 * in send_root. If not, we continue with the parent as found in parent_root. 2428 * If we encounter an inode that was deleted at this point in time, we use the 2429 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2430 * that were not created yet and overwritten inodes/refs. 2431 * 2432 * When do we have orphan inodes: 2433 * 1. When an inode is freshly created and thus no valid refs are available yet 2434 * 2. When a directory lost all it's refs (deleted) but still has dir items 2435 * inside which were not processed yet (pending for move/delete). If anyone 2436 * tried to get the path to the dir items, it would get a path inside that 2437 * orphan directory. 2438 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2439 * of an unprocessed inode. If in that case the first ref would be 2440 * overwritten, the overwritten inode gets "orphanized". Later when we 2441 * process this overwritten inode, it is restored at a new place by moving 2442 * the orphan inode. 2443 * 2444 * sctx->send_progress tells this function at which point in time receiving 2445 * would be. 2446 */ 2447 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2448 struct fs_path *dest) 2449 { 2450 int ret = 0; 2451 struct fs_path *name = NULL; 2452 u64 parent_inode = 0; 2453 u64 parent_gen = 0; 2454 int stop = 0; 2455 2456 name = fs_path_alloc(); 2457 if (!name) { 2458 ret = -ENOMEM; 2459 goto out; 2460 } 2461 2462 dest->reversed = 1; 2463 fs_path_reset(dest); 2464 2465 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2466 struct waiting_dir_move *wdm; 2467 2468 fs_path_reset(name); 2469 2470 if (is_waiting_for_rm(sctx, ino, gen)) { 2471 ret = gen_unique_name(sctx, ino, gen, name); 2472 if (ret < 0) 2473 goto out; 2474 ret = fs_path_add_path(dest, name); 2475 break; 2476 } 2477 2478 wdm = get_waiting_dir_move(sctx, ino); 2479 if (wdm && wdm->orphanized) { 2480 ret = gen_unique_name(sctx, ino, gen, name); 2481 stop = 1; 2482 } else if (wdm) { 2483 ret = get_first_ref(sctx->parent_root, ino, 2484 &parent_inode, &parent_gen, name); 2485 } else { 2486 ret = __get_cur_name_and_parent(sctx, ino, gen, 2487 &parent_inode, 2488 &parent_gen, name); 2489 if (ret) 2490 stop = 1; 2491 } 2492 2493 if (ret < 0) 2494 goto out; 2495 2496 ret = fs_path_add_path(dest, name); 2497 if (ret < 0) 2498 goto out; 2499 2500 ino = parent_inode; 2501 gen = parent_gen; 2502 } 2503 2504 out: 2505 fs_path_free(name); 2506 if (!ret) 2507 fs_path_unreverse(dest); 2508 return ret; 2509 } 2510 2511 /* 2512 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2513 */ 2514 static int send_subvol_begin(struct send_ctx *sctx) 2515 { 2516 int ret; 2517 struct btrfs_root *send_root = sctx->send_root; 2518 struct btrfs_root *parent_root = sctx->parent_root; 2519 struct btrfs_path *path; 2520 struct btrfs_key key; 2521 struct btrfs_root_ref *ref; 2522 struct extent_buffer *leaf; 2523 char *name = NULL; 2524 int namelen; 2525 2526 path = btrfs_alloc_path(); 2527 if (!path) 2528 return -ENOMEM; 2529 2530 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2531 if (!name) { 2532 btrfs_free_path(path); 2533 return -ENOMEM; 2534 } 2535 2536 key.objectid = btrfs_root_id(send_root); 2537 key.type = BTRFS_ROOT_BACKREF_KEY; 2538 key.offset = 0; 2539 2540 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2541 &key, path, 1, 0); 2542 if (ret < 0) 2543 goto out; 2544 if (ret) { 2545 ret = -ENOENT; 2546 goto out; 2547 } 2548 2549 leaf = path->nodes[0]; 2550 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2551 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2552 key.objectid != btrfs_root_id(send_root)) { 2553 ret = -ENOENT; 2554 goto out; 2555 } 2556 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2557 namelen = btrfs_root_ref_name_len(leaf, ref); 2558 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2559 btrfs_release_path(path); 2560 2561 if (parent_root) { 2562 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2563 if (ret < 0) 2564 goto out; 2565 } else { 2566 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2567 if (ret < 0) 2568 goto out; 2569 } 2570 2571 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2572 2573 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2574 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2575 sctx->send_root->root_item.received_uuid); 2576 else 2577 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2578 sctx->send_root->root_item.uuid); 2579 2580 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2581 btrfs_root_ctransid(&sctx->send_root->root_item)); 2582 if (parent_root) { 2583 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2584 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2585 parent_root->root_item.received_uuid); 2586 else 2587 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2588 parent_root->root_item.uuid); 2589 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2590 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2591 } 2592 2593 ret = send_cmd(sctx); 2594 2595 tlv_put_failure: 2596 out: 2597 btrfs_free_path(path); 2598 kfree(name); 2599 return ret; 2600 } 2601 2602 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2603 { 2604 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2605 int ret = 0; 2606 struct fs_path *p; 2607 2608 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2609 2610 p = fs_path_alloc(); 2611 if (!p) 2612 return -ENOMEM; 2613 2614 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2615 if (ret < 0) 2616 goto out; 2617 2618 ret = get_cur_path(sctx, ino, gen, p); 2619 if (ret < 0) 2620 goto out; 2621 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2622 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2623 2624 ret = send_cmd(sctx); 2625 2626 tlv_put_failure: 2627 out: 2628 fs_path_free(p); 2629 return ret; 2630 } 2631 2632 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2633 { 2634 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2635 int ret = 0; 2636 struct fs_path *p; 2637 2638 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2639 2640 p = fs_path_alloc(); 2641 if (!p) 2642 return -ENOMEM; 2643 2644 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2645 if (ret < 0) 2646 goto out; 2647 2648 ret = get_cur_path(sctx, ino, gen, p); 2649 if (ret < 0) 2650 goto out; 2651 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2652 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2653 2654 ret = send_cmd(sctx); 2655 2656 tlv_put_failure: 2657 out: 2658 fs_path_free(p); 2659 return ret; 2660 } 2661 2662 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2663 { 2664 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2665 int ret = 0; 2666 struct fs_path *p; 2667 2668 if (sctx->proto < 2) 2669 return 0; 2670 2671 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr); 2672 2673 p = fs_path_alloc(); 2674 if (!p) 2675 return -ENOMEM; 2676 2677 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2678 if (ret < 0) 2679 goto out; 2680 2681 ret = get_cur_path(sctx, ino, gen, p); 2682 if (ret < 0) 2683 goto out; 2684 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2685 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2686 2687 ret = send_cmd(sctx); 2688 2689 tlv_put_failure: 2690 out: 2691 fs_path_free(p); 2692 return ret; 2693 } 2694 2695 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2696 { 2697 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2698 int ret = 0; 2699 struct fs_path *p; 2700 2701 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2702 ino, uid, gid); 2703 2704 p = fs_path_alloc(); 2705 if (!p) 2706 return -ENOMEM; 2707 2708 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2709 if (ret < 0) 2710 goto out; 2711 2712 ret = get_cur_path(sctx, ino, gen, p); 2713 if (ret < 0) 2714 goto out; 2715 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2716 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2717 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2718 2719 ret = send_cmd(sctx); 2720 2721 tlv_put_failure: 2722 out: 2723 fs_path_free(p); 2724 return ret; 2725 } 2726 2727 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2728 { 2729 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2730 int ret = 0; 2731 struct fs_path *p = NULL; 2732 struct btrfs_inode_item *ii; 2733 struct btrfs_path *path = NULL; 2734 struct extent_buffer *eb; 2735 struct btrfs_key key; 2736 int slot; 2737 2738 btrfs_debug(fs_info, "send_utimes %llu", ino); 2739 2740 p = fs_path_alloc(); 2741 if (!p) 2742 return -ENOMEM; 2743 2744 path = alloc_path_for_send(); 2745 if (!path) { 2746 ret = -ENOMEM; 2747 goto out; 2748 } 2749 2750 key.objectid = ino; 2751 key.type = BTRFS_INODE_ITEM_KEY; 2752 key.offset = 0; 2753 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2754 if (ret > 0) 2755 ret = -ENOENT; 2756 if (ret < 0) 2757 goto out; 2758 2759 eb = path->nodes[0]; 2760 slot = path->slots[0]; 2761 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2762 2763 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2764 if (ret < 0) 2765 goto out; 2766 2767 ret = get_cur_path(sctx, ino, gen, p); 2768 if (ret < 0) 2769 goto out; 2770 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2771 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2772 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2773 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2774 if (sctx->proto >= 2) 2775 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2776 2777 ret = send_cmd(sctx); 2778 2779 tlv_put_failure: 2780 out: 2781 fs_path_free(p); 2782 btrfs_free_path(path); 2783 return ret; 2784 } 2785 2786 /* 2787 * If the cache is full, we can't remove entries from it and do a call to 2788 * send_utimes() for each respective inode, because we might be finishing 2789 * processing an inode that is a directory and it just got renamed, and existing 2790 * entries in the cache may refer to inodes that have the directory in their 2791 * full path - in which case we would generate outdated paths (pre-rename) 2792 * for the inodes that the cache entries point to. Instead of prunning the 2793 * cache when inserting, do it after we finish processing each inode at 2794 * finish_inode_if_needed(). 2795 */ 2796 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) 2797 { 2798 struct btrfs_lru_cache_entry *entry; 2799 int ret; 2800 2801 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); 2802 if (entry != NULL) 2803 return 0; 2804 2805 /* Caching is optional, don't fail if we can't allocate memory. */ 2806 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2807 if (!entry) 2808 return send_utimes(sctx, dir, gen); 2809 2810 entry->key = dir; 2811 entry->gen = gen; 2812 2813 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); 2814 ASSERT(ret != -EEXIST); 2815 if (ret) { 2816 kfree(entry); 2817 return send_utimes(sctx, dir, gen); 2818 } 2819 2820 return 0; 2821 } 2822 2823 static int trim_dir_utimes_cache(struct send_ctx *sctx) 2824 { 2825 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) { 2826 struct btrfs_lru_cache_entry *lru; 2827 int ret; 2828 2829 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); 2830 ASSERT(lru != NULL); 2831 2832 ret = send_utimes(sctx, lru->key, lru->gen); 2833 if (ret) 2834 return ret; 2835 2836 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); 2837 } 2838 2839 return 0; 2840 } 2841 2842 /* 2843 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2844 * a valid path yet because we did not process the refs yet. So, the inode 2845 * is created as orphan. 2846 */ 2847 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2848 { 2849 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2850 int ret = 0; 2851 struct fs_path *p; 2852 int cmd; 2853 struct btrfs_inode_info info; 2854 u64 gen; 2855 u64 mode; 2856 u64 rdev; 2857 2858 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2859 2860 p = fs_path_alloc(); 2861 if (!p) 2862 return -ENOMEM; 2863 2864 if (ino != sctx->cur_ino) { 2865 ret = get_inode_info(sctx->send_root, ino, &info); 2866 if (ret < 0) 2867 goto out; 2868 gen = info.gen; 2869 mode = info.mode; 2870 rdev = info.rdev; 2871 } else { 2872 gen = sctx->cur_inode_gen; 2873 mode = sctx->cur_inode_mode; 2874 rdev = sctx->cur_inode_rdev; 2875 } 2876 2877 if (S_ISREG(mode)) { 2878 cmd = BTRFS_SEND_C_MKFILE; 2879 } else if (S_ISDIR(mode)) { 2880 cmd = BTRFS_SEND_C_MKDIR; 2881 } else if (S_ISLNK(mode)) { 2882 cmd = BTRFS_SEND_C_SYMLINK; 2883 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2884 cmd = BTRFS_SEND_C_MKNOD; 2885 } else if (S_ISFIFO(mode)) { 2886 cmd = BTRFS_SEND_C_MKFIFO; 2887 } else if (S_ISSOCK(mode)) { 2888 cmd = BTRFS_SEND_C_MKSOCK; 2889 } else { 2890 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2891 (int)(mode & S_IFMT)); 2892 ret = -EOPNOTSUPP; 2893 goto out; 2894 } 2895 2896 ret = begin_cmd(sctx, cmd); 2897 if (ret < 0) 2898 goto out; 2899 2900 ret = gen_unique_name(sctx, ino, gen, p); 2901 if (ret < 0) 2902 goto out; 2903 2904 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2905 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2906 2907 if (S_ISLNK(mode)) { 2908 fs_path_reset(p); 2909 ret = read_symlink(sctx->send_root, ino, p); 2910 if (ret < 0) 2911 goto out; 2912 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2913 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2914 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2915 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2916 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2917 } 2918 2919 ret = send_cmd(sctx); 2920 if (ret < 0) 2921 goto out; 2922 2923 2924 tlv_put_failure: 2925 out: 2926 fs_path_free(p); 2927 return ret; 2928 } 2929 2930 static void cache_dir_created(struct send_ctx *sctx, u64 dir) 2931 { 2932 struct btrfs_lru_cache_entry *entry; 2933 int ret; 2934 2935 /* Caching is optional, ignore any failures. */ 2936 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2937 if (!entry) 2938 return; 2939 2940 entry->key = dir; 2941 entry->gen = 0; 2942 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); 2943 if (ret < 0) 2944 kfree(entry); 2945 } 2946 2947 /* 2948 * We need some special handling for inodes that get processed before the parent 2949 * directory got created. See process_recorded_refs for details. 2950 * This function does the check if we already created the dir out of order. 2951 */ 2952 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2953 { 2954 int ret = 0; 2955 int iter_ret = 0; 2956 struct btrfs_path *path = NULL; 2957 struct btrfs_key key; 2958 struct btrfs_key found_key; 2959 struct btrfs_key di_key; 2960 struct btrfs_dir_item *di; 2961 2962 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) 2963 return 1; 2964 2965 path = alloc_path_for_send(); 2966 if (!path) 2967 return -ENOMEM; 2968 2969 key.objectid = dir; 2970 key.type = BTRFS_DIR_INDEX_KEY; 2971 key.offset = 0; 2972 2973 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2974 struct extent_buffer *eb = path->nodes[0]; 2975 2976 if (found_key.objectid != key.objectid || 2977 found_key.type != key.type) { 2978 ret = 0; 2979 break; 2980 } 2981 2982 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2983 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2984 2985 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2986 di_key.objectid < sctx->send_progress) { 2987 ret = 1; 2988 cache_dir_created(sctx, dir); 2989 break; 2990 } 2991 } 2992 /* Catch error found during iteration */ 2993 if (iter_ret < 0) 2994 ret = iter_ret; 2995 2996 btrfs_free_path(path); 2997 return ret; 2998 } 2999 3000 /* 3001 * Only creates the inode if it is: 3002 * 1. Not a directory 3003 * 2. Or a directory which was not created already due to out of order 3004 * directories. See did_create_dir and process_recorded_refs for details. 3005 */ 3006 static int send_create_inode_if_needed(struct send_ctx *sctx) 3007 { 3008 int ret; 3009 3010 if (S_ISDIR(sctx->cur_inode_mode)) { 3011 ret = did_create_dir(sctx, sctx->cur_ino); 3012 if (ret < 0) 3013 return ret; 3014 else if (ret > 0) 3015 return 0; 3016 } 3017 3018 ret = send_create_inode(sctx, sctx->cur_ino); 3019 3020 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) 3021 cache_dir_created(sctx, sctx->cur_ino); 3022 3023 return ret; 3024 } 3025 3026 struct recorded_ref { 3027 struct list_head list; 3028 char *name; 3029 struct fs_path *full_path; 3030 u64 dir; 3031 u64 dir_gen; 3032 int name_len; 3033 struct rb_node node; 3034 struct rb_root *root; 3035 }; 3036 3037 static struct recorded_ref *recorded_ref_alloc(void) 3038 { 3039 struct recorded_ref *ref; 3040 3041 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 3042 if (!ref) 3043 return NULL; 3044 RB_CLEAR_NODE(&ref->node); 3045 INIT_LIST_HEAD(&ref->list); 3046 return ref; 3047 } 3048 3049 static void recorded_ref_free(struct recorded_ref *ref) 3050 { 3051 if (!ref) 3052 return; 3053 if (!RB_EMPTY_NODE(&ref->node)) 3054 rb_erase(&ref->node, ref->root); 3055 list_del(&ref->list); 3056 fs_path_free(ref->full_path); 3057 kfree(ref); 3058 } 3059 3060 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 3061 { 3062 ref->full_path = path; 3063 ref->name = (char *)kbasename(ref->full_path->start); 3064 ref->name_len = ref->full_path->end - ref->name; 3065 } 3066 3067 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 3068 { 3069 struct recorded_ref *new; 3070 3071 new = recorded_ref_alloc(); 3072 if (!new) 3073 return -ENOMEM; 3074 3075 new->dir = ref->dir; 3076 new->dir_gen = ref->dir_gen; 3077 list_add_tail(&new->list, list); 3078 return 0; 3079 } 3080 3081 static void __free_recorded_refs(struct list_head *head) 3082 { 3083 struct recorded_ref *cur; 3084 3085 while (!list_empty(head)) { 3086 cur = list_entry(head->next, struct recorded_ref, list); 3087 recorded_ref_free(cur); 3088 } 3089 } 3090 3091 static void free_recorded_refs(struct send_ctx *sctx) 3092 { 3093 __free_recorded_refs(&sctx->new_refs); 3094 __free_recorded_refs(&sctx->deleted_refs); 3095 } 3096 3097 /* 3098 * Renames/moves a file/dir to its orphan name. Used when the first 3099 * ref of an unprocessed inode gets overwritten and for all non empty 3100 * directories. 3101 */ 3102 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 3103 struct fs_path *path) 3104 { 3105 int ret; 3106 struct fs_path *orphan; 3107 3108 orphan = fs_path_alloc(); 3109 if (!orphan) 3110 return -ENOMEM; 3111 3112 ret = gen_unique_name(sctx, ino, gen, orphan); 3113 if (ret < 0) 3114 goto out; 3115 3116 ret = send_rename(sctx, path, orphan); 3117 3118 out: 3119 fs_path_free(orphan); 3120 return ret; 3121 } 3122 3123 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 3124 u64 dir_ino, u64 dir_gen) 3125 { 3126 struct rb_node **p = &sctx->orphan_dirs.rb_node; 3127 struct rb_node *parent = NULL; 3128 struct orphan_dir_info *entry, *odi; 3129 3130 while (*p) { 3131 parent = *p; 3132 entry = rb_entry(parent, struct orphan_dir_info, node); 3133 if (dir_ino < entry->ino) 3134 p = &(*p)->rb_left; 3135 else if (dir_ino > entry->ino) 3136 p = &(*p)->rb_right; 3137 else if (dir_gen < entry->gen) 3138 p = &(*p)->rb_left; 3139 else if (dir_gen > entry->gen) 3140 p = &(*p)->rb_right; 3141 else 3142 return entry; 3143 } 3144 3145 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 3146 if (!odi) 3147 return ERR_PTR(-ENOMEM); 3148 odi->ino = dir_ino; 3149 odi->gen = dir_gen; 3150 odi->last_dir_index_offset = 0; 3151 odi->dir_high_seq_ino = 0; 3152 3153 rb_link_node(&odi->node, parent, p); 3154 rb_insert_color(&odi->node, &sctx->orphan_dirs); 3155 return odi; 3156 } 3157 3158 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 3159 u64 dir_ino, u64 gen) 3160 { 3161 struct rb_node *n = sctx->orphan_dirs.rb_node; 3162 struct orphan_dir_info *entry; 3163 3164 while (n) { 3165 entry = rb_entry(n, struct orphan_dir_info, node); 3166 if (dir_ino < entry->ino) 3167 n = n->rb_left; 3168 else if (dir_ino > entry->ino) 3169 n = n->rb_right; 3170 else if (gen < entry->gen) 3171 n = n->rb_left; 3172 else if (gen > entry->gen) 3173 n = n->rb_right; 3174 else 3175 return entry; 3176 } 3177 return NULL; 3178 } 3179 3180 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 3181 { 3182 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 3183 3184 return odi != NULL; 3185 } 3186 3187 static void free_orphan_dir_info(struct send_ctx *sctx, 3188 struct orphan_dir_info *odi) 3189 { 3190 if (!odi) 3191 return; 3192 rb_erase(&odi->node, &sctx->orphan_dirs); 3193 kfree(odi); 3194 } 3195 3196 /* 3197 * Returns 1 if a directory can be removed at this point in time. 3198 * We check this by iterating all dir items and checking if the inode behind 3199 * the dir item was already processed. 3200 */ 3201 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) 3202 { 3203 int ret = 0; 3204 int iter_ret = 0; 3205 struct btrfs_root *root = sctx->parent_root; 3206 struct btrfs_path *path; 3207 struct btrfs_key key; 3208 struct btrfs_key found_key; 3209 struct btrfs_key loc; 3210 struct btrfs_dir_item *di; 3211 struct orphan_dir_info *odi = NULL; 3212 u64 dir_high_seq_ino = 0; 3213 u64 last_dir_index_offset = 0; 3214 3215 /* 3216 * Don't try to rmdir the top/root subvolume dir. 3217 */ 3218 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3219 return 0; 3220 3221 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3222 if (odi && sctx->cur_ino < odi->dir_high_seq_ino) 3223 return 0; 3224 3225 path = alloc_path_for_send(); 3226 if (!path) 3227 return -ENOMEM; 3228 3229 if (!odi) { 3230 /* 3231 * Find the inode number associated with the last dir index 3232 * entry. This is very likely the inode with the highest number 3233 * of all inodes that have an entry in the directory. We can 3234 * then use it to avoid future calls to can_rmdir(), when 3235 * processing inodes with a lower number, from having to search 3236 * the parent root b+tree for dir index keys. 3237 */ 3238 key.objectid = dir; 3239 key.type = BTRFS_DIR_INDEX_KEY; 3240 key.offset = (u64)-1; 3241 3242 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3243 if (ret < 0) { 3244 goto out; 3245 } else if (ret > 0) { 3246 /* Can't happen, the root is never empty. */ 3247 ASSERT(path->slots[0] > 0); 3248 if (WARN_ON(path->slots[0] == 0)) { 3249 ret = -EUCLEAN; 3250 goto out; 3251 } 3252 path->slots[0]--; 3253 } 3254 3255 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3256 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { 3257 /* No index keys, dir can be removed. */ 3258 ret = 1; 3259 goto out; 3260 } 3261 3262 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3263 struct btrfs_dir_item); 3264 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3265 dir_high_seq_ino = loc.objectid; 3266 if (sctx->cur_ino < dir_high_seq_ino) { 3267 ret = 0; 3268 goto out; 3269 } 3270 3271 btrfs_release_path(path); 3272 } 3273 3274 key.objectid = dir; 3275 key.type = BTRFS_DIR_INDEX_KEY; 3276 key.offset = (odi ? odi->last_dir_index_offset : 0); 3277 3278 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3279 struct waiting_dir_move *dm; 3280 3281 if (found_key.objectid != key.objectid || 3282 found_key.type != key.type) 3283 break; 3284 3285 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3286 struct btrfs_dir_item); 3287 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3288 3289 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); 3290 last_dir_index_offset = found_key.offset; 3291 3292 dm = get_waiting_dir_move(sctx, loc.objectid); 3293 if (dm) { 3294 dm->rmdir_ino = dir; 3295 dm->rmdir_gen = dir_gen; 3296 ret = 0; 3297 goto out; 3298 } 3299 3300 if (loc.objectid > sctx->cur_ino) { 3301 ret = 0; 3302 goto out; 3303 } 3304 } 3305 if (iter_ret < 0) { 3306 ret = iter_ret; 3307 goto out; 3308 } 3309 free_orphan_dir_info(sctx, odi); 3310 3311 ret = 1; 3312 3313 out: 3314 btrfs_free_path(path); 3315 3316 if (ret) 3317 return ret; 3318 3319 if (!odi) { 3320 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3321 if (IS_ERR(odi)) 3322 return PTR_ERR(odi); 3323 3324 odi->gen = dir_gen; 3325 } 3326 3327 odi->last_dir_index_offset = last_dir_index_offset; 3328 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); 3329 3330 return 0; 3331 } 3332 3333 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3334 { 3335 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3336 3337 return entry != NULL; 3338 } 3339 3340 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3341 { 3342 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3343 struct rb_node *parent = NULL; 3344 struct waiting_dir_move *entry, *dm; 3345 3346 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3347 if (!dm) 3348 return -ENOMEM; 3349 dm->ino = ino; 3350 dm->rmdir_ino = 0; 3351 dm->rmdir_gen = 0; 3352 dm->orphanized = orphanized; 3353 3354 while (*p) { 3355 parent = *p; 3356 entry = rb_entry(parent, struct waiting_dir_move, node); 3357 if (ino < entry->ino) { 3358 p = &(*p)->rb_left; 3359 } else if (ino > entry->ino) { 3360 p = &(*p)->rb_right; 3361 } else { 3362 kfree(dm); 3363 return -EEXIST; 3364 } 3365 } 3366 3367 rb_link_node(&dm->node, parent, p); 3368 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3369 return 0; 3370 } 3371 3372 static struct waiting_dir_move * 3373 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3374 { 3375 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3376 struct waiting_dir_move *entry; 3377 3378 while (n) { 3379 entry = rb_entry(n, struct waiting_dir_move, node); 3380 if (ino < entry->ino) 3381 n = n->rb_left; 3382 else if (ino > entry->ino) 3383 n = n->rb_right; 3384 else 3385 return entry; 3386 } 3387 return NULL; 3388 } 3389 3390 static void free_waiting_dir_move(struct send_ctx *sctx, 3391 struct waiting_dir_move *dm) 3392 { 3393 if (!dm) 3394 return; 3395 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3396 kfree(dm); 3397 } 3398 3399 static int add_pending_dir_move(struct send_ctx *sctx, 3400 u64 ino, 3401 u64 ino_gen, 3402 u64 parent_ino, 3403 struct list_head *new_refs, 3404 struct list_head *deleted_refs, 3405 const bool is_orphan) 3406 { 3407 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3408 struct rb_node *parent = NULL; 3409 struct pending_dir_move *entry = NULL, *pm; 3410 struct recorded_ref *cur; 3411 int exists = 0; 3412 int ret; 3413 3414 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3415 if (!pm) 3416 return -ENOMEM; 3417 pm->parent_ino = parent_ino; 3418 pm->ino = ino; 3419 pm->gen = ino_gen; 3420 INIT_LIST_HEAD(&pm->list); 3421 INIT_LIST_HEAD(&pm->update_refs); 3422 RB_CLEAR_NODE(&pm->node); 3423 3424 while (*p) { 3425 parent = *p; 3426 entry = rb_entry(parent, struct pending_dir_move, node); 3427 if (parent_ino < entry->parent_ino) { 3428 p = &(*p)->rb_left; 3429 } else if (parent_ino > entry->parent_ino) { 3430 p = &(*p)->rb_right; 3431 } else { 3432 exists = 1; 3433 break; 3434 } 3435 } 3436 3437 list_for_each_entry(cur, deleted_refs, list) { 3438 ret = dup_ref(cur, &pm->update_refs); 3439 if (ret < 0) 3440 goto out; 3441 } 3442 list_for_each_entry(cur, new_refs, list) { 3443 ret = dup_ref(cur, &pm->update_refs); 3444 if (ret < 0) 3445 goto out; 3446 } 3447 3448 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3449 if (ret) 3450 goto out; 3451 3452 if (exists) { 3453 list_add_tail(&pm->list, &entry->list); 3454 } else { 3455 rb_link_node(&pm->node, parent, p); 3456 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3457 } 3458 ret = 0; 3459 out: 3460 if (ret) { 3461 __free_recorded_refs(&pm->update_refs); 3462 kfree(pm); 3463 } 3464 return ret; 3465 } 3466 3467 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3468 u64 parent_ino) 3469 { 3470 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3471 struct pending_dir_move *entry; 3472 3473 while (n) { 3474 entry = rb_entry(n, struct pending_dir_move, node); 3475 if (parent_ino < entry->parent_ino) 3476 n = n->rb_left; 3477 else if (parent_ino > entry->parent_ino) 3478 n = n->rb_right; 3479 else 3480 return entry; 3481 } 3482 return NULL; 3483 } 3484 3485 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3486 u64 ino, u64 gen, u64 *ancestor_ino) 3487 { 3488 int ret = 0; 3489 u64 parent_inode = 0; 3490 u64 parent_gen = 0; 3491 u64 start_ino = ino; 3492 3493 *ancestor_ino = 0; 3494 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3495 fs_path_reset(name); 3496 3497 if (is_waiting_for_rm(sctx, ino, gen)) 3498 break; 3499 if (is_waiting_for_move(sctx, ino)) { 3500 if (*ancestor_ino == 0) 3501 *ancestor_ino = ino; 3502 ret = get_first_ref(sctx->parent_root, ino, 3503 &parent_inode, &parent_gen, name); 3504 } else { 3505 ret = __get_cur_name_and_parent(sctx, ino, gen, 3506 &parent_inode, 3507 &parent_gen, name); 3508 if (ret > 0) { 3509 ret = 0; 3510 break; 3511 } 3512 } 3513 if (ret < 0) 3514 break; 3515 if (parent_inode == start_ino) { 3516 ret = 1; 3517 if (*ancestor_ino == 0) 3518 *ancestor_ino = ino; 3519 break; 3520 } 3521 ino = parent_inode; 3522 gen = parent_gen; 3523 } 3524 return ret; 3525 } 3526 3527 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3528 { 3529 struct fs_path *from_path = NULL; 3530 struct fs_path *to_path = NULL; 3531 struct fs_path *name = NULL; 3532 u64 orig_progress = sctx->send_progress; 3533 struct recorded_ref *cur; 3534 u64 parent_ino, parent_gen; 3535 struct waiting_dir_move *dm = NULL; 3536 u64 rmdir_ino = 0; 3537 u64 rmdir_gen; 3538 u64 ancestor; 3539 bool is_orphan; 3540 int ret; 3541 3542 name = fs_path_alloc(); 3543 from_path = fs_path_alloc(); 3544 if (!name || !from_path) { 3545 ret = -ENOMEM; 3546 goto out; 3547 } 3548 3549 dm = get_waiting_dir_move(sctx, pm->ino); 3550 ASSERT(dm); 3551 rmdir_ino = dm->rmdir_ino; 3552 rmdir_gen = dm->rmdir_gen; 3553 is_orphan = dm->orphanized; 3554 free_waiting_dir_move(sctx, dm); 3555 3556 if (is_orphan) { 3557 ret = gen_unique_name(sctx, pm->ino, 3558 pm->gen, from_path); 3559 } else { 3560 ret = get_first_ref(sctx->parent_root, pm->ino, 3561 &parent_ino, &parent_gen, name); 3562 if (ret < 0) 3563 goto out; 3564 ret = get_cur_path(sctx, parent_ino, parent_gen, 3565 from_path); 3566 if (ret < 0) 3567 goto out; 3568 ret = fs_path_add_path(from_path, name); 3569 } 3570 if (ret < 0) 3571 goto out; 3572 3573 sctx->send_progress = sctx->cur_ino + 1; 3574 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3575 if (ret < 0) 3576 goto out; 3577 if (ret) { 3578 LIST_HEAD(deleted_refs); 3579 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3580 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3581 &pm->update_refs, &deleted_refs, 3582 is_orphan); 3583 if (ret < 0) 3584 goto out; 3585 if (rmdir_ino) { 3586 dm = get_waiting_dir_move(sctx, pm->ino); 3587 ASSERT(dm); 3588 dm->rmdir_ino = rmdir_ino; 3589 dm->rmdir_gen = rmdir_gen; 3590 } 3591 goto out; 3592 } 3593 fs_path_reset(name); 3594 to_path = name; 3595 name = NULL; 3596 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3597 if (ret < 0) 3598 goto out; 3599 3600 ret = send_rename(sctx, from_path, to_path); 3601 if (ret < 0) 3602 goto out; 3603 3604 if (rmdir_ino) { 3605 struct orphan_dir_info *odi; 3606 u64 gen; 3607 3608 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3609 if (!odi) { 3610 /* already deleted */ 3611 goto finish; 3612 } 3613 gen = odi->gen; 3614 3615 ret = can_rmdir(sctx, rmdir_ino, gen); 3616 if (ret < 0) 3617 goto out; 3618 if (!ret) 3619 goto finish; 3620 3621 name = fs_path_alloc(); 3622 if (!name) { 3623 ret = -ENOMEM; 3624 goto out; 3625 } 3626 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3627 if (ret < 0) 3628 goto out; 3629 ret = send_rmdir(sctx, name); 3630 if (ret < 0) 3631 goto out; 3632 } 3633 3634 finish: 3635 ret = cache_dir_utimes(sctx, pm->ino, pm->gen); 3636 if (ret < 0) 3637 goto out; 3638 3639 /* 3640 * After rename/move, need to update the utimes of both new parent(s) 3641 * and old parent(s). 3642 */ 3643 list_for_each_entry(cur, &pm->update_refs, list) { 3644 /* 3645 * The parent inode might have been deleted in the send snapshot 3646 */ 3647 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3648 if (ret == -ENOENT) { 3649 ret = 0; 3650 continue; 3651 } 3652 if (ret < 0) 3653 goto out; 3654 3655 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 3656 if (ret < 0) 3657 goto out; 3658 } 3659 3660 out: 3661 fs_path_free(name); 3662 fs_path_free(from_path); 3663 fs_path_free(to_path); 3664 sctx->send_progress = orig_progress; 3665 3666 return ret; 3667 } 3668 3669 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3670 { 3671 if (!list_empty(&m->list)) 3672 list_del(&m->list); 3673 if (!RB_EMPTY_NODE(&m->node)) 3674 rb_erase(&m->node, &sctx->pending_dir_moves); 3675 __free_recorded_refs(&m->update_refs); 3676 kfree(m); 3677 } 3678 3679 static void tail_append_pending_moves(struct send_ctx *sctx, 3680 struct pending_dir_move *moves, 3681 struct list_head *stack) 3682 { 3683 if (list_empty(&moves->list)) { 3684 list_add_tail(&moves->list, stack); 3685 } else { 3686 LIST_HEAD(list); 3687 list_splice_init(&moves->list, &list); 3688 list_add_tail(&moves->list, stack); 3689 list_splice_tail(&list, stack); 3690 } 3691 if (!RB_EMPTY_NODE(&moves->node)) { 3692 rb_erase(&moves->node, &sctx->pending_dir_moves); 3693 RB_CLEAR_NODE(&moves->node); 3694 } 3695 } 3696 3697 static int apply_children_dir_moves(struct send_ctx *sctx) 3698 { 3699 struct pending_dir_move *pm; 3700 LIST_HEAD(stack); 3701 u64 parent_ino = sctx->cur_ino; 3702 int ret = 0; 3703 3704 pm = get_pending_dir_moves(sctx, parent_ino); 3705 if (!pm) 3706 return 0; 3707 3708 tail_append_pending_moves(sctx, pm, &stack); 3709 3710 while (!list_empty(&stack)) { 3711 pm = list_first_entry(&stack, struct pending_dir_move, list); 3712 parent_ino = pm->ino; 3713 ret = apply_dir_move(sctx, pm); 3714 free_pending_move(sctx, pm); 3715 if (ret) 3716 goto out; 3717 pm = get_pending_dir_moves(sctx, parent_ino); 3718 if (pm) 3719 tail_append_pending_moves(sctx, pm, &stack); 3720 } 3721 return 0; 3722 3723 out: 3724 while (!list_empty(&stack)) { 3725 pm = list_first_entry(&stack, struct pending_dir_move, list); 3726 free_pending_move(sctx, pm); 3727 } 3728 return ret; 3729 } 3730 3731 /* 3732 * We might need to delay a directory rename even when no ancestor directory 3733 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3734 * renamed. This happens when we rename a directory to the old name (the name 3735 * in the parent root) of some other unrelated directory that got its rename 3736 * delayed due to some ancestor with higher number that got renamed. 3737 * 3738 * Example: 3739 * 3740 * Parent snapshot: 3741 * . (ino 256) 3742 * |---- a/ (ino 257) 3743 * | |---- file (ino 260) 3744 * | 3745 * |---- b/ (ino 258) 3746 * |---- c/ (ino 259) 3747 * 3748 * Send snapshot: 3749 * . (ino 256) 3750 * |---- a/ (ino 258) 3751 * |---- x/ (ino 259) 3752 * |---- y/ (ino 257) 3753 * |----- file (ino 260) 3754 * 3755 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3756 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3757 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3758 * must issue is: 3759 * 3760 * 1 - rename 259 from 'c' to 'x' 3761 * 2 - rename 257 from 'a' to 'x/y' 3762 * 3 - rename 258 from 'b' to 'a' 3763 * 3764 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3765 * be done right away and < 0 on error. 3766 */ 3767 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3768 struct recorded_ref *parent_ref, 3769 const bool is_orphan) 3770 { 3771 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3772 struct btrfs_path *path; 3773 struct btrfs_key key; 3774 struct btrfs_key di_key; 3775 struct btrfs_dir_item *di; 3776 u64 left_gen; 3777 u64 right_gen; 3778 int ret = 0; 3779 struct waiting_dir_move *wdm; 3780 3781 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3782 return 0; 3783 3784 path = alloc_path_for_send(); 3785 if (!path) 3786 return -ENOMEM; 3787 3788 key.objectid = parent_ref->dir; 3789 key.type = BTRFS_DIR_ITEM_KEY; 3790 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3791 3792 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3793 if (ret < 0) { 3794 goto out; 3795 } else if (ret > 0) { 3796 ret = 0; 3797 goto out; 3798 } 3799 3800 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3801 parent_ref->name_len); 3802 if (!di) { 3803 ret = 0; 3804 goto out; 3805 } 3806 /* 3807 * di_key.objectid has the number of the inode that has a dentry in the 3808 * parent directory with the same name that sctx->cur_ino is being 3809 * renamed to. We need to check if that inode is in the send root as 3810 * well and if it is currently marked as an inode with a pending rename, 3811 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3812 * that it happens after that other inode is renamed. 3813 */ 3814 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3815 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3816 ret = 0; 3817 goto out; 3818 } 3819 3820 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3821 if (ret < 0) 3822 goto out; 3823 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3824 if (ret < 0) { 3825 if (ret == -ENOENT) 3826 ret = 0; 3827 goto out; 3828 } 3829 3830 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3831 if (right_gen != left_gen) { 3832 ret = 0; 3833 goto out; 3834 } 3835 3836 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3837 if (wdm && !wdm->orphanized) { 3838 ret = add_pending_dir_move(sctx, 3839 sctx->cur_ino, 3840 sctx->cur_inode_gen, 3841 di_key.objectid, 3842 &sctx->new_refs, 3843 &sctx->deleted_refs, 3844 is_orphan); 3845 if (!ret) 3846 ret = 1; 3847 } 3848 out: 3849 btrfs_free_path(path); 3850 return ret; 3851 } 3852 3853 /* 3854 * Check if inode ino2, or any of its ancestors, is inode ino1. 3855 * Return 1 if true, 0 if false and < 0 on error. 3856 */ 3857 static int check_ino_in_path(struct btrfs_root *root, 3858 const u64 ino1, 3859 const u64 ino1_gen, 3860 const u64 ino2, 3861 const u64 ino2_gen, 3862 struct fs_path *fs_path) 3863 { 3864 u64 ino = ino2; 3865 3866 if (ino1 == ino2) 3867 return ino1_gen == ino2_gen; 3868 3869 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3870 u64 parent; 3871 u64 parent_gen; 3872 int ret; 3873 3874 fs_path_reset(fs_path); 3875 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3876 if (ret < 0) 3877 return ret; 3878 if (parent == ino1) 3879 return parent_gen == ino1_gen; 3880 ino = parent; 3881 } 3882 return 0; 3883 } 3884 3885 /* 3886 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3887 * possible path (in case ino2 is not a directory and has multiple hard links). 3888 * Return 1 if true, 0 if false and < 0 on error. 3889 */ 3890 static int is_ancestor(struct btrfs_root *root, 3891 const u64 ino1, 3892 const u64 ino1_gen, 3893 const u64 ino2, 3894 struct fs_path *fs_path) 3895 { 3896 bool free_fs_path = false; 3897 int ret = 0; 3898 int iter_ret = 0; 3899 struct btrfs_path *path = NULL; 3900 struct btrfs_key key; 3901 3902 if (!fs_path) { 3903 fs_path = fs_path_alloc(); 3904 if (!fs_path) 3905 return -ENOMEM; 3906 free_fs_path = true; 3907 } 3908 3909 path = alloc_path_for_send(); 3910 if (!path) { 3911 ret = -ENOMEM; 3912 goto out; 3913 } 3914 3915 key.objectid = ino2; 3916 key.type = BTRFS_INODE_REF_KEY; 3917 key.offset = 0; 3918 3919 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3920 struct extent_buffer *leaf = path->nodes[0]; 3921 int slot = path->slots[0]; 3922 u32 cur_offset = 0; 3923 u32 item_size; 3924 3925 if (key.objectid != ino2) 3926 break; 3927 if (key.type != BTRFS_INODE_REF_KEY && 3928 key.type != BTRFS_INODE_EXTREF_KEY) 3929 break; 3930 3931 item_size = btrfs_item_size(leaf, slot); 3932 while (cur_offset < item_size) { 3933 u64 parent; 3934 u64 parent_gen; 3935 3936 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3937 unsigned long ptr; 3938 struct btrfs_inode_extref *extref; 3939 3940 ptr = btrfs_item_ptr_offset(leaf, slot); 3941 extref = (struct btrfs_inode_extref *) 3942 (ptr + cur_offset); 3943 parent = btrfs_inode_extref_parent(leaf, 3944 extref); 3945 cur_offset += sizeof(*extref); 3946 cur_offset += btrfs_inode_extref_name_len(leaf, 3947 extref); 3948 } else { 3949 parent = key.offset; 3950 cur_offset = item_size; 3951 } 3952 3953 ret = get_inode_gen(root, parent, &parent_gen); 3954 if (ret < 0) 3955 goto out; 3956 ret = check_ino_in_path(root, ino1, ino1_gen, 3957 parent, parent_gen, fs_path); 3958 if (ret) 3959 goto out; 3960 } 3961 } 3962 ret = 0; 3963 if (iter_ret < 0) 3964 ret = iter_ret; 3965 3966 out: 3967 btrfs_free_path(path); 3968 if (free_fs_path) 3969 fs_path_free(fs_path); 3970 return ret; 3971 } 3972 3973 static int wait_for_parent_move(struct send_ctx *sctx, 3974 struct recorded_ref *parent_ref, 3975 const bool is_orphan) 3976 { 3977 int ret = 0; 3978 u64 ino = parent_ref->dir; 3979 u64 ino_gen = parent_ref->dir_gen; 3980 u64 parent_ino_before, parent_ino_after; 3981 struct fs_path *path_before = NULL; 3982 struct fs_path *path_after = NULL; 3983 int len1, len2; 3984 3985 path_after = fs_path_alloc(); 3986 path_before = fs_path_alloc(); 3987 if (!path_after || !path_before) { 3988 ret = -ENOMEM; 3989 goto out; 3990 } 3991 3992 /* 3993 * Our current directory inode may not yet be renamed/moved because some 3994 * ancestor (immediate or not) has to be renamed/moved first. So find if 3995 * such ancestor exists and make sure our own rename/move happens after 3996 * that ancestor is processed to avoid path build infinite loops (done 3997 * at get_cur_path()). 3998 */ 3999 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 4000 u64 parent_ino_after_gen; 4001 4002 if (is_waiting_for_move(sctx, ino)) { 4003 /* 4004 * If the current inode is an ancestor of ino in the 4005 * parent root, we need to delay the rename of the 4006 * current inode, otherwise don't delayed the rename 4007 * because we can end up with a circular dependency 4008 * of renames, resulting in some directories never 4009 * getting the respective rename operations issued in 4010 * the send stream or getting into infinite path build 4011 * loops. 4012 */ 4013 ret = is_ancestor(sctx->parent_root, 4014 sctx->cur_ino, sctx->cur_inode_gen, 4015 ino, path_before); 4016 if (ret) 4017 break; 4018 } 4019 4020 fs_path_reset(path_before); 4021 fs_path_reset(path_after); 4022 4023 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 4024 &parent_ino_after_gen, path_after); 4025 if (ret < 0) 4026 goto out; 4027 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 4028 NULL, path_before); 4029 if (ret < 0 && ret != -ENOENT) { 4030 goto out; 4031 } else if (ret == -ENOENT) { 4032 ret = 0; 4033 break; 4034 } 4035 4036 len1 = fs_path_len(path_before); 4037 len2 = fs_path_len(path_after); 4038 if (ino > sctx->cur_ino && 4039 (parent_ino_before != parent_ino_after || len1 != len2 || 4040 memcmp(path_before->start, path_after->start, len1))) { 4041 u64 parent_ino_gen; 4042 4043 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 4044 if (ret < 0) 4045 goto out; 4046 if (ino_gen == parent_ino_gen) { 4047 ret = 1; 4048 break; 4049 } 4050 } 4051 ino = parent_ino_after; 4052 ino_gen = parent_ino_after_gen; 4053 } 4054 4055 out: 4056 fs_path_free(path_before); 4057 fs_path_free(path_after); 4058 4059 if (ret == 1) { 4060 ret = add_pending_dir_move(sctx, 4061 sctx->cur_ino, 4062 sctx->cur_inode_gen, 4063 ino, 4064 &sctx->new_refs, 4065 &sctx->deleted_refs, 4066 is_orphan); 4067 if (!ret) 4068 ret = 1; 4069 } 4070 4071 return ret; 4072 } 4073 4074 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4075 { 4076 int ret; 4077 struct fs_path *new_path; 4078 4079 /* 4080 * Our reference's name member points to its full_path member string, so 4081 * we use here a new path. 4082 */ 4083 new_path = fs_path_alloc(); 4084 if (!new_path) 4085 return -ENOMEM; 4086 4087 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 4088 if (ret < 0) { 4089 fs_path_free(new_path); 4090 return ret; 4091 } 4092 ret = fs_path_add(new_path, ref->name, ref->name_len); 4093 if (ret < 0) { 4094 fs_path_free(new_path); 4095 return ret; 4096 } 4097 4098 fs_path_free(ref->full_path); 4099 set_ref_path(ref, new_path); 4100 4101 return 0; 4102 } 4103 4104 /* 4105 * When processing the new references for an inode we may orphanize an existing 4106 * directory inode because its old name conflicts with one of the new references 4107 * of the current inode. Later, when processing another new reference of our 4108 * inode, we might need to orphanize another inode, but the path we have in the 4109 * reference reflects the pre-orphanization name of the directory we previously 4110 * orphanized. For example: 4111 * 4112 * parent snapshot looks like: 4113 * 4114 * . (ino 256) 4115 * |----- f1 (ino 257) 4116 * |----- f2 (ino 258) 4117 * |----- d1/ (ino 259) 4118 * |----- d2/ (ino 260) 4119 * 4120 * send snapshot looks like: 4121 * 4122 * . (ino 256) 4123 * |----- d1 (ino 258) 4124 * |----- f2/ (ino 259) 4125 * |----- f2_link/ (ino 260) 4126 * | |----- f1 (ino 257) 4127 * | 4128 * |----- d2 (ino 258) 4129 * 4130 * When processing inode 257 we compute the name for inode 259 as "d1", and we 4131 * cache it in the name cache. Later when we start processing inode 258, when 4132 * collecting all its new references we set a full path of "d1/d2" for its new 4133 * reference with name "d2". When we start processing the new references we 4134 * start by processing the new reference with name "d1", and this results in 4135 * orphanizing inode 259, since its old reference causes a conflict. Then we 4136 * move on the next new reference, with name "d2", and we find out we must 4137 * orphanize inode 260, as its old reference conflicts with ours - but for the 4138 * orphanization we use a source path corresponding to the path we stored in the 4139 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 4140 * receiver fail since the path component "d1/" no longer exists, it was renamed 4141 * to "o259-6-0/" when processing the previous new reference. So in this case we 4142 * must recompute the path in the new reference and use it for the new 4143 * orphanization operation. 4144 */ 4145 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4146 { 4147 char *name; 4148 int ret; 4149 4150 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 4151 if (!name) 4152 return -ENOMEM; 4153 4154 fs_path_reset(ref->full_path); 4155 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 4156 if (ret < 0) 4157 goto out; 4158 4159 ret = fs_path_add(ref->full_path, name, ref->name_len); 4160 if (ret < 0) 4161 goto out; 4162 4163 /* Update the reference's base name pointer. */ 4164 set_ref_path(ref, ref->full_path); 4165 out: 4166 kfree(name); 4167 return ret; 4168 } 4169 4170 /* 4171 * This does all the move/link/unlink/rmdir magic. 4172 */ 4173 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 4174 { 4175 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4176 int ret = 0; 4177 struct recorded_ref *cur; 4178 struct recorded_ref *cur2; 4179 LIST_HEAD(check_dirs); 4180 struct fs_path *valid_path = NULL; 4181 u64 ow_inode = 0; 4182 u64 ow_gen; 4183 u64 ow_mode; 4184 int did_overwrite = 0; 4185 int is_orphan = 0; 4186 u64 last_dir_ino_rm = 0; 4187 bool can_rename = true; 4188 bool orphanized_dir = false; 4189 bool orphanized_ancestor = false; 4190 4191 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 4192 4193 /* 4194 * This should never happen as the root dir always has the same ref 4195 * which is always '..' 4196 */ 4197 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) { 4198 btrfs_err(fs_info, 4199 "send: unexpected inode %llu in process_recorded_refs()", 4200 sctx->cur_ino); 4201 ret = -EINVAL; 4202 goto out; 4203 } 4204 4205 valid_path = fs_path_alloc(); 4206 if (!valid_path) { 4207 ret = -ENOMEM; 4208 goto out; 4209 } 4210 4211 /* 4212 * First, check if the first ref of the current inode was overwritten 4213 * before. If yes, we know that the current inode was already orphanized 4214 * and thus use the orphan name. If not, we can use get_cur_path to 4215 * get the path of the first ref as it would like while receiving at 4216 * this point in time. 4217 * New inodes are always orphan at the beginning, so force to use the 4218 * orphan name in this case. 4219 * The first ref is stored in valid_path and will be updated if it 4220 * gets moved around. 4221 */ 4222 if (!sctx->cur_inode_new) { 4223 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 4224 sctx->cur_inode_gen); 4225 if (ret < 0) 4226 goto out; 4227 if (ret) 4228 did_overwrite = 1; 4229 } 4230 if (sctx->cur_inode_new || did_overwrite) { 4231 ret = gen_unique_name(sctx, sctx->cur_ino, 4232 sctx->cur_inode_gen, valid_path); 4233 if (ret < 0) 4234 goto out; 4235 is_orphan = 1; 4236 } else { 4237 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4238 valid_path); 4239 if (ret < 0) 4240 goto out; 4241 } 4242 4243 /* 4244 * Before doing any rename and link operations, do a first pass on the 4245 * new references to orphanize any unprocessed inodes that may have a 4246 * reference that conflicts with one of the new references of the current 4247 * inode. This needs to happen first because a new reference may conflict 4248 * with the old reference of a parent directory, so we must make sure 4249 * that the path used for link and rename commands don't use an 4250 * orphanized name when an ancestor was not yet orphanized. 4251 * 4252 * Example: 4253 * 4254 * Parent snapshot: 4255 * 4256 * . (ino 256) 4257 * |----- testdir/ (ino 259) 4258 * | |----- a (ino 257) 4259 * | 4260 * |----- b (ino 258) 4261 * 4262 * Send snapshot: 4263 * 4264 * . (ino 256) 4265 * |----- testdir_2/ (ino 259) 4266 * | |----- a (ino 260) 4267 * | 4268 * |----- testdir (ino 257) 4269 * |----- b (ino 257) 4270 * |----- b2 (ino 258) 4271 * 4272 * Processing the new reference for inode 257 with name "b" may happen 4273 * before processing the new reference with name "testdir". If so, we 4274 * must make sure that by the time we send a link command to create the 4275 * hard link "b", inode 259 was already orphanized, since the generated 4276 * path in "valid_path" already contains the orphanized name for 259. 4277 * We are processing inode 257, so only later when processing 259 we do 4278 * the rename operation to change its temporary (orphanized) name to 4279 * "testdir_2". 4280 */ 4281 list_for_each_entry(cur, &sctx->new_refs, list) { 4282 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4283 if (ret < 0) 4284 goto out; 4285 if (ret == inode_state_will_create) 4286 continue; 4287 4288 /* 4289 * Check if this new ref would overwrite the first ref of another 4290 * unprocessed inode. If yes, orphanize the overwritten inode. 4291 * If we find an overwritten ref that is not the first ref, 4292 * simply unlink it. 4293 */ 4294 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4295 cur->name, cur->name_len, 4296 &ow_inode, &ow_gen, &ow_mode); 4297 if (ret < 0) 4298 goto out; 4299 if (ret) { 4300 ret = is_first_ref(sctx->parent_root, 4301 ow_inode, cur->dir, cur->name, 4302 cur->name_len); 4303 if (ret < 0) 4304 goto out; 4305 if (ret) { 4306 struct name_cache_entry *nce; 4307 struct waiting_dir_move *wdm; 4308 4309 if (orphanized_dir) { 4310 ret = refresh_ref_path(sctx, cur); 4311 if (ret < 0) 4312 goto out; 4313 } 4314 4315 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4316 cur->full_path); 4317 if (ret < 0) 4318 goto out; 4319 if (S_ISDIR(ow_mode)) 4320 orphanized_dir = true; 4321 4322 /* 4323 * If ow_inode has its rename operation delayed 4324 * make sure that its orphanized name is used in 4325 * the source path when performing its rename 4326 * operation. 4327 */ 4328 wdm = get_waiting_dir_move(sctx, ow_inode); 4329 if (wdm) 4330 wdm->orphanized = true; 4331 4332 /* 4333 * Make sure we clear our orphanized inode's 4334 * name from the name cache. This is because the 4335 * inode ow_inode might be an ancestor of some 4336 * other inode that will be orphanized as well 4337 * later and has an inode number greater than 4338 * sctx->send_progress. We need to prevent 4339 * future name lookups from using the old name 4340 * and get instead the orphan name. 4341 */ 4342 nce = name_cache_search(sctx, ow_inode, ow_gen); 4343 if (nce) 4344 btrfs_lru_cache_remove(&sctx->name_cache, 4345 &nce->entry); 4346 4347 /* 4348 * ow_inode might currently be an ancestor of 4349 * cur_ino, therefore compute valid_path (the 4350 * current path of cur_ino) again because it 4351 * might contain the pre-orphanization name of 4352 * ow_inode, which is no longer valid. 4353 */ 4354 ret = is_ancestor(sctx->parent_root, 4355 ow_inode, ow_gen, 4356 sctx->cur_ino, NULL); 4357 if (ret > 0) { 4358 orphanized_ancestor = true; 4359 fs_path_reset(valid_path); 4360 ret = get_cur_path(sctx, sctx->cur_ino, 4361 sctx->cur_inode_gen, 4362 valid_path); 4363 } 4364 if (ret < 0) 4365 goto out; 4366 } else { 4367 /* 4368 * If we previously orphanized a directory that 4369 * collided with a new reference that we already 4370 * processed, recompute the current path because 4371 * that directory may be part of the path. 4372 */ 4373 if (orphanized_dir) { 4374 ret = refresh_ref_path(sctx, cur); 4375 if (ret < 0) 4376 goto out; 4377 } 4378 ret = send_unlink(sctx, cur->full_path); 4379 if (ret < 0) 4380 goto out; 4381 } 4382 } 4383 4384 } 4385 4386 list_for_each_entry(cur, &sctx->new_refs, list) { 4387 /* 4388 * We may have refs where the parent directory does not exist 4389 * yet. This happens if the parent directories inum is higher 4390 * than the current inum. To handle this case, we create the 4391 * parent directory out of order. But we need to check if this 4392 * did already happen before due to other refs in the same dir. 4393 */ 4394 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4395 if (ret < 0) 4396 goto out; 4397 if (ret == inode_state_will_create) { 4398 ret = 0; 4399 /* 4400 * First check if any of the current inodes refs did 4401 * already create the dir. 4402 */ 4403 list_for_each_entry(cur2, &sctx->new_refs, list) { 4404 if (cur == cur2) 4405 break; 4406 if (cur2->dir == cur->dir) { 4407 ret = 1; 4408 break; 4409 } 4410 } 4411 4412 /* 4413 * If that did not happen, check if a previous inode 4414 * did already create the dir. 4415 */ 4416 if (!ret) 4417 ret = did_create_dir(sctx, cur->dir); 4418 if (ret < 0) 4419 goto out; 4420 if (!ret) { 4421 ret = send_create_inode(sctx, cur->dir); 4422 if (ret < 0) 4423 goto out; 4424 cache_dir_created(sctx, cur->dir); 4425 } 4426 } 4427 4428 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4429 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4430 if (ret < 0) 4431 goto out; 4432 if (ret == 1) { 4433 can_rename = false; 4434 *pending_move = 1; 4435 } 4436 } 4437 4438 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4439 can_rename) { 4440 ret = wait_for_parent_move(sctx, cur, is_orphan); 4441 if (ret < 0) 4442 goto out; 4443 if (ret == 1) { 4444 can_rename = false; 4445 *pending_move = 1; 4446 } 4447 } 4448 4449 /* 4450 * link/move the ref to the new place. If we have an orphan 4451 * inode, move it and update valid_path. If not, link or move 4452 * it depending on the inode mode. 4453 */ 4454 if (is_orphan && can_rename) { 4455 ret = send_rename(sctx, valid_path, cur->full_path); 4456 if (ret < 0) 4457 goto out; 4458 is_orphan = 0; 4459 ret = fs_path_copy(valid_path, cur->full_path); 4460 if (ret < 0) 4461 goto out; 4462 } else if (can_rename) { 4463 if (S_ISDIR(sctx->cur_inode_mode)) { 4464 /* 4465 * Dirs can't be linked, so move it. For moved 4466 * dirs, we always have one new and one deleted 4467 * ref. The deleted ref is ignored later. 4468 */ 4469 ret = send_rename(sctx, valid_path, 4470 cur->full_path); 4471 if (!ret) 4472 ret = fs_path_copy(valid_path, 4473 cur->full_path); 4474 if (ret < 0) 4475 goto out; 4476 } else { 4477 /* 4478 * We might have previously orphanized an inode 4479 * which is an ancestor of our current inode, 4480 * so our reference's full path, which was 4481 * computed before any such orphanizations, must 4482 * be updated. 4483 */ 4484 if (orphanized_dir) { 4485 ret = update_ref_path(sctx, cur); 4486 if (ret < 0) 4487 goto out; 4488 } 4489 ret = send_link(sctx, cur->full_path, 4490 valid_path); 4491 if (ret < 0) 4492 goto out; 4493 } 4494 } 4495 ret = dup_ref(cur, &check_dirs); 4496 if (ret < 0) 4497 goto out; 4498 } 4499 4500 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4501 /* 4502 * Check if we can already rmdir the directory. If not, 4503 * orphanize it. For every dir item inside that gets deleted 4504 * later, we do this check again and rmdir it then if possible. 4505 * See the use of check_dirs for more details. 4506 */ 4507 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4508 if (ret < 0) 4509 goto out; 4510 if (ret) { 4511 ret = send_rmdir(sctx, valid_path); 4512 if (ret < 0) 4513 goto out; 4514 } else if (!is_orphan) { 4515 ret = orphanize_inode(sctx, sctx->cur_ino, 4516 sctx->cur_inode_gen, valid_path); 4517 if (ret < 0) 4518 goto out; 4519 is_orphan = 1; 4520 } 4521 4522 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4523 ret = dup_ref(cur, &check_dirs); 4524 if (ret < 0) 4525 goto out; 4526 } 4527 } else if (S_ISDIR(sctx->cur_inode_mode) && 4528 !list_empty(&sctx->deleted_refs)) { 4529 /* 4530 * We have a moved dir. Add the old parent to check_dirs 4531 */ 4532 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4533 list); 4534 ret = dup_ref(cur, &check_dirs); 4535 if (ret < 0) 4536 goto out; 4537 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4538 /* 4539 * We have a non dir inode. Go through all deleted refs and 4540 * unlink them if they were not already overwritten by other 4541 * inodes. 4542 */ 4543 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4544 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4545 sctx->cur_ino, sctx->cur_inode_gen, 4546 cur->name, cur->name_len); 4547 if (ret < 0) 4548 goto out; 4549 if (!ret) { 4550 /* 4551 * If we orphanized any ancestor before, we need 4552 * to recompute the full path for deleted names, 4553 * since any such path was computed before we 4554 * processed any references and orphanized any 4555 * ancestor inode. 4556 */ 4557 if (orphanized_ancestor) { 4558 ret = update_ref_path(sctx, cur); 4559 if (ret < 0) 4560 goto out; 4561 } 4562 ret = send_unlink(sctx, cur->full_path); 4563 if (ret < 0) 4564 goto out; 4565 } 4566 ret = dup_ref(cur, &check_dirs); 4567 if (ret < 0) 4568 goto out; 4569 } 4570 /* 4571 * If the inode is still orphan, unlink the orphan. This may 4572 * happen when a previous inode did overwrite the first ref 4573 * of this inode and no new refs were added for the current 4574 * inode. Unlinking does not mean that the inode is deleted in 4575 * all cases. There may still be links to this inode in other 4576 * places. 4577 */ 4578 if (is_orphan) { 4579 ret = send_unlink(sctx, valid_path); 4580 if (ret < 0) 4581 goto out; 4582 } 4583 } 4584 4585 /* 4586 * We did collect all parent dirs where cur_inode was once located. We 4587 * now go through all these dirs and check if they are pending for 4588 * deletion and if it's finally possible to perform the rmdir now. 4589 * We also update the inode stats of the parent dirs here. 4590 */ 4591 list_for_each_entry(cur, &check_dirs, list) { 4592 /* 4593 * In case we had refs into dirs that were not processed yet, 4594 * we don't need to do the utime and rmdir logic for these dirs. 4595 * The dir will be processed later. 4596 */ 4597 if (cur->dir > sctx->cur_ino) 4598 continue; 4599 4600 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4601 if (ret < 0) 4602 goto out; 4603 4604 if (ret == inode_state_did_create || 4605 ret == inode_state_no_change) { 4606 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 4607 if (ret < 0) 4608 goto out; 4609 } else if (ret == inode_state_did_delete && 4610 cur->dir != last_dir_ino_rm) { 4611 ret = can_rmdir(sctx, cur->dir, cur->dir_gen); 4612 if (ret < 0) 4613 goto out; 4614 if (ret) { 4615 ret = get_cur_path(sctx, cur->dir, 4616 cur->dir_gen, valid_path); 4617 if (ret < 0) 4618 goto out; 4619 ret = send_rmdir(sctx, valid_path); 4620 if (ret < 0) 4621 goto out; 4622 last_dir_ino_rm = cur->dir; 4623 } 4624 } 4625 } 4626 4627 ret = 0; 4628 4629 out: 4630 __free_recorded_refs(&check_dirs); 4631 free_recorded_refs(sctx); 4632 fs_path_free(valid_path); 4633 return ret; 4634 } 4635 4636 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4637 { 4638 const struct recorded_ref *data = k; 4639 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4640 int result; 4641 4642 if (data->dir > ref->dir) 4643 return 1; 4644 if (data->dir < ref->dir) 4645 return -1; 4646 if (data->dir_gen > ref->dir_gen) 4647 return 1; 4648 if (data->dir_gen < ref->dir_gen) 4649 return -1; 4650 if (data->name_len > ref->name_len) 4651 return 1; 4652 if (data->name_len < ref->name_len) 4653 return -1; 4654 result = strcmp(data->name, ref->name); 4655 if (result > 0) 4656 return 1; 4657 if (result < 0) 4658 return -1; 4659 return 0; 4660 } 4661 4662 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4663 { 4664 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4665 4666 return rbtree_ref_comp(entry, parent) < 0; 4667 } 4668 4669 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4670 struct fs_path *name, u64 dir, u64 dir_gen, 4671 struct send_ctx *sctx) 4672 { 4673 int ret = 0; 4674 struct fs_path *path = NULL; 4675 struct recorded_ref *ref = NULL; 4676 4677 path = fs_path_alloc(); 4678 if (!path) { 4679 ret = -ENOMEM; 4680 goto out; 4681 } 4682 4683 ref = recorded_ref_alloc(); 4684 if (!ref) { 4685 ret = -ENOMEM; 4686 goto out; 4687 } 4688 4689 ret = get_cur_path(sctx, dir, dir_gen, path); 4690 if (ret < 0) 4691 goto out; 4692 ret = fs_path_add_path(path, name); 4693 if (ret < 0) 4694 goto out; 4695 4696 ref->dir = dir; 4697 ref->dir_gen = dir_gen; 4698 set_ref_path(ref, path); 4699 list_add_tail(&ref->list, refs); 4700 rb_add(&ref->node, root, rbtree_ref_less); 4701 ref->root = root; 4702 out: 4703 if (ret) { 4704 if (path && (!ref || !ref->full_path)) 4705 fs_path_free(path); 4706 recorded_ref_free(ref); 4707 } 4708 return ret; 4709 } 4710 4711 static int record_new_ref_if_needed(int num, u64 dir, int index, 4712 struct fs_path *name, void *ctx) 4713 { 4714 int ret = 0; 4715 struct send_ctx *sctx = ctx; 4716 struct rb_node *node = NULL; 4717 struct recorded_ref data; 4718 struct recorded_ref *ref; 4719 u64 dir_gen; 4720 4721 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4722 if (ret < 0) 4723 goto out; 4724 4725 data.dir = dir; 4726 data.dir_gen = dir_gen; 4727 set_ref_path(&data, name); 4728 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4729 if (node) { 4730 ref = rb_entry(node, struct recorded_ref, node); 4731 recorded_ref_free(ref); 4732 } else { 4733 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4734 &sctx->new_refs, name, dir, dir_gen, 4735 sctx); 4736 } 4737 out: 4738 return ret; 4739 } 4740 4741 static int record_deleted_ref_if_needed(int num, u64 dir, int index, 4742 struct fs_path *name, void *ctx) 4743 { 4744 int ret = 0; 4745 struct send_ctx *sctx = ctx; 4746 struct rb_node *node = NULL; 4747 struct recorded_ref data; 4748 struct recorded_ref *ref; 4749 u64 dir_gen; 4750 4751 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4752 if (ret < 0) 4753 goto out; 4754 4755 data.dir = dir; 4756 data.dir_gen = dir_gen; 4757 set_ref_path(&data, name); 4758 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4759 if (node) { 4760 ref = rb_entry(node, struct recorded_ref, node); 4761 recorded_ref_free(ref); 4762 } else { 4763 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4764 &sctx->deleted_refs, name, dir, 4765 dir_gen, sctx); 4766 } 4767 out: 4768 return ret; 4769 } 4770 4771 static int record_new_ref(struct send_ctx *sctx) 4772 { 4773 int ret; 4774 4775 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4776 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4777 if (ret < 0) 4778 goto out; 4779 ret = 0; 4780 4781 out: 4782 return ret; 4783 } 4784 4785 static int record_deleted_ref(struct send_ctx *sctx) 4786 { 4787 int ret; 4788 4789 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4790 sctx->cmp_key, 0, record_deleted_ref_if_needed, 4791 sctx); 4792 if (ret < 0) 4793 goto out; 4794 ret = 0; 4795 4796 out: 4797 return ret; 4798 } 4799 4800 static int record_changed_ref(struct send_ctx *sctx) 4801 { 4802 int ret = 0; 4803 4804 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4805 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4806 if (ret < 0) 4807 goto out; 4808 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4809 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx); 4810 if (ret < 0) 4811 goto out; 4812 ret = 0; 4813 4814 out: 4815 return ret; 4816 } 4817 4818 /* 4819 * Record and process all refs at once. Needed when an inode changes the 4820 * generation number, which means that it was deleted and recreated. 4821 */ 4822 static int process_all_refs(struct send_ctx *sctx, 4823 enum btrfs_compare_tree_result cmd) 4824 { 4825 int ret = 0; 4826 int iter_ret = 0; 4827 struct btrfs_root *root; 4828 struct btrfs_path *path; 4829 struct btrfs_key key; 4830 struct btrfs_key found_key; 4831 iterate_inode_ref_t cb; 4832 int pending_move = 0; 4833 4834 path = alloc_path_for_send(); 4835 if (!path) 4836 return -ENOMEM; 4837 4838 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4839 root = sctx->send_root; 4840 cb = record_new_ref_if_needed; 4841 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4842 root = sctx->parent_root; 4843 cb = record_deleted_ref_if_needed; 4844 } else { 4845 btrfs_err(sctx->send_root->fs_info, 4846 "Wrong command %d in process_all_refs", cmd); 4847 ret = -EINVAL; 4848 goto out; 4849 } 4850 4851 key.objectid = sctx->cmp_key->objectid; 4852 key.type = BTRFS_INODE_REF_KEY; 4853 key.offset = 0; 4854 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4855 if (found_key.objectid != key.objectid || 4856 (found_key.type != BTRFS_INODE_REF_KEY && 4857 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4858 break; 4859 4860 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4861 if (ret < 0) 4862 goto out; 4863 } 4864 /* Catch error found during iteration */ 4865 if (iter_ret < 0) { 4866 ret = iter_ret; 4867 goto out; 4868 } 4869 btrfs_release_path(path); 4870 4871 /* 4872 * We don't actually care about pending_move as we are simply 4873 * re-creating this inode and will be rename'ing it into place once we 4874 * rename the parent directory. 4875 */ 4876 ret = process_recorded_refs(sctx, &pending_move); 4877 out: 4878 btrfs_free_path(path); 4879 return ret; 4880 } 4881 4882 static int send_set_xattr(struct send_ctx *sctx, 4883 struct fs_path *path, 4884 const char *name, int name_len, 4885 const char *data, int data_len) 4886 { 4887 int ret = 0; 4888 4889 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4890 if (ret < 0) 4891 goto out; 4892 4893 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4894 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4895 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4896 4897 ret = send_cmd(sctx); 4898 4899 tlv_put_failure: 4900 out: 4901 return ret; 4902 } 4903 4904 static int send_remove_xattr(struct send_ctx *sctx, 4905 struct fs_path *path, 4906 const char *name, int name_len) 4907 { 4908 int ret = 0; 4909 4910 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4911 if (ret < 0) 4912 goto out; 4913 4914 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4915 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4916 4917 ret = send_cmd(sctx); 4918 4919 tlv_put_failure: 4920 out: 4921 return ret; 4922 } 4923 4924 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4925 const char *name, int name_len, const char *data, 4926 int data_len, void *ctx) 4927 { 4928 int ret; 4929 struct send_ctx *sctx = ctx; 4930 struct fs_path *p; 4931 struct posix_acl_xattr_header dummy_acl; 4932 4933 /* Capabilities are emitted by finish_inode_if_needed */ 4934 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4935 return 0; 4936 4937 p = fs_path_alloc(); 4938 if (!p) 4939 return -ENOMEM; 4940 4941 /* 4942 * This hack is needed because empty acls are stored as zero byte 4943 * data in xattrs. Problem with that is, that receiving these zero byte 4944 * acls will fail later. To fix this, we send a dummy acl list that 4945 * only contains the version number and no entries. 4946 */ 4947 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4948 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4949 if (data_len == 0) { 4950 dummy_acl.a_version = 4951 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4952 data = (char *)&dummy_acl; 4953 data_len = sizeof(dummy_acl); 4954 } 4955 } 4956 4957 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4958 if (ret < 0) 4959 goto out; 4960 4961 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4962 4963 out: 4964 fs_path_free(p); 4965 return ret; 4966 } 4967 4968 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4969 const char *name, int name_len, 4970 const char *data, int data_len, void *ctx) 4971 { 4972 int ret; 4973 struct send_ctx *sctx = ctx; 4974 struct fs_path *p; 4975 4976 p = fs_path_alloc(); 4977 if (!p) 4978 return -ENOMEM; 4979 4980 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4981 if (ret < 0) 4982 goto out; 4983 4984 ret = send_remove_xattr(sctx, p, name, name_len); 4985 4986 out: 4987 fs_path_free(p); 4988 return ret; 4989 } 4990 4991 static int process_new_xattr(struct send_ctx *sctx) 4992 { 4993 int ret = 0; 4994 4995 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4996 __process_new_xattr, sctx); 4997 4998 return ret; 4999 } 5000 5001 static int process_deleted_xattr(struct send_ctx *sctx) 5002 { 5003 return iterate_dir_item(sctx->parent_root, sctx->right_path, 5004 __process_deleted_xattr, sctx); 5005 } 5006 5007 struct find_xattr_ctx { 5008 const char *name; 5009 int name_len; 5010 int found_idx; 5011 char *found_data; 5012 int found_data_len; 5013 }; 5014 5015 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 5016 int name_len, const char *data, int data_len, void *vctx) 5017 { 5018 struct find_xattr_ctx *ctx = vctx; 5019 5020 if (name_len == ctx->name_len && 5021 strncmp(name, ctx->name, name_len) == 0) { 5022 ctx->found_idx = num; 5023 ctx->found_data_len = data_len; 5024 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 5025 if (!ctx->found_data) 5026 return -ENOMEM; 5027 return 1; 5028 } 5029 return 0; 5030 } 5031 5032 static int find_xattr(struct btrfs_root *root, 5033 struct btrfs_path *path, 5034 struct btrfs_key *key, 5035 const char *name, int name_len, 5036 char **data, int *data_len) 5037 { 5038 int ret; 5039 struct find_xattr_ctx ctx; 5040 5041 ctx.name = name; 5042 ctx.name_len = name_len; 5043 ctx.found_idx = -1; 5044 ctx.found_data = NULL; 5045 ctx.found_data_len = 0; 5046 5047 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 5048 if (ret < 0) 5049 return ret; 5050 5051 if (ctx.found_idx == -1) 5052 return -ENOENT; 5053 if (data) { 5054 *data = ctx.found_data; 5055 *data_len = ctx.found_data_len; 5056 } else { 5057 kfree(ctx.found_data); 5058 } 5059 return ctx.found_idx; 5060 } 5061 5062 5063 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 5064 const char *name, int name_len, 5065 const char *data, int data_len, 5066 void *ctx) 5067 { 5068 int ret; 5069 struct send_ctx *sctx = ctx; 5070 char *found_data = NULL; 5071 int found_data_len = 0; 5072 5073 ret = find_xattr(sctx->parent_root, sctx->right_path, 5074 sctx->cmp_key, name, name_len, &found_data, 5075 &found_data_len); 5076 if (ret == -ENOENT) { 5077 ret = __process_new_xattr(num, di_key, name, name_len, data, 5078 data_len, ctx); 5079 } else if (ret >= 0) { 5080 if (data_len != found_data_len || 5081 memcmp(data, found_data, data_len)) { 5082 ret = __process_new_xattr(num, di_key, name, name_len, 5083 data, data_len, ctx); 5084 } else { 5085 ret = 0; 5086 } 5087 } 5088 5089 kfree(found_data); 5090 return ret; 5091 } 5092 5093 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 5094 const char *name, int name_len, 5095 const char *data, int data_len, 5096 void *ctx) 5097 { 5098 int ret; 5099 struct send_ctx *sctx = ctx; 5100 5101 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 5102 name, name_len, NULL, NULL); 5103 if (ret == -ENOENT) 5104 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 5105 data_len, ctx); 5106 else if (ret >= 0) 5107 ret = 0; 5108 5109 return ret; 5110 } 5111 5112 static int process_changed_xattr(struct send_ctx *sctx) 5113 { 5114 int ret = 0; 5115 5116 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 5117 __process_changed_new_xattr, sctx); 5118 if (ret < 0) 5119 goto out; 5120 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 5121 __process_changed_deleted_xattr, sctx); 5122 5123 out: 5124 return ret; 5125 } 5126 5127 static int process_all_new_xattrs(struct send_ctx *sctx) 5128 { 5129 int ret = 0; 5130 int iter_ret = 0; 5131 struct btrfs_root *root; 5132 struct btrfs_path *path; 5133 struct btrfs_key key; 5134 struct btrfs_key found_key; 5135 5136 path = alloc_path_for_send(); 5137 if (!path) 5138 return -ENOMEM; 5139 5140 root = sctx->send_root; 5141 5142 key.objectid = sctx->cmp_key->objectid; 5143 key.type = BTRFS_XATTR_ITEM_KEY; 5144 key.offset = 0; 5145 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5146 if (found_key.objectid != key.objectid || 5147 found_key.type != key.type) { 5148 ret = 0; 5149 break; 5150 } 5151 5152 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 5153 if (ret < 0) 5154 break; 5155 } 5156 /* Catch error found during iteration */ 5157 if (iter_ret < 0) 5158 ret = iter_ret; 5159 5160 btrfs_free_path(path); 5161 return ret; 5162 } 5163 5164 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 5165 struct fsverity_descriptor *desc) 5166 { 5167 int ret; 5168 5169 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 5170 if (ret < 0) 5171 goto out; 5172 5173 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5174 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 5175 le8_to_cpu(desc->hash_algorithm)); 5176 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 5177 1U << le8_to_cpu(desc->log_blocksize)); 5178 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 5179 le8_to_cpu(desc->salt_size)); 5180 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 5181 le32_to_cpu(desc->sig_size)); 5182 5183 ret = send_cmd(sctx); 5184 5185 tlv_put_failure: 5186 out: 5187 return ret; 5188 } 5189 5190 static int process_verity(struct send_ctx *sctx) 5191 { 5192 int ret = 0; 5193 struct inode *inode; 5194 struct fs_path *p; 5195 5196 inode = btrfs_iget(sctx->cur_ino, sctx->send_root); 5197 if (IS_ERR(inode)) 5198 return PTR_ERR(inode); 5199 5200 ret = btrfs_get_verity_descriptor(inode, NULL, 0); 5201 if (ret < 0) 5202 goto iput; 5203 5204 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 5205 ret = -EMSGSIZE; 5206 goto iput; 5207 } 5208 if (!sctx->verity_descriptor) { 5209 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 5210 GFP_KERNEL); 5211 if (!sctx->verity_descriptor) { 5212 ret = -ENOMEM; 5213 goto iput; 5214 } 5215 } 5216 5217 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret); 5218 if (ret < 0) 5219 goto iput; 5220 5221 p = fs_path_alloc(); 5222 if (!p) { 5223 ret = -ENOMEM; 5224 goto iput; 5225 } 5226 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5227 if (ret < 0) 5228 goto free_path; 5229 5230 ret = send_verity(sctx, p, sctx->verity_descriptor); 5231 if (ret < 0) 5232 goto free_path; 5233 5234 free_path: 5235 fs_path_free(p); 5236 iput: 5237 iput(inode); 5238 return ret; 5239 } 5240 5241 static inline u64 max_send_read_size(const struct send_ctx *sctx) 5242 { 5243 return sctx->send_max_size - SZ_16K; 5244 } 5245 5246 static int put_data_header(struct send_ctx *sctx, u32 len) 5247 { 5248 if (WARN_ON_ONCE(sctx->put_data)) 5249 return -EINVAL; 5250 sctx->put_data = true; 5251 if (sctx->proto >= 2) { 5252 /* 5253 * Since v2, the data attribute header doesn't include a length, 5254 * it is implicitly to the end of the command. 5255 */ 5256 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 5257 return -EOVERFLOW; 5258 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 5259 sctx->send_size += sizeof(__le16); 5260 } else { 5261 struct btrfs_tlv_header *hdr; 5262 5263 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 5264 return -EOVERFLOW; 5265 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5266 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5267 put_unaligned_le16(len, &hdr->tlv_len); 5268 sctx->send_size += sizeof(*hdr); 5269 } 5270 return 0; 5271 } 5272 5273 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5274 { 5275 struct btrfs_root *root = sctx->send_root; 5276 struct btrfs_fs_info *fs_info = root->fs_info; 5277 struct folio *folio; 5278 pgoff_t index = offset >> PAGE_SHIFT; 5279 pgoff_t last_index; 5280 unsigned pg_offset = offset_in_page(offset); 5281 struct address_space *mapping = sctx->cur_inode->i_mapping; 5282 int ret; 5283 5284 ret = put_data_header(sctx, len); 5285 if (ret) 5286 return ret; 5287 5288 last_index = (offset + len - 1) >> PAGE_SHIFT; 5289 5290 while (index <= last_index) { 5291 unsigned cur_len = min_t(unsigned, len, 5292 PAGE_SIZE - pg_offset); 5293 5294 folio = filemap_lock_folio(mapping, index); 5295 if (IS_ERR(folio)) { 5296 page_cache_sync_readahead(mapping, 5297 &sctx->ra, NULL, index, 5298 last_index + 1 - index); 5299 5300 folio = filemap_grab_folio(mapping, index); 5301 if (IS_ERR(folio)) { 5302 ret = PTR_ERR(folio); 5303 break; 5304 } 5305 } 5306 5307 WARN_ON(folio_order(folio)); 5308 5309 if (folio_test_readahead(folio)) 5310 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio, 5311 last_index + 1 - index); 5312 5313 if (!folio_test_uptodate(folio)) { 5314 btrfs_read_folio(NULL, folio); 5315 folio_lock(folio); 5316 if (!folio_test_uptodate(folio)) { 5317 folio_unlock(folio); 5318 btrfs_err(fs_info, 5319 "send: IO error at offset %llu for inode %llu root %llu", 5320 folio_pos(folio), sctx->cur_ino, 5321 btrfs_root_id(sctx->send_root)); 5322 folio_put(folio); 5323 ret = -EIO; 5324 break; 5325 } 5326 } 5327 5328 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio, 5329 pg_offset, cur_len); 5330 folio_unlock(folio); 5331 folio_put(folio); 5332 index++; 5333 pg_offset = 0; 5334 len -= cur_len; 5335 sctx->send_size += cur_len; 5336 } 5337 5338 return ret; 5339 } 5340 5341 /* 5342 * Read some bytes from the current inode/file and send a write command to 5343 * user space. 5344 */ 5345 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5346 { 5347 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5348 int ret = 0; 5349 struct fs_path *p; 5350 5351 p = fs_path_alloc(); 5352 if (!p) 5353 return -ENOMEM; 5354 5355 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5356 5357 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5358 if (ret < 0) 5359 goto out; 5360 5361 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5362 if (ret < 0) 5363 goto out; 5364 5365 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5366 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5367 ret = put_file_data(sctx, offset, len); 5368 if (ret < 0) 5369 goto out; 5370 5371 ret = send_cmd(sctx); 5372 5373 tlv_put_failure: 5374 out: 5375 fs_path_free(p); 5376 return ret; 5377 } 5378 5379 /* 5380 * Send a clone command to user space. 5381 */ 5382 static int send_clone(struct send_ctx *sctx, 5383 u64 offset, u32 len, 5384 struct clone_root *clone_root) 5385 { 5386 int ret = 0; 5387 struct fs_path *p; 5388 u64 gen; 5389 5390 btrfs_debug(sctx->send_root->fs_info, 5391 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5392 offset, len, btrfs_root_id(clone_root->root), 5393 clone_root->ino, clone_root->offset); 5394 5395 p = fs_path_alloc(); 5396 if (!p) 5397 return -ENOMEM; 5398 5399 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5400 if (ret < 0) 5401 goto out; 5402 5403 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5404 if (ret < 0) 5405 goto out; 5406 5407 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5408 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5409 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5410 5411 if (clone_root->root == sctx->send_root) { 5412 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5413 if (ret < 0) 5414 goto out; 5415 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5416 } else { 5417 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5418 } 5419 if (ret < 0) 5420 goto out; 5421 5422 /* 5423 * If the parent we're using has a received_uuid set then use that as 5424 * our clone source as that is what we will look for when doing a 5425 * receive. 5426 * 5427 * This covers the case that we create a snapshot off of a received 5428 * subvolume and then use that as the parent and try to receive on a 5429 * different host. 5430 */ 5431 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5432 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5433 clone_root->root->root_item.received_uuid); 5434 else 5435 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5436 clone_root->root->root_item.uuid); 5437 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5438 btrfs_root_ctransid(&clone_root->root->root_item)); 5439 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5440 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5441 clone_root->offset); 5442 5443 ret = send_cmd(sctx); 5444 5445 tlv_put_failure: 5446 out: 5447 fs_path_free(p); 5448 return ret; 5449 } 5450 5451 /* 5452 * Send an update extent command to user space. 5453 */ 5454 static int send_update_extent(struct send_ctx *sctx, 5455 u64 offset, u32 len) 5456 { 5457 int ret = 0; 5458 struct fs_path *p; 5459 5460 p = fs_path_alloc(); 5461 if (!p) 5462 return -ENOMEM; 5463 5464 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5465 if (ret < 0) 5466 goto out; 5467 5468 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5469 if (ret < 0) 5470 goto out; 5471 5472 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5473 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5474 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5475 5476 ret = send_cmd(sctx); 5477 5478 tlv_put_failure: 5479 out: 5480 fs_path_free(p); 5481 return ret; 5482 } 5483 5484 static int send_hole(struct send_ctx *sctx, u64 end) 5485 { 5486 struct fs_path *p = NULL; 5487 u64 read_size = max_send_read_size(sctx); 5488 u64 offset = sctx->cur_inode_last_extent; 5489 int ret = 0; 5490 5491 /* 5492 * A hole that starts at EOF or beyond it. Since we do not yet support 5493 * fallocate (for extent preallocation and hole punching), sending a 5494 * write of zeroes starting at EOF or beyond would later require issuing 5495 * a truncate operation which would undo the write and achieve nothing. 5496 */ 5497 if (offset >= sctx->cur_inode_size) 5498 return 0; 5499 5500 /* 5501 * Don't go beyond the inode's i_size due to prealloc extents that start 5502 * after the i_size. 5503 */ 5504 end = min_t(u64, end, sctx->cur_inode_size); 5505 5506 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5507 return send_update_extent(sctx, offset, end - offset); 5508 5509 p = fs_path_alloc(); 5510 if (!p) 5511 return -ENOMEM; 5512 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5513 if (ret < 0) 5514 goto tlv_put_failure; 5515 while (offset < end) { 5516 u64 len = min(end - offset, read_size); 5517 5518 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5519 if (ret < 0) 5520 break; 5521 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5522 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5523 ret = put_data_header(sctx, len); 5524 if (ret < 0) 5525 break; 5526 memset(sctx->send_buf + sctx->send_size, 0, len); 5527 sctx->send_size += len; 5528 ret = send_cmd(sctx); 5529 if (ret < 0) 5530 break; 5531 offset += len; 5532 } 5533 sctx->cur_inode_next_write_offset = offset; 5534 tlv_put_failure: 5535 fs_path_free(p); 5536 return ret; 5537 } 5538 5539 static int send_encoded_inline_extent(struct send_ctx *sctx, 5540 struct btrfs_path *path, u64 offset, 5541 u64 len) 5542 { 5543 struct btrfs_root *root = sctx->send_root; 5544 struct btrfs_fs_info *fs_info = root->fs_info; 5545 struct inode *inode; 5546 struct fs_path *fspath; 5547 struct extent_buffer *leaf = path->nodes[0]; 5548 struct btrfs_key key; 5549 struct btrfs_file_extent_item *ei; 5550 u64 ram_bytes; 5551 size_t inline_size; 5552 int ret; 5553 5554 inode = btrfs_iget(sctx->cur_ino, root); 5555 if (IS_ERR(inode)) 5556 return PTR_ERR(inode); 5557 5558 fspath = fs_path_alloc(); 5559 if (!fspath) { 5560 ret = -ENOMEM; 5561 goto out; 5562 } 5563 5564 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5565 if (ret < 0) 5566 goto out; 5567 5568 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5569 if (ret < 0) 5570 goto out; 5571 5572 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5574 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5575 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5576 5577 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5578 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5579 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5580 min(key.offset + ram_bytes - offset, len)); 5581 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5582 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5583 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5584 btrfs_file_extent_compression(leaf, ei)); 5585 if (ret < 0) 5586 goto out; 5587 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5588 5589 ret = put_data_header(sctx, inline_size); 5590 if (ret < 0) 5591 goto out; 5592 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5593 btrfs_file_extent_inline_start(ei), inline_size); 5594 sctx->send_size += inline_size; 5595 5596 ret = send_cmd(sctx); 5597 5598 tlv_put_failure: 5599 out: 5600 fs_path_free(fspath); 5601 iput(inode); 5602 return ret; 5603 } 5604 5605 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5606 u64 offset, u64 len) 5607 { 5608 struct btrfs_root *root = sctx->send_root; 5609 struct btrfs_fs_info *fs_info = root->fs_info; 5610 struct inode *inode; 5611 struct fs_path *fspath; 5612 struct extent_buffer *leaf = path->nodes[0]; 5613 struct btrfs_key key; 5614 struct btrfs_file_extent_item *ei; 5615 u64 disk_bytenr, disk_num_bytes; 5616 u32 data_offset; 5617 struct btrfs_cmd_header *hdr; 5618 u32 crc; 5619 int ret; 5620 5621 inode = btrfs_iget(sctx->cur_ino, root); 5622 if (IS_ERR(inode)) 5623 return PTR_ERR(inode); 5624 5625 fspath = fs_path_alloc(); 5626 if (!fspath) { 5627 ret = -ENOMEM; 5628 goto out; 5629 } 5630 5631 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5632 if (ret < 0) 5633 goto out; 5634 5635 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5636 if (ret < 0) 5637 goto out; 5638 5639 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5640 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5641 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5642 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5643 5644 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5645 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5646 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5647 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5648 len)); 5649 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5650 btrfs_file_extent_ram_bytes(leaf, ei)); 5651 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5652 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5653 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5654 btrfs_file_extent_compression(leaf, ei)); 5655 if (ret < 0) 5656 goto out; 5657 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5658 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5659 5660 ret = put_data_header(sctx, disk_num_bytes); 5661 if (ret < 0) 5662 goto out; 5663 5664 /* 5665 * We want to do I/O directly into the send buffer, so get the next page 5666 * boundary in the send buffer. This means that there may be a gap 5667 * between the beginning of the command and the file data. 5668 */ 5669 data_offset = PAGE_ALIGN(sctx->send_size); 5670 if (data_offset > sctx->send_max_size || 5671 sctx->send_max_size - data_offset < disk_num_bytes) { 5672 ret = -EOVERFLOW; 5673 goto out; 5674 } 5675 5676 /* 5677 * Note that send_buf is a mapping of send_buf_pages, so this is really 5678 * reading into send_buf. 5679 */ 5680 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset, 5681 disk_bytenr, disk_num_bytes, 5682 sctx->send_buf_pages + 5683 (data_offset >> PAGE_SHIFT)); 5684 if (ret) 5685 goto out; 5686 5687 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5688 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5689 hdr->crc = 0; 5690 crc = crc32c(0, sctx->send_buf, sctx->send_size); 5691 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5692 hdr->crc = cpu_to_le32(crc); 5693 5694 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5695 &sctx->send_off); 5696 if (!ret) { 5697 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5698 disk_num_bytes, &sctx->send_off); 5699 } 5700 sctx->send_size = 0; 5701 sctx->put_data = false; 5702 5703 tlv_put_failure: 5704 out: 5705 fs_path_free(fspath); 5706 iput(inode); 5707 return ret; 5708 } 5709 5710 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5711 const u64 offset, const u64 len) 5712 { 5713 const u64 end = offset + len; 5714 struct extent_buffer *leaf = path->nodes[0]; 5715 struct btrfs_file_extent_item *ei; 5716 u64 read_size = max_send_read_size(sctx); 5717 u64 sent = 0; 5718 5719 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5720 return send_update_extent(sctx, offset, len); 5721 5722 ei = btrfs_item_ptr(leaf, path->slots[0], 5723 struct btrfs_file_extent_item); 5724 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5725 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5726 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5727 BTRFS_FILE_EXTENT_INLINE); 5728 5729 /* 5730 * Send the compressed extent unless the compressed data is 5731 * larger than the decompressed data. This can happen if we're 5732 * not sending the entire extent, either because it has been 5733 * partially overwritten/truncated or because this is a part of 5734 * the extent that we couldn't clone in clone_range(). 5735 */ 5736 if (is_inline && 5737 btrfs_file_extent_inline_item_len(leaf, 5738 path->slots[0]) <= len) { 5739 return send_encoded_inline_extent(sctx, path, offset, 5740 len); 5741 } else if (!is_inline && 5742 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5743 return send_encoded_extent(sctx, path, offset, len); 5744 } 5745 } 5746 5747 if (sctx->cur_inode == NULL) { 5748 struct btrfs_root *root = sctx->send_root; 5749 5750 sctx->cur_inode = btrfs_iget(sctx->cur_ino, root); 5751 if (IS_ERR(sctx->cur_inode)) { 5752 int err = PTR_ERR(sctx->cur_inode); 5753 5754 sctx->cur_inode = NULL; 5755 return err; 5756 } 5757 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5758 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5759 5760 /* 5761 * It's very likely there are no pages from this inode in the page 5762 * cache, so after reading extents and sending their data, we clean 5763 * the page cache to avoid trashing the page cache (adding pressure 5764 * to the page cache and forcing eviction of other data more useful 5765 * for applications). 5766 * 5767 * We decide if we should clean the page cache simply by checking 5768 * if the inode's mapping nrpages is 0 when we first open it, and 5769 * not by using something like filemap_range_has_page() before 5770 * reading an extent because when we ask the readahead code to 5771 * read a given file range, it may (and almost always does) read 5772 * pages from beyond that range (see the documentation for 5773 * page_cache_sync_readahead()), so it would not be reliable, 5774 * because after reading the first extent future calls to 5775 * filemap_range_has_page() would return true because the readahead 5776 * on the previous extent resulted in reading pages of the current 5777 * extent as well. 5778 */ 5779 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5780 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5781 } 5782 5783 while (sent < len) { 5784 u64 size = min(len - sent, read_size); 5785 int ret; 5786 5787 ret = send_write(sctx, offset + sent, size); 5788 if (ret < 0) 5789 return ret; 5790 sent += size; 5791 } 5792 5793 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { 5794 /* 5795 * Always operate only on ranges that are a multiple of the page 5796 * size. This is not only to prevent zeroing parts of a page in 5797 * the case of subpage sector size, but also to guarantee we evict 5798 * pages, as passing a range that is smaller than page size does 5799 * not evict the respective page (only zeroes part of its content). 5800 * 5801 * Always start from the end offset of the last range cleared. 5802 * This is because the readahead code may (and very often does) 5803 * reads pages beyond the range we request for readahead. So if 5804 * we have an extent layout like this: 5805 * 5806 * [ extent A ] [ extent B ] [ extent C ] 5807 * 5808 * When we ask page_cache_sync_readahead() to read extent A, it 5809 * may also trigger reads for pages of extent B. If we are doing 5810 * an incremental send and extent B has not changed between the 5811 * parent and send snapshots, some or all of its pages may end 5812 * up being read and placed in the page cache. So when truncating 5813 * the page cache we always start from the end offset of the 5814 * previously processed extent up to the end of the current 5815 * extent. 5816 */ 5817 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5818 sctx->page_cache_clear_start, 5819 end - 1); 5820 sctx->page_cache_clear_start = end; 5821 } 5822 5823 return 0; 5824 } 5825 5826 /* 5827 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5828 * found, call send_set_xattr function to emit it. 5829 * 5830 * Return 0 if there isn't a capability, or when the capability was emitted 5831 * successfully, or < 0 if an error occurred. 5832 */ 5833 static int send_capabilities(struct send_ctx *sctx) 5834 { 5835 struct fs_path *fspath = NULL; 5836 struct btrfs_path *path; 5837 struct btrfs_dir_item *di; 5838 struct extent_buffer *leaf; 5839 unsigned long data_ptr; 5840 char *buf = NULL; 5841 int buf_len; 5842 int ret = 0; 5843 5844 path = alloc_path_for_send(); 5845 if (!path) 5846 return -ENOMEM; 5847 5848 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5849 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5850 if (!di) { 5851 /* There is no xattr for this inode */ 5852 goto out; 5853 } else if (IS_ERR(di)) { 5854 ret = PTR_ERR(di); 5855 goto out; 5856 } 5857 5858 leaf = path->nodes[0]; 5859 buf_len = btrfs_dir_data_len(leaf, di); 5860 5861 fspath = fs_path_alloc(); 5862 buf = kmalloc(buf_len, GFP_KERNEL); 5863 if (!fspath || !buf) { 5864 ret = -ENOMEM; 5865 goto out; 5866 } 5867 5868 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5869 if (ret < 0) 5870 goto out; 5871 5872 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5873 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5874 5875 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5876 strlen(XATTR_NAME_CAPS), buf, buf_len); 5877 out: 5878 kfree(buf); 5879 fs_path_free(fspath); 5880 btrfs_free_path(path); 5881 return ret; 5882 } 5883 5884 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5885 struct clone_root *clone_root, const u64 disk_byte, 5886 u64 data_offset, u64 offset, u64 len) 5887 { 5888 struct btrfs_path *path; 5889 struct btrfs_key key; 5890 int ret; 5891 struct btrfs_inode_info info; 5892 u64 clone_src_i_size = 0; 5893 5894 /* 5895 * Prevent cloning from a zero offset with a length matching the sector 5896 * size because in some scenarios this will make the receiver fail. 5897 * 5898 * For example, if in the source filesystem the extent at offset 0 5899 * has a length of sectorsize and it was written using direct IO, then 5900 * it can never be an inline extent (even if compression is enabled). 5901 * Then this extent can be cloned in the original filesystem to a non 5902 * zero file offset, but it may not be possible to clone in the 5903 * destination filesystem because it can be inlined due to compression 5904 * on the destination filesystem (as the receiver's write operations are 5905 * always done using buffered IO). The same happens when the original 5906 * filesystem does not have compression enabled but the destination 5907 * filesystem has. 5908 */ 5909 if (clone_root->offset == 0 && 5910 len == sctx->send_root->fs_info->sectorsize) 5911 return send_extent_data(sctx, dst_path, offset, len); 5912 5913 path = alloc_path_for_send(); 5914 if (!path) 5915 return -ENOMEM; 5916 5917 /* 5918 * There are inodes that have extents that lie behind its i_size. Don't 5919 * accept clones from these extents. 5920 */ 5921 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5922 btrfs_release_path(path); 5923 if (ret < 0) 5924 goto out; 5925 clone_src_i_size = info.size; 5926 5927 /* 5928 * We can't send a clone operation for the entire range if we find 5929 * extent items in the respective range in the source file that 5930 * refer to different extents or if we find holes. 5931 * So check for that and do a mix of clone and regular write/copy 5932 * operations if needed. 5933 * 5934 * Example: 5935 * 5936 * mkfs.btrfs -f /dev/sda 5937 * mount /dev/sda /mnt 5938 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5939 * cp --reflink=always /mnt/foo /mnt/bar 5940 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5941 * btrfs subvolume snapshot -r /mnt /mnt/snap 5942 * 5943 * If when we send the snapshot and we are processing file bar (which 5944 * has a higher inode number than foo) we blindly send a clone operation 5945 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5946 * a file bar that matches the content of file foo - iow, doesn't match 5947 * the content from bar in the original filesystem. 5948 */ 5949 key.objectid = clone_root->ino; 5950 key.type = BTRFS_EXTENT_DATA_KEY; 5951 key.offset = clone_root->offset; 5952 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5953 if (ret < 0) 5954 goto out; 5955 if (ret > 0 && path->slots[0] > 0) { 5956 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5957 if (key.objectid == clone_root->ino && 5958 key.type == BTRFS_EXTENT_DATA_KEY) 5959 path->slots[0]--; 5960 } 5961 5962 while (true) { 5963 struct extent_buffer *leaf = path->nodes[0]; 5964 int slot = path->slots[0]; 5965 struct btrfs_file_extent_item *ei; 5966 u8 type; 5967 u64 ext_len; 5968 u64 clone_len; 5969 u64 clone_data_offset; 5970 bool crossed_src_i_size = false; 5971 5972 if (slot >= btrfs_header_nritems(leaf)) { 5973 ret = btrfs_next_leaf(clone_root->root, path); 5974 if (ret < 0) 5975 goto out; 5976 else if (ret > 0) 5977 break; 5978 continue; 5979 } 5980 5981 btrfs_item_key_to_cpu(leaf, &key, slot); 5982 5983 /* 5984 * We might have an implicit trailing hole (NO_HOLES feature 5985 * enabled). We deal with it after leaving this loop. 5986 */ 5987 if (key.objectid != clone_root->ino || 5988 key.type != BTRFS_EXTENT_DATA_KEY) 5989 break; 5990 5991 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5992 type = btrfs_file_extent_type(leaf, ei); 5993 if (type == BTRFS_FILE_EXTENT_INLINE) { 5994 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5995 ext_len = PAGE_ALIGN(ext_len); 5996 } else { 5997 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5998 } 5999 6000 if (key.offset + ext_len <= clone_root->offset) 6001 goto next; 6002 6003 if (key.offset > clone_root->offset) { 6004 /* Implicit hole, NO_HOLES feature enabled. */ 6005 u64 hole_len = key.offset - clone_root->offset; 6006 6007 if (hole_len > len) 6008 hole_len = len; 6009 ret = send_extent_data(sctx, dst_path, offset, 6010 hole_len); 6011 if (ret < 0) 6012 goto out; 6013 6014 len -= hole_len; 6015 if (len == 0) 6016 break; 6017 offset += hole_len; 6018 clone_root->offset += hole_len; 6019 data_offset += hole_len; 6020 } 6021 6022 if (key.offset >= clone_root->offset + len) 6023 break; 6024 6025 if (key.offset >= clone_src_i_size) 6026 break; 6027 6028 if (key.offset + ext_len > clone_src_i_size) { 6029 ext_len = clone_src_i_size - key.offset; 6030 crossed_src_i_size = true; 6031 } 6032 6033 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 6034 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 6035 clone_root->offset = key.offset; 6036 if (clone_data_offset < data_offset && 6037 clone_data_offset + ext_len > data_offset) { 6038 u64 extent_offset; 6039 6040 extent_offset = data_offset - clone_data_offset; 6041 ext_len -= extent_offset; 6042 clone_data_offset += extent_offset; 6043 clone_root->offset += extent_offset; 6044 } 6045 } 6046 6047 clone_len = min_t(u64, ext_len, len); 6048 6049 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 6050 clone_data_offset == data_offset) { 6051 const u64 src_end = clone_root->offset + clone_len; 6052 const u64 sectorsize = SZ_64K; 6053 6054 /* 6055 * We can't clone the last block, when its size is not 6056 * sector size aligned, into the middle of a file. If we 6057 * do so, the receiver will get a failure (-EINVAL) when 6058 * trying to clone or will silently corrupt the data in 6059 * the destination file if it's on a kernel without the 6060 * fix introduced by commit ac765f83f1397646 6061 * ("Btrfs: fix data corruption due to cloning of eof 6062 * block). 6063 * 6064 * So issue a clone of the aligned down range plus a 6065 * regular write for the eof block, if we hit that case. 6066 * 6067 * Also, we use the maximum possible sector size, 64K, 6068 * because we don't know what's the sector size of the 6069 * filesystem that receives the stream, so we have to 6070 * assume the largest possible sector size. 6071 */ 6072 if (src_end == clone_src_i_size && 6073 !IS_ALIGNED(src_end, sectorsize) && 6074 offset + clone_len < sctx->cur_inode_size) { 6075 u64 slen; 6076 6077 slen = ALIGN_DOWN(src_end - clone_root->offset, 6078 sectorsize); 6079 if (slen > 0) { 6080 ret = send_clone(sctx, offset, slen, 6081 clone_root); 6082 if (ret < 0) 6083 goto out; 6084 } 6085 ret = send_extent_data(sctx, dst_path, 6086 offset + slen, 6087 clone_len - slen); 6088 } else { 6089 ret = send_clone(sctx, offset, clone_len, 6090 clone_root); 6091 } 6092 } else if (crossed_src_i_size && clone_len < len) { 6093 /* 6094 * If we are at i_size of the clone source inode and we 6095 * can not clone from it, terminate the loop. This is 6096 * to avoid sending two write operations, one with a 6097 * length matching clone_len and the final one after 6098 * this loop with a length of len - clone_len. 6099 * 6100 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 6101 * was passed to the send ioctl), this helps avoid 6102 * sending an encoded write for an offset that is not 6103 * sector size aligned, in case the i_size of the source 6104 * inode is not sector size aligned. That will make the 6105 * receiver fallback to decompression of the data and 6106 * writing it using regular buffered IO, therefore while 6107 * not incorrect, it's not optimal due decompression and 6108 * possible re-compression at the receiver. 6109 */ 6110 break; 6111 } else { 6112 ret = send_extent_data(sctx, dst_path, offset, 6113 clone_len); 6114 } 6115 6116 if (ret < 0) 6117 goto out; 6118 6119 len -= clone_len; 6120 if (len == 0) 6121 break; 6122 offset += clone_len; 6123 clone_root->offset += clone_len; 6124 6125 /* 6126 * If we are cloning from the file we are currently processing, 6127 * and using the send root as the clone root, we must stop once 6128 * the current clone offset reaches the current eof of the file 6129 * at the receiver, otherwise we would issue an invalid clone 6130 * operation (source range going beyond eof) and cause the 6131 * receiver to fail. So if we reach the current eof, bail out 6132 * and fallback to a regular write. 6133 */ 6134 if (clone_root->root == sctx->send_root && 6135 clone_root->ino == sctx->cur_ino && 6136 clone_root->offset >= sctx->cur_inode_next_write_offset) 6137 break; 6138 6139 data_offset += clone_len; 6140 next: 6141 path->slots[0]++; 6142 } 6143 6144 if (len > 0) 6145 ret = send_extent_data(sctx, dst_path, offset, len); 6146 else 6147 ret = 0; 6148 out: 6149 btrfs_free_path(path); 6150 return ret; 6151 } 6152 6153 static int send_write_or_clone(struct send_ctx *sctx, 6154 struct btrfs_path *path, 6155 struct btrfs_key *key, 6156 struct clone_root *clone_root) 6157 { 6158 int ret = 0; 6159 u64 offset = key->offset; 6160 u64 end; 6161 u64 bs = sctx->send_root->fs_info->sectorsize; 6162 struct btrfs_file_extent_item *ei; 6163 u64 disk_byte; 6164 u64 data_offset; 6165 u64 num_bytes; 6166 struct btrfs_inode_info info = { 0 }; 6167 6168 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 6169 if (offset >= end) 6170 return 0; 6171 6172 num_bytes = end - offset; 6173 6174 if (!clone_root) 6175 goto write_data; 6176 6177 if (IS_ALIGNED(end, bs)) 6178 goto clone_data; 6179 6180 /* 6181 * If the extent end is not aligned, we can clone if the extent ends at 6182 * the i_size of the inode and the clone range ends at the i_size of the 6183 * source inode, otherwise the clone operation fails with -EINVAL. 6184 */ 6185 if (end != sctx->cur_inode_size) 6186 goto write_data; 6187 6188 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 6189 if (ret < 0) 6190 return ret; 6191 6192 if (clone_root->offset + num_bytes == info.size) { 6193 /* 6194 * The final size of our file matches the end offset, but it may 6195 * be that its current size is larger, so we have to truncate it 6196 * to any value between the start offset of the range and the 6197 * final i_size, otherwise the clone operation is invalid 6198 * because it's unaligned and it ends before the current EOF. 6199 * We do this truncate to the final i_size when we finish 6200 * processing the inode, but it's too late by then. And here we 6201 * truncate to the start offset of the range because it's always 6202 * sector size aligned while if it were the final i_size it 6203 * would result in dirtying part of a page, filling part of a 6204 * page with zeroes and then having the clone operation at the 6205 * receiver trigger IO and wait for it due to the dirty page. 6206 */ 6207 if (sctx->parent_root != NULL) { 6208 ret = send_truncate(sctx, sctx->cur_ino, 6209 sctx->cur_inode_gen, offset); 6210 if (ret < 0) 6211 return ret; 6212 } 6213 goto clone_data; 6214 } 6215 6216 write_data: 6217 ret = send_extent_data(sctx, path, offset, num_bytes); 6218 sctx->cur_inode_next_write_offset = end; 6219 return ret; 6220 6221 clone_data: 6222 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6223 struct btrfs_file_extent_item); 6224 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 6225 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 6226 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset, 6227 num_bytes); 6228 sctx->cur_inode_next_write_offset = end; 6229 return ret; 6230 } 6231 6232 static int is_extent_unchanged(struct send_ctx *sctx, 6233 struct btrfs_path *left_path, 6234 struct btrfs_key *ekey) 6235 { 6236 int ret = 0; 6237 struct btrfs_key key; 6238 struct btrfs_path *path = NULL; 6239 struct extent_buffer *eb; 6240 int slot; 6241 struct btrfs_key found_key; 6242 struct btrfs_file_extent_item *ei; 6243 u64 left_disknr; 6244 u64 right_disknr; 6245 u64 left_offset; 6246 u64 right_offset; 6247 u64 left_offset_fixed; 6248 u64 left_len; 6249 u64 right_len; 6250 u64 left_gen; 6251 u64 right_gen; 6252 u8 left_type; 6253 u8 right_type; 6254 6255 path = alloc_path_for_send(); 6256 if (!path) 6257 return -ENOMEM; 6258 6259 eb = left_path->nodes[0]; 6260 slot = left_path->slots[0]; 6261 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6262 left_type = btrfs_file_extent_type(eb, ei); 6263 6264 if (left_type != BTRFS_FILE_EXTENT_REG) { 6265 ret = 0; 6266 goto out; 6267 } 6268 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6269 left_len = btrfs_file_extent_num_bytes(eb, ei); 6270 left_offset = btrfs_file_extent_offset(eb, ei); 6271 left_gen = btrfs_file_extent_generation(eb, ei); 6272 6273 /* 6274 * Following comments will refer to these graphics. L is the left 6275 * extents which we are checking at the moment. 1-8 are the right 6276 * extents that we iterate. 6277 * 6278 * |-----L-----| 6279 * |-1-|-2a-|-3-|-4-|-5-|-6-| 6280 * 6281 * |-----L-----| 6282 * |--1--|-2b-|...(same as above) 6283 * 6284 * Alternative situation. Happens on files where extents got split. 6285 * |-----L-----| 6286 * |-----------7-----------|-6-| 6287 * 6288 * Alternative situation. Happens on files which got larger. 6289 * |-----L-----| 6290 * |-8-| 6291 * Nothing follows after 8. 6292 */ 6293 6294 key.objectid = ekey->objectid; 6295 key.type = BTRFS_EXTENT_DATA_KEY; 6296 key.offset = ekey->offset; 6297 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 6298 if (ret < 0) 6299 goto out; 6300 if (ret) { 6301 ret = 0; 6302 goto out; 6303 } 6304 6305 /* 6306 * Handle special case where the right side has no extents at all. 6307 */ 6308 eb = path->nodes[0]; 6309 slot = path->slots[0]; 6310 btrfs_item_key_to_cpu(eb, &found_key, slot); 6311 if (found_key.objectid != key.objectid || 6312 found_key.type != key.type) { 6313 /* If we're a hole then just pretend nothing changed */ 6314 ret = (left_disknr) ? 0 : 1; 6315 goto out; 6316 } 6317 6318 /* 6319 * We're now on 2a, 2b or 7. 6320 */ 6321 key = found_key; 6322 while (key.offset < ekey->offset + left_len) { 6323 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6324 right_type = btrfs_file_extent_type(eb, ei); 6325 if (right_type != BTRFS_FILE_EXTENT_REG && 6326 right_type != BTRFS_FILE_EXTENT_INLINE) { 6327 ret = 0; 6328 goto out; 6329 } 6330 6331 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6332 right_len = btrfs_file_extent_ram_bytes(eb, ei); 6333 right_len = PAGE_ALIGN(right_len); 6334 } else { 6335 right_len = btrfs_file_extent_num_bytes(eb, ei); 6336 } 6337 6338 /* 6339 * Are we at extent 8? If yes, we know the extent is changed. 6340 * This may only happen on the first iteration. 6341 */ 6342 if (found_key.offset + right_len <= ekey->offset) { 6343 /* If we're a hole just pretend nothing changed */ 6344 ret = (left_disknr) ? 0 : 1; 6345 goto out; 6346 } 6347 6348 /* 6349 * We just wanted to see if when we have an inline extent, what 6350 * follows it is a regular extent (wanted to check the above 6351 * condition for inline extents too). This should normally not 6352 * happen but it's possible for example when we have an inline 6353 * compressed extent representing data with a size matching 6354 * the page size (currently the same as sector size). 6355 */ 6356 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6357 ret = 0; 6358 goto out; 6359 } 6360 6361 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6362 right_offset = btrfs_file_extent_offset(eb, ei); 6363 right_gen = btrfs_file_extent_generation(eb, ei); 6364 6365 left_offset_fixed = left_offset; 6366 if (key.offset < ekey->offset) { 6367 /* Fix the right offset for 2a and 7. */ 6368 right_offset += ekey->offset - key.offset; 6369 } else { 6370 /* Fix the left offset for all behind 2a and 2b */ 6371 left_offset_fixed += key.offset - ekey->offset; 6372 } 6373 6374 /* 6375 * Check if we have the same extent. 6376 */ 6377 if (left_disknr != right_disknr || 6378 left_offset_fixed != right_offset || 6379 left_gen != right_gen) { 6380 ret = 0; 6381 goto out; 6382 } 6383 6384 /* 6385 * Go to the next extent. 6386 */ 6387 ret = btrfs_next_item(sctx->parent_root, path); 6388 if (ret < 0) 6389 goto out; 6390 if (!ret) { 6391 eb = path->nodes[0]; 6392 slot = path->slots[0]; 6393 btrfs_item_key_to_cpu(eb, &found_key, slot); 6394 } 6395 if (ret || found_key.objectid != key.objectid || 6396 found_key.type != key.type) { 6397 key.offset += right_len; 6398 break; 6399 } 6400 if (found_key.offset != key.offset + right_len) { 6401 ret = 0; 6402 goto out; 6403 } 6404 key = found_key; 6405 } 6406 6407 /* 6408 * We're now behind the left extent (treat as unchanged) or at the end 6409 * of the right side (treat as changed). 6410 */ 6411 if (key.offset >= ekey->offset + left_len) 6412 ret = 1; 6413 else 6414 ret = 0; 6415 6416 6417 out: 6418 btrfs_free_path(path); 6419 return ret; 6420 } 6421 6422 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6423 { 6424 struct btrfs_path *path; 6425 struct btrfs_root *root = sctx->send_root; 6426 struct btrfs_key key; 6427 int ret; 6428 6429 path = alloc_path_for_send(); 6430 if (!path) 6431 return -ENOMEM; 6432 6433 sctx->cur_inode_last_extent = 0; 6434 6435 key.objectid = sctx->cur_ino; 6436 key.type = BTRFS_EXTENT_DATA_KEY; 6437 key.offset = offset; 6438 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6439 if (ret < 0) 6440 goto out; 6441 ret = 0; 6442 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6443 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6444 goto out; 6445 6446 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6447 out: 6448 btrfs_free_path(path); 6449 return ret; 6450 } 6451 6452 static int range_is_hole_in_parent(struct send_ctx *sctx, 6453 const u64 start, 6454 const u64 end) 6455 { 6456 struct btrfs_path *path; 6457 struct btrfs_key key; 6458 struct btrfs_root *root = sctx->parent_root; 6459 u64 search_start = start; 6460 int ret; 6461 6462 path = alloc_path_for_send(); 6463 if (!path) 6464 return -ENOMEM; 6465 6466 key.objectid = sctx->cur_ino; 6467 key.type = BTRFS_EXTENT_DATA_KEY; 6468 key.offset = search_start; 6469 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6470 if (ret < 0) 6471 goto out; 6472 if (ret > 0 && path->slots[0] > 0) 6473 path->slots[0]--; 6474 6475 while (search_start < end) { 6476 struct extent_buffer *leaf = path->nodes[0]; 6477 int slot = path->slots[0]; 6478 struct btrfs_file_extent_item *fi; 6479 u64 extent_end; 6480 6481 if (slot >= btrfs_header_nritems(leaf)) { 6482 ret = btrfs_next_leaf(root, path); 6483 if (ret < 0) 6484 goto out; 6485 else if (ret > 0) 6486 break; 6487 continue; 6488 } 6489 6490 btrfs_item_key_to_cpu(leaf, &key, slot); 6491 if (key.objectid < sctx->cur_ino || 6492 key.type < BTRFS_EXTENT_DATA_KEY) 6493 goto next; 6494 if (key.objectid > sctx->cur_ino || 6495 key.type > BTRFS_EXTENT_DATA_KEY || 6496 key.offset >= end) 6497 break; 6498 6499 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6500 extent_end = btrfs_file_extent_end(path); 6501 if (extent_end <= start) 6502 goto next; 6503 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6504 search_start = extent_end; 6505 goto next; 6506 } 6507 ret = 0; 6508 goto out; 6509 next: 6510 path->slots[0]++; 6511 } 6512 ret = 1; 6513 out: 6514 btrfs_free_path(path); 6515 return ret; 6516 } 6517 6518 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6519 struct btrfs_key *key) 6520 { 6521 int ret = 0; 6522 6523 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6524 return 0; 6525 6526 /* 6527 * Get last extent's end offset (exclusive) if we haven't determined it 6528 * yet (we're processing the first file extent item that is new), or if 6529 * we're at the first slot of a leaf and the last extent's end is less 6530 * than the current extent's offset, because we might have skipped 6531 * entire leaves that contained only file extent items for our current 6532 * inode. These leaves have a generation number smaller (older) than the 6533 * one in the current leaf and the leaf our last extent came from, and 6534 * are located between these 2 leaves. 6535 */ 6536 if ((sctx->cur_inode_last_extent == (u64)-1) || 6537 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) { 6538 ret = get_last_extent(sctx, key->offset - 1); 6539 if (ret) 6540 return ret; 6541 } 6542 6543 if (sctx->cur_inode_last_extent < key->offset) { 6544 ret = range_is_hole_in_parent(sctx, 6545 sctx->cur_inode_last_extent, 6546 key->offset); 6547 if (ret < 0) 6548 return ret; 6549 else if (ret == 0) 6550 ret = send_hole(sctx, key->offset); 6551 else 6552 ret = 0; 6553 } 6554 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6555 return ret; 6556 } 6557 6558 static int process_extent(struct send_ctx *sctx, 6559 struct btrfs_path *path, 6560 struct btrfs_key *key) 6561 { 6562 struct clone_root *found_clone = NULL; 6563 int ret = 0; 6564 6565 if (S_ISLNK(sctx->cur_inode_mode)) 6566 return 0; 6567 6568 if (sctx->parent_root && !sctx->cur_inode_new) { 6569 ret = is_extent_unchanged(sctx, path, key); 6570 if (ret < 0) 6571 goto out; 6572 if (ret) { 6573 ret = 0; 6574 goto out_hole; 6575 } 6576 } else { 6577 struct btrfs_file_extent_item *ei; 6578 u8 type; 6579 6580 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6581 struct btrfs_file_extent_item); 6582 type = btrfs_file_extent_type(path->nodes[0], ei); 6583 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6584 type == BTRFS_FILE_EXTENT_REG) { 6585 /* 6586 * The send spec does not have a prealloc command yet, 6587 * so just leave a hole for prealloc'ed extents until 6588 * we have enough commands queued up to justify rev'ing 6589 * the send spec. 6590 */ 6591 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6592 ret = 0; 6593 goto out; 6594 } 6595 6596 /* Have a hole, just skip it. */ 6597 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6598 ret = 0; 6599 goto out; 6600 } 6601 } 6602 } 6603 6604 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6605 sctx->cur_inode_size, &found_clone); 6606 if (ret != -ENOENT && ret < 0) 6607 goto out; 6608 6609 ret = send_write_or_clone(sctx, path, key, found_clone); 6610 if (ret) 6611 goto out; 6612 out_hole: 6613 ret = maybe_send_hole(sctx, path, key); 6614 out: 6615 return ret; 6616 } 6617 6618 static int process_all_extents(struct send_ctx *sctx) 6619 { 6620 int ret = 0; 6621 int iter_ret = 0; 6622 struct btrfs_root *root; 6623 struct btrfs_path *path; 6624 struct btrfs_key key; 6625 struct btrfs_key found_key; 6626 6627 root = sctx->send_root; 6628 path = alloc_path_for_send(); 6629 if (!path) 6630 return -ENOMEM; 6631 6632 key.objectid = sctx->cmp_key->objectid; 6633 key.type = BTRFS_EXTENT_DATA_KEY; 6634 key.offset = 0; 6635 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6636 if (found_key.objectid != key.objectid || 6637 found_key.type != key.type) { 6638 ret = 0; 6639 break; 6640 } 6641 6642 ret = process_extent(sctx, path, &found_key); 6643 if (ret < 0) 6644 break; 6645 } 6646 /* Catch error found during iteration */ 6647 if (iter_ret < 0) 6648 ret = iter_ret; 6649 6650 btrfs_free_path(path); 6651 return ret; 6652 } 6653 6654 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6655 int *pending_move, 6656 int *refs_processed) 6657 { 6658 int ret = 0; 6659 6660 if (sctx->cur_ino == 0) 6661 goto out; 6662 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6663 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6664 goto out; 6665 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6666 goto out; 6667 6668 ret = process_recorded_refs(sctx, pending_move); 6669 if (ret < 0) 6670 goto out; 6671 6672 *refs_processed = 1; 6673 out: 6674 return ret; 6675 } 6676 6677 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6678 { 6679 int ret = 0; 6680 struct btrfs_inode_info info; 6681 u64 left_mode; 6682 u64 left_uid; 6683 u64 left_gid; 6684 u64 left_fileattr; 6685 u64 right_mode; 6686 u64 right_uid; 6687 u64 right_gid; 6688 u64 right_fileattr; 6689 int need_chmod = 0; 6690 int need_chown = 0; 6691 bool need_fileattr = false; 6692 int need_truncate = 1; 6693 int pending_move = 0; 6694 int refs_processed = 0; 6695 6696 if (sctx->ignore_cur_inode) 6697 return 0; 6698 6699 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6700 &refs_processed); 6701 if (ret < 0) 6702 goto out; 6703 6704 /* 6705 * We have processed the refs and thus need to advance send_progress. 6706 * Now, calls to get_cur_xxx will take the updated refs of the current 6707 * inode into account. 6708 * 6709 * On the other hand, if our current inode is a directory and couldn't 6710 * be moved/renamed because its parent was renamed/moved too and it has 6711 * a higher inode number, we can only move/rename our current inode 6712 * after we moved/renamed its parent. Therefore in this case operate on 6713 * the old path (pre move/rename) of our current inode, and the 6714 * move/rename will be performed later. 6715 */ 6716 if (refs_processed && !pending_move) 6717 sctx->send_progress = sctx->cur_ino + 1; 6718 6719 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6720 goto out; 6721 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6722 goto out; 6723 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6724 if (ret < 0) 6725 goto out; 6726 left_mode = info.mode; 6727 left_uid = info.uid; 6728 left_gid = info.gid; 6729 left_fileattr = info.fileattr; 6730 6731 if (!sctx->parent_root || sctx->cur_inode_new) { 6732 need_chown = 1; 6733 if (!S_ISLNK(sctx->cur_inode_mode)) 6734 need_chmod = 1; 6735 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6736 need_truncate = 0; 6737 } else { 6738 u64 old_size; 6739 6740 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6741 if (ret < 0) 6742 goto out; 6743 old_size = info.size; 6744 right_mode = info.mode; 6745 right_uid = info.uid; 6746 right_gid = info.gid; 6747 right_fileattr = info.fileattr; 6748 6749 if (left_uid != right_uid || left_gid != right_gid) 6750 need_chown = 1; 6751 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6752 need_chmod = 1; 6753 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6754 need_fileattr = true; 6755 if ((old_size == sctx->cur_inode_size) || 6756 (sctx->cur_inode_size > old_size && 6757 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6758 need_truncate = 0; 6759 } 6760 6761 if (S_ISREG(sctx->cur_inode_mode)) { 6762 if (need_send_hole(sctx)) { 6763 if (sctx->cur_inode_last_extent == (u64)-1 || 6764 sctx->cur_inode_last_extent < 6765 sctx->cur_inode_size) { 6766 ret = get_last_extent(sctx, (u64)-1); 6767 if (ret) 6768 goto out; 6769 } 6770 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) { 6771 ret = range_is_hole_in_parent(sctx, 6772 sctx->cur_inode_last_extent, 6773 sctx->cur_inode_size); 6774 if (ret < 0) { 6775 goto out; 6776 } else if (ret == 0) { 6777 ret = send_hole(sctx, sctx->cur_inode_size); 6778 if (ret < 0) 6779 goto out; 6780 } else { 6781 /* Range is already a hole, skip. */ 6782 ret = 0; 6783 } 6784 } 6785 } 6786 if (need_truncate) { 6787 ret = send_truncate(sctx, sctx->cur_ino, 6788 sctx->cur_inode_gen, 6789 sctx->cur_inode_size); 6790 if (ret < 0) 6791 goto out; 6792 } 6793 } 6794 6795 if (need_chown) { 6796 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6797 left_uid, left_gid); 6798 if (ret < 0) 6799 goto out; 6800 } 6801 if (need_chmod) { 6802 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6803 left_mode); 6804 if (ret < 0) 6805 goto out; 6806 } 6807 if (need_fileattr) { 6808 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6809 left_fileattr); 6810 if (ret < 0) 6811 goto out; 6812 } 6813 6814 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6815 && sctx->cur_inode_needs_verity) { 6816 ret = process_verity(sctx); 6817 if (ret < 0) 6818 goto out; 6819 } 6820 6821 ret = send_capabilities(sctx); 6822 if (ret < 0) 6823 goto out; 6824 6825 /* 6826 * If other directory inodes depended on our current directory 6827 * inode's move/rename, now do their move/rename operations. 6828 */ 6829 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6830 ret = apply_children_dir_moves(sctx); 6831 if (ret) 6832 goto out; 6833 /* 6834 * Need to send that every time, no matter if it actually 6835 * changed between the two trees as we have done changes to 6836 * the inode before. If our inode is a directory and it's 6837 * waiting to be moved/renamed, we will send its utimes when 6838 * it's moved/renamed, therefore we don't need to do it here. 6839 */ 6840 sctx->send_progress = sctx->cur_ino + 1; 6841 6842 /* 6843 * If the current inode is a non-empty directory, delay issuing 6844 * the utimes command for it, as it's very likely we have inodes 6845 * with an higher number inside it. We want to issue the utimes 6846 * command only after adding all dentries to it. 6847 */ 6848 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) 6849 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6850 else 6851 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6852 6853 if (ret < 0) 6854 goto out; 6855 } 6856 6857 out: 6858 if (!ret) 6859 ret = trim_dir_utimes_cache(sctx); 6860 6861 return ret; 6862 } 6863 6864 static void close_current_inode(struct send_ctx *sctx) 6865 { 6866 u64 i_size; 6867 6868 if (sctx->cur_inode == NULL) 6869 return; 6870 6871 i_size = i_size_read(sctx->cur_inode); 6872 6873 /* 6874 * If we are doing an incremental send, we may have extents between the 6875 * last processed extent and the i_size that have not been processed 6876 * because they haven't changed but we may have read some of their pages 6877 * through readahead, see the comments at send_extent_data(). 6878 */ 6879 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6880 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6881 sctx->page_cache_clear_start, 6882 round_up(i_size, PAGE_SIZE) - 1); 6883 6884 iput(sctx->cur_inode); 6885 sctx->cur_inode = NULL; 6886 } 6887 6888 static int changed_inode(struct send_ctx *sctx, 6889 enum btrfs_compare_tree_result result) 6890 { 6891 int ret = 0; 6892 struct btrfs_key *key = sctx->cmp_key; 6893 struct btrfs_inode_item *left_ii = NULL; 6894 struct btrfs_inode_item *right_ii = NULL; 6895 u64 left_gen = 0; 6896 u64 right_gen = 0; 6897 6898 close_current_inode(sctx); 6899 6900 sctx->cur_ino = key->objectid; 6901 sctx->cur_inode_new_gen = false; 6902 sctx->cur_inode_last_extent = (u64)-1; 6903 sctx->cur_inode_next_write_offset = 0; 6904 sctx->ignore_cur_inode = false; 6905 6906 /* 6907 * Set send_progress to current inode. This will tell all get_cur_xxx 6908 * functions that the current inode's refs are not updated yet. Later, 6909 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6910 */ 6911 sctx->send_progress = sctx->cur_ino; 6912 6913 if (result == BTRFS_COMPARE_TREE_NEW || 6914 result == BTRFS_COMPARE_TREE_CHANGED) { 6915 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6916 sctx->left_path->slots[0], 6917 struct btrfs_inode_item); 6918 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6919 left_ii); 6920 } else { 6921 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6922 sctx->right_path->slots[0], 6923 struct btrfs_inode_item); 6924 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6925 right_ii); 6926 } 6927 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6928 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6929 sctx->right_path->slots[0], 6930 struct btrfs_inode_item); 6931 6932 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6933 right_ii); 6934 6935 /* 6936 * The cur_ino = root dir case is special here. We can't treat 6937 * the inode as deleted+reused because it would generate a 6938 * stream that tries to delete/mkdir the root dir. 6939 */ 6940 if (left_gen != right_gen && 6941 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6942 sctx->cur_inode_new_gen = true; 6943 } 6944 6945 /* 6946 * Normally we do not find inodes with a link count of zero (orphans) 6947 * because the most common case is to create a snapshot and use it 6948 * for a send operation. However other less common use cases involve 6949 * using a subvolume and send it after turning it to RO mode just 6950 * after deleting all hard links of a file while holding an open 6951 * file descriptor against it or turning a RO snapshot into RW mode, 6952 * keep an open file descriptor against a file, delete it and then 6953 * turn the snapshot back to RO mode before using it for a send 6954 * operation. The former is what the receiver operation does. 6955 * Therefore, if we want to send these snapshots soon after they're 6956 * received, we need to handle orphan inodes as well. Moreover, orphans 6957 * can appear not only in the send snapshot but also in the parent 6958 * snapshot. Here are several cases: 6959 * 6960 * Case 1: BTRFS_COMPARE_TREE_NEW 6961 * | send snapshot | action 6962 * -------------------------------- 6963 * nlink | 0 | ignore 6964 * 6965 * Case 2: BTRFS_COMPARE_TREE_DELETED 6966 * | parent snapshot | action 6967 * ---------------------------------- 6968 * nlink | 0 | as usual 6969 * Note: No unlinks will be sent because there're no paths for it. 6970 * 6971 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6972 * | | parent snapshot | send snapshot | action 6973 * ----------------------------------------------------------------------- 6974 * subcase 1 | nlink | 0 | 0 | ignore 6975 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6976 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6977 * 6978 */ 6979 if (result == BTRFS_COMPARE_TREE_NEW) { 6980 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6981 sctx->ignore_cur_inode = true; 6982 goto out; 6983 } 6984 sctx->cur_inode_gen = left_gen; 6985 sctx->cur_inode_new = true; 6986 sctx->cur_inode_deleted = false; 6987 sctx->cur_inode_size = btrfs_inode_size( 6988 sctx->left_path->nodes[0], left_ii); 6989 sctx->cur_inode_mode = btrfs_inode_mode( 6990 sctx->left_path->nodes[0], left_ii); 6991 sctx->cur_inode_rdev = btrfs_inode_rdev( 6992 sctx->left_path->nodes[0], left_ii); 6993 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6994 ret = send_create_inode_if_needed(sctx); 6995 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6996 sctx->cur_inode_gen = right_gen; 6997 sctx->cur_inode_new = false; 6998 sctx->cur_inode_deleted = true; 6999 sctx->cur_inode_size = btrfs_inode_size( 7000 sctx->right_path->nodes[0], right_ii); 7001 sctx->cur_inode_mode = btrfs_inode_mode( 7002 sctx->right_path->nodes[0], right_ii); 7003 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 7004 u32 new_nlinks, old_nlinks; 7005 7006 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 7007 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 7008 if (new_nlinks == 0 && old_nlinks == 0) { 7009 sctx->ignore_cur_inode = true; 7010 goto out; 7011 } else if (new_nlinks == 0 || old_nlinks == 0) { 7012 sctx->cur_inode_new_gen = 1; 7013 } 7014 /* 7015 * We need to do some special handling in case the inode was 7016 * reported as changed with a changed generation number. This 7017 * means that the original inode was deleted and new inode 7018 * reused the same inum. So we have to treat the old inode as 7019 * deleted and the new one as new. 7020 */ 7021 if (sctx->cur_inode_new_gen) { 7022 /* 7023 * First, process the inode as if it was deleted. 7024 */ 7025 if (old_nlinks > 0) { 7026 sctx->cur_inode_gen = right_gen; 7027 sctx->cur_inode_new = false; 7028 sctx->cur_inode_deleted = true; 7029 sctx->cur_inode_size = btrfs_inode_size( 7030 sctx->right_path->nodes[0], right_ii); 7031 sctx->cur_inode_mode = btrfs_inode_mode( 7032 sctx->right_path->nodes[0], right_ii); 7033 ret = process_all_refs(sctx, 7034 BTRFS_COMPARE_TREE_DELETED); 7035 if (ret < 0) 7036 goto out; 7037 } 7038 7039 /* 7040 * Now process the inode as if it was new. 7041 */ 7042 if (new_nlinks > 0) { 7043 sctx->cur_inode_gen = left_gen; 7044 sctx->cur_inode_new = true; 7045 sctx->cur_inode_deleted = false; 7046 sctx->cur_inode_size = btrfs_inode_size( 7047 sctx->left_path->nodes[0], 7048 left_ii); 7049 sctx->cur_inode_mode = btrfs_inode_mode( 7050 sctx->left_path->nodes[0], 7051 left_ii); 7052 sctx->cur_inode_rdev = btrfs_inode_rdev( 7053 sctx->left_path->nodes[0], 7054 left_ii); 7055 ret = send_create_inode_if_needed(sctx); 7056 if (ret < 0) 7057 goto out; 7058 7059 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 7060 if (ret < 0) 7061 goto out; 7062 /* 7063 * Advance send_progress now as we did not get 7064 * into process_recorded_refs_if_needed in the 7065 * new_gen case. 7066 */ 7067 sctx->send_progress = sctx->cur_ino + 1; 7068 7069 /* 7070 * Now process all extents and xattrs of the 7071 * inode as if they were all new. 7072 */ 7073 ret = process_all_extents(sctx); 7074 if (ret < 0) 7075 goto out; 7076 ret = process_all_new_xattrs(sctx); 7077 if (ret < 0) 7078 goto out; 7079 } 7080 } else { 7081 sctx->cur_inode_gen = left_gen; 7082 sctx->cur_inode_new = false; 7083 sctx->cur_inode_new_gen = false; 7084 sctx->cur_inode_deleted = false; 7085 sctx->cur_inode_size = btrfs_inode_size( 7086 sctx->left_path->nodes[0], left_ii); 7087 sctx->cur_inode_mode = btrfs_inode_mode( 7088 sctx->left_path->nodes[0], left_ii); 7089 } 7090 } 7091 7092 out: 7093 return ret; 7094 } 7095 7096 /* 7097 * We have to process new refs before deleted refs, but compare_trees gives us 7098 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 7099 * first and later process them in process_recorded_refs. 7100 * For the cur_inode_new_gen case, we skip recording completely because 7101 * changed_inode did already initiate processing of refs. The reason for this is 7102 * that in this case, compare_tree actually compares the refs of 2 different 7103 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 7104 * refs of the right tree as deleted and all refs of the left tree as new. 7105 */ 7106 static int changed_ref(struct send_ctx *sctx, 7107 enum btrfs_compare_tree_result result) 7108 { 7109 int ret = 0; 7110 7111 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7112 inconsistent_snapshot_error(sctx, result, "reference"); 7113 return -EIO; 7114 } 7115 7116 if (!sctx->cur_inode_new_gen && 7117 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 7118 if (result == BTRFS_COMPARE_TREE_NEW) 7119 ret = record_new_ref(sctx); 7120 else if (result == BTRFS_COMPARE_TREE_DELETED) 7121 ret = record_deleted_ref(sctx); 7122 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7123 ret = record_changed_ref(sctx); 7124 } 7125 7126 return ret; 7127 } 7128 7129 /* 7130 * Process new/deleted/changed xattrs. We skip processing in the 7131 * cur_inode_new_gen case because changed_inode did already initiate processing 7132 * of xattrs. The reason is the same as in changed_ref 7133 */ 7134 static int changed_xattr(struct send_ctx *sctx, 7135 enum btrfs_compare_tree_result result) 7136 { 7137 int ret = 0; 7138 7139 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7140 inconsistent_snapshot_error(sctx, result, "xattr"); 7141 return -EIO; 7142 } 7143 7144 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7145 if (result == BTRFS_COMPARE_TREE_NEW) 7146 ret = process_new_xattr(sctx); 7147 else if (result == BTRFS_COMPARE_TREE_DELETED) 7148 ret = process_deleted_xattr(sctx); 7149 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7150 ret = process_changed_xattr(sctx); 7151 } 7152 7153 return ret; 7154 } 7155 7156 /* 7157 * Process new/deleted/changed extents. We skip processing in the 7158 * cur_inode_new_gen case because changed_inode did already initiate processing 7159 * of extents. The reason is the same as in changed_ref 7160 */ 7161 static int changed_extent(struct send_ctx *sctx, 7162 enum btrfs_compare_tree_result result) 7163 { 7164 int ret = 0; 7165 7166 /* 7167 * We have found an extent item that changed without the inode item 7168 * having changed. This can happen either after relocation (where the 7169 * disk_bytenr of an extent item is replaced at 7170 * relocation.c:replace_file_extents()) or after deduplication into a 7171 * file in both the parent and send snapshots (where an extent item can 7172 * get modified or replaced with a new one). Note that deduplication 7173 * updates the inode item, but it only changes the iversion (sequence 7174 * field in the inode item) of the inode, so if a file is deduplicated 7175 * the same amount of times in both the parent and send snapshots, its 7176 * iversion becomes the same in both snapshots, whence the inode item is 7177 * the same on both snapshots. 7178 */ 7179 if (sctx->cur_ino != sctx->cmp_key->objectid) 7180 return 0; 7181 7182 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7183 if (result != BTRFS_COMPARE_TREE_DELETED) 7184 ret = process_extent(sctx, sctx->left_path, 7185 sctx->cmp_key); 7186 } 7187 7188 return ret; 7189 } 7190 7191 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 7192 { 7193 int ret = 0; 7194 7195 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7196 if (result == BTRFS_COMPARE_TREE_NEW) 7197 sctx->cur_inode_needs_verity = true; 7198 } 7199 return ret; 7200 } 7201 7202 static int dir_changed(struct send_ctx *sctx, u64 dir) 7203 { 7204 u64 orig_gen, new_gen; 7205 int ret; 7206 7207 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 7208 if (ret) 7209 return ret; 7210 7211 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 7212 if (ret) 7213 return ret; 7214 7215 return (orig_gen != new_gen) ? 1 : 0; 7216 } 7217 7218 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 7219 struct btrfs_key *key) 7220 { 7221 struct btrfs_inode_extref *extref; 7222 struct extent_buffer *leaf; 7223 u64 dirid = 0, last_dirid = 0; 7224 unsigned long ptr; 7225 u32 item_size; 7226 u32 cur_offset = 0; 7227 int ref_name_len; 7228 int ret = 0; 7229 7230 /* Easy case, just check this one dirid */ 7231 if (key->type == BTRFS_INODE_REF_KEY) { 7232 dirid = key->offset; 7233 7234 ret = dir_changed(sctx, dirid); 7235 goto out; 7236 } 7237 7238 leaf = path->nodes[0]; 7239 item_size = btrfs_item_size(leaf, path->slots[0]); 7240 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 7241 while (cur_offset < item_size) { 7242 extref = (struct btrfs_inode_extref *)(ptr + 7243 cur_offset); 7244 dirid = btrfs_inode_extref_parent(leaf, extref); 7245 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 7246 cur_offset += ref_name_len + sizeof(*extref); 7247 if (dirid == last_dirid) 7248 continue; 7249 ret = dir_changed(sctx, dirid); 7250 if (ret) 7251 break; 7252 last_dirid = dirid; 7253 } 7254 out: 7255 return ret; 7256 } 7257 7258 /* 7259 * Updates compare related fields in sctx and simply forwards to the actual 7260 * changed_xxx functions. 7261 */ 7262 static int changed_cb(struct btrfs_path *left_path, 7263 struct btrfs_path *right_path, 7264 struct btrfs_key *key, 7265 enum btrfs_compare_tree_result result, 7266 struct send_ctx *sctx) 7267 { 7268 int ret = 0; 7269 7270 /* 7271 * We can not hold the commit root semaphore here. This is because in 7272 * the case of sending and receiving to the same filesystem, using a 7273 * pipe, could result in a deadlock: 7274 * 7275 * 1) The task running send blocks on the pipe because it's full; 7276 * 7277 * 2) The task running receive, which is the only consumer of the pipe, 7278 * is waiting for a transaction commit (for example due to a space 7279 * reservation when doing a write or triggering a transaction commit 7280 * when creating a subvolume); 7281 * 7282 * 3) The transaction is waiting to write lock the commit root semaphore, 7283 * but can not acquire it since it's being held at 1). 7284 * 7285 * Down this call chain we write to the pipe through kernel_write(). 7286 * The same type of problem can also happen when sending to a file that 7287 * is stored in the same filesystem - when reserving space for a write 7288 * into the file, we can trigger a transaction commit. 7289 * 7290 * Our caller has supplied us with clones of leaves from the send and 7291 * parent roots, so we're safe here from a concurrent relocation and 7292 * further reallocation of metadata extents while we are here. Below we 7293 * also assert that the leaves are clones. 7294 */ 7295 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 7296 7297 /* 7298 * We always have a send root, so left_path is never NULL. We will not 7299 * have a leaf when we have reached the end of the send root but have 7300 * not yet reached the end of the parent root. 7301 */ 7302 if (left_path->nodes[0]) 7303 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7304 &left_path->nodes[0]->bflags)); 7305 /* 7306 * When doing a full send we don't have a parent root, so right_path is 7307 * NULL. When doing an incremental send, we may have reached the end of 7308 * the parent root already, so we don't have a leaf at right_path. 7309 */ 7310 if (right_path && right_path->nodes[0]) 7311 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7312 &right_path->nodes[0]->bflags)); 7313 7314 if (result == BTRFS_COMPARE_TREE_SAME) { 7315 if (key->type == BTRFS_INODE_REF_KEY || 7316 key->type == BTRFS_INODE_EXTREF_KEY) { 7317 ret = compare_refs(sctx, left_path, key); 7318 if (!ret) 7319 return 0; 7320 if (ret < 0) 7321 return ret; 7322 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 7323 return maybe_send_hole(sctx, left_path, key); 7324 } else { 7325 return 0; 7326 } 7327 result = BTRFS_COMPARE_TREE_CHANGED; 7328 ret = 0; 7329 } 7330 7331 sctx->left_path = left_path; 7332 sctx->right_path = right_path; 7333 sctx->cmp_key = key; 7334 7335 ret = finish_inode_if_needed(sctx, 0); 7336 if (ret < 0) 7337 goto out; 7338 7339 /* Ignore non-FS objects */ 7340 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 7341 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 7342 goto out; 7343 7344 if (key->type == BTRFS_INODE_ITEM_KEY) { 7345 ret = changed_inode(sctx, result); 7346 } else if (!sctx->ignore_cur_inode) { 7347 if (key->type == BTRFS_INODE_REF_KEY || 7348 key->type == BTRFS_INODE_EXTREF_KEY) 7349 ret = changed_ref(sctx, result); 7350 else if (key->type == BTRFS_XATTR_ITEM_KEY) 7351 ret = changed_xattr(sctx, result); 7352 else if (key->type == BTRFS_EXTENT_DATA_KEY) 7353 ret = changed_extent(sctx, result); 7354 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 7355 key->offset == 0) 7356 ret = changed_verity(sctx, result); 7357 } 7358 7359 out: 7360 return ret; 7361 } 7362 7363 static int search_key_again(const struct send_ctx *sctx, 7364 struct btrfs_root *root, 7365 struct btrfs_path *path, 7366 const struct btrfs_key *key) 7367 { 7368 int ret; 7369 7370 if (!path->need_commit_sem) 7371 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7372 7373 /* 7374 * Roots used for send operations are readonly and no one can add, 7375 * update or remove keys from them, so we should be able to find our 7376 * key again. The only exception is deduplication, which can operate on 7377 * readonly roots and add, update or remove keys to/from them - but at 7378 * the moment we don't allow it to run in parallel with send. 7379 */ 7380 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7381 ASSERT(ret <= 0); 7382 if (ret > 0) { 7383 btrfs_print_tree(path->nodes[path->lowest_level], false); 7384 btrfs_err(root->fs_info, 7385 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7386 key->objectid, key->type, key->offset, 7387 (root == sctx->parent_root ? "parent" : "send"), 7388 btrfs_root_id(root), path->lowest_level, 7389 path->slots[path->lowest_level]); 7390 return -EUCLEAN; 7391 } 7392 7393 return ret; 7394 } 7395 7396 static int full_send_tree(struct send_ctx *sctx) 7397 { 7398 int ret; 7399 struct btrfs_root *send_root = sctx->send_root; 7400 struct btrfs_key key; 7401 struct btrfs_fs_info *fs_info = send_root->fs_info; 7402 struct btrfs_path *path; 7403 7404 path = alloc_path_for_send(); 7405 if (!path) 7406 return -ENOMEM; 7407 path->reada = READA_FORWARD_ALWAYS; 7408 7409 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7410 key.type = BTRFS_INODE_ITEM_KEY; 7411 key.offset = 0; 7412 7413 down_read(&fs_info->commit_root_sem); 7414 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7415 up_read(&fs_info->commit_root_sem); 7416 7417 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7418 if (ret < 0) 7419 goto out; 7420 if (ret) 7421 goto out_finish; 7422 7423 while (1) { 7424 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7425 7426 ret = changed_cb(path, NULL, &key, 7427 BTRFS_COMPARE_TREE_NEW, sctx); 7428 if (ret < 0) 7429 goto out; 7430 7431 down_read(&fs_info->commit_root_sem); 7432 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7433 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7434 up_read(&fs_info->commit_root_sem); 7435 /* 7436 * A transaction used for relocating a block group was 7437 * committed or is about to finish its commit. Release 7438 * our path (leaf) and restart the search, so that we 7439 * avoid operating on any file extent items that are 7440 * stale, with a disk_bytenr that reflects a pre 7441 * relocation value. This way we avoid as much as 7442 * possible to fallback to regular writes when checking 7443 * if we can clone file ranges. 7444 */ 7445 btrfs_release_path(path); 7446 ret = search_key_again(sctx, send_root, path, &key); 7447 if (ret < 0) 7448 goto out; 7449 } else { 7450 up_read(&fs_info->commit_root_sem); 7451 } 7452 7453 ret = btrfs_next_item(send_root, path); 7454 if (ret < 0) 7455 goto out; 7456 if (ret) { 7457 ret = 0; 7458 break; 7459 } 7460 } 7461 7462 out_finish: 7463 ret = finish_inode_if_needed(sctx, 1); 7464 7465 out: 7466 btrfs_free_path(path); 7467 return ret; 7468 } 7469 7470 static int replace_node_with_clone(struct btrfs_path *path, int level) 7471 { 7472 struct extent_buffer *clone; 7473 7474 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7475 if (!clone) 7476 return -ENOMEM; 7477 7478 free_extent_buffer(path->nodes[level]); 7479 path->nodes[level] = clone; 7480 7481 return 0; 7482 } 7483 7484 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7485 { 7486 struct extent_buffer *eb; 7487 struct extent_buffer *parent = path->nodes[*level]; 7488 int slot = path->slots[*level]; 7489 const int nritems = btrfs_header_nritems(parent); 7490 u64 reada_max; 7491 u64 reada_done = 0; 7492 7493 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7494 ASSERT(*level != 0); 7495 7496 eb = btrfs_read_node_slot(parent, slot); 7497 if (IS_ERR(eb)) 7498 return PTR_ERR(eb); 7499 7500 /* 7501 * Trigger readahead for the next leaves we will process, so that it is 7502 * very likely that when we need them they are already in memory and we 7503 * will not block on disk IO. For nodes we only do readahead for one, 7504 * since the time window between processing nodes is typically larger. 7505 */ 7506 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7507 7508 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7509 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7510 btrfs_readahead_node_child(parent, slot); 7511 reada_done += eb->fs_info->nodesize; 7512 } 7513 } 7514 7515 path->nodes[*level - 1] = eb; 7516 path->slots[*level - 1] = 0; 7517 (*level)--; 7518 7519 if (*level == 0) 7520 return replace_node_with_clone(path, 0); 7521 7522 return 0; 7523 } 7524 7525 static int tree_move_next_or_upnext(struct btrfs_path *path, 7526 int *level, int root_level) 7527 { 7528 int ret = 0; 7529 int nritems; 7530 nritems = btrfs_header_nritems(path->nodes[*level]); 7531 7532 path->slots[*level]++; 7533 7534 while (path->slots[*level] >= nritems) { 7535 if (*level == root_level) { 7536 path->slots[*level] = nritems - 1; 7537 return -1; 7538 } 7539 7540 /* move upnext */ 7541 path->slots[*level] = 0; 7542 free_extent_buffer(path->nodes[*level]); 7543 path->nodes[*level] = NULL; 7544 (*level)++; 7545 path->slots[*level]++; 7546 7547 nritems = btrfs_header_nritems(path->nodes[*level]); 7548 ret = 1; 7549 } 7550 return ret; 7551 } 7552 7553 /* 7554 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7555 * or down. 7556 */ 7557 static int tree_advance(struct btrfs_path *path, 7558 int *level, int root_level, 7559 int allow_down, 7560 struct btrfs_key *key, 7561 u64 reada_min_gen) 7562 { 7563 int ret; 7564 7565 if (*level == 0 || !allow_down) { 7566 ret = tree_move_next_or_upnext(path, level, root_level); 7567 } else { 7568 ret = tree_move_down(path, level, reada_min_gen); 7569 } 7570 7571 /* 7572 * Even if we have reached the end of a tree, ret is -1, update the key 7573 * anyway, so that in case we need to restart due to a block group 7574 * relocation, we can assert that the last key of the root node still 7575 * exists in the tree. 7576 */ 7577 if (*level == 0) 7578 btrfs_item_key_to_cpu(path->nodes[*level], key, 7579 path->slots[*level]); 7580 else 7581 btrfs_node_key_to_cpu(path->nodes[*level], key, 7582 path->slots[*level]); 7583 7584 return ret; 7585 } 7586 7587 static int tree_compare_item(struct btrfs_path *left_path, 7588 struct btrfs_path *right_path, 7589 char *tmp_buf) 7590 { 7591 int cmp; 7592 int len1, len2; 7593 unsigned long off1, off2; 7594 7595 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7596 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7597 if (len1 != len2) 7598 return 1; 7599 7600 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7601 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7602 right_path->slots[0]); 7603 7604 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7605 7606 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7607 if (cmp) 7608 return 1; 7609 return 0; 7610 } 7611 7612 /* 7613 * A transaction used for relocating a block group was committed or is about to 7614 * finish its commit. Release our paths and restart the search, so that we are 7615 * not using stale extent buffers: 7616 * 7617 * 1) For levels > 0, we are only holding references of extent buffers, without 7618 * any locks on them, which does not prevent them from having been relocated 7619 * and reallocated after the last time we released the commit root semaphore. 7620 * The exception are the root nodes, for which we always have a clone, see 7621 * the comment at btrfs_compare_trees(); 7622 * 7623 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7624 * we are safe from the concurrent relocation and reallocation. However they 7625 * can have file extent items with a pre relocation disk_bytenr value, so we 7626 * restart the start from the current commit roots and clone the new leaves so 7627 * that we get the post relocation disk_bytenr values. Not doing so, could 7628 * make us clone the wrong data in case there are new extents using the old 7629 * disk_bytenr that happen to be shared. 7630 */ 7631 static int restart_after_relocation(struct btrfs_path *left_path, 7632 struct btrfs_path *right_path, 7633 const struct btrfs_key *left_key, 7634 const struct btrfs_key *right_key, 7635 int left_level, 7636 int right_level, 7637 const struct send_ctx *sctx) 7638 { 7639 int root_level; 7640 int ret; 7641 7642 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7643 7644 btrfs_release_path(left_path); 7645 btrfs_release_path(right_path); 7646 7647 /* 7648 * Since keys can not be added or removed to/from our roots because they 7649 * are readonly and we do not allow deduplication to run in parallel 7650 * (which can add, remove or change keys), the layout of the trees should 7651 * not change. 7652 */ 7653 left_path->lowest_level = left_level; 7654 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7655 if (ret < 0) 7656 return ret; 7657 7658 right_path->lowest_level = right_level; 7659 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7660 if (ret < 0) 7661 return ret; 7662 7663 /* 7664 * If the lowest level nodes are leaves, clone them so that they can be 7665 * safely used by changed_cb() while not under the protection of the 7666 * commit root semaphore, even if relocation and reallocation happens in 7667 * parallel. 7668 */ 7669 if (left_level == 0) { 7670 ret = replace_node_with_clone(left_path, 0); 7671 if (ret < 0) 7672 return ret; 7673 } 7674 7675 if (right_level == 0) { 7676 ret = replace_node_with_clone(right_path, 0); 7677 if (ret < 0) 7678 return ret; 7679 } 7680 7681 /* 7682 * Now clone the root nodes (unless they happen to be the leaves we have 7683 * already cloned). This is to protect against concurrent snapshotting of 7684 * the send and parent roots (see the comment at btrfs_compare_trees()). 7685 */ 7686 root_level = btrfs_header_level(sctx->send_root->commit_root); 7687 if (root_level > 0) { 7688 ret = replace_node_with_clone(left_path, root_level); 7689 if (ret < 0) 7690 return ret; 7691 } 7692 7693 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7694 if (root_level > 0) { 7695 ret = replace_node_with_clone(right_path, root_level); 7696 if (ret < 0) 7697 return ret; 7698 } 7699 7700 return 0; 7701 } 7702 7703 /* 7704 * This function compares two trees and calls the provided callback for 7705 * every changed/new/deleted item it finds. 7706 * If shared tree blocks are encountered, whole subtrees are skipped, making 7707 * the compare pretty fast on snapshotted subvolumes. 7708 * 7709 * This currently works on commit roots only. As commit roots are read only, 7710 * we don't do any locking. The commit roots are protected with transactions. 7711 * Transactions are ended and rejoined when a commit is tried in between. 7712 * 7713 * This function checks for modifications done to the trees while comparing. 7714 * If it detects a change, it aborts immediately. 7715 */ 7716 static int btrfs_compare_trees(struct btrfs_root *left_root, 7717 struct btrfs_root *right_root, struct send_ctx *sctx) 7718 { 7719 struct btrfs_fs_info *fs_info = left_root->fs_info; 7720 int ret; 7721 int cmp; 7722 struct btrfs_path *left_path = NULL; 7723 struct btrfs_path *right_path = NULL; 7724 struct btrfs_key left_key; 7725 struct btrfs_key right_key; 7726 char *tmp_buf = NULL; 7727 int left_root_level; 7728 int right_root_level; 7729 int left_level; 7730 int right_level; 7731 int left_end_reached = 0; 7732 int right_end_reached = 0; 7733 int advance_left = 0; 7734 int advance_right = 0; 7735 u64 left_blockptr; 7736 u64 right_blockptr; 7737 u64 left_gen; 7738 u64 right_gen; 7739 u64 reada_min_gen; 7740 7741 left_path = btrfs_alloc_path(); 7742 if (!left_path) { 7743 ret = -ENOMEM; 7744 goto out; 7745 } 7746 right_path = btrfs_alloc_path(); 7747 if (!right_path) { 7748 ret = -ENOMEM; 7749 goto out; 7750 } 7751 7752 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7753 if (!tmp_buf) { 7754 ret = -ENOMEM; 7755 goto out; 7756 } 7757 7758 left_path->search_commit_root = 1; 7759 left_path->skip_locking = 1; 7760 right_path->search_commit_root = 1; 7761 right_path->skip_locking = 1; 7762 7763 /* 7764 * Strategy: Go to the first items of both trees. Then do 7765 * 7766 * If both trees are at level 0 7767 * Compare keys of current items 7768 * If left < right treat left item as new, advance left tree 7769 * and repeat 7770 * If left > right treat right item as deleted, advance right tree 7771 * and repeat 7772 * If left == right do deep compare of items, treat as changed if 7773 * needed, advance both trees and repeat 7774 * If both trees are at the same level but not at level 0 7775 * Compare keys of current nodes/leafs 7776 * If left < right advance left tree and repeat 7777 * If left > right advance right tree and repeat 7778 * If left == right compare blockptrs of the next nodes/leafs 7779 * If they match advance both trees but stay at the same level 7780 * and repeat 7781 * If they don't match advance both trees while allowing to go 7782 * deeper and repeat 7783 * If tree levels are different 7784 * Advance the tree that needs it and repeat 7785 * 7786 * Advancing a tree means: 7787 * If we are at level 0, try to go to the next slot. If that's not 7788 * possible, go one level up and repeat. Stop when we found a level 7789 * where we could go to the next slot. We may at this point be on a 7790 * node or a leaf. 7791 * 7792 * If we are not at level 0 and not on shared tree blocks, go one 7793 * level deeper. 7794 * 7795 * If we are not at level 0 and on shared tree blocks, go one slot to 7796 * the right if possible or go up and right. 7797 */ 7798 7799 down_read(&fs_info->commit_root_sem); 7800 left_level = btrfs_header_level(left_root->commit_root); 7801 left_root_level = left_level; 7802 /* 7803 * We clone the root node of the send and parent roots to prevent races 7804 * with snapshot creation of these roots. Snapshot creation COWs the 7805 * root node of a tree, so after the transaction is committed the old 7806 * extent can be reallocated while this send operation is still ongoing. 7807 * So we clone them, under the commit root semaphore, to be race free. 7808 */ 7809 left_path->nodes[left_level] = 7810 btrfs_clone_extent_buffer(left_root->commit_root); 7811 if (!left_path->nodes[left_level]) { 7812 ret = -ENOMEM; 7813 goto out_unlock; 7814 } 7815 7816 right_level = btrfs_header_level(right_root->commit_root); 7817 right_root_level = right_level; 7818 right_path->nodes[right_level] = 7819 btrfs_clone_extent_buffer(right_root->commit_root); 7820 if (!right_path->nodes[right_level]) { 7821 ret = -ENOMEM; 7822 goto out_unlock; 7823 } 7824 /* 7825 * Our right root is the parent root, while the left root is the "send" 7826 * root. We know that all new nodes/leaves in the left root must have 7827 * a generation greater than the right root's generation, so we trigger 7828 * readahead for those nodes and leaves of the left root, as we know we 7829 * will need to read them at some point. 7830 */ 7831 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7832 7833 if (left_level == 0) 7834 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7835 &left_key, left_path->slots[left_level]); 7836 else 7837 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7838 &left_key, left_path->slots[left_level]); 7839 if (right_level == 0) 7840 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7841 &right_key, right_path->slots[right_level]); 7842 else 7843 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7844 &right_key, right_path->slots[right_level]); 7845 7846 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7847 7848 while (1) { 7849 if (need_resched() || 7850 rwsem_is_contended(&fs_info->commit_root_sem)) { 7851 up_read(&fs_info->commit_root_sem); 7852 cond_resched(); 7853 down_read(&fs_info->commit_root_sem); 7854 } 7855 7856 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7857 ret = restart_after_relocation(left_path, right_path, 7858 &left_key, &right_key, 7859 left_level, right_level, 7860 sctx); 7861 if (ret < 0) 7862 goto out_unlock; 7863 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7864 } 7865 7866 if (advance_left && !left_end_reached) { 7867 ret = tree_advance(left_path, &left_level, 7868 left_root_level, 7869 advance_left != ADVANCE_ONLY_NEXT, 7870 &left_key, reada_min_gen); 7871 if (ret == -1) 7872 left_end_reached = ADVANCE; 7873 else if (ret < 0) 7874 goto out_unlock; 7875 advance_left = 0; 7876 } 7877 if (advance_right && !right_end_reached) { 7878 ret = tree_advance(right_path, &right_level, 7879 right_root_level, 7880 advance_right != ADVANCE_ONLY_NEXT, 7881 &right_key, reada_min_gen); 7882 if (ret == -1) 7883 right_end_reached = ADVANCE; 7884 else if (ret < 0) 7885 goto out_unlock; 7886 advance_right = 0; 7887 } 7888 7889 if (left_end_reached && right_end_reached) { 7890 ret = 0; 7891 goto out_unlock; 7892 } else if (left_end_reached) { 7893 if (right_level == 0) { 7894 up_read(&fs_info->commit_root_sem); 7895 ret = changed_cb(left_path, right_path, 7896 &right_key, 7897 BTRFS_COMPARE_TREE_DELETED, 7898 sctx); 7899 if (ret < 0) 7900 goto out; 7901 down_read(&fs_info->commit_root_sem); 7902 } 7903 advance_right = ADVANCE; 7904 continue; 7905 } else if (right_end_reached) { 7906 if (left_level == 0) { 7907 up_read(&fs_info->commit_root_sem); 7908 ret = changed_cb(left_path, right_path, 7909 &left_key, 7910 BTRFS_COMPARE_TREE_NEW, 7911 sctx); 7912 if (ret < 0) 7913 goto out; 7914 down_read(&fs_info->commit_root_sem); 7915 } 7916 advance_left = ADVANCE; 7917 continue; 7918 } 7919 7920 if (left_level == 0 && right_level == 0) { 7921 up_read(&fs_info->commit_root_sem); 7922 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7923 if (cmp < 0) { 7924 ret = changed_cb(left_path, right_path, 7925 &left_key, 7926 BTRFS_COMPARE_TREE_NEW, 7927 sctx); 7928 advance_left = ADVANCE; 7929 } else if (cmp > 0) { 7930 ret = changed_cb(left_path, right_path, 7931 &right_key, 7932 BTRFS_COMPARE_TREE_DELETED, 7933 sctx); 7934 advance_right = ADVANCE; 7935 } else { 7936 enum btrfs_compare_tree_result result; 7937 7938 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7939 ret = tree_compare_item(left_path, right_path, 7940 tmp_buf); 7941 if (ret) 7942 result = BTRFS_COMPARE_TREE_CHANGED; 7943 else 7944 result = BTRFS_COMPARE_TREE_SAME; 7945 ret = changed_cb(left_path, right_path, 7946 &left_key, result, sctx); 7947 advance_left = ADVANCE; 7948 advance_right = ADVANCE; 7949 } 7950 7951 if (ret < 0) 7952 goto out; 7953 down_read(&fs_info->commit_root_sem); 7954 } else if (left_level == right_level) { 7955 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7956 if (cmp < 0) { 7957 advance_left = ADVANCE; 7958 } else if (cmp > 0) { 7959 advance_right = ADVANCE; 7960 } else { 7961 left_blockptr = btrfs_node_blockptr( 7962 left_path->nodes[left_level], 7963 left_path->slots[left_level]); 7964 right_blockptr = btrfs_node_blockptr( 7965 right_path->nodes[right_level], 7966 right_path->slots[right_level]); 7967 left_gen = btrfs_node_ptr_generation( 7968 left_path->nodes[left_level], 7969 left_path->slots[left_level]); 7970 right_gen = btrfs_node_ptr_generation( 7971 right_path->nodes[right_level], 7972 right_path->slots[right_level]); 7973 if (left_blockptr == right_blockptr && 7974 left_gen == right_gen) { 7975 /* 7976 * As we're on a shared block, don't 7977 * allow to go deeper. 7978 */ 7979 advance_left = ADVANCE_ONLY_NEXT; 7980 advance_right = ADVANCE_ONLY_NEXT; 7981 } else { 7982 advance_left = ADVANCE; 7983 advance_right = ADVANCE; 7984 } 7985 } 7986 } else if (left_level < right_level) { 7987 advance_right = ADVANCE; 7988 } else { 7989 advance_left = ADVANCE; 7990 } 7991 } 7992 7993 out_unlock: 7994 up_read(&fs_info->commit_root_sem); 7995 out: 7996 btrfs_free_path(left_path); 7997 btrfs_free_path(right_path); 7998 kvfree(tmp_buf); 7999 return ret; 8000 } 8001 8002 static int send_subvol(struct send_ctx *sctx) 8003 { 8004 int ret; 8005 8006 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 8007 ret = send_header(sctx); 8008 if (ret < 0) 8009 goto out; 8010 } 8011 8012 ret = send_subvol_begin(sctx); 8013 if (ret < 0) 8014 goto out; 8015 8016 if (sctx->parent_root) { 8017 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 8018 if (ret < 0) 8019 goto out; 8020 ret = finish_inode_if_needed(sctx, 1); 8021 if (ret < 0) 8022 goto out; 8023 } else { 8024 ret = full_send_tree(sctx); 8025 if (ret < 0) 8026 goto out; 8027 } 8028 8029 out: 8030 free_recorded_refs(sctx); 8031 return ret; 8032 } 8033 8034 /* 8035 * If orphan cleanup did remove any orphans from a root, it means the tree 8036 * was modified and therefore the commit root is not the same as the current 8037 * root anymore. This is a problem, because send uses the commit root and 8038 * therefore can see inode items that don't exist in the current root anymore, 8039 * and for example make calls to btrfs_iget, which will do tree lookups based 8040 * on the current root and not on the commit root. Those lookups will fail, 8041 * returning a -ESTALE error, and making send fail with that error. So make 8042 * sure a send does not see any orphans we have just removed, and that it will 8043 * see the same inodes regardless of whether a transaction commit happened 8044 * before it started (meaning that the commit root will be the same as the 8045 * current root) or not. 8046 */ 8047 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 8048 { 8049 struct btrfs_root *root = sctx->parent_root; 8050 8051 if (root && root->node != root->commit_root) 8052 return btrfs_commit_current_transaction(root); 8053 8054 for (int i = 0; i < sctx->clone_roots_cnt; i++) { 8055 root = sctx->clone_roots[i].root; 8056 if (root->node != root->commit_root) 8057 return btrfs_commit_current_transaction(root); 8058 } 8059 8060 return 0; 8061 } 8062 8063 /* 8064 * Make sure any existing dellaloc is flushed for any root used by a send 8065 * operation so that we do not miss any data and we do not race with writeback 8066 * finishing and changing a tree while send is using the tree. This could 8067 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 8068 * a send operation then uses the subvolume. 8069 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 8070 */ 8071 static int flush_delalloc_roots(struct send_ctx *sctx) 8072 { 8073 struct btrfs_root *root = sctx->parent_root; 8074 int ret; 8075 int i; 8076 8077 if (root) { 8078 ret = btrfs_start_delalloc_snapshot(root, false); 8079 if (ret) 8080 return ret; 8081 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 8082 } 8083 8084 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8085 root = sctx->clone_roots[i].root; 8086 ret = btrfs_start_delalloc_snapshot(root, false); 8087 if (ret) 8088 return ret; 8089 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 8090 } 8091 8092 return 0; 8093 } 8094 8095 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 8096 { 8097 spin_lock(&root->root_item_lock); 8098 root->send_in_progress--; 8099 /* 8100 * Not much left to do, we don't know why it's unbalanced and 8101 * can't blindly reset it to 0. 8102 */ 8103 if (root->send_in_progress < 0) 8104 btrfs_err(root->fs_info, 8105 "send_in_progress unbalanced %d root %llu", 8106 root->send_in_progress, btrfs_root_id(root)); 8107 spin_unlock(&root->root_item_lock); 8108 } 8109 8110 static void dedupe_in_progress_warn(const struct btrfs_root *root) 8111 { 8112 btrfs_warn_rl(root->fs_info, 8113 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 8114 btrfs_root_id(root), root->dedupe_in_progress); 8115 } 8116 8117 long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg) 8118 { 8119 int ret = 0; 8120 struct btrfs_root *send_root = inode->root; 8121 struct btrfs_fs_info *fs_info = send_root->fs_info; 8122 struct btrfs_root *clone_root; 8123 struct send_ctx *sctx = NULL; 8124 u32 i; 8125 u64 *clone_sources_tmp = NULL; 8126 int clone_sources_to_rollback = 0; 8127 size_t alloc_size; 8128 int sort_clone_roots = 0; 8129 struct btrfs_lru_cache_entry *entry; 8130 struct btrfs_lru_cache_entry *tmp; 8131 8132 if (!capable(CAP_SYS_ADMIN)) 8133 return -EPERM; 8134 8135 /* 8136 * The subvolume must remain read-only during send, protect against 8137 * making it RW. This also protects against deletion. 8138 */ 8139 spin_lock(&send_root->root_item_lock); 8140 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 8141 dedupe_in_progress_warn(send_root); 8142 spin_unlock(&send_root->root_item_lock); 8143 return -EAGAIN; 8144 } 8145 send_root->send_in_progress++; 8146 spin_unlock(&send_root->root_item_lock); 8147 8148 /* 8149 * Userspace tools do the checks and warn the user if it's 8150 * not RO. 8151 */ 8152 if (!btrfs_root_readonly(send_root)) { 8153 ret = -EPERM; 8154 goto out; 8155 } 8156 8157 /* 8158 * Check that we don't overflow at later allocations, we request 8159 * clone_sources_count + 1 items, and compare to unsigned long inside 8160 * access_ok. Also set an upper limit for allocation size so this can't 8161 * easily exhaust memory. Max number of clone sources is about 200K. 8162 */ 8163 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { 8164 ret = -EINVAL; 8165 goto out; 8166 } 8167 8168 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 8169 ret = -EOPNOTSUPP; 8170 goto out; 8171 } 8172 8173 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 8174 if (!sctx) { 8175 ret = -ENOMEM; 8176 goto out; 8177 } 8178 8179 INIT_LIST_HEAD(&sctx->new_refs); 8180 INIT_LIST_HEAD(&sctx->deleted_refs); 8181 8182 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); 8183 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); 8184 btrfs_lru_cache_init(&sctx->dir_created_cache, 8185 SEND_MAX_DIR_CREATED_CACHE_SIZE); 8186 /* 8187 * This cache is periodically trimmed to a fixed size elsewhere, see 8188 * cache_dir_utimes() and trim_dir_utimes_cache(). 8189 */ 8190 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); 8191 8192 sctx->pending_dir_moves = RB_ROOT; 8193 sctx->waiting_dir_moves = RB_ROOT; 8194 sctx->orphan_dirs = RB_ROOT; 8195 sctx->rbtree_new_refs = RB_ROOT; 8196 sctx->rbtree_deleted_refs = RB_ROOT; 8197 8198 sctx->flags = arg->flags; 8199 8200 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 8201 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 8202 ret = -EPROTO; 8203 goto out; 8204 } 8205 /* Zero means "use the highest version" */ 8206 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 8207 } else { 8208 sctx->proto = 1; 8209 } 8210 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 8211 ret = -EINVAL; 8212 goto out; 8213 } 8214 8215 sctx->send_filp = fget(arg->send_fd); 8216 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { 8217 ret = -EBADF; 8218 goto out; 8219 } 8220 8221 sctx->send_root = send_root; 8222 /* 8223 * Unlikely but possible, if the subvolume is marked for deletion but 8224 * is slow to remove the directory entry, send can still be started 8225 */ 8226 if (btrfs_root_dead(sctx->send_root)) { 8227 ret = -EPERM; 8228 goto out; 8229 } 8230 8231 sctx->clone_roots_cnt = arg->clone_sources_count; 8232 8233 if (sctx->proto >= 2) { 8234 u32 send_buf_num_pages; 8235 8236 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; 8237 sctx->send_buf = vmalloc(sctx->send_max_size); 8238 if (!sctx->send_buf) { 8239 ret = -ENOMEM; 8240 goto out; 8241 } 8242 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 8243 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 8244 sizeof(*sctx->send_buf_pages), 8245 GFP_KERNEL); 8246 if (!sctx->send_buf_pages) { 8247 ret = -ENOMEM; 8248 goto out; 8249 } 8250 for (i = 0; i < send_buf_num_pages; i++) { 8251 sctx->send_buf_pages[i] = 8252 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 8253 } 8254 } else { 8255 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 8256 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 8257 } 8258 if (!sctx->send_buf) { 8259 ret = -ENOMEM; 8260 goto out; 8261 } 8262 8263 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, 8264 sizeof(*sctx->clone_roots), 8265 GFP_KERNEL); 8266 if (!sctx->clone_roots) { 8267 ret = -ENOMEM; 8268 goto out; 8269 } 8270 8271 alloc_size = array_size(sizeof(*arg->clone_sources), 8272 arg->clone_sources_count); 8273 8274 if (arg->clone_sources_count) { 8275 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 8276 if (!clone_sources_tmp) { 8277 ret = -ENOMEM; 8278 goto out; 8279 } 8280 8281 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 8282 alloc_size); 8283 if (ret) { 8284 ret = -EFAULT; 8285 goto out; 8286 } 8287 8288 for (i = 0; i < arg->clone_sources_count; i++) { 8289 clone_root = btrfs_get_fs_root(fs_info, 8290 clone_sources_tmp[i], true); 8291 if (IS_ERR(clone_root)) { 8292 ret = PTR_ERR(clone_root); 8293 goto out; 8294 } 8295 spin_lock(&clone_root->root_item_lock); 8296 if (!btrfs_root_readonly(clone_root) || 8297 btrfs_root_dead(clone_root)) { 8298 spin_unlock(&clone_root->root_item_lock); 8299 btrfs_put_root(clone_root); 8300 ret = -EPERM; 8301 goto out; 8302 } 8303 if (clone_root->dedupe_in_progress) { 8304 dedupe_in_progress_warn(clone_root); 8305 spin_unlock(&clone_root->root_item_lock); 8306 btrfs_put_root(clone_root); 8307 ret = -EAGAIN; 8308 goto out; 8309 } 8310 clone_root->send_in_progress++; 8311 spin_unlock(&clone_root->root_item_lock); 8312 8313 sctx->clone_roots[i].root = clone_root; 8314 clone_sources_to_rollback = i + 1; 8315 } 8316 kvfree(clone_sources_tmp); 8317 clone_sources_tmp = NULL; 8318 } 8319 8320 if (arg->parent_root) { 8321 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 8322 true); 8323 if (IS_ERR(sctx->parent_root)) { 8324 ret = PTR_ERR(sctx->parent_root); 8325 goto out; 8326 } 8327 8328 spin_lock(&sctx->parent_root->root_item_lock); 8329 sctx->parent_root->send_in_progress++; 8330 if (!btrfs_root_readonly(sctx->parent_root) || 8331 btrfs_root_dead(sctx->parent_root)) { 8332 spin_unlock(&sctx->parent_root->root_item_lock); 8333 ret = -EPERM; 8334 goto out; 8335 } 8336 if (sctx->parent_root->dedupe_in_progress) { 8337 dedupe_in_progress_warn(sctx->parent_root); 8338 spin_unlock(&sctx->parent_root->root_item_lock); 8339 ret = -EAGAIN; 8340 goto out; 8341 } 8342 spin_unlock(&sctx->parent_root->root_item_lock); 8343 } 8344 8345 /* 8346 * Clones from send_root are allowed, but only if the clone source 8347 * is behind the current send position. This is checked while searching 8348 * for possible clone sources. 8349 */ 8350 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8351 btrfs_grab_root(sctx->send_root); 8352 8353 /* We do a bsearch later */ 8354 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8355 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8356 NULL); 8357 sort_clone_roots = 1; 8358 8359 ret = flush_delalloc_roots(sctx); 8360 if (ret) 8361 goto out; 8362 8363 ret = ensure_commit_roots_uptodate(sctx); 8364 if (ret) 8365 goto out; 8366 8367 ret = send_subvol(sctx); 8368 if (ret < 0) 8369 goto out; 8370 8371 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { 8372 ret = send_utimes(sctx, entry->key, entry->gen); 8373 if (ret < 0) 8374 goto out; 8375 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); 8376 } 8377 8378 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8379 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8380 if (ret < 0) 8381 goto out; 8382 ret = send_cmd(sctx); 8383 if (ret < 0) 8384 goto out; 8385 } 8386 8387 out: 8388 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8389 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8390 struct rb_node *n; 8391 struct pending_dir_move *pm; 8392 8393 n = rb_first(&sctx->pending_dir_moves); 8394 pm = rb_entry(n, struct pending_dir_move, node); 8395 while (!list_empty(&pm->list)) { 8396 struct pending_dir_move *pm2; 8397 8398 pm2 = list_first_entry(&pm->list, 8399 struct pending_dir_move, list); 8400 free_pending_move(sctx, pm2); 8401 } 8402 free_pending_move(sctx, pm); 8403 } 8404 8405 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8406 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8407 struct rb_node *n; 8408 struct waiting_dir_move *dm; 8409 8410 n = rb_first(&sctx->waiting_dir_moves); 8411 dm = rb_entry(n, struct waiting_dir_move, node); 8412 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8413 kfree(dm); 8414 } 8415 8416 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8417 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8418 struct rb_node *n; 8419 struct orphan_dir_info *odi; 8420 8421 n = rb_first(&sctx->orphan_dirs); 8422 odi = rb_entry(n, struct orphan_dir_info, node); 8423 free_orphan_dir_info(sctx, odi); 8424 } 8425 8426 if (sort_clone_roots) { 8427 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8428 btrfs_root_dec_send_in_progress( 8429 sctx->clone_roots[i].root); 8430 btrfs_put_root(sctx->clone_roots[i].root); 8431 } 8432 } else { 8433 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8434 btrfs_root_dec_send_in_progress( 8435 sctx->clone_roots[i].root); 8436 btrfs_put_root(sctx->clone_roots[i].root); 8437 } 8438 8439 btrfs_root_dec_send_in_progress(send_root); 8440 } 8441 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8442 btrfs_root_dec_send_in_progress(sctx->parent_root); 8443 btrfs_put_root(sctx->parent_root); 8444 } 8445 8446 kvfree(clone_sources_tmp); 8447 8448 if (sctx) { 8449 if (sctx->send_filp) 8450 fput(sctx->send_filp); 8451 8452 kvfree(sctx->clone_roots); 8453 kfree(sctx->send_buf_pages); 8454 kvfree(sctx->send_buf); 8455 kvfree(sctx->verity_descriptor); 8456 8457 close_current_inode(sctx); 8458 8459 btrfs_lru_cache_clear(&sctx->name_cache); 8460 btrfs_lru_cache_clear(&sctx->backref_cache); 8461 btrfs_lru_cache_clear(&sctx->dir_created_cache); 8462 btrfs_lru_cache_clear(&sctx->dir_utimes_cache); 8463 8464 kfree(sctx); 8465 } 8466 8467 return ret; 8468 } 8469
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.