~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/send.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
  4  */
  5 
  6 #include <linux/bsearch.h>
  7 #include <linux/fs.h>
  8 #include <linux/file.h>
  9 #include <linux/sort.h>
 10 #include <linux/mount.h>
 11 #include <linux/xattr.h>
 12 #include <linux/posix_acl_xattr.h>
 13 #include <linux/radix-tree.h>
 14 #include <linux/vmalloc.h>
 15 #include <linux/string.h>
 16 #include <linux/compat.h>
 17 #include <linux/crc32c.h>
 18 #include <linux/fsverity.h>
 19 
 20 #include "send.h"
 21 #include "ctree.h"
 22 #include "backref.h"
 23 #include "locking.h"
 24 #include "disk-io.h"
 25 #include "btrfs_inode.h"
 26 #include "transaction.h"
 27 #include "compression.h"
 28 #include "print-tree.h"
 29 #include "accessors.h"
 30 #include "dir-item.h"
 31 #include "file-item.h"
 32 #include "ioctl.h"
 33 #include "verity.h"
 34 #include "lru_cache.h"
 35 
 36 /*
 37  * Maximum number of references an extent can have in order for us to attempt to
 38  * issue clone operations instead of write operations. This currently exists to
 39  * avoid hitting limitations of the backreference walking code (taking a lot of
 40  * time and using too much memory for extents with large number of references).
 41  */
 42 #define SEND_MAX_EXTENT_REFS    1024
 43 
 44 /*
 45  * A fs_path is a helper to dynamically build path names with unknown size.
 46  * It reallocates the internal buffer on demand.
 47  * It allows fast adding of path elements on the right side (normal path) and
 48  * fast adding to the left side (reversed path). A reversed path can also be
 49  * unreversed if needed.
 50  */
 51 struct fs_path {
 52         union {
 53                 struct {
 54                         char *start;
 55                         char *end;
 56 
 57                         char *buf;
 58                         unsigned short buf_len:15;
 59                         unsigned short reversed:1;
 60                         char inline_buf[];
 61                 };
 62                 /*
 63                  * Average path length does not exceed 200 bytes, we'll have
 64                  * better packing in the slab and higher chance to satisfy
 65                  * a allocation later during send.
 66                  */
 67                 char pad[256];
 68         };
 69 };
 70 #define FS_PATH_INLINE_SIZE \
 71         (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
 72 
 73 
 74 /* reused for each extent */
 75 struct clone_root {
 76         struct btrfs_root *root;
 77         u64 ino;
 78         u64 offset;
 79         u64 num_bytes;
 80         bool found_ref;
 81 };
 82 
 83 #define SEND_MAX_NAME_CACHE_SIZE                        256
 84 
 85 /*
 86  * Limit the root_ids array of struct backref_cache_entry to 17 elements.
 87  * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
 88  * can be satisfied from the kmalloc-192 slab, without wasting any space.
 89  * The most common case is to have a single root for cloning, which corresponds
 90  * to the send root. Having the user specify more than 16 clone roots is not
 91  * common, and in such rare cases we simply don't use caching if the number of
 92  * cloning roots that lead down to a leaf is more than 17.
 93  */
 94 #define SEND_MAX_BACKREF_CACHE_ROOTS                    17
 95 
 96 /*
 97  * Max number of entries in the cache.
 98  * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
 99  * maple tree's internal nodes, is 24K.
100  */
101 #define SEND_MAX_BACKREF_CACHE_SIZE 128
102 
103 /*
104  * A backref cache entry maps a leaf to a list of IDs of roots from which the
105  * leaf is accessible and we can use for clone operations.
106  * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107  * x86_64).
108  */
109 struct backref_cache_entry {
110         struct btrfs_lru_cache_entry entry;
111         u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112         /* Number of valid elements in the root_ids array. */
113         int num_roots;
114 };
115 
116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
118 
119 /*
120  * Max number of entries in the cache that stores directories that were already
121  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
124  */
125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE                 64
126 
127 /*
128  * Max number of entries in the cache that stores directories that were already
129  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
132  */
133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE                  64
134 
135 struct send_ctx {
136         struct file *send_filp;
137         loff_t send_off;
138         char *send_buf;
139         u32 send_size;
140         u32 send_max_size;
141         /*
142          * Whether BTRFS_SEND_A_DATA attribute was already added to current
143          * command (since protocol v2, data must be the last attribute).
144          */
145         bool put_data;
146         struct page **send_buf_pages;
147         u64 flags;      /* 'flags' member of btrfs_ioctl_send_args is u64 */
148         /* Protocol version compatibility requested */
149         u32 proto;
150 
151         struct btrfs_root *send_root;
152         struct btrfs_root *parent_root;
153         struct clone_root *clone_roots;
154         int clone_roots_cnt;
155 
156         /* current state of the compare_tree call */
157         struct btrfs_path *left_path;
158         struct btrfs_path *right_path;
159         struct btrfs_key *cmp_key;
160 
161         /*
162          * Keep track of the generation of the last transaction that was used
163          * for relocating a block group. This is periodically checked in order
164          * to detect if a relocation happened since the last check, so that we
165          * don't operate on stale extent buffers for nodes (level >= 1) or on
166          * stale disk_bytenr values of file extent items.
167          */
168         u64 last_reloc_trans;
169 
170         /*
171          * infos of the currently processed inode. In case of deleted inodes,
172          * these are the values from the deleted inode.
173          */
174         u64 cur_ino;
175         u64 cur_inode_gen;
176         u64 cur_inode_size;
177         u64 cur_inode_mode;
178         u64 cur_inode_rdev;
179         u64 cur_inode_last_extent;
180         u64 cur_inode_next_write_offset;
181         bool cur_inode_new;
182         bool cur_inode_new_gen;
183         bool cur_inode_deleted;
184         bool ignore_cur_inode;
185         bool cur_inode_needs_verity;
186         void *verity_descriptor;
187 
188         u64 send_progress;
189 
190         struct list_head new_refs;
191         struct list_head deleted_refs;
192 
193         struct btrfs_lru_cache name_cache;
194 
195         /*
196          * The inode we are currently processing. It's not NULL only when we
197          * need to issue write commands for data extents from this inode.
198          */
199         struct inode *cur_inode;
200         struct file_ra_state ra;
201         u64 page_cache_clear_start;
202         bool clean_page_cache;
203 
204         /*
205          * We process inodes by their increasing order, so if before an
206          * incremental send we reverse the parent/child relationship of
207          * directories such that a directory with a lower inode number was
208          * the parent of a directory with a higher inode number, and the one
209          * becoming the new parent got renamed too, we can't rename/move the
210          * directory with lower inode number when we finish processing it - we
211          * must process the directory with higher inode number first, then
212          * rename/move it and then rename/move the directory with lower inode
213          * number. Example follows.
214          *
215          * Tree state when the first send was performed:
216          *
217          * .
218          * |-- a                   (ino 257)
219          *     |-- b               (ino 258)
220          *         |
221          *         |
222          *         |-- c           (ino 259)
223          *         |   |-- d       (ino 260)
224          *         |
225          *         |-- c2          (ino 261)
226          *
227          * Tree state when the second (incremental) send is performed:
228          *
229          * .
230          * |-- a                   (ino 257)
231          *     |-- b               (ino 258)
232          *         |-- c2          (ino 261)
233          *             |-- d2      (ino 260)
234          *                 |-- cc  (ino 259)
235          *
236          * The sequence of steps that lead to the second state was:
237          *
238          * mv /a/b/c/d /a/b/c2/d2
239          * mv /a/b/c /a/b/c2/d2/cc
240          *
241          * "c" has lower inode number, but we can't move it (2nd mv operation)
242          * before we move "d", which has higher inode number.
243          *
244          * So we just memorize which move/rename operations must be performed
245          * later when their respective parent is processed and moved/renamed.
246          */
247 
248         /* Indexed by parent directory inode number. */
249         struct rb_root pending_dir_moves;
250 
251         /*
252          * Reverse index, indexed by the inode number of a directory that
253          * is waiting for the move/rename of its immediate parent before its
254          * own move/rename can be performed.
255          */
256         struct rb_root waiting_dir_moves;
257 
258         /*
259          * A directory that is going to be rm'ed might have a child directory
260          * which is in the pending directory moves index above. In this case,
261          * the directory can only be removed after the move/rename of its child
262          * is performed. Example:
263          *
264          * Parent snapshot:
265          *
266          * .                        (ino 256)
267          * |-- a/                   (ino 257)
268          *     |-- b/               (ino 258)
269          *         |-- c/           (ino 259)
270          *         |   |-- x/       (ino 260)
271          *         |
272          *         |-- y/           (ino 261)
273          *
274          * Send snapshot:
275          *
276          * .                        (ino 256)
277          * |-- a/                   (ino 257)
278          *     |-- b/               (ino 258)
279          *         |-- YY/          (ino 261)
280          *              |-- x/      (ino 260)
281          *
282          * Sequence of steps that lead to the send snapshot:
283          * rm -f /a/b/c/foo.txt
284          * mv /a/b/y /a/b/YY
285          * mv /a/b/c/x /a/b/YY
286          * rmdir /a/b/c
287          *
288          * When the child is processed, its move/rename is delayed until its
289          * parent is processed (as explained above), but all other operations
290          * like update utimes, chown, chgrp, etc, are performed and the paths
291          * that it uses for those operations must use the orphanized name of
292          * its parent (the directory we're going to rm later), so we need to
293          * memorize that name.
294          *
295          * Indexed by the inode number of the directory to be deleted.
296          */
297         struct rb_root orphan_dirs;
298 
299         struct rb_root rbtree_new_refs;
300         struct rb_root rbtree_deleted_refs;
301 
302         struct btrfs_lru_cache backref_cache;
303         u64 backref_cache_last_reloc_trans;
304 
305         struct btrfs_lru_cache dir_created_cache;
306         struct btrfs_lru_cache dir_utimes_cache;
307 };
308 
309 struct pending_dir_move {
310         struct rb_node node;
311         struct list_head list;
312         u64 parent_ino;
313         u64 ino;
314         u64 gen;
315         struct list_head update_refs;
316 };
317 
318 struct waiting_dir_move {
319         struct rb_node node;
320         u64 ino;
321         /*
322          * There might be some directory that could not be removed because it
323          * was waiting for this directory inode to be moved first. Therefore
324          * after this directory is moved, we can try to rmdir the ino rmdir_ino.
325          */
326         u64 rmdir_ino;
327         u64 rmdir_gen;
328         bool orphanized;
329 };
330 
331 struct orphan_dir_info {
332         struct rb_node node;
333         u64 ino;
334         u64 gen;
335         u64 last_dir_index_offset;
336         u64 dir_high_seq_ino;
337 };
338 
339 struct name_cache_entry {
340         /*
341          * The key in the entry is an inode number, and the generation matches
342          * the inode's generation.
343          */
344         struct btrfs_lru_cache_entry entry;
345         u64 parent_ino;
346         u64 parent_gen;
347         int ret;
348         int need_later_update;
349         int name_len;
350         char name[];
351 };
352 
353 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
354 static_assert(offsetof(struct name_cache_entry, entry) == 0);
355 
356 #define ADVANCE                                                 1
357 #define ADVANCE_ONLY_NEXT                                       -1
358 
359 enum btrfs_compare_tree_result {
360         BTRFS_COMPARE_TREE_NEW,
361         BTRFS_COMPARE_TREE_DELETED,
362         BTRFS_COMPARE_TREE_CHANGED,
363         BTRFS_COMPARE_TREE_SAME,
364 };
365 
366 __cold
367 static void inconsistent_snapshot_error(struct send_ctx *sctx,
368                                         enum btrfs_compare_tree_result result,
369                                         const char *what)
370 {
371         const char *result_string;
372 
373         switch (result) {
374         case BTRFS_COMPARE_TREE_NEW:
375                 result_string = "new";
376                 break;
377         case BTRFS_COMPARE_TREE_DELETED:
378                 result_string = "deleted";
379                 break;
380         case BTRFS_COMPARE_TREE_CHANGED:
381                 result_string = "updated";
382                 break;
383         case BTRFS_COMPARE_TREE_SAME:
384                 ASSERT(0);
385                 result_string = "unchanged";
386                 break;
387         default:
388                 ASSERT(0);
389                 result_string = "unexpected";
390         }
391 
392         btrfs_err(sctx->send_root->fs_info,
393                   "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
394                   result_string, what, sctx->cmp_key->objectid,
395                   btrfs_root_id(sctx->send_root),
396                   (sctx->parent_root ?  btrfs_root_id(sctx->parent_root) : 0));
397 }
398 
399 __maybe_unused
400 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
401 {
402         switch (sctx->proto) {
403         case 1:  return cmd <= BTRFS_SEND_C_MAX_V1;
404         case 2:  return cmd <= BTRFS_SEND_C_MAX_V2;
405         case 3:  return cmd <= BTRFS_SEND_C_MAX_V3;
406         default: return false;
407         }
408 }
409 
410 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
411 
412 static struct waiting_dir_move *
413 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
414 
415 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
416 
417 static int need_send_hole(struct send_ctx *sctx)
418 {
419         return (sctx->parent_root && !sctx->cur_inode_new &&
420                 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
421                 S_ISREG(sctx->cur_inode_mode));
422 }
423 
424 static void fs_path_reset(struct fs_path *p)
425 {
426         if (p->reversed) {
427                 p->start = p->buf + p->buf_len - 1;
428                 p->end = p->start;
429                 *p->start = 0;
430         } else {
431                 p->start = p->buf;
432                 p->end = p->start;
433                 *p->start = 0;
434         }
435 }
436 
437 static struct fs_path *fs_path_alloc(void)
438 {
439         struct fs_path *p;
440 
441         p = kmalloc(sizeof(*p), GFP_KERNEL);
442         if (!p)
443                 return NULL;
444         p->reversed = 0;
445         p->buf = p->inline_buf;
446         p->buf_len = FS_PATH_INLINE_SIZE;
447         fs_path_reset(p);
448         return p;
449 }
450 
451 static struct fs_path *fs_path_alloc_reversed(void)
452 {
453         struct fs_path *p;
454 
455         p = fs_path_alloc();
456         if (!p)
457                 return NULL;
458         p->reversed = 1;
459         fs_path_reset(p);
460         return p;
461 }
462 
463 static void fs_path_free(struct fs_path *p)
464 {
465         if (!p)
466                 return;
467         if (p->buf != p->inline_buf)
468                 kfree(p->buf);
469         kfree(p);
470 }
471 
472 static int fs_path_len(struct fs_path *p)
473 {
474         return p->end - p->start;
475 }
476 
477 static int fs_path_ensure_buf(struct fs_path *p, int len)
478 {
479         char *tmp_buf;
480         int path_len;
481         int old_buf_len;
482 
483         len++;
484 
485         if (p->buf_len >= len)
486                 return 0;
487 
488         if (len > PATH_MAX) {
489                 WARN_ON(1);
490                 return -ENOMEM;
491         }
492 
493         path_len = p->end - p->start;
494         old_buf_len = p->buf_len;
495 
496         /*
497          * Allocate to the next largest kmalloc bucket size, to let
498          * the fast path happen most of the time.
499          */
500         len = kmalloc_size_roundup(len);
501         /*
502          * First time the inline_buf does not suffice
503          */
504         if (p->buf == p->inline_buf) {
505                 tmp_buf = kmalloc(len, GFP_KERNEL);
506                 if (tmp_buf)
507                         memcpy(tmp_buf, p->buf, old_buf_len);
508         } else {
509                 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
510         }
511         if (!tmp_buf)
512                 return -ENOMEM;
513         p->buf = tmp_buf;
514         p->buf_len = len;
515 
516         if (p->reversed) {
517                 tmp_buf = p->buf + old_buf_len - path_len - 1;
518                 p->end = p->buf + p->buf_len - 1;
519                 p->start = p->end - path_len;
520                 memmove(p->start, tmp_buf, path_len + 1);
521         } else {
522                 p->start = p->buf;
523                 p->end = p->start + path_len;
524         }
525         return 0;
526 }
527 
528 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
529                                    char **prepared)
530 {
531         int ret;
532         int new_len;
533 
534         new_len = p->end - p->start + name_len;
535         if (p->start != p->end)
536                 new_len++;
537         ret = fs_path_ensure_buf(p, new_len);
538         if (ret < 0)
539                 goto out;
540 
541         if (p->reversed) {
542                 if (p->start != p->end)
543                         *--p->start = '/';
544                 p->start -= name_len;
545                 *prepared = p->start;
546         } else {
547                 if (p->start != p->end)
548                         *p->end++ = '/';
549                 *prepared = p->end;
550                 p->end += name_len;
551                 *p->end = 0;
552         }
553 
554 out:
555         return ret;
556 }
557 
558 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
559 {
560         int ret;
561         char *prepared;
562 
563         ret = fs_path_prepare_for_add(p, name_len, &prepared);
564         if (ret < 0)
565                 goto out;
566         memcpy(prepared, name, name_len);
567 
568 out:
569         return ret;
570 }
571 
572 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
573 {
574         int ret;
575         char *prepared;
576 
577         ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
578         if (ret < 0)
579                 goto out;
580         memcpy(prepared, p2->start, p2->end - p2->start);
581 
582 out:
583         return ret;
584 }
585 
586 static int fs_path_add_from_extent_buffer(struct fs_path *p,
587                                           struct extent_buffer *eb,
588                                           unsigned long off, int len)
589 {
590         int ret;
591         char *prepared;
592 
593         ret = fs_path_prepare_for_add(p, len, &prepared);
594         if (ret < 0)
595                 goto out;
596 
597         read_extent_buffer(eb, prepared, off, len);
598 
599 out:
600         return ret;
601 }
602 
603 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
604 {
605         p->reversed = from->reversed;
606         fs_path_reset(p);
607 
608         return fs_path_add_path(p, from);
609 }
610 
611 static void fs_path_unreverse(struct fs_path *p)
612 {
613         char *tmp;
614         int len;
615 
616         if (!p->reversed)
617                 return;
618 
619         tmp = p->start;
620         len = p->end - p->start;
621         p->start = p->buf;
622         p->end = p->start + len;
623         memmove(p->start, tmp, len + 1);
624         p->reversed = 0;
625 }
626 
627 static struct btrfs_path *alloc_path_for_send(void)
628 {
629         struct btrfs_path *path;
630 
631         path = btrfs_alloc_path();
632         if (!path)
633                 return NULL;
634         path->search_commit_root = 1;
635         path->skip_locking = 1;
636         path->need_commit_sem = 1;
637         return path;
638 }
639 
640 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
641 {
642         int ret;
643         u32 pos = 0;
644 
645         while (pos < len) {
646                 ret = kernel_write(filp, buf + pos, len - pos, off);
647                 if (ret < 0)
648                         return ret;
649                 if (ret == 0)
650                         return -EIO;
651                 pos += ret;
652         }
653 
654         return 0;
655 }
656 
657 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
658 {
659         struct btrfs_tlv_header *hdr;
660         int total_len = sizeof(*hdr) + len;
661         int left = sctx->send_max_size - sctx->send_size;
662 
663         if (WARN_ON_ONCE(sctx->put_data))
664                 return -EINVAL;
665 
666         if (unlikely(left < total_len))
667                 return -EOVERFLOW;
668 
669         hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
670         put_unaligned_le16(attr, &hdr->tlv_type);
671         put_unaligned_le16(len, &hdr->tlv_len);
672         memcpy(hdr + 1, data, len);
673         sctx->send_size += total_len;
674 
675         return 0;
676 }
677 
678 #define TLV_PUT_DEFINE_INT(bits) \
679         static int tlv_put_u##bits(struct send_ctx *sctx,               \
680                         u##bits attr, u##bits value)                    \
681         {                                                               \
682                 __le##bits __tmp = cpu_to_le##bits(value);              \
683                 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));      \
684         }
685 
686 TLV_PUT_DEFINE_INT(8)
687 TLV_PUT_DEFINE_INT(32)
688 TLV_PUT_DEFINE_INT(64)
689 
690 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
691                           const char *str, int len)
692 {
693         if (len == -1)
694                 len = strlen(str);
695         return tlv_put(sctx, attr, str, len);
696 }
697 
698 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
699                         const u8 *uuid)
700 {
701         return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
702 }
703 
704 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
705                                   struct extent_buffer *eb,
706                                   struct btrfs_timespec *ts)
707 {
708         struct btrfs_timespec bts;
709         read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
710         return tlv_put(sctx, attr, &bts, sizeof(bts));
711 }
712 
713 
714 #define TLV_PUT(sctx, attrtype, data, attrlen) \
715         do { \
716                 ret = tlv_put(sctx, attrtype, data, attrlen); \
717                 if (ret < 0) \
718                         goto tlv_put_failure; \
719         } while (0)
720 
721 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
722         do { \
723                 ret = tlv_put_u##bits(sctx, attrtype, value); \
724                 if (ret < 0) \
725                         goto tlv_put_failure; \
726         } while (0)
727 
728 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
729 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
730 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
731 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
732 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
733         do { \
734                 ret = tlv_put_string(sctx, attrtype, str, len); \
735                 if (ret < 0) \
736                         goto tlv_put_failure; \
737         } while (0)
738 #define TLV_PUT_PATH(sctx, attrtype, p) \
739         do { \
740                 ret = tlv_put_string(sctx, attrtype, p->start, \
741                         p->end - p->start); \
742                 if (ret < 0) \
743                         goto tlv_put_failure; \
744         } while(0)
745 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
746         do { \
747                 ret = tlv_put_uuid(sctx, attrtype, uuid); \
748                 if (ret < 0) \
749                         goto tlv_put_failure; \
750         } while (0)
751 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
752         do { \
753                 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
754                 if (ret < 0) \
755                         goto tlv_put_failure; \
756         } while (0)
757 
758 static int send_header(struct send_ctx *sctx)
759 {
760         struct btrfs_stream_header hdr;
761 
762         strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
763         hdr.version = cpu_to_le32(sctx->proto);
764         return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
765                                         &sctx->send_off);
766 }
767 
768 /*
769  * For each command/item we want to send to userspace, we call this function.
770  */
771 static int begin_cmd(struct send_ctx *sctx, int cmd)
772 {
773         struct btrfs_cmd_header *hdr;
774 
775         if (WARN_ON(!sctx->send_buf))
776                 return -EINVAL;
777 
778         if (unlikely(sctx->send_size != 0)) {
779                 btrfs_err(sctx->send_root->fs_info,
780                           "send: command header buffer not empty cmd %d offset %llu",
781                           cmd, sctx->send_off);
782                 return -EINVAL;
783         }
784 
785         sctx->send_size += sizeof(*hdr);
786         hdr = (struct btrfs_cmd_header *)sctx->send_buf;
787         put_unaligned_le16(cmd, &hdr->cmd);
788 
789         return 0;
790 }
791 
792 static int send_cmd(struct send_ctx *sctx)
793 {
794         int ret;
795         struct btrfs_cmd_header *hdr;
796         u32 crc;
797 
798         hdr = (struct btrfs_cmd_header *)sctx->send_buf;
799         put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
800         put_unaligned_le32(0, &hdr->crc);
801 
802         crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
803         put_unaligned_le32(crc, &hdr->crc);
804 
805         ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
806                                         &sctx->send_off);
807 
808         sctx->send_size = 0;
809         sctx->put_data = false;
810 
811         return ret;
812 }
813 
814 /*
815  * Sends a move instruction to user space
816  */
817 static int send_rename(struct send_ctx *sctx,
818                      struct fs_path *from, struct fs_path *to)
819 {
820         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
821         int ret;
822 
823         btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
824 
825         ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
826         if (ret < 0)
827                 goto out;
828 
829         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
830         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
831 
832         ret = send_cmd(sctx);
833 
834 tlv_put_failure:
835 out:
836         return ret;
837 }
838 
839 /*
840  * Sends a link instruction to user space
841  */
842 static int send_link(struct send_ctx *sctx,
843                      struct fs_path *path, struct fs_path *lnk)
844 {
845         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
846         int ret;
847 
848         btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
849 
850         ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
851         if (ret < 0)
852                 goto out;
853 
854         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
855         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
856 
857         ret = send_cmd(sctx);
858 
859 tlv_put_failure:
860 out:
861         return ret;
862 }
863 
864 /*
865  * Sends an unlink instruction to user space
866  */
867 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
868 {
869         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
870         int ret;
871 
872         btrfs_debug(fs_info, "send_unlink %s", path->start);
873 
874         ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
875         if (ret < 0)
876                 goto out;
877 
878         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
879 
880         ret = send_cmd(sctx);
881 
882 tlv_put_failure:
883 out:
884         return ret;
885 }
886 
887 /*
888  * Sends a rmdir instruction to user space
889  */
890 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
891 {
892         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
893         int ret;
894 
895         btrfs_debug(fs_info, "send_rmdir %s", path->start);
896 
897         ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
898         if (ret < 0)
899                 goto out;
900 
901         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
902 
903         ret = send_cmd(sctx);
904 
905 tlv_put_failure:
906 out:
907         return ret;
908 }
909 
910 struct btrfs_inode_info {
911         u64 size;
912         u64 gen;
913         u64 mode;
914         u64 uid;
915         u64 gid;
916         u64 rdev;
917         u64 fileattr;
918         u64 nlink;
919 };
920 
921 /*
922  * Helper function to retrieve some fields from an inode item.
923  */
924 static int get_inode_info(struct btrfs_root *root, u64 ino,
925                           struct btrfs_inode_info *info)
926 {
927         int ret;
928         struct btrfs_path *path;
929         struct btrfs_inode_item *ii;
930         struct btrfs_key key;
931 
932         path = alloc_path_for_send();
933         if (!path)
934                 return -ENOMEM;
935 
936         key.objectid = ino;
937         key.type = BTRFS_INODE_ITEM_KEY;
938         key.offset = 0;
939         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
940         if (ret) {
941                 if (ret > 0)
942                         ret = -ENOENT;
943                 goto out;
944         }
945 
946         if (!info)
947                 goto out;
948 
949         ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
950                         struct btrfs_inode_item);
951         info->size = btrfs_inode_size(path->nodes[0], ii);
952         info->gen = btrfs_inode_generation(path->nodes[0], ii);
953         info->mode = btrfs_inode_mode(path->nodes[0], ii);
954         info->uid = btrfs_inode_uid(path->nodes[0], ii);
955         info->gid = btrfs_inode_gid(path->nodes[0], ii);
956         info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
957         info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
958         /*
959          * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
960          * otherwise logically split to 32/32 parts.
961          */
962         info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
963 
964 out:
965         btrfs_free_path(path);
966         return ret;
967 }
968 
969 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
970 {
971         int ret;
972         struct btrfs_inode_info info = { 0 };
973 
974         ASSERT(gen);
975 
976         ret = get_inode_info(root, ino, &info);
977         *gen = info.gen;
978         return ret;
979 }
980 
981 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
982                                    struct fs_path *p,
983                                    void *ctx);
984 
985 /*
986  * Helper function to iterate the entries in ONE btrfs_inode_ref or
987  * btrfs_inode_extref.
988  * The iterate callback may return a non zero value to stop iteration. This can
989  * be a negative value for error codes or 1 to simply stop it.
990  *
991  * path must point to the INODE_REF or INODE_EXTREF when called.
992  */
993 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
994                              struct btrfs_key *found_key, int resolve,
995                              iterate_inode_ref_t iterate, void *ctx)
996 {
997         struct extent_buffer *eb = path->nodes[0];
998         struct btrfs_inode_ref *iref;
999         struct btrfs_inode_extref *extref;
1000         struct btrfs_path *tmp_path;
1001         struct fs_path *p;
1002         u32 cur = 0;
1003         u32 total;
1004         int slot = path->slots[0];
1005         u32 name_len;
1006         char *start;
1007         int ret = 0;
1008         int num = 0;
1009         int index;
1010         u64 dir;
1011         unsigned long name_off;
1012         unsigned long elem_size;
1013         unsigned long ptr;
1014 
1015         p = fs_path_alloc_reversed();
1016         if (!p)
1017                 return -ENOMEM;
1018 
1019         tmp_path = alloc_path_for_send();
1020         if (!tmp_path) {
1021                 fs_path_free(p);
1022                 return -ENOMEM;
1023         }
1024 
1025 
1026         if (found_key->type == BTRFS_INODE_REF_KEY) {
1027                 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1028                                                     struct btrfs_inode_ref);
1029                 total = btrfs_item_size(eb, slot);
1030                 elem_size = sizeof(*iref);
1031         } else {
1032                 ptr = btrfs_item_ptr_offset(eb, slot);
1033                 total = btrfs_item_size(eb, slot);
1034                 elem_size = sizeof(*extref);
1035         }
1036 
1037         while (cur < total) {
1038                 fs_path_reset(p);
1039 
1040                 if (found_key->type == BTRFS_INODE_REF_KEY) {
1041                         iref = (struct btrfs_inode_ref *)(ptr + cur);
1042                         name_len = btrfs_inode_ref_name_len(eb, iref);
1043                         name_off = (unsigned long)(iref + 1);
1044                         index = btrfs_inode_ref_index(eb, iref);
1045                         dir = found_key->offset;
1046                 } else {
1047                         extref = (struct btrfs_inode_extref *)(ptr + cur);
1048                         name_len = btrfs_inode_extref_name_len(eb, extref);
1049                         name_off = (unsigned long)&extref->name;
1050                         index = btrfs_inode_extref_index(eb, extref);
1051                         dir = btrfs_inode_extref_parent(eb, extref);
1052                 }
1053 
1054                 if (resolve) {
1055                         start = btrfs_ref_to_path(root, tmp_path, name_len,
1056                                                   name_off, eb, dir,
1057                                                   p->buf, p->buf_len);
1058                         if (IS_ERR(start)) {
1059                                 ret = PTR_ERR(start);
1060                                 goto out;
1061                         }
1062                         if (start < p->buf) {
1063                                 /* overflow , try again with larger buffer */
1064                                 ret = fs_path_ensure_buf(p,
1065                                                 p->buf_len + p->buf - start);
1066                                 if (ret < 0)
1067                                         goto out;
1068                                 start = btrfs_ref_to_path(root, tmp_path,
1069                                                           name_len, name_off,
1070                                                           eb, dir,
1071                                                           p->buf, p->buf_len);
1072                                 if (IS_ERR(start)) {
1073                                         ret = PTR_ERR(start);
1074                                         goto out;
1075                                 }
1076                                 if (unlikely(start < p->buf)) {
1077                                         btrfs_err(root->fs_info,
1078                         "send: path ref buffer underflow for key (%llu %u %llu)",
1079                                                   found_key->objectid,
1080                                                   found_key->type,
1081                                                   found_key->offset);
1082                                         ret = -EINVAL;
1083                                         goto out;
1084                                 }
1085                         }
1086                         p->start = start;
1087                 } else {
1088                         ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1089                                                              name_len);
1090                         if (ret < 0)
1091                                 goto out;
1092                 }
1093 
1094                 cur += elem_size + name_len;
1095                 ret = iterate(num, dir, index, p, ctx);
1096                 if (ret)
1097                         goto out;
1098                 num++;
1099         }
1100 
1101 out:
1102         btrfs_free_path(tmp_path);
1103         fs_path_free(p);
1104         return ret;
1105 }
1106 
1107 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1108                                   const char *name, int name_len,
1109                                   const char *data, int data_len,
1110                                   void *ctx);
1111 
1112 /*
1113  * Helper function to iterate the entries in ONE btrfs_dir_item.
1114  * The iterate callback may return a non zero value to stop iteration. This can
1115  * be a negative value for error codes or 1 to simply stop it.
1116  *
1117  * path must point to the dir item when called.
1118  */
1119 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1120                             iterate_dir_item_t iterate, void *ctx)
1121 {
1122         int ret = 0;
1123         struct extent_buffer *eb;
1124         struct btrfs_dir_item *di;
1125         struct btrfs_key di_key;
1126         char *buf = NULL;
1127         int buf_len;
1128         u32 name_len;
1129         u32 data_len;
1130         u32 cur;
1131         u32 len;
1132         u32 total;
1133         int slot;
1134         int num;
1135 
1136         /*
1137          * Start with a small buffer (1 page). If later we end up needing more
1138          * space, which can happen for xattrs on a fs with a leaf size greater
1139          * then the page size, attempt to increase the buffer. Typically xattr
1140          * values are small.
1141          */
1142         buf_len = PATH_MAX;
1143         buf = kmalloc(buf_len, GFP_KERNEL);
1144         if (!buf) {
1145                 ret = -ENOMEM;
1146                 goto out;
1147         }
1148 
1149         eb = path->nodes[0];
1150         slot = path->slots[0];
1151         di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1152         cur = 0;
1153         len = 0;
1154         total = btrfs_item_size(eb, slot);
1155 
1156         num = 0;
1157         while (cur < total) {
1158                 name_len = btrfs_dir_name_len(eb, di);
1159                 data_len = btrfs_dir_data_len(eb, di);
1160                 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1161 
1162                 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1163                         if (name_len > XATTR_NAME_MAX) {
1164                                 ret = -ENAMETOOLONG;
1165                                 goto out;
1166                         }
1167                         if (name_len + data_len >
1168                                         BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1169                                 ret = -E2BIG;
1170                                 goto out;
1171                         }
1172                 } else {
1173                         /*
1174                          * Path too long
1175                          */
1176                         if (name_len + data_len > PATH_MAX) {
1177                                 ret = -ENAMETOOLONG;
1178                                 goto out;
1179                         }
1180                 }
1181 
1182                 if (name_len + data_len > buf_len) {
1183                         buf_len = name_len + data_len;
1184                         if (is_vmalloc_addr(buf)) {
1185                                 vfree(buf);
1186                                 buf = NULL;
1187                         } else {
1188                                 char *tmp = krealloc(buf, buf_len,
1189                                                 GFP_KERNEL | __GFP_NOWARN);
1190 
1191                                 if (!tmp)
1192                                         kfree(buf);
1193                                 buf = tmp;
1194                         }
1195                         if (!buf) {
1196                                 buf = kvmalloc(buf_len, GFP_KERNEL);
1197                                 if (!buf) {
1198                                         ret = -ENOMEM;
1199                                         goto out;
1200                                 }
1201                         }
1202                 }
1203 
1204                 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1205                                 name_len + data_len);
1206 
1207                 len = sizeof(*di) + name_len + data_len;
1208                 di = (struct btrfs_dir_item *)((char *)di + len);
1209                 cur += len;
1210 
1211                 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1212                               data_len, ctx);
1213                 if (ret < 0)
1214                         goto out;
1215                 if (ret) {
1216                         ret = 0;
1217                         goto out;
1218                 }
1219 
1220                 num++;
1221         }
1222 
1223 out:
1224         kvfree(buf);
1225         return ret;
1226 }
1227 
1228 static int __copy_first_ref(int num, u64 dir, int index,
1229                             struct fs_path *p, void *ctx)
1230 {
1231         int ret;
1232         struct fs_path *pt = ctx;
1233 
1234         ret = fs_path_copy(pt, p);
1235         if (ret < 0)
1236                 return ret;
1237 
1238         /* we want the first only */
1239         return 1;
1240 }
1241 
1242 /*
1243  * Retrieve the first path of an inode. If an inode has more then one
1244  * ref/hardlink, this is ignored.
1245  */
1246 static int get_inode_path(struct btrfs_root *root,
1247                           u64 ino, struct fs_path *path)
1248 {
1249         int ret;
1250         struct btrfs_key key, found_key;
1251         struct btrfs_path *p;
1252 
1253         p = alloc_path_for_send();
1254         if (!p)
1255                 return -ENOMEM;
1256 
1257         fs_path_reset(path);
1258 
1259         key.objectid = ino;
1260         key.type = BTRFS_INODE_REF_KEY;
1261         key.offset = 0;
1262 
1263         ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1264         if (ret < 0)
1265                 goto out;
1266         if (ret) {
1267                 ret = 1;
1268                 goto out;
1269         }
1270         btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1271         if (found_key.objectid != ino ||
1272             (found_key.type != BTRFS_INODE_REF_KEY &&
1273              found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1274                 ret = -ENOENT;
1275                 goto out;
1276         }
1277 
1278         ret = iterate_inode_ref(root, p, &found_key, 1,
1279                                 __copy_first_ref, path);
1280         if (ret < 0)
1281                 goto out;
1282         ret = 0;
1283 
1284 out:
1285         btrfs_free_path(p);
1286         return ret;
1287 }
1288 
1289 struct backref_ctx {
1290         struct send_ctx *sctx;
1291 
1292         /* number of total found references */
1293         u64 found;
1294 
1295         /*
1296          * used for clones found in send_root. clones found behind cur_objectid
1297          * and cur_offset are not considered as allowed clones.
1298          */
1299         u64 cur_objectid;
1300         u64 cur_offset;
1301 
1302         /* may be truncated in case it's the last extent in a file */
1303         u64 extent_len;
1304 
1305         /* The bytenr the file extent item we are processing refers to. */
1306         u64 bytenr;
1307         /* The owner (root id) of the data backref for the current extent. */
1308         u64 backref_owner;
1309         /* The offset of the data backref for the current extent. */
1310         u64 backref_offset;
1311 };
1312 
1313 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1314 {
1315         u64 root = (u64)(uintptr_t)key;
1316         const struct clone_root *cr = elt;
1317 
1318         if (root < btrfs_root_id(cr->root))
1319                 return -1;
1320         if (root > btrfs_root_id(cr->root))
1321                 return 1;
1322         return 0;
1323 }
1324 
1325 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1326 {
1327         const struct clone_root *cr1 = e1;
1328         const struct clone_root *cr2 = e2;
1329 
1330         if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1331                 return -1;
1332         if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1333                 return 1;
1334         return 0;
1335 }
1336 
1337 /*
1338  * Called for every backref that is found for the current extent.
1339  * Results are collected in sctx->clone_roots->ino/offset.
1340  */
1341 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1342                             void *ctx_)
1343 {
1344         struct backref_ctx *bctx = ctx_;
1345         struct clone_root *clone_root;
1346 
1347         /* First check if the root is in the list of accepted clone sources */
1348         clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1349                              bctx->sctx->clone_roots_cnt,
1350                              sizeof(struct clone_root),
1351                              __clone_root_cmp_bsearch);
1352         if (!clone_root)
1353                 return 0;
1354 
1355         /* This is our own reference, bail out as we can't clone from it. */
1356         if (clone_root->root == bctx->sctx->send_root &&
1357             ino == bctx->cur_objectid &&
1358             offset == bctx->cur_offset)
1359                 return 0;
1360 
1361         /*
1362          * Make sure we don't consider clones from send_root that are
1363          * behind the current inode/offset.
1364          */
1365         if (clone_root->root == bctx->sctx->send_root) {
1366                 /*
1367                  * If the source inode was not yet processed we can't issue a
1368                  * clone operation, as the source extent does not exist yet at
1369                  * the destination of the stream.
1370                  */
1371                 if (ino > bctx->cur_objectid)
1372                         return 0;
1373                 /*
1374                  * We clone from the inode currently being sent as long as the
1375                  * source extent is already processed, otherwise we could try
1376                  * to clone from an extent that does not exist yet at the
1377                  * destination of the stream.
1378                  */
1379                 if (ino == bctx->cur_objectid &&
1380                     offset + bctx->extent_len >
1381                     bctx->sctx->cur_inode_next_write_offset)
1382                         return 0;
1383         }
1384 
1385         bctx->found++;
1386         clone_root->found_ref = true;
1387 
1388         /*
1389          * If the given backref refers to a file extent item with a larger
1390          * number of bytes than what we found before, use the new one so that
1391          * we clone more optimally and end up doing less writes and getting
1392          * less exclusive, non-shared extents at the destination.
1393          */
1394         if (num_bytes > clone_root->num_bytes) {
1395                 clone_root->ino = ino;
1396                 clone_root->offset = offset;
1397                 clone_root->num_bytes = num_bytes;
1398 
1399                 /*
1400                  * Found a perfect candidate, so there's no need to continue
1401                  * backref walking.
1402                  */
1403                 if (num_bytes >= bctx->extent_len)
1404                         return BTRFS_ITERATE_EXTENT_INODES_STOP;
1405         }
1406 
1407         return 0;
1408 }
1409 
1410 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1411                                  const u64 **root_ids_ret, int *root_count_ret)
1412 {
1413         struct backref_ctx *bctx = ctx;
1414         struct send_ctx *sctx = bctx->sctx;
1415         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1416         const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1417         struct btrfs_lru_cache_entry *raw_entry;
1418         struct backref_cache_entry *entry;
1419 
1420         if (sctx->backref_cache.size == 0)
1421                 return false;
1422 
1423         /*
1424          * If relocation happened since we first filled the cache, then we must
1425          * empty the cache and can not use it, because even though we operate on
1426          * read-only roots, their leaves and nodes may have been reallocated and
1427          * now be used for different nodes/leaves of the same tree or some other
1428          * tree.
1429          *
1430          * We are called from iterate_extent_inodes() while either holding a
1431          * transaction handle or holding fs_info->commit_root_sem, so no need
1432          * to take any lock here.
1433          */
1434         if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1435                 btrfs_lru_cache_clear(&sctx->backref_cache);
1436                 return false;
1437         }
1438 
1439         raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1440         if (!raw_entry)
1441                 return false;
1442 
1443         entry = container_of(raw_entry, struct backref_cache_entry, entry);
1444         *root_ids_ret = entry->root_ids;
1445         *root_count_ret = entry->num_roots;
1446 
1447         return true;
1448 }
1449 
1450 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1451                                 void *ctx)
1452 {
1453         struct backref_ctx *bctx = ctx;
1454         struct send_ctx *sctx = bctx->sctx;
1455         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1456         struct backref_cache_entry *new_entry;
1457         struct ulist_iterator uiter;
1458         struct ulist_node *node;
1459         int ret;
1460 
1461         /*
1462          * We're called while holding a transaction handle or while holding
1463          * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1464          * NOFS allocation.
1465          */
1466         new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1467         /* No worries, cache is optional. */
1468         if (!new_entry)
1469                 return;
1470 
1471         new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1472         new_entry->entry.gen = 0;
1473         new_entry->num_roots = 0;
1474         ULIST_ITER_INIT(&uiter);
1475         while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1476                 const u64 root_id = node->val;
1477                 struct clone_root *root;
1478 
1479                 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1480                                sctx->clone_roots_cnt, sizeof(struct clone_root),
1481                                __clone_root_cmp_bsearch);
1482                 if (!root)
1483                         continue;
1484 
1485                 /* Too many roots, just exit, no worries as caching is optional. */
1486                 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1487                         kfree(new_entry);
1488                         return;
1489                 }
1490 
1491                 new_entry->root_ids[new_entry->num_roots] = root_id;
1492                 new_entry->num_roots++;
1493         }
1494 
1495         /*
1496          * We may have not added any roots to the new cache entry, which means
1497          * none of the roots is part of the list of roots from which we are
1498          * allowed to clone. Cache the new entry as it's still useful to avoid
1499          * backref walking to determine which roots have a path to the leaf.
1500          *
1501          * Also use GFP_NOFS because we're called while holding a transaction
1502          * handle or while holding fs_info->commit_root_sem.
1503          */
1504         ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1505                                     GFP_NOFS);
1506         ASSERT(ret == 0 || ret == -ENOMEM);
1507         if (ret) {
1508                 /* Caching is optional, no worries. */
1509                 kfree(new_entry);
1510                 return;
1511         }
1512 
1513         /*
1514          * We are called from iterate_extent_inodes() while either holding a
1515          * transaction handle or holding fs_info->commit_root_sem, so no need
1516          * to take any lock here.
1517          */
1518         if (sctx->backref_cache.size == 1)
1519                 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1520 }
1521 
1522 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1523                              const struct extent_buffer *leaf, void *ctx)
1524 {
1525         const u64 refs = btrfs_extent_refs(leaf, ei);
1526         const struct backref_ctx *bctx = ctx;
1527         const struct send_ctx *sctx = bctx->sctx;
1528 
1529         if (bytenr == bctx->bytenr) {
1530                 const u64 flags = btrfs_extent_flags(leaf, ei);
1531 
1532                 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1533                         return -EUCLEAN;
1534 
1535                 /*
1536                  * If we have only one reference and only the send root as a
1537                  * clone source - meaning no clone roots were given in the
1538                  * struct btrfs_ioctl_send_args passed to the send ioctl - then
1539                  * it's our reference and there's no point in doing backref
1540                  * walking which is expensive, so exit early.
1541                  */
1542                 if (refs == 1 && sctx->clone_roots_cnt == 1)
1543                         return -ENOENT;
1544         }
1545 
1546         /*
1547          * Backreference walking (iterate_extent_inodes() below) is currently
1548          * too expensive when an extent has a large number of references, both
1549          * in time spent and used memory. So for now just fallback to write
1550          * operations instead of clone operations when an extent has more than
1551          * a certain amount of references.
1552          */
1553         if (refs > SEND_MAX_EXTENT_REFS)
1554                 return -ENOENT;
1555 
1556         return 0;
1557 }
1558 
1559 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1560 {
1561         const struct backref_ctx *bctx = ctx;
1562 
1563         if (ino == bctx->cur_objectid &&
1564             root == bctx->backref_owner &&
1565             offset == bctx->backref_offset)
1566                 return true;
1567 
1568         return false;
1569 }
1570 
1571 /*
1572  * Given an inode, offset and extent item, it finds a good clone for a clone
1573  * instruction. Returns -ENOENT when none could be found. The function makes
1574  * sure that the returned clone is usable at the point where sending is at the
1575  * moment. This means, that no clones are accepted which lie behind the current
1576  * inode+offset.
1577  *
1578  * path must point to the extent item when called.
1579  */
1580 static int find_extent_clone(struct send_ctx *sctx,
1581                              struct btrfs_path *path,
1582                              u64 ino, u64 data_offset,
1583                              u64 ino_size,
1584                              struct clone_root **found)
1585 {
1586         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1587         int ret;
1588         int extent_type;
1589         u64 logical;
1590         u64 disk_byte;
1591         u64 num_bytes;
1592         struct btrfs_file_extent_item *fi;
1593         struct extent_buffer *eb = path->nodes[0];
1594         struct backref_ctx backref_ctx = { 0 };
1595         struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1596         struct clone_root *cur_clone_root;
1597         int compressed;
1598         u32 i;
1599 
1600         /*
1601          * With fallocate we can get prealloc extents beyond the inode's i_size,
1602          * so we don't do anything here because clone operations can not clone
1603          * to a range beyond i_size without increasing the i_size of the
1604          * destination inode.
1605          */
1606         if (data_offset >= ino_size)
1607                 return 0;
1608 
1609         fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1610         extent_type = btrfs_file_extent_type(eb, fi);
1611         if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1612                 return -ENOENT;
1613 
1614         disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1615         if (disk_byte == 0)
1616                 return -ENOENT;
1617 
1618         compressed = btrfs_file_extent_compression(eb, fi);
1619         num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1620         logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1621 
1622         /*
1623          * Setup the clone roots.
1624          */
1625         for (i = 0; i < sctx->clone_roots_cnt; i++) {
1626                 cur_clone_root = sctx->clone_roots + i;
1627                 cur_clone_root->ino = (u64)-1;
1628                 cur_clone_root->offset = 0;
1629                 cur_clone_root->num_bytes = 0;
1630                 cur_clone_root->found_ref = false;
1631         }
1632 
1633         backref_ctx.sctx = sctx;
1634         backref_ctx.cur_objectid = ino;
1635         backref_ctx.cur_offset = data_offset;
1636         backref_ctx.bytenr = disk_byte;
1637         /*
1638          * Use the header owner and not the send root's id, because in case of a
1639          * snapshot we can have shared subtrees.
1640          */
1641         backref_ctx.backref_owner = btrfs_header_owner(eb);
1642         backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1643 
1644         /*
1645          * The last extent of a file may be too large due to page alignment.
1646          * We need to adjust extent_len in this case so that the checks in
1647          * iterate_backrefs() work.
1648          */
1649         if (data_offset + num_bytes >= ino_size)
1650                 backref_ctx.extent_len = ino_size - data_offset;
1651         else
1652                 backref_ctx.extent_len = num_bytes;
1653 
1654         /*
1655          * Now collect all backrefs.
1656          */
1657         backref_walk_ctx.bytenr = disk_byte;
1658         if (compressed == BTRFS_COMPRESS_NONE)
1659                 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1660         backref_walk_ctx.fs_info = fs_info;
1661         backref_walk_ctx.cache_lookup = lookup_backref_cache;
1662         backref_walk_ctx.cache_store = store_backref_cache;
1663         backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1664         backref_walk_ctx.check_extent_item = check_extent_item;
1665         backref_walk_ctx.user_ctx = &backref_ctx;
1666 
1667         /*
1668          * If have a single clone root, then it's the send root and we can tell
1669          * the backref walking code to skip our own backref and not resolve it,
1670          * since we can not use it for cloning - the source and destination
1671          * ranges can't overlap and in case the leaf is shared through a subtree
1672          * due to snapshots, we can't use those other roots since they are not
1673          * in the list of clone roots.
1674          */
1675         if (sctx->clone_roots_cnt == 1)
1676                 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1677 
1678         ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1679                                     &backref_ctx);
1680         if (ret < 0)
1681                 return ret;
1682 
1683         down_read(&fs_info->commit_root_sem);
1684         if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1685                 /*
1686                  * A transaction commit for a transaction in which block group
1687                  * relocation was done just happened.
1688                  * The disk_bytenr of the file extent item we processed is
1689                  * possibly stale, referring to the extent's location before
1690                  * relocation. So act as if we haven't found any clone sources
1691                  * and fallback to write commands, which will read the correct
1692                  * data from the new extent location. Otherwise we will fail
1693                  * below because we haven't found our own back reference or we
1694                  * could be getting incorrect sources in case the old extent
1695                  * was already reallocated after the relocation.
1696                  */
1697                 up_read(&fs_info->commit_root_sem);
1698                 return -ENOENT;
1699         }
1700         up_read(&fs_info->commit_root_sem);
1701 
1702         btrfs_debug(fs_info,
1703                     "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1704                     data_offset, ino, num_bytes, logical);
1705 
1706         if (!backref_ctx.found) {
1707                 btrfs_debug(fs_info, "no clones found");
1708                 return -ENOENT;
1709         }
1710 
1711         cur_clone_root = NULL;
1712         for (i = 0; i < sctx->clone_roots_cnt; i++) {
1713                 struct clone_root *clone_root = &sctx->clone_roots[i];
1714 
1715                 if (!clone_root->found_ref)
1716                         continue;
1717 
1718                 /*
1719                  * Choose the root from which we can clone more bytes, to
1720                  * minimize write operations and therefore have more extent
1721                  * sharing at the destination (the same as in the source).
1722                  */
1723                 if (!cur_clone_root ||
1724                     clone_root->num_bytes > cur_clone_root->num_bytes) {
1725                         cur_clone_root = clone_root;
1726 
1727                         /*
1728                          * We found an optimal clone candidate (any inode from
1729                          * any root is fine), so we're done.
1730                          */
1731                         if (clone_root->num_bytes >= backref_ctx.extent_len)
1732                                 break;
1733                 }
1734         }
1735 
1736         if (cur_clone_root) {
1737                 *found = cur_clone_root;
1738                 ret = 0;
1739         } else {
1740                 ret = -ENOENT;
1741         }
1742 
1743         return ret;
1744 }
1745 
1746 static int read_symlink(struct btrfs_root *root,
1747                         u64 ino,
1748                         struct fs_path *dest)
1749 {
1750         int ret;
1751         struct btrfs_path *path;
1752         struct btrfs_key key;
1753         struct btrfs_file_extent_item *ei;
1754         u8 type;
1755         u8 compression;
1756         unsigned long off;
1757         int len;
1758 
1759         path = alloc_path_for_send();
1760         if (!path)
1761                 return -ENOMEM;
1762 
1763         key.objectid = ino;
1764         key.type = BTRFS_EXTENT_DATA_KEY;
1765         key.offset = 0;
1766         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1767         if (ret < 0)
1768                 goto out;
1769         if (ret) {
1770                 /*
1771                  * An empty symlink inode. Can happen in rare error paths when
1772                  * creating a symlink (transaction committed before the inode
1773                  * eviction handler removed the symlink inode items and a crash
1774                  * happened in between or the subvol was snapshoted in between).
1775                  * Print an informative message to dmesg/syslog so that the user
1776                  * can delete the symlink.
1777                  */
1778                 btrfs_err(root->fs_info,
1779                           "Found empty symlink inode %llu at root %llu",
1780                           ino, btrfs_root_id(root));
1781                 ret = -EIO;
1782                 goto out;
1783         }
1784 
1785         ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786                         struct btrfs_file_extent_item);
1787         type = btrfs_file_extent_type(path->nodes[0], ei);
1788         if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1789                 ret = -EUCLEAN;
1790                 btrfs_crit(root->fs_info,
1791 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1792                            ino, btrfs_root_id(root), type);
1793                 goto out;
1794         }
1795         compression = btrfs_file_extent_compression(path->nodes[0], ei);
1796         if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1797                 ret = -EUCLEAN;
1798                 btrfs_crit(root->fs_info,
1799 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1800                            ino, btrfs_root_id(root), compression);
1801                 goto out;
1802         }
1803 
1804         off = btrfs_file_extent_inline_start(ei);
1805         len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1806 
1807         ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1808 
1809 out:
1810         btrfs_free_path(path);
1811         return ret;
1812 }
1813 
1814 /*
1815  * Helper function to generate a file name that is unique in the root of
1816  * send_root and parent_root. This is used to generate names for orphan inodes.
1817  */
1818 static int gen_unique_name(struct send_ctx *sctx,
1819                            u64 ino, u64 gen,
1820                            struct fs_path *dest)
1821 {
1822         int ret = 0;
1823         struct btrfs_path *path;
1824         struct btrfs_dir_item *di;
1825         char tmp[64];
1826         int len;
1827         u64 idx = 0;
1828 
1829         path = alloc_path_for_send();
1830         if (!path)
1831                 return -ENOMEM;
1832 
1833         while (1) {
1834                 struct fscrypt_str tmp_name;
1835 
1836                 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1837                                 ino, gen, idx);
1838                 ASSERT(len < sizeof(tmp));
1839                 tmp_name.name = tmp;
1840                 tmp_name.len = strlen(tmp);
1841 
1842                 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1843                                 path, BTRFS_FIRST_FREE_OBJECTID,
1844                                 &tmp_name, 0);
1845                 btrfs_release_path(path);
1846                 if (IS_ERR(di)) {
1847                         ret = PTR_ERR(di);
1848                         goto out;
1849                 }
1850                 if (di) {
1851                         /* not unique, try again */
1852                         idx++;
1853                         continue;
1854                 }
1855 
1856                 if (!sctx->parent_root) {
1857                         /* unique */
1858                         ret = 0;
1859                         break;
1860                 }
1861 
1862                 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1863                                 path, BTRFS_FIRST_FREE_OBJECTID,
1864                                 &tmp_name, 0);
1865                 btrfs_release_path(path);
1866                 if (IS_ERR(di)) {
1867                         ret = PTR_ERR(di);
1868                         goto out;
1869                 }
1870                 if (di) {
1871                         /* not unique, try again */
1872                         idx++;
1873                         continue;
1874                 }
1875                 /* unique */
1876                 break;
1877         }
1878 
1879         ret = fs_path_add(dest, tmp, strlen(tmp));
1880 
1881 out:
1882         btrfs_free_path(path);
1883         return ret;
1884 }
1885 
1886 enum inode_state {
1887         inode_state_no_change,
1888         inode_state_will_create,
1889         inode_state_did_create,
1890         inode_state_will_delete,
1891         inode_state_did_delete,
1892 };
1893 
1894 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1895                                u64 *send_gen, u64 *parent_gen)
1896 {
1897         int ret;
1898         int left_ret;
1899         int right_ret;
1900         u64 left_gen;
1901         u64 right_gen = 0;
1902         struct btrfs_inode_info info;
1903 
1904         ret = get_inode_info(sctx->send_root, ino, &info);
1905         if (ret < 0 && ret != -ENOENT)
1906                 goto out;
1907         left_ret = (info.nlink == 0) ? -ENOENT : ret;
1908         left_gen = info.gen;
1909         if (send_gen)
1910                 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1911 
1912         if (!sctx->parent_root) {
1913                 right_ret = -ENOENT;
1914         } else {
1915                 ret = get_inode_info(sctx->parent_root, ino, &info);
1916                 if (ret < 0 && ret != -ENOENT)
1917                         goto out;
1918                 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1919                 right_gen = info.gen;
1920                 if (parent_gen)
1921                         *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1922         }
1923 
1924         if (!left_ret && !right_ret) {
1925                 if (left_gen == gen && right_gen == gen) {
1926                         ret = inode_state_no_change;
1927                 } else if (left_gen == gen) {
1928                         if (ino < sctx->send_progress)
1929                                 ret = inode_state_did_create;
1930                         else
1931                                 ret = inode_state_will_create;
1932                 } else if (right_gen == gen) {
1933                         if (ino < sctx->send_progress)
1934                                 ret = inode_state_did_delete;
1935                         else
1936                                 ret = inode_state_will_delete;
1937                 } else  {
1938                         ret = -ENOENT;
1939                 }
1940         } else if (!left_ret) {
1941                 if (left_gen == gen) {
1942                         if (ino < sctx->send_progress)
1943                                 ret = inode_state_did_create;
1944                         else
1945                                 ret = inode_state_will_create;
1946                 } else {
1947                         ret = -ENOENT;
1948                 }
1949         } else if (!right_ret) {
1950                 if (right_gen == gen) {
1951                         if (ino < sctx->send_progress)
1952                                 ret = inode_state_did_delete;
1953                         else
1954                                 ret = inode_state_will_delete;
1955                 } else {
1956                         ret = -ENOENT;
1957                 }
1958         } else {
1959                 ret = -ENOENT;
1960         }
1961 
1962 out:
1963         return ret;
1964 }
1965 
1966 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1967                              u64 *send_gen, u64 *parent_gen)
1968 {
1969         int ret;
1970 
1971         if (ino == BTRFS_FIRST_FREE_OBJECTID)
1972                 return 1;
1973 
1974         ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1975         if (ret < 0)
1976                 goto out;
1977 
1978         if (ret == inode_state_no_change ||
1979             ret == inode_state_did_create ||
1980             ret == inode_state_will_delete)
1981                 ret = 1;
1982         else
1983                 ret = 0;
1984 
1985 out:
1986         return ret;
1987 }
1988 
1989 /*
1990  * Helper function to lookup a dir item in a dir.
1991  */
1992 static int lookup_dir_item_inode(struct btrfs_root *root,
1993                                  u64 dir, const char *name, int name_len,
1994                                  u64 *found_inode)
1995 {
1996         int ret = 0;
1997         struct btrfs_dir_item *di;
1998         struct btrfs_key key;
1999         struct btrfs_path *path;
2000         struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
2001 
2002         path = alloc_path_for_send();
2003         if (!path)
2004                 return -ENOMEM;
2005 
2006         di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2007         if (IS_ERR_OR_NULL(di)) {
2008                 ret = di ? PTR_ERR(di) : -ENOENT;
2009                 goto out;
2010         }
2011         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2012         if (key.type == BTRFS_ROOT_ITEM_KEY) {
2013                 ret = -ENOENT;
2014                 goto out;
2015         }
2016         *found_inode = key.objectid;
2017 
2018 out:
2019         btrfs_free_path(path);
2020         return ret;
2021 }
2022 
2023 /*
2024  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2025  * generation of the parent dir and the name of the dir entry.
2026  */
2027 static int get_first_ref(struct btrfs_root *root, u64 ino,
2028                          u64 *dir, u64 *dir_gen, struct fs_path *name)
2029 {
2030         int ret;
2031         struct btrfs_key key;
2032         struct btrfs_key found_key;
2033         struct btrfs_path *path;
2034         int len;
2035         u64 parent_dir;
2036 
2037         path = alloc_path_for_send();
2038         if (!path)
2039                 return -ENOMEM;
2040 
2041         key.objectid = ino;
2042         key.type = BTRFS_INODE_REF_KEY;
2043         key.offset = 0;
2044 
2045         ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2046         if (ret < 0)
2047                 goto out;
2048         if (!ret)
2049                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2050                                 path->slots[0]);
2051         if (ret || found_key.objectid != ino ||
2052             (found_key.type != BTRFS_INODE_REF_KEY &&
2053              found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2054                 ret = -ENOENT;
2055                 goto out;
2056         }
2057 
2058         if (found_key.type == BTRFS_INODE_REF_KEY) {
2059                 struct btrfs_inode_ref *iref;
2060                 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2061                                       struct btrfs_inode_ref);
2062                 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2063                 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2064                                                      (unsigned long)(iref + 1),
2065                                                      len);
2066                 parent_dir = found_key.offset;
2067         } else {
2068                 struct btrfs_inode_extref *extref;
2069                 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2070                                         struct btrfs_inode_extref);
2071                 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2072                 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2073                                         (unsigned long)&extref->name, len);
2074                 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2075         }
2076         if (ret < 0)
2077                 goto out;
2078         btrfs_release_path(path);
2079 
2080         if (dir_gen) {
2081                 ret = get_inode_gen(root, parent_dir, dir_gen);
2082                 if (ret < 0)
2083                         goto out;
2084         }
2085 
2086         *dir = parent_dir;
2087 
2088 out:
2089         btrfs_free_path(path);
2090         return ret;
2091 }
2092 
2093 static int is_first_ref(struct btrfs_root *root,
2094                         u64 ino, u64 dir,
2095                         const char *name, int name_len)
2096 {
2097         int ret;
2098         struct fs_path *tmp_name;
2099         u64 tmp_dir;
2100 
2101         tmp_name = fs_path_alloc();
2102         if (!tmp_name)
2103                 return -ENOMEM;
2104 
2105         ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2106         if (ret < 0)
2107                 goto out;
2108 
2109         if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2110                 ret = 0;
2111                 goto out;
2112         }
2113 
2114         ret = !memcmp(tmp_name->start, name, name_len);
2115 
2116 out:
2117         fs_path_free(tmp_name);
2118         return ret;
2119 }
2120 
2121 /*
2122  * Used by process_recorded_refs to determine if a new ref would overwrite an
2123  * already existing ref. In case it detects an overwrite, it returns the
2124  * inode/gen in who_ino/who_gen.
2125  * When an overwrite is detected, process_recorded_refs does proper orphanizing
2126  * to make sure later references to the overwritten inode are possible.
2127  * Orphanizing is however only required for the first ref of an inode.
2128  * process_recorded_refs does an additional is_first_ref check to see if
2129  * orphanizing is really required.
2130  */
2131 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2132                               const char *name, int name_len,
2133                               u64 *who_ino, u64 *who_gen, u64 *who_mode)
2134 {
2135         int ret;
2136         u64 parent_root_dir_gen;
2137         u64 other_inode = 0;
2138         struct btrfs_inode_info info;
2139 
2140         if (!sctx->parent_root)
2141                 return 0;
2142 
2143         ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2144         if (ret <= 0)
2145                 return 0;
2146 
2147         /*
2148          * If we have a parent root we need to verify that the parent dir was
2149          * not deleted and then re-created, if it was then we have no overwrite
2150          * and we can just unlink this entry.
2151          *
2152          * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2153          * parent root.
2154          */
2155         if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2156             parent_root_dir_gen != dir_gen)
2157                 return 0;
2158 
2159         ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2160                                     &other_inode);
2161         if (ret == -ENOENT)
2162                 return 0;
2163         else if (ret < 0)
2164                 return ret;
2165 
2166         /*
2167          * Check if the overwritten ref was already processed. If yes, the ref
2168          * was already unlinked/moved, so we can safely assume that we will not
2169          * overwrite anything at this point in time.
2170          */
2171         if (other_inode > sctx->send_progress ||
2172             is_waiting_for_move(sctx, other_inode)) {
2173                 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2174                 if (ret < 0)
2175                         return ret;
2176 
2177                 *who_ino = other_inode;
2178                 *who_gen = info.gen;
2179                 *who_mode = info.mode;
2180                 return 1;
2181         }
2182 
2183         return 0;
2184 }
2185 
2186 /*
2187  * Checks if the ref was overwritten by an already processed inode. This is
2188  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2189  * thus the orphan name needs be used.
2190  * process_recorded_refs also uses it to avoid unlinking of refs that were
2191  * overwritten.
2192  */
2193 static int did_overwrite_ref(struct send_ctx *sctx,
2194                             u64 dir, u64 dir_gen,
2195                             u64 ino, u64 ino_gen,
2196                             const char *name, int name_len)
2197 {
2198         int ret;
2199         u64 ow_inode;
2200         u64 ow_gen = 0;
2201         u64 send_root_dir_gen;
2202 
2203         if (!sctx->parent_root)
2204                 return 0;
2205 
2206         ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2207         if (ret <= 0)
2208                 return ret;
2209 
2210         /*
2211          * @send_root_dir_gen was set to 0 if the inode does not exist in the
2212          * send root.
2213          */
2214         if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2215                 return 0;
2216 
2217         /* check if the ref was overwritten by another ref */
2218         ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2219                                     &ow_inode);
2220         if (ret == -ENOENT) {
2221                 /* was never and will never be overwritten */
2222                 return 0;
2223         } else if (ret < 0) {
2224                 return ret;
2225         }
2226 
2227         if (ow_inode == ino) {
2228                 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2229                 if (ret < 0)
2230                         return ret;
2231 
2232                 /* It's the same inode, so no overwrite happened. */
2233                 if (ow_gen == ino_gen)
2234                         return 0;
2235         }
2236 
2237         /*
2238          * We know that it is or will be overwritten. Check this now.
2239          * The current inode being processed might have been the one that caused
2240          * inode 'ino' to be orphanized, therefore check if ow_inode matches
2241          * the current inode being processed.
2242          */
2243         if (ow_inode < sctx->send_progress)
2244                 return 1;
2245 
2246         if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2247                 if (ow_gen == 0) {
2248                         ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2249                         if (ret < 0)
2250                                 return ret;
2251                 }
2252                 if (ow_gen == sctx->cur_inode_gen)
2253                         return 1;
2254         }
2255 
2256         return 0;
2257 }
2258 
2259 /*
2260  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2261  * that got overwritten. This is used by process_recorded_refs to determine
2262  * if it has to use the path as returned by get_cur_path or the orphan name.
2263  */
2264 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2265 {
2266         int ret = 0;
2267         struct fs_path *name = NULL;
2268         u64 dir;
2269         u64 dir_gen;
2270 
2271         if (!sctx->parent_root)
2272                 goto out;
2273 
2274         name = fs_path_alloc();
2275         if (!name)
2276                 return -ENOMEM;
2277 
2278         ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2279         if (ret < 0)
2280                 goto out;
2281 
2282         ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2283                         name->start, fs_path_len(name));
2284 
2285 out:
2286         fs_path_free(name);
2287         return ret;
2288 }
2289 
2290 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2291                                                          u64 ino, u64 gen)
2292 {
2293         struct btrfs_lru_cache_entry *entry;
2294 
2295         entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2296         if (!entry)
2297                 return NULL;
2298 
2299         return container_of(entry, struct name_cache_entry, entry);
2300 }
2301 
2302 /*
2303  * Used by get_cur_path for each ref up to the root.
2304  * Returns 0 if it succeeded.
2305  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2306  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2307  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2308  * Returns <0 in case of error.
2309  */
2310 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2311                                      u64 ino, u64 gen,
2312                                      u64 *parent_ino,
2313                                      u64 *parent_gen,
2314                                      struct fs_path *dest)
2315 {
2316         int ret;
2317         int nce_ret;
2318         struct name_cache_entry *nce;
2319 
2320         /*
2321          * First check if we already did a call to this function with the same
2322          * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2323          * return the cached result.
2324          */
2325         nce = name_cache_search(sctx, ino, gen);
2326         if (nce) {
2327                 if (ino < sctx->send_progress && nce->need_later_update) {
2328                         btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2329                         nce = NULL;
2330                 } else {
2331                         *parent_ino = nce->parent_ino;
2332                         *parent_gen = nce->parent_gen;
2333                         ret = fs_path_add(dest, nce->name, nce->name_len);
2334                         if (ret < 0)
2335                                 goto out;
2336                         ret = nce->ret;
2337                         goto out;
2338                 }
2339         }
2340 
2341         /*
2342          * If the inode is not existent yet, add the orphan name and return 1.
2343          * This should only happen for the parent dir that we determine in
2344          * record_new_ref_if_needed().
2345          */
2346         ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2347         if (ret < 0)
2348                 goto out;
2349 
2350         if (!ret) {
2351                 ret = gen_unique_name(sctx, ino, gen, dest);
2352                 if (ret < 0)
2353                         goto out;
2354                 ret = 1;
2355                 goto out_cache;
2356         }
2357 
2358         /*
2359          * Depending on whether the inode was already processed or not, use
2360          * send_root or parent_root for ref lookup.
2361          */
2362         if (ino < sctx->send_progress)
2363                 ret = get_first_ref(sctx->send_root, ino,
2364                                     parent_ino, parent_gen, dest);
2365         else
2366                 ret = get_first_ref(sctx->parent_root, ino,
2367                                     parent_ino, parent_gen, dest);
2368         if (ret < 0)
2369                 goto out;
2370 
2371         /*
2372          * Check if the ref was overwritten by an inode's ref that was processed
2373          * earlier. If yes, treat as orphan and return 1.
2374          */
2375         ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2376                         dest->start, dest->end - dest->start);
2377         if (ret < 0)
2378                 goto out;
2379         if (ret) {
2380                 fs_path_reset(dest);
2381                 ret = gen_unique_name(sctx, ino, gen, dest);
2382                 if (ret < 0)
2383                         goto out;
2384                 ret = 1;
2385         }
2386 
2387 out_cache:
2388         /*
2389          * Store the result of the lookup in the name cache.
2390          */
2391         nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2392         if (!nce) {
2393                 ret = -ENOMEM;
2394                 goto out;
2395         }
2396 
2397         nce->entry.key = ino;
2398         nce->entry.gen = gen;
2399         nce->parent_ino = *parent_ino;
2400         nce->parent_gen = *parent_gen;
2401         nce->name_len = fs_path_len(dest);
2402         nce->ret = ret;
2403         strcpy(nce->name, dest->start);
2404 
2405         if (ino < sctx->send_progress)
2406                 nce->need_later_update = 0;
2407         else
2408                 nce->need_later_update = 1;
2409 
2410         nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2411         if (nce_ret < 0) {
2412                 kfree(nce);
2413                 ret = nce_ret;
2414         }
2415 
2416 out:
2417         return ret;
2418 }
2419 
2420 /*
2421  * Magic happens here. This function returns the first ref to an inode as it
2422  * would look like while receiving the stream at this point in time.
2423  * We walk the path up to the root. For every inode in between, we check if it
2424  * was already processed/sent. If yes, we continue with the parent as found
2425  * in send_root. If not, we continue with the parent as found in parent_root.
2426  * If we encounter an inode that was deleted at this point in time, we use the
2427  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2428  * that were not created yet and overwritten inodes/refs.
2429  *
2430  * When do we have orphan inodes:
2431  * 1. When an inode is freshly created and thus no valid refs are available yet
2432  * 2. When a directory lost all it's refs (deleted) but still has dir items
2433  *    inside which were not processed yet (pending for move/delete). If anyone
2434  *    tried to get the path to the dir items, it would get a path inside that
2435  *    orphan directory.
2436  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2437  *    of an unprocessed inode. If in that case the first ref would be
2438  *    overwritten, the overwritten inode gets "orphanized". Later when we
2439  *    process this overwritten inode, it is restored at a new place by moving
2440  *    the orphan inode.
2441  *
2442  * sctx->send_progress tells this function at which point in time receiving
2443  * would be.
2444  */
2445 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2446                         struct fs_path *dest)
2447 {
2448         int ret = 0;
2449         struct fs_path *name = NULL;
2450         u64 parent_inode = 0;
2451         u64 parent_gen = 0;
2452         int stop = 0;
2453 
2454         name = fs_path_alloc();
2455         if (!name) {
2456                 ret = -ENOMEM;
2457                 goto out;
2458         }
2459 
2460         dest->reversed = 1;
2461         fs_path_reset(dest);
2462 
2463         while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2464                 struct waiting_dir_move *wdm;
2465 
2466                 fs_path_reset(name);
2467 
2468                 if (is_waiting_for_rm(sctx, ino, gen)) {
2469                         ret = gen_unique_name(sctx, ino, gen, name);
2470                         if (ret < 0)
2471                                 goto out;
2472                         ret = fs_path_add_path(dest, name);
2473                         break;
2474                 }
2475 
2476                 wdm = get_waiting_dir_move(sctx, ino);
2477                 if (wdm && wdm->orphanized) {
2478                         ret = gen_unique_name(sctx, ino, gen, name);
2479                         stop = 1;
2480                 } else if (wdm) {
2481                         ret = get_first_ref(sctx->parent_root, ino,
2482                                             &parent_inode, &parent_gen, name);
2483                 } else {
2484                         ret = __get_cur_name_and_parent(sctx, ino, gen,
2485                                                         &parent_inode,
2486                                                         &parent_gen, name);
2487                         if (ret)
2488                                 stop = 1;
2489                 }
2490 
2491                 if (ret < 0)
2492                         goto out;
2493 
2494                 ret = fs_path_add_path(dest, name);
2495                 if (ret < 0)
2496                         goto out;
2497 
2498                 ino = parent_inode;
2499                 gen = parent_gen;
2500         }
2501 
2502 out:
2503         fs_path_free(name);
2504         if (!ret)
2505                 fs_path_unreverse(dest);
2506         return ret;
2507 }
2508 
2509 /*
2510  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2511  */
2512 static int send_subvol_begin(struct send_ctx *sctx)
2513 {
2514         int ret;
2515         struct btrfs_root *send_root = sctx->send_root;
2516         struct btrfs_root *parent_root = sctx->parent_root;
2517         struct btrfs_path *path;
2518         struct btrfs_key key;
2519         struct btrfs_root_ref *ref;
2520         struct extent_buffer *leaf;
2521         char *name = NULL;
2522         int namelen;
2523 
2524         path = btrfs_alloc_path();
2525         if (!path)
2526                 return -ENOMEM;
2527 
2528         name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2529         if (!name) {
2530                 btrfs_free_path(path);
2531                 return -ENOMEM;
2532         }
2533 
2534         key.objectid = btrfs_root_id(send_root);
2535         key.type = BTRFS_ROOT_BACKREF_KEY;
2536         key.offset = 0;
2537 
2538         ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2539                                 &key, path, 1, 0);
2540         if (ret < 0)
2541                 goto out;
2542         if (ret) {
2543                 ret = -ENOENT;
2544                 goto out;
2545         }
2546 
2547         leaf = path->nodes[0];
2548         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2549         if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2550             key.objectid != btrfs_root_id(send_root)) {
2551                 ret = -ENOENT;
2552                 goto out;
2553         }
2554         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2555         namelen = btrfs_root_ref_name_len(leaf, ref);
2556         read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2557         btrfs_release_path(path);
2558 
2559         if (parent_root) {
2560                 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2561                 if (ret < 0)
2562                         goto out;
2563         } else {
2564                 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2565                 if (ret < 0)
2566                         goto out;
2567         }
2568 
2569         TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2570 
2571         if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2572                 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2573                             sctx->send_root->root_item.received_uuid);
2574         else
2575                 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2576                             sctx->send_root->root_item.uuid);
2577 
2578         TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2579                     btrfs_root_ctransid(&sctx->send_root->root_item));
2580         if (parent_root) {
2581                 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2582                         TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2583                                      parent_root->root_item.received_uuid);
2584                 else
2585                         TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2586                                      parent_root->root_item.uuid);
2587                 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2588                             btrfs_root_ctransid(&sctx->parent_root->root_item));
2589         }
2590 
2591         ret = send_cmd(sctx);
2592 
2593 tlv_put_failure:
2594 out:
2595         btrfs_free_path(path);
2596         kfree(name);
2597         return ret;
2598 }
2599 
2600 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2601 {
2602         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2603         int ret = 0;
2604         struct fs_path *p;
2605 
2606         btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2607 
2608         p = fs_path_alloc();
2609         if (!p)
2610                 return -ENOMEM;
2611 
2612         ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2613         if (ret < 0)
2614                 goto out;
2615 
2616         ret = get_cur_path(sctx, ino, gen, p);
2617         if (ret < 0)
2618                 goto out;
2619         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2620         TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2621 
2622         ret = send_cmd(sctx);
2623 
2624 tlv_put_failure:
2625 out:
2626         fs_path_free(p);
2627         return ret;
2628 }
2629 
2630 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2631 {
2632         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2633         int ret = 0;
2634         struct fs_path *p;
2635 
2636         btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2637 
2638         p = fs_path_alloc();
2639         if (!p)
2640                 return -ENOMEM;
2641 
2642         ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2643         if (ret < 0)
2644                 goto out;
2645 
2646         ret = get_cur_path(sctx, ino, gen, p);
2647         if (ret < 0)
2648                 goto out;
2649         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2650         TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2651 
2652         ret = send_cmd(sctx);
2653 
2654 tlv_put_failure:
2655 out:
2656         fs_path_free(p);
2657         return ret;
2658 }
2659 
2660 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2661 {
2662         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2663         int ret = 0;
2664         struct fs_path *p;
2665 
2666         if (sctx->proto < 2)
2667                 return 0;
2668 
2669         btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2670 
2671         p = fs_path_alloc();
2672         if (!p)
2673                 return -ENOMEM;
2674 
2675         ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2676         if (ret < 0)
2677                 goto out;
2678 
2679         ret = get_cur_path(sctx, ino, gen, p);
2680         if (ret < 0)
2681                 goto out;
2682         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2683         TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2684 
2685         ret = send_cmd(sctx);
2686 
2687 tlv_put_failure:
2688 out:
2689         fs_path_free(p);
2690         return ret;
2691 }
2692 
2693 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2694 {
2695         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2696         int ret = 0;
2697         struct fs_path *p;
2698 
2699         btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2700                     ino, uid, gid);
2701 
2702         p = fs_path_alloc();
2703         if (!p)
2704                 return -ENOMEM;
2705 
2706         ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2707         if (ret < 0)
2708                 goto out;
2709 
2710         ret = get_cur_path(sctx, ino, gen, p);
2711         if (ret < 0)
2712                 goto out;
2713         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2714         TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2715         TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2716 
2717         ret = send_cmd(sctx);
2718 
2719 tlv_put_failure:
2720 out:
2721         fs_path_free(p);
2722         return ret;
2723 }
2724 
2725 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2726 {
2727         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2728         int ret = 0;
2729         struct fs_path *p = NULL;
2730         struct btrfs_inode_item *ii;
2731         struct btrfs_path *path = NULL;
2732         struct extent_buffer *eb;
2733         struct btrfs_key key;
2734         int slot;
2735 
2736         btrfs_debug(fs_info, "send_utimes %llu", ino);
2737 
2738         p = fs_path_alloc();
2739         if (!p)
2740                 return -ENOMEM;
2741 
2742         path = alloc_path_for_send();
2743         if (!path) {
2744                 ret = -ENOMEM;
2745                 goto out;
2746         }
2747 
2748         key.objectid = ino;
2749         key.type = BTRFS_INODE_ITEM_KEY;
2750         key.offset = 0;
2751         ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2752         if (ret > 0)
2753                 ret = -ENOENT;
2754         if (ret < 0)
2755                 goto out;
2756 
2757         eb = path->nodes[0];
2758         slot = path->slots[0];
2759         ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2760 
2761         ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2762         if (ret < 0)
2763                 goto out;
2764 
2765         ret = get_cur_path(sctx, ino, gen, p);
2766         if (ret < 0)
2767                 goto out;
2768         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2769         TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2770         TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2771         TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2772         if (sctx->proto >= 2)
2773                 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2774 
2775         ret = send_cmd(sctx);
2776 
2777 tlv_put_failure:
2778 out:
2779         fs_path_free(p);
2780         btrfs_free_path(path);
2781         return ret;
2782 }
2783 
2784 /*
2785  * If the cache is full, we can't remove entries from it and do a call to
2786  * send_utimes() for each respective inode, because we might be finishing
2787  * processing an inode that is a directory and it just got renamed, and existing
2788  * entries in the cache may refer to inodes that have the directory in their
2789  * full path - in which case we would generate outdated paths (pre-rename)
2790  * for the inodes that the cache entries point to. Instead of prunning the
2791  * cache when inserting, do it after we finish processing each inode at
2792  * finish_inode_if_needed().
2793  */
2794 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2795 {
2796         struct btrfs_lru_cache_entry *entry;
2797         int ret;
2798 
2799         entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2800         if (entry != NULL)
2801                 return 0;
2802 
2803         /* Caching is optional, don't fail if we can't allocate memory. */
2804         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2805         if (!entry)
2806                 return send_utimes(sctx, dir, gen);
2807 
2808         entry->key = dir;
2809         entry->gen = gen;
2810 
2811         ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2812         ASSERT(ret != -EEXIST);
2813         if (ret) {
2814                 kfree(entry);
2815                 return send_utimes(sctx, dir, gen);
2816         }
2817 
2818         return 0;
2819 }
2820 
2821 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2822 {
2823         while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2824                 struct btrfs_lru_cache_entry *lru;
2825                 int ret;
2826 
2827                 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2828                 ASSERT(lru != NULL);
2829 
2830                 ret = send_utimes(sctx, lru->key, lru->gen);
2831                 if (ret)
2832                         return ret;
2833 
2834                 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2835         }
2836 
2837         return 0;
2838 }
2839 
2840 /*
2841  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2842  * a valid path yet because we did not process the refs yet. So, the inode
2843  * is created as orphan.
2844  */
2845 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2846 {
2847         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2848         int ret = 0;
2849         struct fs_path *p;
2850         int cmd;
2851         struct btrfs_inode_info info;
2852         u64 gen;
2853         u64 mode;
2854         u64 rdev;
2855 
2856         btrfs_debug(fs_info, "send_create_inode %llu", ino);
2857 
2858         p = fs_path_alloc();
2859         if (!p)
2860                 return -ENOMEM;
2861 
2862         if (ino != sctx->cur_ino) {
2863                 ret = get_inode_info(sctx->send_root, ino, &info);
2864                 if (ret < 0)
2865                         goto out;
2866                 gen = info.gen;
2867                 mode = info.mode;
2868                 rdev = info.rdev;
2869         } else {
2870                 gen = sctx->cur_inode_gen;
2871                 mode = sctx->cur_inode_mode;
2872                 rdev = sctx->cur_inode_rdev;
2873         }
2874 
2875         if (S_ISREG(mode)) {
2876                 cmd = BTRFS_SEND_C_MKFILE;
2877         } else if (S_ISDIR(mode)) {
2878                 cmd = BTRFS_SEND_C_MKDIR;
2879         } else if (S_ISLNK(mode)) {
2880                 cmd = BTRFS_SEND_C_SYMLINK;
2881         } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2882                 cmd = BTRFS_SEND_C_MKNOD;
2883         } else if (S_ISFIFO(mode)) {
2884                 cmd = BTRFS_SEND_C_MKFIFO;
2885         } else if (S_ISSOCK(mode)) {
2886                 cmd = BTRFS_SEND_C_MKSOCK;
2887         } else {
2888                 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2889                                 (int)(mode & S_IFMT));
2890                 ret = -EOPNOTSUPP;
2891                 goto out;
2892         }
2893 
2894         ret = begin_cmd(sctx, cmd);
2895         if (ret < 0)
2896                 goto out;
2897 
2898         ret = gen_unique_name(sctx, ino, gen, p);
2899         if (ret < 0)
2900                 goto out;
2901 
2902         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2903         TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2904 
2905         if (S_ISLNK(mode)) {
2906                 fs_path_reset(p);
2907                 ret = read_symlink(sctx->send_root, ino, p);
2908                 if (ret < 0)
2909                         goto out;
2910                 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2911         } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2912                    S_ISFIFO(mode) || S_ISSOCK(mode)) {
2913                 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2914                 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2915         }
2916 
2917         ret = send_cmd(sctx);
2918         if (ret < 0)
2919                 goto out;
2920 
2921 
2922 tlv_put_failure:
2923 out:
2924         fs_path_free(p);
2925         return ret;
2926 }
2927 
2928 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2929 {
2930         struct btrfs_lru_cache_entry *entry;
2931         int ret;
2932 
2933         /* Caching is optional, ignore any failures. */
2934         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2935         if (!entry)
2936                 return;
2937 
2938         entry->key = dir;
2939         entry->gen = 0;
2940         ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2941         if (ret < 0)
2942                 kfree(entry);
2943 }
2944 
2945 /*
2946  * We need some special handling for inodes that get processed before the parent
2947  * directory got created. See process_recorded_refs for details.
2948  * This function does the check if we already created the dir out of order.
2949  */
2950 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2951 {
2952         int ret = 0;
2953         int iter_ret = 0;
2954         struct btrfs_path *path = NULL;
2955         struct btrfs_key key;
2956         struct btrfs_key found_key;
2957         struct btrfs_key di_key;
2958         struct btrfs_dir_item *di;
2959 
2960         if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2961                 return 1;
2962 
2963         path = alloc_path_for_send();
2964         if (!path)
2965                 return -ENOMEM;
2966 
2967         key.objectid = dir;
2968         key.type = BTRFS_DIR_INDEX_KEY;
2969         key.offset = 0;
2970 
2971         btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2972                 struct extent_buffer *eb = path->nodes[0];
2973 
2974                 if (found_key.objectid != key.objectid ||
2975                     found_key.type != key.type) {
2976                         ret = 0;
2977                         break;
2978                 }
2979 
2980                 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2981                 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2982 
2983                 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2984                     di_key.objectid < sctx->send_progress) {
2985                         ret = 1;
2986                         cache_dir_created(sctx, dir);
2987                         break;
2988                 }
2989         }
2990         /* Catch error found during iteration */
2991         if (iter_ret < 0)
2992                 ret = iter_ret;
2993 
2994         btrfs_free_path(path);
2995         return ret;
2996 }
2997 
2998 /*
2999  * Only creates the inode if it is:
3000  * 1. Not a directory
3001  * 2. Or a directory which was not created already due to out of order
3002  *    directories. See did_create_dir and process_recorded_refs for details.
3003  */
3004 static int send_create_inode_if_needed(struct send_ctx *sctx)
3005 {
3006         int ret;
3007 
3008         if (S_ISDIR(sctx->cur_inode_mode)) {
3009                 ret = did_create_dir(sctx, sctx->cur_ino);
3010                 if (ret < 0)
3011                         return ret;
3012                 else if (ret > 0)
3013                         return 0;
3014         }
3015 
3016         ret = send_create_inode(sctx, sctx->cur_ino);
3017 
3018         if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3019                 cache_dir_created(sctx, sctx->cur_ino);
3020 
3021         return ret;
3022 }
3023 
3024 struct recorded_ref {
3025         struct list_head list;
3026         char *name;
3027         struct fs_path *full_path;
3028         u64 dir;
3029         u64 dir_gen;
3030         int name_len;
3031         struct rb_node node;
3032         struct rb_root *root;
3033 };
3034 
3035 static struct recorded_ref *recorded_ref_alloc(void)
3036 {
3037         struct recorded_ref *ref;
3038 
3039         ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3040         if (!ref)
3041                 return NULL;
3042         RB_CLEAR_NODE(&ref->node);
3043         INIT_LIST_HEAD(&ref->list);
3044         return ref;
3045 }
3046 
3047 static void recorded_ref_free(struct recorded_ref *ref)
3048 {
3049         if (!ref)
3050                 return;
3051         if (!RB_EMPTY_NODE(&ref->node))
3052                 rb_erase(&ref->node, ref->root);
3053         list_del(&ref->list);
3054         fs_path_free(ref->full_path);
3055         kfree(ref);
3056 }
3057 
3058 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3059 {
3060         ref->full_path = path;
3061         ref->name = (char *)kbasename(ref->full_path->start);
3062         ref->name_len = ref->full_path->end - ref->name;
3063 }
3064 
3065 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3066 {
3067         struct recorded_ref *new;
3068 
3069         new = recorded_ref_alloc();
3070         if (!new)
3071                 return -ENOMEM;
3072 
3073         new->dir = ref->dir;
3074         new->dir_gen = ref->dir_gen;
3075         list_add_tail(&new->list, list);
3076         return 0;
3077 }
3078 
3079 static void __free_recorded_refs(struct list_head *head)
3080 {
3081         struct recorded_ref *cur;
3082 
3083         while (!list_empty(head)) {
3084                 cur = list_entry(head->next, struct recorded_ref, list);
3085                 recorded_ref_free(cur);
3086         }
3087 }
3088 
3089 static void free_recorded_refs(struct send_ctx *sctx)
3090 {
3091         __free_recorded_refs(&sctx->new_refs);
3092         __free_recorded_refs(&sctx->deleted_refs);
3093 }
3094 
3095 /*
3096  * Renames/moves a file/dir to its orphan name. Used when the first
3097  * ref of an unprocessed inode gets overwritten and for all non empty
3098  * directories.
3099  */
3100 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3101                           struct fs_path *path)
3102 {
3103         int ret;
3104         struct fs_path *orphan;
3105 
3106         orphan = fs_path_alloc();
3107         if (!orphan)
3108                 return -ENOMEM;
3109 
3110         ret = gen_unique_name(sctx, ino, gen, orphan);
3111         if (ret < 0)
3112                 goto out;
3113 
3114         ret = send_rename(sctx, path, orphan);
3115 
3116 out:
3117         fs_path_free(orphan);
3118         return ret;
3119 }
3120 
3121 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3122                                                    u64 dir_ino, u64 dir_gen)
3123 {
3124         struct rb_node **p = &sctx->orphan_dirs.rb_node;
3125         struct rb_node *parent = NULL;
3126         struct orphan_dir_info *entry, *odi;
3127 
3128         while (*p) {
3129                 parent = *p;
3130                 entry = rb_entry(parent, struct orphan_dir_info, node);
3131                 if (dir_ino < entry->ino)
3132                         p = &(*p)->rb_left;
3133                 else if (dir_ino > entry->ino)
3134                         p = &(*p)->rb_right;
3135                 else if (dir_gen < entry->gen)
3136                         p = &(*p)->rb_left;
3137                 else if (dir_gen > entry->gen)
3138                         p = &(*p)->rb_right;
3139                 else
3140                         return entry;
3141         }
3142 
3143         odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3144         if (!odi)
3145                 return ERR_PTR(-ENOMEM);
3146         odi->ino = dir_ino;
3147         odi->gen = dir_gen;
3148         odi->last_dir_index_offset = 0;
3149         odi->dir_high_seq_ino = 0;
3150 
3151         rb_link_node(&odi->node, parent, p);
3152         rb_insert_color(&odi->node, &sctx->orphan_dirs);
3153         return odi;
3154 }
3155 
3156 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3157                                                    u64 dir_ino, u64 gen)
3158 {
3159         struct rb_node *n = sctx->orphan_dirs.rb_node;
3160         struct orphan_dir_info *entry;
3161 
3162         while (n) {
3163                 entry = rb_entry(n, struct orphan_dir_info, node);
3164                 if (dir_ino < entry->ino)
3165                         n = n->rb_left;
3166                 else if (dir_ino > entry->ino)
3167                         n = n->rb_right;
3168                 else if (gen < entry->gen)
3169                         n = n->rb_left;
3170                 else if (gen > entry->gen)
3171                         n = n->rb_right;
3172                 else
3173                         return entry;
3174         }
3175         return NULL;
3176 }
3177 
3178 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3179 {
3180         struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3181 
3182         return odi != NULL;
3183 }
3184 
3185 static void free_orphan_dir_info(struct send_ctx *sctx,
3186                                  struct orphan_dir_info *odi)
3187 {
3188         if (!odi)
3189                 return;
3190         rb_erase(&odi->node, &sctx->orphan_dirs);
3191         kfree(odi);
3192 }
3193 
3194 /*
3195  * Returns 1 if a directory can be removed at this point in time.
3196  * We check this by iterating all dir items and checking if the inode behind
3197  * the dir item was already processed.
3198  */
3199 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3200 {
3201         int ret = 0;
3202         int iter_ret = 0;
3203         struct btrfs_root *root = sctx->parent_root;
3204         struct btrfs_path *path;
3205         struct btrfs_key key;
3206         struct btrfs_key found_key;
3207         struct btrfs_key loc;
3208         struct btrfs_dir_item *di;
3209         struct orphan_dir_info *odi = NULL;
3210         u64 dir_high_seq_ino = 0;
3211         u64 last_dir_index_offset = 0;
3212 
3213         /*
3214          * Don't try to rmdir the top/root subvolume dir.
3215          */
3216         if (dir == BTRFS_FIRST_FREE_OBJECTID)
3217                 return 0;
3218 
3219         odi = get_orphan_dir_info(sctx, dir, dir_gen);
3220         if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3221                 return 0;
3222 
3223         path = alloc_path_for_send();
3224         if (!path)
3225                 return -ENOMEM;
3226 
3227         if (!odi) {
3228                 /*
3229                  * Find the inode number associated with the last dir index
3230                  * entry. This is very likely the inode with the highest number
3231                  * of all inodes that have an entry in the directory. We can
3232                  * then use it to avoid future calls to can_rmdir(), when
3233                  * processing inodes with a lower number, from having to search
3234                  * the parent root b+tree for dir index keys.
3235                  */
3236                 key.objectid = dir;
3237                 key.type = BTRFS_DIR_INDEX_KEY;
3238                 key.offset = (u64)-1;
3239 
3240                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3241                 if (ret < 0) {
3242                         goto out;
3243                 } else if (ret > 0) {
3244                         /* Can't happen, the root is never empty. */
3245                         ASSERT(path->slots[0] > 0);
3246                         if (WARN_ON(path->slots[0] == 0)) {
3247                                 ret = -EUCLEAN;
3248                                 goto out;
3249                         }
3250                         path->slots[0]--;
3251                 }
3252 
3253                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3254                 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3255                         /* No index keys, dir can be removed. */
3256                         ret = 1;
3257                         goto out;
3258                 }
3259 
3260                 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3261                                     struct btrfs_dir_item);
3262                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3263                 dir_high_seq_ino = loc.objectid;
3264                 if (sctx->cur_ino < dir_high_seq_ino) {
3265                         ret = 0;
3266                         goto out;
3267                 }
3268 
3269                 btrfs_release_path(path);
3270         }
3271 
3272         key.objectid = dir;
3273         key.type = BTRFS_DIR_INDEX_KEY;
3274         key.offset = (odi ? odi->last_dir_index_offset : 0);
3275 
3276         btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3277                 struct waiting_dir_move *dm;
3278 
3279                 if (found_key.objectid != key.objectid ||
3280                     found_key.type != key.type)
3281                         break;
3282 
3283                 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3284                                 struct btrfs_dir_item);
3285                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3286 
3287                 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3288                 last_dir_index_offset = found_key.offset;
3289 
3290                 dm = get_waiting_dir_move(sctx, loc.objectid);
3291                 if (dm) {
3292                         dm->rmdir_ino = dir;
3293                         dm->rmdir_gen = dir_gen;
3294                         ret = 0;
3295                         goto out;
3296                 }
3297 
3298                 if (loc.objectid > sctx->cur_ino) {
3299                         ret = 0;
3300                         goto out;
3301                 }
3302         }
3303         if (iter_ret < 0) {
3304                 ret = iter_ret;
3305                 goto out;
3306         }
3307         free_orphan_dir_info(sctx, odi);
3308 
3309         ret = 1;
3310 
3311 out:
3312         btrfs_free_path(path);
3313 
3314         if (ret)
3315                 return ret;
3316 
3317         if (!odi) {
3318                 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3319                 if (IS_ERR(odi))
3320                         return PTR_ERR(odi);
3321 
3322                 odi->gen = dir_gen;
3323         }
3324 
3325         odi->last_dir_index_offset = last_dir_index_offset;
3326         odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3327 
3328         return 0;
3329 }
3330 
3331 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3332 {
3333         struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3334 
3335         return entry != NULL;
3336 }
3337 
3338 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3339 {
3340         struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3341         struct rb_node *parent = NULL;
3342         struct waiting_dir_move *entry, *dm;
3343 
3344         dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3345         if (!dm)
3346                 return -ENOMEM;
3347         dm->ino = ino;
3348         dm->rmdir_ino = 0;
3349         dm->rmdir_gen = 0;
3350         dm->orphanized = orphanized;
3351 
3352         while (*p) {
3353                 parent = *p;
3354                 entry = rb_entry(parent, struct waiting_dir_move, node);
3355                 if (ino < entry->ino) {
3356                         p = &(*p)->rb_left;
3357                 } else if (ino > entry->ino) {
3358                         p = &(*p)->rb_right;
3359                 } else {
3360                         kfree(dm);
3361                         return -EEXIST;
3362                 }
3363         }
3364 
3365         rb_link_node(&dm->node, parent, p);
3366         rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3367         return 0;
3368 }
3369 
3370 static struct waiting_dir_move *
3371 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3372 {
3373         struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3374         struct waiting_dir_move *entry;
3375 
3376         while (n) {
3377                 entry = rb_entry(n, struct waiting_dir_move, node);
3378                 if (ino < entry->ino)
3379                         n = n->rb_left;
3380                 else if (ino > entry->ino)
3381                         n = n->rb_right;
3382                 else
3383                         return entry;
3384         }
3385         return NULL;
3386 }
3387 
3388 static void free_waiting_dir_move(struct send_ctx *sctx,
3389                                   struct waiting_dir_move *dm)
3390 {
3391         if (!dm)
3392                 return;
3393         rb_erase(&dm->node, &sctx->waiting_dir_moves);
3394         kfree(dm);
3395 }
3396 
3397 static int add_pending_dir_move(struct send_ctx *sctx,
3398                                 u64 ino,
3399                                 u64 ino_gen,
3400                                 u64 parent_ino,
3401                                 struct list_head *new_refs,
3402                                 struct list_head *deleted_refs,
3403                                 const bool is_orphan)
3404 {
3405         struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3406         struct rb_node *parent = NULL;
3407         struct pending_dir_move *entry = NULL, *pm;
3408         struct recorded_ref *cur;
3409         int exists = 0;
3410         int ret;
3411 
3412         pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3413         if (!pm)
3414                 return -ENOMEM;
3415         pm->parent_ino = parent_ino;
3416         pm->ino = ino;
3417         pm->gen = ino_gen;
3418         INIT_LIST_HEAD(&pm->list);
3419         INIT_LIST_HEAD(&pm->update_refs);
3420         RB_CLEAR_NODE(&pm->node);
3421 
3422         while (*p) {
3423                 parent = *p;
3424                 entry = rb_entry(parent, struct pending_dir_move, node);
3425                 if (parent_ino < entry->parent_ino) {
3426                         p = &(*p)->rb_left;
3427                 } else if (parent_ino > entry->parent_ino) {
3428                         p = &(*p)->rb_right;
3429                 } else {
3430                         exists = 1;
3431                         break;
3432                 }
3433         }
3434 
3435         list_for_each_entry(cur, deleted_refs, list) {
3436                 ret = dup_ref(cur, &pm->update_refs);
3437                 if (ret < 0)
3438                         goto out;
3439         }
3440         list_for_each_entry(cur, new_refs, list) {
3441                 ret = dup_ref(cur, &pm->update_refs);
3442                 if (ret < 0)
3443                         goto out;
3444         }
3445 
3446         ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3447         if (ret)
3448                 goto out;
3449 
3450         if (exists) {
3451                 list_add_tail(&pm->list, &entry->list);
3452         } else {
3453                 rb_link_node(&pm->node, parent, p);
3454                 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3455         }
3456         ret = 0;
3457 out:
3458         if (ret) {
3459                 __free_recorded_refs(&pm->update_refs);
3460                 kfree(pm);
3461         }
3462         return ret;
3463 }
3464 
3465 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3466                                                       u64 parent_ino)
3467 {
3468         struct rb_node *n = sctx->pending_dir_moves.rb_node;
3469         struct pending_dir_move *entry;
3470 
3471         while (n) {
3472                 entry = rb_entry(n, struct pending_dir_move, node);
3473                 if (parent_ino < entry->parent_ino)
3474                         n = n->rb_left;
3475                 else if (parent_ino > entry->parent_ino)
3476                         n = n->rb_right;
3477                 else
3478                         return entry;
3479         }
3480         return NULL;
3481 }
3482 
3483 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3484                      u64 ino, u64 gen, u64 *ancestor_ino)
3485 {
3486         int ret = 0;
3487         u64 parent_inode = 0;
3488         u64 parent_gen = 0;
3489         u64 start_ino = ino;
3490 
3491         *ancestor_ino = 0;
3492         while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3493                 fs_path_reset(name);
3494 
3495                 if (is_waiting_for_rm(sctx, ino, gen))
3496                         break;
3497                 if (is_waiting_for_move(sctx, ino)) {
3498                         if (*ancestor_ino == 0)
3499                                 *ancestor_ino = ino;
3500                         ret = get_first_ref(sctx->parent_root, ino,
3501                                             &parent_inode, &parent_gen, name);
3502                 } else {
3503                         ret = __get_cur_name_and_parent(sctx, ino, gen,
3504                                                         &parent_inode,
3505                                                         &parent_gen, name);
3506                         if (ret > 0) {
3507                                 ret = 0;
3508                                 break;
3509                         }
3510                 }
3511                 if (ret < 0)
3512                         break;
3513                 if (parent_inode == start_ino) {
3514                         ret = 1;
3515                         if (*ancestor_ino == 0)
3516                                 *ancestor_ino = ino;
3517                         break;
3518                 }
3519                 ino = parent_inode;
3520                 gen = parent_gen;
3521         }
3522         return ret;
3523 }
3524 
3525 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3526 {
3527         struct fs_path *from_path = NULL;
3528         struct fs_path *to_path = NULL;
3529         struct fs_path *name = NULL;
3530         u64 orig_progress = sctx->send_progress;
3531         struct recorded_ref *cur;
3532         u64 parent_ino, parent_gen;
3533         struct waiting_dir_move *dm = NULL;
3534         u64 rmdir_ino = 0;
3535         u64 rmdir_gen;
3536         u64 ancestor;
3537         bool is_orphan;
3538         int ret;
3539 
3540         name = fs_path_alloc();
3541         from_path = fs_path_alloc();
3542         if (!name || !from_path) {
3543                 ret = -ENOMEM;
3544                 goto out;
3545         }
3546 
3547         dm = get_waiting_dir_move(sctx, pm->ino);
3548         ASSERT(dm);
3549         rmdir_ino = dm->rmdir_ino;
3550         rmdir_gen = dm->rmdir_gen;
3551         is_orphan = dm->orphanized;
3552         free_waiting_dir_move(sctx, dm);
3553 
3554         if (is_orphan) {
3555                 ret = gen_unique_name(sctx, pm->ino,
3556                                       pm->gen, from_path);
3557         } else {
3558                 ret = get_first_ref(sctx->parent_root, pm->ino,
3559                                     &parent_ino, &parent_gen, name);
3560                 if (ret < 0)
3561                         goto out;
3562                 ret = get_cur_path(sctx, parent_ino, parent_gen,
3563                                    from_path);
3564                 if (ret < 0)
3565                         goto out;
3566                 ret = fs_path_add_path(from_path, name);
3567         }
3568         if (ret < 0)
3569                 goto out;
3570 
3571         sctx->send_progress = sctx->cur_ino + 1;
3572         ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3573         if (ret < 0)
3574                 goto out;
3575         if (ret) {
3576                 LIST_HEAD(deleted_refs);
3577                 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3578                 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3579                                            &pm->update_refs, &deleted_refs,
3580                                            is_orphan);
3581                 if (ret < 0)
3582                         goto out;
3583                 if (rmdir_ino) {
3584                         dm = get_waiting_dir_move(sctx, pm->ino);
3585                         ASSERT(dm);
3586                         dm->rmdir_ino = rmdir_ino;
3587                         dm->rmdir_gen = rmdir_gen;
3588                 }
3589                 goto out;
3590         }
3591         fs_path_reset(name);
3592         to_path = name;
3593         name = NULL;
3594         ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3595         if (ret < 0)
3596                 goto out;
3597 
3598         ret = send_rename(sctx, from_path, to_path);
3599         if (ret < 0)
3600                 goto out;
3601 
3602         if (rmdir_ino) {
3603                 struct orphan_dir_info *odi;
3604                 u64 gen;
3605 
3606                 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3607                 if (!odi) {
3608                         /* already deleted */
3609                         goto finish;
3610                 }
3611                 gen = odi->gen;
3612 
3613                 ret = can_rmdir(sctx, rmdir_ino, gen);
3614                 if (ret < 0)
3615                         goto out;
3616                 if (!ret)
3617                         goto finish;
3618 
3619                 name = fs_path_alloc();
3620                 if (!name) {
3621                         ret = -ENOMEM;
3622                         goto out;
3623                 }
3624                 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3625                 if (ret < 0)
3626                         goto out;
3627                 ret = send_rmdir(sctx, name);
3628                 if (ret < 0)
3629                         goto out;
3630         }
3631 
3632 finish:
3633         ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3634         if (ret < 0)
3635                 goto out;
3636 
3637         /*
3638          * After rename/move, need to update the utimes of both new parent(s)
3639          * and old parent(s).
3640          */
3641         list_for_each_entry(cur, &pm->update_refs, list) {
3642                 /*
3643                  * The parent inode might have been deleted in the send snapshot
3644                  */
3645                 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3646                 if (ret == -ENOENT) {
3647                         ret = 0;
3648                         continue;
3649                 }
3650                 if (ret < 0)
3651                         goto out;
3652 
3653                 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3654                 if (ret < 0)
3655                         goto out;
3656         }
3657 
3658 out:
3659         fs_path_free(name);
3660         fs_path_free(from_path);
3661         fs_path_free(to_path);
3662         sctx->send_progress = orig_progress;
3663 
3664         return ret;
3665 }
3666 
3667 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3668 {
3669         if (!list_empty(&m->list))
3670                 list_del(&m->list);
3671         if (!RB_EMPTY_NODE(&m->node))
3672                 rb_erase(&m->node, &sctx->pending_dir_moves);
3673         __free_recorded_refs(&m->update_refs);
3674         kfree(m);
3675 }
3676 
3677 static void tail_append_pending_moves(struct send_ctx *sctx,
3678                                       struct pending_dir_move *moves,
3679                                       struct list_head *stack)
3680 {
3681         if (list_empty(&moves->list)) {
3682                 list_add_tail(&moves->list, stack);
3683         } else {
3684                 LIST_HEAD(list);
3685                 list_splice_init(&moves->list, &list);
3686                 list_add_tail(&moves->list, stack);
3687                 list_splice_tail(&list, stack);
3688         }
3689         if (!RB_EMPTY_NODE(&moves->node)) {
3690                 rb_erase(&moves->node, &sctx->pending_dir_moves);
3691                 RB_CLEAR_NODE(&moves->node);
3692         }
3693 }
3694 
3695 static int apply_children_dir_moves(struct send_ctx *sctx)
3696 {
3697         struct pending_dir_move *pm;
3698         LIST_HEAD(stack);
3699         u64 parent_ino = sctx->cur_ino;
3700         int ret = 0;
3701 
3702         pm = get_pending_dir_moves(sctx, parent_ino);
3703         if (!pm)
3704                 return 0;
3705 
3706         tail_append_pending_moves(sctx, pm, &stack);
3707 
3708         while (!list_empty(&stack)) {
3709                 pm = list_first_entry(&stack, struct pending_dir_move, list);
3710                 parent_ino = pm->ino;
3711                 ret = apply_dir_move(sctx, pm);
3712                 free_pending_move(sctx, pm);
3713                 if (ret)
3714                         goto out;
3715                 pm = get_pending_dir_moves(sctx, parent_ino);
3716                 if (pm)
3717                         tail_append_pending_moves(sctx, pm, &stack);
3718         }
3719         return 0;
3720 
3721 out:
3722         while (!list_empty(&stack)) {
3723                 pm = list_first_entry(&stack, struct pending_dir_move, list);
3724                 free_pending_move(sctx, pm);
3725         }
3726         return ret;
3727 }
3728 
3729 /*
3730  * We might need to delay a directory rename even when no ancestor directory
3731  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3732  * renamed. This happens when we rename a directory to the old name (the name
3733  * in the parent root) of some other unrelated directory that got its rename
3734  * delayed due to some ancestor with higher number that got renamed.
3735  *
3736  * Example:
3737  *
3738  * Parent snapshot:
3739  * .                                       (ino 256)
3740  * |---- a/                                (ino 257)
3741  * |     |---- file                        (ino 260)
3742  * |
3743  * |---- b/                                (ino 258)
3744  * |---- c/                                (ino 259)
3745  *
3746  * Send snapshot:
3747  * .                                       (ino 256)
3748  * |---- a/                                (ino 258)
3749  * |---- x/                                (ino 259)
3750  *       |---- y/                          (ino 257)
3751  *             |----- file                 (ino 260)
3752  *
3753  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3754  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3755  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3756  * must issue is:
3757  *
3758  * 1 - rename 259 from 'c' to 'x'
3759  * 2 - rename 257 from 'a' to 'x/y'
3760  * 3 - rename 258 from 'b' to 'a'
3761  *
3762  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3763  * be done right away and < 0 on error.
3764  */
3765 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3766                                   struct recorded_ref *parent_ref,
3767                                   const bool is_orphan)
3768 {
3769         struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3770         struct btrfs_path *path;
3771         struct btrfs_key key;
3772         struct btrfs_key di_key;
3773         struct btrfs_dir_item *di;
3774         u64 left_gen;
3775         u64 right_gen;
3776         int ret = 0;
3777         struct waiting_dir_move *wdm;
3778 
3779         if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3780                 return 0;
3781 
3782         path = alloc_path_for_send();
3783         if (!path)
3784                 return -ENOMEM;
3785 
3786         key.objectid = parent_ref->dir;
3787         key.type = BTRFS_DIR_ITEM_KEY;
3788         key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3789 
3790         ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3791         if (ret < 0) {
3792                 goto out;
3793         } else if (ret > 0) {
3794                 ret = 0;
3795                 goto out;
3796         }
3797 
3798         di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3799                                        parent_ref->name_len);
3800         if (!di) {
3801                 ret = 0;
3802                 goto out;
3803         }
3804         /*
3805          * di_key.objectid has the number of the inode that has a dentry in the
3806          * parent directory with the same name that sctx->cur_ino is being
3807          * renamed to. We need to check if that inode is in the send root as
3808          * well and if it is currently marked as an inode with a pending rename,
3809          * if it is, we need to delay the rename of sctx->cur_ino as well, so
3810          * that it happens after that other inode is renamed.
3811          */
3812         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3813         if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3814                 ret = 0;
3815                 goto out;
3816         }
3817 
3818         ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3819         if (ret < 0)
3820                 goto out;
3821         ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3822         if (ret < 0) {
3823                 if (ret == -ENOENT)
3824                         ret = 0;
3825                 goto out;
3826         }
3827 
3828         /* Different inode, no need to delay the rename of sctx->cur_ino */
3829         if (right_gen != left_gen) {
3830                 ret = 0;
3831                 goto out;
3832         }
3833 
3834         wdm = get_waiting_dir_move(sctx, di_key.objectid);
3835         if (wdm && !wdm->orphanized) {
3836                 ret = add_pending_dir_move(sctx,
3837                                            sctx->cur_ino,
3838                                            sctx->cur_inode_gen,
3839                                            di_key.objectid,
3840                                            &sctx->new_refs,
3841                                            &sctx->deleted_refs,
3842                                            is_orphan);
3843                 if (!ret)
3844                         ret = 1;
3845         }
3846 out:
3847         btrfs_free_path(path);
3848         return ret;
3849 }
3850 
3851 /*
3852  * Check if inode ino2, or any of its ancestors, is inode ino1.
3853  * Return 1 if true, 0 if false and < 0 on error.
3854  */
3855 static int check_ino_in_path(struct btrfs_root *root,
3856                              const u64 ino1,
3857                              const u64 ino1_gen,
3858                              const u64 ino2,
3859                              const u64 ino2_gen,
3860                              struct fs_path *fs_path)
3861 {
3862         u64 ino = ino2;
3863 
3864         if (ino1 == ino2)
3865                 return ino1_gen == ino2_gen;
3866 
3867         while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3868                 u64 parent;
3869                 u64 parent_gen;
3870                 int ret;
3871 
3872                 fs_path_reset(fs_path);
3873                 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3874                 if (ret < 0)
3875                         return ret;
3876                 if (parent == ino1)
3877                         return parent_gen == ino1_gen;
3878                 ino = parent;
3879         }
3880         return 0;
3881 }
3882 
3883 /*
3884  * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3885  * possible path (in case ino2 is not a directory and has multiple hard links).
3886  * Return 1 if true, 0 if false and < 0 on error.
3887  */
3888 static int is_ancestor(struct btrfs_root *root,
3889                        const u64 ino1,
3890                        const u64 ino1_gen,
3891                        const u64 ino2,
3892                        struct fs_path *fs_path)
3893 {
3894         bool free_fs_path = false;
3895         int ret = 0;
3896         int iter_ret = 0;
3897         struct btrfs_path *path = NULL;
3898         struct btrfs_key key;
3899 
3900         if (!fs_path) {
3901                 fs_path = fs_path_alloc();
3902                 if (!fs_path)
3903                         return -ENOMEM;
3904                 free_fs_path = true;
3905         }
3906 
3907         path = alloc_path_for_send();
3908         if (!path) {
3909                 ret = -ENOMEM;
3910                 goto out;
3911         }
3912 
3913         key.objectid = ino2;
3914         key.type = BTRFS_INODE_REF_KEY;
3915         key.offset = 0;
3916 
3917         btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3918                 struct extent_buffer *leaf = path->nodes[0];
3919                 int slot = path->slots[0];
3920                 u32 cur_offset = 0;
3921                 u32 item_size;
3922 
3923                 if (key.objectid != ino2)
3924                         break;
3925                 if (key.type != BTRFS_INODE_REF_KEY &&
3926                     key.type != BTRFS_INODE_EXTREF_KEY)
3927                         break;
3928 
3929                 item_size = btrfs_item_size(leaf, slot);
3930                 while (cur_offset < item_size) {
3931                         u64 parent;
3932                         u64 parent_gen;
3933 
3934                         if (key.type == BTRFS_INODE_EXTREF_KEY) {
3935                                 unsigned long ptr;
3936                                 struct btrfs_inode_extref *extref;
3937 
3938                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3939                                 extref = (struct btrfs_inode_extref *)
3940                                         (ptr + cur_offset);
3941                                 parent = btrfs_inode_extref_parent(leaf,
3942                                                                    extref);
3943                                 cur_offset += sizeof(*extref);
3944                                 cur_offset += btrfs_inode_extref_name_len(leaf,
3945                                                                   extref);
3946                         } else {
3947                                 parent = key.offset;
3948                                 cur_offset = item_size;
3949                         }
3950 
3951                         ret = get_inode_gen(root, parent, &parent_gen);
3952                         if (ret < 0)
3953                                 goto out;
3954                         ret = check_ino_in_path(root, ino1, ino1_gen,
3955                                                 parent, parent_gen, fs_path);
3956                         if (ret)
3957                                 goto out;
3958                 }
3959         }
3960         ret = 0;
3961         if (iter_ret < 0)
3962                 ret = iter_ret;
3963 
3964 out:
3965         btrfs_free_path(path);
3966         if (free_fs_path)
3967                 fs_path_free(fs_path);
3968         return ret;
3969 }
3970 
3971 static int wait_for_parent_move(struct send_ctx *sctx,
3972                                 struct recorded_ref *parent_ref,
3973                                 const bool is_orphan)
3974 {
3975         int ret = 0;
3976         u64 ino = parent_ref->dir;
3977         u64 ino_gen = parent_ref->dir_gen;
3978         u64 parent_ino_before, parent_ino_after;
3979         struct fs_path *path_before = NULL;
3980         struct fs_path *path_after = NULL;
3981         int len1, len2;
3982 
3983         path_after = fs_path_alloc();
3984         path_before = fs_path_alloc();
3985         if (!path_after || !path_before) {
3986                 ret = -ENOMEM;
3987                 goto out;
3988         }
3989 
3990         /*
3991          * Our current directory inode may not yet be renamed/moved because some
3992          * ancestor (immediate or not) has to be renamed/moved first. So find if
3993          * such ancestor exists and make sure our own rename/move happens after
3994          * that ancestor is processed to avoid path build infinite loops (done
3995          * at get_cur_path()).
3996          */
3997         while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3998                 u64 parent_ino_after_gen;
3999 
4000                 if (is_waiting_for_move(sctx, ino)) {
4001                         /*
4002                          * If the current inode is an ancestor of ino in the
4003                          * parent root, we need to delay the rename of the
4004                          * current inode, otherwise don't delayed the rename
4005                          * because we can end up with a circular dependency
4006                          * of renames, resulting in some directories never
4007                          * getting the respective rename operations issued in
4008                          * the send stream or getting into infinite path build
4009                          * loops.
4010                          */
4011                         ret = is_ancestor(sctx->parent_root,
4012                                           sctx->cur_ino, sctx->cur_inode_gen,
4013                                           ino, path_before);
4014                         if (ret)
4015                                 break;
4016                 }
4017 
4018                 fs_path_reset(path_before);
4019                 fs_path_reset(path_after);
4020 
4021                 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4022                                     &parent_ino_after_gen, path_after);
4023                 if (ret < 0)
4024                         goto out;
4025                 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4026                                     NULL, path_before);
4027                 if (ret < 0 && ret != -ENOENT) {
4028                         goto out;
4029                 } else if (ret == -ENOENT) {
4030                         ret = 0;
4031                         break;
4032                 }
4033 
4034                 len1 = fs_path_len(path_before);
4035                 len2 = fs_path_len(path_after);
4036                 if (ino > sctx->cur_ino &&
4037                     (parent_ino_before != parent_ino_after || len1 != len2 ||
4038                      memcmp(path_before->start, path_after->start, len1))) {
4039                         u64 parent_ino_gen;
4040 
4041                         ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4042                         if (ret < 0)
4043                                 goto out;
4044                         if (ino_gen == parent_ino_gen) {
4045                                 ret = 1;
4046                                 break;
4047                         }
4048                 }
4049                 ino = parent_ino_after;
4050                 ino_gen = parent_ino_after_gen;
4051         }
4052 
4053 out:
4054         fs_path_free(path_before);
4055         fs_path_free(path_after);
4056 
4057         if (ret == 1) {
4058                 ret = add_pending_dir_move(sctx,
4059                                            sctx->cur_ino,
4060                                            sctx->cur_inode_gen,
4061                                            ino,
4062                                            &sctx->new_refs,
4063                                            &sctx->deleted_refs,
4064                                            is_orphan);
4065                 if (!ret)
4066                         ret = 1;
4067         }
4068 
4069         return ret;
4070 }
4071 
4072 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4073 {
4074         int ret;
4075         struct fs_path *new_path;
4076 
4077         /*
4078          * Our reference's name member points to its full_path member string, so
4079          * we use here a new path.
4080          */
4081         new_path = fs_path_alloc();
4082         if (!new_path)
4083                 return -ENOMEM;
4084 
4085         ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4086         if (ret < 0) {
4087                 fs_path_free(new_path);
4088                 return ret;
4089         }
4090         ret = fs_path_add(new_path, ref->name, ref->name_len);
4091         if (ret < 0) {
4092                 fs_path_free(new_path);
4093                 return ret;
4094         }
4095 
4096         fs_path_free(ref->full_path);
4097         set_ref_path(ref, new_path);
4098 
4099         return 0;
4100 }
4101 
4102 /*
4103  * When processing the new references for an inode we may orphanize an existing
4104  * directory inode because its old name conflicts with one of the new references
4105  * of the current inode. Later, when processing another new reference of our
4106  * inode, we might need to orphanize another inode, but the path we have in the
4107  * reference reflects the pre-orphanization name of the directory we previously
4108  * orphanized. For example:
4109  *
4110  * parent snapshot looks like:
4111  *
4112  * .                                     (ino 256)
4113  * |----- f1                             (ino 257)
4114  * |----- f2                             (ino 258)
4115  * |----- d1/                            (ino 259)
4116  *        |----- d2/                     (ino 260)
4117  *
4118  * send snapshot looks like:
4119  *
4120  * .                                     (ino 256)
4121  * |----- d1                             (ino 258)
4122  * |----- f2/                            (ino 259)
4123  *        |----- f2_link/                (ino 260)
4124  *        |       |----- f1              (ino 257)
4125  *        |
4126  *        |----- d2                      (ino 258)
4127  *
4128  * When processing inode 257 we compute the name for inode 259 as "d1", and we
4129  * cache it in the name cache. Later when we start processing inode 258, when
4130  * collecting all its new references we set a full path of "d1/d2" for its new
4131  * reference with name "d2". When we start processing the new references we
4132  * start by processing the new reference with name "d1", and this results in
4133  * orphanizing inode 259, since its old reference causes a conflict. Then we
4134  * move on the next new reference, with name "d2", and we find out we must
4135  * orphanize inode 260, as its old reference conflicts with ours - but for the
4136  * orphanization we use a source path corresponding to the path we stored in the
4137  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4138  * receiver fail since the path component "d1/" no longer exists, it was renamed
4139  * to "o259-6-0/" when processing the previous new reference. So in this case we
4140  * must recompute the path in the new reference and use it for the new
4141  * orphanization operation.
4142  */
4143 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4144 {
4145         char *name;
4146         int ret;
4147 
4148         name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4149         if (!name)
4150                 return -ENOMEM;
4151 
4152         fs_path_reset(ref->full_path);
4153         ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4154         if (ret < 0)
4155                 goto out;
4156 
4157         ret = fs_path_add(ref->full_path, name, ref->name_len);
4158         if (ret < 0)
4159                 goto out;
4160 
4161         /* Update the reference's base name pointer. */
4162         set_ref_path(ref, ref->full_path);
4163 out:
4164         kfree(name);
4165         return ret;
4166 }
4167 
4168 /*
4169  * This does all the move/link/unlink/rmdir magic.
4170  */
4171 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4172 {
4173         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4174         int ret = 0;
4175         struct recorded_ref *cur;
4176         struct recorded_ref *cur2;
4177         LIST_HEAD(check_dirs);
4178         struct fs_path *valid_path = NULL;
4179         u64 ow_inode = 0;
4180         u64 ow_gen;
4181         u64 ow_mode;
4182         int did_overwrite = 0;
4183         int is_orphan = 0;
4184         u64 last_dir_ino_rm = 0;
4185         bool can_rename = true;
4186         bool orphanized_dir = false;
4187         bool orphanized_ancestor = false;
4188 
4189         btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4190 
4191         /*
4192          * This should never happen as the root dir always has the same ref
4193          * which is always '..'
4194          */
4195         if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4196                 btrfs_err(fs_info,
4197                           "send: unexpected inode %llu in process_recorded_refs()",
4198                           sctx->cur_ino);
4199                 ret = -EINVAL;
4200                 goto out;
4201         }
4202 
4203         valid_path = fs_path_alloc();
4204         if (!valid_path) {
4205                 ret = -ENOMEM;
4206                 goto out;
4207         }
4208 
4209         /*
4210          * First, check if the first ref of the current inode was overwritten
4211          * before. If yes, we know that the current inode was already orphanized
4212          * and thus use the orphan name. If not, we can use get_cur_path to
4213          * get the path of the first ref as it would like while receiving at
4214          * this point in time.
4215          * New inodes are always orphan at the beginning, so force to use the
4216          * orphan name in this case.
4217          * The first ref is stored in valid_path and will be updated if it
4218          * gets moved around.
4219          */
4220         if (!sctx->cur_inode_new) {
4221                 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4222                                 sctx->cur_inode_gen);
4223                 if (ret < 0)
4224                         goto out;
4225                 if (ret)
4226                         did_overwrite = 1;
4227         }
4228         if (sctx->cur_inode_new || did_overwrite) {
4229                 ret = gen_unique_name(sctx, sctx->cur_ino,
4230                                 sctx->cur_inode_gen, valid_path);
4231                 if (ret < 0)
4232                         goto out;
4233                 is_orphan = 1;
4234         } else {
4235                 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4236                                 valid_path);
4237                 if (ret < 0)
4238                         goto out;
4239         }
4240 
4241         /*
4242          * Before doing any rename and link operations, do a first pass on the
4243          * new references to orphanize any unprocessed inodes that may have a
4244          * reference that conflicts with one of the new references of the current
4245          * inode. This needs to happen first because a new reference may conflict
4246          * with the old reference of a parent directory, so we must make sure
4247          * that the path used for link and rename commands don't use an
4248          * orphanized name when an ancestor was not yet orphanized.
4249          *
4250          * Example:
4251          *
4252          * Parent snapshot:
4253          *
4254          * .                                                      (ino 256)
4255          * |----- testdir/                                        (ino 259)
4256          * |          |----- a                                    (ino 257)
4257          * |
4258          * |----- b                                               (ino 258)
4259          *
4260          * Send snapshot:
4261          *
4262          * .                                                      (ino 256)
4263          * |----- testdir_2/                                      (ino 259)
4264          * |          |----- a                                    (ino 260)
4265          * |
4266          * |----- testdir                                         (ino 257)
4267          * |----- b                                               (ino 257)
4268          * |----- b2                                              (ino 258)
4269          *
4270          * Processing the new reference for inode 257 with name "b" may happen
4271          * before processing the new reference with name "testdir". If so, we
4272          * must make sure that by the time we send a link command to create the
4273          * hard link "b", inode 259 was already orphanized, since the generated
4274          * path in "valid_path" already contains the orphanized name for 259.
4275          * We are processing inode 257, so only later when processing 259 we do
4276          * the rename operation to change its temporary (orphanized) name to
4277          * "testdir_2".
4278          */
4279         list_for_each_entry(cur, &sctx->new_refs, list) {
4280                 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4281                 if (ret < 0)
4282                         goto out;
4283                 if (ret == inode_state_will_create)
4284                         continue;
4285 
4286                 /*
4287                  * Check if this new ref would overwrite the first ref of another
4288                  * unprocessed inode. If yes, orphanize the overwritten inode.
4289                  * If we find an overwritten ref that is not the first ref,
4290                  * simply unlink it.
4291                  */
4292                 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4293                                 cur->name, cur->name_len,
4294                                 &ow_inode, &ow_gen, &ow_mode);
4295                 if (ret < 0)
4296                         goto out;
4297                 if (ret) {
4298                         ret = is_first_ref(sctx->parent_root,
4299                                            ow_inode, cur->dir, cur->name,
4300                                            cur->name_len);
4301                         if (ret < 0)
4302                                 goto out;
4303                         if (ret) {
4304                                 struct name_cache_entry *nce;
4305                                 struct waiting_dir_move *wdm;
4306 
4307                                 if (orphanized_dir) {
4308                                         ret = refresh_ref_path(sctx, cur);
4309                                         if (ret < 0)
4310                                                 goto out;
4311                                 }
4312 
4313                                 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4314                                                 cur->full_path);
4315                                 if (ret < 0)
4316                                         goto out;
4317                                 if (S_ISDIR(ow_mode))
4318                                         orphanized_dir = true;
4319 
4320                                 /*
4321                                  * If ow_inode has its rename operation delayed
4322                                  * make sure that its orphanized name is used in
4323                                  * the source path when performing its rename
4324                                  * operation.
4325                                  */
4326                                 wdm = get_waiting_dir_move(sctx, ow_inode);
4327                                 if (wdm)
4328                                         wdm->orphanized = true;
4329 
4330                                 /*
4331                                  * Make sure we clear our orphanized inode's
4332                                  * name from the name cache. This is because the
4333                                  * inode ow_inode might be an ancestor of some
4334                                  * other inode that will be orphanized as well
4335                                  * later and has an inode number greater than
4336                                  * sctx->send_progress. We need to prevent
4337                                  * future name lookups from using the old name
4338                                  * and get instead the orphan name.
4339                                  */
4340                                 nce = name_cache_search(sctx, ow_inode, ow_gen);
4341                                 if (nce)
4342                                         btrfs_lru_cache_remove(&sctx->name_cache,
4343                                                                &nce->entry);
4344 
4345                                 /*
4346                                  * ow_inode might currently be an ancestor of
4347                                  * cur_ino, therefore compute valid_path (the
4348                                  * current path of cur_ino) again because it
4349                                  * might contain the pre-orphanization name of
4350                                  * ow_inode, which is no longer valid.
4351                                  */
4352                                 ret = is_ancestor(sctx->parent_root,
4353                                                   ow_inode, ow_gen,
4354                                                   sctx->cur_ino, NULL);
4355                                 if (ret > 0) {
4356                                         orphanized_ancestor = true;
4357                                         fs_path_reset(valid_path);
4358                                         ret = get_cur_path(sctx, sctx->cur_ino,
4359                                                            sctx->cur_inode_gen,
4360                                                            valid_path);
4361                                 }
4362                                 if (ret < 0)
4363                                         goto out;
4364                         } else {
4365                                 /*
4366                                  * If we previously orphanized a directory that
4367                                  * collided with a new reference that we already
4368                                  * processed, recompute the current path because
4369                                  * that directory may be part of the path.
4370                                  */
4371                                 if (orphanized_dir) {
4372                                         ret = refresh_ref_path(sctx, cur);
4373                                         if (ret < 0)
4374                                                 goto out;
4375                                 }
4376                                 ret = send_unlink(sctx, cur->full_path);
4377                                 if (ret < 0)
4378                                         goto out;
4379                         }
4380                 }
4381 
4382         }
4383 
4384         list_for_each_entry(cur, &sctx->new_refs, list) {
4385                 /*
4386                  * We may have refs where the parent directory does not exist
4387                  * yet. This happens if the parent directories inum is higher
4388                  * than the current inum. To handle this case, we create the
4389                  * parent directory out of order. But we need to check if this
4390                  * did already happen before due to other refs in the same dir.
4391                  */
4392                 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4393                 if (ret < 0)
4394                         goto out;
4395                 if (ret == inode_state_will_create) {
4396                         ret = 0;
4397                         /*
4398                          * First check if any of the current inodes refs did
4399                          * already create the dir.
4400                          */
4401                         list_for_each_entry(cur2, &sctx->new_refs, list) {
4402                                 if (cur == cur2)
4403                                         break;
4404                                 if (cur2->dir == cur->dir) {
4405                                         ret = 1;
4406                                         break;
4407                                 }
4408                         }
4409 
4410                         /*
4411                          * If that did not happen, check if a previous inode
4412                          * did already create the dir.
4413                          */
4414                         if (!ret)
4415                                 ret = did_create_dir(sctx, cur->dir);
4416                         if (ret < 0)
4417                                 goto out;
4418                         if (!ret) {
4419                                 ret = send_create_inode(sctx, cur->dir);
4420                                 if (ret < 0)
4421                                         goto out;
4422                                 cache_dir_created(sctx, cur->dir);
4423                         }
4424                 }
4425 
4426                 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4427                         ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4428                         if (ret < 0)
4429                                 goto out;
4430                         if (ret == 1) {
4431                                 can_rename = false;
4432                                 *pending_move = 1;
4433                         }
4434                 }
4435 
4436                 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4437                     can_rename) {
4438                         ret = wait_for_parent_move(sctx, cur, is_orphan);
4439                         if (ret < 0)
4440                                 goto out;
4441                         if (ret == 1) {
4442                                 can_rename = false;
4443                                 *pending_move = 1;
4444                         }
4445                 }
4446 
4447                 /*
4448                  * link/move the ref to the new place. If we have an orphan
4449                  * inode, move it and update valid_path. If not, link or move
4450                  * it depending on the inode mode.
4451                  */
4452                 if (is_orphan && can_rename) {
4453                         ret = send_rename(sctx, valid_path, cur->full_path);
4454                         if (ret < 0)
4455                                 goto out;
4456                         is_orphan = 0;
4457                         ret = fs_path_copy(valid_path, cur->full_path);
4458                         if (ret < 0)
4459                                 goto out;
4460                 } else if (can_rename) {
4461                         if (S_ISDIR(sctx->cur_inode_mode)) {
4462                                 /*
4463                                  * Dirs can't be linked, so move it. For moved
4464                                  * dirs, we always have one new and one deleted
4465                                  * ref. The deleted ref is ignored later.
4466                                  */
4467                                 ret = send_rename(sctx, valid_path,
4468                                                   cur->full_path);
4469                                 if (!ret)
4470                                         ret = fs_path_copy(valid_path,
4471                                                            cur->full_path);
4472                                 if (ret < 0)
4473                                         goto out;
4474                         } else {
4475                                 /*
4476                                  * We might have previously orphanized an inode
4477                                  * which is an ancestor of our current inode,
4478                                  * so our reference's full path, which was
4479                                  * computed before any such orphanizations, must
4480                                  * be updated.
4481                                  */
4482                                 if (orphanized_dir) {
4483                                         ret = update_ref_path(sctx, cur);
4484                                         if (ret < 0)
4485                                                 goto out;
4486                                 }
4487                                 ret = send_link(sctx, cur->full_path,
4488                                                 valid_path);
4489                                 if (ret < 0)
4490                                         goto out;
4491                         }
4492                 }
4493                 ret = dup_ref(cur, &check_dirs);
4494                 if (ret < 0)
4495                         goto out;
4496         }
4497 
4498         if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4499                 /*
4500                  * Check if we can already rmdir the directory. If not,
4501                  * orphanize it. For every dir item inside that gets deleted
4502                  * later, we do this check again and rmdir it then if possible.
4503                  * See the use of check_dirs for more details.
4504                  */
4505                 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4506                 if (ret < 0)
4507                         goto out;
4508                 if (ret) {
4509                         ret = send_rmdir(sctx, valid_path);
4510                         if (ret < 0)
4511                                 goto out;
4512                 } else if (!is_orphan) {
4513                         ret = orphanize_inode(sctx, sctx->cur_ino,
4514                                         sctx->cur_inode_gen, valid_path);
4515                         if (ret < 0)
4516                                 goto out;
4517                         is_orphan = 1;
4518                 }
4519 
4520                 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4521                         ret = dup_ref(cur, &check_dirs);
4522                         if (ret < 0)
4523                                 goto out;
4524                 }
4525         } else if (S_ISDIR(sctx->cur_inode_mode) &&
4526                    !list_empty(&sctx->deleted_refs)) {
4527                 /*
4528                  * We have a moved dir. Add the old parent to check_dirs
4529                  */
4530                 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4531                                 list);
4532                 ret = dup_ref(cur, &check_dirs);
4533                 if (ret < 0)
4534                         goto out;
4535         } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4536                 /*
4537                  * We have a non dir inode. Go through all deleted refs and
4538                  * unlink them if they were not already overwritten by other
4539                  * inodes.
4540                  */
4541                 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4542                         ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4543                                         sctx->cur_ino, sctx->cur_inode_gen,
4544                                         cur->name, cur->name_len);
4545                         if (ret < 0)
4546                                 goto out;
4547                         if (!ret) {
4548                                 /*
4549                                  * If we orphanized any ancestor before, we need
4550                                  * to recompute the full path for deleted names,
4551                                  * since any such path was computed before we
4552                                  * processed any references and orphanized any
4553                                  * ancestor inode.
4554                                  */
4555                                 if (orphanized_ancestor) {
4556                                         ret = update_ref_path(sctx, cur);
4557                                         if (ret < 0)
4558                                                 goto out;
4559                                 }
4560                                 ret = send_unlink(sctx, cur->full_path);
4561                                 if (ret < 0)
4562                                         goto out;
4563                         }
4564                         ret = dup_ref(cur, &check_dirs);
4565                         if (ret < 0)
4566                                 goto out;
4567                 }
4568                 /*
4569                  * If the inode is still orphan, unlink the orphan. This may
4570                  * happen when a previous inode did overwrite the first ref
4571                  * of this inode and no new refs were added for the current
4572                  * inode. Unlinking does not mean that the inode is deleted in
4573                  * all cases. There may still be links to this inode in other
4574                  * places.
4575                  */
4576                 if (is_orphan) {
4577                         ret = send_unlink(sctx, valid_path);
4578                         if (ret < 0)
4579                                 goto out;
4580                 }
4581         }
4582 
4583         /*
4584          * We did collect all parent dirs where cur_inode was once located. We
4585          * now go through all these dirs and check if they are pending for
4586          * deletion and if it's finally possible to perform the rmdir now.
4587          * We also update the inode stats of the parent dirs here.
4588          */
4589         list_for_each_entry(cur, &check_dirs, list) {
4590                 /*
4591                  * In case we had refs into dirs that were not processed yet,
4592                  * we don't need to do the utime and rmdir logic for these dirs.
4593                  * The dir will be processed later.
4594                  */
4595                 if (cur->dir > sctx->cur_ino)
4596                         continue;
4597 
4598                 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4599                 if (ret < 0)
4600                         goto out;
4601 
4602                 if (ret == inode_state_did_create ||
4603                     ret == inode_state_no_change) {
4604                         ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4605                         if (ret < 0)
4606                                 goto out;
4607                 } else if (ret == inode_state_did_delete &&
4608                            cur->dir != last_dir_ino_rm) {
4609                         ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4610                         if (ret < 0)
4611                                 goto out;
4612                         if (ret) {
4613                                 ret = get_cur_path(sctx, cur->dir,
4614                                                    cur->dir_gen, valid_path);
4615                                 if (ret < 0)
4616                                         goto out;
4617                                 ret = send_rmdir(sctx, valid_path);
4618                                 if (ret < 0)
4619                                         goto out;
4620                                 last_dir_ino_rm = cur->dir;
4621                         }
4622                 }
4623         }
4624 
4625         ret = 0;
4626 
4627 out:
4628         __free_recorded_refs(&check_dirs);
4629         free_recorded_refs(sctx);
4630         fs_path_free(valid_path);
4631         return ret;
4632 }
4633 
4634 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4635 {
4636         const struct recorded_ref *data = k;
4637         const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4638         int result;
4639 
4640         if (data->dir > ref->dir)
4641                 return 1;
4642         if (data->dir < ref->dir)
4643                 return -1;
4644         if (data->dir_gen > ref->dir_gen)
4645                 return 1;
4646         if (data->dir_gen < ref->dir_gen)
4647                 return -1;
4648         if (data->name_len > ref->name_len)
4649                 return 1;
4650         if (data->name_len < ref->name_len)
4651                 return -1;
4652         result = strcmp(data->name, ref->name);
4653         if (result > 0)
4654                 return 1;
4655         if (result < 0)
4656                 return -1;
4657         return 0;
4658 }
4659 
4660 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4661 {
4662         const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4663 
4664         return rbtree_ref_comp(entry, parent) < 0;
4665 }
4666 
4667 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4668                               struct fs_path *name, u64 dir, u64 dir_gen,
4669                               struct send_ctx *sctx)
4670 {
4671         int ret = 0;
4672         struct fs_path *path = NULL;
4673         struct recorded_ref *ref = NULL;
4674 
4675         path = fs_path_alloc();
4676         if (!path) {
4677                 ret = -ENOMEM;
4678                 goto out;
4679         }
4680 
4681         ref = recorded_ref_alloc();
4682         if (!ref) {
4683                 ret = -ENOMEM;
4684                 goto out;
4685         }
4686 
4687         ret = get_cur_path(sctx, dir, dir_gen, path);
4688         if (ret < 0)
4689                 goto out;
4690         ret = fs_path_add_path(path, name);
4691         if (ret < 0)
4692                 goto out;
4693 
4694         ref->dir = dir;
4695         ref->dir_gen = dir_gen;
4696         set_ref_path(ref, path);
4697         list_add_tail(&ref->list, refs);
4698         rb_add(&ref->node, root, rbtree_ref_less);
4699         ref->root = root;
4700 out:
4701         if (ret) {
4702                 if (path && (!ref || !ref->full_path))
4703                         fs_path_free(path);
4704                 recorded_ref_free(ref);
4705         }
4706         return ret;
4707 }
4708 
4709 static int record_new_ref_if_needed(int num, u64 dir, int index,
4710                                     struct fs_path *name, void *ctx)
4711 {
4712         int ret = 0;
4713         struct send_ctx *sctx = ctx;
4714         struct rb_node *node = NULL;
4715         struct recorded_ref data;
4716         struct recorded_ref *ref;
4717         u64 dir_gen;
4718 
4719         ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4720         if (ret < 0)
4721                 goto out;
4722 
4723         data.dir = dir;
4724         data.dir_gen = dir_gen;
4725         set_ref_path(&data, name);
4726         node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4727         if (node) {
4728                 ref = rb_entry(node, struct recorded_ref, node);
4729                 recorded_ref_free(ref);
4730         } else {
4731                 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4732                                          &sctx->new_refs, name, dir, dir_gen,
4733                                          sctx);
4734         }
4735 out:
4736         return ret;
4737 }
4738 
4739 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4740                                         struct fs_path *name, void *ctx)
4741 {
4742         int ret = 0;
4743         struct send_ctx *sctx = ctx;
4744         struct rb_node *node = NULL;
4745         struct recorded_ref data;
4746         struct recorded_ref *ref;
4747         u64 dir_gen;
4748 
4749         ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4750         if (ret < 0)
4751                 goto out;
4752 
4753         data.dir = dir;
4754         data.dir_gen = dir_gen;
4755         set_ref_path(&data, name);
4756         node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4757         if (node) {
4758                 ref = rb_entry(node, struct recorded_ref, node);
4759                 recorded_ref_free(ref);
4760         } else {
4761                 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4762                                          &sctx->deleted_refs, name, dir,
4763                                          dir_gen, sctx);
4764         }
4765 out:
4766         return ret;
4767 }
4768 
4769 static int record_new_ref(struct send_ctx *sctx)
4770 {
4771         int ret;
4772 
4773         ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4774                                 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4775         if (ret < 0)
4776                 goto out;
4777         ret = 0;
4778 
4779 out:
4780         return ret;
4781 }
4782 
4783 static int record_deleted_ref(struct send_ctx *sctx)
4784 {
4785         int ret;
4786 
4787         ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4788                                 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4789                                 sctx);
4790         if (ret < 0)
4791                 goto out;
4792         ret = 0;
4793 
4794 out:
4795         return ret;
4796 }
4797 
4798 static int record_changed_ref(struct send_ctx *sctx)
4799 {
4800         int ret = 0;
4801 
4802         ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4803                         sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4804         if (ret < 0)
4805                 goto out;
4806         ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4807                         sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4808         if (ret < 0)
4809                 goto out;
4810         ret = 0;
4811 
4812 out:
4813         return ret;
4814 }
4815 
4816 /*
4817  * Record and process all refs at once. Needed when an inode changes the
4818  * generation number, which means that it was deleted and recreated.
4819  */
4820 static int process_all_refs(struct send_ctx *sctx,
4821                             enum btrfs_compare_tree_result cmd)
4822 {
4823         int ret = 0;
4824         int iter_ret = 0;
4825         struct btrfs_root *root;
4826         struct btrfs_path *path;
4827         struct btrfs_key key;
4828         struct btrfs_key found_key;
4829         iterate_inode_ref_t cb;
4830         int pending_move = 0;
4831 
4832         path = alloc_path_for_send();
4833         if (!path)
4834                 return -ENOMEM;
4835 
4836         if (cmd == BTRFS_COMPARE_TREE_NEW) {
4837                 root = sctx->send_root;
4838                 cb = record_new_ref_if_needed;
4839         } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4840                 root = sctx->parent_root;
4841                 cb = record_deleted_ref_if_needed;
4842         } else {
4843                 btrfs_err(sctx->send_root->fs_info,
4844                                 "Wrong command %d in process_all_refs", cmd);
4845                 ret = -EINVAL;
4846                 goto out;
4847         }
4848 
4849         key.objectid = sctx->cmp_key->objectid;
4850         key.type = BTRFS_INODE_REF_KEY;
4851         key.offset = 0;
4852         btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4853                 if (found_key.objectid != key.objectid ||
4854                     (found_key.type != BTRFS_INODE_REF_KEY &&
4855                      found_key.type != BTRFS_INODE_EXTREF_KEY))
4856                         break;
4857 
4858                 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4859                 if (ret < 0)
4860                         goto out;
4861         }
4862         /* Catch error found during iteration */
4863         if (iter_ret < 0) {
4864                 ret = iter_ret;
4865                 goto out;
4866         }
4867         btrfs_release_path(path);
4868 
4869         /*
4870          * We don't actually care about pending_move as we are simply
4871          * re-creating this inode and will be rename'ing it into place once we
4872          * rename the parent directory.
4873          */
4874         ret = process_recorded_refs(sctx, &pending_move);
4875 out:
4876         btrfs_free_path(path);
4877         return ret;
4878 }
4879 
4880 static int send_set_xattr(struct send_ctx *sctx,
4881                           struct fs_path *path,
4882                           const char *name, int name_len,
4883                           const char *data, int data_len)
4884 {
4885         int ret = 0;
4886 
4887         ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4888         if (ret < 0)
4889                 goto out;
4890 
4891         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4892         TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4893         TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4894 
4895         ret = send_cmd(sctx);
4896 
4897 tlv_put_failure:
4898 out:
4899         return ret;
4900 }
4901 
4902 static int send_remove_xattr(struct send_ctx *sctx,
4903                           struct fs_path *path,
4904                           const char *name, int name_len)
4905 {
4906         int ret = 0;
4907 
4908         ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4909         if (ret < 0)
4910                 goto out;
4911 
4912         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4913         TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4914 
4915         ret = send_cmd(sctx);
4916 
4917 tlv_put_failure:
4918 out:
4919         return ret;
4920 }
4921 
4922 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4923                                const char *name, int name_len, const char *data,
4924                                int data_len, void *ctx)
4925 {
4926         int ret;
4927         struct send_ctx *sctx = ctx;
4928         struct fs_path *p;
4929         struct posix_acl_xattr_header dummy_acl;
4930 
4931         /* Capabilities are emitted by finish_inode_if_needed */
4932         if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4933                 return 0;
4934 
4935         p = fs_path_alloc();
4936         if (!p)
4937                 return -ENOMEM;
4938 
4939         /*
4940          * This hack is needed because empty acls are stored as zero byte
4941          * data in xattrs. Problem with that is, that receiving these zero byte
4942          * acls will fail later. To fix this, we send a dummy acl list that
4943          * only contains the version number and no entries.
4944          */
4945         if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4946             !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4947                 if (data_len == 0) {
4948                         dummy_acl.a_version =
4949                                         cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4950                         data = (char *)&dummy_acl;
4951                         data_len = sizeof(dummy_acl);
4952                 }
4953         }
4954 
4955         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4956         if (ret < 0)
4957                 goto out;
4958 
4959         ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4960 
4961 out:
4962         fs_path_free(p);
4963         return ret;
4964 }
4965 
4966 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4967                                    const char *name, int name_len,
4968                                    const char *data, int data_len, void *ctx)
4969 {
4970         int ret;
4971         struct send_ctx *sctx = ctx;
4972         struct fs_path *p;
4973 
4974         p = fs_path_alloc();
4975         if (!p)
4976                 return -ENOMEM;
4977 
4978         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4979         if (ret < 0)
4980                 goto out;
4981 
4982         ret = send_remove_xattr(sctx, p, name, name_len);
4983 
4984 out:
4985         fs_path_free(p);
4986         return ret;
4987 }
4988 
4989 static int process_new_xattr(struct send_ctx *sctx)
4990 {
4991         int ret = 0;
4992 
4993         ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4994                                __process_new_xattr, sctx);
4995 
4996         return ret;
4997 }
4998 
4999 static int process_deleted_xattr(struct send_ctx *sctx)
5000 {
5001         return iterate_dir_item(sctx->parent_root, sctx->right_path,
5002                                 __process_deleted_xattr, sctx);
5003 }
5004 
5005 struct find_xattr_ctx {
5006         const char *name;
5007         int name_len;
5008         int found_idx;
5009         char *found_data;
5010         int found_data_len;
5011 };
5012 
5013 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5014                         int name_len, const char *data, int data_len, void *vctx)
5015 {
5016         struct find_xattr_ctx *ctx = vctx;
5017 
5018         if (name_len == ctx->name_len &&
5019             strncmp(name, ctx->name, name_len) == 0) {
5020                 ctx->found_idx = num;
5021                 ctx->found_data_len = data_len;
5022                 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5023                 if (!ctx->found_data)
5024                         return -ENOMEM;
5025                 return 1;
5026         }
5027         return 0;
5028 }
5029 
5030 static int find_xattr(struct btrfs_root *root,
5031                       struct btrfs_path *path,
5032                       struct btrfs_key *key,
5033                       const char *name, int name_len,
5034                       char **data, int *data_len)
5035 {
5036         int ret;
5037         struct find_xattr_ctx ctx;
5038 
5039         ctx.name = name;
5040         ctx.name_len = name_len;
5041         ctx.found_idx = -1;
5042         ctx.found_data = NULL;
5043         ctx.found_data_len = 0;
5044 
5045         ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5046         if (ret < 0)
5047                 return ret;
5048 
5049         if (ctx.found_idx == -1)
5050                 return -ENOENT;
5051         if (data) {
5052                 *data = ctx.found_data;
5053                 *data_len = ctx.found_data_len;
5054         } else {
5055                 kfree(ctx.found_data);
5056         }
5057         return ctx.found_idx;
5058 }
5059 
5060 
5061 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5062                                        const char *name, int name_len,
5063                                        const char *data, int data_len,
5064                                        void *ctx)
5065 {
5066         int ret;
5067         struct send_ctx *sctx = ctx;
5068         char *found_data = NULL;
5069         int found_data_len  = 0;
5070 
5071         ret = find_xattr(sctx->parent_root, sctx->right_path,
5072                          sctx->cmp_key, name, name_len, &found_data,
5073                          &found_data_len);
5074         if (ret == -ENOENT) {
5075                 ret = __process_new_xattr(num, di_key, name, name_len, data,
5076                                           data_len, ctx);
5077         } else if (ret >= 0) {
5078                 if (data_len != found_data_len ||
5079                     memcmp(data, found_data, data_len)) {
5080                         ret = __process_new_xattr(num, di_key, name, name_len,
5081                                                   data, data_len, ctx);
5082                 } else {
5083                         ret = 0;
5084                 }
5085         }
5086 
5087         kfree(found_data);
5088         return ret;
5089 }
5090 
5091 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5092                                            const char *name, int name_len,
5093                                            const char *data, int data_len,
5094                                            void *ctx)
5095 {
5096         int ret;
5097         struct send_ctx *sctx = ctx;
5098 
5099         ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5100                          name, name_len, NULL, NULL);
5101         if (ret == -ENOENT)
5102                 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5103                                               data_len, ctx);
5104         else if (ret >= 0)
5105                 ret = 0;
5106 
5107         return ret;
5108 }
5109 
5110 static int process_changed_xattr(struct send_ctx *sctx)
5111 {
5112         int ret = 0;
5113 
5114         ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5115                         __process_changed_new_xattr, sctx);
5116         if (ret < 0)
5117                 goto out;
5118         ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5119                         __process_changed_deleted_xattr, sctx);
5120 
5121 out:
5122         return ret;
5123 }
5124 
5125 static int process_all_new_xattrs(struct send_ctx *sctx)
5126 {
5127         int ret = 0;
5128         int iter_ret = 0;
5129         struct btrfs_root *root;
5130         struct btrfs_path *path;
5131         struct btrfs_key key;
5132         struct btrfs_key found_key;
5133 
5134         path = alloc_path_for_send();
5135         if (!path)
5136                 return -ENOMEM;
5137 
5138         root = sctx->send_root;
5139 
5140         key.objectid = sctx->cmp_key->objectid;
5141         key.type = BTRFS_XATTR_ITEM_KEY;
5142         key.offset = 0;
5143         btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5144                 if (found_key.objectid != key.objectid ||
5145                     found_key.type != key.type) {
5146                         ret = 0;
5147                         break;
5148                 }
5149 
5150                 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5151                 if (ret < 0)
5152                         break;
5153         }
5154         /* Catch error found during iteration */
5155         if (iter_ret < 0)
5156                 ret = iter_ret;
5157 
5158         btrfs_free_path(path);
5159         return ret;
5160 }
5161 
5162 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5163                        struct fsverity_descriptor *desc)
5164 {
5165         int ret;
5166 
5167         ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5168         if (ret < 0)
5169                 goto out;
5170 
5171         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5172         TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5173                         le8_to_cpu(desc->hash_algorithm));
5174         TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5175                         1U << le8_to_cpu(desc->log_blocksize));
5176         TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5177                         le8_to_cpu(desc->salt_size));
5178         TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5179                         le32_to_cpu(desc->sig_size));
5180 
5181         ret = send_cmd(sctx);
5182 
5183 tlv_put_failure:
5184 out:
5185         return ret;
5186 }
5187 
5188 static int process_verity(struct send_ctx *sctx)
5189 {
5190         int ret = 0;
5191         struct inode *inode;
5192         struct fs_path *p;
5193 
5194         inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5195         if (IS_ERR(inode))
5196                 return PTR_ERR(inode);
5197 
5198         ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5199         if (ret < 0)
5200                 goto iput;
5201 
5202         if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5203                 ret = -EMSGSIZE;
5204                 goto iput;
5205         }
5206         if (!sctx->verity_descriptor) {
5207                 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5208                                                    GFP_KERNEL);
5209                 if (!sctx->verity_descriptor) {
5210                         ret = -ENOMEM;
5211                         goto iput;
5212                 }
5213         }
5214 
5215         ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5216         if (ret < 0)
5217                 goto iput;
5218 
5219         p = fs_path_alloc();
5220         if (!p) {
5221                 ret = -ENOMEM;
5222                 goto iput;
5223         }
5224         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5225         if (ret < 0)
5226                 goto free_path;
5227 
5228         ret = send_verity(sctx, p, sctx->verity_descriptor);
5229         if (ret < 0)
5230                 goto free_path;
5231 
5232 free_path:
5233         fs_path_free(p);
5234 iput:
5235         iput(inode);
5236         return ret;
5237 }
5238 
5239 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5240 {
5241         return sctx->send_max_size - SZ_16K;
5242 }
5243 
5244 static int put_data_header(struct send_ctx *sctx, u32 len)
5245 {
5246         if (WARN_ON_ONCE(sctx->put_data))
5247                 return -EINVAL;
5248         sctx->put_data = true;
5249         if (sctx->proto >= 2) {
5250                 /*
5251                  * Since v2, the data attribute header doesn't include a length,
5252                  * it is implicitly to the end of the command.
5253                  */
5254                 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5255                         return -EOVERFLOW;
5256                 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5257                 sctx->send_size += sizeof(__le16);
5258         } else {
5259                 struct btrfs_tlv_header *hdr;
5260 
5261                 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5262                         return -EOVERFLOW;
5263                 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5264                 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5265                 put_unaligned_le16(len, &hdr->tlv_len);
5266                 sctx->send_size += sizeof(*hdr);
5267         }
5268         return 0;
5269 }
5270 
5271 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5272 {
5273         struct btrfs_root *root = sctx->send_root;
5274         struct btrfs_fs_info *fs_info = root->fs_info;
5275         struct folio *folio;
5276         pgoff_t index = offset >> PAGE_SHIFT;
5277         pgoff_t last_index;
5278         unsigned pg_offset = offset_in_page(offset);
5279         struct address_space *mapping = sctx->cur_inode->i_mapping;
5280         int ret;
5281 
5282         ret = put_data_header(sctx, len);
5283         if (ret)
5284                 return ret;
5285 
5286         last_index = (offset + len - 1) >> PAGE_SHIFT;
5287 
5288         while (index <= last_index) {
5289                 unsigned cur_len = min_t(unsigned, len,
5290                                          PAGE_SIZE - pg_offset);
5291 
5292                 folio = filemap_lock_folio(mapping, index);
5293                 if (IS_ERR(folio)) {
5294                         page_cache_sync_readahead(mapping,
5295                                                   &sctx->ra, NULL, index,
5296                                                   last_index + 1 - index);
5297 
5298                         folio = filemap_grab_folio(mapping, index);
5299                         if (IS_ERR(folio)) {
5300                                 ret = PTR_ERR(folio);
5301                                 break;
5302                         }
5303                 }
5304 
5305                 WARN_ON(folio_order(folio));
5306 
5307                 if (folio_test_readahead(folio))
5308                         page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5309                                                    last_index + 1 - index);
5310 
5311                 if (!folio_test_uptodate(folio)) {
5312                         btrfs_read_folio(NULL, folio);
5313                         folio_lock(folio);
5314                         if (!folio_test_uptodate(folio)) {
5315                                 folio_unlock(folio);
5316                                 btrfs_err(fs_info,
5317                         "send: IO error at offset %llu for inode %llu root %llu",
5318                                         folio_pos(folio), sctx->cur_ino,
5319                                         btrfs_root_id(sctx->send_root));
5320                                 folio_put(folio);
5321                                 ret = -EIO;
5322                                 break;
5323                         }
5324                 }
5325 
5326                 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5327                                   pg_offset, cur_len);
5328                 folio_unlock(folio);
5329                 folio_put(folio);
5330                 index++;
5331                 pg_offset = 0;
5332                 len -= cur_len;
5333                 sctx->send_size += cur_len;
5334         }
5335 
5336         return ret;
5337 }
5338 
5339 /*
5340  * Read some bytes from the current inode/file and send a write command to
5341  * user space.
5342  */
5343 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5344 {
5345         struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5346         int ret = 0;
5347         struct fs_path *p;
5348 
5349         p = fs_path_alloc();
5350         if (!p)
5351                 return -ENOMEM;
5352 
5353         btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5354 
5355         ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5356         if (ret < 0)
5357                 goto out;
5358 
5359         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5360         if (ret < 0)
5361                 goto out;
5362 
5363         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5364         TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5365         ret = put_file_data(sctx, offset, len);
5366         if (ret < 0)
5367                 goto out;
5368 
5369         ret = send_cmd(sctx);
5370 
5371 tlv_put_failure:
5372 out:
5373         fs_path_free(p);
5374         return ret;
5375 }
5376 
5377 /*
5378  * Send a clone command to user space.
5379  */
5380 static int send_clone(struct send_ctx *sctx,
5381                       u64 offset, u32 len,
5382                       struct clone_root *clone_root)
5383 {
5384         int ret = 0;
5385         struct fs_path *p;
5386         u64 gen;
5387 
5388         btrfs_debug(sctx->send_root->fs_info,
5389                     "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5390                     offset, len, btrfs_root_id(clone_root->root),
5391                     clone_root->ino, clone_root->offset);
5392 
5393         p = fs_path_alloc();
5394         if (!p)
5395                 return -ENOMEM;
5396 
5397         ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5398         if (ret < 0)
5399                 goto out;
5400 
5401         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5402         if (ret < 0)
5403                 goto out;
5404 
5405         TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5406         TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5407         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5408 
5409         if (clone_root->root == sctx->send_root) {
5410                 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5411                 if (ret < 0)
5412                         goto out;
5413                 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5414         } else {
5415                 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5416         }
5417         if (ret < 0)
5418                 goto out;
5419 
5420         /*
5421          * If the parent we're using has a received_uuid set then use that as
5422          * our clone source as that is what we will look for when doing a
5423          * receive.
5424          *
5425          * This covers the case that we create a snapshot off of a received
5426          * subvolume and then use that as the parent and try to receive on a
5427          * different host.
5428          */
5429         if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5430                 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5431                              clone_root->root->root_item.received_uuid);
5432         else
5433                 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5434                              clone_root->root->root_item.uuid);
5435         TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5436                     btrfs_root_ctransid(&clone_root->root->root_item));
5437         TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5438         TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5439                         clone_root->offset);
5440 
5441         ret = send_cmd(sctx);
5442 
5443 tlv_put_failure:
5444 out:
5445         fs_path_free(p);
5446         return ret;
5447 }
5448 
5449 /*
5450  * Send an update extent command to user space.
5451  */
5452 static int send_update_extent(struct send_ctx *sctx,
5453                               u64 offset, u32 len)
5454 {
5455         int ret = 0;
5456         struct fs_path *p;
5457 
5458         p = fs_path_alloc();
5459         if (!p)
5460                 return -ENOMEM;
5461 
5462         ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5463         if (ret < 0)
5464                 goto out;
5465 
5466         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5467         if (ret < 0)
5468                 goto out;
5469 
5470         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5471         TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5472         TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5473 
5474         ret = send_cmd(sctx);
5475 
5476 tlv_put_failure:
5477 out:
5478         fs_path_free(p);
5479         return ret;
5480 }
5481 
5482 static int send_hole(struct send_ctx *sctx, u64 end)
5483 {
5484         struct fs_path *p = NULL;
5485         u64 read_size = max_send_read_size(sctx);
5486         u64 offset = sctx->cur_inode_last_extent;
5487         int ret = 0;
5488 
5489         /*
5490          * A hole that starts at EOF or beyond it. Since we do not yet support
5491          * fallocate (for extent preallocation and hole punching), sending a
5492          * write of zeroes starting at EOF or beyond would later require issuing
5493          * a truncate operation which would undo the write and achieve nothing.
5494          */
5495         if (offset >= sctx->cur_inode_size)
5496                 return 0;
5497 
5498         /*
5499          * Don't go beyond the inode's i_size due to prealloc extents that start
5500          * after the i_size.
5501          */
5502         end = min_t(u64, end, sctx->cur_inode_size);
5503 
5504         if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5505                 return send_update_extent(sctx, offset, end - offset);
5506 
5507         p = fs_path_alloc();
5508         if (!p)
5509                 return -ENOMEM;
5510         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5511         if (ret < 0)
5512                 goto tlv_put_failure;
5513         while (offset < end) {
5514                 u64 len = min(end - offset, read_size);
5515 
5516                 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5517                 if (ret < 0)
5518                         break;
5519                 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5520                 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5521                 ret = put_data_header(sctx, len);
5522                 if (ret < 0)
5523                         break;
5524                 memset(sctx->send_buf + sctx->send_size, 0, len);
5525                 sctx->send_size += len;
5526                 ret = send_cmd(sctx);
5527                 if (ret < 0)
5528                         break;
5529                 offset += len;
5530         }
5531         sctx->cur_inode_next_write_offset = offset;
5532 tlv_put_failure:
5533         fs_path_free(p);
5534         return ret;
5535 }
5536 
5537 static int send_encoded_inline_extent(struct send_ctx *sctx,
5538                                       struct btrfs_path *path, u64 offset,
5539                                       u64 len)
5540 {
5541         struct btrfs_root *root = sctx->send_root;
5542         struct btrfs_fs_info *fs_info = root->fs_info;
5543         struct inode *inode;
5544         struct fs_path *fspath;
5545         struct extent_buffer *leaf = path->nodes[0];
5546         struct btrfs_key key;
5547         struct btrfs_file_extent_item *ei;
5548         u64 ram_bytes;
5549         size_t inline_size;
5550         int ret;
5551 
5552         inode = btrfs_iget(sctx->cur_ino, root);
5553         if (IS_ERR(inode))
5554                 return PTR_ERR(inode);
5555 
5556         fspath = fs_path_alloc();
5557         if (!fspath) {
5558                 ret = -ENOMEM;
5559                 goto out;
5560         }
5561 
5562         ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5563         if (ret < 0)
5564                 goto out;
5565 
5566         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5567         if (ret < 0)
5568                 goto out;
5569 
5570         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5571         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5572         ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5573         inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5574 
5575         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5576         TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5577         TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5578                     min(key.offset + ram_bytes - offset, len));
5579         TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5580         TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5581         ret = btrfs_encoded_io_compression_from_extent(fs_info,
5582                                 btrfs_file_extent_compression(leaf, ei));
5583         if (ret < 0)
5584                 goto out;
5585         TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5586 
5587         ret = put_data_header(sctx, inline_size);
5588         if (ret < 0)
5589                 goto out;
5590         read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5591                            btrfs_file_extent_inline_start(ei), inline_size);
5592         sctx->send_size += inline_size;
5593 
5594         ret = send_cmd(sctx);
5595 
5596 tlv_put_failure:
5597 out:
5598         fs_path_free(fspath);
5599         iput(inode);
5600         return ret;
5601 }
5602 
5603 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5604                                u64 offset, u64 len)
5605 {
5606         struct btrfs_root *root = sctx->send_root;
5607         struct btrfs_fs_info *fs_info = root->fs_info;
5608         struct inode *inode;
5609         struct fs_path *fspath;
5610         struct extent_buffer *leaf = path->nodes[0];
5611         struct btrfs_key key;
5612         struct btrfs_file_extent_item *ei;
5613         u64 disk_bytenr, disk_num_bytes;
5614         u32 data_offset;
5615         struct btrfs_cmd_header *hdr;
5616         u32 crc;
5617         int ret;
5618 
5619         inode = btrfs_iget(sctx->cur_ino, root);
5620         if (IS_ERR(inode))
5621                 return PTR_ERR(inode);
5622 
5623         fspath = fs_path_alloc();
5624         if (!fspath) {
5625                 ret = -ENOMEM;
5626                 goto out;
5627         }
5628 
5629         ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5630         if (ret < 0)
5631                 goto out;
5632 
5633         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5634         if (ret < 0)
5635                 goto out;
5636 
5637         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5638         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5639         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5640         disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5641 
5642         TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5643         TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5644         TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5645                     min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5646                         len));
5647         TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5648                     btrfs_file_extent_ram_bytes(leaf, ei));
5649         TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5650                     offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5651         ret = btrfs_encoded_io_compression_from_extent(fs_info,
5652                                 btrfs_file_extent_compression(leaf, ei));
5653         if (ret < 0)
5654                 goto out;
5655         TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5656         TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5657 
5658         ret = put_data_header(sctx, disk_num_bytes);
5659         if (ret < 0)
5660                 goto out;
5661 
5662         /*
5663          * We want to do I/O directly into the send buffer, so get the next page
5664          * boundary in the send buffer. This means that there may be a gap
5665          * between the beginning of the command and the file data.
5666          */
5667         data_offset = PAGE_ALIGN(sctx->send_size);
5668         if (data_offset > sctx->send_max_size ||
5669             sctx->send_max_size - data_offset < disk_num_bytes) {
5670                 ret = -EOVERFLOW;
5671                 goto out;
5672         }
5673 
5674         /*
5675          * Note that send_buf is a mapping of send_buf_pages, so this is really
5676          * reading into send_buf.
5677          */
5678         ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5679                                                     disk_bytenr, disk_num_bytes,
5680                                                     sctx->send_buf_pages +
5681                                                     (data_offset >> PAGE_SHIFT));
5682         if (ret)
5683                 goto out;
5684 
5685         hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5686         hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5687         hdr->crc = 0;
5688         crc = crc32c(0, sctx->send_buf, sctx->send_size);
5689         crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5690         hdr->crc = cpu_to_le32(crc);
5691 
5692         ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5693                         &sctx->send_off);
5694         if (!ret) {
5695                 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5696                                 disk_num_bytes, &sctx->send_off);
5697         }
5698         sctx->send_size = 0;
5699         sctx->put_data = false;
5700 
5701 tlv_put_failure:
5702 out:
5703         fs_path_free(fspath);
5704         iput(inode);
5705         return ret;
5706 }
5707 
5708 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5709                             const u64 offset, const u64 len)
5710 {
5711         const u64 end = offset + len;
5712         struct extent_buffer *leaf = path->nodes[0];
5713         struct btrfs_file_extent_item *ei;
5714         u64 read_size = max_send_read_size(sctx);
5715         u64 sent = 0;
5716 
5717         if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5718                 return send_update_extent(sctx, offset, len);
5719 
5720         ei = btrfs_item_ptr(leaf, path->slots[0],
5721                             struct btrfs_file_extent_item);
5722         if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5723             btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5724                 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5725                                   BTRFS_FILE_EXTENT_INLINE);
5726 
5727                 /*
5728                  * Send the compressed extent unless the compressed data is
5729                  * larger than the decompressed data. This can happen if we're
5730                  * not sending the entire extent, either because it has been
5731                  * partially overwritten/truncated or because this is a part of
5732                  * the extent that we couldn't clone in clone_range().
5733                  */
5734                 if (is_inline &&
5735                     btrfs_file_extent_inline_item_len(leaf,
5736                                                       path->slots[0]) <= len) {
5737                         return send_encoded_inline_extent(sctx, path, offset,
5738                                                           len);
5739                 } else if (!is_inline &&
5740                            btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5741                         return send_encoded_extent(sctx, path, offset, len);
5742                 }
5743         }
5744 
5745         if (sctx->cur_inode == NULL) {
5746                 struct btrfs_root *root = sctx->send_root;
5747 
5748                 sctx->cur_inode = btrfs_iget(sctx->cur_ino, root);
5749                 if (IS_ERR(sctx->cur_inode)) {
5750                         int err = PTR_ERR(sctx->cur_inode);
5751 
5752                         sctx->cur_inode = NULL;
5753                         return err;
5754                 }
5755                 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5756                 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5757 
5758                 /*
5759                  * It's very likely there are no pages from this inode in the page
5760                  * cache, so after reading extents and sending their data, we clean
5761                  * the page cache to avoid trashing the page cache (adding pressure
5762                  * to the page cache and forcing eviction of other data more useful
5763                  * for applications).
5764                  *
5765                  * We decide if we should clean the page cache simply by checking
5766                  * if the inode's mapping nrpages is 0 when we first open it, and
5767                  * not by using something like filemap_range_has_page() before
5768                  * reading an extent because when we ask the readahead code to
5769                  * read a given file range, it may (and almost always does) read
5770                  * pages from beyond that range (see the documentation for
5771                  * page_cache_sync_readahead()), so it would not be reliable,
5772                  * because after reading the first extent future calls to
5773                  * filemap_range_has_page() would return true because the readahead
5774                  * on the previous extent resulted in reading pages of the current
5775                  * extent as well.
5776                  */
5777                 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5778                 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5779         }
5780 
5781         while (sent < len) {
5782                 u64 size = min(len - sent, read_size);
5783                 int ret;
5784 
5785                 ret = send_write(sctx, offset + sent, size);
5786                 if (ret < 0)
5787                         return ret;
5788                 sent += size;
5789         }
5790 
5791         if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5792                 /*
5793                  * Always operate only on ranges that are a multiple of the page
5794                  * size. This is not only to prevent zeroing parts of a page in
5795                  * the case of subpage sector size, but also to guarantee we evict
5796                  * pages, as passing a range that is smaller than page size does
5797                  * not evict the respective page (only zeroes part of its content).
5798                  *
5799                  * Always start from the end offset of the last range cleared.
5800                  * This is because the readahead code may (and very often does)
5801                  * reads pages beyond the range we request for readahead. So if
5802                  * we have an extent layout like this:
5803                  *
5804                  *            [ extent A ] [ extent B ] [ extent C ]
5805                  *
5806                  * When we ask page_cache_sync_readahead() to read extent A, it
5807                  * may also trigger reads for pages of extent B. If we are doing
5808                  * an incremental send and extent B has not changed between the
5809                  * parent and send snapshots, some or all of its pages may end
5810                  * up being read and placed in the page cache. So when truncating
5811                  * the page cache we always start from the end offset of the
5812                  * previously processed extent up to the end of the current
5813                  * extent.
5814                  */
5815                 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5816                                            sctx->page_cache_clear_start,
5817                                            end - 1);
5818                 sctx->page_cache_clear_start = end;
5819         }
5820 
5821         return 0;
5822 }
5823 
5824 /*
5825  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5826  * found, call send_set_xattr function to emit it.
5827  *
5828  * Return 0 if there isn't a capability, or when the capability was emitted
5829  * successfully, or < 0 if an error occurred.
5830  */
5831 static int send_capabilities(struct send_ctx *sctx)
5832 {
5833         struct fs_path *fspath = NULL;
5834         struct btrfs_path *path;
5835         struct btrfs_dir_item *di;
5836         struct extent_buffer *leaf;
5837         unsigned long data_ptr;
5838         char *buf = NULL;
5839         int buf_len;
5840         int ret = 0;
5841 
5842         path = alloc_path_for_send();
5843         if (!path)
5844                 return -ENOMEM;
5845 
5846         di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5847                                 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5848         if (!di) {
5849                 /* There is no xattr for this inode */
5850                 goto out;
5851         } else if (IS_ERR(di)) {
5852                 ret = PTR_ERR(di);
5853                 goto out;
5854         }
5855 
5856         leaf = path->nodes[0];
5857         buf_len = btrfs_dir_data_len(leaf, di);
5858 
5859         fspath = fs_path_alloc();
5860         buf = kmalloc(buf_len, GFP_KERNEL);
5861         if (!fspath || !buf) {
5862                 ret = -ENOMEM;
5863                 goto out;
5864         }
5865 
5866         ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5867         if (ret < 0)
5868                 goto out;
5869 
5870         data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5871         read_extent_buffer(leaf, buf, data_ptr, buf_len);
5872 
5873         ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5874                         strlen(XATTR_NAME_CAPS), buf, buf_len);
5875 out:
5876         kfree(buf);
5877         fs_path_free(fspath);
5878         btrfs_free_path(path);
5879         return ret;
5880 }
5881 
5882 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5883                        struct clone_root *clone_root, const u64 disk_byte,
5884                        u64 data_offset, u64 offset, u64 len)
5885 {
5886         struct btrfs_path *path;
5887         struct btrfs_key key;
5888         int ret;
5889         struct btrfs_inode_info info;
5890         u64 clone_src_i_size = 0;
5891 
5892         /*
5893          * Prevent cloning from a zero offset with a length matching the sector
5894          * size because in some scenarios this will make the receiver fail.
5895          *
5896          * For example, if in the source filesystem the extent at offset 0
5897          * has a length of sectorsize and it was written using direct IO, then
5898          * it can never be an inline extent (even if compression is enabled).
5899          * Then this extent can be cloned in the original filesystem to a non
5900          * zero file offset, but it may not be possible to clone in the
5901          * destination filesystem because it can be inlined due to compression
5902          * on the destination filesystem (as the receiver's write operations are
5903          * always done using buffered IO). The same happens when the original
5904          * filesystem does not have compression enabled but the destination
5905          * filesystem has.
5906          */
5907         if (clone_root->offset == 0 &&
5908             len == sctx->send_root->fs_info->sectorsize)
5909                 return send_extent_data(sctx, dst_path, offset, len);
5910 
5911         path = alloc_path_for_send();
5912         if (!path)
5913                 return -ENOMEM;
5914 
5915         /*
5916          * There are inodes that have extents that lie behind its i_size. Don't
5917          * accept clones from these extents.
5918          */
5919         ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5920         btrfs_release_path(path);
5921         if (ret < 0)
5922                 goto out;
5923         clone_src_i_size = info.size;
5924 
5925         /*
5926          * We can't send a clone operation for the entire range if we find
5927          * extent items in the respective range in the source file that
5928          * refer to different extents or if we find holes.
5929          * So check for that and do a mix of clone and regular write/copy
5930          * operations if needed.
5931          *
5932          * Example:
5933          *
5934          * mkfs.btrfs -f /dev/sda
5935          * mount /dev/sda /mnt
5936          * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5937          * cp --reflink=always /mnt/foo /mnt/bar
5938          * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5939          * btrfs subvolume snapshot -r /mnt /mnt/snap
5940          *
5941          * If when we send the snapshot and we are processing file bar (which
5942          * has a higher inode number than foo) we blindly send a clone operation
5943          * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5944          * a file bar that matches the content of file foo - iow, doesn't match
5945          * the content from bar in the original filesystem.
5946          */
5947         key.objectid = clone_root->ino;
5948         key.type = BTRFS_EXTENT_DATA_KEY;
5949         key.offset = clone_root->offset;
5950         ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5951         if (ret < 0)
5952                 goto out;
5953         if (ret > 0 && path->slots[0] > 0) {
5954                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5955                 if (key.objectid == clone_root->ino &&
5956                     key.type == BTRFS_EXTENT_DATA_KEY)
5957                         path->slots[0]--;
5958         }
5959 
5960         while (true) {
5961                 struct extent_buffer *leaf = path->nodes[0];
5962                 int slot = path->slots[0];
5963                 struct btrfs_file_extent_item *ei;
5964                 u8 type;
5965                 u64 ext_len;
5966                 u64 clone_len;
5967                 u64 clone_data_offset;
5968                 bool crossed_src_i_size = false;
5969 
5970                 if (slot >= btrfs_header_nritems(leaf)) {
5971                         ret = btrfs_next_leaf(clone_root->root, path);
5972                         if (ret < 0)
5973                                 goto out;
5974                         else if (ret > 0)
5975                                 break;
5976                         continue;
5977                 }
5978 
5979                 btrfs_item_key_to_cpu(leaf, &key, slot);
5980 
5981                 /*
5982                  * We might have an implicit trailing hole (NO_HOLES feature
5983                  * enabled). We deal with it after leaving this loop.
5984                  */
5985                 if (key.objectid != clone_root->ino ||
5986                     key.type != BTRFS_EXTENT_DATA_KEY)
5987                         break;
5988 
5989                 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5990                 type = btrfs_file_extent_type(leaf, ei);
5991                 if (type == BTRFS_FILE_EXTENT_INLINE) {
5992                         ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5993                         ext_len = PAGE_ALIGN(ext_len);
5994                 } else {
5995                         ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5996                 }
5997 
5998                 if (key.offset + ext_len <= clone_root->offset)
5999                         goto next;
6000 
6001                 if (key.offset > clone_root->offset) {
6002                         /* Implicit hole, NO_HOLES feature enabled. */
6003                         u64 hole_len = key.offset - clone_root->offset;
6004 
6005                         if (hole_len > len)
6006                                 hole_len = len;
6007                         ret = send_extent_data(sctx, dst_path, offset,
6008                                                hole_len);
6009                         if (ret < 0)
6010                                 goto out;
6011 
6012                         len -= hole_len;
6013                         if (len == 0)
6014                                 break;
6015                         offset += hole_len;
6016                         clone_root->offset += hole_len;
6017                         data_offset += hole_len;
6018                 }
6019 
6020                 if (key.offset >= clone_root->offset + len)
6021                         break;
6022 
6023                 if (key.offset >= clone_src_i_size)
6024                         break;
6025 
6026                 if (key.offset + ext_len > clone_src_i_size) {
6027                         ext_len = clone_src_i_size - key.offset;
6028                         crossed_src_i_size = true;
6029                 }
6030 
6031                 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6032                 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6033                         clone_root->offset = key.offset;
6034                         if (clone_data_offset < data_offset &&
6035                                 clone_data_offset + ext_len > data_offset) {
6036                                 u64 extent_offset;
6037 
6038                                 extent_offset = data_offset - clone_data_offset;
6039                                 ext_len -= extent_offset;
6040                                 clone_data_offset += extent_offset;
6041                                 clone_root->offset += extent_offset;
6042                         }
6043                 }
6044 
6045                 clone_len = min_t(u64, ext_len, len);
6046 
6047                 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6048                     clone_data_offset == data_offset) {
6049                         const u64 src_end = clone_root->offset + clone_len;
6050                         const u64 sectorsize = SZ_64K;
6051 
6052                         /*
6053                          * We can't clone the last block, when its size is not
6054                          * sector size aligned, into the middle of a file. If we
6055                          * do so, the receiver will get a failure (-EINVAL) when
6056                          * trying to clone or will silently corrupt the data in
6057                          * the destination file if it's on a kernel without the
6058                          * fix introduced by commit ac765f83f1397646
6059                          * ("Btrfs: fix data corruption due to cloning of eof
6060                          * block).
6061                          *
6062                          * So issue a clone of the aligned down range plus a
6063                          * regular write for the eof block, if we hit that case.
6064                          *
6065                          * Also, we use the maximum possible sector size, 64K,
6066                          * because we don't know what's the sector size of the
6067                          * filesystem that receives the stream, so we have to
6068                          * assume the largest possible sector size.
6069                          */
6070                         if (src_end == clone_src_i_size &&
6071                             !IS_ALIGNED(src_end, sectorsize) &&
6072                             offset + clone_len < sctx->cur_inode_size) {
6073                                 u64 slen;
6074 
6075                                 slen = ALIGN_DOWN(src_end - clone_root->offset,
6076                                                   sectorsize);
6077                                 if (slen > 0) {
6078                                         ret = send_clone(sctx, offset, slen,
6079                                                          clone_root);
6080                                         if (ret < 0)
6081                                                 goto out;
6082                                 }
6083                                 ret = send_extent_data(sctx, dst_path,
6084                                                        offset + slen,
6085                                                        clone_len - slen);
6086                         } else {
6087                                 ret = send_clone(sctx, offset, clone_len,
6088                                                  clone_root);
6089                         }
6090                 } else if (crossed_src_i_size && clone_len < len) {
6091                         /*
6092                          * If we are at i_size of the clone source inode and we
6093                          * can not clone from it, terminate the loop. This is
6094                          * to avoid sending two write operations, one with a
6095                          * length matching clone_len and the final one after
6096                          * this loop with a length of len - clone_len.
6097                          *
6098                          * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6099                          * was passed to the send ioctl), this helps avoid
6100                          * sending an encoded write for an offset that is not
6101                          * sector size aligned, in case the i_size of the source
6102                          * inode is not sector size aligned. That will make the
6103                          * receiver fallback to decompression of the data and
6104                          * writing it using regular buffered IO, therefore while
6105                          * not incorrect, it's not optimal due decompression and
6106                          * possible re-compression at the receiver.
6107                          */
6108                         break;
6109                 } else {
6110                         ret = send_extent_data(sctx, dst_path, offset,
6111                                                clone_len);
6112                 }
6113 
6114                 if (ret < 0)
6115                         goto out;
6116 
6117                 len -= clone_len;
6118                 if (len == 0)
6119                         break;
6120                 offset += clone_len;
6121                 clone_root->offset += clone_len;
6122 
6123                 /*
6124                  * If we are cloning from the file we are currently processing,
6125                  * and using the send root as the clone root, we must stop once
6126                  * the current clone offset reaches the current eof of the file
6127                  * at the receiver, otherwise we would issue an invalid clone
6128                  * operation (source range going beyond eof) and cause the
6129                  * receiver to fail. So if we reach the current eof, bail out
6130                  * and fallback to a regular write.
6131                  */
6132                 if (clone_root->root == sctx->send_root &&
6133                     clone_root->ino == sctx->cur_ino &&
6134                     clone_root->offset >= sctx->cur_inode_next_write_offset)
6135                         break;
6136 
6137                 data_offset += clone_len;
6138 next:
6139                 path->slots[0]++;
6140         }
6141 
6142         if (len > 0)
6143                 ret = send_extent_data(sctx, dst_path, offset, len);
6144         else
6145                 ret = 0;
6146 out:
6147         btrfs_free_path(path);
6148         return ret;
6149 }
6150 
6151 static int send_write_or_clone(struct send_ctx *sctx,
6152                                struct btrfs_path *path,
6153                                struct btrfs_key *key,
6154                                struct clone_root *clone_root)
6155 {
6156         int ret = 0;
6157         u64 offset = key->offset;
6158         u64 end;
6159         u64 bs = sctx->send_root->fs_info->sectorsize;
6160 
6161         end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6162         if (offset >= end)
6163                 return 0;
6164 
6165         if (clone_root && IS_ALIGNED(end, bs)) {
6166                 struct btrfs_file_extent_item *ei;
6167                 u64 disk_byte;
6168                 u64 data_offset;
6169 
6170                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6171                                     struct btrfs_file_extent_item);
6172                 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6173                 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6174                 ret = clone_range(sctx, path, clone_root, disk_byte,
6175                                   data_offset, offset, end - offset);
6176         } else {
6177                 ret = send_extent_data(sctx, path, offset, end - offset);
6178         }
6179         sctx->cur_inode_next_write_offset = end;
6180         return ret;
6181 }
6182 
6183 static int is_extent_unchanged(struct send_ctx *sctx,
6184                                struct btrfs_path *left_path,
6185                                struct btrfs_key *ekey)
6186 {
6187         int ret = 0;
6188         struct btrfs_key key;
6189         struct btrfs_path *path = NULL;
6190         struct extent_buffer *eb;
6191         int slot;
6192         struct btrfs_key found_key;
6193         struct btrfs_file_extent_item *ei;
6194         u64 left_disknr;
6195         u64 right_disknr;
6196         u64 left_offset;
6197         u64 right_offset;
6198         u64 left_offset_fixed;
6199         u64 left_len;
6200         u64 right_len;
6201         u64 left_gen;
6202         u64 right_gen;
6203         u8 left_type;
6204         u8 right_type;
6205 
6206         path = alloc_path_for_send();
6207         if (!path)
6208                 return -ENOMEM;
6209 
6210         eb = left_path->nodes[0];
6211         slot = left_path->slots[0];
6212         ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6213         left_type = btrfs_file_extent_type(eb, ei);
6214 
6215         if (left_type != BTRFS_FILE_EXTENT_REG) {
6216                 ret = 0;
6217                 goto out;
6218         }
6219         left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6220         left_len = btrfs_file_extent_num_bytes(eb, ei);
6221         left_offset = btrfs_file_extent_offset(eb, ei);
6222         left_gen = btrfs_file_extent_generation(eb, ei);
6223 
6224         /*
6225          * Following comments will refer to these graphics. L is the left
6226          * extents which we are checking at the moment. 1-8 are the right
6227          * extents that we iterate.
6228          *
6229          *       |-----L-----|
6230          * |-1-|-2a-|-3-|-4-|-5-|-6-|
6231          *
6232          *       |-----L-----|
6233          * |--1--|-2b-|...(same as above)
6234          *
6235          * Alternative situation. Happens on files where extents got split.
6236          *       |-----L-----|
6237          * |-----------7-----------|-6-|
6238          *
6239          * Alternative situation. Happens on files which got larger.
6240          *       |-----L-----|
6241          * |-8-|
6242          * Nothing follows after 8.
6243          */
6244 
6245         key.objectid = ekey->objectid;
6246         key.type = BTRFS_EXTENT_DATA_KEY;
6247         key.offset = ekey->offset;
6248         ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6249         if (ret < 0)
6250                 goto out;
6251         if (ret) {
6252                 ret = 0;
6253                 goto out;
6254         }
6255 
6256         /*
6257          * Handle special case where the right side has no extents at all.
6258          */
6259         eb = path->nodes[0];
6260         slot = path->slots[0];
6261         btrfs_item_key_to_cpu(eb, &found_key, slot);
6262         if (found_key.objectid != key.objectid ||
6263             found_key.type != key.type) {
6264                 /* If we're a hole then just pretend nothing changed */
6265                 ret = (left_disknr) ? 0 : 1;
6266                 goto out;
6267         }
6268 
6269         /*
6270          * We're now on 2a, 2b or 7.
6271          */
6272         key = found_key;
6273         while (key.offset < ekey->offset + left_len) {
6274                 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6275                 right_type = btrfs_file_extent_type(eb, ei);
6276                 if (right_type != BTRFS_FILE_EXTENT_REG &&
6277                     right_type != BTRFS_FILE_EXTENT_INLINE) {
6278                         ret = 0;
6279                         goto out;
6280                 }
6281 
6282                 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6283                         right_len = btrfs_file_extent_ram_bytes(eb, ei);
6284                         right_len = PAGE_ALIGN(right_len);
6285                 } else {
6286                         right_len = btrfs_file_extent_num_bytes(eb, ei);
6287                 }
6288 
6289                 /*
6290                  * Are we at extent 8? If yes, we know the extent is changed.
6291                  * This may only happen on the first iteration.
6292                  */
6293                 if (found_key.offset + right_len <= ekey->offset) {
6294                         /* If we're a hole just pretend nothing changed */
6295                         ret = (left_disknr) ? 0 : 1;
6296                         goto out;
6297                 }
6298 
6299                 /*
6300                  * We just wanted to see if when we have an inline extent, what
6301                  * follows it is a regular extent (wanted to check the above
6302                  * condition for inline extents too). This should normally not
6303                  * happen but it's possible for example when we have an inline
6304                  * compressed extent representing data with a size matching
6305                  * the page size (currently the same as sector size).
6306                  */
6307                 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6308                         ret = 0;
6309                         goto out;
6310                 }
6311 
6312                 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6313                 right_offset = btrfs_file_extent_offset(eb, ei);
6314                 right_gen = btrfs_file_extent_generation(eb, ei);
6315 
6316                 left_offset_fixed = left_offset;
6317                 if (key.offset < ekey->offset) {
6318                         /* Fix the right offset for 2a and 7. */
6319                         right_offset += ekey->offset - key.offset;
6320                 } else {
6321                         /* Fix the left offset for all behind 2a and 2b */
6322                         left_offset_fixed += key.offset - ekey->offset;
6323                 }
6324 
6325                 /*
6326                  * Check if we have the same extent.
6327                  */
6328                 if (left_disknr != right_disknr ||
6329                     left_offset_fixed != right_offset ||
6330                     left_gen != right_gen) {
6331                         ret = 0;
6332                         goto out;
6333                 }
6334 
6335                 /*
6336                  * Go to the next extent.
6337                  */
6338                 ret = btrfs_next_item(sctx->parent_root, path);
6339                 if (ret < 0)
6340                         goto out;
6341                 if (!ret) {
6342                         eb = path->nodes[0];
6343                         slot = path->slots[0];
6344                         btrfs_item_key_to_cpu(eb, &found_key, slot);
6345                 }
6346                 if (ret || found_key.objectid != key.objectid ||
6347                     found_key.type != key.type) {
6348                         key.offset += right_len;
6349                         break;
6350                 }
6351                 if (found_key.offset != key.offset + right_len) {
6352                         ret = 0;
6353                         goto out;
6354                 }
6355                 key = found_key;
6356         }
6357 
6358         /*
6359          * We're now behind the left extent (treat as unchanged) or at the end
6360          * of the right side (treat as changed).
6361          */
6362         if (key.offset >= ekey->offset + left_len)
6363                 ret = 1;
6364         else
6365                 ret = 0;
6366 
6367 
6368 out:
6369         btrfs_free_path(path);
6370         return ret;
6371 }
6372 
6373 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6374 {
6375         struct btrfs_path *path;
6376         struct btrfs_root *root = sctx->send_root;
6377         struct btrfs_key key;
6378         int ret;
6379 
6380         path = alloc_path_for_send();
6381         if (!path)
6382                 return -ENOMEM;
6383 
6384         sctx->cur_inode_last_extent = 0;
6385 
6386         key.objectid = sctx->cur_ino;
6387         key.type = BTRFS_EXTENT_DATA_KEY;
6388         key.offset = offset;
6389         ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6390         if (ret < 0)
6391                 goto out;
6392         ret = 0;
6393         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6394         if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6395                 goto out;
6396 
6397         sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6398 out:
6399         btrfs_free_path(path);
6400         return ret;
6401 }
6402 
6403 static int range_is_hole_in_parent(struct send_ctx *sctx,
6404                                    const u64 start,
6405                                    const u64 end)
6406 {
6407         struct btrfs_path *path;
6408         struct btrfs_key key;
6409         struct btrfs_root *root = sctx->parent_root;
6410         u64 search_start = start;
6411         int ret;
6412 
6413         path = alloc_path_for_send();
6414         if (!path)
6415                 return -ENOMEM;
6416 
6417         key.objectid = sctx->cur_ino;
6418         key.type = BTRFS_EXTENT_DATA_KEY;
6419         key.offset = search_start;
6420         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6421         if (ret < 0)
6422                 goto out;
6423         if (ret > 0 && path->slots[0] > 0)
6424                 path->slots[0]--;
6425 
6426         while (search_start < end) {
6427                 struct extent_buffer *leaf = path->nodes[0];
6428                 int slot = path->slots[0];
6429                 struct btrfs_file_extent_item *fi;
6430                 u64 extent_end;
6431 
6432                 if (slot >= btrfs_header_nritems(leaf)) {
6433                         ret = btrfs_next_leaf(root, path);
6434                         if (ret < 0)
6435                                 goto out;
6436                         else if (ret > 0)
6437                                 break;
6438                         continue;
6439                 }
6440 
6441                 btrfs_item_key_to_cpu(leaf, &key, slot);
6442                 if (key.objectid < sctx->cur_ino ||
6443                     key.type < BTRFS_EXTENT_DATA_KEY)
6444                         goto next;
6445                 if (key.objectid > sctx->cur_ino ||
6446                     key.type > BTRFS_EXTENT_DATA_KEY ||
6447                     key.offset >= end)
6448                         break;
6449 
6450                 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6451                 extent_end = btrfs_file_extent_end(path);
6452                 if (extent_end <= start)
6453                         goto next;
6454                 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6455                         search_start = extent_end;
6456                         goto next;
6457                 }
6458                 ret = 0;
6459                 goto out;
6460 next:
6461                 path->slots[0]++;
6462         }
6463         ret = 1;
6464 out:
6465         btrfs_free_path(path);
6466         return ret;
6467 }
6468 
6469 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6470                            struct btrfs_key *key)
6471 {
6472         int ret = 0;
6473 
6474         if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6475                 return 0;
6476 
6477         /*
6478          * Get last extent's end offset (exclusive) if we haven't determined it
6479          * yet (we're processing the first file extent item that is new), or if
6480          * we're at the first slot of a leaf and the last extent's end is less
6481          * than the current extent's offset, because we might have skipped
6482          * entire leaves that contained only file extent items for our current
6483          * inode. These leaves have a generation number smaller (older) than the
6484          * one in the current leaf and the leaf our last extent came from, and
6485          * are located between these 2 leaves.
6486          */
6487         if ((sctx->cur_inode_last_extent == (u64)-1) ||
6488             (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6489                 ret = get_last_extent(sctx, key->offset - 1);
6490                 if (ret)
6491                         return ret;
6492         }
6493 
6494         if (sctx->cur_inode_last_extent < key->offset) {
6495                 ret = range_is_hole_in_parent(sctx,
6496                                               sctx->cur_inode_last_extent,
6497                                               key->offset);
6498                 if (ret < 0)
6499                         return ret;
6500                 else if (ret == 0)
6501                         ret = send_hole(sctx, key->offset);
6502                 else
6503                         ret = 0;
6504         }
6505         sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6506         return ret;
6507 }
6508 
6509 static int process_extent(struct send_ctx *sctx,
6510                           struct btrfs_path *path,
6511                           struct btrfs_key *key)
6512 {
6513         struct clone_root *found_clone = NULL;
6514         int ret = 0;
6515 
6516         if (S_ISLNK(sctx->cur_inode_mode))
6517                 return 0;
6518 
6519         if (sctx->parent_root && !sctx->cur_inode_new) {
6520                 ret = is_extent_unchanged(sctx, path, key);
6521                 if (ret < 0)
6522                         goto out;
6523                 if (ret) {
6524                         ret = 0;
6525                         goto out_hole;
6526                 }
6527         } else {
6528                 struct btrfs_file_extent_item *ei;
6529                 u8 type;
6530 
6531                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6532                                     struct btrfs_file_extent_item);
6533                 type = btrfs_file_extent_type(path->nodes[0], ei);
6534                 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6535                     type == BTRFS_FILE_EXTENT_REG) {
6536                         /*
6537                          * The send spec does not have a prealloc command yet,
6538                          * so just leave a hole for prealloc'ed extents until
6539                          * we have enough commands queued up to justify rev'ing
6540                          * the send spec.
6541                          */
6542                         if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6543                                 ret = 0;
6544                                 goto out;
6545                         }
6546 
6547                         /* Have a hole, just skip it. */
6548                         if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6549                                 ret = 0;
6550                                 goto out;
6551                         }
6552                 }
6553         }
6554 
6555         ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6556                         sctx->cur_inode_size, &found_clone);
6557         if (ret != -ENOENT && ret < 0)
6558                 goto out;
6559 
6560         ret = send_write_or_clone(sctx, path, key, found_clone);
6561         if (ret)
6562                 goto out;
6563 out_hole:
6564         ret = maybe_send_hole(sctx, path, key);
6565 out:
6566         return ret;
6567 }
6568 
6569 static int process_all_extents(struct send_ctx *sctx)
6570 {
6571         int ret = 0;
6572         int iter_ret = 0;
6573         struct btrfs_root *root;
6574         struct btrfs_path *path;
6575         struct btrfs_key key;
6576         struct btrfs_key found_key;
6577 
6578         root = sctx->send_root;
6579         path = alloc_path_for_send();
6580         if (!path)
6581                 return -ENOMEM;
6582 
6583         key.objectid = sctx->cmp_key->objectid;
6584         key.type = BTRFS_EXTENT_DATA_KEY;
6585         key.offset = 0;
6586         btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6587                 if (found_key.objectid != key.objectid ||
6588                     found_key.type != key.type) {
6589                         ret = 0;
6590                         break;
6591                 }
6592 
6593                 ret = process_extent(sctx, path, &found_key);
6594                 if (ret < 0)
6595                         break;
6596         }
6597         /* Catch error found during iteration */
6598         if (iter_ret < 0)
6599                 ret = iter_ret;
6600 
6601         btrfs_free_path(path);
6602         return ret;
6603 }
6604 
6605 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6606                                            int *pending_move,
6607                                            int *refs_processed)
6608 {
6609         int ret = 0;
6610 
6611         if (sctx->cur_ino == 0)
6612                 goto out;
6613         if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6614             sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6615                 goto out;
6616         if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6617                 goto out;
6618 
6619         ret = process_recorded_refs(sctx, pending_move);
6620         if (ret < 0)
6621                 goto out;
6622 
6623         *refs_processed = 1;
6624 out:
6625         return ret;
6626 }
6627 
6628 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6629 {
6630         int ret = 0;
6631         struct btrfs_inode_info info;
6632         u64 left_mode;
6633         u64 left_uid;
6634         u64 left_gid;
6635         u64 left_fileattr;
6636         u64 right_mode;
6637         u64 right_uid;
6638         u64 right_gid;
6639         u64 right_fileattr;
6640         int need_chmod = 0;
6641         int need_chown = 0;
6642         bool need_fileattr = false;
6643         int need_truncate = 1;
6644         int pending_move = 0;
6645         int refs_processed = 0;
6646 
6647         if (sctx->ignore_cur_inode)
6648                 return 0;
6649 
6650         ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6651                                               &refs_processed);
6652         if (ret < 0)
6653                 goto out;
6654 
6655         /*
6656          * We have processed the refs and thus need to advance send_progress.
6657          * Now, calls to get_cur_xxx will take the updated refs of the current
6658          * inode into account.
6659          *
6660          * On the other hand, if our current inode is a directory and couldn't
6661          * be moved/renamed because its parent was renamed/moved too and it has
6662          * a higher inode number, we can only move/rename our current inode
6663          * after we moved/renamed its parent. Therefore in this case operate on
6664          * the old path (pre move/rename) of our current inode, and the
6665          * move/rename will be performed later.
6666          */
6667         if (refs_processed && !pending_move)
6668                 sctx->send_progress = sctx->cur_ino + 1;
6669 
6670         if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6671                 goto out;
6672         if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6673                 goto out;
6674         ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6675         if (ret < 0)
6676                 goto out;
6677         left_mode = info.mode;
6678         left_uid = info.uid;
6679         left_gid = info.gid;
6680         left_fileattr = info.fileattr;
6681 
6682         if (!sctx->parent_root || sctx->cur_inode_new) {
6683                 need_chown = 1;
6684                 if (!S_ISLNK(sctx->cur_inode_mode))
6685                         need_chmod = 1;
6686                 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6687                         need_truncate = 0;
6688         } else {
6689                 u64 old_size;
6690 
6691                 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6692                 if (ret < 0)
6693                         goto out;
6694                 old_size = info.size;
6695                 right_mode = info.mode;
6696                 right_uid = info.uid;
6697                 right_gid = info.gid;
6698                 right_fileattr = info.fileattr;
6699 
6700                 if (left_uid != right_uid || left_gid != right_gid)
6701                         need_chown = 1;
6702                 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6703                         need_chmod = 1;
6704                 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6705                         need_fileattr = true;
6706                 if ((old_size == sctx->cur_inode_size) ||
6707                     (sctx->cur_inode_size > old_size &&
6708                      sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6709                         need_truncate = 0;
6710         }
6711 
6712         if (S_ISREG(sctx->cur_inode_mode)) {
6713                 if (need_send_hole(sctx)) {
6714                         if (sctx->cur_inode_last_extent == (u64)-1 ||
6715                             sctx->cur_inode_last_extent <
6716                             sctx->cur_inode_size) {
6717                                 ret = get_last_extent(sctx, (u64)-1);
6718                                 if (ret)
6719                                         goto out;
6720                         }
6721                         if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6722                                 ret = range_is_hole_in_parent(sctx,
6723                                                       sctx->cur_inode_last_extent,
6724                                                       sctx->cur_inode_size);
6725                                 if (ret < 0) {
6726                                         goto out;
6727                                 } else if (ret == 0) {
6728                                         ret = send_hole(sctx, sctx->cur_inode_size);
6729                                         if (ret < 0)
6730                                                 goto out;
6731                                 } else {
6732                                         /* Range is already a hole, skip. */
6733                                         ret = 0;
6734                                 }
6735                         }
6736                 }
6737                 if (need_truncate) {
6738                         ret = send_truncate(sctx, sctx->cur_ino,
6739                                             sctx->cur_inode_gen,
6740                                             sctx->cur_inode_size);
6741                         if (ret < 0)
6742                                 goto out;
6743                 }
6744         }
6745 
6746         if (need_chown) {
6747                 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6748                                 left_uid, left_gid);
6749                 if (ret < 0)
6750                         goto out;
6751         }
6752         if (need_chmod) {
6753                 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6754                                 left_mode);
6755                 if (ret < 0)
6756                         goto out;
6757         }
6758         if (need_fileattr) {
6759                 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6760                                     left_fileattr);
6761                 if (ret < 0)
6762                         goto out;
6763         }
6764 
6765         if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6766             && sctx->cur_inode_needs_verity) {
6767                 ret = process_verity(sctx);
6768                 if (ret < 0)
6769                         goto out;
6770         }
6771 
6772         ret = send_capabilities(sctx);
6773         if (ret < 0)
6774                 goto out;
6775 
6776         /*
6777          * If other directory inodes depended on our current directory
6778          * inode's move/rename, now do their move/rename operations.
6779          */
6780         if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6781                 ret = apply_children_dir_moves(sctx);
6782                 if (ret)
6783                         goto out;
6784                 /*
6785                  * Need to send that every time, no matter if it actually
6786                  * changed between the two trees as we have done changes to
6787                  * the inode before. If our inode is a directory and it's
6788                  * waiting to be moved/renamed, we will send its utimes when
6789                  * it's moved/renamed, therefore we don't need to do it here.
6790                  */
6791                 sctx->send_progress = sctx->cur_ino + 1;
6792 
6793                 /*
6794                  * If the current inode is a non-empty directory, delay issuing
6795                  * the utimes command for it, as it's very likely we have inodes
6796                  * with an higher number inside it. We want to issue the utimes
6797                  * command only after adding all dentries to it.
6798                  */
6799                 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6800                         ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6801                 else
6802                         ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6803 
6804                 if (ret < 0)
6805                         goto out;
6806         }
6807 
6808 out:
6809         if (!ret)
6810                 ret = trim_dir_utimes_cache(sctx);
6811 
6812         return ret;
6813 }
6814 
6815 static void close_current_inode(struct send_ctx *sctx)
6816 {
6817         u64 i_size;
6818 
6819         if (sctx->cur_inode == NULL)
6820                 return;
6821 
6822         i_size = i_size_read(sctx->cur_inode);
6823 
6824         /*
6825          * If we are doing an incremental send, we may have extents between the
6826          * last processed extent and the i_size that have not been processed
6827          * because they haven't changed but we may have read some of their pages
6828          * through readahead, see the comments at send_extent_data().
6829          */
6830         if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6831                 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6832                                            sctx->page_cache_clear_start,
6833                                            round_up(i_size, PAGE_SIZE) - 1);
6834 
6835         iput(sctx->cur_inode);
6836         sctx->cur_inode = NULL;
6837 }
6838 
6839 static int changed_inode(struct send_ctx *sctx,
6840                          enum btrfs_compare_tree_result result)
6841 {
6842         int ret = 0;
6843         struct btrfs_key *key = sctx->cmp_key;
6844         struct btrfs_inode_item *left_ii = NULL;
6845         struct btrfs_inode_item *right_ii = NULL;
6846         u64 left_gen = 0;
6847         u64 right_gen = 0;
6848 
6849         close_current_inode(sctx);
6850 
6851         sctx->cur_ino = key->objectid;
6852         sctx->cur_inode_new_gen = false;
6853         sctx->cur_inode_last_extent = (u64)-1;
6854         sctx->cur_inode_next_write_offset = 0;
6855         sctx->ignore_cur_inode = false;
6856 
6857         /*
6858          * Set send_progress to current inode. This will tell all get_cur_xxx
6859          * functions that the current inode's refs are not updated yet. Later,
6860          * when process_recorded_refs is finished, it is set to cur_ino + 1.
6861          */
6862         sctx->send_progress = sctx->cur_ino;
6863 
6864         if (result == BTRFS_COMPARE_TREE_NEW ||
6865             result == BTRFS_COMPARE_TREE_CHANGED) {
6866                 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6867                                 sctx->left_path->slots[0],
6868                                 struct btrfs_inode_item);
6869                 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6870                                 left_ii);
6871         } else {
6872                 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6873                                 sctx->right_path->slots[0],
6874                                 struct btrfs_inode_item);
6875                 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6876                                 right_ii);
6877         }
6878         if (result == BTRFS_COMPARE_TREE_CHANGED) {
6879                 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6880                                 sctx->right_path->slots[0],
6881                                 struct btrfs_inode_item);
6882 
6883                 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6884                                 right_ii);
6885 
6886                 /*
6887                  * The cur_ino = root dir case is special here. We can't treat
6888                  * the inode as deleted+reused because it would generate a
6889                  * stream that tries to delete/mkdir the root dir.
6890                  */
6891                 if (left_gen != right_gen &&
6892                     sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6893                         sctx->cur_inode_new_gen = true;
6894         }
6895 
6896         /*
6897          * Normally we do not find inodes with a link count of zero (orphans)
6898          * because the most common case is to create a snapshot and use it
6899          * for a send operation. However other less common use cases involve
6900          * using a subvolume and send it after turning it to RO mode just
6901          * after deleting all hard links of a file while holding an open
6902          * file descriptor against it or turning a RO snapshot into RW mode,
6903          * keep an open file descriptor against a file, delete it and then
6904          * turn the snapshot back to RO mode before using it for a send
6905          * operation. The former is what the receiver operation does.
6906          * Therefore, if we want to send these snapshots soon after they're
6907          * received, we need to handle orphan inodes as well. Moreover, orphans
6908          * can appear not only in the send snapshot but also in the parent
6909          * snapshot. Here are several cases:
6910          *
6911          * Case 1: BTRFS_COMPARE_TREE_NEW
6912          *       |  send snapshot  | action
6913          * --------------------------------
6914          * nlink |        0        | ignore
6915          *
6916          * Case 2: BTRFS_COMPARE_TREE_DELETED
6917          *       | parent snapshot | action
6918          * ----------------------------------
6919          * nlink |        0        | as usual
6920          * Note: No unlinks will be sent because there're no paths for it.
6921          *
6922          * Case 3: BTRFS_COMPARE_TREE_CHANGED
6923          *           |       | parent snapshot | send snapshot | action
6924          * -----------------------------------------------------------------------
6925          * subcase 1 | nlink |        0        |       0       | ignore
6926          * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6927          * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6928          *
6929          */
6930         if (result == BTRFS_COMPARE_TREE_NEW) {
6931                 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6932                         sctx->ignore_cur_inode = true;
6933                         goto out;
6934                 }
6935                 sctx->cur_inode_gen = left_gen;
6936                 sctx->cur_inode_new = true;
6937                 sctx->cur_inode_deleted = false;
6938                 sctx->cur_inode_size = btrfs_inode_size(
6939                                 sctx->left_path->nodes[0], left_ii);
6940                 sctx->cur_inode_mode = btrfs_inode_mode(
6941                                 sctx->left_path->nodes[0], left_ii);
6942                 sctx->cur_inode_rdev = btrfs_inode_rdev(
6943                                 sctx->left_path->nodes[0], left_ii);
6944                 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6945                         ret = send_create_inode_if_needed(sctx);
6946         } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6947                 sctx->cur_inode_gen = right_gen;
6948                 sctx->cur_inode_new = false;
6949                 sctx->cur_inode_deleted = true;
6950                 sctx->cur_inode_size = btrfs_inode_size(
6951                                 sctx->right_path->nodes[0], right_ii);
6952                 sctx->cur_inode_mode = btrfs_inode_mode(
6953                                 sctx->right_path->nodes[0], right_ii);
6954         } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6955                 u32 new_nlinks, old_nlinks;
6956 
6957                 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6958                 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6959                 if (new_nlinks == 0 && old_nlinks == 0) {
6960                         sctx->ignore_cur_inode = true;
6961                         goto out;
6962                 } else if (new_nlinks == 0 || old_nlinks == 0) {
6963                         sctx->cur_inode_new_gen = 1;
6964                 }
6965                 /*
6966                  * We need to do some special handling in case the inode was
6967                  * reported as changed with a changed generation number. This
6968                  * means that the original inode was deleted and new inode
6969                  * reused the same inum. So we have to treat the old inode as
6970                  * deleted and the new one as new.
6971                  */
6972                 if (sctx->cur_inode_new_gen) {
6973                         /*
6974                          * First, process the inode as if it was deleted.
6975                          */
6976                         if (old_nlinks > 0) {
6977                                 sctx->cur_inode_gen = right_gen;
6978                                 sctx->cur_inode_new = false;
6979                                 sctx->cur_inode_deleted = true;
6980                                 sctx->cur_inode_size = btrfs_inode_size(
6981                                                 sctx->right_path->nodes[0], right_ii);
6982                                 sctx->cur_inode_mode = btrfs_inode_mode(
6983                                                 sctx->right_path->nodes[0], right_ii);
6984                                 ret = process_all_refs(sctx,
6985                                                 BTRFS_COMPARE_TREE_DELETED);
6986                                 if (ret < 0)
6987                                         goto out;
6988                         }
6989 
6990                         /*
6991                          * Now process the inode as if it was new.
6992                          */
6993                         if (new_nlinks > 0) {
6994                                 sctx->cur_inode_gen = left_gen;
6995                                 sctx->cur_inode_new = true;
6996                                 sctx->cur_inode_deleted = false;
6997                                 sctx->cur_inode_size = btrfs_inode_size(
6998                                                 sctx->left_path->nodes[0],
6999                                                 left_ii);
7000                                 sctx->cur_inode_mode = btrfs_inode_mode(
7001                                                 sctx->left_path->nodes[0],
7002                                                 left_ii);
7003                                 sctx->cur_inode_rdev = btrfs_inode_rdev(
7004                                                 sctx->left_path->nodes[0],
7005                                                 left_ii);
7006                                 ret = send_create_inode_if_needed(sctx);
7007                                 if (ret < 0)
7008                                         goto out;
7009 
7010                                 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7011                                 if (ret < 0)
7012                                         goto out;
7013                                 /*
7014                                  * Advance send_progress now as we did not get
7015                                  * into process_recorded_refs_if_needed in the
7016                                  * new_gen case.
7017                                  */
7018                                 sctx->send_progress = sctx->cur_ino + 1;
7019 
7020                                 /*
7021                                  * Now process all extents and xattrs of the
7022                                  * inode as if they were all new.
7023                                  */
7024                                 ret = process_all_extents(sctx);
7025                                 if (ret < 0)
7026                                         goto out;
7027                                 ret = process_all_new_xattrs(sctx);
7028                                 if (ret < 0)
7029                                         goto out;
7030                         }
7031                 } else {
7032                         sctx->cur_inode_gen = left_gen;
7033                         sctx->cur_inode_new = false;
7034                         sctx->cur_inode_new_gen = false;
7035                         sctx->cur_inode_deleted = false;
7036                         sctx->cur_inode_size = btrfs_inode_size(
7037                                         sctx->left_path->nodes[0], left_ii);
7038                         sctx->cur_inode_mode = btrfs_inode_mode(
7039                                         sctx->left_path->nodes[0], left_ii);
7040                 }
7041         }
7042 
7043 out:
7044         return ret;
7045 }
7046 
7047 /*
7048  * We have to process new refs before deleted refs, but compare_trees gives us
7049  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7050  * first and later process them in process_recorded_refs.
7051  * For the cur_inode_new_gen case, we skip recording completely because
7052  * changed_inode did already initiate processing of refs. The reason for this is
7053  * that in this case, compare_tree actually compares the refs of 2 different
7054  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7055  * refs of the right tree as deleted and all refs of the left tree as new.
7056  */
7057 static int changed_ref(struct send_ctx *sctx,
7058                        enum btrfs_compare_tree_result result)
7059 {
7060         int ret = 0;
7061 
7062         if (sctx->cur_ino != sctx->cmp_key->objectid) {
7063                 inconsistent_snapshot_error(sctx, result, "reference");
7064                 return -EIO;
7065         }
7066 
7067         if (!sctx->cur_inode_new_gen &&
7068             sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7069                 if (result == BTRFS_COMPARE_TREE_NEW)
7070                         ret = record_new_ref(sctx);
7071                 else if (result == BTRFS_COMPARE_TREE_DELETED)
7072                         ret = record_deleted_ref(sctx);
7073                 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7074                         ret = record_changed_ref(sctx);
7075         }
7076 
7077         return ret;
7078 }
7079 
7080 /*
7081  * Process new/deleted/changed xattrs. We skip processing in the
7082  * cur_inode_new_gen case because changed_inode did already initiate processing
7083  * of xattrs. The reason is the same as in changed_ref
7084  */
7085 static int changed_xattr(struct send_ctx *sctx,
7086                          enum btrfs_compare_tree_result result)
7087 {
7088         int ret = 0;
7089 
7090         if (sctx->cur_ino != sctx->cmp_key->objectid) {
7091                 inconsistent_snapshot_error(sctx, result, "xattr");
7092                 return -EIO;
7093         }
7094 
7095         if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7096                 if (result == BTRFS_COMPARE_TREE_NEW)
7097                         ret = process_new_xattr(sctx);
7098                 else if (result == BTRFS_COMPARE_TREE_DELETED)
7099                         ret = process_deleted_xattr(sctx);
7100                 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7101                         ret = process_changed_xattr(sctx);
7102         }
7103 
7104         return ret;
7105 }
7106 
7107 /*
7108  * Process new/deleted/changed extents. We skip processing in the
7109  * cur_inode_new_gen case because changed_inode did already initiate processing
7110  * of extents. The reason is the same as in changed_ref
7111  */
7112 static int changed_extent(struct send_ctx *sctx,
7113                           enum btrfs_compare_tree_result result)
7114 {
7115         int ret = 0;
7116 
7117         /*
7118          * We have found an extent item that changed without the inode item
7119          * having changed. This can happen either after relocation (where the
7120          * disk_bytenr of an extent item is replaced at
7121          * relocation.c:replace_file_extents()) or after deduplication into a
7122          * file in both the parent and send snapshots (where an extent item can
7123          * get modified or replaced with a new one). Note that deduplication
7124          * updates the inode item, but it only changes the iversion (sequence
7125          * field in the inode item) of the inode, so if a file is deduplicated
7126          * the same amount of times in both the parent and send snapshots, its
7127          * iversion becomes the same in both snapshots, whence the inode item is
7128          * the same on both snapshots.
7129          */
7130         if (sctx->cur_ino != sctx->cmp_key->objectid)
7131                 return 0;
7132 
7133         if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7134                 if (result != BTRFS_COMPARE_TREE_DELETED)
7135                         ret = process_extent(sctx, sctx->left_path,
7136                                         sctx->cmp_key);
7137         }
7138 
7139         return ret;
7140 }
7141 
7142 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7143 {
7144         int ret = 0;
7145 
7146         if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7147                 if (result == BTRFS_COMPARE_TREE_NEW)
7148                         sctx->cur_inode_needs_verity = true;
7149         }
7150         return ret;
7151 }
7152 
7153 static int dir_changed(struct send_ctx *sctx, u64 dir)
7154 {
7155         u64 orig_gen, new_gen;
7156         int ret;
7157 
7158         ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7159         if (ret)
7160                 return ret;
7161 
7162         ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7163         if (ret)
7164                 return ret;
7165 
7166         return (orig_gen != new_gen) ? 1 : 0;
7167 }
7168 
7169 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7170                         struct btrfs_key *key)
7171 {
7172         struct btrfs_inode_extref *extref;
7173         struct extent_buffer *leaf;
7174         u64 dirid = 0, last_dirid = 0;
7175         unsigned long ptr;
7176         u32 item_size;
7177         u32 cur_offset = 0;
7178         int ref_name_len;
7179         int ret = 0;
7180 
7181         /* Easy case, just check this one dirid */
7182         if (key->type == BTRFS_INODE_REF_KEY) {
7183                 dirid = key->offset;
7184 
7185                 ret = dir_changed(sctx, dirid);
7186                 goto out;
7187         }
7188 
7189         leaf = path->nodes[0];
7190         item_size = btrfs_item_size(leaf, path->slots[0]);
7191         ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7192         while (cur_offset < item_size) {
7193                 extref = (struct btrfs_inode_extref *)(ptr +
7194                                                        cur_offset);
7195                 dirid = btrfs_inode_extref_parent(leaf, extref);
7196                 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7197                 cur_offset += ref_name_len + sizeof(*extref);
7198                 if (dirid == last_dirid)
7199                         continue;
7200                 ret = dir_changed(sctx, dirid);
7201                 if (ret)
7202                         break;
7203                 last_dirid = dirid;
7204         }
7205 out:
7206         return ret;
7207 }
7208 
7209 /*
7210  * Updates compare related fields in sctx and simply forwards to the actual
7211  * changed_xxx functions.
7212  */
7213 static int changed_cb(struct btrfs_path *left_path,
7214                       struct btrfs_path *right_path,
7215                       struct btrfs_key *key,
7216                       enum btrfs_compare_tree_result result,
7217                       struct send_ctx *sctx)
7218 {
7219         int ret = 0;
7220 
7221         /*
7222          * We can not hold the commit root semaphore here. This is because in
7223          * the case of sending and receiving to the same filesystem, using a
7224          * pipe, could result in a deadlock:
7225          *
7226          * 1) The task running send blocks on the pipe because it's full;
7227          *
7228          * 2) The task running receive, which is the only consumer of the pipe,
7229          *    is waiting for a transaction commit (for example due to a space
7230          *    reservation when doing a write or triggering a transaction commit
7231          *    when creating a subvolume);
7232          *
7233          * 3) The transaction is waiting to write lock the commit root semaphore,
7234          *    but can not acquire it since it's being held at 1).
7235          *
7236          * Down this call chain we write to the pipe through kernel_write().
7237          * The same type of problem can also happen when sending to a file that
7238          * is stored in the same filesystem - when reserving space for a write
7239          * into the file, we can trigger a transaction commit.
7240          *
7241          * Our caller has supplied us with clones of leaves from the send and
7242          * parent roots, so we're safe here from a concurrent relocation and
7243          * further reallocation of metadata extents while we are here. Below we
7244          * also assert that the leaves are clones.
7245          */
7246         lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7247 
7248         /*
7249          * We always have a send root, so left_path is never NULL. We will not
7250          * have a leaf when we have reached the end of the send root but have
7251          * not yet reached the end of the parent root.
7252          */
7253         if (left_path->nodes[0])
7254                 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7255                                 &left_path->nodes[0]->bflags));
7256         /*
7257          * When doing a full send we don't have a parent root, so right_path is
7258          * NULL. When doing an incremental send, we may have reached the end of
7259          * the parent root already, so we don't have a leaf at right_path.
7260          */
7261         if (right_path && right_path->nodes[0])
7262                 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7263                                 &right_path->nodes[0]->bflags));
7264 
7265         if (result == BTRFS_COMPARE_TREE_SAME) {
7266                 if (key->type == BTRFS_INODE_REF_KEY ||
7267                     key->type == BTRFS_INODE_EXTREF_KEY) {
7268                         ret = compare_refs(sctx, left_path, key);
7269                         if (!ret)
7270                                 return 0;
7271                         if (ret < 0)
7272                                 return ret;
7273                 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7274                         return maybe_send_hole(sctx, left_path, key);
7275                 } else {
7276                         return 0;
7277                 }
7278                 result = BTRFS_COMPARE_TREE_CHANGED;
7279                 ret = 0;
7280         }
7281 
7282         sctx->left_path = left_path;
7283         sctx->right_path = right_path;
7284         sctx->cmp_key = key;
7285 
7286         ret = finish_inode_if_needed(sctx, 0);
7287         if (ret < 0)
7288                 goto out;
7289 
7290         /* Ignore non-FS objects */
7291         if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7292             key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7293                 goto out;
7294 
7295         if (key->type == BTRFS_INODE_ITEM_KEY) {
7296                 ret = changed_inode(sctx, result);
7297         } else if (!sctx->ignore_cur_inode) {
7298                 if (key->type == BTRFS_INODE_REF_KEY ||
7299                     key->type == BTRFS_INODE_EXTREF_KEY)
7300                         ret = changed_ref(sctx, result);
7301                 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7302                         ret = changed_xattr(sctx, result);
7303                 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7304                         ret = changed_extent(sctx, result);
7305                 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7306                          key->offset == 0)
7307                         ret = changed_verity(sctx, result);
7308         }
7309 
7310 out:
7311         return ret;
7312 }
7313 
7314 static int search_key_again(const struct send_ctx *sctx,
7315                             struct btrfs_root *root,
7316                             struct btrfs_path *path,
7317                             const struct btrfs_key *key)
7318 {
7319         int ret;
7320 
7321         if (!path->need_commit_sem)
7322                 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7323 
7324         /*
7325          * Roots used for send operations are readonly and no one can add,
7326          * update or remove keys from them, so we should be able to find our
7327          * key again. The only exception is deduplication, which can operate on
7328          * readonly roots and add, update or remove keys to/from them - but at
7329          * the moment we don't allow it to run in parallel with send.
7330          */
7331         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7332         ASSERT(ret <= 0);
7333         if (ret > 0) {
7334                 btrfs_print_tree(path->nodes[path->lowest_level], false);
7335                 btrfs_err(root->fs_info,
7336 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7337                           key->objectid, key->type, key->offset,
7338                           (root == sctx->parent_root ? "parent" : "send"),
7339                           btrfs_root_id(root), path->lowest_level,
7340                           path->slots[path->lowest_level]);
7341                 return -EUCLEAN;
7342         }
7343 
7344         return ret;
7345 }
7346 
7347 static int full_send_tree(struct send_ctx *sctx)
7348 {
7349         int ret;
7350         struct btrfs_root *send_root = sctx->send_root;
7351         struct btrfs_key key;
7352         struct btrfs_fs_info *fs_info = send_root->fs_info;
7353         struct btrfs_path *path;
7354 
7355         path = alloc_path_for_send();
7356         if (!path)
7357                 return -ENOMEM;
7358         path->reada = READA_FORWARD_ALWAYS;
7359 
7360         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7361         key.type = BTRFS_INODE_ITEM_KEY;
7362         key.offset = 0;
7363 
7364         down_read(&fs_info->commit_root_sem);
7365         sctx->last_reloc_trans = fs_info->last_reloc_trans;
7366         up_read(&fs_info->commit_root_sem);
7367 
7368         ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7369         if (ret < 0)
7370                 goto out;
7371         if (ret)
7372                 goto out_finish;
7373 
7374         while (1) {
7375                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7376 
7377                 ret = changed_cb(path, NULL, &key,
7378                                  BTRFS_COMPARE_TREE_NEW, sctx);
7379                 if (ret < 0)
7380                         goto out;
7381 
7382                 down_read(&fs_info->commit_root_sem);
7383                 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7384                         sctx->last_reloc_trans = fs_info->last_reloc_trans;
7385                         up_read(&fs_info->commit_root_sem);
7386                         /*
7387                          * A transaction used for relocating a block group was
7388                          * committed or is about to finish its commit. Release
7389                          * our path (leaf) and restart the search, so that we
7390                          * avoid operating on any file extent items that are
7391                          * stale, with a disk_bytenr that reflects a pre
7392                          * relocation value. This way we avoid as much as
7393                          * possible to fallback to regular writes when checking
7394                          * if we can clone file ranges.
7395                          */
7396                         btrfs_release_path(path);
7397                         ret = search_key_again(sctx, send_root, path, &key);
7398                         if (ret < 0)
7399                                 goto out;
7400                 } else {
7401                         up_read(&fs_info->commit_root_sem);
7402                 }
7403 
7404                 ret = btrfs_next_item(send_root, path);
7405                 if (ret < 0)
7406                         goto out;
7407                 if (ret) {
7408                         ret  = 0;
7409                         break;
7410                 }
7411         }
7412 
7413 out_finish:
7414         ret = finish_inode_if_needed(sctx, 1);
7415 
7416 out:
7417         btrfs_free_path(path);
7418         return ret;
7419 }
7420 
7421 static int replace_node_with_clone(struct btrfs_path *path, int level)
7422 {
7423         struct extent_buffer *clone;
7424 
7425         clone = btrfs_clone_extent_buffer(path->nodes[level]);
7426         if (!clone)
7427                 return -ENOMEM;
7428 
7429         free_extent_buffer(path->nodes[level]);
7430         path->nodes[level] = clone;
7431 
7432         return 0;
7433 }
7434 
7435 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7436 {
7437         struct extent_buffer *eb;
7438         struct extent_buffer *parent = path->nodes[*level];
7439         int slot = path->slots[*level];
7440         const int nritems = btrfs_header_nritems(parent);
7441         u64 reada_max;
7442         u64 reada_done = 0;
7443 
7444         lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7445         ASSERT(*level != 0);
7446 
7447         eb = btrfs_read_node_slot(parent, slot);
7448         if (IS_ERR(eb))
7449                 return PTR_ERR(eb);
7450 
7451         /*
7452          * Trigger readahead for the next leaves we will process, so that it is
7453          * very likely that when we need them they are already in memory and we
7454          * will not block on disk IO. For nodes we only do readahead for one,
7455          * since the time window between processing nodes is typically larger.
7456          */
7457         reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7458 
7459         for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7460                 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7461                         btrfs_readahead_node_child(parent, slot);
7462                         reada_done += eb->fs_info->nodesize;
7463                 }
7464         }
7465 
7466         path->nodes[*level - 1] = eb;
7467         path->slots[*level - 1] = 0;
7468         (*level)--;
7469 
7470         if (*level == 0)
7471                 return replace_node_with_clone(path, 0);
7472 
7473         return 0;
7474 }
7475 
7476 static int tree_move_next_or_upnext(struct btrfs_path *path,
7477                                     int *level, int root_level)
7478 {
7479         int ret = 0;
7480         int nritems;
7481         nritems = btrfs_header_nritems(path->nodes[*level]);
7482 
7483         path->slots[*level]++;
7484 
7485         while (path->slots[*level] >= nritems) {
7486                 if (*level == root_level) {
7487                         path->slots[*level] = nritems - 1;
7488                         return -1;
7489                 }
7490 
7491                 /* move upnext */
7492                 path->slots[*level] = 0;
7493                 free_extent_buffer(path->nodes[*level]);
7494                 path->nodes[*level] = NULL;
7495                 (*level)++;
7496                 path->slots[*level]++;
7497 
7498                 nritems = btrfs_header_nritems(path->nodes[*level]);
7499                 ret = 1;
7500         }
7501         return ret;
7502 }
7503 
7504 /*
7505  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7506  * or down.
7507  */
7508 static int tree_advance(struct btrfs_path *path,
7509                         int *level, int root_level,
7510                         int allow_down,
7511                         struct btrfs_key *key,
7512                         u64 reada_min_gen)
7513 {
7514         int ret;
7515 
7516         if (*level == 0 || !allow_down) {
7517                 ret = tree_move_next_or_upnext(path, level, root_level);
7518         } else {
7519                 ret = tree_move_down(path, level, reada_min_gen);
7520         }
7521 
7522         /*
7523          * Even if we have reached the end of a tree, ret is -1, update the key
7524          * anyway, so that in case we need to restart due to a block group
7525          * relocation, we can assert that the last key of the root node still
7526          * exists in the tree.
7527          */
7528         if (*level == 0)
7529                 btrfs_item_key_to_cpu(path->nodes[*level], key,
7530                                       path->slots[*level]);
7531         else
7532                 btrfs_node_key_to_cpu(path->nodes[*level], key,
7533                                       path->slots[*level]);
7534 
7535         return ret;
7536 }
7537 
7538 static int tree_compare_item(struct btrfs_path *left_path,
7539                              struct btrfs_path *right_path,
7540                              char *tmp_buf)
7541 {
7542         int cmp;
7543         int len1, len2;
7544         unsigned long off1, off2;
7545 
7546         len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7547         len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7548         if (len1 != len2)
7549                 return 1;
7550 
7551         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7552         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7553                                 right_path->slots[0]);
7554 
7555         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7556 
7557         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7558         if (cmp)
7559                 return 1;
7560         return 0;
7561 }
7562 
7563 /*
7564  * A transaction used for relocating a block group was committed or is about to
7565  * finish its commit. Release our paths and restart the search, so that we are
7566  * not using stale extent buffers:
7567  *
7568  * 1) For levels > 0, we are only holding references of extent buffers, without
7569  *    any locks on them, which does not prevent them from having been relocated
7570  *    and reallocated after the last time we released the commit root semaphore.
7571  *    The exception are the root nodes, for which we always have a clone, see
7572  *    the comment at btrfs_compare_trees();
7573  *
7574  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7575  *    we are safe from the concurrent relocation and reallocation. However they
7576  *    can have file extent items with a pre relocation disk_bytenr value, so we
7577  *    restart the start from the current commit roots and clone the new leaves so
7578  *    that we get the post relocation disk_bytenr values. Not doing so, could
7579  *    make us clone the wrong data in case there are new extents using the old
7580  *    disk_bytenr that happen to be shared.
7581  */
7582 static int restart_after_relocation(struct btrfs_path *left_path,
7583                                     struct btrfs_path *right_path,
7584                                     const struct btrfs_key *left_key,
7585                                     const struct btrfs_key *right_key,
7586                                     int left_level,
7587                                     int right_level,
7588                                     const struct send_ctx *sctx)
7589 {
7590         int root_level;
7591         int ret;
7592 
7593         lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7594 
7595         btrfs_release_path(left_path);
7596         btrfs_release_path(right_path);
7597 
7598         /*
7599          * Since keys can not be added or removed to/from our roots because they
7600          * are readonly and we do not allow deduplication to run in parallel
7601          * (which can add, remove or change keys), the layout of the trees should
7602          * not change.
7603          */
7604         left_path->lowest_level = left_level;
7605         ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7606         if (ret < 0)
7607                 return ret;
7608 
7609         right_path->lowest_level = right_level;
7610         ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7611         if (ret < 0)
7612                 return ret;
7613 
7614         /*
7615          * If the lowest level nodes are leaves, clone them so that they can be
7616          * safely used by changed_cb() while not under the protection of the
7617          * commit root semaphore, even if relocation and reallocation happens in
7618          * parallel.
7619          */
7620         if (left_level == 0) {
7621                 ret = replace_node_with_clone(left_path, 0);
7622                 if (ret < 0)
7623                         return ret;
7624         }
7625 
7626         if (right_level == 0) {
7627                 ret = replace_node_with_clone(right_path, 0);
7628                 if (ret < 0)
7629                         return ret;
7630         }
7631 
7632         /*
7633          * Now clone the root nodes (unless they happen to be the leaves we have
7634          * already cloned). This is to protect against concurrent snapshotting of
7635          * the send and parent roots (see the comment at btrfs_compare_trees()).
7636          */
7637         root_level = btrfs_header_level(sctx->send_root->commit_root);
7638         if (root_level > 0) {
7639                 ret = replace_node_with_clone(left_path, root_level);
7640                 if (ret < 0)
7641                         return ret;
7642         }
7643 
7644         root_level = btrfs_header_level(sctx->parent_root->commit_root);
7645         if (root_level > 0) {
7646                 ret = replace_node_with_clone(right_path, root_level);
7647                 if (ret < 0)
7648                         return ret;
7649         }
7650 
7651         return 0;
7652 }
7653 
7654 /*
7655  * This function compares two trees and calls the provided callback for
7656  * every changed/new/deleted item it finds.
7657  * If shared tree blocks are encountered, whole subtrees are skipped, making
7658  * the compare pretty fast on snapshotted subvolumes.
7659  *
7660  * This currently works on commit roots only. As commit roots are read only,
7661  * we don't do any locking. The commit roots are protected with transactions.
7662  * Transactions are ended and rejoined when a commit is tried in between.
7663  *
7664  * This function checks for modifications done to the trees while comparing.
7665  * If it detects a change, it aborts immediately.
7666  */
7667 static int btrfs_compare_trees(struct btrfs_root *left_root,
7668                         struct btrfs_root *right_root, struct send_ctx *sctx)
7669 {
7670         struct btrfs_fs_info *fs_info = left_root->fs_info;
7671         int ret;
7672         int cmp;
7673         struct btrfs_path *left_path = NULL;
7674         struct btrfs_path *right_path = NULL;
7675         struct btrfs_key left_key;
7676         struct btrfs_key right_key;
7677         char *tmp_buf = NULL;
7678         int left_root_level;
7679         int right_root_level;
7680         int left_level;
7681         int right_level;
7682         int left_end_reached = 0;
7683         int right_end_reached = 0;
7684         int advance_left = 0;
7685         int advance_right = 0;
7686         u64 left_blockptr;
7687         u64 right_blockptr;
7688         u64 left_gen;
7689         u64 right_gen;
7690         u64 reada_min_gen;
7691 
7692         left_path = btrfs_alloc_path();
7693         if (!left_path) {
7694                 ret = -ENOMEM;
7695                 goto out;
7696         }
7697         right_path = btrfs_alloc_path();
7698         if (!right_path) {
7699                 ret = -ENOMEM;
7700                 goto out;
7701         }
7702 
7703         tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7704         if (!tmp_buf) {
7705                 ret = -ENOMEM;
7706                 goto out;
7707         }
7708 
7709         left_path->search_commit_root = 1;
7710         left_path->skip_locking = 1;
7711         right_path->search_commit_root = 1;
7712         right_path->skip_locking = 1;
7713 
7714         /*
7715          * Strategy: Go to the first items of both trees. Then do
7716          *
7717          * If both trees are at level 0
7718          *   Compare keys of current items
7719          *     If left < right treat left item as new, advance left tree
7720          *       and repeat
7721          *     If left > right treat right item as deleted, advance right tree
7722          *       and repeat
7723          *     If left == right do deep compare of items, treat as changed if
7724          *       needed, advance both trees and repeat
7725          * If both trees are at the same level but not at level 0
7726          *   Compare keys of current nodes/leafs
7727          *     If left < right advance left tree and repeat
7728          *     If left > right advance right tree and repeat
7729          *     If left == right compare blockptrs of the next nodes/leafs
7730          *       If they match advance both trees but stay at the same level
7731          *         and repeat
7732          *       If they don't match advance both trees while allowing to go
7733          *         deeper and repeat
7734          * If tree levels are different
7735          *   Advance the tree that needs it and repeat
7736          *
7737          * Advancing a tree means:
7738          *   If we are at level 0, try to go to the next slot. If that's not
7739          *   possible, go one level up and repeat. Stop when we found a level
7740          *   where we could go to the next slot. We may at this point be on a
7741          *   node or a leaf.
7742          *
7743          *   If we are not at level 0 and not on shared tree blocks, go one
7744          *   level deeper.
7745          *
7746          *   If we are not at level 0 and on shared tree blocks, go one slot to
7747          *   the right if possible or go up and right.
7748          */
7749 
7750         down_read(&fs_info->commit_root_sem);
7751         left_level = btrfs_header_level(left_root->commit_root);
7752         left_root_level = left_level;
7753         /*
7754          * We clone the root node of the send and parent roots to prevent races
7755          * with snapshot creation of these roots. Snapshot creation COWs the
7756          * root node of a tree, so after the transaction is committed the old
7757          * extent can be reallocated while this send operation is still ongoing.
7758          * So we clone them, under the commit root semaphore, to be race free.
7759          */
7760         left_path->nodes[left_level] =
7761                         btrfs_clone_extent_buffer(left_root->commit_root);
7762         if (!left_path->nodes[left_level]) {
7763                 ret = -ENOMEM;
7764                 goto out_unlock;
7765         }
7766 
7767         right_level = btrfs_header_level(right_root->commit_root);
7768         right_root_level = right_level;
7769         right_path->nodes[right_level] =
7770                         btrfs_clone_extent_buffer(right_root->commit_root);
7771         if (!right_path->nodes[right_level]) {
7772                 ret = -ENOMEM;
7773                 goto out_unlock;
7774         }
7775         /*
7776          * Our right root is the parent root, while the left root is the "send"
7777          * root. We know that all new nodes/leaves in the left root must have
7778          * a generation greater than the right root's generation, so we trigger
7779          * readahead for those nodes and leaves of the left root, as we know we
7780          * will need to read them at some point.
7781          */
7782         reada_min_gen = btrfs_header_generation(right_root->commit_root);
7783 
7784         if (left_level == 0)
7785                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7786                                 &left_key, left_path->slots[left_level]);
7787         else
7788                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7789                                 &left_key, left_path->slots[left_level]);
7790         if (right_level == 0)
7791                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7792                                 &right_key, right_path->slots[right_level]);
7793         else
7794                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7795                                 &right_key, right_path->slots[right_level]);
7796 
7797         sctx->last_reloc_trans = fs_info->last_reloc_trans;
7798 
7799         while (1) {
7800                 if (need_resched() ||
7801                     rwsem_is_contended(&fs_info->commit_root_sem)) {
7802                         up_read(&fs_info->commit_root_sem);
7803                         cond_resched();
7804                         down_read(&fs_info->commit_root_sem);
7805                 }
7806 
7807                 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7808                         ret = restart_after_relocation(left_path, right_path,
7809                                                        &left_key, &right_key,
7810                                                        left_level, right_level,
7811                                                        sctx);
7812                         if (ret < 0)
7813                                 goto out_unlock;
7814                         sctx->last_reloc_trans = fs_info->last_reloc_trans;
7815                 }
7816 
7817                 if (advance_left && !left_end_reached) {
7818                         ret = tree_advance(left_path, &left_level,
7819                                         left_root_level,
7820                                         advance_left != ADVANCE_ONLY_NEXT,
7821                                         &left_key, reada_min_gen);
7822                         if (ret == -1)
7823                                 left_end_reached = ADVANCE;
7824                         else if (ret < 0)
7825                                 goto out_unlock;
7826                         advance_left = 0;
7827                 }
7828                 if (advance_right && !right_end_reached) {
7829                         ret = tree_advance(right_path, &right_level,
7830                                         right_root_level,
7831                                         advance_right != ADVANCE_ONLY_NEXT,
7832                                         &right_key, reada_min_gen);
7833                         if (ret == -1)
7834                                 right_end_reached = ADVANCE;
7835                         else if (ret < 0)
7836                                 goto out_unlock;
7837                         advance_right = 0;
7838                 }
7839 
7840                 if (left_end_reached && right_end_reached) {
7841                         ret = 0;
7842                         goto out_unlock;
7843                 } else if (left_end_reached) {
7844                         if (right_level == 0) {
7845                                 up_read(&fs_info->commit_root_sem);
7846                                 ret = changed_cb(left_path, right_path,
7847                                                 &right_key,
7848                                                 BTRFS_COMPARE_TREE_DELETED,
7849                                                 sctx);
7850                                 if (ret < 0)
7851                                         goto out;
7852                                 down_read(&fs_info->commit_root_sem);
7853                         }
7854                         advance_right = ADVANCE;
7855                         continue;
7856                 } else if (right_end_reached) {
7857                         if (left_level == 0) {
7858                                 up_read(&fs_info->commit_root_sem);
7859                                 ret = changed_cb(left_path, right_path,
7860                                                 &left_key,
7861                                                 BTRFS_COMPARE_TREE_NEW,
7862                                                 sctx);
7863                                 if (ret < 0)
7864                                         goto out;
7865                                 down_read(&fs_info->commit_root_sem);
7866                         }
7867                         advance_left = ADVANCE;
7868                         continue;
7869                 }
7870 
7871                 if (left_level == 0 && right_level == 0) {
7872                         up_read(&fs_info->commit_root_sem);
7873                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7874                         if (cmp < 0) {
7875                                 ret = changed_cb(left_path, right_path,
7876                                                 &left_key,
7877                                                 BTRFS_COMPARE_TREE_NEW,
7878                                                 sctx);
7879                                 advance_left = ADVANCE;
7880                         } else if (cmp > 0) {
7881                                 ret = changed_cb(left_path, right_path,
7882                                                 &right_key,
7883                                                 BTRFS_COMPARE_TREE_DELETED,
7884                                                 sctx);
7885                                 advance_right = ADVANCE;
7886                         } else {
7887                                 enum btrfs_compare_tree_result result;
7888 
7889                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7890                                 ret = tree_compare_item(left_path, right_path,
7891                                                         tmp_buf);
7892                                 if (ret)
7893                                         result = BTRFS_COMPARE_TREE_CHANGED;
7894                                 else
7895                                         result = BTRFS_COMPARE_TREE_SAME;
7896                                 ret = changed_cb(left_path, right_path,
7897                                                  &left_key, result, sctx);
7898                                 advance_left = ADVANCE;
7899                                 advance_right = ADVANCE;
7900                         }
7901 
7902                         if (ret < 0)
7903                                 goto out;
7904                         down_read(&fs_info->commit_root_sem);
7905                 } else if (left_level == right_level) {
7906                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7907                         if (cmp < 0) {
7908                                 advance_left = ADVANCE;
7909                         } else if (cmp > 0) {
7910                                 advance_right = ADVANCE;
7911                         } else {
7912                                 left_blockptr = btrfs_node_blockptr(
7913                                                 left_path->nodes[left_level],
7914                                                 left_path->slots[left_level]);
7915                                 right_blockptr = btrfs_node_blockptr(
7916                                                 right_path->nodes[right_level],
7917                                                 right_path->slots[right_level]);
7918                                 left_gen = btrfs_node_ptr_generation(
7919                                                 left_path->nodes[left_level],
7920                                                 left_path->slots[left_level]);
7921                                 right_gen = btrfs_node_ptr_generation(
7922                                                 right_path->nodes[right_level],
7923                                                 right_path->slots[right_level]);
7924                                 if (left_blockptr == right_blockptr &&
7925                                     left_gen == right_gen) {
7926                                         /*
7927                                          * As we're on a shared block, don't
7928                                          * allow to go deeper.
7929                                          */
7930                                         advance_left = ADVANCE_ONLY_NEXT;
7931                                         advance_right = ADVANCE_ONLY_NEXT;
7932                                 } else {
7933                                         advance_left = ADVANCE;
7934                                         advance_right = ADVANCE;
7935                                 }
7936                         }
7937                 } else if (left_level < right_level) {
7938                         advance_right = ADVANCE;
7939                 } else {
7940                         advance_left = ADVANCE;
7941                 }
7942         }
7943 
7944 out_unlock:
7945         up_read(&fs_info->commit_root_sem);
7946 out:
7947         btrfs_free_path(left_path);
7948         btrfs_free_path(right_path);
7949         kvfree(tmp_buf);
7950         return ret;
7951 }
7952 
7953 static int send_subvol(struct send_ctx *sctx)
7954 {
7955         int ret;
7956 
7957         if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7958                 ret = send_header(sctx);
7959                 if (ret < 0)
7960                         goto out;
7961         }
7962 
7963         ret = send_subvol_begin(sctx);
7964         if (ret < 0)
7965                 goto out;
7966 
7967         if (sctx->parent_root) {
7968                 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7969                 if (ret < 0)
7970                         goto out;
7971                 ret = finish_inode_if_needed(sctx, 1);
7972                 if (ret < 0)
7973                         goto out;
7974         } else {
7975                 ret = full_send_tree(sctx);
7976                 if (ret < 0)
7977                         goto out;
7978         }
7979 
7980 out:
7981         free_recorded_refs(sctx);
7982         return ret;
7983 }
7984 
7985 /*
7986  * If orphan cleanup did remove any orphans from a root, it means the tree
7987  * was modified and therefore the commit root is not the same as the current
7988  * root anymore. This is a problem, because send uses the commit root and
7989  * therefore can see inode items that don't exist in the current root anymore,
7990  * and for example make calls to btrfs_iget, which will do tree lookups based
7991  * on the current root and not on the commit root. Those lookups will fail,
7992  * returning a -ESTALE error, and making send fail with that error. So make
7993  * sure a send does not see any orphans we have just removed, and that it will
7994  * see the same inodes regardless of whether a transaction commit happened
7995  * before it started (meaning that the commit root will be the same as the
7996  * current root) or not.
7997  */
7998 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7999 {
8000         struct btrfs_root *root = sctx->parent_root;
8001 
8002         if (root && root->node != root->commit_root)
8003                 return btrfs_commit_current_transaction(root);
8004 
8005         for (int i = 0; i < sctx->clone_roots_cnt; i++) {
8006                 root = sctx->clone_roots[i].root;
8007                 if (root->node != root->commit_root)
8008                         return btrfs_commit_current_transaction(root);
8009         }
8010 
8011         return 0;
8012 }
8013 
8014 /*
8015  * Make sure any existing dellaloc is flushed for any root used by a send
8016  * operation so that we do not miss any data and we do not race with writeback
8017  * finishing and changing a tree while send is using the tree. This could
8018  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8019  * a send operation then uses the subvolume.
8020  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8021  */
8022 static int flush_delalloc_roots(struct send_ctx *sctx)
8023 {
8024         struct btrfs_root *root = sctx->parent_root;
8025         int ret;
8026         int i;
8027 
8028         if (root) {
8029                 ret = btrfs_start_delalloc_snapshot(root, false);
8030                 if (ret)
8031                         return ret;
8032                 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8033         }
8034 
8035         for (i = 0; i < sctx->clone_roots_cnt; i++) {
8036                 root = sctx->clone_roots[i].root;
8037                 ret = btrfs_start_delalloc_snapshot(root, false);
8038                 if (ret)
8039                         return ret;
8040                 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8041         }
8042 
8043         return 0;
8044 }
8045 
8046 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8047 {
8048         spin_lock(&root->root_item_lock);
8049         root->send_in_progress--;
8050         /*
8051          * Not much left to do, we don't know why it's unbalanced and
8052          * can't blindly reset it to 0.
8053          */
8054         if (root->send_in_progress < 0)
8055                 btrfs_err(root->fs_info,
8056                           "send_in_progress unbalanced %d root %llu",
8057                           root->send_in_progress, btrfs_root_id(root));
8058         spin_unlock(&root->root_item_lock);
8059 }
8060 
8061 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8062 {
8063         btrfs_warn_rl(root->fs_info,
8064 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8065                       btrfs_root_id(root), root->dedupe_in_progress);
8066 }
8067 
8068 long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg)
8069 {
8070         int ret = 0;
8071         struct btrfs_root *send_root = inode->root;
8072         struct btrfs_fs_info *fs_info = send_root->fs_info;
8073         struct btrfs_root *clone_root;
8074         struct send_ctx *sctx = NULL;
8075         u32 i;
8076         u64 *clone_sources_tmp = NULL;
8077         int clone_sources_to_rollback = 0;
8078         size_t alloc_size;
8079         int sort_clone_roots = 0;
8080         struct btrfs_lru_cache_entry *entry;
8081         struct btrfs_lru_cache_entry *tmp;
8082 
8083         if (!capable(CAP_SYS_ADMIN))
8084                 return -EPERM;
8085 
8086         /*
8087          * The subvolume must remain read-only during send, protect against
8088          * making it RW. This also protects against deletion.
8089          */
8090         spin_lock(&send_root->root_item_lock);
8091         if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8092                 dedupe_in_progress_warn(send_root);
8093                 spin_unlock(&send_root->root_item_lock);
8094                 return -EAGAIN;
8095         }
8096         send_root->send_in_progress++;
8097         spin_unlock(&send_root->root_item_lock);
8098 
8099         /*
8100          * Userspace tools do the checks and warn the user if it's
8101          * not RO.
8102          */
8103         if (!btrfs_root_readonly(send_root)) {
8104                 ret = -EPERM;
8105                 goto out;
8106         }
8107 
8108         /*
8109          * Check that we don't overflow at later allocations, we request
8110          * clone_sources_count + 1 items, and compare to unsigned long inside
8111          * access_ok. Also set an upper limit for allocation size so this can't
8112          * easily exhaust memory. Max number of clone sources is about 200K.
8113          */
8114         if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8115                 ret = -EINVAL;
8116                 goto out;
8117         }
8118 
8119         if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8120                 ret = -EOPNOTSUPP;
8121                 goto out;
8122         }
8123 
8124         sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8125         if (!sctx) {
8126                 ret = -ENOMEM;
8127                 goto out;
8128         }
8129 
8130         INIT_LIST_HEAD(&sctx->new_refs);
8131         INIT_LIST_HEAD(&sctx->deleted_refs);
8132 
8133         btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8134         btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8135         btrfs_lru_cache_init(&sctx->dir_created_cache,
8136                              SEND_MAX_DIR_CREATED_CACHE_SIZE);
8137         /*
8138          * This cache is periodically trimmed to a fixed size elsewhere, see
8139          * cache_dir_utimes() and trim_dir_utimes_cache().
8140          */
8141         btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8142 
8143         sctx->pending_dir_moves = RB_ROOT;
8144         sctx->waiting_dir_moves = RB_ROOT;
8145         sctx->orphan_dirs = RB_ROOT;
8146         sctx->rbtree_new_refs = RB_ROOT;
8147         sctx->rbtree_deleted_refs = RB_ROOT;
8148 
8149         sctx->flags = arg->flags;
8150 
8151         if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8152                 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8153                         ret = -EPROTO;
8154                         goto out;
8155                 }
8156                 /* Zero means "use the highest version" */
8157                 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8158         } else {
8159                 sctx->proto = 1;
8160         }
8161         if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8162                 ret = -EINVAL;
8163                 goto out;
8164         }
8165 
8166         sctx->send_filp = fget(arg->send_fd);
8167         if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8168                 ret = -EBADF;
8169                 goto out;
8170         }
8171 
8172         sctx->send_root = send_root;
8173         /*
8174          * Unlikely but possible, if the subvolume is marked for deletion but
8175          * is slow to remove the directory entry, send can still be started
8176          */
8177         if (btrfs_root_dead(sctx->send_root)) {
8178                 ret = -EPERM;
8179                 goto out;
8180         }
8181 
8182         sctx->clone_roots_cnt = arg->clone_sources_count;
8183 
8184         if (sctx->proto >= 2) {
8185                 u32 send_buf_num_pages;
8186 
8187                 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8188                 sctx->send_buf = vmalloc(sctx->send_max_size);
8189                 if (!sctx->send_buf) {
8190                         ret = -ENOMEM;
8191                         goto out;
8192                 }
8193                 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8194                 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8195                                                sizeof(*sctx->send_buf_pages),
8196                                                GFP_KERNEL);
8197                 if (!sctx->send_buf_pages) {
8198                         ret = -ENOMEM;
8199                         goto out;
8200                 }
8201                 for (i = 0; i < send_buf_num_pages; i++) {
8202                         sctx->send_buf_pages[i] =
8203                                 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8204                 }
8205         } else {
8206                 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8207                 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8208         }
8209         if (!sctx->send_buf) {
8210                 ret = -ENOMEM;
8211                 goto out;
8212         }
8213 
8214         sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8215                                      sizeof(*sctx->clone_roots),
8216                                      GFP_KERNEL);
8217         if (!sctx->clone_roots) {
8218                 ret = -ENOMEM;
8219                 goto out;
8220         }
8221 
8222         alloc_size = array_size(sizeof(*arg->clone_sources),
8223                                 arg->clone_sources_count);
8224 
8225         if (arg->clone_sources_count) {
8226                 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8227                 if (!clone_sources_tmp) {
8228                         ret = -ENOMEM;
8229                         goto out;
8230                 }
8231 
8232                 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8233                                 alloc_size);
8234                 if (ret) {
8235                         ret = -EFAULT;
8236                         goto out;
8237                 }
8238 
8239                 for (i = 0; i < arg->clone_sources_count; i++) {
8240                         clone_root = btrfs_get_fs_root(fs_info,
8241                                                 clone_sources_tmp[i], true);
8242                         if (IS_ERR(clone_root)) {
8243                                 ret = PTR_ERR(clone_root);
8244                                 goto out;
8245                         }
8246                         spin_lock(&clone_root->root_item_lock);
8247                         if (!btrfs_root_readonly(clone_root) ||
8248                             btrfs_root_dead(clone_root)) {
8249                                 spin_unlock(&clone_root->root_item_lock);
8250                                 btrfs_put_root(clone_root);
8251                                 ret = -EPERM;
8252                                 goto out;
8253                         }
8254                         if (clone_root->dedupe_in_progress) {
8255                                 dedupe_in_progress_warn(clone_root);
8256                                 spin_unlock(&clone_root->root_item_lock);
8257                                 btrfs_put_root(clone_root);
8258                                 ret = -EAGAIN;
8259                                 goto out;
8260                         }
8261                         clone_root->send_in_progress++;
8262                         spin_unlock(&clone_root->root_item_lock);
8263 
8264                         sctx->clone_roots[i].root = clone_root;
8265                         clone_sources_to_rollback = i + 1;
8266                 }
8267                 kvfree(clone_sources_tmp);
8268                 clone_sources_tmp = NULL;
8269         }
8270 
8271         if (arg->parent_root) {
8272                 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8273                                                       true);
8274                 if (IS_ERR(sctx->parent_root)) {
8275                         ret = PTR_ERR(sctx->parent_root);
8276                         goto out;
8277                 }
8278 
8279                 spin_lock(&sctx->parent_root->root_item_lock);
8280                 sctx->parent_root->send_in_progress++;
8281                 if (!btrfs_root_readonly(sctx->parent_root) ||
8282                                 btrfs_root_dead(sctx->parent_root)) {
8283                         spin_unlock(&sctx->parent_root->root_item_lock);
8284                         ret = -EPERM;
8285                         goto out;
8286                 }
8287                 if (sctx->parent_root->dedupe_in_progress) {
8288                         dedupe_in_progress_warn(sctx->parent_root);
8289                         spin_unlock(&sctx->parent_root->root_item_lock);
8290                         ret = -EAGAIN;
8291                         goto out;
8292                 }
8293                 spin_unlock(&sctx->parent_root->root_item_lock);
8294         }
8295 
8296         /*
8297          * Clones from send_root are allowed, but only if the clone source
8298          * is behind the current send position. This is checked while searching
8299          * for possible clone sources.
8300          */
8301         sctx->clone_roots[sctx->clone_roots_cnt++].root =
8302                 btrfs_grab_root(sctx->send_root);
8303 
8304         /* We do a bsearch later */
8305         sort(sctx->clone_roots, sctx->clone_roots_cnt,
8306                         sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8307                         NULL);
8308         sort_clone_roots = 1;
8309 
8310         ret = flush_delalloc_roots(sctx);
8311         if (ret)
8312                 goto out;
8313 
8314         ret = ensure_commit_roots_uptodate(sctx);
8315         if (ret)
8316                 goto out;
8317 
8318         ret = send_subvol(sctx);
8319         if (ret < 0)
8320                 goto out;
8321 
8322         btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8323                 ret = send_utimes(sctx, entry->key, entry->gen);
8324                 if (ret < 0)
8325                         goto out;
8326                 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8327         }
8328 
8329         if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8330                 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8331                 if (ret < 0)
8332                         goto out;
8333                 ret = send_cmd(sctx);
8334                 if (ret < 0)
8335                         goto out;
8336         }
8337 
8338 out:
8339         WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8340         while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8341                 struct rb_node *n;
8342                 struct pending_dir_move *pm;
8343 
8344                 n = rb_first(&sctx->pending_dir_moves);
8345                 pm = rb_entry(n, struct pending_dir_move, node);
8346                 while (!list_empty(&pm->list)) {
8347                         struct pending_dir_move *pm2;
8348 
8349                         pm2 = list_first_entry(&pm->list,
8350                                                struct pending_dir_move, list);
8351                         free_pending_move(sctx, pm2);
8352                 }
8353                 free_pending_move(sctx, pm);
8354         }
8355 
8356         WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8357         while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8358                 struct rb_node *n;
8359                 struct waiting_dir_move *dm;
8360 
8361                 n = rb_first(&sctx->waiting_dir_moves);
8362                 dm = rb_entry(n, struct waiting_dir_move, node);
8363                 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8364                 kfree(dm);
8365         }
8366 
8367         WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8368         while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8369                 struct rb_node *n;
8370                 struct orphan_dir_info *odi;
8371 
8372                 n = rb_first(&sctx->orphan_dirs);
8373                 odi = rb_entry(n, struct orphan_dir_info, node);
8374                 free_orphan_dir_info(sctx, odi);
8375         }
8376 
8377         if (sort_clone_roots) {
8378                 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8379                         btrfs_root_dec_send_in_progress(
8380                                         sctx->clone_roots[i].root);
8381                         btrfs_put_root(sctx->clone_roots[i].root);
8382                 }
8383         } else {
8384                 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8385                         btrfs_root_dec_send_in_progress(
8386                                         sctx->clone_roots[i].root);
8387                         btrfs_put_root(sctx->clone_roots[i].root);
8388                 }
8389 
8390                 btrfs_root_dec_send_in_progress(send_root);
8391         }
8392         if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8393                 btrfs_root_dec_send_in_progress(sctx->parent_root);
8394                 btrfs_put_root(sctx->parent_root);
8395         }
8396 
8397         kvfree(clone_sources_tmp);
8398 
8399         if (sctx) {
8400                 if (sctx->send_filp)
8401                         fput(sctx->send_filp);
8402 
8403                 kvfree(sctx->clone_roots);
8404                 kfree(sctx->send_buf_pages);
8405                 kvfree(sctx->send_buf);
8406                 kvfree(sctx->verity_descriptor);
8407 
8408                 close_current_inode(sctx);
8409 
8410                 btrfs_lru_cache_clear(&sctx->name_cache);
8411                 btrfs_lru_cache_clear(&sctx->backref_cache);
8412                 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8413                 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8414 
8415                 kfree(sctx);
8416         }
8417 
8418         return ret;
8419 }
8420 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php