~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/send.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
  4  */
  5 
  6 #include <linux/bsearch.h>
  7 #include <linux/fs.h>
  8 #include <linux/file.h>
  9 #include <linux/sort.h>
 10 #include <linux/mount.h>
 11 #include <linux/xattr.h>
 12 #include <linux/posix_acl_xattr.h>
 13 #include <linux/radix-tree.h>
 14 #include <linux/vmalloc.h>
 15 #include <linux/string.h>
 16 #include <linux/compat.h>
 17 #include <linux/crc32c.h>
 18 #include <linux/fsverity.h>
 19 
 20 #include "send.h"
 21 #include "ctree.h"
 22 #include "backref.h"
 23 #include "locking.h"
 24 #include "disk-io.h"
 25 #include "btrfs_inode.h"
 26 #include "transaction.h"
 27 #include "compression.h"
 28 #include "print-tree.h"
 29 #include "accessors.h"
 30 #include "dir-item.h"
 31 #include "file-item.h"
 32 #include "ioctl.h"
 33 #include "verity.h"
 34 #include "lru_cache.h"
 35 
 36 /*
 37  * Maximum number of references an extent can have in order for us to attempt to
 38  * issue clone operations instead of write operations. This currently exists to
 39  * avoid hitting limitations of the backreference walking code (taking a lot of
 40  * time and using too much memory for extents with large number of references).
 41  */
 42 #define SEND_MAX_EXTENT_REFS    1024
 43 
 44 /*
 45  * A fs_path is a helper to dynamically build path names with unknown size.
 46  * It reallocates the internal buffer on demand.
 47  * It allows fast adding of path elements on the right side (normal path) and
 48  * fast adding to the left side (reversed path). A reversed path can also be
 49  * unreversed if needed.
 50  */
 51 struct fs_path {
 52         union {
 53                 struct {
 54                         char *start;
 55                         char *end;
 56 
 57                         char *buf;
 58                         unsigned short buf_len:15;
 59                         unsigned short reversed:1;
 60                         char inline_buf[];
 61                 };
 62                 /*
 63                  * Average path length does not exceed 200 bytes, we'll have
 64                  * better packing in the slab and higher chance to satisfy
 65                  * a allocation later during send.
 66                  */
 67                 char pad[256];
 68         };
 69 };
 70 #define FS_PATH_INLINE_SIZE \
 71         (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
 72 
 73 
 74 /* reused for each extent */
 75 struct clone_root {
 76         struct btrfs_root *root;
 77         u64 ino;
 78         u64 offset;
 79         u64 num_bytes;
 80         bool found_ref;
 81 };
 82 
 83 #define SEND_MAX_NAME_CACHE_SIZE                        256
 84 
 85 /*
 86  * Limit the root_ids array of struct backref_cache_entry to 17 elements.
 87  * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
 88  * can be satisfied from the kmalloc-192 slab, without wasting any space.
 89  * The most common case is to have a single root for cloning, which corresponds
 90  * to the send root. Having the user specify more than 16 clone roots is not
 91  * common, and in such rare cases we simply don't use caching if the number of
 92  * cloning roots that lead down to a leaf is more than 17.
 93  */
 94 #define SEND_MAX_BACKREF_CACHE_ROOTS                    17
 95 
 96 /*
 97  * Max number of entries in the cache.
 98  * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
 99  * maple tree's internal nodes, is 24K.
100  */
101 #define SEND_MAX_BACKREF_CACHE_SIZE 128
102 
103 /*
104  * A backref cache entry maps a leaf to a list of IDs of roots from which the
105  * leaf is accessible and we can use for clone operations.
106  * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107  * x86_64).
108  */
109 struct backref_cache_entry {
110         struct btrfs_lru_cache_entry entry;
111         u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112         /* Number of valid elements in the root_ids array. */
113         int num_roots;
114 };
115 
116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
118 
119 /*
120  * Max number of entries in the cache that stores directories that were already
121  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
124  */
125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE                 64
126 
127 /*
128  * Max number of entries in the cache that stores directories that were already
129  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
132  */
133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE                  64
134 
135 struct send_ctx {
136         struct file *send_filp;
137         loff_t send_off;
138         char *send_buf;
139         u32 send_size;
140         u32 send_max_size;
141         /*
142          * Whether BTRFS_SEND_A_DATA attribute was already added to current
143          * command (since protocol v2, data must be the last attribute).
144          */
145         bool put_data;
146         struct page **send_buf_pages;
147         u64 flags;      /* 'flags' member of btrfs_ioctl_send_args is u64 */
148         /* Protocol version compatibility requested */
149         u32 proto;
150 
151         struct btrfs_root *send_root;
152         struct btrfs_root *parent_root;
153         struct clone_root *clone_roots;
154         int clone_roots_cnt;
155 
156         /* current state of the compare_tree call */
157         struct btrfs_path *left_path;
158         struct btrfs_path *right_path;
159         struct btrfs_key *cmp_key;
160 
161         /*
162          * Keep track of the generation of the last transaction that was used
163          * for relocating a block group. This is periodically checked in order
164          * to detect if a relocation happened since the last check, so that we
165          * don't operate on stale extent buffers for nodes (level >= 1) or on
166          * stale disk_bytenr values of file extent items.
167          */
168         u64 last_reloc_trans;
169 
170         /*
171          * infos of the currently processed inode. In case of deleted inodes,
172          * these are the values from the deleted inode.
173          */
174         u64 cur_ino;
175         u64 cur_inode_gen;
176         u64 cur_inode_size;
177         u64 cur_inode_mode;
178         u64 cur_inode_rdev;
179         u64 cur_inode_last_extent;
180         u64 cur_inode_next_write_offset;
181         bool cur_inode_new;
182         bool cur_inode_new_gen;
183         bool cur_inode_deleted;
184         bool ignore_cur_inode;
185         bool cur_inode_needs_verity;
186         void *verity_descriptor;
187 
188         u64 send_progress;
189 
190         struct list_head new_refs;
191         struct list_head deleted_refs;
192 
193         struct btrfs_lru_cache name_cache;
194 
195         /*
196          * The inode we are currently processing. It's not NULL only when we
197          * need to issue write commands for data extents from this inode.
198          */
199         struct inode *cur_inode;
200         struct file_ra_state ra;
201         u64 page_cache_clear_start;
202         bool clean_page_cache;
203 
204         /*
205          * We process inodes by their increasing order, so if before an
206          * incremental send we reverse the parent/child relationship of
207          * directories such that a directory with a lower inode number was
208          * the parent of a directory with a higher inode number, and the one
209          * becoming the new parent got renamed too, we can't rename/move the
210          * directory with lower inode number when we finish processing it - we
211          * must process the directory with higher inode number first, then
212          * rename/move it and then rename/move the directory with lower inode
213          * number. Example follows.
214          *
215          * Tree state when the first send was performed:
216          *
217          * .
218          * |-- a                   (ino 257)
219          *     |-- b               (ino 258)
220          *         |
221          *         |
222          *         |-- c           (ino 259)
223          *         |   |-- d       (ino 260)
224          *         |
225          *         |-- c2          (ino 261)
226          *
227          * Tree state when the second (incremental) send is performed:
228          *
229          * .
230          * |-- a                   (ino 257)
231          *     |-- b               (ino 258)
232          *         |-- c2          (ino 261)
233          *             |-- d2      (ino 260)
234          *                 |-- cc  (ino 259)
235          *
236          * The sequence of steps that lead to the second state was:
237          *
238          * mv /a/b/c/d /a/b/c2/d2
239          * mv /a/b/c /a/b/c2/d2/cc
240          *
241          * "c" has lower inode number, but we can't move it (2nd mv operation)
242          * before we move "d", which has higher inode number.
243          *
244          * So we just memorize which move/rename operations must be performed
245          * later when their respective parent is processed and moved/renamed.
246          */
247 
248         /* Indexed by parent directory inode number. */
249         struct rb_root pending_dir_moves;
250 
251         /*
252          * Reverse index, indexed by the inode number of a directory that
253          * is waiting for the move/rename of its immediate parent before its
254          * own move/rename can be performed.
255          */
256         struct rb_root waiting_dir_moves;
257 
258         /*
259          * A directory that is going to be rm'ed might have a child directory
260          * which is in the pending directory moves index above. In this case,
261          * the directory can only be removed after the move/rename of its child
262          * is performed. Example:
263          *
264          * Parent snapshot:
265          *
266          * .                        (ino 256)
267          * |-- a/                   (ino 257)
268          *     |-- b/               (ino 258)
269          *         |-- c/           (ino 259)
270          *         |   |-- x/       (ino 260)
271          *         |
272          *         |-- y/           (ino 261)
273          *
274          * Send snapshot:
275          *
276          * .                        (ino 256)
277          * |-- a/                   (ino 257)
278          *     |-- b/               (ino 258)
279          *         |-- YY/          (ino 261)
280          *              |-- x/      (ino 260)
281          *
282          * Sequence of steps that lead to the send snapshot:
283          * rm -f /a/b/c/foo.txt
284          * mv /a/b/y /a/b/YY
285          * mv /a/b/c/x /a/b/YY
286          * rmdir /a/b/c
287          *
288          * When the child is processed, its move/rename is delayed until its
289          * parent is processed (as explained above), but all other operations
290          * like update utimes, chown, chgrp, etc, are performed and the paths
291          * that it uses for those operations must use the orphanized name of
292          * its parent (the directory we're going to rm later), so we need to
293          * memorize that name.
294          *
295          * Indexed by the inode number of the directory to be deleted.
296          */
297         struct rb_root orphan_dirs;
298 
299         struct rb_root rbtree_new_refs;
300         struct rb_root rbtree_deleted_refs;
301 
302         struct btrfs_lru_cache backref_cache;
303         u64 backref_cache_last_reloc_trans;
304 
305         struct btrfs_lru_cache dir_created_cache;
306         struct btrfs_lru_cache dir_utimes_cache;
307 };
308 
309 struct pending_dir_move {
310         struct rb_node node;
311         struct list_head list;
312         u64 parent_ino;
313         u64 ino;
314         u64 gen;
315         struct list_head update_refs;
316 };
317 
318 struct waiting_dir_move {
319         struct rb_node node;
320         u64 ino;
321         /*
322          * There might be some directory that could not be removed because it
323          * was waiting for this directory inode to be moved first. Therefore
324          * after this directory is moved, we can try to rmdir the ino rmdir_ino.
325          */
326         u64 rmdir_ino;
327         u64 rmdir_gen;
328         bool orphanized;
329 };
330 
331 struct orphan_dir_info {
332         struct rb_node node;
333         u64 ino;
334         u64 gen;
335         u64 last_dir_index_offset;
336         u64 dir_high_seq_ino;
337 };
338 
339 struct name_cache_entry {
340         /*
341          * The key in the entry is an inode number, and the generation matches
342          * the inode's generation.
343          */
344         struct btrfs_lru_cache_entry entry;
345         u64 parent_ino;
346         u64 parent_gen;
347         int ret;
348         int need_later_update;
349         /* Name length without NUL terminator. */
350         int name_len;
351         /* Not NUL terminated. */
352         char name[] __counted_by(name_len) __nonstring;
353 };
354 
355 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
356 static_assert(offsetof(struct name_cache_entry, entry) == 0);
357 
358 #define ADVANCE                                                 1
359 #define ADVANCE_ONLY_NEXT                                       -1
360 
361 enum btrfs_compare_tree_result {
362         BTRFS_COMPARE_TREE_NEW,
363         BTRFS_COMPARE_TREE_DELETED,
364         BTRFS_COMPARE_TREE_CHANGED,
365         BTRFS_COMPARE_TREE_SAME,
366 };
367 
368 __cold
369 static void inconsistent_snapshot_error(struct send_ctx *sctx,
370                                         enum btrfs_compare_tree_result result,
371                                         const char *what)
372 {
373         const char *result_string;
374 
375         switch (result) {
376         case BTRFS_COMPARE_TREE_NEW:
377                 result_string = "new";
378                 break;
379         case BTRFS_COMPARE_TREE_DELETED:
380                 result_string = "deleted";
381                 break;
382         case BTRFS_COMPARE_TREE_CHANGED:
383                 result_string = "updated";
384                 break;
385         case BTRFS_COMPARE_TREE_SAME:
386                 ASSERT(0);
387                 result_string = "unchanged";
388                 break;
389         default:
390                 ASSERT(0);
391                 result_string = "unexpected";
392         }
393 
394         btrfs_err(sctx->send_root->fs_info,
395                   "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
396                   result_string, what, sctx->cmp_key->objectid,
397                   btrfs_root_id(sctx->send_root),
398                   (sctx->parent_root ?  btrfs_root_id(sctx->parent_root) : 0));
399 }
400 
401 __maybe_unused
402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
403 {
404         switch (sctx->proto) {
405         case 1:  return cmd <= BTRFS_SEND_C_MAX_V1;
406         case 2:  return cmd <= BTRFS_SEND_C_MAX_V2;
407         case 3:  return cmd <= BTRFS_SEND_C_MAX_V3;
408         default: return false;
409         }
410 }
411 
412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
413 
414 static struct waiting_dir_move *
415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
416 
417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
418 
419 static int need_send_hole(struct send_ctx *sctx)
420 {
421         return (sctx->parent_root && !sctx->cur_inode_new &&
422                 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423                 S_ISREG(sctx->cur_inode_mode));
424 }
425 
426 static void fs_path_reset(struct fs_path *p)
427 {
428         if (p->reversed) {
429                 p->start = p->buf + p->buf_len - 1;
430                 p->end = p->start;
431                 *p->start = 0;
432         } else {
433                 p->start = p->buf;
434                 p->end = p->start;
435                 *p->start = 0;
436         }
437 }
438 
439 static struct fs_path *fs_path_alloc(void)
440 {
441         struct fs_path *p;
442 
443         p = kmalloc(sizeof(*p), GFP_KERNEL);
444         if (!p)
445                 return NULL;
446         p->reversed = 0;
447         p->buf = p->inline_buf;
448         p->buf_len = FS_PATH_INLINE_SIZE;
449         fs_path_reset(p);
450         return p;
451 }
452 
453 static struct fs_path *fs_path_alloc_reversed(void)
454 {
455         struct fs_path *p;
456 
457         p = fs_path_alloc();
458         if (!p)
459                 return NULL;
460         p->reversed = 1;
461         fs_path_reset(p);
462         return p;
463 }
464 
465 static void fs_path_free(struct fs_path *p)
466 {
467         if (!p)
468                 return;
469         if (p->buf != p->inline_buf)
470                 kfree(p->buf);
471         kfree(p);
472 }
473 
474 static int fs_path_len(struct fs_path *p)
475 {
476         return p->end - p->start;
477 }
478 
479 static int fs_path_ensure_buf(struct fs_path *p, int len)
480 {
481         char *tmp_buf;
482         int path_len;
483         int old_buf_len;
484 
485         len++;
486 
487         if (p->buf_len >= len)
488                 return 0;
489 
490         if (len > PATH_MAX) {
491                 WARN_ON(1);
492                 return -ENOMEM;
493         }
494 
495         path_len = p->end - p->start;
496         old_buf_len = p->buf_len;
497 
498         /*
499          * Allocate to the next largest kmalloc bucket size, to let
500          * the fast path happen most of the time.
501          */
502         len = kmalloc_size_roundup(len);
503         /*
504          * First time the inline_buf does not suffice
505          */
506         if (p->buf == p->inline_buf) {
507                 tmp_buf = kmalloc(len, GFP_KERNEL);
508                 if (tmp_buf)
509                         memcpy(tmp_buf, p->buf, old_buf_len);
510         } else {
511                 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
512         }
513         if (!tmp_buf)
514                 return -ENOMEM;
515         p->buf = tmp_buf;
516         p->buf_len = len;
517 
518         if (p->reversed) {
519                 tmp_buf = p->buf + old_buf_len - path_len - 1;
520                 p->end = p->buf + p->buf_len - 1;
521                 p->start = p->end - path_len;
522                 memmove(p->start, tmp_buf, path_len + 1);
523         } else {
524                 p->start = p->buf;
525                 p->end = p->start + path_len;
526         }
527         return 0;
528 }
529 
530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
531                                    char **prepared)
532 {
533         int ret;
534         int new_len;
535 
536         new_len = p->end - p->start + name_len;
537         if (p->start != p->end)
538                 new_len++;
539         ret = fs_path_ensure_buf(p, new_len);
540         if (ret < 0)
541                 goto out;
542 
543         if (p->reversed) {
544                 if (p->start != p->end)
545                         *--p->start = '/';
546                 p->start -= name_len;
547                 *prepared = p->start;
548         } else {
549                 if (p->start != p->end)
550                         *p->end++ = '/';
551                 *prepared = p->end;
552                 p->end += name_len;
553                 *p->end = 0;
554         }
555 
556 out:
557         return ret;
558 }
559 
560 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
561 {
562         int ret;
563         char *prepared;
564 
565         ret = fs_path_prepare_for_add(p, name_len, &prepared);
566         if (ret < 0)
567                 goto out;
568         memcpy(prepared, name, name_len);
569 
570 out:
571         return ret;
572 }
573 
574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
575 {
576         int ret;
577         char *prepared;
578 
579         ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
580         if (ret < 0)
581                 goto out;
582         memcpy(prepared, p2->start, p2->end - p2->start);
583 
584 out:
585         return ret;
586 }
587 
588 static int fs_path_add_from_extent_buffer(struct fs_path *p,
589                                           struct extent_buffer *eb,
590                                           unsigned long off, int len)
591 {
592         int ret;
593         char *prepared;
594 
595         ret = fs_path_prepare_for_add(p, len, &prepared);
596         if (ret < 0)
597                 goto out;
598 
599         read_extent_buffer(eb, prepared, off, len);
600 
601 out:
602         return ret;
603 }
604 
605 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
606 {
607         p->reversed = from->reversed;
608         fs_path_reset(p);
609 
610         return fs_path_add_path(p, from);
611 }
612 
613 static void fs_path_unreverse(struct fs_path *p)
614 {
615         char *tmp;
616         int len;
617 
618         if (!p->reversed)
619                 return;
620 
621         tmp = p->start;
622         len = p->end - p->start;
623         p->start = p->buf;
624         p->end = p->start + len;
625         memmove(p->start, tmp, len + 1);
626         p->reversed = 0;
627 }
628 
629 static struct btrfs_path *alloc_path_for_send(void)
630 {
631         struct btrfs_path *path;
632 
633         path = btrfs_alloc_path();
634         if (!path)
635                 return NULL;
636         path->search_commit_root = 1;
637         path->skip_locking = 1;
638         path->need_commit_sem = 1;
639         return path;
640 }
641 
642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
643 {
644         int ret;
645         u32 pos = 0;
646 
647         while (pos < len) {
648                 ret = kernel_write(filp, buf + pos, len - pos, off);
649                 if (ret < 0)
650                         return ret;
651                 if (ret == 0)
652                         return -EIO;
653                 pos += ret;
654         }
655 
656         return 0;
657 }
658 
659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
660 {
661         struct btrfs_tlv_header *hdr;
662         int total_len = sizeof(*hdr) + len;
663         int left = sctx->send_max_size - sctx->send_size;
664 
665         if (WARN_ON_ONCE(sctx->put_data))
666                 return -EINVAL;
667 
668         if (unlikely(left < total_len))
669                 return -EOVERFLOW;
670 
671         hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672         put_unaligned_le16(attr, &hdr->tlv_type);
673         put_unaligned_le16(len, &hdr->tlv_len);
674         memcpy(hdr + 1, data, len);
675         sctx->send_size += total_len;
676 
677         return 0;
678 }
679 
680 #define TLV_PUT_DEFINE_INT(bits) \
681         static int tlv_put_u##bits(struct send_ctx *sctx,               \
682                         u##bits attr, u##bits value)                    \
683         {                                                               \
684                 __le##bits __tmp = cpu_to_le##bits(value);              \
685                 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));      \
686         }
687 
688 TLV_PUT_DEFINE_INT(8)
689 TLV_PUT_DEFINE_INT(32)
690 TLV_PUT_DEFINE_INT(64)
691 
692 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693                           const char *str, int len)
694 {
695         if (len == -1)
696                 len = strlen(str);
697         return tlv_put(sctx, attr, str, len);
698 }
699 
700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
701                         const u8 *uuid)
702 {
703         return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
704 }
705 
706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707                                   struct extent_buffer *eb,
708                                   struct btrfs_timespec *ts)
709 {
710         struct btrfs_timespec bts;
711         read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712         return tlv_put(sctx, attr, &bts, sizeof(bts));
713 }
714 
715 
716 #define TLV_PUT(sctx, attrtype, data, attrlen) \
717         do { \
718                 ret = tlv_put(sctx, attrtype, data, attrlen); \
719                 if (ret < 0) \
720                         goto tlv_put_failure; \
721         } while (0)
722 
723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
724         do { \
725                 ret = tlv_put_u##bits(sctx, attrtype, value); \
726                 if (ret < 0) \
727                         goto tlv_put_failure; \
728         } while (0)
729 
730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
735         do { \
736                 ret = tlv_put_string(sctx, attrtype, str, len); \
737                 if (ret < 0) \
738                         goto tlv_put_failure; \
739         } while (0)
740 #define TLV_PUT_PATH(sctx, attrtype, p) \
741         do { \
742                 ret = tlv_put_string(sctx, attrtype, p->start, \
743                         p->end - p->start); \
744                 if (ret < 0) \
745                         goto tlv_put_failure; \
746         } while(0)
747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
748         do { \
749                 ret = tlv_put_uuid(sctx, attrtype, uuid); \
750                 if (ret < 0) \
751                         goto tlv_put_failure; \
752         } while (0)
753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
754         do { \
755                 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
756                 if (ret < 0) \
757                         goto tlv_put_failure; \
758         } while (0)
759 
760 static int send_header(struct send_ctx *sctx)
761 {
762         struct btrfs_stream_header hdr;
763 
764         strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765         hdr.version = cpu_to_le32(sctx->proto);
766         return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
767                                         &sctx->send_off);
768 }
769 
770 /*
771  * For each command/item we want to send to userspace, we call this function.
772  */
773 static int begin_cmd(struct send_ctx *sctx, int cmd)
774 {
775         struct btrfs_cmd_header *hdr;
776 
777         if (WARN_ON(!sctx->send_buf))
778                 return -EINVAL;
779 
780         if (unlikely(sctx->send_size != 0)) {
781                 btrfs_err(sctx->send_root->fs_info,
782                           "send: command header buffer not empty cmd %d offset %llu",
783                           cmd, sctx->send_off);
784                 return -EINVAL;
785         }
786 
787         sctx->send_size += sizeof(*hdr);
788         hdr = (struct btrfs_cmd_header *)sctx->send_buf;
789         put_unaligned_le16(cmd, &hdr->cmd);
790 
791         return 0;
792 }
793 
794 static int send_cmd(struct send_ctx *sctx)
795 {
796         int ret;
797         struct btrfs_cmd_header *hdr;
798         u32 crc;
799 
800         hdr = (struct btrfs_cmd_header *)sctx->send_buf;
801         put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
802         put_unaligned_le32(0, &hdr->crc);
803 
804         crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
805         put_unaligned_le32(crc, &hdr->crc);
806 
807         ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
808                                         &sctx->send_off);
809 
810         sctx->send_size = 0;
811         sctx->put_data = false;
812 
813         return ret;
814 }
815 
816 /*
817  * Sends a move instruction to user space
818  */
819 static int send_rename(struct send_ctx *sctx,
820                      struct fs_path *from, struct fs_path *to)
821 {
822         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
823         int ret;
824 
825         btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
826 
827         ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
828         if (ret < 0)
829                 goto out;
830 
831         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
832         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
833 
834         ret = send_cmd(sctx);
835 
836 tlv_put_failure:
837 out:
838         return ret;
839 }
840 
841 /*
842  * Sends a link instruction to user space
843  */
844 static int send_link(struct send_ctx *sctx,
845                      struct fs_path *path, struct fs_path *lnk)
846 {
847         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
848         int ret;
849 
850         btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
851 
852         ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
853         if (ret < 0)
854                 goto out;
855 
856         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
857         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
858 
859         ret = send_cmd(sctx);
860 
861 tlv_put_failure:
862 out:
863         return ret;
864 }
865 
866 /*
867  * Sends an unlink instruction to user space
868  */
869 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
870 {
871         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
872         int ret;
873 
874         btrfs_debug(fs_info, "send_unlink %s", path->start);
875 
876         ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
877         if (ret < 0)
878                 goto out;
879 
880         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
881 
882         ret = send_cmd(sctx);
883 
884 tlv_put_failure:
885 out:
886         return ret;
887 }
888 
889 /*
890  * Sends a rmdir instruction to user space
891  */
892 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
893 {
894         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
895         int ret;
896 
897         btrfs_debug(fs_info, "send_rmdir %s", path->start);
898 
899         ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
900         if (ret < 0)
901                 goto out;
902 
903         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
904 
905         ret = send_cmd(sctx);
906 
907 tlv_put_failure:
908 out:
909         return ret;
910 }
911 
912 struct btrfs_inode_info {
913         u64 size;
914         u64 gen;
915         u64 mode;
916         u64 uid;
917         u64 gid;
918         u64 rdev;
919         u64 fileattr;
920         u64 nlink;
921 };
922 
923 /*
924  * Helper function to retrieve some fields from an inode item.
925  */
926 static int get_inode_info(struct btrfs_root *root, u64 ino,
927                           struct btrfs_inode_info *info)
928 {
929         int ret;
930         struct btrfs_path *path;
931         struct btrfs_inode_item *ii;
932         struct btrfs_key key;
933 
934         path = alloc_path_for_send();
935         if (!path)
936                 return -ENOMEM;
937 
938         key.objectid = ino;
939         key.type = BTRFS_INODE_ITEM_KEY;
940         key.offset = 0;
941         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
942         if (ret) {
943                 if (ret > 0)
944                         ret = -ENOENT;
945                 goto out;
946         }
947 
948         if (!info)
949                 goto out;
950 
951         ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
952                         struct btrfs_inode_item);
953         info->size = btrfs_inode_size(path->nodes[0], ii);
954         info->gen = btrfs_inode_generation(path->nodes[0], ii);
955         info->mode = btrfs_inode_mode(path->nodes[0], ii);
956         info->uid = btrfs_inode_uid(path->nodes[0], ii);
957         info->gid = btrfs_inode_gid(path->nodes[0], ii);
958         info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
959         info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
960         /*
961          * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
962          * otherwise logically split to 32/32 parts.
963          */
964         info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
965 
966 out:
967         btrfs_free_path(path);
968         return ret;
969 }
970 
971 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
972 {
973         int ret;
974         struct btrfs_inode_info info = { 0 };
975 
976         ASSERT(gen);
977 
978         ret = get_inode_info(root, ino, &info);
979         *gen = info.gen;
980         return ret;
981 }
982 
983 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
984                                    struct fs_path *p,
985                                    void *ctx);
986 
987 /*
988  * Helper function to iterate the entries in ONE btrfs_inode_ref or
989  * btrfs_inode_extref.
990  * The iterate callback may return a non zero value to stop iteration. This can
991  * be a negative value for error codes or 1 to simply stop it.
992  *
993  * path must point to the INODE_REF or INODE_EXTREF when called.
994  */
995 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
996                              struct btrfs_key *found_key, int resolve,
997                              iterate_inode_ref_t iterate, void *ctx)
998 {
999         struct extent_buffer *eb = path->nodes[0];
1000         struct btrfs_inode_ref *iref;
1001         struct btrfs_inode_extref *extref;
1002         struct btrfs_path *tmp_path;
1003         struct fs_path *p;
1004         u32 cur = 0;
1005         u32 total;
1006         int slot = path->slots[0];
1007         u32 name_len;
1008         char *start;
1009         int ret = 0;
1010         int num = 0;
1011         int index;
1012         u64 dir;
1013         unsigned long name_off;
1014         unsigned long elem_size;
1015         unsigned long ptr;
1016 
1017         p = fs_path_alloc_reversed();
1018         if (!p)
1019                 return -ENOMEM;
1020 
1021         tmp_path = alloc_path_for_send();
1022         if (!tmp_path) {
1023                 fs_path_free(p);
1024                 return -ENOMEM;
1025         }
1026 
1027 
1028         if (found_key->type == BTRFS_INODE_REF_KEY) {
1029                 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1030                                                     struct btrfs_inode_ref);
1031                 total = btrfs_item_size(eb, slot);
1032                 elem_size = sizeof(*iref);
1033         } else {
1034                 ptr = btrfs_item_ptr_offset(eb, slot);
1035                 total = btrfs_item_size(eb, slot);
1036                 elem_size = sizeof(*extref);
1037         }
1038 
1039         while (cur < total) {
1040                 fs_path_reset(p);
1041 
1042                 if (found_key->type == BTRFS_INODE_REF_KEY) {
1043                         iref = (struct btrfs_inode_ref *)(ptr + cur);
1044                         name_len = btrfs_inode_ref_name_len(eb, iref);
1045                         name_off = (unsigned long)(iref + 1);
1046                         index = btrfs_inode_ref_index(eb, iref);
1047                         dir = found_key->offset;
1048                 } else {
1049                         extref = (struct btrfs_inode_extref *)(ptr + cur);
1050                         name_len = btrfs_inode_extref_name_len(eb, extref);
1051                         name_off = (unsigned long)&extref->name;
1052                         index = btrfs_inode_extref_index(eb, extref);
1053                         dir = btrfs_inode_extref_parent(eb, extref);
1054                 }
1055 
1056                 if (resolve) {
1057                         start = btrfs_ref_to_path(root, tmp_path, name_len,
1058                                                   name_off, eb, dir,
1059                                                   p->buf, p->buf_len);
1060                         if (IS_ERR(start)) {
1061                                 ret = PTR_ERR(start);
1062                                 goto out;
1063                         }
1064                         if (start < p->buf) {
1065                                 /* overflow , try again with larger buffer */
1066                                 ret = fs_path_ensure_buf(p,
1067                                                 p->buf_len + p->buf - start);
1068                                 if (ret < 0)
1069                                         goto out;
1070                                 start = btrfs_ref_to_path(root, tmp_path,
1071                                                           name_len, name_off,
1072                                                           eb, dir,
1073                                                           p->buf, p->buf_len);
1074                                 if (IS_ERR(start)) {
1075                                         ret = PTR_ERR(start);
1076                                         goto out;
1077                                 }
1078                                 if (unlikely(start < p->buf)) {
1079                                         btrfs_err(root->fs_info,
1080                         "send: path ref buffer underflow for key (%llu %u %llu)",
1081                                                   found_key->objectid,
1082                                                   found_key->type,
1083                                                   found_key->offset);
1084                                         ret = -EINVAL;
1085                                         goto out;
1086                                 }
1087                         }
1088                         p->start = start;
1089                 } else {
1090                         ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1091                                                              name_len);
1092                         if (ret < 0)
1093                                 goto out;
1094                 }
1095 
1096                 cur += elem_size + name_len;
1097                 ret = iterate(num, dir, index, p, ctx);
1098                 if (ret)
1099                         goto out;
1100                 num++;
1101         }
1102 
1103 out:
1104         btrfs_free_path(tmp_path);
1105         fs_path_free(p);
1106         return ret;
1107 }
1108 
1109 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1110                                   const char *name, int name_len,
1111                                   const char *data, int data_len,
1112                                   void *ctx);
1113 
1114 /*
1115  * Helper function to iterate the entries in ONE btrfs_dir_item.
1116  * The iterate callback may return a non zero value to stop iteration. This can
1117  * be a negative value for error codes or 1 to simply stop it.
1118  *
1119  * path must point to the dir item when called.
1120  */
1121 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1122                             iterate_dir_item_t iterate, void *ctx)
1123 {
1124         int ret = 0;
1125         struct extent_buffer *eb;
1126         struct btrfs_dir_item *di;
1127         struct btrfs_key di_key;
1128         char *buf = NULL;
1129         int buf_len;
1130         u32 name_len;
1131         u32 data_len;
1132         u32 cur;
1133         u32 len;
1134         u32 total;
1135         int slot;
1136         int num;
1137 
1138         /*
1139          * Start with a small buffer (1 page). If later we end up needing more
1140          * space, which can happen for xattrs on a fs with a leaf size greater
1141          * then the page size, attempt to increase the buffer. Typically xattr
1142          * values are small.
1143          */
1144         buf_len = PATH_MAX;
1145         buf = kmalloc(buf_len, GFP_KERNEL);
1146         if (!buf) {
1147                 ret = -ENOMEM;
1148                 goto out;
1149         }
1150 
1151         eb = path->nodes[0];
1152         slot = path->slots[0];
1153         di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1154         cur = 0;
1155         len = 0;
1156         total = btrfs_item_size(eb, slot);
1157 
1158         num = 0;
1159         while (cur < total) {
1160                 name_len = btrfs_dir_name_len(eb, di);
1161                 data_len = btrfs_dir_data_len(eb, di);
1162                 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1163 
1164                 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1165                         if (name_len > XATTR_NAME_MAX) {
1166                                 ret = -ENAMETOOLONG;
1167                                 goto out;
1168                         }
1169                         if (name_len + data_len >
1170                                         BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1171                                 ret = -E2BIG;
1172                                 goto out;
1173                         }
1174                 } else {
1175                         /*
1176                          * Path too long
1177                          */
1178                         if (name_len + data_len > PATH_MAX) {
1179                                 ret = -ENAMETOOLONG;
1180                                 goto out;
1181                         }
1182                 }
1183 
1184                 if (name_len + data_len > buf_len) {
1185                         buf_len = name_len + data_len;
1186                         if (is_vmalloc_addr(buf)) {
1187                                 vfree(buf);
1188                                 buf = NULL;
1189                         } else {
1190                                 char *tmp = krealloc(buf, buf_len,
1191                                                 GFP_KERNEL | __GFP_NOWARN);
1192 
1193                                 if (!tmp)
1194                                         kfree(buf);
1195                                 buf = tmp;
1196                         }
1197                         if (!buf) {
1198                                 buf = kvmalloc(buf_len, GFP_KERNEL);
1199                                 if (!buf) {
1200                                         ret = -ENOMEM;
1201                                         goto out;
1202                                 }
1203                         }
1204                 }
1205 
1206                 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1207                                 name_len + data_len);
1208 
1209                 len = sizeof(*di) + name_len + data_len;
1210                 di = (struct btrfs_dir_item *)((char *)di + len);
1211                 cur += len;
1212 
1213                 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1214                               data_len, ctx);
1215                 if (ret < 0)
1216                         goto out;
1217                 if (ret) {
1218                         ret = 0;
1219                         goto out;
1220                 }
1221 
1222                 num++;
1223         }
1224 
1225 out:
1226         kvfree(buf);
1227         return ret;
1228 }
1229 
1230 static int __copy_first_ref(int num, u64 dir, int index,
1231                             struct fs_path *p, void *ctx)
1232 {
1233         int ret;
1234         struct fs_path *pt = ctx;
1235 
1236         ret = fs_path_copy(pt, p);
1237         if (ret < 0)
1238                 return ret;
1239 
1240         /* we want the first only */
1241         return 1;
1242 }
1243 
1244 /*
1245  * Retrieve the first path of an inode. If an inode has more then one
1246  * ref/hardlink, this is ignored.
1247  */
1248 static int get_inode_path(struct btrfs_root *root,
1249                           u64 ino, struct fs_path *path)
1250 {
1251         int ret;
1252         struct btrfs_key key, found_key;
1253         struct btrfs_path *p;
1254 
1255         p = alloc_path_for_send();
1256         if (!p)
1257                 return -ENOMEM;
1258 
1259         fs_path_reset(path);
1260 
1261         key.objectid = ino;
1262         key.type = BTRFS_INODE_REF_KEY;
1263         key.offset = 0;
1264 
1265         ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1266         if (ret < 0)
1267                 goto out;
1268         if (ret) {
1269                 ret = 1;
1270                 goto out;
1271         }
1272         btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1273         if (found_key.objectid != ino ||
1274             (found_key.type != BTRFS_INODE_REF_KEY &&
1275              found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1276                 ret = -ENOENT;
1277                 goto out;
1278         }
1279 
1280         ret = iterate_inode_ref(root, p, &found_key, 1,
1281                                 __copy_first_ref, path);
1282         if (ret < 0)
1283                 goto out;
1284         ret = 0;
1285 
1286 out:
1287         btrfs_free_path(p);
1288         return ret;
1289 }
1290 
1291 struct backref_ctx {
1292         struct send_ctx *sctx;
1293 
1294         /* number of total found references */
1295         u64 found;
1296 
1297         /*
1298          * used for clones found in send_root. clones found behind cur_objectid
1299          * and cur_offset are not considered as allowed clones.
1300          */
1301         u64 cur_objectid;
1302         u64 cur_offset;
1303 
1304         /* may be truncated in case it's the last extent in a file */
1305         u64 extent_len;
1306 
1307         /* The bytenr the file extent item we are processing refers to. */
1308         u64 bytenr;
1309         /* The owner (root id) of the data backref for the current extent. */
1310         u64 backref_owner;
1311         /* The offset of the data backref for the current extent. */
1312         u64 backref_offset;
1313 };
1314 
1315 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1316 {
1317         u64 root = (u64)(uintptr_t)key;
1318         const struct clone_root *cr = elt;
1319 
1320         if (root < btrfs_root_id(cr->root))
1321                 return -1;
1322         if (root > btrfs_root_id(cr->root))
1323                 return 1;
1324         return 0;
1325 }
1326 
1327 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1328 {
1329         const struct clone_root *cr1 = e1;
1330         const struct clone_root *cr2 = e2;
1331 
1332         if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1333                 return -1;
1334         if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1335                 return 1;
1336         return 0;
1337 }
1338 
1339 /*
1340  * Called for every backref that is found for the current extent.
1341  * Results are collected in sctx->clone_roots->ino/offset.
1342  */
1343 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1344                             void *ctx_)
1345 {
1346         struct backref_ctx *bctx = ctx_;
1347         struct clone_root *clone_root;
1348 
1349         /* First check if the root is in the list of accepted clone sources */
1350         clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1351                              bctx->sctx->clone_roots_cnt,
1352                              sizeof(struct clone_root),
1353                              __clone_root_cmp_bsearch);
1354         if (!clone_root)
1355                 return 0;
1356 
1357         /* This is our own reference, bail out as we can't clone from it. */
1358         if (clone_root->root == bctx->sctx->send_root &&
1359             ino == bctx->cur_objectid &&
1360             offset == bctx->cur_offset)
1361                 return 0;
1362 
1363         /*
1364          * Make sure we don't consider clones from send_root that are
1365          * behind the current inode/offset.
1366          */
1367         if (clone_root->root == bctx->sctx->send_root) {
1368                 /*
1369                  * If the source inode was not yet processed we can't issue a
1370                  * clone operation, as the source extent does not exist yet at
1371                  * the destination of the stream.
1372                  */
1373                 if (ino > bctx->cur_objectid)
1374                         return 0;
1375                 /*
1376                  * We clone from the inode currently being sent as long as the
1377                  * source extent is already processed, otherwise we could try
1378                  * to clone from an extent that does not exist yet at the
1379                  * destination of the stream.
1380                  */
1381                 if (ino == bctx->cur_objectid &&
1382                     offset + bctx->extent_len >
1383                     bctx->sctx->cur_inode_next_write_offset)
1384                         return 0;
1385         }
1386 
1387         bctx->found++;
1388         clone_root->found_ref = true;
1389 
1390         /*
1391          * If the given backref refers to a file extent item with a larger
1392          * number of bytes than what we found before, use the new one so that
1393          * we clone more optimally and end up doing less writes and getting
1394          * less exclusive, non-shared extents at the destination.
1395          */
1396         if (num_bytes > clone_root->num_bytes) {
1397                 clone_root->ino = ino;
1398                 clone_root->offset = offset;
1399                 clone_root->num_bytes = num_bytes;
1400 
1401                 /*
1402                  * Found a perfect candidate, so there's no need to continue
1403                  * backref walking.
1404                  */
1405                 if (num_bytes >= bctx->extent_len)
1406                         return BTRFS_ITERATE_EXTENT_INODES_STOP;
1407         }
1408 
1409         return 0;
1410 }
1411 
1412 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1413                                  const u64 **root_ids_ret, int *root_count_ret)
1414 {
1415         struct backref_ctx *bctx = ctx;
1416         struct send_ctx *sctx = bctx->sctx;
1417         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1418         const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1419         struct btrfs_lru_cache_entry *raw_entry;
1420         struct backref_cache_entry *entry;
1421 
1422         if (sctx->backref_cache.size == 0)
1423                 return false;
1424 
1425         /*
1426          * If relocation happened since we first filled the cache, then we must
1427          * empty the cache and can not use it, because even though we operate on
1428          * read-only roots, their leaves and nodes may have been reallocated and
1429          * now be used for different nodes/leaves of the same tree or some other
1430          * tree.
1431          *
1432          * We are called from iterate_extent_inodes() while either holding a
1433          * transaction handle or holding fs_info->commit_root_sem, so no need
1434          * to take any lock here.
1435          */
1436         if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1437                 btrfs_lru_cache_clear(&sctx->backref_cache);
1438                 return false;
1439         }
1440 
1441         raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1442         if (!raw_entry)
1443                 return false;
1444 
1445         entry = container_of(raw_entry, struct backref_cache_entry, entry);
1446         *root_ids_ret = entry->root_ids;
1447         *root_count_ret = entry->num_roots;
1448 
1449         return true;
1450 }
1451 
1452 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1453                                 void *ctx)
1454 {
1455         struct backref_ctx *bctx = ctx;
1456         struct send_ctx *sctx = bctx->sctx;
1457         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1458         struct backref_cache_entry *new_entry;
1459         struct ulist_iterator uiter;
1460         struct ulist_node *node;
1461         int ret;
1462 
1463         /*
1464          * We're called while holding a transaction handle or while holding
1465          * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1466          * NOFS allocation.
1467          */
1468         new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1469         /* No worries, cache is optional. */
1470         if (!new_entry)
1471                 return;
1472 
1473         new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1474         new_entry->entry.gen = 0;
1475         new_entry->num_roots = 0;
1476         ULIST_ITER_INIT(&uiter);
1477         while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1478                 const u64 root_id = node->val;
1479                 struct clone_root *root;
1480 
1481                 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1482                                sctx->clone_roots_cnt, sizeof(struct clone_root),
1483                                __clone_root_cmp_bsearch);
1484                 if (!root)
1485                         continue;
1486 
1487                 /* Too many roots, just exit, no worries as caching is optional. */
1488                 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1489                         kfree(new_entry);
1490                         return;
1491                 }
1492 
1493                 new_entry->root_ids[new_entry->num_roots] = root_id;
1494                 new_entry->num_roots++;
1495         }
1496 
1497         /*
1498          * We may have not added any roots to the new cache entry, which means
1499          * none of the roots is part of the list of roots from which we are
1500          * allowed to clone. Cache the new entry as it's still useful to avoid
1501          * backref walking to determine which roots have a path to the leaf.
1502          *
1503          * Also use GFP_NOFS because we're called while holding a transaction
1504          * handle or while holding fs_info->commit_root_sem.
1505          */
1506         ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1507                                     GFP_NOFS);
1508         ASSERT(ret == 0 || ret == -ENOMEM);
1509         if (ret) {
1510                 /* Caching is optional, no worries. */
1511                 kfree(new_entry);
1512                 return;
1513         }
1514 
1515         /*
1516          * We are called from iterate_extent_inodes() while either holding a
1517          * transaction handle or holding fs_info->commit_root_sem, so no need
1518          * to take any lock here.
1519          */
1520         if (sctx->backref_cache.size == 1)
1521                 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1522 }
1523 
1524 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1525                              const struct extent_buffer *leaf, void *ctx)
1526 {
1527         const u64 refs = btrfs_extent_refs(leaf, ei);
1528         const struct backref_ctx *bctx = ctx;
1529         const struct send_ctx *sctx = bctx->sctx;
1530 
1531         if (bytenr == bctx->bytenr) {
1532                 const u64 flags = btrfs_extent_flags(leaf, ei);
1533 
1534                 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1535                         return -EUCLEAN;
1536 
1537                 /*
1538                  * If we have only one reference and only the send root as a
1539                  * clone source - meaning no clone roots were given in the
1540                  * struct btrfs_ioctl_send_args passed to the send ioctl - then
1541                  * it's our reference and there's no point in doing backref
1542                  * walking which is expensive, so exit early.
1543                  */
1544                 if (refs == 1 && sctx->clone_roots_cnt == 1)
1545                         return -ENOENT;
1546         }
1547 
1548         /*
1549          * Backreference walking (iterate_extent_inodes() below) is currently
1550          * too expensive when an extent has a large number of references, both
1551          * in time spent and used memory. So for now just fallback to write
1552          * operations instead of clone operations when an extent has more than
1553          * a certain amount of references.
1554          */
1555         if (refs > SEND_MAX_EXTENT_REFS)
1556                 return -ENOENT;
1557 
1558         return 0;
1559 }
1560 
1561 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1562 {
1563         const struct backref_ctx *bctx = ctx;
1564 
1565         if (ino == bctx->cur_objectid &&
1566             root == bctx->backref_owner &&
1567             offset == bctx->backref_offset)
1568                 return true;
1569 
1570         return false;
1571 }
1572 
1573 /*
1574  * Given an inode, offset and extent item, it finds a good clone for a clone
1575  * instruction. Returns -ENOENT when none could be found. The function makes
1576  * sure that the returned clone is usable at the point where sending is at the
1577  * moment. This means, that no clones are accepted which lie behind the current
1578  * inode+offset.
1579  *
1580  * path must point to the extent item when called.
1581  */
1582 static int find_extent_clone(struct send_ctx *sctx,
1583                              struct btrfs_path *path,
1584                              u64 ino, u64 data_offset,
1585                              u64 ino_size,
1586                              struct clone_root **found)
1587 {
1588         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1589         int ret;
1590         int extent_type;
1591         u64 logical;
1592         u64 disk_byte;
1593         u64 num_bytes;
1594         struct btrfs_file_extent_item *fi;
1595         struct extent_buffer *eb = path->nodes[0];
1596         struct backref_ctx backref_ctx = { 0 };
1597         struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1598         struct clone_root *cur_clone_root;
1599         int compressed;
1600         u32 i;
1601 
1602         /*
1603          * With fallocate we can get prealloc extents beyond the inode's i_size,
1604          * so we don't do anything here because clone operations can not clone
1605          * to a range beyond i_size without increasing the i_size of the
1606          * destination inode.
1607          */
1608         if (data_offset >= ino_size)
1609                 return 0;
1610 
1611         fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1612         extent_type = btrfs_file_extent_type(eb, fi);
1613         if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1614                 return -ENOENT;
1615 
1616         disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1617         if (disk_byte == 0)
1618                 return -ENOENT;
1619 
1620         compressed = btrfs_file_extent_compression(eb, fi);
1621         num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1622         logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1623 
1624         /*
1625          * Setup the clone roots.
1626          */
1627         for (i = 0; i < sctx->clone_roots_cnt; i++) {
1628                 cur_clone_root = sctx->clone_roots + i;
1629                 cur_clone_root->ino = (u64)-1;
1630                 cur_clone_root->offset = 0;
1631                 cur_clone_root->num_bytes = 0;
1632                 cur_clone_root->found_ref = false;
1633         }
1634 
1635         backref_ctx.sctx = sctx;
1636         backref_ctx.cur_objectid = ino;
1637         backref_ctx.cur_offset = data_offset;
1638         backref_ctx.bytenr = disk_byte;
1639         /*
1640          * Use the header owner and not the send root's id, because in case of a
1641          * snapshot we can have shared subtrees.
1642          */
1643         backref_ctx.backref_owner = btrfs_header_owner(eb);
1644         backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1645 
1646         /*
1647          * The last extent of a file may be too large due to page alignment.
1648          * We need to adjust extent_len in this case so that the checks in
1649          * iterate_backrefs() work.
1650          */
1651         if (data_offset + num_bytes >= ino_size)
1652                 backref_ctx.extent_len = ino_size - data_offset;
1653         else
1654                 backref_ctx.extent_len = num_bytes;
1655 
1656         /*
1657          * Now collect all backrefs.
1658          */
1659         backref_walk_ctx.bytenr = disk_byte;
1660         if (compressed == BTRFS_COMPRESS_NONE)
1661                 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1662         backref_walk_ctx.fs_info = fs_info;
1663         backref_walk_ctx.cache_lookup = lookup_backref_cache;
1664         backref_walk_ctx.cache_store = store_backref_cache;
1665         backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1666         backref_walk_ctx.check_extent_item = check_extent_item;
1667         backref_walk_ctx.user_ctx = &backref_ctx;
1668 
1669         /*
1670          * If have a single clone root, then it's the send root and we can tell
1671          * the backref walking code to skip our own backref and not resolve it,
1672          * since we can not use it for cloning - the source and destination
1673          * ranges can't overlap and in case the leaf is shared through a subtree
1674          * due to snapshots, we can't use those other roots since they are not
1675          * in the list of clone roots.
1676          */
1677         if (sctx->clone_roots_cnt == 1)
1678                 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1679 
1680         ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1681                                     &backref_ctx);
1682         if (ret < 0)
1683                 return ret;
1684 
1685         down_read(&fs_info->commit_root_sem);
1686         if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1687                 /*
1688                  * A transaction commit for a transaction in which block group
1689                  * relocation was done just happened.
1690                  * The disk_bytenr of the file extent item we processed is
1691                  * possibly stale, referring to the extent's location before
1692                  * relocation. So act as if we haven't found any clone sources
1693                  * and fallback to write commands, which will read the correct
1694                  * data from the new extent location. Otherwise we will fail
1695                  * below because we haven't found our own back reference or we
1696                  * could be getting incorrect sources in case the old extent
1697                  * was already reallocated after the relocation.
1698                  */
1699                 up_read(&fs_info->commit_root_sem);
1700                 return -ENOENT;
1701         }
1702         up_read(&fs_info->commit_root_sem);
1703 
1704         btrfs_debug(fs_info,
1705                     "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1706                     data_offset, ino, num_bytes, logical);
1707 
1708         if (!backref_ctx.found) {
1709                 btrfs_debug(fs_info, "no clones found");
1710                 return -ENOENT;
1711         }
1712 
1713         cur_clone_root = NULL;
1714         for (i = 0; i < sctx->clone_roots_cnt; i++) {
1715                 struct clone_root *clone_root = &sctx->clone_roots[i];
1716 
1717                 if (!clone_root->found_ref)
1718                         continue;
1719 
1720                 /*
1721                  * Choose the root from which we can clone more bytes, to
1722                  * minimize write operations and therefore have more extent
1723                  * sharing at the destination (the same as in the source).
1724                  */
1725                 if (!cur_clone_root ||
1726                     clone_root->num_bytes > cur_clone_root->num_bytes) {
1727                         cur_clone_root = clone_root;
1728 
1729                         /*
1730                          * We found an optimal clone candidate (any inode from
1731                          * any root is fine), so we're done.
1732                          */
1733                         if (clone_root->num_bytes >= backref_ctx.extent_len)
1734                                 break;
1735                 }
1736         }
1737 
1738         if (cur_clone_root) {
1739                 *found = cur_clone_root;
1740                 ret = 0;
1741         } else {
1742                 ret = -ENOENT;
1743         }
1744 
1745         return ret;
1746 }
1747 
1748 static int read_symlink(struct btrfs_root *root,
1749                         u64 ino,
1750                         struct fs_path *dest)
1751 {
1752         int ret;
1753         struct btrfs_path *path;
1754         struct btrfs_key key;
1755         struct btrfs_file_extent_item *ei;
1756         u8 type;
1757         u8 compression;
1758         unsigned long off;
1759         int len;
1760 
1761         path = alloc_path_for_send();
1762         if (!path)
1763                 return -ENOMEM;
1764 
1765         key.objectid = ino;
1766         key.type = BTRFS_EXTENT_DATA_KEY;
1767         key.offset = 0;
1768         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1769         if (ret < 0)
1770                 goto out;
1771         if (ret) {
1772                 /*
1773                  * An empty symlink inode. Can happen in rare error paths when
1774                  * creating a symlink (transaction committed before the inode
1775                  * eviction handler removed the symlink inode items and a crash
1776                  * happened in between or the subvol was snapshoted in between).
1777                  * Print an informative message to dmesg/syslog so that the user
1778                  * can delete the symlink.
1779                  */
1780                 btrfs_err(root->fs_info,
1781                           "Found empty symlink inode %llu at root %llu",
1782                           ino, btrfs_root_id(root));
1783                 ret = -EIO;
1784                 goto out;
1785         }
1786 
1787         ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1788                         struct btrfs_file_extent_item);
1789         type = btrfs_file_extent_type(path->nodes[0], ei);
1790         if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1791                 ret = -EUCLEAN;
1792                 btrfs_crit(root->fs_info,
1793 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1794                            ino, btrfs_root_id(root), type);
1795                 goto out;
1796         }
1797         compression = btrfs_file_extent_compression(path->nodes[0], ei);
1798         if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1799                 ret = -EUCLEAN;
1800                 btrfs_crit(root->fs_info,
1801 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1802                            ino, btrfs_root_id(root), compression);
1803                 goto out;
1804         }
1805 
1806         off = btrfs_file_extent_inline_start(ei);
1807         len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1808 
1809         ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1810 
1811 out:
1812         btrfs_free_path(path);
1813         return ret;
1814 }
1815 
1816 /*
1817  * Helper function to generate a file name that is unique in the root of
1818  * send_root and parent_root. This is used to generate names for orphan inodes.
1819  */
1820 static int gen_unique_name(struct send_ctx *sctx,
1821                            u64 ino, u64 gen,
1822                            struct fs_path *dest)
1823 {
1824         int ret = 0;
1825         struct btrfs_path *path;
1826         struct btrfs_dir_item *di;
1827         char tmp[64];
1828         int len;
1829         u64 idx = 0;
1830 
1831         path = alloc_path_for_send();
1832         if (!path)
1833                 return -ENOMEM;
1834 
1835         while (1) {
1836                 struct fscrypt_str tmp_name;
1837 
1838                 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1839                                 ino, gen, idx);
1840                 ASSERT(len < sizeof(tmp));
1841                 tmp_name.name = tmp;
1842                 tmp_name.len = strlen(tmp);
1843 
1844                 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1845                                 path, BTRFS_FIRST_FREE_OBJECTID,
1846                                 &tmp_name, 0);
1847                 btrfs_release_path(path);
1848                 if (IS_ERR(di)) {
1849                         ret = PTR_ERR(di);
1850                         goto out;
1851                 }
1852                 if (di) {
1853                         /* not unique, try again */
1854                         idx++;
1855                         continue;
1856                 }
1857 
1858                 if (!sctx->parent_root) {
1859                         /* unique */
1860                         ret = 0;
1861                         break;
1862                 }
1863 
1864                 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1865                                 path, BTRFS_FIRST_FREE_OBJECTID,
1866                                 &tmp_name, 0);
1867                 btrfs_release_path(path);
1868                 if (IS_ERR(di)) {
1869                         ret = PTR_ERR(di);
1870                         goto out;
1871                 }
1872                 if (di) {
1873                         /* not unique, try again */
1874                         idx++;
1875                         continue;
1876                 }
1877                 /* unique */
1878                 break;
1879         }
1880 
1881         ret = fs_path_add(dest, tmp, strlen(tmp));
1882 
1883 out:
1884         btrfs_free_path(path);
1885         return ret;
1886 }
1887 
1888 enum inode_state {
1889         inode_state_no_change,
1890         inode_state_will_create,
1891         inode_state_did_create,
1892         inode_state_will_delete,
1893         inode_state_did_delete,
1894 };
1895 
1896 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1897                                u64 *send_gen, u64 *parent_gen)
1898 {
1899         int ret;
1900         int left_ret;
1901         int right_ret;
1902         u64 left_gen;
1903         u64 right_gen = 0;
1904         struct btrfs_inode_info info;
1905 
1906         ret = get_inode_info(sctx->send_root, ino, &info);
1907         if (ret < 0 && ret != -ENOENT)
1908                 goto out;
1909         left_ret = (info.nlink == 0) ? -ENOENT : ret;
1910         left_gen = info.gen;
1911         if (send_gen)
1912                 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1913 
1914         if (!sctx->parent_root) {
1915                 right_ret = -ENOENT;
1916         } else {
1917                 ret = get_inode_info(sctx->parent_root, ino, &info);
1918                 if (ret < 0 && ret != -ENOENT)
1919                         goto out;
1920                 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1921                 right_gen = info.gen;
1922                 if (parent_gen)
1923                         *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1924         }
1925 
1926         if (!left_ret && !right_ret) {
1927                 if (left_gen == gen && right_gen == gen) {
1928                         ret = inode_state_no_change;
1929                 } else if (left_gen == gen) {
1930                         if (ino < sctx->send_progress)
1931                                 ret = inode_state_did_create;
1932                         else
1933                                 ret = inode_state_will_create;
1934                 } else if (right_gen == gen) {
1935                         if (ino < sctx->send_progress)
1936                                 ret = inode_state_did_delete;
1937                         else
1938                                 ret = inode_state_will_delete;
1939                 } else  {
1940                         ret = -ENOENT;
1941                 }
1942         } else if (!left_ret) {
1943                 if (left_gen == gen) {
1944                         if (ino < sctx->send_progress)
1945                                 ret = inode_state_did_create;
1946                         else
1947                                 ret = inode_state_will_create;
1948                 } else {
1949                         ret = -ENOENT;
1950                 }
1951         } else if (!right_ret) {
1952                 if (right_gen == gen) {
1953                         if (ino < sctx->send_progress)
1954                                 ret = inode_state_did_delete;
1955                         else
1956                                 ret = inode_state_will_delete;
1957                 } else {
1958                         ret = -ENOENT;
1959                 }
1960         } else {
1961                 ret = -ENOENT;
1962         }
1963 
1964 out:
1965         return ret;
1966 }
1967 
1968 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1969                              u64 *send_gen, u64 *parent_gen)
1970 {
1971         int ret;
1972 
1973         if (ino == BTRFS_FIRST_FREE_OBJECTID)
1974                 return 1;
1975 
1976         ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1977         if (ret < 0)
1978                 goto out;
1979 
1980         if (ret == inode_state_no_change ||
1981             ret == inode_state_did_create ||
1982             ret == inode_state_will_delete)
1983                 ret = 1;
1984         else
1985                 ret = 0;
1986 
1987 out:
1988         return ret;
1989 }
1990 
1991 /*
1992  * Helper function to lookup a dir item in a dir.
1993  */
1994 static int lookup_dir_item_inode(struct btrfs_root *root,
1995                                  u64 dir, const char *name, int name_len,
1996                                  u64 *found_inode)
1997 {
1998         int ret = 0;
1999         struct btrfs_dir_item *di;
2000         struct btrfs_key key;
2001         struct btrfs_path *path;
2002         struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
2003 
2004         path = alloc_path_for_send();
2005         if (!path)
2006                 return -ENOMEM;
2007 
2008         di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2009         if (IS_ERR_OR_NULL(di)) {
2010                 ret = di ? PTR_ERR(di) : -ENOENT;
2011                 goto out;
2012         }
2013         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2014         if (key.type == BTRFS_ROOT_ITEM_KEY) {
2015                 ret = -ENOENT;
2016                 goto out;
2017         }
2018         *found_inode = key.objectid;
2019 
2020 out:
2021         btrfs_free_path(path);
2022         return ret;
2023 }
2024 
2025 /*
2026  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2027  * generation of the parent dir and the name of the dir entry.
2028  */
2029 static int get_first_ref(struct btrfs_root *root, u64 ino,
2030                          u64 *dir, u64 *dir_gen, struct fs_path *name)
2031 {
2032         int ret;
2033         struct btrfs_key key;
2034         struct btrfs_key found_key;
2035         struct btrfs_path *path;
2036         int len;
2037         u64 parent_dir;
2038 
2039         path = alloc_path_for_send();
2040         if (!path)
2041                 return -ENOMEM;
2042 
2043         key.objectid = ino;
2044         key.type = BTRFS_INODE_REF_KEY;
2045         key.offset = 0;
2046 
2047         ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2048         if (ret < 0)
2049                 goto out;
2050         if (!ret)
2051                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2052                                 path->slots[0]);
2053         if (ret || found_key.objectid != ino ||
2054             (found_key.type != BTRFS_INODE_REF_KEY &&
2055              found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2056                 ret = -ENOENT;
2057                 goto out;
2058         }
2059 
2060         if (found_key.type == BTRFS_INODE_REF_KEY) {
2061                 struct btrfs_inode_ref *iref;
2062                 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2063                                       struct btrfs_inode_ref);
2064                 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2065                 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2066                                                      (unsigned long)(iref + 1),
2067                                                      len);
2068                 parent_dir = found_key.offset;
2069         } else {
2070                 struct btrfs_inode_extref *extref;
2071                 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2072                                         struct btrfs_inode_extref);
2073                 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2074                 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2075                                         (unsigned long)&extref->name, len);
2076                 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2077         }
2078         if (ret < 0)
2079                 goto out;
2080         btrfs_release_path(path);
2081 
2082         if (dir_gen) {
2083                 ret = get_inode_gen(root, parent_dir, dir_gen);
2084                 if (ret < 0)
2085                         goto out;
2086         }
2087 
2088         *dir = parent_dir;
2089 
2090 out:
2091         btrfs_free_path(path);
2092         return ret;
2093 }
2094 
2095 static int is_first_ref(struct btrfs_root *root,
2096                         u64 ino, u64 dir,
2097                         const char *name, int name_len)
2098 {
2099         int ret;
2100         struct fs_path *tmp_name;
2101         u64 tmp_dir;
2102 
2103         tmp_name = fs_path_alloc();
2104         if (!tmp_name)
2105                 return -ENOMEM;
2106 
2107         ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2108         if (ret < 0)
2109                 goto out;
2110 
2111         if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2112                 ret = 0;
2113                 goto out;
2114         }
2115 
2116         ret = !memcmp(tmp_name->start, name, name_len);
2117 
2118 out:
2119         fs_path_free(tmp_name);
2120         return ret;
2121 }
2122 
2123 /*
2124  * Used by process_recorded_refs to determine if a new ref would overwrite an
2125  * already existing ref. In case it detects an overwrite, it returns the
2126  * inode/gen in who_ino/who_gen.
2127  * When an overwrite is detected, process_recorded_refs does proper orphanizing
2128  * to make sure later references to the overwritten inode are possible.
2129  * Orphanizing is however only required for the first ref of an inode.
2130  * process_recorded_refs does an additional is_first_ref check to see if
2131  * orphanizing is really required.
2132  */
2133 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2134                               const char *name, int name_len,
2135                               u64 *who_ino, u64 *who_gen, u64 *who_mode)
2136 {
2137         int ret;
2138         u64 parent_root_dir_gen;
2139         u64 other_inode = 0;
2140         struct btrfs_inode_info info;
2141 
2142         if (!sctx->parent_root)
2143                 return 0;
2144 
2145         ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2146         if (ret <= 0)
2147                 return 0;
2148 
2149         /*
2150          * If we have a parent root we need to verify that the parent dir was
2151          * not deleted and then re-created, if it was then we have no overwrite
2152          * and we can just unlink this entry.
2153          *
2154          * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2155          * parent root.
2156          */
2157         if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2158             parent_root_dir_gen != dir_gen)
2159                 return 0;
2160 
2161         ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2162                                     &other_inode);
2163         if (ret == -ENOENT)
2164                 return 0;
2165         else if (ret < 0)
2166                 return ret;
2167 
2168         /*
2169          * Check if the overwritten ref was already processed. If yes, the ref
2170          * was already unlinked/moved, so we can safely assume that we will not
2171          * overwrite anything at this point in time.
2172          */
2173         if (other_inode > sctx->send_progress ||
2174             is_waiting_for_move(sctx, other_inode)) {
2175                 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2176                 if (ret < 0)
2177                         return ret;
2178 
2179                 *who_ino = other_inode;
2180                 *who_gen = info.gen;
2181                 *who_mode = info.mode;
2182                 return 1;
2183         }
2184 
2185         return 0;
2186 }
2187 
2188 /*
2189  * Checks if the ref was overwritten by an already processed inode. This is
2190  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2191  * thus the orphan name needs be used.
2192  * process_recorded_refs also uses it to avoid unlinking of refs that were
2193  * overwritten.
2194  */
2195 static int did_overwrite_ref(struct send_ctx *sctx,
2196                             u64 dir, u64 dir_gen,
2197                             u64 ino, u64 ino_gen,
2198                             const char *name, int name_len)
2199 {
2200         int ret;
2201         u64 ow_inode;
2202         u64 ow_gen = 0;
2203         u64 send_root_dir_gen;
2204 
2205         if (!sctx->parent_root)
2206                 return 0;
2207 
2208         ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2209         if (ret <= 0)
2210                 return ret;
2211 
2212         /*
2213          * @send_root_dir_gen was set to 0 if the inode does not exist in the
2214          * send root.
2215          */
2216         if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2217                 return 0;
2218 
2219         /* check if the ref was overwritten by another ref */
2220         ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2221                                     &ow_inode);
2222         if (ret == -ENOENT) {
2223                 /* was never and will never be overwritten */
2224                 return 0;
2225         } else if (ret < 0) {
2226                 return ret;
2227         }
2228 
2229         if (ow_inode == ino) {
2230                 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2231                 if (ret < 0)
2232                         return ret;
2233 
2234                 /* It's the same inode, so no overwrite happened. */
2235                 if (ow_gen == ino_gen)
2236                         return 0;
2237         }
2238 
2239         /*
2240          * We know that it is or will be overwritten. Check this now.
2241          * The current inode being processed might have been the one that caused
2242          * inode 'ino' to be orphanized, therefore check if ow_inode matches
2243          * the current inode being processed.
2244          */
2245         if (ow_inode < sctx->send_progress)
2246                 return 1;
2247 
2248         if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2249                 if (ow_gen == 0) {
2250                         ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2251                         if (ret < 0)
2252                                 return ret;
2253                 }
2254                 if (ow_gen == sctx->cur_inode_gen)
2255                         return 1;
2256         }
2257 
2258         return 0;
2259 }
2260 
2261 /*
2262  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2263  * that got overwritten. This is used by process_recorded_refs to determine
2264  * if it has to use the path as returned by get_cur_path or the orphan name.
2265  */
2266 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2267 {
2268         int ret = 0;
2269         struct fs_path *name = NULL;
2270         u64 dir;
2271         u64 dir_gen;
2272 
2273         if (!sctx->parent_root)
2274                 goto out;
2275 
2276         name = fs_path_alloc();
2277         if (!name)
2278                 return -ENOMEM;
2279 
2280         ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2281         if (ret < 0)
2282                 goto out;
2283 
2284         ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2285                         name->start, fs_path_len(name));
2286 
2287 out:
2288         fs_path_free(name);
2289         return ret;
2290 }
2291 
2292 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2293                                                          u64 ino, u64 gen)
2294 {
2295         struct btrfs_lru_cache_entry *entry;
2296 
2297         entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2298         if (!entry)
2299                 return NULL;
2300 
2301         return container_of(entry, struct name_cache_entry, entry);
2302 }
2303 
2304 /*
2305  * Used by get_cur_path for each ref up to the root.
2306  * Returns 0 if it succeeded.
2307  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2308  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2309  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2310  * Returns <0 in case of error.
2311  */
2312 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2313                                      u64 ino, u64 gen,
2314                                      u64 *parent_ino,
2315                                      u64 *parent_gen,
2316                                      struct fs_path *dest)
2317 {
2318         int ret;
2319         int nce_ret;
2320         struct name_cache_entry *nce;
2321 
2322         /*
2323          * First check if we already did a call to this function with the same
2324          * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2325          * return the cached result.
2326          */
2327         nce = name_cache_search(sctx, ino, gen);
2328         if (nce) {
2329                 if (ino < sctx->send_progress && nce->need_later_update) {
2330                         btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2331                         nce = NULL;
2332                 } else {
2333                         *parent_ino = nce->parent_ino;
2334                         *parent_gen = nce->parent_gen;
2335                         ret = fs_path_add(dest, nce->name, nce->name_len);
2336                         if (ret < 0)
2337                                 goto out;
2338                         ret = nce->ret;
2339                         goto out;
2340                 }
2341         }
2342 
2343         /*
2344          * If the inode is not existent yet, add the orphan name and return 1.
2345          * This should only happen for the parent dir that we determine in
2346          * record_new_ref_if_needed().
2347          */
2348         ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2349         if (ret < 0)
2350                 goto out;
2351 
2352         if (!ret) {
2353                 ret = gen_unique_name(sctx, ino, gen, dest);
2354                 if (ret < 0)
2355                         goto out;
2356                 ret = 1;
2357                 goto out_cache;
2358         }
2359 
2360         /*
2361          * Depending on whether the inode was already processed or not, use
2362          * send_root or parent_root for ref lookup.
2363          */
2364         if (ino < sctx->send_progress)
2365                 ret = get_first_ref(sctx->send_root, ino,
2366                                     parent_ino, parent_gen, dest);
2367         else
2368                 ret = get_first_ref(sctx->parent_root, ino,
2369                                     parent_ino, parent_gen, dest);
2370         if (ret < 0)
2371                 goto out;
2372 
2373         /*
2374          * Check if the ref was overwritten by an inode's ref that was processed
2375          * earlier. If yes, treat as orphan and return 1.
2376          */
2377         ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2378                         dest->start, dest->end - dest->start);
2379         if (ret < 0)
2380                 goto out;
2381         if (ret) {
2382                 fs_path_reset(dest);
2383                 ret = gen_unique_name(sctx, ino, gen, dest);
2384                 if (ret < 0)
2385                         goto out;
2386                 ret = 1;
2387         }
2388 
2389 out_cache:
2390         /*
2391          * Store the result of the lookup in the name cache.
2392          */
2393         nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL);
2394         if (!nce) {
2395                 ret = -ENOMEM;
2396                 goto out;
2397         }
2398 
2399         nce->entry.key = ino;
2400         nce->entry.gen = gen;
2401         nce->parent_ino = *parent_ino;
2402         nce->parent_gen = *parent_gen;
2403         nce->name_len = fs_path_len(dest);
2404         nce->ret = ret;
2405         memcpy(nce->name, dest->start, nce->name_len);
2406 
2407         if (ino < sctx->send_progress)
2408                 nce->need_later_update = 0;
2409         else
2410                 nce->need_later_update = 1;
2411 
2412         nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2413         if (nce_ret < 0) {
2414                 kfree(nce);
2415                 ret = nce_ret;
2416         }
2417 
2418 out:
2419         return ret;
2420 }
2421 
2422 /*
2423  * Magic happens here. This function returns the first ref to an inode as it
2424  * would look like while receiving the stream at this point in time.
2425  * We walk the path up to the root. For every inode in between, we check if it
2426  * was already processed/sent. If yes, we continue with the parent as found
2427  * in send_root. If not, we continue with the parent as found in parent_root.
2428  * If we encounter an inode that was deleted at this point in time, we use the
2429  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2430  * that were not created yet and overwritten inodes/refs.
2431  *
2432  * When do we have orphan inodes:
2433  * 1. When an inode is freshly created and thus no valid refs are available yet
2434  * 2. When a directory lost all it's refs (deleted) but still has dir items
2435  *    inside which were not processed yet (pending for move/delete). If anyone
2436  *    tried to get the path to the dir items, it would get a path inside that
2437  *    orphan directory.
2438  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2439  *    of an unprocessed inode. If in that case the first ref would be
2440  *    overwritten, the overwritten inode gets "orphanized". Later when we
2441  *    process this overwritten inode, it is restored at a new place by moving
2442  *    the orphan inode.
2443  *
2444  * sctx->send_progress tells this function at which point in time receiving
2445  * would be.
2446  */
2447 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2448                         struct fs_path *dest)
2449 {
2450         int ret = 0;
2451         struct fs_path *name = NULL;
2452         u64 parent_inode = 0;
2453         u64 parent_gen = 0;
2454         int stop = 0;
2455 
2456         name = fs_path_alloc();
2457         if (!name) {
2458                 ret = -ENOMEM;
2459                 goto out;
2460         }
2461 
2462         dest->reversed = 1;
2463         fs_path_reset(dest);
2464 
2465         while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2466                 struct waiting_dir_move *wdm;
2467 
2468                 fs_path_reset(name);
2469 
2470                 if (is_waiting_for_rm(sctx, ino, gen)) {
2471                         ret = gen_unique_name(sctx, ino, gen, name);
2472                         if (ret < 0)
2473                                 goto out;
2474                         ret = fs_path_add_path(dest, name);
2475                         break;
2476                 }
2477 
2478                 wdm = get_waiting_dir_move(sctx, ino);
2479                 if (wdm && wdm->orphanized) {
2480                         ret = gen_unique_name(sctx, ino, gen, name);
2481                         stop = 1;
2482                 } else if (wdm) {
2483                         ret = get_first_ref(sctx->parent_root, ino,
2484                                             &parent_inode, &parent_gen, name);
2485                 } else {
2486                         ret = __get_cur_name_and_parent(sctx, ino, gen,
2487                                                         &parent_inode,
2488                                                         &parent_gen, name);
2489                         if (ret)
2490                                 stop = 1;
2491                 }
2492 
2493                 if (ret < 0)
2494                         goto out;
2495 
2496                 ret = fs_path_add_path(dest, name);
2497                 if (ret < 0)
2498                         goto out;
2499 
2500                 ino = parent_inode;
2501                 gen = parent_gen;
2502         }
2503 
2504 out:
2505         fs_path_free(name);
2506         if (!ret)
2507                 fs_path_unreverse(dest);
2508         return ret;
2509 }
2510 
2511 /*
2512  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2513  */
2514 static int send_subvol_begin(struct send_ctx *sctx)
2515 {
2516         int ret;
2517         struct btrfs_root *send_root = sctx->send_root;
2518         struct btrfs_root *parent_root = sctx->parent_root;
2519         struct btrfs_path *path;
2520         struct btrfs_key key;
2521         struct btrfs_root_ref *ref;
2522         struct extent_buffer *leaf;
2523         char *name = NULL;
2524         int namelen;
2525 
2526         path = btrfs_alloc_path();
2527         if (!path)
2528                 return -ENOMEM;
2529 
2530         name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2531         if (!name) {
2532                 btrfs_free_path(path);
2533                 return -ENOMEM;
2534         }
2535 
2536         key.objectid = btrfs_root_id(send_root);
2537         key.type = BTRFS_ROOT_BACKREF_KEY;
2538         key.offset = 0;
2539 
2540         ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2541                                 &key, path, 1, 0);
2542         if (ret < 0)
2543                 goto out;
2544         if (ret) {
2545                 ret = -ENOENT;
2546                 goto out;
2547         }
2548 
2549         leaf = path->nodes[0];
2550         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2551         if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2552             key.objectid != btrfs_root_id(send_root)) {
2553                 ret = -ENOENT;
2554                 goto out;
2555         }
2556         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2557         namelen = btrfs_root_ref_name_len(leaf, ref);
2558         read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2559         btrfs_release_path(path);
2560 
2561         if (parent_root) {
2562                 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2563                 if (ret < 0)
2564                         goto out;
2565         } else {
2566                 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2567                 if (ret < 0)
2568                         goto out;
2569         }
2570 
2571         TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2572 
2573         if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2574                 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2575                             sctx->send_root->root_item.received_uuid);
2576         else
2577                 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2578                             sctx->send_root->root_item.uuid);
2579 
2580         TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2581                     btrfs_root_ctransid(&sctx->send_root->root_item));
2582         if (parent_root) {
2583                 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2584                         TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2585                                      parent_root->root_item.received_uuid);
2586                 else
2587                         TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2588                                      parent_root->root_item.uuid);
2589                 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2590                             btrfs_root_ctransid(&sctx->parent_root->root_item));
2591         }
2592 
2593         ret = send_cmd(sctx);
2594 
2595 tlv_put_failure:
2596 out:
2597         btrfs_free_path(path);
2598         kfree(name);
2599         return ret;
2600 }
2601 
2602 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2603 {
2604         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2605         int ret = 0;
2606         struct fs_path *p;
2607 
2608         btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2609 
2610         p = fs_path_alloc();
2611         if (!p)
2612                 return -ENOMEM;
2613 
2614         ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2615         if (ret < 0)
2616                 goto out;
2617 
2618         ret = get_cur_path(sctx, ino, gen, p);
2619         if (ret < 0)
2620                 goto out;
2621         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2622         TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2623 
2624         ret = send_cmd(sctx);
2625 
2626 tlv_put_failure:
2627 out:
2628         fs_path_free(p);
2629         return ret;
2630 }
2631 
2632 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2633 {
2634         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2635         int ret = 0;
2636         struct fs_path *p;
2637 
2638         btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2639 
2640         p = fs_path_alloc();
2641         if (!p)
2642                 return -ENOMEM;
2643 
2644         ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2645         if (ret < 0)
2646                 goto out;
2647 
2648         ret = get_cur_path(sctx, ino, gen, p);
2649         if (ret < 0)
2650                 goto out;
2651         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2652         TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2653 
2654         ret = send_cmd(sctx);
2655 
2656 tlv_put_failure:
2657 out:
2658         fs_path_free(p);
2659         return ret;
2660 }
2661 
2662 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2663 {
2664         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2665         int ret = 0;
2666         struct fs_path *p;
2667 
2668         if (sctx->proto < 2)
2669                 return 0;
2670 
2671         btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2672 
2673         p = fs_path_alloc();
2674         if (!p)
2675                 return -ENOMEM;
2676 
2677         ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2678         if (ret < 0)
2679                 goto out;
2680 
2681         ret = get_cur_path(sctx, ino, gen, p);
2682         if (ret < 0)
2683                 goto out;
2684         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2685         TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2686 
2687         ret = send_cmd(sctx);
2688 
2689 tlv_put_failure:
2690 out:
2691         fs_path_free(p);
2692         return ret;
2693 }
2694 
2695 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2696 {
2697         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2698         int ret = 0;
2699         struct fs_path *p;
2700 
2701         btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2702                     ino, uid, gid);
2703 
2704         p = fs_path_alloc();
2705         if (!p)
2706                 return -ENOMEM;
2707 
2708         ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2709         if (ret < 0)
2710                 goto out;
2711 
2712         ret = get_cur_path(sctx, ino, gen, p);
2713         if (ret < 0)
2714                 goto out;
2715         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2716         TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2717         TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2718 
2719         ret = send_cmd(sctx);
2720 
2721 tlv_put_failure:
2722 out:
2723         fs_path_free(p);
2724         return ret;
2725 }
2726 
2727 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2728 {
2729         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2730         int ret = 0;
2731         struct fs_path *p = NULL;
2732         struct btrfs_inode_item *ii;
2733         struct btrfs_path *path = NULL;
2734         struct extent_buffer *eb;
2735         struct btrfs_key key;
2736         int slot;
2737 
2738         btrfs_debug(fs_info, "send_utimes %llu", ino);
2739 
2740         p = fs_path_alloc();
2741         if (!p)
2742                 return -ENOMEM;
2743 
2744         path = alloc_path_for_send();
2745         if (!path) {
2746                 ret = -ENOMEM;
2747                 goto out;
2748         }
2749 
2750         key.objectid = ino;
2751         key.type = BTRFS_INODE_ITEM_KEY;
2752         key.offset = 0;
2753         ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2754         if (ret > 0)
2755                 ret = -ENOENT;
2756         if (ret < 0)
2757                 goto out;
2758 
2759         eb = path->nodes[0];
2760         slot = path->slots[0];
2761         ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2762 
2763         ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2764         if (ret < 0)
2765                 goto out;
2766 
2767         ret = get_cur_path(sctx, ino, gen, p);
2768         if (ret < 0)
2769                 goto out;
2770         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2771         TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2772         TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2773         TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2774         if (sctx->proto >= 2)
2775                 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2776 
2777         ret = send_cmd(sctx);
2778 
2779 tlv_put_failure:
2780 out:
2781         fs_path_free(p);
2782         btrfs_free_path(path);
2783         return ret;
2784 }
2785 
2786 /*
2787  * If the cache is full, we can't remove entries from it and do a call to
2788  * send_utimes() for each respective inode, because we might be finishing
2789  * processing an inode that is a directory and it just got renamed, and existing
2790  * entries in the cache may refer to inodes that have the directory in their
2791  * full path - in which case we would generate outdated paths (pre-rename)
2792  * for the inodes that the cache entries point to. Instead of prunning the
2793  * cache when inserting, do it after we finish processing each inode at
2794  * finish_inode_if_needed().
2795  */
2796 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2797 {
2798         struct btrfs_lru_cache_entry *entry;
2799         int ret;
2800 
2801         entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2802         if (entry != NULL)
2803                 return 0;
2804 
2805         /* Caching is optional, don't fail if we can't allocate memory. */
2806         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2807         if (!entry)
2808                 return send_utimes(sctx, dir, gen);
2809 
2810         entry->key = dir;
2811         entry->gen = gen;
2812 
2813         ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2814         ASSERT(ret != -EEXIST);
2815         if (ret) {
2816                 kfree(entry);
2817                 return send_utimes(sctx, dir, gen);
2818         }
2819 
2820         return 0;
2821 }
2822 
2823 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2824 {
2825         while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2826                 struct btrfs_lru_cache_entry *lru;
2827                 int ret;
2828 
2829                 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2830                 ASSERT(lru != NULL);
2831 
2832                 ret = send_utimes(sctx, lru->key, lru->gen);
2833                 if (ret)
2834                         return ret;
2835 
2836                 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2837         }
2838 
2839         return 0;
2840 }
2841 
2842 /*
2843  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2844  * a valid path yet because we did not process the refs yet. So, the inode
2845  * is created as orphan.
2846  */
2847 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2848 {
2849         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2850         int ret = 0;
2851         struct fs_path *p;
2852         int cmd;
2853         struct btrfs_inode_info info;
2854         u64 gen;
2855         u64 mode;
2856         u64 rdev;
2857 
2858         btrfs_debug(fs_info, "send_create_inode %llu", ino);
2859 
2860         p = fs_path_alloc();
2861         if (!p)
2862                 return -ENOMEM;
2863 
2864         if (ino != sctx->cur_ino) {
2865                 ret = get_inode_info(sctx->send_root, ino, &info);
2866                 if (ret < 0)
2867                         goto out;
2868                 gen = info.gen;
2869                 mode = info.mode;
2870                 rdev = info.rdev;
2871         } else {
2872                 gen = sctx->cur_inode_gen;
2873                 mode = sctx->cur_inode_mode;
2874                 rdev = sctx->cur_inode_rdev;
2875         }
2876 
2877         if (S_ISREG(mode)) {
2878                 cmd = BTRFS_SEND_C_MKFILE;
2879         } else if (S_ISDIR(mode)) {
2880                 cmd = BTRFS_SEND_C_MKDIR;
2881         } else if (S_ISLNK(mode)) {
2882                 cmd = BTRFS_SEND_C_SYMLINK;
2883         } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2884                 cmd = BTRFS_SEND_C_MKNOD;
2885         } else if (S_ISFIFO(mode)) {
2886                 cmd = BTRFS_SEND_C_MKFIFO;
2887         } else if (S_ISSOCK(mode)) {
2888                 cmd = BTRFS_SEND_C_MKSOCK;
2889         } else {
2890                 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2891                                 (int)(mode & S_IFMT));
2892                 ret = -EOPNOTSUPP;
2893                 goto out;
2894         }
2895 
2896         ret = begin_cmd(sctx, cmd);
2897         if (ret < 0)
2898                 goto out;
2899 
2900         ret = gen_unique_name(sctx, ino, gen, p);
2901         if (ret < 0)
2902                 goto out;
2903 
2904         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2905         TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2906 
2907         if (S_ISLNK(mode)) {
2908                 fs_path_reset(p);
2909                 ret = read_symlink(sctx->send_root, ino, p);
2910                 if (ret < 0)
2911                         goto out;
2912                 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2913         } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2914                    S_ISFIFO(mode) || S_ISSOCK(mode)) {
2915                 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2916                 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2917         }
2918 
2919         ret = send_cmd(sctx);
2920         if (ret < 0)
2921                 goto out;
2922 
2923 
2924 tlv_put_failure:
2925 out:
2926         fs_path_free(p);
2927         return ret;
2928 }
2929 
2930 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2931 {
2932         struct btrfs_lru_cache_entry *entry;
2933         int ret;
2934 
2935         /* Caching is optional, ignore any failures. */
2936         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2937         if (!entry)
2938                 return;
2939 
2940         entry->key = dir;
2941         entry->gen = 0;
2942         ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2943         if (ret < 0)
2944                 kfree(entry);
2945 }
2946 
2947 /*
2948  * We need some special handling for inodes that get processed before the parent
2949  * directory got created. See process_recorded_refs for details.
2950  * This function does the check if we already created the dir out of order.
2951  */
2952 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2953 {
2954         int ret = 0;
2955         int iter_ret = 0;
2956         struct btrfs_path *path = NULL;
2957         struct btrfs_key key;
2958         struct btrfs_key found_key;
2959         struct btrfs_key di_key;
2960         struct btrfs_dir_item *di;
2961 
2962         if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2963                 return 1;
2964 
2965         path = alloc_path_for_send();
2966         if (!path)
2967                 return -ENOMEM;
2968 
2969         key.objectid = dir;
2970         key.type = BTRFS_DIR_INDEX_KEY;
2971         key.offset = 0;
2972 
2973         btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2974                 struct extent_buffer *eb = path->nodes[0];
2975 
2976                 if (found_key.objectid != key.objectid ||
2977                     found_key.type != key.type) {
2978                         ret = 0;
2979                         break;
2980                 }
2981 
2982                 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2983                 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2984 
2985                 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2986                     di_key.objectid < sctx->send_progress) {
2987                         ret = 1;
2988                         cache_dir_created(sctx, dir);
2989                         break;
2990                 }
2991         }
2992         /* Catch error found during iteration */
2993         if (iter_ret < 0)
2994                 ret = iter_ret;
2995 
2996         btrfs_free_path(path);
2997         return ret;
2998 }
2999 
3000 /*
3001  * Only creates the inode if it is:
3002  * 1. Not a directory
3003  * 2. Or a directory which was not created already due to out of order
3004  *    directories. See did_create_dir and process_recorded_refs for details.
3005  */
3006 static int send_create_inode_if_needed(struct send_ctx *sctx)
3007 {
3008         int ret;
3009 
3010         if (S_ISDIR(sctx->cur_inode_mode)) {
3011                 ret = did_create_dir(sctx, sctx->cur_ino);
3012                 if (ret < 0)
3013                         return ret;
3014                 else if (ret > 0)
3015                         return 0;
3016         }
3017 
3018         ret = send_create_inode(sctx, sctx->cur_ino);
3019 
3020         if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3021                 cache_dir_created(sctx, sctx->cur_ino);
3022 
3023         return ret;
3024 }
3025 
3026 struct recorded_ref {
3027         struct list_head list;
3028         char *name;
3029         struct fs_path *full_path;
3030         u64 dir;
3031         u64 dir_gen;
3032         int name_len;
3033         struct rb_node node;
3034         struct rb_root *root;
3035 };
3036 
3037 static struct recorded_ref *recorded_ref_alloc(void)
3038 {
3039         struct recorded_ref *ref;
3040 
3041         ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3042         if (!ref)
3043                 return NULL;
3044         RB_CLEAR_NODE(&ref->node);
3045         INIT_LIST_HEAD(&ref->list);
3046         return ref;
3047 }
3048 
3049 static void recorded_ref_free(struct recorded_ref *ref)
3050 {
3051         if (!ref)
3052                 return;
3053         if (!RB_EMPTY_NODE(&ref->node))
3054                 rb_erase(&ref->node, ref->root);
3055         list_del(&ref->list);
3056         fs_path_free(ref->full_path);
3057         kfree(ref);
3058 }
3059 
3060 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3061 {
3062         ref->full_path = path;
3063         ref->name = (char *)kbasename(ref->full_path->start);
3064         ref->name_len = ref->full_path->end - ref->name;
3065 }
3066 
3067 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3068 {
3069         struct recorded_ref *new;
3070 
3071         new = recorded_ref_alloc();
3072         if (!new)
3073                 return -ENOMEM;
3074 
3075         new->dir = ref->dir;
3076         new->dir_gen = ref->dir_gen;
3077         list_add_tail(&new->list, list);
3078         return 0;
3079 }
3080 
3081 static void __free_recorded_refs(struct list_head *head)
3082 {
3083         struct recorded_ref *cur;
3084 
3085         while (!list_empty(head)) {
3086                 cur = list_entry(head->next, struct recorded_ref, list);
3087                 recorded_ref_free(cur);
3088         }
3089 }
3090 
3091 static void free_recorded_refs(struct send_ctx *sctx)
3092 {
3093         __free_recorded_refs(&sctx->new_refs);
3094         __free_recorded_refs(&sctx->deleted_refs);
3095 }
3096 
3097 /*
3098  * Renames/moves a file/dir to its orphan name. Used when the first
3099  * ref of an unprocessed inode gets overwritten and for all non empty
3100  * directories.
3101  */
3102 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3103                           struct fs_path *path)
3104 {
3105         int ret;
3106         struct fs_path *orphan;
3107 
3108         orphan = fs_path_alloc();
3109         if (!orphan)
3110                 return -ENOMEM;
3111 
3112         ret = gen_unique_name(sctx, ino, gen, orphan);
3113         if (ret < 0)
3114                 goto out;
3115 
3116         ret = send_rename(sctx, path, orphan);
3117 
3118 out:
3119         fs_path_free(orphan);
3120         return ret;
3121 }
3122 
3123 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3124                                                    u64 dir_ino, u64 dir_gen)
3125 {
3126         struct rb_node **p = &sctx->orphan_dirs.rb_node;
3127         struct rb_node *parent = NULL;
3128         struct orphan_dir_info *entry, *odi;
3129 
3130         while (*p) {
3131                 parent = *p;
3132                 entry = rb_entry(parent, struct orphan_dir_info, node);
3133                 if (dir_ino < entry->ino)
3134                         p = &(*p)->rb_left;
3135                 else if (dir_ino > entry->ino)
3136                         p = &(*p)->rb_right;
3137                 else if (dir_gen < entry->gen)
3138                         p = &(*p)->rb_left;
3139                 else if (dir_gen > entry->gen)
3140                         p = &(*p)->rb_right;
3141                 else
3142                         return entry;
3143         }
3144 
3145         odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3146         if (!odi)
3147                 return ERR_PTR(-ENOMEM);
3148         odi->ino = dir_ino;
3149         odi->gen = dir_gen;
3150         odi->last_dir_index_offset = 0;
3151         odi->dir_high_seq_ino = 0;
3152 
3153         rb_link_node(&odi->node, parent, p);
3154         rb_insert_color(&odi->node, &sctx->orphan_dirs);
3155         return odi;
3156 }
3157 
3158 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3159                                                    u64 dir_ino, u64 gen)
3160 {
3161         struct rb_node *n = sctx->orphan_dirs.rb_node;
3162         struct orphan_dir_info *entry;
3163 
3164         while (n) {
3165                 entry = rb_entry(n, struct orphan_dir_info, node);
3166                 if (dir_ino < entry->ino)
3167                         n = n->rb_left;
3168                 else if (dir_ino > entry->ino)
3169                         n = n->rb_right;
3170                 else if (gen < entry->gen)
3171                         n = n->rb_left;
3172                 else if (gen > entry->gen)
3173                         n = n->rb_right;
3174                 else
3175                         return entry;
3176         }
3177         return NULL;
3178 }
3179 
3180 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3181 {
3182         struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3183 
3184         return odi != NULL;
3185 }
3186 
3187 static void free_orphan_dir_info(struct send_ctx *sctx,
3188                                  struct orphan_dir_info *odi)
3189 {
3190         if (!odi)
3191                 return;
3192         rb_erase(&odi->node, &sctx->orphan_dirs);
3193         kfree(odi);
3194 }
3195 
3196 /*
3197  * Returns 1 if a directory can be removed at this point in time.
3198  * We check this by iterating all dir items and checking if the inode behind
3199  * the dir item was already processed.
3200  */
3201 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3202 {
3203         int ret = 0;
3204         int iter_ret = 0;
3205         struct btrfs_root *root = sctx->parent_root;
3206         struct btrfs_path *path;
3207         struct btrfs_key key;
3208         struct btrfs_key found_key;
3209         struct btrfs_key loc;
3210         struct btrfs_dir_item *di;
3211         struct orphan_dir_info *odi = NULL;
3212         u64 dir_high_seq_ino = 0;
3213         u64 last_dir_index_offset = 0;
3214 
3215         /*
3216          * Don't try to rmdir the top/root subvolume dir.
3217          */
3218         if (dir == BTRFS_FIRST_FREE_OBJECTID)
3219                 return 0;
3220 
3221         odi = get_orphan_dir_info(sctx, dir, dir_gen);
3222         if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3223                 return 0;
3224 
3225         path = alloc_path_for_send();
3226         if (!path)
3227                 return -ENOMEM;
3228 
3229         if (!odi) {
3230                 /*
3231                  * Find the inode number associated with the last dir index
3232                  * entry. This is very likely the inode with the highest number
3233                  * of all inodes that have an entry in the directory. We can
3234                  * then use it to avoid future calls to can_rmdir(), when
3235                  * processing inodes with a lower number, from having to search
3236                  * the parent root b+tree for dir index keys.
3237                  */
3238                 key.objectid = dir;
3239                 key.type = BTRFS_DIR_INDEX_KEY;
3240                 key.offset = (u64)-1;
3241 
3242                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3243                 if (ret < 0) {
3244                         goto out;
3245                 } else if (ret > 0) {
3246                         /* Can't happen, the root is never empty. */
3247                         ASSERT(path->slots[0] > 0);
3248                         if (WARN_ON(path->slots[0] == 0)) {
3249                                 ret = -EUCLEAN;
3250                                 goto out;
3251                         }
3252                         path->slots[0]--;
3253                 }
3254 
3255                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3256                 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3257                         /* No index keys, dir can be removed. */
3258                         ret = 1;
3259                         goto out;
3260                 }
3261 
3262                 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3263                                     struct btrfs_dir_item);
3264                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3265                 dir_high_seq_ino = loc.objectid;
3266                 if (sctx->cur_ino < dir_high_seq_ino) {
3267                         ret = 0;
3268                         goto out;
3269                 }
3270 
3271                 btrfs_release_path(path);
3272         }
3273 
3274         key.objectid = dir;
3275         key.type = BTRFS_DIR_INDEX_KEY;
3276         key.offset = (odi ? odi->last_dir_index_offset : 0);
3277 
3278         btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3279                 struct waiting_dir_move *dm;
3280 
3281                 if (found_key.objectid != key.objectid ||
3282                     found_key.type != key.type)
3283                         break;
3284 
3285                 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3286                                 struct btrfs_dir_item);
3287                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3288 
3289                 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3290                 last_dir_index_offset = found_key.offset;
3291 
3292                 dm = get_waiting_dir_move(sctx, loc.objectid);
3293                 if (dm) {
3294                         dm->rmdir_ino = dir;
3295                         dm->rmdir_gen = dir_gen;
3296                         ret = 0;
3297                         goto out;
3298                 }
3299 
3300                 if (loc.objectid > sctx->cur_ino) {
3301                         ret = 0;
3302                         goto out;
3303                 }
3304         }
3305         if (iter_ret < 0) {
3306                 ret = iter_ret;
3307                 goto out;
3308         }
3309         free_orphan_dir_info(sctx, odi);
3310 
3311         ret = 1;
3312 
3313 out:
3314         btrfs_free_path(path);
3315 
3316         if (ret)
3317                 return ret;
3318 
3319         if (!odi) {
3320                 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3321                 if (IS_ERR(odi))
3322                         return PTR_ERR(odi);
3323 
3324                 odi->gen = dir_gen;
3325         }
3326 
3327         odi->last_dir_index_offset = last_dir_index_offset;
3328         odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3329 
3330         return 0;
3331 }
3332 
3333 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3334 {
3335         struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3336 
3337         return entry != NULL;
3338 }
3339 
3340 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3341 {
3342         struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3343         struct rb_node *parent = NULL;
3344         struct waiting_dir_move *entry, *dm;
3345 
3346         dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3347         if (!dm)
3348                 return -ENOMEM;
3349         dm->ino = ino;
3350         dm->rmdir_ino = 0;
3351         dm->rmdir_gen = 0;
3352         dm->orphanized = orphanized;
3353 
3354         while (*p) {
3355                 parent = *p;
3356                 entry = rb_entry(parent, struct waiting_dir_move, node);
3357                 if (ino < entry->ino) {
3358                         p = &(*p)->rb_left;
3359                 } else if (ino > entry->ino) {
3360                         p = &(*p)->rb_right;
3361                 } else {
3362                         kfree(dm);
3363                         return -EEXIST;
3364                 }
3365         }
3366 
3367         rb_link_node(&dm->node, parent, p);
3368         rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3369         return 0;
3370 }
3371 
3372 static struct waiting_dir_move *
3373 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3374 {
3375         struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3376         struct waiting_dir_move *entry;
3377 
3378         while (n) {
3379                 entry = rb_entry(n, struct waiting_dir_move, node);
3380                 if (ino < entry->ino)
3381                         n = n->rb_left;
3382                 else if (ino > entry->ino)
3383                         n = n->rb_right;
3384                 else
3385                         return entry;
3386         }
3387         return NULL;
3388 }
3389 
3390 static void free_waiting_dir_move(struct send_ctx *sctx,
3391                                   struct waiting_dir_move *dm)
3392 {
3393         if (!dm)
3394                 return;
3395         rb_erase(&dm->node, &sctx->waiting_dir_moves);
3396         kfree(dm);
3397 }
3398 
3399 static int add_pending_dir_move(struct send_ctx *sctx,
3400                                 u64 ino,
3401                                 u64 ino_gen,
3402                                 u64 parent_ino,
3403                                 struct list_head *new_refs,
3404                                 struct list_head *deleted_refs,
3405                                 const bool is_orphan)
3406 {
3407         struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3408         struct rb_node *parent = NULL;
3409         struct pending_dir_move *entry = NULL, *pm;
3410         struct recorded_ref *cur;
3411         int exists = 0;
3412         int ret;
3413 
3414         pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3415         if (!pm)
3416                 return -ENOMEM;
3417         pm->parent_ino = parent_ino;
3418         pm->ino = ino;
3419         pm->gen = ino_gen;
3420         INIT_LIST_HEAD(&pm->list);
3421         INIT_LIST_HEAD(&pm->update_refs);
3422         RB_CLEAR_NODE(&pm->node);
3423 
3424         while (*p) {
3425                 parent = *p;
3426                 entry = rb_entry(parent, struct pending_dir_move, node);
3427                 if (parent_ino < entry->parent_ino) {
3428                         p = &(*p)->rb_left;
3429                 } else if (parent_ino > entry->parent_ino) {
3430                         p = &(*p)->rb_right;
3431                 } else {
3432                         exists = 1;
3433                         break;
3434                 }
3435         }
3436 
3437         list_for_each_entry(cur, deleted_refs, list) {
3438                 ret = dup_ref(cur, &pm->update_refs);
3439                 if (ret < 0)
3440                         goto out;
3441         }
3442         list_for_each_entry(cur, new_refs, list) {
3443                 ret = dup_ref(cur, &pm->update_refs);
3444                 if (ret < 0)
3445                         goto out;
3446         }
3447 
3448         ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3449         if (ret)
3450                 goto out;
3451 
3452         if (exists) {
3453                 list_add_tail(&pm->list, &entry->list);
3454         } else {
3455                 rb_link_node(&pm->node, parent, p);
3456                 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3457         }
3458         ret = 0;
3459 out:
3460         if (ret) {
3461                 __free_recorded_refs(&pm->update_refs);
3462                 kfree(pm);
3463         }
3464         return ret;
3465 }
3466 
3467 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3468                                                       u64 parent_ino)
3469 {
3470         struct rb_node *n = sctx->pending_dir_moves.rb_node;
3471         struct pending_dir_move *entry;
3472 
3473         while (n) {
3474                 entry = rb_entry(n, struct pending_dir_move, node);
3475                 if (parent_ino < entry->parent_ino)
3476                         n = n->rb_left;
3477                 else if (parent_ino > entry->parent_ino)
3478                         n = n->rb_right;
3479                 else
3480                         return entry;
3481         }
3482         return NULL;
3483 }
3484 
3485 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3486                      u64 ino, u64 gen, u64 *ancestor_ino)
3487 {
3488         int ret = 0;
3489         u64 parent_inode = 0;
3490         u64 parent_gen = 0;
3491         u64 start_ino = ino;
3492 
3493         *ancestor_ino = 0;
3494         while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3495                 fs_path_reset(name);
3496 
3497                 if (is_waiting_for_rm(sctx, ino, gen))
3498                         break;
3499                 if (is_waiting_for_move(sctx, ino)) {
3500                         if (*ancestor_ino == 0)
3501                                 *ancestor_ino = ino;
3502                         ret = get_first_ref(sctx->parent_root, ino,
3503                                             &parent_inode, &parent_gen, name);
3504                 } else {
3505                         ret = __get_cur_name_and_parent(sctx, ino, gen,
3506                                                         &parent_inode,
3507                                                         &parent_gen, name);
3508                         if (ret > 0) {
3509                                 ret = 0;
3510                                 break;
3511                         }
3512                 }
3513                 if (ret < 0)
3514                         break;
3515                 if (parent_inode == start_ino) {
3516                         ret = 1;
3517                         if (*ancestor_ino == 0)
3518                                 *ancestor_ino = ino;
3519                         break;
3520                 }
3521                 ino = parent_inode;
3522                 gen = parent_gen;
3523         }
3524         return ret;
3525 }
3526 
3527 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3528 {
3529         struct fs_path *from_path = NULL;
3530         struct fs_path *to_path = NULL;
3531         struct fs_path *name = NULL;
3532         u64 orig_progress = sctx->send_progress;
3533         struct recorded_ref *cur;
3534         u64 parent_ino, parent_gen;
3535         struct waiting_dir_move *dm = NULL;
3536         u64 rmdir_ino = 0;
3537         u64 rmdir_gen;
3538         u64 ancestor;
3539         bool is_orphan;
3540         int ret;
3541 
3542         name = fs_path_alloc();
3543         from_path = fs_path_alloc();
3544         if (!name || !from_path) {
3545                 ret = -ENOMEM;
3546                 goto out;
3547         }
3548 
3549         dm = get_waiting_dir_move(sctx, pm->ino);
3550         ASSERT(dm);
3551         rmdir_ino = dm->rmdir_ino;
3552         rmdir_gen = dm->rmdir_gen;
3553         is_orphan = dm->orphanized;
3554         free_waiting_dir_move(sctx, dm);
3555 
3556         if (is_orphan) {
3557                 ret = gen_unique_name(sctx, pm->ino,
3558                                       pm->gen, from_path);
3559         } else {
3560                 ret = get_first_ref(sctx->parent_root, pm->ino,
3561                                     &parent_ino, &parent_gen, name);
3562                 if (ret < 0)
3563                         goto out;
3564                 ret = get_cur_path(sctx, parent_ino, parent_gen,
3565                                    from_path);
3566                 if (ret < 0)
3567                         goto out;
3568                 ret = fs_path_add_path(from_path, name);
3569         }
3570         if (ret < 0)
3571                 goto out;
3572 
3573         sctx->send_progress = sctx->cur_ino + 1;
3574         ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3575         if (ret < 0)
3576                 goto out;
3577         if (ret) {
3578                 LIST_HEAD(deleted_refs);
3579                 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3580                 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3581                                            &pm->update_refs, &deleted_refs,
3582                                            is_orphan);
3583                 if (ret < 0)
3584                         goto out;
3585                 if (rmdir_ino) {
3586                         dm = get_waiting_dir_move(sctx, pm->ino);
3587                         ASSERT(dm);
3588                         dm->rmdir_ino = rmdir_ino;
3589                         dm->rmdir_gen = rmdir_gen;
3590                 }
3591                 goto out;
3592         }
3593         fs_path_reset(name);
3594         to_path = name;
3595         name = NULL;
3596         ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3597         if (ret < 0)
3598                 goto out;
3599 
3600         ret = send_rename(sctx, from_path, to_path);
3601         if (ret < 0)
3602                 goto out;
3603 
3604         if (rmdir_ino) {
3605                 struct orphan_dir_info *odi;
3606                 u64 gen;
3607 
3608                 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3609                 if (!odi) {
3610                         /* already deleted */
3611                         goto finish;
3612                 }
3613                 gen = odi->gen;
3614 
3615                 ret = can_rmdir(sctx, rmdir_ino, gen);
3616                 if (ret < 0)
3617                         goto out;
3618                 if (!ret)
3619                         goto finish;
3620 
3621                 name = fs_path_alloc();
3622                 if (!name) {
3623                         ret = -ENOMEM;
3624                         goto out;
3625                 }
3626                 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3627                 if (ret < 0)
3628                         goto out;
3629                 ret = send_rmdir(sctx, name);
3630                 if (ret < 0)
3631                         goto out;
3632         }
3633 
3634 finish:
3635         ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3636         if (ret < 0)
3637                 goto out;
3638 
3639         /*
3640          * After rename/move, need to update the utimes of both new parent(s)
3641          * and old parent(s).
3642          */
3643         list_for_each_entry(cur, &pm->update_refs, list) {
3644                 /*
3645                  * The parent inode might have been deleted in the send snapshot
3646                  */
3647                 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3648                 if (ret == -ENOENT) {
3649                         ret = 0;
3650                         continue;
3651                 }
3652                 if (ret < 0)
3653                         goto out;
3654 
3655                 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3656                 if (ret < 0)
3657                         goto out;
3658         }
3659 
3660 out:
3661         fs_path_free(name);
3662         fs_path_free(from_path);
3663         fs_path_free(to_path);
3664         sctx->send_progress = orig_progress;
3665 
3666         return ret;
3667 }
3668 
3669 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3670 {
3671         if (!list_empty(&m->list))
3672                 list_del(&m->list);
3673         if (!RB_EMPTY_NODE(&m->node))
3674                 rb_erase(&m->node, &sctx->pending_dir_moves);
3675         __free_recorded_refs(&m->update_refs);
3676         kfree(m);
3677 }
3678 
3679 static void tail_append_pending_moves(struct send_ctx *sctx,
3680                                       struct pending_dir_move *moves,
3681                                       struct list_head *stack)
3682 {
3683         if (list_empty(&moves->list)) {
3684                 list_add_tail(&moves->list, stack);
3685         } else {
3686                 LIST_HEAD(list);
3687                 list_splice_init(&moves->list, &list);
3688                 list_add_tail(&moves->list, stack);
3689                 list_splice_tail(&list, stack);
3690         }
3691         if (!RB_EMPTY_NODE(&moves->node)) {
3692                 rb_erase(&moves->node, &sctx->pending_dir_moves);
3693                 RB_CLEAR_NODE(&moves->node);
3694         }
3695 }
3696 
3697 static int apply_children_dir_moves(struct send_ctx *sctx)
3698 {
3699         struct pending_dir_move *pm;
3700         LIST_HEAD(stack);
3701         u64 parent_ino = sctx->cur_ino;
3702         int ret = 0;
3703 
3704         pm = get_pending_dir_moves(sctx, parent_ino);
3705         if (!pm)
3706                 return 0;
3707 
3708         tail_append_pending_moves(sctx, pm, &stack);
3709 
3710         while (!list_empty(&stack)) {
3711                 pm = list_first_entry(&stack, struct pending_dir_move, list);
3712                 parent_ino = pm->ino;
3713                 ret = apply_dir_move(sctx, pm);
3714                 free_pending_move(sctx, pm);
3715                 if (ret)
3716                         goto out;
3717                 pm = get_pending_dir_moves(sctx, parent_ino);
3718                 if (pm)
3719                         tail_append_pending_moves(sctx, pm, &stack);
3720         }
3721         return 0;
3722 
3723 out:
3724         while (!list_empty(&stack)) {
3725                 pm = list_first_entry(&stack, struct pending_dir_move, list);
3726                 free_pending_move(sctx, pm);
3727         }
3728         return ret;
3729 }
3730 
3731 /*
3732  * We might need to delay a directory rename even when no ancestor directory
3733  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3734  * renamed. This happens when we rename a directory to the old name (the name
3735  * in the parent root) of some other unrelated directory that got its rename
3736  * delayed due to some ancestor with higher number that got renamed.
3737  *
3738  * Example:
3739  *
3740  * Parent snapshot:
3741  * .                                       (ino 256)
3742  * |---- a/                                (ino 257)
3743  * |     |---- file                        (ino 260)
3744  * |
3745  * |---- b/                                (ino 258)
3746  * |---- c/                                (ino 259)
3747  *
3748  * Send snapshot:
3749  * .                                       (ino 256)
3750  * |---- a/                                (ino 258)
3751  * |---- x/                                (ino 259)
3752  *       |---- y/                          (ino 257)
3753  *             |----- file                 (ino 260)
3754  *
3755  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3756  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3757  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3758  * must issue is:
3759  *
3760  * 1 - rename 259 from 'c' to 'x'
3761  * 2 - rename 257 from 'a' to 'x/y'
3762  * 3 - rename 258 from 'b' to 'a'
3763  *
3764  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3765  * be done right away and < 0 on error.
3766  */
3767 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3768                                   struct recorded_ref *parent_ref,
3769                                   const bool is_orphan)
3770 {
3771         struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3772         struct btrfs_path *path;
3773         struct btrfs_key key;
3774         struct btrfs_key di_key;
3775         struct btrfs_dir_item *di;
3776         u64 left_gen;
3777         u64 right_gen;
3778         int ret = 0;
3779         struct waiting_dir_move *wdm;
3780 
3781         if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3782                 return 0;
3783 
3784         path = alloc_path_for_send();
3785         if (!path)
3786                 return -ENOMEM;
3787 
3788         key.objectid = parent_ref->dir;
3789         key.type = BTRFS_DIR_ITEM_KEY;
3790         key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3791 
3792         ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3793         if (ret < 0) {
3794                 goto out;
3795         } else if (ret > 0) {
3796                 ret = 0;
3797                 goto out;
3798         }
3799 
3800         di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3801                                        parent_ref->name_len);
3802         if (!di) {
3803                 ret = 0;
3804                 goto out;
3805         }
3806         /*
3807          * di_key.objectid has the number of the inode that has a dentry in the
3808          * parent directory with the same name that sctx->cur_ino is being
3809          * renamed to. We need to check if that inode is in the send root as
3810          * well and if it is currently marked as an inode with a pending rename,
3811          * if it is, we need to delay the rename of sctx->cur_ino as well, so
3812          * that it happens after that other inode is renamed.
3813          */
3814         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3815         if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3816                 ret = 0;
3817                 goto out;
3818         }
3819 
3820         ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3821         if (ret < 0)
3822                 goto out;
3823         ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3824         if (ret < 0) {
3825                 if (ret == -ENOENT)
3826                         ret = 0;
3827                 goto out;
3828         }
3829 
3830         /* Different inode, no need to delay the rename of sctx->cur_ino */
3831         if (right_gen != left_gen) {
3832                 ret = 0;
3833                 goto out;
3834         }
3835 
3836         wdm = get_waiting_dir_move(sctx, di_key.objectid);
3837         if (wdm && !wdm->orphanized) {
3838                 ret = add_pending_dir_move(sctx,
3839                                            sctx->cur_ino,
3840                                            sctx->cur_inode_gen,
3841                                            di_key.objectid,
3842                                            &sctx->new_refs,
3843                                            &sctx->deleted_refs,
3844                                            is_orphan);
3845                 if (!ret)
3846                         ret = 1;
3847         }
3848 out:
3849         btrfs_free_path(path);
3850         return ret;
3851 }
3852 
3853 /*
3854  * Check if inode ino2, or any of its ancestors, is inode ino1.
3855  * Return 1 if true, 0 if false and < 0 on error.
3856  */
3857 static int check_ino_in_path(struct btrfs_root *root,
3858                              const u64 ino1,
3859                              const u64 ino1_gen,
3860                              const u64 ino2,
3861                              const u64 ino2_gen,
3862                              struct fs_path *fs_path)
3863 {
3864         u64 ino = ino2;
3865 
3866         if (ino1 == ino2)
3867                 return ino1_gen == ino2_gen;
3868 
3869         while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3870                 u64 parent;
3871                 u64 parent_gen;
3872                 int ret;
3873 
3874                 fs_path_reset(fs_path);
3875                 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3876                 if (ret < 0)
3877                         return ret;
3878                 if (parent == ino1)
3879                         return parent_gen == ino1_gen;
3880                 ino = parent;
3881         }
3882         return 0;
3883 }
3884 
3885 /*
3886  * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3887  * possible path (in case ino2 is not a directory and has multiple hard links).
3888  * Return 1 if true, 0 if false and < 0 on error.
3889  */
3890 static int is_ancestor(struct btrfs_root *root,
3891                        const u64 ino1,
3892                        const u64 ino1_gen,
3893                        const u64 ino2,
3894                        struct fs_path *fs_path)
3895 {
3896         bool free_fs_path = false;
3897         int ret = 0;
3898         int iter_ret = 0;
3899         struct btrfs_path *path = NULL;
3900         struct btrfs_key key;
3901 
3902         if (!fs_path) {
3903                 fs_path = fs_path_alloc();
3904                 if (!fs_path)
3905                         return -ENOMEM;
3906                 free_fs_path = true;
3907         }
3908 
3909         path = alloc_path_for_send();
3910         if (!path) {
3911                 ret = -ENOMEM;
3912                 goto out;
3913         }
3914 
3915         key.objectid = ino2;
3916         key.type = BTRFS_INODE_REF_KEY;
3917         key.offset = 0;
3918 
3919         btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3920                 struct extent_buffer *leaf = path->nodes[0];
3921                 int slot = path->slots[0];
3922                 u32 cur_offset = 0;
3923                 u32 item_size;
3924 
3925                 if (key.objectid != ino2)
3926                         break;
3927                 if (key.type != BTRFS_INODE_REF_KEY &&
3928                     key.type != BTRFS_INODE_EXTREF_KEY)
3929                         break;
3930 
3931                 item_size = btrfs_item_size(leaf, slot);
3932                 while (cur_offset < item_size) {
3933                         u64 parent;
3934                         u64 parent_gen;
3935 
3936                         if (key.type == BTRFS_INODE_EXTREF_KEY) {
3937                                 unsigned long ptr;
3938                                 struct btrfs_inode_extref *extref;
3939 
3940                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3941                                 extref = (struct btrfs_inode_extref *)
3942                                         (ptr + cur_offset);
3943                                 parent = btrfs_inode_extref_parent(leaf,
3944                                                                    extref);
3945                                 cur_offset += sizeof(*extref);
3946                                 cur_offset += btrfs_inode_extref_name_len(leaf,
3947                                                                   extref);
3948                         } else {
3949                                 parent = key.offset;
3950                                 cur_offset = item_size;
3951                         }
3952 
3953                         ret = get_inode_gen(root, parent, &parent_gen);
3954                         if (ret < 0)
3955                                 goto out;
3956                         ret = check_ino_in_path(root, ino1, ino1_gen,
3957                                                 parent, parent_gen, fs_path);
3958                         if (ret)
3959                                 goto out;
3960                 }
3961         }
3962         ret = 0;
3963         if (iter_ret < 0)
3964                 ret = iter_ret;
3965 
3966 out:
3967         btrfs_free_path(path);
3968         if (free_fs_path)
3969                 fs_path_free(fs_path);
3970         return ret;
3971 }
3972 
3973 static int wait_for_parent_move(struct send_ctx *sctx,
3974                                 struct recorded_ref *parent_ref,
3975                                 const bool is_orphan)
3976 {
3977         int ret = 0;
3978         u64 ino = parent_ref->dir;
3979         u64 ino_gen = parent_ref->dir_gen;
3980         u64 parent_ino_before, parent_ino_after;
3981         struct fs_path *path_before = NULL;
3982         struct fs_path *path_after = NULL;
3983         int len1, len2;
3984 
3985         path_after = fs_path_alloc();
3986         path_before = fs_path_alloc();
3987         if (!path_after || !path_before) {
3988                 ret = -ENOMEM;
3989                 goto out;
3990         }
3991 
3992         /*
3993          * Our current directory inode may not yet be renamed/moved because some
3994          * ancestor (immediate or not) has to be renamed/moved first. So find if
3995          * such ancestor exists and make sure our own rename/move happens after
3996          * that ancestor is processed to avoid path build infinite loops (done
3997          * at get_cur_path()).
3998          */
3999         while (ino > BTRFS_FIRST_FREE_OBJECTID) {
4000                 u64 parent_ino_after_gen;
4001 
4002                 if (is_waiting_for_move(sctx, ino)) {
4003                         /*
4004                          * If the current inode is an ancestor of ino in the
4005                          * parent root, we need to delay the rename of the
4006                          * current inode, otherwise don't delayed the rename
4007                          * because we can end up with a circular dependency
4008                          * of renames, resulting in some directories never
4009                          * getting the respective rename operations issued in
4010                          * the send stream or getting into infinite path build
4011                          * loops.
4012                          */
4013                         ret = is_ancestor(sctx->parent_root,
4014                                           sctx->cur_ino, sctx->cur_inode_gen,
4015                                           ino, path_before);
4016                         if (ret)
4017                                 break;
4018                 }
4019 
4020                 fs_path_reset(path_before);
4021                 fs_path_reset(path_after);
4022 
4023                 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4024                                     &parent_ino_after_gen, path_after);
4025                 if (ret < 0)
4026                         goto out;
4027                 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4028                                     NULL, path_before);
4029                 if (ret < 0 && ret != -ENOENT) {
4030                         goto out;
4031                 } else if (ret == -ENOENT) {
4032                         ret = 0;
4033                         break;
4034                 }
4035 
4036                 len1 = fs_path_len(path_before);
4037                 len2 = fs_path_len(path_after);
4038                 if (ino > sctx->cur_ino &&
4039                     (parent_ino_before != parent_ino_after || len1 != len2 ||
4040                      memcmp(path_before->start, path_after->start, len1))) {
4041                         u64 parent_ino_gen;
4042 
4043                         ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4044                         if (ret < 0)
4045                                 goto out;
4046                         if (ino_gen == parent_ino_gen) {
4047                                 ret = 1;
4048                                 break;
4049                         }
4050                 }
4051                 ino = parent_ino_after;
4052                 ino_gen = parent_ino_after_gen;
4053         }
4054 
4055 out:
4056         fs_path_free(path_before);
4057         fs_path_free(path_after);
4058 
4059         if (ret == 1) {
4060                 ret = add_pending_dir_move(sctx,
4061                                            sctx->cur_ino,
4062                                            sctx->cur_inode_gen,
4063                                            ino,
4064                                            &sctx->new_refs,
4065                                            &sctx->deleted_refs,
4066                                            is_orphan);
4067                 if (!ret)
4068                         ret = 1;
4069         }
4070 
4071         return ret;
4072 }
4073 
4074 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4075 {
4076         int ret;
4077         struct fs_path *new_path;
4078 
4079         /*
4080          * Our reference's name member points to its full_path member string, so
4081          * we use here a new path.
4082          */
4083         new_path = fs_path_alloc();
4084         if (!new_path)
4085                 return -ENOMEM;
4086 
4087         ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4088         if (ret < 0) {
4089                 fs_path_free(new_path);
4090                 return ret;
4091         }
4092         ret = fs_path_add(new_path, ref->name, ref->name_len);
4093         if (ret < 0) {
4094                 fs_path_free(new_path);
4095                 return ret;
4096         }
4097 
4098         fs_path_free(ref->full_path);
4099         set_ref_path(ref, new_path);
4100 
4101         return 0;
4102 }
4103 
4104 /*
4105  * When processing the new references for an inode we may orphanize an existing
4106  * directory inode because its old name conflicts with one of the new references
4107  * of the current inode. Later, when processing another new reference of our
4108  * inode, we might need to orphanize another inode, but the path we have in the
4109  * reference reflects the pre-orphanization name of the directory we previously
4110  * orphanized. For example:
4111  *
4112  * parent snapshot looks like:
4113  *
4114  * .                                     (ino 256)
4115  * |----- f1                             (ino 257)
4116  * |----- f2                             (ino 258)
4117  * |----- d1/                            (ino 259)
4118  *        |----- d2/                     (ino 260)
4119  *
4120  * send snapshot looks like:
4121  *
4122  * .                                     (ino 256)
4123  * |----- d1                             (ino 258)
4124  * |----- f2/                            (ino 259)
4125  *        |----- f2_link/                (ino 260)
4126  *        |       |----- f1              (ino 257)
4127  *        |
4128  *        |----- d2                      (ino 258)
4129  *
4130  * When processing inode 257 we compute the name for inode 259 as "d1", and we
4131  * cache it in the name cache. Later when we start processing inode 258, when
4132  * collecting all its new references we set a full path of "d1/d2" for its new
4133  * reference with name "d2". When we start processing the new references we
4134  * start by processing the new reference with name "d1", and this results in
4135  * orphanizing inode 259, since its old reference causes a conflict. Then we
4136  * move on the next new reference, with name "d2", and we find out we must
4137  * orphanize inode 260, as its old reference conflicts with ours - but for the
4138  * orphanization we use a source path corresponding to the path we stored in the
4139  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4140  * receiver fail since the path component "d1/" no longer exists, it was renamed
4141  * to "o259-6-0/" when processing the previous new reference. So in this case we
4142  * must recompute the path in the new reference and use it for the new
4143  * orphanization operation.
4144  */
4145 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4146 {
4147         char *name;
4148         int ret;
4149 
4150         name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4151         if (!name)
4152                 return -ENOMEM;
4153 
4154         fs_path_reset(ref->full_path);
4155         ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4156         if (ret < 0)
4157                 goto out;
4158 
4159         ret = fs_path_add(ref->full_path, name, ref->name_len);
4160         if (ret < 0)
4161                 goto out;
4162 
4163         /* Update the reference's base name pointer. */
4164         set_ref_path(ref, ref->full_path);
4165 out:
4166         kfree(name);
4167         return ret;
4168 }
4169 
4170 /*
4171  * This does all the move/link/unlink/rmdir magic.
4172  */
4173 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4174 {
4175         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4176         int ret = 0;
4177         struct recorded_ref *cur;
4178         struct recorded_ref *cur2;
4179         LIST_HEAD(check_dirs);
4180         struct fs_path *valid_path = NULL;
4181         u64 ow_inode = 0;
4182         u64 ow_gen;
4183         u64 ow_mode;
4184         int did_overwrite = 0;
4185         int is_orphan = 0;
4186         u64 last_dir_ino_rm = 0;
4187         bool can_rename = true;
4188         bool orphanized_dir = false;
4189         bool orphanized_ancestor = false;
4190 
4191         btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4192 
4193         /*
4194          * This should never happen as the root dir always has the same ref
4195          * which is always '..'
4196          */
4197         if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4198                 btrfs_err(fs_info,
4199                           "send: unexpected inode %llu in process_recorded_refs()",
4200                           sctx->cur_ino);
4201                 ret = -EINVAL;
4202                 goto out;
4203         }
4204 
4205         valid_path = fs_path_alloc();
4206         if (!valid_path) {
4207                 ret = -ENOMEM;
4208                 goto out;
4209         }
4210 
4211         /*
4212          * First, check if the first ref of the current inode was overwritten
4213          * before. If yes, we know that the current inode was already orphanized
4214          * and thus use the orphan name. If not, we can use get_cur_path to
4215          * get the path of the first ref as it would like while receiving at
4216          * this point in time.
4217          * New inodes are always orphan at the beginning, so force to use the
4218          * orphan name in this case.
4219          * The first ref is stored in valid_path and will be updated if it
4220          * gets moved around.
4221          */
4222         if (!sctx->cur_inode_new) {
4223                 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4224                                 sctx->cur_inode_gen);
4225                 if (ret < 0)
4226                         goto out;
4227                 if (ret)
4228                         did_overwrite = 1;
4229         }
4230         if (sctx->cur_inode_new || did_overwrite) {
4231                 ret = gen_unique_name(sctx, sctx->cur_ino,
4232                                 sctx->cur_inode_gen, valid_path);
4233                 if (ret < 0)
4234                         goto out;
4235                 is_orphan = 1;
4236         } else {
4237                 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4238                                 valid_path);
4239                 if (ret < 0)
4240                         goto out;
4241         }
4242 
4243         /*
4244          * Before doing any rename and link operations, do a first pass on the
4245          * new references to orphanize any unprocessed inodes that may have a
4246          * reference that conflicts with one of the new references of the current
4247          * inode. This needs to happen first because a new reference may conflict
4248          * with the old reference of a parent directory, so we must make sure
4249          * that the path used for link and rename commands don't use an
4250          * orphanized name when an ancestor was not yet orphanized.
4251          *
4252          * Example:
4253          *
4254          * Parent snapshot:
4255          *
4256          * .                                                      (ino 256)
4257          * |----- testdir/                                        (ino 259)
4258          * |          |----- a                                    (ino 257)
4259          * |
4260          * |----- b                                               (ino 258)
4261          *
4262          * Send snapshot:
4263          *
4264          * .                                                      (ino 256)
4265          * |----- testdir_2/                                      (ino 259)
4266          * |          |----- a                                    (ino 260)
4267          * |
4268          * |----- testdir                                         (ino 257)
4269          * |----- b                                               (ino 257)
4270          * |----- b2                                              (ino 258)
4271          *
4272          * Processing the new reference for inode 257 with name "b" may happen
4273          * before processing the new reference with name "testdir". If so, we
4274          * must make sure that by the time we send a link command to create the
4275          * hard link "b", inode 259 was already orphanized, since the generated
4276          * path in "valid_path" already contains the orphanized name for 259.
4277          * We are processing inode 257, so only later when processing 259 we do
4278          * the rename operation to change its temporary (orphanized) name to
4279          * "testdir_2".
4280          */
4281         list_for_each_entry(cur, &sctx->new_refs, list) {
4282                 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4283                 if (ret < 0)
4284                         goto out;
4285                 if (ret == inode_state_will_create)
4286                         continue;
4287 
4288                 /*
4289                  * Check if this new ref would overwrite the first ref of another
4290                  * unprocessed inode. If yes, orphanize the overwritten inode.
4291                  * If we find an overwritten ref that is not the first ref,
4292                  * simply unlink it.
4293                  */
4294                 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4295                                 cur->name, cur->name_len,
4296                                 &ow_inode, &ow_gen, &ow_mode);
4297                 if (ret < 0)
4298                         goto out;
4299                 if (ret) {
4300                         ret = is_first_ref(sctx->parent_root,
4301                                            ow_inode, cur->dir, cur->name,
4302                                            cur->name_len);
4303                         if (ret < 0)
4304                                 goto out;
4305                         if (ret) {
4306                                 struct name_cache_entry *nce;
4307                                 struct waiting_dir_move *wdm;
4308 
4309                                 if (orphanized_dir) {
4310                                         ret = refresh_ref_path(sctx, cur);
4311                                         if (ret < 0)
4312                                                 goto out;
4313                                 }
4314 
4315                                 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4316                                                 cur->full_path);
4317                                 if (ret < 0)
4318                                         goto out;
4319                                 if (S_ISDIR(ow_mode))
4320                                         orphanized_dir = true;
4321 
4322                                 /*
4323                                  * If ow_inode has its rename operation delayed
4324                                  * make sure that its orphanized name is used in
4325                                  * the source path when performing its rename
4326                                  * operation.
4327                                  */
4328                                 wdm = get_waiting_dir_move(sctx, ow_inode);
4329                                 if (wdm)
4330                                         wdm->orphanized = true;
4331 
4332                                 /*
4333                                  * Make sure we clear our orphanized inode's
4334                                  * name from the name cache. This is because the
4335                                  * inode ow_inode might be an ancestor of some
4336                                  * other inode that will be orphanized as well
4337                                  * later and has an inode number greater than
4338                                  * sctx->send_progress. We need to prevent
4339                                  * future name lookups from using the old name
4340                                  * and get instead the orphan name.
4341                                  */
4342                                 nce = name_cache_search(sctx, ow_inode, ow_gen);
4343                                 if (nce)
4344                                         btrfs_lru_cache_remove(&sctx->name_cache,
4345                                                                &nce->entry);
4346 
4347                                 /*
4348                                  * ow_inode might currently be an ancestor of
4349                                  * cur_ino, therefore compute valid_path (the
4350                                  * current path of cur_ino) again because it
4351                                  * might contain the pre-orphanization name of
4352                                  * ow_inode, which is no longer valid.
4353                                  */
4354                                 ret = is_ancestor(sctx->parent_root,
4355                                                   ow_inode, ow_gen,
4356                                                   sctx->cur_ino, NULL);
4357                                 if (ret > 0) {
4358                                         orphanized_ancestor = true;
4359                                         fs_path_reset(valid_path);
4360                                         ret = get_cur_path(sctx, sctx->cur_ino,
4361                                                            sctx->cur_inode_gen,
4362                                                            valid_path);
4363                                 }
4364                                 if (ret < 0)
4365                                         goto out;
4366                         } else {
4367                                 /*
4368                                  * If we previously orphanized a directory that
4369                                  * collided with a new reference that we already
4370                                  * processed, recompute the current path because
4371                                  * that directory may be part of the path.
4372                                  */
4373                                 if (orphanized_dir) {
4374                                         ret = refresh_ref_path(sctx, cur);
4375                                         if (ret < 0)
4376                                                 goto out;
4377                                 }
4378                                 ret = send_unlink(sctx, cur->full_path);
4379                                 if (ret < 0)
4380                                         goto out;
4381                         }
4382                 }
4383 
4384         }
4385 
4386         list_for_each_entry(cur, &sctx->new_refs, list) {
4387                 /*
4388                  * We may have refs where the parent directory does not exist
4389                  * yet. This happens if the parent directories inum is higher
4390                  * than the current inum. To handle this case, we create the
4391                  * parent directory out of order. But we need to check if this
4392                  * did already happen before due to other refs in the same dir.
4393                  */
4394                 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4395                 if (ret < 0)
4396                         goto out;
4397                 if (ret == inode_state_will_create) {
4398                         ret = 0;
4399                         /*
4400                          * First check if any of the current inodes refs did
4401                          * already create the dir.
4402                          */
4403                         list_for_each_entry(cur2, &sctx->new_refs, list) {
4404                                 if (cur == cur2)
4405                                         break;
4406                                 if (cur2->dir == cur->dir) {
4407                                         ret = 1;
4408                                         break;
4409                                 }
4410                         }
4411 
4412                         /*
4413                          * If that did not happen, check if a previous inode
4414                          * did already create the dir.
4415                          */
4416                         if (!ret)
4417                                 ret = did_create_dir(sctx, cur->dir);
4418                         if (ret < 0)
4419                                 goto out;
4420                         if (!ret) {
4421                                 ret = send_create_inode(sctx, cur->dir);
4422                                 if (ret < 0)
4423                                         goto out;
4424                                 cache_dir_created(sctx, cur->dir);
4425                         }
4426                 }
4427 
4428                 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4429                         ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4430                         if (ret < 0)
4431                                 goto out;
4432                         if (ret == 1) {
4433                                 can_rename = false;
4434                                 *pending_move = 1;
4435                         }
4436                 }
4437 
4438                 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4439                     can_rename) {
4440                         ret = wait_for_parent_move(sctx, cur, is_orphan);
4441                         if (ret < 0)
4442                                 goto out;
4443                         if (ret == 1) {
4444                                 can_rename = false;
4445                                 *pending_move = 1;
4446                         }
4447                 }
4448 
4449                 /*
4450                  * link/move the ref to the new place. If we have an orphan
4451                  * inode, move it and update valid_path. If not, link or move
4452                  * it depending on the inode mode.
4453                  */
4454                 if (is_orphan && can_rename) {
4455                         ret = send_rename(sctx, valid_path, cur->full_path);
4456                         if (ret < 0)
4457                                 goto out;
4458                         is_orphan = 0;
4459                         ret = fs_path_copy(valid_path, cur->full_path);
4460                         if (ret < 0)
4461                                 goto out;
4462                 } else if (can_rename) {
4463                         if (S_ISDIR(sctx->cur_inode_mode)) {
4464                                 /*
4465                                  * Dirs can't be linked, so move it. For moved
4466                                  * dirs, we always have one new and one deleted
4467                                  * ref. The deleted ref is ignored later.
4468                                  */
4469                                 ret = send_rename(sctx, valid_path,
4470                                                   cur->full_path);
4471                                 if (!ret)
4472                                         ret = fs_path_copy(valid_path,
4473                                                            cur->full_path);
4474                                 if (ret < 0)
4475                                         goto out;
4476                         } else {
4477                                 /*
4478                                  * We might have previously orphanized an inode
4479                                  * which is an ancestor of our current inode,
4480                                  * so our reference's full path, which was
4481                                  * computed before any such orphanizations, must
4482                                  * be updated.
4483                                  */
4484                                 if (orphanized_dir) {
4485                                         ret = update_ref_path(sctx, cur);
4486                                         if (ret < 0)
4487                                                 goto out;
4488                                 }
4489                                 ret = send_link(sctx, cur->full_path,
4490                                                 valid_path);
4491                                 if (ret < 0)
4492                                         goto out;
4493                         }
4494                 }
4495                 ret = dup_ref(cur, &check_dirs);
4496                 if (ret < 0)
4497                         goto out;
4498         }
4499 
4500         if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4501                 /*
4502                  * Check if we can already rmdir the directory. If not,
4503                  * orphanize it. For every dir item inside that gets deleted
4504                  * later, we do this check again and rmdir it then if possible.
4505                  * See the use of check_dirs for more details.
4506                  */
4507                 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4508                 if (ret < 0)
4509                         goto out;
4510                 if (ret) {
4511                         ret = send_rmdir(sctx, valid_path);
4512                         if (ret < 0)
4513                                 goto out;
4514                 } else if (!is_orphan) {
4515                         ret = orphanize_inode(sctx, sctx->cur_ino,
4516                                         sctx->cur_inode_gen, valid_path);
4517                         if (ret < 0)
4518                                 goto out;
4519                         is_orphan = 1;
4520                 }
4521 
4522                 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4523                         ret = dup_ref(cur, &check_dirs);
4524                         if (ret < 0)
4525                                 goto out;
4526                 }
4527         } else if (S_ISDIR(sctx->cur_inode_mode) &&
4528                    !list_empty(&sctx->deleted_refs)) {
4529                 /*
4530                  * We have a moved dir. Add the old parent to check_dirs
4531                  */
4532                 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4533                                 list);
4534                 ret = dup_ref(cur, &check_dirs);
4535                 if (ret < 0)
4536                         goto out;
4537         } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4538                 /*
4539                  * We have a non dir inode. Go through all deleted refs and
4540                  * unlink them if they were not already overwritten by other
4541                  * inodes.
4542                  */
4543                 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4544                         ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4545                                         sctx->cur_ino, sctx->cur_inode_gen,
4546                                         cur->name, cur->name_len);
4547                         if (ret < 0)
4548                                 goto out;
4549                         if (!ret) {
4550                                 /*
4551                                  * If we orphanized any ancestor before, we need
4552                                  * to recompute the full path for deleted names,
4553                                  * since any such path was computed before we
4554                                  * processed any references and orphanized any
4555                                  * ancestor inode.
4556                                  */
4557                                 if (orphanized_ancestor) {
4558                                         ret = update_ref_path(sctx, cur);
4559                                         if (ret < 0)
4560                                                 goto out;
4561                                 }
4562                                 ret = send_unlink(sctx, cur->full_path);
4563                                 if (ret < 0)
4564                                         goto out;
4565                         }
4566                         ret = dup_ref(cur, &check_dirs);
4567                         if (ret < 0)
4568                                 goto out;
4569                 }
4570                 /*
4571                  * If the inode is still orphan, unlink the orphan. This may
4572                  * happen when a previous inode did overwrite the first ref
4573                  * of this inode and no new refs were added for the current
4574                  * inode. Unlinking does not mean that the inode is deleted in
4575                  * all cases. There may still be links to this inode in other
4576                  * places.
4577                  */
4578                 if (is_orphan) {
4579                         ret = send_unlink(sctx, valid_path);
4580                         if (ret < 0)
4581                                 goto out;
4582                 }
4583         }
4584 
4585         /*
4586          * We did collect all parent dirs where cur_inode was once located. We
4587          * now go through all these dirs and check if they are pending for
4588          * deletion and if it's finally possible to perform the rmdir now.
4589          * We also update the inode stats of the parent dirs here.
4590          */
4591         list_for_each_entry(cur, &check_dirs, list) {
4592                 /*
4593                  * In case we had refs into dirs that were not processed yet,
4594                  * we don't need to do the utime and rmdir logic for these dirs.
4595                  * The dir will be processed later.
4596                  */
4597                 if (cur->dir > sctx->cur_ino)
4598                         continue;
4599 
4600                 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4601                 if (ret < 0)
4602                         goto out;
4603 
4604                 if (ret == inode_state_did_create ||
4605                     ret == inode_state_no_change) {
4606                         ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4607                         if (ret < 0)
4608                                 goto out;
4609                 } else if (ret == inode_state_did_delete &&
4610                            cur->dir != last_dir_ino_rm) {
4611                         ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4612                         if (ret < 0)
4613                                 goto out;
4614                         if (ret) {
4615                                 ret = get_cur_path(sctx, cur->dir,
4616                                                    cur->dir_gen, valid_path);
4617                                 if (ret < 0)
4618                                         goto out;
4619                                 ret = send_rmdir(sctx, valid_path);
4620                                 if (ret < 0)
4621                                         goto out;
4622                                 last_dir_ino_rm = cur->dir;
4623                         }
4624                 }
4625         }
4626 
4627         ret = 0;
4628 
4629 out:
4630         __free_recorded_refs(&check_dirs);
4631         free_recorded_refs(sctx);
4632         fs_path_free(valid_path);
4633         return ret;
4634 }
4635 
4636 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4637 {
4638         const struct recorded_ref *data = k;
4639         const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4640         int result;
4641 
4642         if (data->dir > ref->dir)
4643                 return 1;
4644         if (data->dir < ref->dir)
4645                 return -1;
4646         if (data->dir_gen > ref->dir_gen)
4647                 return 1;
4648         if (data->dir_gen < ref->dir_gen)
4649                 return -1;
4650         if (data->name_len > ref->name_len)
4651                 return 1;
4652         if (data->name_len < ref->name_len)
4653                 return -1;
4654         result = strcmp(data->name, ref->name);
4655         if (result > 0)
4656                 return 1;
4657         if (result < 0)
4658                 return -1;
4659         return 0;
4660 }
4661 
4662 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4663 {
4664         const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4665 
4666         return rbtree_ref_comp(entry, parent) < 0;
4667 }
4668 
4669 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4670                               struct fs_path *name, u64 dir, u64 dir_gen,
4671                               struct send_ctx *sctx)
4672 {
4673         int ret = 0;
4674         struct fs_path *path = NULL;
4675         struct recorded_ref *ref = NULL;
4676 
4677         path = fs_path_alloc();
4678         if (!path) {
4679                 ret = -ENOMEM;
4680                 goto out;
4681         }
4682 
4683         ref = recorded_ref_alloc();
4684         if (!ref) {
4685                 ret = -ENOMEM;
4686                 goto out;
4687         }
4688 
4689         ret = get_cur_path(sctx, dir, dir_gen, path);
4690         if (ret < 0)
4691                 goto out;
4692         ret = fs_path_add_path(path, name);
4693         if (ret < 0)
4694                 goto out;
4695 
4696         ref->dir = dir;
4697         ref->dir_gen = dir_gen;
4698         set_ref_path(ref, path);
4699         list_add_tail(&ref->list, refs);
4700         rb_add(&ref->node, root, rbtree_ref_less);
4701         ref->root = root;
4702 out:
4703         if (ret) {
4704                 if (path && (!ref || !ref->full_path))
4705                         fs_path_free(path);
4706                 recorded_ref_free(ref);
4707         }
4708         return ret;
4709 }
4710 
4711 static int record_new_ref_if_needed(int num, u64 dir, int index,
4712                                     struct fs_path *name, void *ctx)
4713 {
4714         int ret = 0;
4715         struct send_ctx *sctx = ctx;
4716         struct rb_node *node = NULL;
4717         struct recorded_ref data;
4718         struct recorded_ref *ref;
4719         u64 dir_gen;
4720 
4721         ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4722         if (ret < 0)
4723                 goto out;
4724 
4725         data.dir = dir;
4726         data.dir_gen = dir_gen;
4727         set_ref_path(&data, name);
4728         node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4729         if (node) {
4730                 ref = rb_entry(node, struct recorded_ref, node);
4731                 recorded_ref_free(ref);
4732         } else {
4733                 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4734                                          &sctx->new_refs, name, dir, dir_gen,
4735                                          sctx);
4736         }
4737 out:
4738         return ret;
4739 }
4740 
4741 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4742                                         struct fs_path *name, void *ctx)
4743 {
4744         int ret = 0;
4745         struct send_ctx *sctx = ctx;
4746         struct rb_node *node = NULL;
4747         struct recorded_ref data;
4748         struct recorded_ref *ref;
4749         u64 dir_gen;
4750 
4751         ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4752         if (ret < 0)
4753                 goto out;
4754 
4755         data.dir = dir;
4756         data.dir_gen = dir_gen;
4757         set_ref_path(&data, name);
4758         node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4759         if (node) {
4760                 ref = rb_entry(node, struct recorded_ref, node);
4761                 recorded_ref_free(ref);
4762         } else {
4763                 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4764                                          &sctx->deleted_refs, name, dir,
4765                                          dir_gen, sctx);
4766         }
4767 out:
4768         return ret;
4769 }
4770 
4771 static int record_new_ref(struct send_ctx *sctx)
4772 {
4773         int ret;
4774 
4775         ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4776                                 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4777         if (ret < 0)
4778                 goto out;
4779         ret = 0;
4780 
4781 out:
4782         return ret;
4783 }
4784 
4785 static int record_deleted_ref(struct send_ctx *sctx)
4786 {
4787         int ret;
4788 
4789         ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4790                                 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4791                                 sctx);
4792         if (ret < 0)
4793                 goto out;
4794         ret = 0;
4795 
4796 out:
4797         return ret;
4798 }
4799 
4800 static int record_changed_ref(struct send_ctx *sctx)
4801 {
4802         int ret = 0;
4803 
4804         ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4805                         sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4806         if (ret < 0)
4807                 goto out;
4808         ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4809                         sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4810         if (ret < 0)
4811                 goto out;
4812         ret = 0;
4813 
4814 out:
4815         return ret;
4816 }
4817 
4818 /*
4819  * Record and process all refs at once. Needed when an inode changes the
4820  * generation number, which means that it was deleted and recreated.
4821  */
4822 static int process_all_refs(struct send_ctx *sctx,
4823                             enum btrfs_compare_tree_result cmd)
4824 {
4825         int ret = 0;
4826         int iter_ret = 0;
4827         struct btrfs_root *root;
4828         struct btrfs_path *path;
4829         struct btrfs_key key;
4830         struct btrfs_key found_key;
4831         iterate_inode_ref_t cb;
4832         int pending_move = 0;
4833 
4834         path = alloc_path_for_send();
4835         if (!path)
4836                 return -ENOMEM;
4837 
4838         if (cmd == BTRFS_COMPARE_TREE_NEW) {
4839                 root = sctx->send_root;
4840                 cb = record_new_ref_if_needed;
4841         } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4842                 root = sctx->parent_root;
4843                 cb = record_deleted_ref_if_needed;
4844         } else {
4845                 btrfs_err(sctx->send_root->fs_info,
4846                                 "Wrong command %d in process_all_refs", cmd);
4847                 ret = -EINVAL;
4848                 goto out;
4849         }
4850 
4851         key.objectid = sctx->cmp_key->objectid;
4852         key.type = BTRFS_INODE_REF_KEY;
4853         key.offset = 0;
4854         btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4855                 if (found_key.objectid != key.objectid ||
4856                     (found_key.type != BTRFS_INODE_REF_KEY &&
4857                      found_key.type != BTRFS_INODE_EXTREF_KEY))
4858                         break;
4859 
4860                 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4861                 if (ret < 0)
4862                         goto out;
4863         }
4864         /* Catch error found during iteration */
4865         if (iter_ret < 0) {
4866                 ret = iter_ret;
4867                 goto out;
4868         }
4869         btrfs_release_path(path);
4870 
4871         /*
4872          * We don't actually care about pending_move as we are simply
4873          * re-creating this inode and will be rename'ing it into place once we
4874          * rename the parent directory.
4875          */
4876         ret = process_recorded_refs(sctx, &pending_move);
4877 out:
4878         btrfs_free_path(path);
4879         return ret;
4880 }
4881 
4882 static int send_set_xattr(struct send_ctx *sctx,
4883                           struct fs_path *path,
4884                           const char *name, int name_len,
4885                           const char *data, int data_len)
4886 {
4887         int ret = 0;
4888 
4889         ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4890         if (ret < 0)
4891                 goto out;
4892 
4893         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4894         TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4895         TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4896 
4897         ret = send_cmd(sctx);
4898 
4899 tlv_put_failure:
4900 out:
4901         return ret;
4902 }
4903 
4904 static int send_remove_xattr(struct send_ctx *sctx,
4905                           struct fs_path *path,
4906                           const char *name, int name_len)
4907 {
4908         int ret = 0;
4909 
4910         ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4911         if (ret < 0)
4912                 goto out;
4913 
4914         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4915         TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4916 
4917         ret = send_cmd(sctx);
4918 
4919 tlv_put_failure:
4920 out:
4921         return ret;
4922 }
4923 
4924 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4925                                const char *name, int name_len, const char *data,
4926                                int data_len, void *ctx)
4927 {
4928         int ret;
4929         struct send_ctx *sctx = ctx;
4930         struct fs_path *p;
4931         struct posix_acl_xattr_header dummy_acl;
4932 
4933         /* Capabilities are emitted by finish_inode_if_needed */
4934         if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4935                 return 0;
4936 
4937         p = fs_path_alloc();
4938         if (!p)
4939                 return -ENOMEM;
4940 
4941         /*
4942          * This hack is needed because empty acls are stored as zero byte
4943          * data in xattrs. Problem with that is, that receiving these zero byte
4944          * acls will fail later. To fix this, we send a dummy acl list that
4945          * only contains the version number and no entries.
4946          */
4947         if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4948             !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4949                 if (data_len == 0) {
4950                         dummy_acl.a_version =
4951                                         cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4952                         data = (char *)&dummy_acl;
4953                         data_len = sizeof(dummy_acl);
4954                 }
4955         }
4956 
4957         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4958         if (ret < 0)
4959                 goto out;
4960 
4961         ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4962 
4963 out:
4964         fs_path_free(p);
4965         return ret;
4966 }
4967 
4968 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4969                                    const char *name, int name_len,
4970                                    const char *data, int data_len, void *ctx)
4971 {
4972         int ret;
4973         struct send_ctx *sctx = ctx;
4974         struct fs_path *p;
4975 
4976         p = fs_path_alloc();
4977         if (!p)
4978                 return -ENOMEM;
4979 
4980         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4981         if (ret < 0)
4982                 goto out;
4983 
4984         ret = send_remove_xattr(sctx, p, name, name_len);
4985 
4986 out:
4987         fs_path_free(p);
4988         return ret;
4989 }
4990 
4991 static int process_new_xattr(struct send_ctx *sctx)
4992 {
4993         int ret = 0;
4994 
4995         ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4996                                __process_new_xattr, sctx);
4997 
4998         return ret;
4999 }
5000 
5001 static int process_deleted_xattr(struct send_ctx *sctx)
5002 {
5003         return iterate_dir_item(sctx->parent_root, sctx->right_path,
5004                                 __process_deleted_xattr, sctx);
5005 }
5006 
5007 struct find_xattr_ctx {
5008         const char *name;
5009         int name_len;
5010         int found_idx;
5011         char *found_data;
5012         int found_data_len;
5013 };
5014 
5015 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5016                         int name_len, const char *data, int data_len, void *vctx)
5017 {
5018         struct find_xattr_ctx *ctx = vctx;
5019 
5020         if (name_len == ctx->name_len &&
5021             strncmp(name, ctx->name, name_len) == 0) {
5022                 ctx->found_idx = num;
5023                 ctx->found_data_len = data_len;
5024                 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5025                 if (!ctx->found_data)
5026                         return -ENOMEM;
5027                 return 1;
5028         }
5029         return 0;
5030 }
5031 
5032 static int find_xattr(struct btrfs_root *root,
5033                       struct btrfs_path *path,
5034                       struct btrfs_key *key,
5035                       const char *name, int name_len,
5036                       char **data, int *data_len)
5037 {
5038         int ret;
5039         struct find_xattr_ctx ctx;
5040 
5041         ctx.name = name;
5042         ctx.name_len = name_len;
5043         ctx.found_idx = -1;
5044         ctx.found_data = NULL;
5045         ctx.found_data_len = 0;
5046 
5047         ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5048         if (ret < 0)
5049                 return ret;
5050 
5051         if (ctx.found_idx == -1)
5052                 return -ENOENT;
5053         if (data) {
5054                 *data = ctx.found_data;
5055                 *data_len = ctx.found_data_len;
5056         } else {
5057                 kfree(ctx.found_data);
5058         }
5059         return ctx.found_idx;
5060 }
5061 
5062 
5063 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5064                                        const char *name, int name_len,
5065                                        const char *data, int data_len,
5066                                        void *ctx)
5067 {
5068         int ret;
5069         struct send_ctx *sctx = ctx;
5070         char *found_data = NULL;
5071         int found_data_len  = 0;
5072 
5073         ret = find_xattr(sctx->parent_root, sctx->right_path,
5074                          sctx->cmp_key, name, name_len, &found_data,
5075                          &found_data_len);
5076         if (ret == -ENOENT) {
5077                 ret = __process_new_xattr(num, di_key, name, name_len, data,
5078                                           data_len, ctx);
5079         } else if (ret >= 0) {
5080                 if (data_len != found_data_len ||
5081                     memcmp(data, found_data, data_len)) {
5082                         ret = __process_new_xattr(num, di_key, name, name_len,
5083                                                   data, data_len, ctx);
5084                 } else {
5085                         ret = 0;
5086                 }
5087         }
5088 
5089         kfree(found_data);
5090         return ret;
5091 }
5092 
5093 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5094                                            const char *name, int name_len,
5095                                            const char *data, int data_len,
5096                                            void *ctx)
5097 {
5098         int ret;
5099         struct send_ctx *sctx = ctx;
5100 
5101         ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5102                          name, name_len, NULL, NULL);
5103         if (ret == -ENOENT)
5104                 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5105                                               data_len, ctx);
5106         else if (ret >= 0)
5107                 ret = 0;
5108 
5109         return ret;
5110 }
5111 
5112 static int process_changed_xattr(struct send_ctx *sctx)
5113 {
5114         int ret = 0;
5115 
5116         ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5117                         __process_changed_new_xattr, sctx);
5118         if (ret < 0)
5119                 goto out;
5120         ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5121                         __process_changed_deleted_xattr, sctx);
5122 
5123 out:
5124         return ret;
5125 }
5126 
5127 static int process_all_new_xattrs(struct send_ctx *sctx)
5128 {
5129         int ret = 0;
5130         int iter_ret = 0;
5131         struct btrfs_root *root;
5132         struct btrfs_path *path;
5133         struct btrfs_key key;
5134         struct btrfs_key found_key;
5135 
5136         path = alloc_path_for_send();
5137         if (!path)
5138                 return -ENOMEM;
5139 
5140         root = sctx->send_root;
5141 
5142         key.objectid = sctx->cmp_key->objectid;
5143         key.type = BTRFS_XATTR_ITEM_KEY;
5144         key.offset = 0;
5145         btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5146                 if (found_key.objectid != key.objectid ||
5147                     found_key.type != key.type) {
5148                         ret = 0;
5149                         break;
5150                 }
5151 
5152                 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5153                 if (ret < 0)
5154                         break;
5155         }
5156         /* Catch error found during iteration */
5157         if (iter_ret < 0)
5158                 ret = iter_ret;
5159 
5160         btrfs_free_path(path);
5161         return ret;
5162 }
5163 
5164 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5165                        struct fsverity_descriptor *desc)
5166 {
5167         int ret;
5168 
5169         ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5170         if (ret < 0)
5171                 goto out;
5172 
5173         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5174         TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5175                         le8_to_cpu(desc->hash_algorithm));
5176         TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5177                         1U << le8_to_cpu(desc->log_blocksize));
5178         TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5179                         le8_to_cpu(desc->salt_size));
5180         TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5181                         le32_to_cpu(desc->sig_size));
5182 
5183         ret = send_cmd(sctx);
5184 
5185 tlv_put_failure:
5186 out:
5187         return ret;
5188 }
5189 
5190 static int process_verity(struct send_ctx *sctx)
5191 {
5192         int ret = 0;
5193         struct inode *inode;
5194         struct fs_path *p;
5195 
5196         inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5197         if (IS_ERR(inode))
5198                 return PTR_ERR(inode);
5199 
5200         ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5201         if (ret < 0)
5202                 goto iput;
5203 
5204         if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5205                 ret = -EMSGSIZE;
5206                 goto iput;
5207         }
5208         if (!sctx->verity_descriptor) {
5209                 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5210                                                    GFP_KERNEL);
5211                 if (!sctx->verity_descriptor) {
5212                         ret = -ENOMEM;
5213                         goto iput;
5214                 }
5215         }
5216 
5217         ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5218         if (ret < 0)
5219                 goto iput;
5220 
5221         p = fs_path_alloc();
5222         if (!p) {
5223                 ret = -ENOMEM;
5224                 goto iput;
5225         }
5226         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5227         if (ret < 0)
5228                 goto free_path;
5229 
5230         ret = send_verity(sctx, p, sctx->verity_descriptor);
5231         if (ret < 0)
5232                 goto free_path;
5233 
5234 free_path:
5235         fs_path_free(p);
5236 iput:
5237         iput(inode);
5238         return ret;
5239 }
5240 
5241 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5242 {
5243         return sctx->send_max_size - SZ_16K;
5244 }
5245 
5246 static int put_data_header(struct send_ctx *sctx, u32 len)
5247 {
5248         if (WARN_ON_ONCE(sctx->put_data))
5249                 return -EINVAL;
5250         sctx->put_data = true;
5251         if (sctx->proto >= 2) {
5252                 /*
5253                  * Since v2, the data attribute header doesn't include a length,
5254                  * it is implicitly to the end of the command.
5255                  */
5256                 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5257                         return -EOVERFLOW;
5258                 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5259                 sctx->send_size += sizeof(__le16);
5260         } else {
5261                 struct btrfs_tlv_header *hdr;
5262 
5263                 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5264                         return -EOVERFLOW;
5265                 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5266                 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5267                 put_unaligned_le16(len, &hdr->tlv_len);
5268                 sctx->send_size += sizeof(*hdr);
5269         }
5270         return 0;
5271 }
5272 
5273 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5274 {
5275         struct btrfs_root *root = sctx->send_root;
5276         struct btrfs_fs_info *fs_info = root->fs_info;
5277         struct folio *folio;
5278         pgoff_t index = offset >> PAGE_SHIFT;
5279         pgoff_t last_index;
5280         unsigned pg_offset = offset_in_page(offset);
5281         struct address_space *mapping = sctx->cur_inode->i_mapping;
5282         int ret;
5283 
5284         ret = put_data_header(sctx, len);
5285         if (ret)
5286                 return ret;
5287 
5288         last_index = (offset + len - 1) >> PAGE_SHIFT;
5289 
5290         while (index <= last_index) {
5291                 unsigned cur_len = min_t(unsigned, len,
5292                                          PAGE_SIZE - pg_offset);
5293 
5294                 folio = filemap_lock_folio(mapping, index);
5295                 if (IS_ERR(folio)) {
5296                         page_cache_sync_readahead(mapping,
5297                                                   &sctx->ra, NULL, index,
5298                                                   last_index + 1 - index);
5299 
5300                         folio = filemap_grab_folio(mapping, index);
5301                         if (IS_ERR(folio)) {
5302                                 ret = PTR_ERR(folio);
5303                                 break;
5304                         }
5305                 }
5306 
5307                 WARN_ON(folio_order(folio));
5308 
5309                 if (folio_test_readahead(folio))
5310                         page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5311                                                    last_index + 1 - index);
5312 
5313                 if (!folio_test_uptodate(folio)) {
5314                         btrfs_read_folio(NULL, folio);
5315                         folio_lock(folio);
5316                         if (!folio_test_uptodate(folio)) {
5317                                 folio_unlock(folio);
5318                                 btrfs_err(fs_info,
5319                         "send: IO error at offset %llu for inode %llu root %llu",
5320                                         folio_pos(folio), sctx->cur_ino,
5321                                         btrfs_root_id(sctx->send_root));
5322                                 folio_put(folio);
5323                                 ret = -EIO;
5324                                 break;
5325                         }
5326                 }
5327 
5328                 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5329                                   pg_offset, cur_len);
5330                 folio_unlock(folio);
5331                 folio_put(folio);
5332                 index++;
5333                 pg_offset = 0;
5334                 len -= cur_len;
5335                 sctx->send_size += cur_len;
5336         }
5337 
5338         return ret;
5339 }
5340 
5341 /*
5342  * Read some bytes from the current inode/file and send a write command to
5343  * user space.
5344  */
5345 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5346 {
5347         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5348         int ret = 0;
5349         struct fs_path *p;
5350 
5351         p = fs_path_alloc();
5352         if (!p)
5353                 return -ENOMEM;
5354 
5355         btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5356 
5357         ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5358         if (ret < 0)
5359                 goto out;
5360 
5361         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5362         if (ret < 0)
5363                 goto out;
5364 
5365         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5366         TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5367         ret = put_file_data(sctx, offset, len);
5368         if (ret < 0)
5369                 goto out;
5370 
5371         ret = send_cmd(sctx);
5372 
5373 tlv_put_failure:
5374 out:
5375         fs_path_free(p);
5376         return ret;
5377 }
5378 
5379 /*
5380  * Send a clone command to user space.
5381  */
5382 static int send_clone(struct send_ctx *sctx,
5383                       u64 offset, u32 len,
5384                       struct clone_root *clone_root)
5385 {
5386         int ret = 0;
5387         struct fs_path *p;
5388         u64 gen;
5389 
5390         btrfs_debug(sctx->send_root->fs_info,
5391                     "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5392                     offset, len, btrfs_root_id(clone_root->root),
5393                     clone_root->ino, clone_root->offset);
5394 
5395         p = fs_path_alloc();
5396         if (!p)
5397                 return -ENOMEM;
5398 
5399         ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5400         if (ret < 0)
5401                 goto out;
5402 
5403         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5404         if (ret < 0)
5405                 goto out;
5406 
5407         TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5408         TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5409         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5410 
5411         if (clone_root->root == sctx->send_root) {
5412                 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5413                 if (ret < 0)
5414                         goto out;
5415                 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5416         } else {
5417                 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5418         }
5419         if (ret < 0)
5420                 goto out;
5421 
5422         /*
5423          * If the parent we're using has a received_uuid set then use that as
5424          * our clone source as that is what we will look for when doing a
5425          * receive.
5426          *
5427          * This covers the case that we create a snapshot off of a received
5428          * subvolume and then use that as the parent and try to receive on a
5429          * different host.
5430          */
5431         if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5432                 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5433                              clone_root->root->root_item.received_uuid);
5434         else
5435                 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5436                              clone_root->root->root_item.uuid);
5437         TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5438                     btrfs_root_ctransid(&clone_root->root->root_item));
5439         TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5440         TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5441                         clone_root->offset);
5442 
5443         ret = send_cmd(sctx);
5444 
5445 tlv_put_failure:
5446 out:
5447         fs_path_free(p);
5448         return ret;
5449 }
5450 
5451 /*
5452  * Send an update extent command to user space.
5453  */
5454 static int send_update_extent(struct send_ctx *sctx,
5455                               u64 offset, u32 len)
5456 {
5457         int ret = 0;
5458         struct fs_path *p;
5459 
5460         p = fs_path_alloc();
5461         if (!p)
5462                 return -ENOMEM;
5463 
5464         ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5465         if (ret < 0)
5466                 goto out;
5467 
5468         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5469         if (ret < 0)
5470                 goto out;
5471 
5472         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5473         TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5474         TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5475 
5476         ret = send_cmd(sctx);
5477 
5478 tlv_put_failure:
5479 out:
5480         fs_path_free(p);
5481         return ret;
5482 }
5483 
5484 static int send_hole(struct send_ctx *sctx, u64 end)
5485 {
5486         struct fs_path *p = NULL;
5487         u64 read_size = max_send_read_size(sctx);
5488         u64 offset = sctx->cur_inode_last_extent;
5489         int ret = 0;
5490 
5491         /*
5492          * A hole that starts at EOF or beyond it. Since we do not yet support
5493          * fallocate (for extent preallocation and hole punching), sending a
5494          * write of zeroes starting at EOF or beyond would later require issuing
5495          * a truncate operation which would undo the write and achieve nothing.
5496          */
5497         if (offset >= sctx->cur_inode_size)
5498                 return 0;
5499 
5500         /*
5501          * Don't go beyond the inode's i_size due to prealloc extents that start
5502          * after the i_size.
5503          */
5504         end = min_t(u64, end, sctx->cur_inode_size);
5505 
5506         if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5507                 return send_update_extent(sctx, offset, end - offset);
5508 
5509         p = fs_path_alloc();
5510         if (!p)
5511                 return -ENOMEM;
5512         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5513         if (ret < 0)
5514                 goto tlv_put_failure;
5515         while (offset < end) {
5516                 u64 len = min(end - offset, read_size);
5517 
5518                 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5519                 if (ret < 0)
5520                         break;
5521                 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5522                 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5523                 ret = put_data_header(sctx, len);
5524                 if (ret < 0)
5525                         break;
5526                 memset(sctx->send_buf + sctx->send_size, 0, len);
5527                 sctx->send_size += len;
5528                 ret = send_cmd(sctx);
5529                 if (ret < 0)
5530                         break;
5531                 offset += len;
5532         }
5533         sctx->cur_inode_next_write_offset = offset;
5534 tlv_put_failure:
5535         fs_path_free(p);
5536         return ret;
5537 }
5538 
5539 static int send_encoded_inline_extent(struct send_ctx *sctx,
5540                                       struct btrfs_path *path, u64 offset,
5541                                       u64 len)
5542 {
5543         struct btrfs_root *root = sctx->send_root;
5544         struct btrfs_fs_info *fs_info = root->fs_info;
5545         struct inode *inode;
5546         struct fs_path *fspath;
5547         struct extent_buffer *leaf = path->nodes[0];
5548         struct btrfs_key key;
5549         struct btrfs_file_extent_item *ei;
5550         u64 ram_bytes;
5551         size_t inline_size;
5552         int ret;
5553 
5554         inode = btrfs_iget(sctx->cur_ino, root);
5555         if (IS_ERR(inode))
5556                 return PTR_ERR(inode);
5557 
5558         fspath = fs_path_alloc();
5559         if (!fspath) {
5560                 ret = -ENOMEM;
5561                 goto out;
5562         }
5563 
5564         ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5565         if (ret < 0)
5566                 goto out;
5567 
5568         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5569         if (ret < 0)
5570                 goto out;
5571 
5572         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5573         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5574         ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5575         inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5576 
5577         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5578         TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5579         TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5580                     min(key.offset + ram_bytes - offset, len));
5581         TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5582         TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5583         ret = btrfs_encoded_io_compression_from_extent(fs_info,
5584                                 btrfs_file_extent_compression(leaf, ei));
5585         if (ret < 0)
5586                 goto out;
5587         TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5588 
5589         ret = put_data_header(sctx, inline_size);
5590         if (ret < 0)
5591                 goto out;
5592         read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5593                            btrfs_file_extent_inline_start(ei), inline_size);
5594         sctx->send_size += inline_size;
5595 
5596         ret = send_cmd(sctx);
5597 
5598 tlv_put_failure:
5599 out:
5600         fs_path_free(fspath);
5601         iput(inode);
5602         return ret;
5603 }
5604 
5605 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5606                                u64 offset, u64 len)
5607 {
5608         struct btrfs_root *root = sctx->send_root;
5609         struct btrfs_fs_info *fs_info = root->fs_info;
5610         struct inode *inode;
5611         struct fs_path *fspath;
5612         struct extent_buffer *leaf = path->nodes[0];
5613         struct btrfs_key key;
5614         struct btrfs_file_extent_item *ei;
5615         u64 disk_bytenr, disk_num_bytes;
5616         u32 data_offset;
5617         struct btrfs_cmd_header *hdr;
5618         u32 crc;
5619         int ret;
5620 
5621         inode = btrfs_iget(sctx->cur_ino, root);
5622         if (IS_ERR(inode))
5623                 return PTR_ERR(inode);
5624 
5625         fspath = fs_path_alloc();
5626         if (!fspath) {
5627                 ret = -ENOMEM;
5628                 goto out;
5629         }
5630 
5631         ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5632         if (ret < 0)
5633                 goto out;
5634 
5635         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5636         if (ret < 0)
5637                 goto out;
5638 
5639         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5640         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5641         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5642         disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5643 
5644         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5645         TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5646         TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5647                     min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5648                         len));
5649         TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5650                     btrfs_file_extent_ram_bytes(leaf, ei));
5651         TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5652                     offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5653         ret = btrfs_encoded_io_compression_from_extent(fs_info,
5654                                 btrfs_file_extent_compression(leaf, ei));
5655         if (ret < 0)
5656                 goto out;
5657         TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5658         TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5659 
5660         ret = put_data_header(sctx, disk_num_bytes);
5661         if (ret < 0)
5662                 goto out;
5663 
5664         /*
5665          * We want to do I/O directly into the send buffer, so get the next page
5666          * boundary in the send buffer. This means that there may be a gap
5667          * between the beginning of the command and the file data.
5668          */
5669         data_offset = PAGE_ALIGN(sctx->send_size);
5670         if (data_offset > sctx->send_max_size ||
5671             sctx->send_max_size - data_offset < disk_num_bytes) {
5672                 ret = -EOVERFLOW;
5673                 goto out;
5674         }
5675 
5676         /*
5677          * Note that send_buf is a mapping of send_buf_pages, so this is really
5678          * reading into send_buf.
5679          */
5680         ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5681                                                     disk_bytenr, disk_num_bytes,
5682                                                     sctx->send_buf_pages +
5683                                                     (data_offset >> PAGE_SHIFT));
5684         if (ret)
5685                 goto out;
5686 
5687         hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5688         hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5689         hdr->crc = 0;
5690         crc = crc32c(0, sctx->send_buf, sctx->send_size);
5691         crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5692         hdr->crc = cpu_to_le32(crc);
5693 
5694         ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5695                         &sctx->send_off);
5696         if (!ret) {
5697                 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5698                                 disk_num_bytes, &sctx->send_off);
5699         }
5700         sctx->send_size = 0;
5701         sctx->put_data = false;
5702 
5703 tlv_put_failure:
5704 out:
5705         fs_path_free(fspath);
5706         iput(inode);
5707         return ret;
5708 }
5709 
5710 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5711                             const u64 offset, const u64 len)
5712 {
5713         const u64 end = offset + len;
5714         struct extent_buffer *leaf = path->nodes[0];
5715         struct btrfs_file_extent_item *ei;
5716         u64 read_size = max_send_read_size(sctx);
5717         u64 sent = 0;
5718 
5719         if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5720                 return send_update_extent(sctx, offset, len);
5721 
5722         ei = btrfs_item_ptr(leaf, path->slots[0],
5723                             struct btrfs_file_extent_item);
5724         if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5725             btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5726                 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5727                                   BTRFS_FILE_EXTENT_INLINE);
5728 
5729                 /*
5730                  * Send the compressed extent unless the compressed data is
5731                  * larger than the decompressed data. This can happen if we're
5732                  * not sending the entire extent, either because it has been
5733                  * partially overwritten/truncated or because this is a part of
5734                  * the extent that we couldn't clone in clone_range().
5735                  */
5736                 if (is_inline &&
5737                     btrfs_file_extent_inline_item_len(leaf,
5738                                                       path->slots[0]) <= len) {
5739                         return send_encoded_inline_extent(sctx, path, offset,
5740                                                           len);
5741                 } else if (!is_inline &&
5742                            btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5743                         return send_encoded_extent(sctx, path, offset, len);
5744                 }
5745         }
5746 
5747         if (sctx->cur_inode == NULL) {
5748                 struct btrfs_root *root = sctx->send_root;
5749 
5750                 sctx->cur_inode = btrfs_iget(sctx->cur_ino, root);
5751                 if (IS_ERR(sctx->cur_inode)) {
5752                         int err = PTR_ERR(sctx->cur_inode);
5753 
5754                         sctx->cur_inode = NULL;
5755                         return err;
5756                 }
5757                 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5758                 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5759 
5760                 /*
5761                  * It's very likely there are no pages from this inode in the page
5762                  * cache, so after reading extents and sending their data, we clean
5763                  * the page cache to avoid trashing the page cache (adding pressure
5764                  * to the page cache and forcing eviction of other data more useful
5765                  * for applications).
5766                  *
5767                  * We decide if we should clean the page cache simply by checking
5768                  * if the inode's mapping nrpages is 0 when we first open it, and
5769                  * not by using something like filemap_range_has_page() before
5770                  * reading an extent because when we ask the readahead code to
5771                  * read a given file range, it may (and almost always does) read
5772                  * pages from beyond that range (see the documentation for
5773                  * page_cache_sync_readahead()), so it would not be reliable,
5774                  * because after reading the first extent future calls to
5775                  * filemap_range_has_page() would return true because the readahead
5776                  * on the previous extent resulted in reading pages of the current
5777                  * extent as well.
5778                  */
5779                 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5780                 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5781         }
5782 
5783         while (sent < len) {
5784                 u64 size = min(len - sent, read_size);
5785                 int ret;
5786 
5787                 ret = send_write(sctx, offset + sent, size);
5788                 if (ret < 0)
5789                         return ret;
5790                 sent += size;
5791         }
5792 
5793         if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5794                 /*
5795                  * Always operate only on ranges that are a multiple of the page
5796                  * size. This is not only to prevent zeroing parts of a page in
5797                  * the case of subpage sector size, but also to guarantee we evict
5798                  * pages, as passing a range that is smaller than page size does
5799                  * not evict the respective page (only zeroes part of its content).
5800                  *
5801                  * Always start from the end offset of the last range cleared.
5802                  * This is because the readahead code may (and very often does)
5803                  * reads pages beyond the range we request for readahead. So if
5804                  * we have an extent layout like this:
5805                  *
5806                  *            [ extent A ] [ extent B ] [ extent C ]
5807                  *
5808                  * When we ask page_cache_sync_readahead() to read extent A, it
5809                  * may also trigger reads for pages of extent B. If we are doing
5810                  * an incremental send and extent B has not changed between the
5811                  * parent and send snapshots, some or all of its pages may end
5812                  * up being read and placed in the page cache. So when truncating
5813                  * the page cache we always start from the end offset of the
5814                  * previously processed extent up to the end of the current
5815                  * extent.
5816                  */
5817                 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5818                                            sctx->page_cache_clear_start,
5819                                            end - 1);
5820                 sctx->page_cache_clear_start = end;
5821         }
5822 
5823         return 0;
5824 }
5825 
5826 /*
5827  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5828  * found, call send_set_xattr function to emit it.
5829  *
5830  * Return 0 if there isn't a capability, or when the capability was emitted
5831  * successfully, or < 0 if an error occurred.
5832  */
5833 static int send_capabilities(struct send_ctx *sctx)
5834 {
5835         struct fs_path *fspath = NULL;
5836         struct btrfs_path *path;
5837         struct btrfs_dir_item *di;
5838         struct extent_buffer *leaf;
5839         unsigned long data_ptr;
5840         char *buf = NULL;
5841         int buf_len;
5842         int ret = 0;
5843 
5844         path = alloc_path_for_send();
5845         if (!path)
5846                 return -ENOMEM;
5847 
5848         di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5849                                 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5850         if (!di) {
5851                 /* There is no xattr for this inode */
5852                 goto out;
5853         } else if (IS_ERR(di)) {
5854                 ret = PTR_ERR(di);
5855                 goto out;
5856         }
5857 
5858         leaf = path->nodes[0];
5859         buf_len = btrfs_dir_data_len(leaf, di);
5860 
5861         fspath = fs_path_alloc();
5862         buf = kmalloc(buf_len, GFP_KERNEL);
5863         if (!fspath || !buf) {
5864                 ret = -ENOMEM;
5865                 goto out;
5866         }
5867 
5868         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5869         if (ret < 0)
5870                 goto out;
5871 
5872         data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5873         read_extent_buffer(leaf, buf, data_ptr, buf_len);
5874 
5875         ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5876                         strlen(XATTR_NAME_CAPS), buf, buf_len);
5877 out:
5878         kfree(buf);
5879         fs_path_free(fspath);
5880         btrfs_free_path(path);
5881         return ret;
5882 }
5883 
5884 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5885                        struct clone_root *clone_root, const u64 disk_byte,
5886                        u64 data_offset, u64 offset, u64 len)
5887 {
5888         struct btrfs_path *path;
5889         struct btrfs_key key;
5890         int ret;
5891         struct btrfs_inode_info info;
5892         u64 clone_src_i_size = 0;
5893 
5894         /*
5895          * Prevent cloning from a zero offset with a length matching the sector
5896          * size because in some scenarios this will make the receiver fail.
5897          *
5898          * For example, if in the source filesystem the extent at offset 0
5899          * has a length of sectorsize and it was written using direct IO, then
5900          * it can never be an inline extent (even if compression is enabled).
5901          * Then this extent can be cloned in the original filesystem to a non
5902          * zero file offset, but it may not be possible to clone in the
5903          * destination filesystem because it can be inlined due to compression
5904          * on the destination filesystem (as the receiver's write operations are
5905          * always done using buffered IO). The same happens when the original
5906          * filesystem does not have compression enabled but the destination
5907          * filesystem has.
5908          */
5909         if (clone_root->offset == 0 &&
5910             len == sctx->send_root->fs_info->sectorsize)
5911                 return send_extent_data(sctx, dst_path, offset, len);
5912 
5913         path = alloc_path_for_send();
5914         if (!path)
5915                 return -ENOMEM;
5916 
5917         /*
5918          * There are inodes that have extents that lie behind its i_size. Don't
5919          * accept clones from these extents.
5920          */
5921         ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5922         btrfs_release_path(path);
5923         if (ret < 0)
5924                 goto out;
5925         clone_src_i_size = info.size;
5926 
5927         /*
5928          * We can't send a clone operation for the entire range if we find
5929          * extent items in the respective range in the source file that
5930          * refer to different extents or if we find holes.
5931          * So check for that and do a mix of clone and regular write/copy
5932          * operations if needed.
5933          *
5934          * Example:
5935          *
5936          * mkfs.btrfs -f /dev/sda
5937          * mount /dev/sda /mnt
5938          * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5939          * cp --reflink=always /mnt/foo /mnt/bar
5940          * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5941          * btrfs subvolume snapshot -r /mnt /mnt/snap
5942          *
5943          * If when we send the snapshot and we are processing file bar (which
5944          * has a higher inode number than foo) we blindly send a clone operation
5945          * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5946          * a file bar that matches the content of file foo - iow, doesn't match
5947          * the content from bar in the original filesystem.
5948          */
5949         key.objectid = clone_root->ino;
5950         key.type = BTRFS_EXTENT_DATA_KEY;
5951         key.offset = clone_root->offset;
5952         ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5953         if (ret < 0)
5954                 goto out;
5955         if (ret > 0 && path->slots[0] > 0) {
5956                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5957                 if (key.objectid == clone_root->ino &&
5958                     key.type == BTRFS_EXTENT_DATA_KEY)
5959                         path->slots[0]--;
5960         }
5961 
5962         while (true) {
5963                 struct extent_buffer *leaf = path->nodes[0];
5964                 int slot = path->slots[0];
5965                 struct btrfs_file_extent_item *ei;
5966                 u8 type;
5967                 u64 ext_len;
5968                 u64 clone_len;
5969                 u64 clone_data_offset;
5970                 bool crossed_src_i_size = false;
5971 
5972                 if (slot >= btrfs_header_nritems(leaf)) {
5973                         ret = btrfs_next_leaf(clone_root->root, path);
5974                         if (ret < 0)
5975                                 goto out;
5976                         else if (ret > 0)
5977                                 break;
5978                         continue;
5979                 }
5980 
5981                 btrfs_item_key_to_cpu(leaf, &key, slot);
5982 
5983                 /*
5984                  * We might have an implicit trailing hole (NO_HOLES feature
5985                  * enabled). We deal with it after leaving this loop.
5986                  */
5987                 if (key.objectid != clone_root->ino ||
5988                     key.type != BTRFS_EXTENT_DATA_KEY)
5989                         break;
5990 
5991                 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5992                 type = btrfs_file_extent_type(leaf, ei);
5993                 if (type == BTRFS_FILE_EXTENT_INLINE) {
5994                         ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5995                         ext_len = PAGE_ALIGN(ext_len);
5996                 } else {
5997                         ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5998                 }
5999 
6000                 if (key.offset + ext_len <= clone_root->offset)
6001                         goto next;
6002 
6003                 if (key.offset > clone_root->offset) {
6004                         /* Implicit hole, NO_HOLES feature enabled. */
6005                         u64 hole_len = key.offset - clone_root->offset;
6006 
6007                         if (hole_len > len)
6008                                 hole_len = len;
6009                         ret = send_extent_data(sctx, dst_path, offset,
6010                                                hole_len);
6011                         if (ret < 0)
6012                                 goto out;
6013 
6014                         len -= hole_len;
6015                         if (len == 0)
6016                                 break;
6017                         offset += hole_len;
6018                         clone_root->offset += hole_len;
6019                         data_offset += hole_len;
6020                 }
6021 
6022                 if (key.offset >= clone_root->offset + len)
6023                         break;
6024 
6025                 if (key.offset >= clone_src_i_size)
6026                         break;
6027 
6028                 if (key.offset + ext_len > clone_src_i_size) {
6029                         ext_len = clone_src_i_size - key.offset;
6030                         crossed_src_i_size = true;
6031                 }
6032 
6033                 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6034                 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6035                         clone_root->offset = key.offset;
6036                         if (clone_data_offset < data_offset &&
6037                                 clone_data_offset + ext_len > data_offset) {
6038                                 u64 extent_offset;
6039 
6040                                 extent_offset = data_offset - clone_data_offset;
6041                                 ext_len -= extent_offset;
6042                                 clone_data_offset += extent_offset;
6043                                 clone_root->offset += extent_offset;
6044                         }
6045                 }
6046 
6047                 clone_len = min_t(u64, ext_len, len);
6048 
6049                 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6050                     clone_data_offset == data_offset) {
6051                         const u64 src_end = clone_root->offset + clone_len;
6052                         const u64 sectorsize = SZ_64K;
6053 
6054                         /*
6055                          * We can't clone the last block, when its size is not
6056                          * sector size aligned, into the middle of a file. If we
6057                          * do so, the receiver will get a failure (-EINVAL) when
6058                          * trying to clone or will silently corrupt the data in
6059                          * the destination file if it's on a kernel without the
6060                          * fix introduced by commit ac765f83f1397646
6061                          * ("Btrfs: fix data corruption due to cloning of eof
6062                          * block).
6063                          *
6064                          * So issue a clone of the aligned down range plus a
6065                          * regular write for the eof block, if we hit that case.
6066                          *
6067                          * Also, we use the maximum possible sector size, 64K,
6068                          * because we don't know what's the sector size of the
6069                          * filesystem that receives the stream, so we have to
6070                          * assume the largest possible sector size.
6071                          */
6072                         if (src_end == clone_src_i_size &&
6073                             !IS_ALIGNED(src_end, sectorsize) &&
6074                             offset + clone_len < sctx->cur_inode_size) {
6075                                 u64 slen;
6076 
6077                                 slen = ALIGN_DOWN(src_end - clone_root->offset,
6078                                                   sectorsize);
6079                                 if (slen > 0) {
6080                                         ret = send_clone(sctx, offset, slen,
6081                                                          clone_root);
6082                                         if (ret < 0)
6083                                                 goto out;
6084                                 }
6085                                 ret = send_extent_data(sctx, dst_path,
6086                                                        offset + slen,
6087                                                        clone_len - slen);
6088                         } else {
6089                                 ret = send_clone(sctx, offset, clone_len,
6090                                                  clone_root);
6091                         }
6092                 } else if (crossed_src_i_size && clone_len < len) {
6093                         /*
6094                          * If we are at i_size of the clone source inode and we
6095                          * can not clone from it, terminate the loop. This is
6096                          * to avoid sending two write operations, one with a
6097                          * length matching clone_len and the final one after
6098                          * this loop with a length of len - clone_len.
6099                          *
6100                          * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6101                          * was passed to the send ioctl), this helps avoid
6102                          * sending an encoded write for an offset that is not
6103                          * sector size aligned, in case the i_size of the source
6104                          * inode is not sector size aligned. That will make the
6105                          * receiver fallback to decompression of the data and
6106                          * writing it using regular buffered IO, therefore while
6107                          * not incorrect, it's not optimal due decompression and
6108                          * possible re-compression at the receiver.
6109                          */
6110                         break;
6111                 } else {
6112                         ret = send_extent_data(sctx, dst_path, offset,
6113                                                clone_len);
6114                 }
6115 
6116                 if (ret < 0)
6117                         goto out;
6118 
6119                 len -= clone_len;
6120                 if (len == 0)
6121                         break;
6122                 offset += clone_len;
6123                 clone_root->offset += clone_len;
6124 
6125                 /*
6126                  * If we are cloning from the file we are currently processing,
6127                  * and using the send root as the clone root, we must stop once
6128                  * the current clone offset reaches the current eof of the file
6129                  * at the receiver, otherwise we would issue an invalid clone
6130                  * operation (source range going beyond eof) and cause the
6131                  * receiver to fail. So if we reach the current eof, bail out
6132                  * and fallback to a regular write.
6133                  */
6134                 if (clone_root->root == sctx->send_root &&
6135                     clone_root->ino == sctx->cur_ino &&
6136                     clone_root->offset >= sctx->cur_inode_next_write_offset)
6137                         break;
6138 
6139                 data_offset += clone_len;
6140 next:
6141                 path->slots[0]++;
6142         }
6143 
6144         if (len > 0)
6145                 ret = send_extent_data(sctx, dst_path, offset, len);
6146         else
6147                 ret = 0;
6148 out:
6149         btrfs_free_path(path);
6150         return ret;
6151 }
6152 
6153 static int send_write_or_clone(struct send_ctx *sctx,
6154                                struct btrfs_path *path,
6155                                struct btrfs_key *key,
6156                                struct clone_root *clone_root)
6157 {
6158         int ret = 0;
6159         u64 offset = key->offset;
6160         u64 end;
6161         u64 bs = sctx->send_root->fs_info->sectorsize;
6162         struct btrfs_file_extent_item *ei;
6163         u64 disk_byte;
6164         u64 data_offset;
6165         u64 num_bytes;
6166         struct btrfs_inode_info info = { 0 };
6167 
6168         end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6169         if (offset >= end)
6170                 return 0;
6171 
6172         num_bytes = end - offset;
6173 
6174         if (!clone_root)
6175                 goto write_data;
6176 
6177         if (IS_ALIGNED(end, bs))
6178                 goto clone_data;
6179 
6180         /*
6181          * If the extent end is not aligned, we can clone if the extent ends at
6182          * the i_size of the inode and the clone range ends at the i_size of the
6183          * source inode, otherwise the clone operation fails with -EINVAL.
6184          */
6185         if (end != sctx->cur_inode_size)
6186                 goto write_data;
6187 
6188         ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6189         if (ret < 0)
6190                 return ret;
6191 
6192         if (clone_root->offset + num_bytes == info.size) {
6193                 /*
6194                  * The final size of our file matches the end offset, but it may
6195                  * be that its current size is larger, so we have to truncate it
6196                  * to any value between the start offset of the range and the
6197                  * final i_size, otherwise the clone operation is invalid
6198                  * because it's unaligned and it ends before the current EOF.
6199                  * We do this truncate to the final i_size when we finish
6200                  * processing the inode, but it's too late by then. And here we
6201                  * truncate to the start offset of the range because it's always
6202                  * sector size aligned while if it were the final i_size it
6203                  * would result in dirtying part of a page, filling part of a
6204                  * page with zeroes and then having the clone operation at the
6205                  * receiver trigger IO and wait for it due to the dirty page.
6206                  */
6207                 if (sctx->parent_root != NULL) {
6208                         ret = send_truncate(sctx, sctx->cur_ino,
6209                                             sctx->cur_inode_gen, offset);
6210                         if (ret < 0)
6211                                 return ret;
6212                 }
6213                 goto clone_data;
6214         }
6215 
6216 write_data:
6217         ret = send_extent_data(sctx, path, offset, num_bytes);
6218         sctx->cur_inode_next_write_offset = end;
6219         return ret;
6220 
6221 clone_data:
6222         ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6223                             struct btrfs_file_extent_item);
6224         disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6225         data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6226         ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6227                           num_bytes);
6228         sctx->cur_inode_next_write_offset = end;
6229         return ret;
6230 }
6231 
6232 static int is_extent_unchanged(struct send_ctx *sctx,
6233                                struct btrfs_path *left_path,
6234                                struct btrfs_key *ekey)
6235 {
6236         int ret = 0;
6237         struct btrfs_key key;
6238         struct btrfs_path *path = NULL;
6239         struct extent_buffer *eb;
6240         int slot;
6241         struct btrfs_key found_key;
6242         struct btrfs_file_extent_item *ei;
6243         u64 left_disknr;
6244         u64 right_disknr;
6245         u64 left_offset;
6246         u64 right_offset;
6247         u64 left_offset_fixed;
6248         u64 left_len;
6249         u64 right_len;
6250         u64 left_gen;
6251         u64 right_gen;
6252         u8 left_type;
6253         u8 right_type;
6254 
6255         path = alloc_path_for_send();
6256         if (!path)
6257                 return -ENOMEM;
6258 
6259         eb = left_path->nodes[0];
6260         slot = left_path->slots[0];
6261         ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6262         left_type = btrfs_file_extent_type(eb, ei);
6263 
6264         if (left_type != BTRFS_FILE_EXTENT_REG) {
6265                 ret = 0;
6266                 goto out;
6267         }
6268         left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6269         left_len = btrfs_file_extent_num_bytes(eb, ei);
6270         left_offset = btrfs_file_extent_offset(eb, ei);
6271         left_gen = btrfs_file_extent_generation(eb, ei);
6272 
6273         /*
6274          * Following comments will refer to these graphics. L is the left
6275          * extents which we are checking at the moment. 1-8 are the right
6276          * extents that we iterate.
6277          *
6278          *       |-----L-----|
6279          * |-1-|-2a-|-3-|-4-|-5-|-6-|
6280          *
6281          *       |-----L-----|
6282          * |--1--|-2b-|...(same as above)
6283          *
6284          * Alternative situation. Happens on files where extents got split.
6285          *       |-----L-----|
6286          * |-----------7-----------|-6-|
6287          *
6288          * Alternative situation. Happens on files which got larger.
6289          *       |-----L-----|
6290          * |-8-|
6291          * Nothing follows after 8.
6292          */
6293 
6294         key.objectid = ekey->objectid;
6295         key.type = BTRFS_EXTENT_DATA_KEY;
6296         key.offset = ekey->offset;
6297         ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6298         if (ret < 0)
6299                 goto out;
6300         if (ret) {
6301                 ret = 0;
6302                 goto out;
6303         }
6304 
6305         /*
6306          * Handle special case where the right side has no extents at all.
6307          */
6308         eb = path->nodes[0];
6309         slot = path->slots[0];
6310         btrfs_item_key_to_cpu(eb, &found_key, slot);
6311         if (found_key.objectid != key.objectid ||
6312             found_key.type != key.type) {
6313                 /* If we're a hole then just pretend nothing changed */
6314                 ret = (left_disknr) ? 0 : 1;
6315                 goto out;
6316         }
6317 
6318         /*
6319          * We're now on 2a, 2b or 7.
6320          */
6321         key = found_key;
6322         while (key.offset < ekey->offset + left_len) {
6323                 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6324                 right_type = btrfs_file_extent_type(eb, ei);
6325                 if (right_type != BTRFS_FILE_EXTENT_REG &&
6326                     right_type != BTRFS_FILE_EXTENT_INLINE) {
6327                         ret = 0;
6328                         goto out;
6329                 }
6330 
6331                 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6332                         right_len = btrfs_file_extent_ram_bytes(eb, ei);
6333                         right_len = PAGE_ALIGN(right_len);
6334                 } else {
6335                         right_len = btrfs_file_extent_num_bytes(eb, ei);
6336                 }
6337 
6338                 /*
6339                  * Are we at extent 8? If yes, we know the extent is changed.
6340                  * This may only happen on the first iteration.
6341                  */
6342                 if (found_key.offset + right_len <= ekey->offset) {
6343                         /* If we're a hole just pretend nothing changed */
6344                         ret = (left_disknr) ? 0 : 1;
6345                         goto out;
6346                 }
6347 
6348                 /*
6349                  * We just wanted to see if when we have an inline extent, what
6350                  * follows it is a regular extent (wanted to check the above
6351                  * condition for inline extents too). This should normally not
6352                  * happen but it's possible for example when we have an inline
6353                  * compressed extent representing data with a size matching
6354                  * the page size (currently the same as sector size).
6355                  */
6356                 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6357                         ret = 0;
6358                         goto out;
6359                 }
6360 
6361                 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6362                 right_offset = btrfs_file_extent_offset(eb, ei);
6363                 right_gen = btrfs_file_extent_generation(eb, ei);
6364 
6365                 left_offset_fixed = left_offset;
6366                 if (key.offset < ekey->offset) {
6367                         /* Fix the right offset for 2a and 7. */
6368                         right_offset += ekey->offset - key.offset;
6369                 } else {
6370                         /* Fix the left offset for all behind 2a and 2b */
6371                         left_offset_fixed += key.offset - ekey->offset;
6372                 }
6373 
6374                 /*
6375                  * Check if we have the same extent.
6376                  */
6377                 if (left_disknr != right_disknr ||
6378                     left_offset_fixed != right_offset ||
6379                     left_gen != right_gen) {
6380                         ret = 0;
6381                         goto out;
6382                 }
6383 
6384                 /*
6385                  * Go to the next extent.
6386                  */
6387                 ret = btrfs_next_item(sctx->parent_root, path);
6388                 if (ret < 0)
6389                         goto out;
6390                 if (!ret) {
6391                         eb = path->nodes[0];
6392                         slot = path->slots[0];
6393                         btrfs_item_key_to_cpu(eb, &found_key, slot);
6394                 }
6395                 if (ret || found_key.objectid != key.objectid ||
6396                     found_key.type != key.type) {
6397                         key.offset += right_len;
6398                         break;
6399                 }
6400                 if (found_key.offset != key.offset + right_len) {
6401                         ret = 0;
6402                         goto out;
6403                 }
6404                 key = found_key;
6405         }
6406 
6407         /*
6408          * We're now behind the left extent (treat as unchanged) or at the end
6409          * of the right side (treat as changed).
6410          */
6411         if (key.offset >= ekey->offset + left_len)
6412                 ret = 1;
6413         else
6414                 ret = 0;
6415 
6416 
6417 out:
6418         btrfs_free_path(path);
6419         return ret;
6420 }
6421 
6422 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6423 {
6424         struct btrfs_path *path;
6425         struct btrfs_root *root = sctx->send_root;
6426         struct btrfs_key key;
6427         int ret;
6428 
6429         path = alloc_path_for_send();
6430         if (!path)
6431                 return -ENOMEM;
6432 
6433         sctx->cur_inode_last_extent = 0;
6434 
6435         key.objectid = sctx->cur_ino;
6436         key.type = BTRFS_EXTENT_DATA_KEY;
6437         key.offset = offset;
6438         ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6439         if (ret < 0)
6440                 goto out;
6441         ret = 0;
6442         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6443         if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6444                 goto out;
6445 
6446         sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6447 out:
6448         btrfs_free_path(path);
6449         return ret;
6450 }
6451 
6452 static int range_is_hole_in_parent(struct send_ctx *sctx,
6453                                    const u64 start,
6454                                    const u64 end)
6455 {
6456         struct btrfs_path *path;
6457         struct btrfs_key key;
6458         struct btrfs_root *root = sctx->parent_root;
6459         u64 search_start = start;
6460         int ret;
6461 
6462         path = alloc_path_for_send();
6463         if (!path)
6464                 return -ENOMEM;
6465 
6466         key.objectid = sctx->cur_ino;
6467         key.type = BTRFS_EXTENT_DATA_KEY;
6468         key.offset = search_start;
6469         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6470         if (ret < 0)
6471                 goto out;
6472         if (ret > 0 && path->slots[0] > 0)
6473                 path->slots[0]--;
6474 
6475         while (search_start < end) {
6476                 struct extent_buffer *leaf = path->nodes[0];
6477                 int slot = path->slots[0];
6478                 struct btrfs_file_extent_item *fi;
6479                 u64 extent_end;
6480 
6481                 if (slot >= btrfs_header_nritems(leaf)) {
6482                         ret = btrfs_next_leaf(root, path);
6483                         if (ret < 0)
6484                                 goto out;
6485                         else if (ret > 0)
6486                                 break;
6487                         continue;
6488                 }
6489 
6490                 btrfs_item_key_to_cpu(leaf, &key, slot);
6491                 if (key.objectid < sctx->cur_ino ||
6492                     key.type < BTRFS_EXTENT_DATA_KEY)
6493                         goto next;
6494                 if (key.objectid > sctx->cur_ino ||
6495                     key.type > BTRFS_EXTENT_DATA_KEY ||
6496                     key.offset >= end)
6497                         break;
6498 
6499                 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6500                 extent_end = btrfs_file_extent_end(path);
6501                 if (extent_end <= start)
6502                         goto next;
6503                 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6504                         search_start = extent_end;
6505                         goto next;
6506                 }
6507                 ret = 0;
6508                 goto out;
6509 next:
6510                 path->slots[0]++;
6511         }
6512         ret = 1;
6513 out:
6514         btrfs_free_path(path);
6515         return ret;
6516 }
6517 
6518 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6519                            struct btrfs_key *key)
6520 {
6521         int ret = 0;
6522 
6523         if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6524                 return 0;
6525 
6526         /*
6527          * Get last extent's end offset (exclusive) if we haven't determined it
6528          * yet (we're processing the first file extent item that is new), or if
6529          * we're at the first slot of a leaf and the last extent's end is less
6530          * than the current extent's offset, because we might have skipped
6531          * entire leaves that contained only file extent items for our current
6532          * inode. These leaves have a generation number smaller (older) than the
6533          * one in the current leaf and the leaf our last extent came from, and
6534          * are located between these 2 leaves.
6535          */
6536         if ((sctx->cur_inode_last_extent == (u64)-1) ||
6537             (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6538                 ret = get_last_extent(sctx, key->offset - 1);
6539                 if (ret)
6540                         return ret;
6541         }
6542 
6543         if (sctx->cur_inode_last_extent < key->offset) {
6544                 ret = range_is_hole_in_parent(sctx,
6545                                               sctx->cur_inode_last_extent,
6546                                               key->offset);
6547                 if (ret < 0)
6548                         return ret;
6549                 else if (ret == 0)
6550                         ret = send_hole(sctx, key->offset);
6551                 else
6552                         ret = 0;
6553         }
6554         sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6555         return ret;
6556 }
6557 
6558 static int process_extent(struct send_ctx *sctx,
6559                           struct btrfs_path *path,
6560                           struct btrfs_key *key)
6561 {
6562         struct clone_root *found_clone = NULL;
6563         int ret = 0;
6564 
6565         if (S_ISLNK(sctx->cur_inode_mode))
6566                 return 0;
6567 
6568         if (sctx->parent_root && !sctx->cur_inode_new) {
6569                 ret = is_extent_unchanged(sctx, path, key);
6570                 if (ret < 0)
6571                         goto out;
6572                 if (ret) {
6573                         ret = 0;
6574                         goto out_hole;
6575                 }
6576         } else {
6577                 struct btrfs_file_extent_item *ei;
6578                 u8 type;
6579 
6580                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6581                                     struct btrfs_file_extent_item);
6582                 type = btrfs_file_extent_type(path->nodes[0], ei);
6583                 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6584                     type == BTRFS_FILE_EXTENT_REG) {
6585                         /*
6586                          * The send spec does not have a prealloc command yet,
6587                          * so just leave a hole for prealloc'ed extents until
6588                          * we have enough commands queued up to justify rev'ing
6589                          * the send spec.
6590                          */
6591                         if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6592                                 ret = 0;
6593                                 goto out;
6594                         }
6595 
6596                         /* Have a hole, just skip it. */
6597                         if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6598                                 ret = 0;
6599                                 goto out;
6600                         }
6601                 }
6602         }
6603 
6604         ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6605                         sctx->cur_inode_size, &found_clone);
6606         if (ret != -ENOENT && ret < 0)
6607                 goto out;
6608 
6609         ret = send_write_or_clone(sctx, path, key, found_clone);
6610         if (ret)
6611                 goto out;
6612 out_hole:
6613         ret = maybe_send_hole(sctx, path, key);
6614 out:
6615         return ret;
6616 }
6617 
6618 static int process_all_extents(struct send_ctx *sctx)
6619 {
6620         int ret = 0;
6621         int iter_ret = 0;
6622         struct btrfs_root *root;
6623         struct btrfs_path *path;
6624         struct btrfs_key key;
6625         struct btrfs_key found_key;
6626 
6627         root = sctx->send_root;
6628         path = alloc_path_for_send();
6629         if (!path)
6630                 return -ENOMEM;
6631 
6632         key.objectid = sctx->cmp_key->objectid;
6633         key.type = BTRFS_EXTENT_DATA_KEY;
6634         key.offset = 0;
6635         btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6636                 if (found_key.objectid != key.objectid ||
6637                     found_key.type != key.type) {
6638                         ret = 0;
6639                         break;
6640                 }
6641 
6642                 ret = process_extent(sctx, path, &found_key);
6643                 if (ret < 0)
6644                         break;
6645         }
6646         /* Catch error found during iteration */
6647         if (iter_ret < 0)
6648                 ret = iter_ret;
6649 
6650         btrfs_free_path(path);
6651         return ret;
6652 }
6653 
6654 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6655                                            int *pending_move,
6656                                            int *refs_processed)
6657 {
6658         int ret = 0;
6659 
6660         if (sctx->cur_ino == 0)
6661                 goto out;
6662         if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6663             sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6664                 goto out;
6665         if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6666                 goto out;
6667 
6668         ret = process_recorded_refs(sctx, pending_move);
6669         if (ret < 0)
6670                 goto out;
6671 
6672         *refs_processed = 1;
6673 out:
6674         return ret;
6675 }
6676 
6677 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6678 {
6679         int ret = 0;
6680         struct btrfs_inode_info info;
6681         u64 left_mode;
6682         u64 left_uid;
6683         u64 left_gid;
6684         u64 left_fileattr;
6685         u64 right_mode;
6686         u64 right_uid;
6687         u64 right_gid;
6688         u64 right_fileattr;
6689         int need_chmod = 0;
6690         int need_chown = 0;
6691         bool need_fileattr = false;
6692         int need_truncate = 1;
6693         int pending_move = 0;
6694         int refs_processed = 0;
6695 
6696         if (sctx->ignore_cur_inode)
6697                 return 0;
6698 
6699         ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6700                                               &refs_processed);
6701         if (ret < 0)
6702                 goto out;
6703 
6704         /*
6705          * We have processed the refs and thus need to advance send_progress.
6706          * Now, calls to get_cur_xxx will take the updated refs of the current
6707          * inode into account.
6708          *
6709          * On the other hand, if our current inode is a directory and couldn't
6710          * be moved/renamed because its parent was renamed/moved too and it has
6711          * a higher inode number, we can only move/rename our current inode
6712          * after we moved/renamed its parent. Therefore in this case operate on
6713          * the old path (pre move/rename) of our current inode, and the
6714          * move/rename will be performed later.
6715          */
6716         if (refs_processed && !pending_move)
6717                 sctx->send_progress = sctx->cur_ino + 1;
6718 
6719         if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6720                 goto out;
6721         if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6722                 goto out;
6723         ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6724         if (ret < 0)
6725                 goto out;
6726         left_mode = info.mode;
6727         left_uid = info.uid;
6728         left_gid = info.gid;
6729         left_fileattr = info.fileattr;
6730 
6731         if (!sctx->parent_root || sctx->cur_inode_new) {
6732                 need_chown = 1;
6733                 if (!S_ISLNK(sctx->cur_inode_mode))
6734                         need_chmod = 1;
6735                 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6736                         need_truncate = 0;
6737         } else {
6738                 u64 old_size;
6739 
6740                 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6741                 if (ret < 0)
6742                         goto out;
6743                 old_size = info.size;
6744                 right_mode = info.mode;
6745                 right_uid = info.uid;
6746                 right_gid = info.gid;
6747                 right_fileattr = info.fileattr;
6748 
6749                 if (left_uid != right_uid || left_gid != right_gid)
6750                         need_chown = 1;
6751                 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6752                         need_chmod = 1;
6753                 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6754                         need_fileattr = true;
6755                 if ((old_size == sctx->cur_inode_size) ||
6756                     (sctx->cur_inode_size > old_size &&
6757                      sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6758                         need_truncate = 0;
6759         }
6760 
6761         if (S_ISREG(sctx->cur_inode_mode)) {
6762                 if (need_send_hole(sctx)) {
6763                         if (sctx->cur_inode_last_extent == (u64)-1 ||
6764                             sctx->cur_inode_last_extent <
6765                             sctx->cur_inode_size) {
6766                                 ret = get_last_extent(sctx, (u64)-1);
6767                                 if (ret)
6768                                         goto out;
6769                         }
6770                         if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6771                                 ret = range_is_hole_in_parent(sctx,
6772                                                       sctx->cur_inode_last_extent,
6773                                                       sctx->cur_inode_size);
6774                                 if (ret < 0) {
6775                                         goto out;
6776                                 } else if (ret == 0) {
6777                                         ret = send_hole(sctx, sctx->cur_inode_size);
6778                                         if (ret < 0)
6779                                                 goto out;
6780                                 } else {
6781                                         /* Range is already a hole, skip. */
6782                                         ret = 0;
6783                                 }
6784                         }
6785                 }
6786                 if (need_truncate) {
6787                         ret = send_truncate(sctx, sctx->cur_ino,
6788                                             sctx->cur_inode_gen,
6789                                             sctx->cur_inode_size);
6790                         if (ret < 0)
6791                                 goto out;
6792                 }
6793         }
6794 
6795         if (need_chown) {
6796                 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6797                                 left_uid, left_gid);
6798                 if (ret < 0)
6799                         goto out;
6800         }
6801         if (need_chmod) {
6802                 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6803                                 left_mode);
6804                 if (ret < 0)
6805                         goto out;
6806         }
6807         if (need_fileattr) {
6808                 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6809                                     left_fileattr);
6810                 if (ret < 0)
6811                         goto out;
6812         }
6813 
6814         if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6815             && sctx->cur_inode_needs_verity) {
6816                 ret = process_verity(sctx);
6817                 if (ret < 0)
6818                         goto out;
6819         }
6820 
6821         ret = send_capabilities(sctx);
6822         if (ret < 0)
6823                 goto out;
6824 
6825         /*
6826          * If other directory inodes depended on our current directory
6827          * inode's move/rename, now do their move/rename operations.
6828          */
6829         if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6830                 ret = apply_children_dir_moves(sctx);
6831                 if (ret)
6832                         goto out;
6833                 /*
6834                  * Need to send that every time, no matter if it actually
6835                  * changed between the two trees as we have done changes to
6836                  * the inode before. If our inode is a directory and it's
6837                  * waiting to be moved/renamed, we will send its utimes when
6838                  * it's moved/renamed, therefore we don't need to do it here.
6839                  */
6840                 sctx->send_progress = sctx->cur_ino + 1;
6841 
6842                 /*
6843                  * If the current inode is a non-empty directory, delay issuing
6844                  * the utimes command for it, as it's very likely we have inodes
6845                  * with an higher number inside it. We want to issue the utimes
6846                  * command only after adding all dentries to it.
6847                  */
6848                 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6849                         ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6850                 else
6851                         ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6852 
6853                 if (ret < 0)
6854                         goto out;
6855         }
6856 
6857 out:
6858         if (!ret)
6859                 ret = trim_dir_utimes_cache(sctx);
6860 
6861         return ret;
6862 }
6863 
6864 static void close_current_inode(struct send_ctx *sctx)
6865 {
6866         u64 i_size;
6867 
6868         if (sctx->cur_inode == NULL)
6869                 return;
6870 
6871         i_size = i_size_read(sctx->cur_inode);
6872 
6873         /*
6874          * If we are doing an incremental send, we may have extents between the
6875          * last processed extent and the i_size that have not been processed
6876          * because they haven't changed but we may have read some of their pages
6877          * through readahead, see the comments at send_extent_data().
6878          */
6879         if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6880                 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6881                                            sctx->page_cache_clear_start,
6882                                            round_up(i_size, PAGE_SIZE) - 1);
6883 
6884         iput(sctx->cur_inode);
6885         sctx->cur_inode = NULL;
6886 }
6887 
6888 static int changed_inode(struct send_ctx *sctx,
6889                          enum btrfs_compare_tree_result result)
6890 {
6891         int ret = 0;
6892         struct btrfs_key *key = sctx->cmp_key;
6893         struct btrfs_inode_item *left_ii = NULL;
6894         struct btrfs_inode_item *right_ii = NULL;
6895         u64 left_gen = 0;
6896         u64 right_gen = 0;
6897 
6898         close_current_inode(sctx);
6899 
6900         sctx->cur_ino = key->objectid;
6901         sctx->cur_inode_new_gen = false;
6902         sctx->cur_inode_last_extent = (u64)-1;
6903         sctx->cur_inode_next_write_offset = 0;
6904         sctx->ignore_cur_inode = false;
6905 
6906         /*
6907          * Set send_progress to current inode. This will tell all get_cur_xxx
6908          * functions that the current inode's refs are not updated yet. Later,
6909          * when process_recorded_refs is finished, it is set to cur_ino + 1.
6910          */
6911         sctx->send_progress = sctx->cur_ino;
6912 
6913         if (result == BTRFS_COMPARE_TREE_NEW ||
6914             result == BTRFS_COMPARE_TREE_CHANGED) {
6915                 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6916                                 sctx->left_path->slots[0],
6917                                 struct btrfs_inode_item);
6918                 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6919                                 left_ii);
6920         } else {
6921                 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6922                                 sctx->right_path->slots[0],
6923                                 struct btrfs_inode_item);
6924                 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6925                                 right_ii);
6926         }
6927         if (result == BTRFS_COMPARE_TREE_CHANGED) {
6928                 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6929                                 sctx->right_path->slots[0],
6930                                 struct btrfs_inode_item);
6931 
6932                 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6933                                 right_ii);
6934 
6935                 /*
6936                  * The cur_ino = root dir case is special here. We can't treat
6937                  * the inode as deleted+reused because it would generate a
6938                  * stream that tries to delete/mkdir the root dir.
6939                  */
6940                 if (left_gen != right_gen &&
6941                     sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6942                         sctx->cur_inode_new_gen = true;
6943         }
6944 
6945         /*
6946          * Normally we do not find inodes with a link count of zero (orphans)
6947          * because the most common case is to create a snapshot and use it
6948          * for a send operation. However other less common use cases involve
6949          * using a subvolume and send it after turning it to RO mode just
6950          * after deleting all hard links of a file while holding an open
6951          * file descriptor against it or turning a RO snapshot into RW mode,
6952          * keep an open file descriptor against a file, delete it and then
6953          * turn the snapshot back to RO mode before using it for a send
6954          * operation. The former is what the receiver operation does.
6955          * Therefore, if we want to send these snapshots soon after they're
6956          * received, we need to handle orphan inodes as well. Moreover, orphans
6957          * can appear not only in the send snapshot but also in the parent
6958          * snapshot. Here are several cases:
6959          *
6960          * Case 1: BTRFS_COMPARE_TREE_NEW
6961          *       |  send snapshot  | action
6962          * --------------------------------
6963          * nlink |        0        | ignore
6964          *
6965          * Case 2: BTRFS_COMPARE_TREE_DELETED
6966          *       | parent snapshot | action
6967          * ----------------------------------
6968          * nlink |        0        | as usual
6969          * Note: No unlinks will be sent because there're no paths for it.
6970          *
6971          * Case 3: BTRFS_COMPARE_TREE_CHANGED
6972          *           |       | parent snapshot | send snapshot | action
6973          * -----------------------------------------------------------------------
6974          * subcase 1 | nlink |        0        |       0       | ignore
6975          * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6976          * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6977          *
6978          */
6979         if (result == BTRFS_COMPARE_TREE_NEW) {
6980                 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6981                         sctx->ignore_cur_inode = true;
6982                         goto out;
6983                 }
6984                 sctx->cur_inode_gen = left_gen;
6985                 sctx->cur_inode_new = true;
6986                 sctx->cur_inode_deleted = false;
6987                 sctx->cur_inode_size = btrfs_inode_size(
6988                                 sctx->left_path->nodes[0], left_ii);
6989                 sctx->cur_inode_mode = btrfs_inode_mode(
6990                                 sctx->left_path->nodes[0], left_ii);
6991                 sctx->cur_inode_rdev = btrfs_inode_rdev(
6992                                 sctx->left_path->nodes[0], left_ii);
6993                 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6994                         ret = send_create_inode_if_needed(sctx);
6995         } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6996                 sctx->cur_inode_gen = right_gen;
6997                 sctx->cur_inode_new = false;
6998                 sctx->cur_inode_deleted = true;
6999                 sctx->cur_inode_size = btrfs_inode_size(
7000                                 sctx->right_path->nodes[0], right_ii);
7001                 sctx->cur_inode_mode = btrfs_inode_mode(
7002                                 sctx->right_path->nodes[0], right_ii);
7003         } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
7004                 u32 new_nlinks, old_nlinks;
7005 
7006                 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
7007                 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
7008                 if (new_nlinks == 0 && old_nlinks == 0) {
7009                         sctx->ignore_cur_inode = true;
7010                         goto out;
7011                 } else if (new_nlinks == 0 || old_nlinks == 0) {
7012                         sctx->cur_inode_new_gen = 1;
7013                 }
7014                 /*
7015                  * We need to do some special handling in case the inode was
7016                  * reported as changed with a changed generation number. This
7017                  * means that the original inode was deleted and new inode
7018                  * reused the same inum. So we have to treat the old inode as
7019                  * deleted and the new one as new.
7020                  */
7021                 if (sctx->cur_inode_new_gen) {
7022                         /*
7023                          * First, process the inode as if it was deleted.
7024                          */
7025                         if (old_nlinks > 0) {
7026                                 sctx->cur_inode_gen = right_gen;
7027                                 sctx->cur_inode_new = false;
7028                                 sctx->cur_inode_deleted = true;
7029                                 sctx->cur_inode_size = btrfs_inode_size(
7030                                                 sctx->right_path->nodes[0], right_ii);
7031                                 sctx->cur_inode_mode = btrfs_inode_mode(
7032                                                 sctx->right_path->nodes[0], right_ii);
7033                                 ret = process_all_refs(sctx,
7034                                                 BTRFS_COMPARE_TREE_DELETED);
7035                                 if (ret < 0)
7036                                         goto out;
7037                         }
7038 
7039                         /*
7040                          * Now process the inode as if it was new.
7041                          */
7042                         if (new_nlinks > 0) {
7043                                 sctx->cur_inode_gen = left_gen;
7044                                 sctx->cur_inode_new = true;
7045                                 sctx->cur_inode_deleted = false;
7046                                 sctx->cur_inode_size = btrfs_inode_size(
7047                                                 sctx->left_path->nodes[0],
7048                                                 left_ii);
7049                                 sctx->cur_inode_mode = btrfs_inode_mode(
7050                                                 sctx->left_path->nodes[0],
7051                                                 left_ii);
7052                                 sctx->cur_inode_rdev = btrfs_inode_rdev(
7053                                                 sctx->left_path->nodes[0],
7054                                                 left_ii);
7055                                 ret = send_create_inode_if_needed(sctx);
7056                                 if (ret < 0)
7057                                         goto out;
7058 
7059                                 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7060                                 if (ret < 0)
7061                                         goto out;
7062                                 /*
7063                                  * Advance send_progress now as we did not get
7064                                  * into process_recorded_refs_if_needed in the
7065                                  * new_gen case.
7066                                  */
7067                                 sctx->send_progress = sctx->cur_ino + 1;
7068 
7069                                 /*
7070                                  * Now process all extents and xattrs of the
7071                                  * inode as if they were all new.
7072                                  */
7073                                 ret = process_all_extents(sctx);
7074                                 if (ret < 0)
7075                                         goto out;
7076                                 ret = process_all_new_xattrs(sctx);
7077                                 if (ret < 0)
7078                                         goto out;
7079                         }
7080                 } else {
7081                         sctx->cur_inode_gen = left_gen;
7082                         sctx->cur_inode_new = false;
7083                         sctx->cur_inode_new_gen = false;
7084                         sctx->cur_inode_deleted = false;
7085                         sctx->cur_inode_size = btrfs_inode_size(
7086                                         sctx->left_path->nodes[0], left_ii);
7087                         sctx->cur_inode_mode = btrfs_inode_mode(
7088                                         sctx->left_path->nodes[0], left_ii);
7089                 }
7090         }
7091 
7092 out:
7093         return ret;
7094 }
7095 
7096 /*
7097  * We have to process new refs before deleted refs, but compare_trees gives us
7098  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7099  * first and later process them in process_recorded_refs.
7100  * For the cur_inode_new_gen case, we skip recording completely because
7101  * changed_inode did already initiate processing of refs. The reason for this is
7102  * that in this case, compare_tree actually compares the refs of 2 different
7103  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7104  * refs of the right tree as deleted and all refs of the left tree as new.
7105  */
7106 static int changed_ref(struct send_ctx *sctx,
7107                        enum btrfs_compare_tree_result result)
7108 {
7109         int ret = 0;
7110 
7111         if (sctx->cur_ino != sctx->cmp_key->objectid) {
7112                 inconsistent_snapshot_error(sctx, result, "reference");
7113                 return -EIO;
7114         }
7115 
7116         if (!sctx->cur_inode_new_gen &&
7117             sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7118                 if (result == BTRFS_COMPARE_TREE_NEW)
7119                         ret = record_new_ref(sctx);
7120                 else if (result == BTRFS_COMPARE_TREE_DELETED)
7121                         ret = record_deleted_ref(sctx);
7122                 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7123                         ret = record_changed_ref(sctx);
7124         }
7125 
7126         return ret;
7127 }
7128 
7129 /*
7130  * Process new/deleted/changed xattrs. We skip processing in the
7131  * cur_inode_new_gen case because changed_inode did already initiate processing
7132  * of xattrs. The reason is the same as in changed_ref
7133  */
7134 static int changed_xattr(struct send_ctx *sctx,
7135                          enum btrfs_compare_tree_result result)
7136 {
7137         int ret = 0;
7138 
7139         if (sctx->cur_ino != sctx->cmp_key->objectid) {
7140                 inconsistent_snapshot_error(sctx, result, "xattr");
7141                 return -EIO;
7142         }
7143 
7144         if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7145                 if (result == BTRFS_COMPARE_TREE_NEW)
7146                         ret = process_new_xattr(sctx);
7147                 else if (result == BTRFS_COMPARE_TREE_DELETED)
7148                         ret = process_deleted_xattr(sctx);
7149                 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7150                         ret = process_changed_xattr(sctx);
7151         }
7152 
7153         return ret;
7154 }
7155 
7156 /*
7157  * Process new/deleted/changed extents. We skip processing in the
7158  * cur_inode_new_gen case because changed_inode did already initiate processing
7159  * of extents. The reason is the same as in changed_ref
7160  */
7161 static int changed_extent(struct send_ctx *sctx,
7162                           enum btrfs_compare_tree_result result)
7163 {
7164         int ret = 0;
7165 
7166         /*
7167          * We have found an extent item that changed without the inode item
7168          * having changed. This can happen either after relocation (where the
7169          * disk_bytenr of an extent item is replaced at
7170          * relocation.c:replace_file_extents()) or after deduplication into a
7171          * file in both the parent and send snapshots (where an extent item can
7172          * get modified or replaced with a new one). Note that deduplication
7173          * updates the inode item, but it only changes the iversion (sequence
7174          * field in the inode item) of the inode, so if a file is deduplicated
7175          * the same amount of times in both the parent and send snapshots, its
7176          * iversion becomes the same in both snapshots, whence the inode item is
7177          * the same on both snapshots.
7178          */
7179         if (sctx->cur_ino != sctx->cmp_key->objectid)
7180                 return 0;
7181 
7182         if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7183                 if (result != BTRFS_COMPARE_TREE_DELETED)
7184                         ret = process_extent(sctx, sctx->left_path,
7185                                         sctx->cmp_key);
7186         }
7187 
7188         return ret;
7189 }
7190 
7191 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7192 {
7193         int ret = 0;
7194 
7195         if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7196                 if (result == BTRFS_COMPARE_TREE_NEW)
7197                         sctx->cur_inode_needs_verity = true;
7198         }
7199         return ret;
7200 }
7201 
7202 static int dir_changed(struct send_ctx *sctx, u64 dir)
7203 {
7204         u64 orig_gen, new_gen;
7205         int ret;
7206 
7207         ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7208         if (ret)
7209                 return ret;
7210 
7211         ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7212         if (ret)
7213                 return ret;
7214 
7215         return (orig_gen != new_gen) ? 1 : 0;
7216 }
7217 
7218 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7219                         struct btrfs_key *key)
7220 {
7221         struct btrfs_inode_extref *extref;
7222         struct extent_buffer *leaf;
7223         u64 dirid = 0, last_dirid = 0;
7224         unsigned long ptr;
7225         u32 item_size;
7226         u32 cur_offset = 0;
7227         int ref_name_len;
7228         int ret = 0;
7229 
7230         /* Easy case, just check this one dirid */
7231         if (key->type == BTRFS_INODE_REF_KEY) {
7232                 dirid = key->offset;
7233 
7234                 ret = dir_changed(sctx, dirid);
7235                 goto out;
7236         }
7237 
7238         leaf = path->nodes[0];
7239         item_size = btrfs_item_size(leaf, path->slots[0]);
7240         ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7241         while (cur_offset < item_size) {
7242                 extref = (struct btrfs_inode_extref *)(ptr +
7243                                                        cur_offset);
7244                 dirid = btrfs_inode_extref_parent(leaf, extref);
7245                 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7246                 cur_offset += ref_name_len + sizeof(*extref);
7247                 if (dirid == last_dirid)
7248                         continue;
7249                 ret = dir_changed(sctx, dirid);
7250                 if (ret)
7251                         break;
7252                 last_dirid = dirid;
7253         }
7254 out:
7255         return ret;
7256 }
7257 
7258 /*
7259  * Updates compare related fields in sctx and simply forwards to the actual
7260  * changed_xxx functions.
7261  */
7262 static int changed_cb(struct btrfs_path *left_path,
7263                       struct btrfs_path *right_path,
7264                       struct btrfs_key *key,
7265                       enum btrfs_compare_tree_result result,
7266                       struct send_ctx *sctx)
7267 {
7268         int ret = 0;
7269 
7270         /*
7271          * We can not hold the commit root semaphore here. This is because in
7272          * the case of sending and receiving to the same filesystem, using a
7273          * pipe, could result in a deadlock:
7274          *
7275          * 1) The task running send blocks on the pipe because it's full;
7276          *
7277          * 2) The task running receive, which is the only consumer of the pipe,
7278          *    is waiting for a transaction commit (for example due to a space
7279          *    reservation when doing a write or triggering a transaction commit
7280          *    when creating a subvolume);
7281          *
7282          * 3) The transaction is waiting to write lock the commit root semaphore,
7283          *    but can not acquire it since it's being held at 1).
7284          *
7285          * Down this call chain we write to the pipe through kernel_write().
7286          * The same type of problem can also happen when sending to a file that
7287          * is stored in the same filesystem - when reserving space for a write
7288          * into the file, we can trigger a transaction commit.
7289          *
7290          * Our caller has supplied us with clones of leaves from the send and
7291          * parent roots, so we're safe here from a concurrent relocation and
7292          * further reallocation of metadata extents while we are here. Below we
7293          * also assert that the leaves are clones.
7294          */
7295         lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7296 
7297         /*
7298          * We always have a send root, so left_path is never NULL. We will not
7299          * have a leaf when we have reached the end of the send root but have
7300          * not yet reached the end of the parent root.
7301          */
7302         if (left_path->nodes[0])
7303                 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7304                                 &left_path->nodes[0]->bflags));
7305         /*
7306          * When doing a full send we don't have a parent root, so right_path is
7307          * NULL. When doing an incremental send, we may have reached the end of
7308          * the parent root already, so we don't have a leaf at right_path.
7309          */
7310         if (right_path && right_path->nodes[0])
7311                 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7312                                 &right_path->nodes[0]->bflags));
7313 
7314         if (result == BTRFS_COMPARE_TREE_SAME) {
7315                 if (key->type == BTRFS_INODE_REF_KEY ||
7316                     key->type == BTRFS_INODE_EXTREF_KEY) {
7317                         ret = compare_refs(sctx, left_path, key);
7318                         if (!ret)
7319                                 return 0;
7320                         if (ret < 0)
7321                                 return ret;
7322                 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7323                         return maybe_send_hole(sctx, left_path, key);
7324                 } else {
7325                         return 0;
7326                 }
7327                 result = BTRFS_COMPARE_TREE_CHANGED;
7328                 ret = 0;
7329         }
7330 
7331         sctx->left_path = left_path;
7332         sctx->right_path = right_path;
7333         sctx->cmp_key = key;
7334 
7335         ret = finish_inode_if_needed(sctx, 0);
7336         if (ret < 0)
7337                 goto out;
7338 
7339         /* Ignore non-FS objects */
7340         if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7341             key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7342                 goto out;
7343 
7344         if (key->type == BTRFS_INODE_ITEM_KEY) {
7345                 ret = changed_inode(sctx, result);
7346         } else if (!sctx->ignore_cur_inode) {
7347                 if (key->type == BTRFS_INODE_REF_KEY ||
7348                     key->type == BTRFS_INODE_EXTREF_KEY)
7349                         ret = changed_ref(sctx, result);
7350                 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7351                         ret = changed_xattr(sctx, result);
7352                 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7353                         ret = changed_extent(sctx, result);
7354                 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7355                          key->offset == 0)
7356                         ret = changed_verity(sctx, result);
7357         }
7358 
7359 out:
7360         return ret;
7361 }
7362 
7363 static int search_key_again(const struct send_ctx *sctx,
7364                             struct btrfs_root *root,
7365                             struct btrfs_path *path,
7366                             const struct btrfs_key *key)
7367 {
7368         int ret;
7369 
7370         if (!path->need_commit_sem)
7371                 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7372 
7373         /*
7374          * Roots used for send operations are readonly and no one can add,
7375          * update or remove keys from them, so we should be able to find our
7376          * key again. The only exception is deduplication, which can operate on
7377          * readonly roots and add, update or remove keys to/from them - but at
7378          * the moment we don't allow it to run in parallel with send.
7379          */
7380         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7381         ASSERT(ret <= 0);
7382         if (ret > 0) {
7383                 btrfs_print_tree(path->nodes[path->lowest_level], false);
7384                 btrfs_err(root->fs_info,
7385 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7386                           key->objectid, key->type, key->offset,
7387                           (root == sctx->parent_root ? "parent" : "send"),
7388                           btrfs_root_id(root), path->lowest_level,
7389                           path->slots[path->lowest_level]);
7390                 return -EUCLEAN;
7391         }
7392 
7393         return ret;
7394 }
7395 
7396 static int full_send_tree(struct send_ctx *sctx)
7397 {
7398         int ret;
7399         struct btrfs_root *send_root = sctx->send_root;
7400         struct btrfs_key key;
7401         struct btrfs_fs_info *fs_info = send_root->fs_info;
7402         struct btrfs_path *path;
7403 
7404         path = alloc_path_for_send();
7405         if (!path)
7406                 return -ENOMEM;
7407         path->reada = READA_FORWARD_ALWAYS;
7408 
7409         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7410         key.type = BTRFS_INODE_ITEM_KEY;
7411         key.offset = 0;
7412 
7413         down_read(&fs_info->commit_root_sem);
7414         sctx->last_reloc_trans = fs_info->last_reloc_trans;
7415         up_read(&fs_info->commit_root_sem);
7416 
7417         ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7418         if (ret < 0)
7419                 goto out;
7420         if (ret)
7421                 goto out_finish;
7422 
7423         while (1) {
7424                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7425 
7426                 ret = changed_cb(path, NULL, &key,
7427                                  BTRFS_COMPARE_TREE_NEW, sctx);
7428                 if (ret < 0)
7429                         goto out;
7430 
7431                 down_read(&fs_info->commit_root_sem);
7432                 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7433                         sctx->last_reloc_trans = fs_info->last_reloc_trans;
7434                         up_read(&fs_info->commit_root_sem);
7435                         /*
7436                          * A transaction used for relocating a block group was
7437                          * committed or is about to finish its commit. Release
7438                          * our path (leaf) and restart the search, so that we
7439                          * avoid operating on any file extent items that are
7440                          * stale, with a disk_bytenr that reflects a pre
7441                          * relocation value. This way we avoid as much as
7442                          * possible to fallback to regular writes when checking
7443                          * if we can clone file ranges.
7444                          */
7445                         btrfs_release_path(path);
7446                         ret = search_key_again(sctx, send_root, path, &key);
7447                         if (ret < 0)
7448                                 goto out;
7449                 } else {
7450                         up_read(&fs_info->commit_root_sem);
7451                 }
7452 
7453                 ret = btrfs_next_item(send_root, path);
7454                 if (ret < 0)
7455                         goto out;
7456                 if (ret) {
7457                         ret  = 0;
7458                         break;
7459                 }
7460         }
7461 
7462 out_finish:
7463         ret = finish_inode_if_needed(sctx, 1);
7464 
7465 out:
7466         btrfs_free_path(path);
7467         return ret;
7468 }
7469 
7470 static int replace_node_with_clone(struct btrfs_path *path, int level)
7471 {
7472         struct extent_buffer *clone;
7473 
7474         clone = btrfs_clone_extent_buffer(path->nodes[level]);
7475         if (!clone)
7476                 return -ENOMEM;
7477 
7478         free_extent_buffer(path->nodes[level]);
7479         path->nodes[level] = clone;
7480 
7481         return 0;
7482 }
7483 
7484 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7485 {
7486         struct extent_buffer *eb;
7487         struct extent_buffer *parent = path->nodes[*level];
7488         int slot = path->slots[*level];
7489         const int nritems = btrfs_header_nritems(parent);
7490         u64 reada_max;
7491         u64 reada_done = 0;
7492 
7493         lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7494         ASSERT(*level != 0);
7495 
7496         eb = btrfs_read_node_slot(parent, slot);
7497         if (IS_ERR(eb))
7498                 return PTR_ERR(eb);
7499 
7500         /*
7501          * Trigger readahead for the next leaves we will process, so that it is
7502          * very likely that when we need them they are already in memory and we
7503          * will not block on disk IO. For nodes we only do readahead for one,
7504          * since the time window between processing nodes is typically larger.
7505          */
7506         reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7507 
7508         for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7509                 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7510                         btrfs_readahead_node_child(parent, slot);
7511                         reada_done += eb->fs_info->nodesize;
7512                 }
7513         }
7514 
7515         path->nodes[*level - 1] = eb;
7516         path->slots[*level - 1] = 0;
7517         (*level)--;
7518 
7519         if (*level == 0)
7520                 return replace_node_with_clone(path, 0);
7521 
7522         return 0;
7523 }
7524 
7525 static int tree_move_next_or_upnext(struct btrfs_path *path,
7526                                     int *level, int root_level)
7527 {
7528         int ret = 0;
7529         int nritems;
7530         nritems = btrfs_header_nritems(path->nodes[*level]);
7531 
7532         path->slots[*level]++;
7533 
7534         while (path->slots[*level] >= nritems) {
7535                 if (*level == root_level) {
7536                         path->slots[*level] = nritems - 1;
7537                         return -1;
7538                 }
7539 
7540                 /* move upnext */
7541                 path->slots[*level] = 0;
7542                 free_extent_buffer(path->nodes[*level]);
7543                 path->nodes[*level] = NULL;
7544                 (*level)++;
7545                 path->slots[*level]++;
7546 
7547                 nritems = btrfs_header_nritems(path->nodes[*level]);
7548                 ret = 1;
7549         }
7550         return ret;
7551 }
7552 
7553 /*
7554  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7555  * or down.
7556  */
7557 static int tree_advance(struct btrfs_path *path,
7558                         int *level, int root_level,
7559                         int allow_down,
7560                         struct btrfs_key *key,
7561                         u64 reada_min_gen)
7562 {
7563         int ret;
7564 
7565         if (*level == 0 || !allow_down) {
7566                 ret = tree_move_next_or_upnext(path, level, root_level);
7567         } else {
7568                 ret = tree_move_down(path, level, reada_min_gen);
7569         }
7570 
7571         /*
7572          * Even if we have reached the end of a tree, ret is -1, update the key
7573          * anyway, so that in case we need to restart due to a block group
7574          * relocation, we can assert that the last key of the root node still
7575          * exists in the tree.
7576          */
7577         if (*level == 0)
7578                 btrfs_item_key_to_cpu(path->nodes[*level], key,
7579                                       path->slots[*level]);
7580         else
7581                 btrfs_node_key_to_cpu(path->nodes[*level], key,
7582                                       path->slots[*level]);
7583 
7584         return ret;
7585 }
7586 
7587 static int tree_compare_item(struct btrfs_path *left_path,
7588                              struct btrfs_path *right_path,
7589                              char *tmp_buf)
7590 {
7591         int cmp;
7592         int len1, len2;
7593         unsigned long off1, off2;
7594 
7595         len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7596         len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7597         if (len1 != len2)
7598                 return 1;
7599 
7600         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7601         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7602                                 right_path->slots[0]);
7603 
7604         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7605 
7606         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7607         if (cmp)
7608                 return 1;
7609         return 0;
7610 }
7611 
7612 /*
7613  * A transaction used for relocating a block group was committed or is about to
7614  * finish its commit. Release our paths and restart the search, so that we are
7615  * not using stale extent buffers:
7616  *
7617  * 1) For levels > 0, we are only holding references of extent buffers, without
7618  *    any locks on them, which does not prevent them from having been relocated
7619  *    and reallocated after the last time we released the commit root semaphore.
7620  *    The exception are the root nodes, for which we always have a clone, see
7621  *    the comment at btrfs_compare_trees();
7622  *
7623  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7624  *    we are safe from the concurrent relocation and reallocation. However they
7625  *    can have file extent items with a pre relocation disk_bytenr value, so we
7626  *    restart the start from the current commit roots and clone the new leaves so
7627  *    that we get the post relocation disk_bytenr values. Not doing so, could
7628  *    make us clone the wrong data in case there are new extents using the old
7629  *    disk_bytenr that happen to be shared.
7630  */
7631 static int restart_after_relocation(struct btrfs_path *left_path,
7632                                     struct btrfs_path *right_path,
7633                                     const struct btrfs_key *left_key,
7634                                     const struct btrfs_key *right_key,
7635                                     int left_level,
7636                                     int right_level,
7637                                     const struct send_ctx *sctx)
7638 {
7639         int root_level;
7640         int ret;
7641 
7642         lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7643 
7644         btrfs_release_path(left_path);
7645         btrfs_release_path(right_path);
7646 
7647         /*
7648          * Since keys can not be added or removed to/from our roots because they
7649          * are readonly and we do not allow deduplication to run in parallel
7650          * (which can add, remove or change keys), the layout of the trees should
7651          * not change.
7652          */
7653         left_path->lowest_level = left_level;
7654         ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7655         if (ret < 0)
7656                 return ret;
7657 
7658         right_path->lowest_level = right_level;
7659         ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7660         if (ret < 0)
7661                 return ret;
7662 
7663         /*
7664          * If the lowest level nodes are leaves, clone them so that they can be
7665          * safely used by changed_cb() while not under the protection of the
7666          * commit root semaphore, even if relocation and reallocation happens in
7667          * parallel.
7668          */
7669         if (left_level == 0) {
7670                 ret = replace_node_with_clone(left_path, 0);
7671                 if (ret < 0)
7672                         return ret;
7673         }
7674 
7675         if (right_level == 0) {
7676                 ret = replace_node_with_clone(right_path, 0);
7677                 if (ret < 0)
7678                         return ret;
7679         }
7680 
7681         /*
7682          * Now clone the root nodes (unless they happen to be the leaves we have
7683          * already cloned). This is to protect against concurrent snapshotting of
7684          * the send and parent roots (see the comment at btrfs_compare_trees()).
7685          */
7686         root_level = btrfs_header_level(sctx->send_root->commit_root);
7687         if (root_level > 0) {
7688                 ret = replace_node_with_clone(left_path, root_level);
7689                 if (ret < 0)
7690                         return ret;
7691         }
7692 
7693         root_level = btrfs_header_level(sctx->parent_root->commit_root);
7694         if (root_level > 0) {
7695                 ret = replace_node_with_clone(right_path, root_level);
7696                 if (ret < 0)
7697                         return ret;
7698         }
7699 
7700         return 0;
7701 }
7702 
7703 /*
7704  * This function compares two trees and calls the provided callback for
7705  * every changed/new/deleted item it finds.
7706  * If shared tree blocks are encountered, whole subtrees are skipped, making
7707  * the compare pretty fast on snapshotted subvolumes.
7708  *
7709  * This currently works on commit roots only. As commit roots are read only,
7710  * we don't do any locking. The commit roots are protected with transactions.
7711  * Transactions are ended and rejoined when a commit is tried in between.
7712  *
7713  * This function checks for modifications done to the trees while comparing.
7714  * If it detects a change, it aborts immediately.
7715  */
7716 static int btrfs_compare_trees(struct btrfs_root *left_root,
7717                         struct btrfs_root *right_root, struct send_ctx *sctx)
7718 {
7719         struct btrfs_fs_info *fs_info = left_root->fs_info;
7720         int ret;
7721         int cmp;
7722         struct btrfs_path *left_path = NULL;
7723         struct btrfs_path *right_path = NULL;
7724         struct btrfs_key left_key;
7725         struct btrfs_key right_key;
7726         char *tmp_buf = NULL;
7727         int left_root_level;
7728         int right_root_level;
7729         int left_level;
7730         int right_level;
7731         int left_end_reached = 0;
7732         int right_end_reached = 0;
7733         int advance_left = 0;
7734         int advance_right = 0;
7735         u64 left_blockptr;
7736         u64 right_blockptr;
7737         u64 left_gen;
7738         u64 right_gen;
7739         u64 reada_min_gen;
7740 
7741         left_path = btrfs_alloc_path();
7742         if (!left_path) {
7743                 ret = -ENOMEM;
7744                 goto out;
7745         }
7746         right_path = btrfs_alloc_path();
7747         if (!right_path) {
7748                 ret = -ENOMEM;
7749                 goto out;
7750         }
7751 
7752         tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7753         if (!tmp_buf) {
7754                 ret = -ENOMEM;
7755                 goto out;
7756         }
7757 
7758         left_path->search_commit_root = 1;
7759         left_path->skip_locking = 1;
7760         right_path->search_commit_root = 1;
7761         right_path->skip_locking = 1;
7762 
7763         /*
7764          * Strategy: Go to the first items of both trees. Then do
7765          *
7766          * If both trees are at level 0
7767          *   Compare keys of current items
7768          *     If left < right treat left item as new, advance left tree
7769          *       and repeat
7770          *     If left > right treat right item as deleted, advance right tree
7771          *       and repeat
7772          *     If left == right do deep compare of items, treat as changed if
7773          *       needed, advance both trees and repeat
7774          * If both trees are at the same level but not at level 0
7775          *   Compare keys of current nodes/leafs
7776          *     If left < right advance left tree and repeat
7777          *     If left > right advance right tree and repeat
7778          *     If left == right compare blockptrs of the next nodes/leafs
7779          *       If they match advance both trees but stay at the same level
7780          *         and repeat
7781          *       If they don't match advance both trees while allowing to go
7782          *         deeper and repeat
7783          * If tree levels are different
7784          *   Advance the tree that needs it and repeat
7785          *
7786          * Advancing a tree means:
7787          *   If we are at level 0, try to go to the next slot. If that's not
7788          *   possible, go one level up and repeat. Stop when we found a level
7789          *   where we could go to the next slot. We may at this point be on a
7790          *   node or a leaf.
7791          *
7792          *   If we are not at level 0 and not on shared tree blocks, go one
7793          *   level deeper.
7794          *
7795          *   If we are not at level 0 and on shared tree blocks, go one slot to
7796          *   the right if possible or go up and right.
7797          */
7798 
7799         down_read(&fs_info->commit_root_sem);
7800         left_level = btrfs_header_level(left_root->commit_root);
7801         left_root_level = left_level;
7802         /*
7803          * We clone the root node of the send and parent roots to prevent races
7804          * with snapshot creation of these roots. Snapshot creation COWs the
7805          * root node of a tree, so after the transaction is committed the old
7806          * extent can be reallocated while this send operation is still ongoing.
7807          * So we clone them, under the commit root semaphore, to be race free.
7808          */
7809         left_path->nodes[left_level] =
7810                         btrfs_clone_extent_buffer(left_root->commit_root);
7811         if (!left_path->nodes[left_level]) {
7812                 ret = -ENOMEM;
7813                 goto out_unlock;
7814         }
7815 
7816         right_level = btrfs_header_level(right_root->commit_root);
7817         right_root_level = right_level;
7818         right_path->nodes[right_level] =
7819                         btrfs_clone_extent_buffer(right_root->commit_root);
7820         if (!right_path->nodes[right_level]) {
7821                 ret = -ENOMEM;
7822                 goto out_unlock;
7823         }
7824         /*
7825          * Our right root is the parent root, while the left root is the "send"
7826          * root. We know that all new nodes/leaves in the left root must have
7827          * a generation greater than the right root's generation, so we trigger
7828          * readahead for those nodes and leaves of the left root, as we know we
7829          * will need to read them at some point.
7830          */
7831         reada_min_gen = btrfs_header_generation(right_root->commit_root);
7832 
7833         if (left_level == 0)
7834                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7835                                 &left_key, left_path->slots[left_level]);
7836         else
7837                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7838                                 &left_key, left_path->slots[left_level]);
7839         if (right_level == 0)
7840                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7841                                 &right_key, right_path->slots[right_level]);
7842         else
7843                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7844                                 &right_key, right_path->slots[right_level]);
7845 
7846         sctx->last_reloc_trans = fs_info->last_reloc_trans;
7847 
7848         while (1) {
7849                 if (need_resched() ||
7850                     rwsem_is_contended(&fs_info->commit_root_sem)) {
7851                         up_read(&fs_info->commit_root_sem);
7852                         cond_resched();
7853                         down_read(&fs_info->commit_root_sem);
7854                 }
7855 
7856                 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7857                         ret = restart_after_relocation(left_path, right_path,
7858                                                        &left_key, &right_key,
7859                                                        left_level, right_level,
7860                                                        sctx);
7861                         if (ret < 0)
7862                                 goto out_unlock;
7863                         sctx->last_reloc_trans = fs_info->last_reloc_trans;
7864                 }
7865 
7866                 if (advance_left && !left_end_reached) {
7867                         ret = tree_advance(left_path, &left_level,
7868                                         left_root_level,
7869                                         advance_left != ADVANCE_ONLY_NEXT,
7870                                         &left_key, reada_min_gen);
7871                         if (ret == -1)
7872                                 left_end_reached = ADVANCE;
7873                         else if (ret < 0)
7874                                 goto out_unlock;
7875                         advance_left = 0;
7876                 }
7877                 if (advance_right && !right_end_reached) {
7878                         ret = tree_advance(right_path, &right_level,
7879                                         right_root_level,
7880                                         advance_right != ADVANCE_ONLY_NEXT,
7881                                         &right_key, reada_min_gen);
7882                         if (ret == -1)
7883                                 right_end_reached = ADVANCE;
7884                         else if (ret < 0)
7885                                 goto out_unlock;
7886                         advance_right = 0;
7887                 }
7888 
7889                 if (left_end_reached && right_end_reached) {
7890                         ret = 0;
7891                         goto out_unlock;
7892                 } else if (left_end_reached) {
7893                         if (right_level == 0) {
7894                                 up_read(&fs_info->commit_root_sem);
7895                                 ret = changed_cb(left_path, right_path,
7896                                                 &right_key,
7897                                                 BTRFS_COMPARE_TREE_DELETED,
7898                                                 sctx);
7899                                 if (ret < 0)
7900                                         goto out;
7901                                 down_read(&fs_info->commit_root_sem);
7902                         }
7903                         advance_right = ADVANCE;
7904                         continue;
7905                 } else if (right_end_reached) {
7906                         if (left_level == 0) {
7907                                 up_read(&fs_info->commit_root_sem);
7908                                 ret = changed_cb(left_path, right_path,
7909                                                 &left_key,
7910                                                 BTRFS_COMPARE_TREE_NEW,
7911                                                 sctx);
7912                                 if (ret < 0)
7913                                         goto out;
7914                                 down_read(&fs_info->commit_root_sem);
7915                         }
7916                         advance_left = ADVANCE;
7917                         continue;
7918                 }
7919 
7920                 if (left_level == 0 && right_level == 0) {
7921                         up_read(&fs_info->commit_root_sem);
7922                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7923                         if (cmp < 0) {
7924                                 ret = changed_cb(left_path, right_path,
7925                                                 &left_key,
7926                                                 BTRFS_COMPARE_TREE_NEW,
7927                                                 sctx);
7928                                 advance_left = ADVANCE;
7929                         } else if (cmp > 0) {
7930                                 ret = changed_cb(left_path, right_path,
7931                                                 &right_key,
7932                                                 BTRFS_COMPARE_TREE_DELETED,
7933                                                 sctx);
7934                                 advance_right = ADVANCE;
7935                         } else {
7936                                 enum btrfs_compare_tree_result result;
7937 
7938                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7939                                 ret = tree_compare_item(left_path, right_path,
7940                                                         tmp_buf);
7941                                 if (ret)
7942                                         result = BTRFS_COMPARE_TREE_CHANGED;
7943                                 else
7944                                         result = BTRFS_COMPARE_TREE_SAME;
7945                                 ret = changed_cb(left_path, right_path,
7946                                                  &left_key, result, sctx);
7947                                 advance_left = ADVANCE;
7948                                 advance_right = ADVANCE;
7949                         }
7950 
7951                         if (ret < 0)
7952                                 goto out;
7953                         down_read(&fs_info->commit_root_sem);
7954                 } else if (left_level == right_level) {
7955                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7956                         if (cmp < 0) {
7957                                 advance_left = ADVANCE;
7958                         } else if (cmp > 0) {
7959                                 advance_right = ADVANCE;
7960                         } else {
7961                                 left_blockptr = btrfs_node_blockptr(
7962                                                 left_path->nodes[left_level],
7963                                                 left_path->slots[left_level]);
7964                                 right_blockptr = btrfs_node_blockptr(
7965                                                 right_path->nodes[right_level],
7966                                                 right_path->slots[right_level]);
7967                                 left_gen = btrfs_node_ptr_generation(
7968                                                 left_path->nodes[left_level],
7969                                                 left_path->slots[left_level]);
7970                                 right_gen = btrfs_node_ptr_generation(
7971                                                 right_path->nodes[right_level],
7972                                                 right_path->slots[right_level]);
7973                                 if (left_blockptr == right_blockptr &&
7974                                     left_gen == right_gen) {
7975                                         /*
7976                                          * As we're on a shared block, don't
7977                                          * allow to go deeper.
7978                                          */
7979                                         advance_left = ADVANCE_ONLY_NEXT;
7980                                         advance_right = ADVANCE_ONLY_NEXT;
7981                                 } else {
7982                                         advance_left = ADVANCE;
7983                                         advance_right = ADVANCE;
7984                                 }
7985                         }
7986                 } else if (left_level < right_level) {
7987                         advance_right = ADVANCE;
7988                 } else {
7989                         advance_left = ADVANCE;
7990                 }
7991         }
7992 
7993 out_unlock:
7994         up_read(&fs_info->commit_root_sem);
7995 out:
7996         btrfs_free_path(left_path);
7997         btrfs_free_path(right_path);
7998         kvfree(tmp_buf);
7999         return ret;
8000 }
8001 
8002 static int send_subvol(struct send_ctx *sctx)
8003 {
8004         int ret;
8005 
8006         if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
8007                 ret = send_header(sctx);
8008                 if (ret < 0)
8009                         goto out;
8010         }
8011 
8012         ret = send_subvol_begin(sctx);
8013         if (ret < 0)
8014                 goto out;
8015 
8016         if (sctx->parent_root) {
8017                 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
8018                 if (ret < 0)
8019                         goto out;
8020                 ret = finish_inode_if_needed(sctx, 1);
8021                 if (ret < 0)
8022                         goto out;
8023         } else {
8024                 ret = full_send_tree(sctx);
8025                 if (ret < 0)
8026                         goto out;
8027         }
8028 
8029 out:
8030         free_recorded_refs(sctx);
8031         return ret;
8032 }
8033 
8034 /*
8035  * If orphan cleanup did remove any orphans from a root, it means the tree
8036  * was modified and therefore the commit root is not the same as the current
8037  * root anymore. This is a problem, because send uses the commit root and
8038  * therefore can see inode items that don't exist in the current root anymore,
8039  * and for example make calls to btrfs_iget, which will do tree lookups based
8040  * on the current root and not on the commit root. Those lookups will fail,
8041  * returning a -ESTALE error, and making send fail with that error. So make
8042  * sure a send does not see any orphans we have just removed, and that it will
8043  * see the same inodes regardless of whether a transaction commit happened
8044  * before it started (meaning that the commit root will be the same as the
8045  * current root) or not.
8046  */
8047 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8048 {
8049         struct btrfs_root *root = sctx->parent_root;
8050 
8051         if (root && root->node != root->commit_root)
8052                 return btrfs_commit_current_transaction(root);
8053 
8054         for (int i = 0; i < sctx->clone_roots_cnt; i++) {
8055                 root = sctx->clone_roots[i].root;
8056                 if (root->node != root->commit_root)
8057                         return btrfs_commit_current_transaction(root);
8058         }
8059 
8060         return 0;
8061 }
8062 
8063 /*
8064  * Make sure any existing dellaloc is flushed for any root used by a send
8065  * operation so that we do not miss any data and we do not race with writeback
8066  * finishing and changing a tree while send is using the tree. This could
8067  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8068  * a send operation then uses the subvolume.
8069  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8070  */
8071 static int flush_delalloc_roots(struct send_ctx *sctx)
8072 {
8073         struct btrfs_root *root = sctx->parent_root;
8074         int ret;
8075         int i;
8076 
8077         if (root) {
8078                 ret = btrfs_start_delalloc_snapshot(root, false);
8079                 if (ret)
8080                         return ret;
8081                 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8082         }
8083 
8084         for (i = 0; i < sctx->clone_roots_cnt; i++) {
8085                 root = sctx->clone_roots[i].root;
8086                 ret = btrfs_start_delalloc_snapshot(root, false);
8087                 if (ret)
8088                         return ret;
8089                 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8090         }
8091 
8092         return 0;
8093 }
8094 
8095 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8096 {
8097         spin_lock(&root->root_item_lock);
8098         root->send_in_progress--;
8099         /*
8100          * Not much left to do, we don't know why it's unbalanced and
8101          * can't blindly reset it to 0.
8102          */
8103         if (root->send_in_progress < 0)
8104                 btrfs_err(root->fs_info,
8105                           "send_in_progress unbalanced %d root %llu",
8106                           root->send_in_progress, btrfs_root_id(root));
8107         spin_unlock(&root->root_item_lock);
8108 }
8109 
8110 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8111 {
8112         btrfs_warn_rl(root->fs_info,
8113 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8114                       btrfs_root_id(root), root->dedupe_in_progress);
8115 }
8116 
8117 long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg)
8118 {
8119         int ret = 0;
8120         struct btrfs_root *send_root = inode->root;
8121         struct btrfs_fs_info *fs_info = send_root->fs_info;
8122         struct btrfs_root *clone_root;
8123         struct send_ctx *sctx = NULL;
8124         u32 i;
8125         u64 *clone_sources_tmp = NULL;
8126         int clone_sources_to_rollback = 0;
8127         size_t alloc_size;
8128         int sort_clone_roots = 0;
8129         struct btrfs_lru_cache_entry *entry;
8130         struct btrfs_lru_cache_entry *tmp;
8131 
8132         if (!capable(CAP_SYS_ADMIN))
8133                 return -EPERM;
8134 
8135         /*
8136          * The subvolume must remain read-only during send, protect against
8137          * making it RW. This also protects against deletion.
8138          */
8139         spin_lock(&send_root->root_item_lock);
8140         if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8141                 dedupe_in_progress_warn(send_root);
8142                 spin_unlock(&send_root->root_item_lock);
8143                 return -EAGAIN;
8144         }
8145         send_root->send_in_progress++;
8146         spin_unlock(&send_root->root_item_lock);
8147 
8148         /*
8149          * Userspace tools do the checks and warn the user if it's
8150          * not RO.
8151          */
8152         if (!btrfs_root_readonly(send_root)) {
8153                 ret = -EPERM;
8154                 goto out;
8155         }
8156 
8157         /*
8158          * Check that we don't overflow at later allocations, we request
8159          * clone_sources_count + 1 items, and compare to unsigned long inside
8160          * access_ok. Also set an upper limit for allocation size so this can't
8161          * easily exhaust memory. Max number of clone sources is about 200K.
8162          */
8163         if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8164                 ret = -EINVAL;
8165                 goto out;
8166         }
8167 
8168         if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8169                 ret = -EOPNOTSUPP;
8170                 goto out;
8171         }
8172 
8173         sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8174         if (!sctx) {
8175                 ret = -ENOMEM;
8176                 goto out;
8177         }
8178 
8179         INIT_LIST_HEAD(&sctx->new_refs);
8180         INIT_LIST_HEAD(&sctx->deleted_refs);
8181 
8182         btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8183         btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8184         btrfs_lru_cache_init(&sctx->dir_created_cache,
8185                              SEND_MAX_DIR_CREATED_CACHE_SIZE);
8186         /*
8187          * This cache is periodically trimmed to a fixed size elsewhere, see
8188          * cache_dir_utimes() and trim_dir_utimes_cache().
8189          */
8190         btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8191 
8192         sctx->pending_dir_moves = RB_ROOT;
8193         sctx->waiting_dir_moves = RB_ROOT;
8194         sctx->orphan_dirs = RB_ROOT;
8195         sctx->rbtree_new_refs = RB_ROOT;
8196         sctx->rbtree_deleted_refs = RB_ROOT;
8197 
8198         sctx->flags = arg->flags;
8199 
8200         if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8201                 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8202                         ret = -EPROTO;
8203                         goto out;
8204                 }
8205                 /* Zero means "use the highest version" */
8206                 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8207         } else {
8208                 sctx->proto = 1;
8209         }
8210         if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8211                 ret = -EINVAL;
8212                 goto out;
8213         }
8214 
8215         sctx->send_filp = fget(arg->send_fd);
8216         if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8217                 ret = -EBADF;
8218                 goto out;
8219         }
8220 
8221         sctx->send_root = send_root;
8222         /*
8223          * Unlikely but possible, if the subvolume is marked for deletion but
8224          * is slow to remove the directory entry, send can still be started
8225          */
8226         if (btrfs_root_dead(sctx->send_root)) {
8227                 ret = -EPERM;
8228                 goto out;
8229         }
8230 
8231         sctx->clone_roots_cnt = arg->clone_sources_count;
8232 
8233         if (sctx->proto >= 2) {
8234                 u32 send_buf_num_pages;
8235 
8236                 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8237                 sctx->send_buf = vmalloc(sctx->send_max_size);
8238                 if (!sctx->send_buf) {
8239                         ret = -ENOMEM;
8240                         goto out;
8241                 }
8242                 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8243                 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8244                                                sizeof(*sctx->send_buf_pages),
8245                                                GFP_KERNEL);
8246                 if (!sctx->send_buf_pages) {
8247                         ret = -ENOMEM;
8248                         goto out;
8249                 }
8250                 for (i = 0; i < send_buf_num_pages; i++) {
8251                         sctx->send_buf_pages[i] =
8252                                 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8253                 }
8254         } else {
8255                 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8256                 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8257         }
8258         if (!sctx->send_buf) {
8259                 ret = -ENOMEM;
8260                 goto out;
8261         }
8262 
8263         sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8264                                      sizeof(*sctx->clone_roots),
8265                                      GFP_KERNEL);
8266         if (!sctx->clone_roots) {
8267                 ret = -ENOMEM;
8268                 goto out;
8269         }
8270 
8271         alloc_size = array_size(sizeof(*arg->clone_sources),
8272                                 arg->clone_sources_count);
8273 
8274         if (arg->clone_sources_count) {
8275                 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8276                 if (!clone_sources_tmp) {
8277                         ret = -ENOMEM;
8278                         goto out;
8279                 }
8280 
8281                 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8282                                 alloc_size);
8283                 if (ret) {
8284                         ret = -EFAULT;
8285                         goto out;
8286                 }
8287 
8288                 for (i = 0; i < arg->clone_sources_count; i++) {
8289                         clone_root = btrfs_get_fs_root(fs_info,
8290                                                 clone_sources_tmp[i], true);
8291                         if (IS_ERR(clone_root)) {
8292                                 ret = PTR_ERR(clone_root);
8293                                 goto out;
8294                         }
8295                         spin_lock(&clone_root->root_item_lock);
8296                         if (!btrfs_root_readonly(clone_root) ||
8297                             btrfs_root_dead(clone_root)) {
8298                                 spin_unlock(&clone_root->root_item_lock);
8299                                 btrfs_put_root(clone_root);
8300                                 ret = -EPERM;
8301                                 goto out;
8302                         }
8303                         if (clone_root->dedupe_in_progress) {
8304                                 dedupe_in_progress_warn(clone_root);
8305                                 spin_unlock(&clone_root->root_item_lock);
8306                                 btrfs_put_root(clone_root);
8307                                 ret = -EAGAIN;
8308                                 goto out;
8309                         }
8310                         clone_root->send_in_progress++;
8311                         spin_unlock(&clone_root->root_item_lock);
8312 
8313                         sctx->clone_roots[i].root = clone_root;
8314                         clone_sources_to_rollback = i + 1;
8315                 }
8316                 kvfree(clone_sources_tmp);
8317                 clone_sources_tmp = NULL;
8318         }
8319 
8320         if (arg->parent_root) {
8321                 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8322                                                       true);
8323                 if (IS_ERR(sctx->parent_root)) {
8324                         ret = PTR_ERR(sctx->parent_root);
8325                         goto out;
8326                 }
8327 
8328                 spin_lock(&sctx->parent_root->root_item_lock);
8329                 sctx->parent_root->send_in_progress++;
8330                 if (!btrfs_root_readonly(sctx->parent_root) ||
8331                                 btrfs_root_dead(sctx->parent_root)) {
8332                         spin_unlock(&sctx->parent_root->root_item_lock);
8333                         ret = -EPERM;
8334                         goto out;
8335                 }
8336                 if (sctx->parent_root->dedupe_in_progress) {
8337                         dedupe_in_progress_warn(sctx->parent_root);
8338                         spin_unlock(&sctx->parent_root->root_item_lock);
8339                         ret = -EAGAIN;
8340                         goto out;
8341                 }
8342                 spin_unlock(&sctx->parent_root->root_item_lock);
8343         }
8344 
8345         /*
8346          * Clones from send_root are allowed, but only if the clone source
8347          * is behind the current send position. This is checked while searching
8348          * for possible clone sources.
8349          */
8350         sctx->clone_roots[sctx->clone_roots_cnt++].root =
8351                 btrfs_grab_root(sctx->send_root);
8352 
8353         /* We do a bsearch later */
8354         sort(sctx->clone_roots, sctx->clone_roots_cnt,
8355                         sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8356                         NULL);
8357         sort_clone_roots = 1;
8358 
8359         ret = flush_delalloc_roots(sctx);
8360         if (ret)
8361                 goto out;
8362 
8363         ret = ensure_commit_roots_uptodate(sctx);
8364         if (ret)
8365                 goto out;
8366 
8367         ret = send_subvol(sctx);
8368         if (ret < 0)
8369                 goto out;
8370 
8371         btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8372                 ret = send_utimes(sctx, entry->key, entry->gen);
8373                 if (ret < 0)
8374                         goto out;
8375                 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8376         }
8377 
8378         if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8379                 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8380                 if (ret < 0)
8381                         goto out;
8382                 ret = send_cmd(sctx);
8383                 if (ret < 0)
8384                         goto out;
8385         }
8386 
8387 out:
8388         WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8389         while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8390                 struct rb_node *n;
8391                 struct pending_dir_move *pm;
8392 
8393                 n = rb_first(&sctx->pending_dir_moves);
8394                 pm = rb_entry(n, struct pending_dir_move, node);
8395                 while (!list_empty(&pm->list)) {
8396                         struct pending_dir_move *pm2;
8397 
8398                         pm2 = list_first_entry(&pm->list,
8399                                                struct pending_dir_move, list);
8400                         free_pending_move(sctx, pm2);
8401                 }
8402                 free_pending_move(sctx, pm);
8403         }
8404 
8405         WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8406         while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8407                 struct rb_node *n;
8408                 struct waiting_dir_move *dm;
8409 
8410                 n = rb_first(&sctx->waiting_dir_moves);
8411                 dm = rb_entry(n, struct waiting_dir_move, node);
8412                 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8413                 kfree(dm);
8414         }
8415 
8416         WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8417         while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8418                 struct rb_node *n;
8419                 struct orphan_dir_info *odi;
8420 
8421                 n = rb_first(&sctx->orphan_dirs);
8422                 odi = rb_entry(n, struct orphan_dir_info, node);
8423                 free_orphan_dir_info(sctx, odi);
8424         }
8425 
8426         if (sort_clone_roots) {
8427                 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8428                         btrfs_root_dec_send_in_progress(
8429                                         sctx->clone_roots[i].root);
8430                         btrfs_put_root(sctx->clone_roots[i].root);
8431                 }
8432         } else {
8433                 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8434                         btrfs_root_dec_send_in_progress(
8435                                         sctx->clone_roots[i].root);
8436                         btrfs_put_root(sctx->clone_roots[i].root);
8437                 }
8438 
8439                 btrfs_root_dec_send_in_progress(send_root);
8440         }
8441         if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8442                 btrfs_root_dec_send_in_progress(sctx->parent_root);
8443                 btrfs_put_root(sctx->parent_root);
8444         }
8445 
8446         kvfree(clone_sources_tmp);
8447 
8448         if (sctx) {
8449                 if (sctx->send_filp)
8450                         fput(sctx->send_filp);
8451 
8452                 kvfree(sctx->clone_roots);
8453                 kfree(sctx->send_buf_pages);
8454                 kvfree(sctx->send_buf);
8455                 kvfree(sctx->verity_descriptor);
8456 
8457                 close_current_inode(sctx);
8458 
8459                 btrfs_lru_cache_clear(&sctx->name_cache);
8460                 btrfs_lru_cache_clear(&sctx->backref_cache);
8461                 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8462                 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8463 
8464                 kfree(sctx);
8465         }
8466 
8467         return ret;
8468 }
8469 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php