1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "linux/spinlock.h" 4 #include <linux/minmax.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "space-info.h" 8 #include "sysfs.h" 9 #include "volumes.h" 10 #include "free-space-cache.h" 11 #include "ordered-data.h" 12 #include "transaction.h" 13 #include "block-group.h" 14 #include "fs.h" 15 #include "accessors.h" 16 #include "extent-tree.h" 17 18 /* 19 * HOW DOES SPACE RESERVATION WORK 20 * 21 * If you want to know about delalloc specifically, there is a separate comment 22 * for that with the delalloc code. This comment is about how the whole system 23 * works generally. 24 * 25 * BASIC CONCEPTS 26 * 27 * 1) space_info. This is the ultimate arbiter of how much space we can use. 28 * There's a description of the bytes_ fields with the struct declaration, 29 * refer to that for specifics on each field. Suffice it to say that for 30 * reservations we care about total_bytes - SUM(space_info->bytes_) when 31 * determining if there is space to make an allocation. There is a space_info 32 * for METADATA, SYSTEM, and DATA areas. 33 * 34 * 2) block_rsv's. These are basically buckets for every different type of 35 * metadata reservation we have. You can see the comment in the block_rsv 36 * code on the rules for each type, but generally block_rsv->reserved is how 37 * much space is accounted for in space_info->bytes_may_use. 38 * 39 * 3) btrfs_calc*_size. These are the worst case calculations we used based 40 * on the number of items we will want to modify. We have one for changing 41 * items, and one for inserting new items. Generally we use these helpers to 42 * determine the size of the block reserves, and then use the actual bytes 43 * values to adjust the space_info counters. 44 * 45 * MAKING RESERVATIONS, THE NORMAL CASE 46 * 47 * We call into either btrfs_reserve_data_bytes() or 48 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 49 * num_bytes we want to reserve. 50 * 51 * ->reserve 52 * space_info->bytes_may_reserve += num_bytes 53 * 54 * ->extent allocation 55 * Call btrfs_add_reserved_bytes() which does 56 * space_info->bytes_may_reserve -= num_bytes 57 * space_info->bytes_reserved += extent_bytes 58 * 59 * ->insert reference 60 * Call btrfs_update_block_group() which does 61 * space_info->bytes_reserved -= extent_bytes 62 * space_info->bytes_used += extent_bytes 63 * 64 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 65 * 66 * Assume we are unable to simply make the reservation because we do not have 67 * enough space 68 * 69 * -> __reserve_bytes 70 * create a reserve_ticket with ->bytes set to our reservation, add it to 71 * the tail of space_info->tickets, kick async flush thread 72 * 73 * ->handle_reserve_ticket 74 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 75 * on the ticket. 76 * 77 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 78 * Flushes various things attempting to free up space. 79 * 80 * -> btrfs_try_granting_tickets() 81 * This is called by anything that either subtracts space from 82 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 83 * space_info->total_bytes. This loops through the ->priority_tickets and 84 * then the ->tickets list checking to see if the reservation can be 85 * completed. If it can the space is added to space_info->bytes_may_use and 86 * the ticket is woken up. 87 * 88 * -> ticket wakeup 89 * Check if ->bytes == 0, if it does we got our reservation and we can carry 90 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 91 * were interrupted.) 92 * 93 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 94 * 95 * Same as the above, except we add ourselves to the 96 * space_info->priority_tickets, and we do not use ticket->wait, we simply 97 * call flush_space() ourselves for the states that are safe for us to call 98 * without deadlocking and hope for the best. 99 * 100 * THE FLUSHING STATES 101 * 102 * Generally speaking we will have two cases for each state, a "nice" state 103 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 104 * reduce the locking over head on the various trees, and even to keep from 105 * doing any work at all in the case of delayed refs. Each of these delayed 106 * things however hold reservations, and so letting them run allows us to 107 * reclaim space so we can make new reservations. 108 * 109 * FLUSH_DELAYED_ITEMS 110 * Every inode has a delayed item to update the inode. Take a simple write 111 * for example, we would update the inode item at write time to update the 112 * mtime, and then again at finish_ordered_io() time in order to update the 113 * isize or bytes. We keep these delayed items to coalesce these operations 114 * into a single operation done on demand. These are an easy way to reclaim 115 * metadata space. 116 * 117 * FLUSH_DELALLOC 118 * Look at the delalloc comment to get an idea of how much space is reserved 119 * for delayed allocation. We can reclaim some of this space simply by 120 * running delalloc, but usually we need to wait for ordered extents to 121 * reclaim the bulk of this space. 122 * 123 * FLUSH_DELAYED_REFS 124 * We have a block reserve for the outstanding delayed refs space, and every 125 * delayed ref operation holds a reservation. Running these is a quick way 126 * to reclaim space, but we want to hold this until the end because COW can 127 * churn a lot and we can avoid making some extent tree modifications if we 128 * are able to delay for as long as possible. 129 * 130 * ALLOC_CHUNK 131 * We will skip this the first time through space reservation, because of 132 * overcommit and we don't want to have a lot of useless metadata space when 133 * our worst case reservations will likely never come true. 134 * 135 * RUN_DELAYED_IPUTS 136 * If we're freeing inodes we're likely freeing checksums, file extent 137 * items, and extent tree items. Loads of space could be freed up by these 138 * operations, however they won't be usable until the transaction commits. 139 * 140 * COMMIT_TRANS 141 * This will commit the transaction. Historically we had a lot of logic 142 * surrounding whether or not we'd commit the transaction, but this waits born 143 * out of a pre-tickets era where we could end up committing the transaction 144 * thousands of times in a row without making progress. Now thanks to our 145 * ticketing system we know if we're not making progress and can error 146 * everybody out after a few commits rather than burning the disk hoping for 147 * a different answer. 148 * 149 * OVERCOMMIT 150 * 151 * Because we hold so many reservations for metadata we will allow you to 152 * reserve more space than is currently free in the currently allocate 153 * metadata space. This only happens with metadata, data does not allow 154 * overcommitting. 155 * 156 * You can see the current logic for when we allow overcommit in 157 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 158 * is no unallocated space to be had, all reservations are kept within the 159 * free space in the allocated metadata chunks. 160 * 161 * Because of overcommitting, you generally want to use the 162 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 163 * thing with or without extra unallocated space. 164 */ 165 166 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 167 bool may_use_included) 168 { 169 ASSERT(s_info); 170 return s_info->bytes_used + s_info->bytes_reserved + 171 s_info->bytes_pinned + s_info->bytes_readonly + 172 s_info->bytes_zone_unusable + 173 (may_use_included ? s_info->bytes_may_use : 0); 174 } 175 176 /* 177 * after adding space to the filesystem, we need to clear the full flags 178 * on all the space infos. 179 */ 180 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 181 { 182 struct list_head *head = &info->space_info; 183 struct btrfs_space_info *found; 184 185 list_for_each_entry(found, head, list) 186 found->full = 0; 187 } 188 189 /* 190 * Block groups with more than this value (percents) of unusable space will be 191 * scheduled for background reclaim. 192 */ 193 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 194 195 #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET (10ULL) 196 197 /* 198 * Calculate chunk size depending on volume type (regular or zoned). 199 */ 200 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 201 { 202 if (btrfs_is_zoned(fs_info)) 203 return fs_info->zone_size; 204 205 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 206 207 if (flags & BTRFS_BLOCK_GROUP_DATA) 208 return BTRFS_MAX_DATA_CHUNK_SIZE; 209 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 210 return SZ_32M; 211 212 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 213 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 214 return SZ_1G; 215 216 return SZ_256M; 217 } 218 219 /* 220 * Update default chunk size. 221 */ 222 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 223 u64 chunk_size) 224 { 225 WRITE_ONCE(space_info->chunk_size, chunk_size); 226 } 227 228 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 229 { 230 231 struct btrfs_space_info *space_info; 232 int i; 233 int ret; 234 235 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 236 if (!space_info) 237 return -ENOMEM; 238 239 space_info->fs_info = info; 240 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 241 INIT_LIST_HEAD(&space_info->block_groups[i]); 242 init_rwsem(&space_info->groups_sem); 243 spin_lock_init(&space_info->lock); 244 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 245 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 246 INIT_LIST_HEAD(&space_info->ro_bgs); 247 INIT_LIST_HEAD(&space_info->tickets); 248 INIT_LIST_HEAD(&space_info->priority_tickets); 249 space_info->clamp = 1; 250 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 251 252 if (btrfs_is_zoned(info)) 253 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 254 255 ret = btrfs_sysfs_add_space_info_type(info, space_info); 256 if (ret) 257 return ret; 258 259 list_add(&space_info->list, &info->space_info); 260 if (flags & BTRFS_BLOCK_GROUP_DATA) 261 info->data_sinfo = space_info; 262 263 return ret; 264 } 265 266 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 267 { 268 struct btrfs_super_block *disk_super; 269 u64 features; 270 u64 flags; 271 int mixed = 0; 272 int ret; 273 274 disk_super = fs_info->super_copy; 275 if (!btrfs_super_root(disk_super)) 276 return -EINVAL; 277 278 features = btrfs_super_incompat_flags(disk_super); 279 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 280 mixed = 1; 281 282 flags = BTRFS_BLOCK_GROUP_SYSTEM; 283 ret = create_space_info(fs_info, flags); 284 if (ret) 285 goto out; 286 287 if (mixed) { 288 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 289 ret = create_space_info(fs_info, flags); 290 } else { 291 flags = BTRFS_BLOCK_GROUP_METADATA; 292 ret = create_space_info(fs_info, flags); 293 if (ret) 294 goto out; 295 296 flags = BTRFS_BLOCK_GROUP_DATA; 297 ret = create_space_info(fs_info, flags); 298 } 299 out: 300 return ret; 301 } 302 303 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 304 struct btrfs_block_group *block_group) 305 { 306 struct btrfs_space_info *found; 307 int factor, index; 308 309 factor = btrfs_bg_type_to_factor(block_group->flags); 310 311 found = btrfs_find_space_info(info, block_group->flags); 312 ASSERT(found); 313 spin_lock(&found->lock); 314 found->total_bytes += block_group->length; 315 found->disk_total += block_group->length * factor; 316 found->bytes_used += block_group->used; 317 found->disk_used += block_group->used * factor; 318 found->bytes_readonly += block_group->bytes_super; 319 btrfs_space_info_update_bytes_zone_unusable(info, found, block_group->zone_unusable); 320 if (block_group->length > 0) 321 found->full = 0; 322 btrfs_try_granting_tickets(info, found); 323 spin_unlock(&found->lock); 324 325 block_group->space_info = found; 326 327 index = btrfs_bg_flags_to_raid_index(block_group->flags); 328 down_write(&found->groups_sem); 329 list_add_tail(&block_group->list, &found->block_groups[index]); 330 up_write(&found->groups_sem); 331 } 332 333 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 334 u64 flags) 335 { 336 struct list_head *head = &info->space_info; 337 struct btrfs_space_info *found; 338 339 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 340 341 list_for_each_entry(found, head, list) { 342 if (found->flags & flags) 343 return found; 344 } 345 return NULL; 346 } 347 348 static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info) 349 { 350 struct btrfs_space_info *data_sinfo; 351 u64 data_chunk_size; 352 353 /* 354 * Calculate the data_chunk_size, space_info->chunk_size is the 355 * "optimal" chunk size based on the fs size. However when we actually 356 * allocate the chunk we will strip this down further, making it no 357 * more than 10% of the disk or 1G, whichever is smaller. 358 * 359 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size) 360 * as it is. 361 */ 362 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 363 if (btrfs_is_zoned(fs_info)) 364 return data_sinfo->chunk_size; 365 data_chunk_size = min(data_sinfo->chunk_size, 366 mult_perc(fs_info->fs_devices->total_rw_bytes, 10)); 367 return min_t(u64, data_chunk_size, SZ_1G); 368 } 369 370 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 371 struct btrfs_space_info *space_info, 372 enum btrfs_reserve_flush_enum flush) 373 { 374 u64 profile; 375 u64 avail; 376 u64 data_chunk_size; 377 int factor; 378 379 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 380 profile = btrfs_system_alloc_profile(fs_info); 381 else 382 profile = btrfs_metadata_alloc_profile(fs_info); 383 384 avail = atomic64_read(&fs_info->free_chunk_space); 385 386 /* 387 * If we have dup, raid1 or raid10 then only half of the free 388 * space is actually usable. For raid56, the space info used 389 * doesn't include the parity drive, so we don't have to 390 * change the math 391 */ 392 factor = btrfs_bg_type_to_factor(profile); 393 avail = div_u64(avail, factor); 394 if (avail == 0) 395 return 0; 396 397 data_chunk_size = calc_effective_data_chunk_size(fs_info); 398 399 /* 400 * Since data allocations immediately use block groups as part of the 401 * reservation, because we assume that data reservations will == actual 402 * usage, we could potentially overcommit and then immediately have that 403 * available space used by a data allocation, which could put us in a 404 * bind when we get close to filling the file system. 405 * 406 * To handle this simply remove the data_chunk_size from the available 407 * space. If we are relatively empty this won't affect our ability to 408 * overcommit much, and if we're very close to full it'll keep us from 409 * getting into a position where we've given ourselves very little 410 * metadata wiggle room. 411 */ 412 if (avail <= data_chunk_size) 413 return 0; 414 avail -= data_chunk_size; 415 416 /* 417 * If we aren't flushing all things, let us overcommit up to 418 * 1/2th of the space. If we can flush, don't let us overcommit 419 * too much, let it overcommit up to 1/8 of the space. 420 */ 421 if (flush == BTRFS_RESERVE_FLUSH_ALL) 422 avail >>= 3; 423 else 424 avail >>= 1; 425 426 /* 427 * On the zoned mode, we always allocate one zone as one chunk. 428 * Returning non-zone size alingned bytes here will result in 429 * less pressure for the async metadata reclaim process, and it 430 * will over-commit too much leading to ENOSPC. Align down to the 431 * zone size to avoid that. 432 */ 433 if (btrfs_is_zoned(fs_info)) 434 avail = ALIGN_DOWN(avail, fs_info->zone_size); 435 436 return avail; 437 } 438 439 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 440 struct btrfs_space_info *space_info, u64 bytes, 441 enum btrfs_reserve_flush_enum flush) 442 { 443 u64 avail; 444 u64 used; 445 446 /* Don't overcommit when in mixed mode */ 447 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 448 return 0; 449 450 used = btrfs_space_info_used(space_info, true); 451 avail = calc_available_free_space(fs_info, space_info, flush); 452 453 if (used + bytes < space_info->total_bytes + avail) 454 return 1; 455 return 0; 456 } 457 458 static void remove_ticket(struct btrfs_space_info *space_info, 459 struct reserve_ticket *ticket) 460 { 461 if (!list_empty(&ticket->list)) { 462 list_del_init(&ticket->list); 463 ASSERT(space_info->reclaim_size >= ticket->bytes); 464 space_info->reclaim_size -= ticket->bytes; 465 } 466 } 467 468 /* 469 * This is for space we already have accounted in space_info->bytes_may_use, so 470 * basically when we're returning space from block_rsv's. 471 */ 472 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 473 struct btrfs_space_info *space_info) 474 { 475 struct list_head *head; 476 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 477 478 lockdep_assert_held(&space_info->lock); 479 480 head = &space_info->priority_tickets; 481 again: 482 while (!list_empty(head)) { 483 struct reserve_ticket *ticket; 484 u64 used = btrfs_space_info_used(space_info, true); 485 486 ticket = list_first_entry(head, struct reserve_ticket, list); 487 488 /* Check and see if our ticket can be satisfied now. */ 489 if ((used + ticket->bytes <= space_info->total_bytes) || 490 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 491 flush)) { 492 btrfs_space_info_update_bytes_may_use(fs_info, 493 space_info, 494 ticket->bytes); 495 remove_ticket(space_info, ticket); 496 ticket->bytes = 0; 497 space_info->tickets_id++; 498 wake_up(&ticket->wait); 499 } else { 500 break; 501 } 502 } 503 504 if (head == &space_info->priority_tickets) { 505 head = &space_info->tickets; 506 flush = BTRFS_RESERVE_FLUSH_ALL; 507 goto again; 508 } 509 } 510 511 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 512 do { \ 513 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 514 spin_lock(&__rsv->lock); \ 515 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 516 __rsv->size, __rsv->reserved); \ 517 spin_unlock(&__rsv->lock); \ 518 } while (0) 519 520 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 521 { 522 switch (space_info->flags) { 523 case BTRFS_BLOCK_GROUP_SYSTEM: 524 return "SYSTEM"; 525 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 526 return "DATA+METADATA"; 527 case BTRFS_BLOCK_GROUP_DATA: 528 return "DATA"; 529 case BTRFS_BLOCK_GROUP_METADATA: 530 return "METADATA"; 531 default: 532 return "UNKNOWN"; 533 } 534 } 535 536 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 537 { 538 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 539 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 540 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 541 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 542 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 543 } 544 545 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 546 struct btrfs_space_info *info) 547 { 548 const char *flag_str = space_info_flag_to_str(info); 549 lockdep_assert_held(&info->lock); 550 551 /* The free space could be negative in case of overcommit */ 552 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull", 553 flag_str, 554 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 555 info->full ? "" : "not "); 556 btrfs_info(fs_info, 557 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 558 info->total_bytes, info->bytes_used, info->bytes_pinned, 559 info->bytes_reserved, info->bytes_may_use, 560 info->bytes_readonly, info->bytes_zone_unusable); 561 } 562 563 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 564 struct btrfs_space_info *info, u64 bytes, 565 int dump_block_groups) 566 { 567 struct btrfs_block_group *cache; 568 u64 total_avail = 0; 569 int index = 0; 570 571 spin_lock(&info->lock); 572 __btrfs_dump_space_info(fs_info, info); 573 dump_global_block_rsv(fs_info); 574 spin_unlock(&info->lock); 575 576 if (!dump_block_groups) 577 return; 578 579 down_read(&info->groups_sem); 580 again: 581 list_for_each_entry(cache, &info->block_groups[index], list) { 582 u64 avail; 583 584 spin_lock(&cache->lock); 585 avail = cache->length - cache->used - cache->pinned - 586 cache->reserved - cache->bytes_super - cache->zone_unusable; 587 btrfs_info(fs_info, 588 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s", 589 cache->start, cache->length, cache->used, cache->pinned, 590 cache->reserved, cache->delalloc_bytes, 591 cache->bytes_super, cache->zone_unusable, 592 avail, cache->ro ? "[readonly]" : ""); 593 spin_unlock(&cache->lock); 594 btrfs_dump_free_space(cache, bytes); 595 total_avail += avail; 596 } 597 if (++index < BTRFS_NR_RAID_TYPES) 598 goto again; 599 up_read(&info->groups_sem); 600 601 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail); 602 } 603 604 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info, 605 u64 to_reclaim) 606 { 607 u64 bytes; 608 u64 nr; 609 610 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 611 nr = div64_u64(to_reclaim, bytes); 612 if (!nr) 613 nr = 1; 614 return nr; 615 } 616 617 /* 618 * shrink metadata reservation for delalloc 619 */ 620 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 621 struct btrfs_space_info *space_info, 622 u64 to_reclaim, bool wait_ordered, 623 bool for_preempt) 624 { 625 struct btrfs_trans_handle *trans; 626 u64 delalloc_bytes; 627 u64 ordered_bytes; 628 u64 items; 629 long time_left; 630 int loops; 631 632 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 633 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 634 if (delalloc_bytes == 0 && ordered_bytes == 0) 635 return; 636 637 /* Calc the number of the pages we need flush for space reservation */ 638 if (to_reclaim == U64_MAX) { 639 items = U64_MAX; 640 } else { 641 /* 642 * to_reclaim is set to however much metadata we need to 643 * reclaim, but reclaiming that much data doesn't really track 644 * exactly. What we really want to do is reclaim full inode's 645 * worth of reservations, however that's not available to us 646 * here. We will take a fraction of the delalloc bytes for our 647 * flushing loops and hope for the best. Delalloc will expand 648 * the amount we write to cover an entire dirty extent, which 649 * will reclaim the metadata reservation for that range. If 650 * it's not enough subsequent flush stages will be more 651 * aggressive. 652 */ 653 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 654 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 655 } 656 657 trans = current->journal_info; 658 659 /* 660 * If we are doing more ordered than delalloc we need to just wait on 661 * ordered extents, otherwise we'll waste time trying to flush delalloc 662 * that likely won't give us the space back we need. 663 */ 664 if (ordered_bytes > delalloc_bytes && !for_preempt) 665 wait_ordered = true; 666 667 loops = 0; 668 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 669 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 670 long nr_pages = min_t(u64, temp, LONG_MAX); 671 int async_pages; 672 673 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 674 675 /* 676 * We need to make sure any outstanding async pages are now 677 * processed before we continue. This is because things like 678 * sync_inode() try to be smart and skip writing if the inode is 679 * marked clean. We don't use filemap_fwrite for flushing 680 * because we want to control how many pages we write out at a 681 * time, thus this is the only safe way to make sure we've 682 * waited for outstanding compressed workers to have started 683 * their jobs and thus have ordered extents set up properly. 684 * 685 * This exists because we do not want to wait for each 686 * individual inode to finish its async work, we simply want to 687 * start the IO on everybody, and then come back here and wait 688 * for all of the async work to catch up. Once we're done with 689 * that we know we'll have ordered extents for everything and we 690 * can decide if we wait for that or not. 691 * 692 * If we choose to replace this in the future, make absolutely 693 * sure that the proper waiting is being done in the async case, 694 * as there have been bugs in that area before. 695 */ 696 async_pages = atomic_read(&fs_info->async_delalloc_pages); 697 if (!async_pages) 698 goto skip_async; 699 700 /* 701 * We don't want to wait forever, if we wrote less pages in this 702 * loop than we have outstanding, only wait for that number of 703 * pages, otherwise we can wait for all async pages to finish 704 * before continuing. 705 */ 706 if (async_pages > nr_pages) 707 async_pages -= nr_pages; 708 else 709 async_pages = 0; 710 wait_event(fs_info->async_submit_wait, 711 atomic_read(&fs_info->async_delalloc_pages) <= 712 async_pages); 713 skip_async: 714 loops++; 715 if (wait_ordered && !trans) { 716 btrfs_wait_ordered_roots(fs_info, items, NULL); 717 } else { 718 time_left = schedule_timeout_killable(1); 719 if (time_left) 720 break; 721 } 722 723 /* 724 * If we are for preemption we just want a one-shot of delalloc 725 * flushing so we can stop flushing if we decide we don't need 726 * to anymore. 727 */ 728 if (for_preempt) 729 break; 730 731 spin_lock(&space_info->lock); 732 if (list_empty(&space_info->tickets) && 733 list_empty(&space_info->priority_tickets)) { 734 spin_unlock(&space_info->lock); 735 break; 736 } 737 spin_unlock(&space_info->lock); 738 739 delalloc_bytes = percpu_counter_sum_positive( 740 &fs_info->delalloc_bytes); 741 ordered_bytes = percpu_counter_sum_positive( 742 &fs_info->ordered_bytes); 743 } 744 } 745 746 /* 747 * Try to flush some data based on policy set by @state. This is only advisory 748 * and may fail for various reasons. The caller is supposed to examine the 749 * state of @space_info to detect the outcome. 750 */ 751 static void flush_space(struct btrfs_fs_info *fs_info, 752 struct btrfs_space_info *space_info, u64 num_bytes, 753 enum btrfs_flush_state state, bool for_preempt) 754 { 755 struct btrfs_root *root = fs_info->tree_root; 756 struct btrfs_trans_handle *trans; 757 int nr; 758 int ret = 0; 759 760 switch (state) { 761 case FLUSH_DELAYED_ITEMS_NR: 762 case FLUSH_DELAYED_ITEMS: 763 if (state == FLUSH_DELAYED_ITEMS_NR) 764 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 765 else 766 nr = -1; 767 768 trans = btrfs_join_transaction_nostart(root); 769 if (IS_ERR(trans)) { 770 ret = PTR_ERR(trans); 771 if (ret == -ENOENT) 772 ret = 0; 773 break; 774 } 775 ret = btrfs_run_delayed_items_nr(trans, nr); 776 btrfs_end_transaction(trans); 777 break; 778 case FLUSH_DELALLOC: 779 case FLUSH_DELALLOC_WAIT: 780 case FLUSH_DELALLOC_FULL: 781 if (state == FLUSH_DELALLOC_FULL) 782 num_bytes = U64_MAX; 783 shrink_delalloc(fs_info, space_info, num_bytes, 784 state != FLUSH_DELALLOC, for_preempt); 785 break; 786 case FLUSH_DELAYED_REFS_NR: 787 case FLUSH_DELAYED_REFS: 788 trans = btrfs_join_transaction_nostart(root); 789 if (IS_ERR(trans)) { 790 ret = PTR_ERR(trans); 791 if (ret == -ENOENT) 792 ret = 0; 793 break; 794 } 795 if (state == FLUSH_DELAYED_REFS_NR) 796 btrfs_run_delayed_refs(trans, num_bytes); 797 else 798 btrfs_run_delayed_refs(trans, 0); 799 btrfs_end_transaction(trans); 800 break; 801 case ALLOC_CHUNK: 802 case ALLOC_CHUNK_FORCE: 803 trans = btrfs_join_transaction(root); 804 if (IS_ERR(trans)) { 805 ret = PTR_ERR(trans); 806 break; 807 } 808 ret = btrfs_chunk_alloc(trans, 809 btrfs_get_alloc_profile(fs_info, space_info->flags), 810 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 811 CHUNK_ALLOC_FORCE); 812 btrfs_end_transaction(trans); 813 814 if (ret > 0 || ret == -ENOSPC) 815 ret = 0; 816 break; 817 case RUN_DELAYED_IPUTS: 818 /* 819 * If we have pending delayed iputs then we could free up a 820 * bunch of pinned space, so make sure we run the iputs before 821 * we do our pinned bytes check below. 822 */ 823 btrfs_run_delayed_iputs(fs_info); 824 btrfs_wait_on_delayed_iputs(fs_info); 825 break; 826 case COMMIT_TRANS: 827 ASSERT(current->journal_info == NULL); 828 /* 829 * We don't want to start a new transaction, just attach to the 830 * current one or wait it fully commits in case its commit is 831 * happening at the moment. Note: we don't use a nostart join 832 * because that does not wait for a transaction to fully commit 833 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED). 834 */ 835 ret = btrfs_commit_current_transaction(root); 836 break; 837 default: 838 ret = -ENOSPC; 839 break; 840 } 841 842 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 843 ret, for_preempt); 844 return; 845 } 846 847 static inline u64 848 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 849 struct btrfs_space_info *space_info) 850 { 851 u64 used; 852 u64 avail; 853 u64 to_reclaim = space_info->reclaim_size; 854 855 lockdep_assert_held(&space_info->lock); 856 857 avail = calc_available_free_space(fs_info, space_info, 858 BTRFS_RESERVE_FLUSH_ALL); 859 used = btrfs_space_info_used(space_info, true); 860 861 /* 862 * We may be flushing because suddenly we have less space than we had 863 * before, and now we're well over-committed based on our current free 864 * space. If that's the case add in our overage so we make sure to put 865 * appropriate pressure on the flushing state machine. 866 */ 867 if (space_info->total_bytes + avail < used) 868 to_reclaim += used - (space_info->total_bytes + avail); 869 870 return to_reclaim; 871 } 872 873 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 874 struct btrfs_space_info *space_info) 875 { 876 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv); 877 u64 ordered, delalloc; 878 u64 thresh; 879 u64 used; 880 881 thresh = mult_perc(space_info->total_bytes, 90); 882 883 lockdep_assert_held(&space_info->lock); 884 885 /* If we're just plain full then async reclaim just slows us down. */ 886 if ((space_info->bytes_used + space_info->bytes_reserved + 887 global_rsv_size) >= thresh) 888 return false; 889 890 used = space_info->bytes_may_use + space_info->bytes_pinned; 891 892 /* The total flushable belongs to the global rsv, don't flush. */ 893 if (global_rsv_size >= used) 894 return false; 895 896 /* 897 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 898 * that devoted to other reservations then there's no sense in flushing, 899 * we don't have a lot of things that need flushing. 900 */ 901 if (used - global_rsv_size <= SZ_128M) 902 return false; 903 904 /* 905 * We have tickets queued, bail so we don't compete with the async 906 * flushers. 907 */ 908 if (space_info->reclaim_size) 909 return false; 910 911 /* 912 * If we have over half of the free space occupied by reservations or 913 * pinned then we want to start flushing. 914 * 915 * We do not do the traditional thing here, which is to say 916 * 917 * if (used >= ((total_bytes + avail) / 2)) 918 * return 1; 919 * 920 * because this doesn't quite work how we want. If we had more than 50% 921 * of the space_info used by bytes_used and we had 0 available we'd just 922 * constantly run the background flusher. Instead we want it to kick in 923 * if our reclaimable space exceeds our clamped free space. 924 * 925 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 926 * the following: 927 * 928 * Amount of RAM Minimum threshold Maximum threshold 929 * 930 * 256GiB 1GiB 128GiB 931 * 128GiB 512MiB 64GiB 932 * 64GiB 256MiB 32GiB 933 * 32GiB 128MiB 16GiB 934 * 16GiB 64MiB 8GiB 935 * 936 * These are the range our thresholds will fall in, corresponding to how 937 * much delalloc we need for the background flusher to kick in. 938 */ 939 940 thresh = calc_available_free_space(fs_info, space_info, 941 BTRFS_RESERVE_FLUSH_ALL); 942 used = space_info->bytes_used + space_info->bytes_reserved + 943 space_info->bytes_readonly + global_rsv_size; 944 if (used < space_info->total_bytes) 945 thresh += space_info->total_bytes - used; 946 thresh >>= space_info->clamp; 947 948 used = space_info->bytes_pinned; 949 950 /* 951 * If we have more ordered bytes than delalloc bytes then we're either 952 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 953 * around. Preemptive flushing is only useful in that it can free up 954 * space before tickets need to wait for things to finish. In the case 955 * of ordered extents, preemptively waiting on ordered extents gets us 956 * nothing, if our reservations are tied up in ordered extents we'll 957 * simply have to slow down writers by forcing them to wait on ordered 958 * extents. 959 * 960 * In the case that ordered is larger than delalloc, only include the 961 * block reserves that we would actually be able to directly reclaim 962 * from. In this case if we're heavy on metadata operations this will 963 * clearly be heavy enough to warrant preemptive flushing. In the case 964 * of heavy DIO or ordered reservations, preemptive flushing will just 965 * waste time and cause us to slow down. 966 * 967 * We want to make sure we truly are maxed out on ordered however, so 968 * cut ordered in half, and if it's still higher than delalloc then we 969 * can keep flushing. This is to avoid the case where we start 970 * flushing, and now delalloc == ordered and we stop preemptively 971 * flushing when we could still have several gigs of delalloc to flush. 972 */ 973 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 974 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 975 if (ordered >= delalloc) 976 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) + 977 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv); 978 else 979 used += space_info->bytes_may_use - global_rsv_size; 980 981 return (used >= thresh && !btrfs_fs_closing(fs_info) && 982 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 983 } 984 985 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 986 struct btrfs_space_info *space_info, 987 struct reserve_ticket *ticket) 988 { 989 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 990 u64 min_bytes; 991 992 if (!ticket->steal) 993 return false; 994 995 if (global_rsv->space_info != space_info) 996 return false; 997 998 spin_lock(&global_rsv->lock); 999 min_bytes = mult_perc(global_rsv->size, 10); 1000 if (global_rsv->reserved < min_bytes + ticket->bytes) { 1001 spin_unlock(&global_rsv->lock); 1002 return false; 1003 } 1004 global_rsv->reserved -= ticket->bytes; 1005 remove_ticket(space_info, ticket); 1006 ticket->bytes = 0; 1007 wake_up(&ticket->wait); 1008 space_info->tickets_id++; 1009 if (global_rsv->reserved < global_rsv->size) 1010 global_rsv->full = 0; 1011 spin_unlock(&global_rsv->lock); 1012 1013 return true; 1014 } 1015 1016 /* 1017 * We've exhausted our flushing, start failing tickets. 1018 * 1019 * @fs_info - fs_info for this fs 1020 * @space_info - the space info we were flushing 1021 * 1022 * We call this when we've exhausted our flushing ability and haven't made 1023 * progress in satisfying tickets. The reservation code handles tickets in 1024 * order, so if there is a large ticket first and then smaller ones we could 1025 * very well satisfy the smaller tickets. This will attempt to wake up any 1026 * tickets in the list to catch this case. 1027 * 1028 * This function returns true if it was able to make progress by clearing out 1029 * other tickets, or if it stumbles across a ticket that was smaller than the 1030 * first ticket. 1031 */ 1032 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 1033 struct btrfs_space_info *space_info) 1034 { 1035 struct reserve_ticket *ticket; 1036 u64 tickets_id = space_info->tickets_id; 1037 const bool aborted = BTRFS_FS_ERROR(fs_info); 1038 1039 trace_btrfs_fail_all_tickets(fs_info, space_info); 1040 1041 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1042 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1043 __btrfs_dump_space_info(fs_info, space_info); 1044 } 1045 1046 while (!list_empty(&space_info->tickets) && 1047 tickets_id == space_info->tickets_id) { 1048 ticket = list_first_entry(&space_info->tickets, 1049 struct reserve_ticket, list); 1050 1051 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 1052 return true; 1053 1054 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1055 btrfs_info(fs_info, "failing ticket with %llu bytes", 1056 ticket->bytes); 1057 1058 remove_ticket(space_info, ticket); 1059 if (aborted) 1060 ticket->error = -EIO; 1061 else 1062 ticket->error = -ENOSPC; 1063 wake_up(&ticket->wait); 1064 1065 /* 1066 * We're just throwing tickets away, so more flushing may not 1067 * trip over btrfs_try_granting_tickets, so we need to call it 1068 * here to see if we can make progress with the next ticket in 1069 * the list. 1070 */ 1071 if (!aborted) 1072 btrfs_try_granting_tickets(fs_info, space_info); 1073 } 1074 return (tickets_id != space_info->tickets_id); 1075 } 1076 1077 /* 1078 * This is for normal flushers, we can wait all goddamned day if we want to. We 1079 * will loop and continuously try to flush as long as we are making progress. 1080 * We count progress as clearing off tickets each time we have to loop. 1081 */ 1082 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1083 { 1084 struct btrfs_fs_info *fs_info; 1085 struct btrfs_space_info *space_info; 1086 u64 to_reclaim; 1087 enum btrfs_flush_state flush_state; 1088 int commit_cycles = 0; 1089 u64 last_tickets_id; 1090 1091 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1092 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1093 1094 spin_lock(&space_info->lock); 1095 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1096 if (!to_reclaim) { 1097 space_info->flush = 0; 1098 spin_unlock(&space_info->lock); 1099 return; 1100 } 1101 last_tickets_id = space_info->tickets_id; 1102 spin_unlock(&space_info->lock); 1103 1104 flush_state = FLUSH_DELAYED_ITEMS_NR; 1105 do { 1106 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1107 spin_lock(&space_info->lock); 1108 if (list_empty(&space_info->tickets)) { 1109 space_info->flush = 0; 1110 spin_unlock(&space_info->lock); 1111 return; 1112 } 1113 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1114 space_info); 1115 if (last_tickets_id == space_info->tickets_id) { 1116 flush_state++; 1117 } else { 1118 last_tickets_id = space_info->tickets_id; 1119 flush_state = FLUSH_DELAYED_ITEMS_NR; 1120 if (commit_cycles) 1121 commit_cycles--; 1122 } 1123 1124 /* 1125 * We do not want to empty the system of delalloc unless we're 1126 * under heavy pressure, so allow one trip through the flushing 1127 * logic before we start doing a FLUSH_DELALLOC_FULL. 1128 */ 1129 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1130 flush_state++; 1131 1132 /* 1133 * We don't want to force a chunk allocation until we've tried 1134 * pretty hard to reclaim space. Think of the case where we 1135 * freed up a bunch of space and so have a lot of pinned space 1136 * to reclaim. We would rather use that than possibly create a 1137 * underutilized metadata chunk. So if this is our first run 1138 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1139 * commit the transaction. If nothing has changed the next go 1140 * around then we can force a chunk allocation. 1141 */ 1142 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1143 flush_state++; 1144 1145 if (flush_state > COMMIT_TRANS) { 1146 commit_cycles++; 1147 if (commit_cycles > 2) { 1148 if (maybe_fail_all_tickets(fs_info, space_info)) { 1149 flush_state = FLUSH_DELAYED_ITEMS_NR; 1150 commit_cycles--; 1151 } else { 1152 space_info->flush = 0; 1153 } 1154 } else { 1155 flush_state = FLUSH_DELAYED_ITEMS_NR; 1156 } 1157 } 1158 spin_unlock(&space_info->lock); 1159 } while (flush_state <= COMMIT_TRANS); 1160 } 1161 1162 /* 1163 * This handles pre-flushing of metadata space before we get to the point that 1164 * we need to start blocking threads on tickets. The logic here is different 1165 * from the other flush paths because it doesn't rely on tickets to tell us how 1166 * much we need to flush, instead it attempts to keep us below the 80% full 1167 * watermark of space by flushing whichever reservation pool is currently the 1168 * largest. 1169 */ 1170 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1171 { 1172 struct btrfs_fs_info *fs_info; 1173 struct btrfs_space_info *space_info; 1174 struct btrfs_block_rsv *delayed_block_rsv; 1175 struct btrfs_block_rsv *delayed_refs_rsv; 1176 struct btrfs_block_rsv *global_rsv; 1177 struct btrfs_block_rsv *trans_rsv; 1178 int loops = 0; 1179 1180 fs_info = container_of(work, struct btrfs_fs_info, 1181 preempt_reclaim_work); 1182 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1183 delayed_block_rsv = &fs_info->delayed_block_rsv; 1184 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1185 global_rsv = &fs_info->global_block_rsv; 1186 trans_rsv = &fs_info->trans_block_rsv; 1187 1188 spin_lock(&space_info->lock); 1189 while (need_preemptive_reclaim(fs_info, space_info)) { 1190 enum btrfs_flush_state flush; 1191 u64 delalloc_size = 0; 1192 u64 to_reclaim, block_rsv_size; 1193 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv); 1194 1195 loops++; 1196 1197 /* 1198 * We don't have a precise counter for the metadata being 1199 * reserved for delalloc, so we'll approximate it by subtracting 1200 * out the block rsv's space from the bytes_may_use. If that 1201 * amount is higher than the individual reserves, then we can 1202 * assume it's tied up in delalloc reservations. 1203 */ 1204 block_rsv_size = global_rsv_size + 1205 btrfs_block_rsv_reserved(delayed_block_rsv) + 1206 btrfs_block_rsv_reserved(delayed_refs_rsv) + 1207 btrfs_block_rsv_reserved(trans_rsv); 1208 if (block_rsv_size < space_info->bytes_may_use) 1209 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1210 1211 /* 1212 * We don't want to include the global_rsv in our calculation, 1213 * because that's space we can't touch. Subtract it from the 1214 * block_rsv_size for the next checks. 1215 */ 1216 block_rsv_size -= global_rsv_size; 1217 1218 /* 1219 * We really want to avoid flushing delalloc too much, as it 1220 * could result in poor allocation patterns, so only flush it if 1221 * it's larger than the rest of the pools combined. 1222 */ 1223 if (delalloc_size > block_rsv_size) { 1224 to_reclaim = delalloc_size; 1225 flush = FLUSH_DELALLOC; 1226 } else if (space_info->bytes_pinned > 1227 (btrfs_block_rsv_reserved(delayed_block_rsv) + 1228 btrfs_block_rsv_reserved(delayed_refs_rsv))) { 1229 to_reclaim = space_info->bytes_pinned; 1230 flush = COMMIT_TRANS; 1231 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) > 1232 btrfs_block_rsv_reserved(delayed_refs_rsv)) { 1233 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv); 1234 flush = FLUSH_DELAYED_ITEMS_NR; 1235 } else { 1236 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv); 1237 flush = FLUSH_DELAYED_REFS_NR; 1238 } 1239 1240 spin_unlock(&space_info->lock); 1241 1242 /* 1243 * We don't want to reclaim everything, just a portion, so scale 1244 * down the to_reclaim by 1/4. If it takes us down to 0, 1245 * reclaim 1 items worth. 1246 */ 1247 to_reclaim >>= 2; 1248 if (!to_reclaim) 1249 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1250 flush_space(fs_info, space_info, to_reclaim, flush, true); 1251 cond_resched(); 1252 spin_lock(&space_info->lock); 1253 } 1254 1255 /* We only went through once, back off our clamping. */ 1256 if (loops == 1 && !space_info->reclaim_size) 1257 space_info->clamp = max(1, space_info->clamp - 1); 1258 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1259 spin_unlock(&space_info->lock); 1260 } 1261 1262 /* 1263 * FLUSH_DELALLOC_WAIT: 1264 * Space is freed from flushing delalloc in one of two ways. 1265 * 1266 * 1) compression is on and we allocate less space than we reserved 1267 * 2) we are overwriting existing space 1268 * 1269 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1270 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1271 * length to ->bytes_reserved, and subtracts the reserved space from 1272 * ->bytes_may_use. 1273 * 1274 * For #2 this is trickier. Once the ordered extent runs we will drop the 1275 * extent in the range we are overwriting, which creates a delayed ref for 1276 * that freed extent. This however is not reclaimed until the transaction 1277 * commits, thus the next stages. 1278 * 1279 * RUN_DELAYED_IPUTS 1280 * If we are freeing inodes, we want to make sure all delayed iputs have 1281 * completed, because they could have been on an inode with i_nlink == 0, and 1282 * thus have been truncated and freed up space. But again this space is not 1283 * immediately re-usable, it comes in the form of a delayed ref, which must be 1284 * run and then the transaction must be committed. 1285 * 1286 * COMMIT_TRANS 1287 * This is where we reclaim all of the pinned space generated by running the 1288 * iputs 1289 * 1290 * ALLOC_CHUNK_FORCE 1291 * For data we start with alloc chunk force, however we could have been full 1292 * before, and then the transaction commit could have freed new block groups, 1293 * so if we now have space to allocate do the force chunk allocation. 1294 */ 1295 static const enum btrfs_flush_state data_flush_states[] = { 1296 FLUSH_DELALLOC_FULL, 1297 RUN_DELAYED_IPUTS, 1298 COMMIT_TRANS, 1299 ALLOC_CHUNK_FORCE, 1300 }; 1301 1302 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1303 { 1304 struct btrfs_fs_info *fs_info; 1305 struct btrfs_space_info *space_info; 1306 u64 last_tickets_id; 1307 enum btrfs_flush_state flush_state = 0; 1308 1309 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1310 space_info = fs_info->data_sinfo; 1311 1312 spin_lock(&space_info->lock); 1313 if (list_empty(&space_info->tickets)) { 1314 space_info->flush = 0; 1315 spin_unlock(&space_info->lock); 1316 return; 1317 } 1318 last_tickets_id = space_info->tickets_id; 1319 spin_unlock(&space_info->lock); 1320 1321 while (!space_info->full) { 1322 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1323 spin_lock(&space_info->lock); 1324 if (list_empty(&space_info->tickets)) { 1325 space_info->flush = 0; 1326 spin_unlock(&space_info->lock); 1327 return; 1328 } 1329 1330 /* Something happened, fail everything and bail. */ 1331 if (BTRFS_FS_ERROR(fs_info)) 1332 goto aborted_fs; 1333 last_tickets_id = space_info->tickets_id; 1334 spin_unlock(&space_info->lock); 1335 } 1336 1337 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1338 flush_space(fs_info, space_info, U64_MAX, 1339 data_flush_states[flush_state], false); 1340 spin_lock(&space_info->lock); 1341 if (list_empty(&space_info->tickets)) { 1342 space_info->flush = 0; 1343 spin_unlock(&space_info->lock); 1344 return; 1345 } 1346 1347 if (last_tickets_id == space_info->tickets_id) { 1348 flush_state++; 1349 } else { 1350 last_tickets_id = space_info->tickets_id; 1351 flush_state = 0; 1352 } 1353 1354 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1355 if (space_info->full) { 1356 if (maybe_fail_all_tickets(fs_info, space_info)) 1357 flush_state = 0; 1358 else 1359 space_info->flush = 0; 1360 } else { 1361 flush_state = 0; 1362 } 1363 1364 /* Something happened, fail everything and bail. */ 1365 if (BTRFS_FS_ERROR(fs_info)) 1366 goto aborted_fs; 1367 1368 } 1369 spin_unlock(&space_info->lock); 1370 } 1371 return; 1372 1373 aborted_fs: 1374 maybe_fail_all_tickets(fs_info, space_info); 1375 space_info->flush = 0; 1376 spin_unlock(&space_info->lock); 1377 } 1378 1379 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1380 { 1381 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1382 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1383 INIT_WORK(&fs_info->preempt_reclaim_work, 1384 btrfs_preempt_reclaim_metadata_space); 1385 } 1386 1387 static const enum btrfs_flush_state priority_flush_states[] = { 1388 FLUSH_DELAYED_ITEMS_NR, 1389 FLUSH_DELAYED_ITEMS, 1390 ALLOC_CHUNK, 1391 }; 1392 1393 static const enum btrfs_flush_state evict_flush_states[] = { 1394 FLUSH_DELAYED_ITEMS_NR, 1395 FLUSH_DELAYED_ITEMS, 1396 FLUSH_DELAYED_REFS_NR, 1397 FLUSH_DELAYED_REFS, 1398 FLUSH_DELALLOC, 1399 FLUSH_DELALLOC_WAIT, 1400 FLUSH_DELALLOC_FULL, 1401 ALLOC_CHUNK, 1402 COMMIT_TRANS, 1403 }; 1404 1405 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1406 struct btrfs_space_info *space_info, 1407 struct reserve_ticket *ticket, 1408 const enum btrfs_flush_state *states, 1409 int states_nr) 1410 { 1411 u64 to_reclaim; 1412 int flush_state = 0; 1413 1414 spin_lock(&space_info->lock); 1415 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1416 /* 1417 * This is the priority reclaim path, so to_reclaim could be >0 still 1418 * because we may have only satisfied the priority tickets and still 1419 * left non priority tickets on the list. We would then have 1420 * to_reclaim but ->bytes == 0. 1421 */ 1422 if (ticket->bytes == 0) { 1423 spin_unlock(&space_info->lock); 1424 return; 1425 } 1426 1427 while (flush_state < states_nr) { 1428 spin_unlock(&space_info->lock); 1429 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1430 false); 1431 flush_state++; 1432 spin_lock(&space_info->lock); 1433 if (ticket->bytes == 0) { 1434 spin_unlock(&space_info->lock); 1435 return; 1436 } 1437 } 1438 1439 /* 1440 * Attempt to steal from the global rsv if we can, except if the fs was 1441 * turned into error mode due to a transaction abort when flushing space 1442 * above, in that case fail with the abort error instead of returning 1443 * success to the caller if we can steal from the global rsv - this is 1444 * just to have caller fail immeditelly instead of later when trying to 1445 * modify the fs, making it easier to debug -ENOSPC problems. 1446 */ 1447 if (BTRFS_FS_ERROR(fs_info)) { 1448 ticket->error = BTRFS_FS_ERROR(fs_info); 1449 remove_ticket(space_info, ticket); 1450 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1451 ticket->error = -ENOSPC; 1452 remove_ticket(space_info, ticket); 1453 } 1454 1455 /* 1456 * We must run try_granting_tickets here because we could be a large 1457 * ticket in front of a smaller ticket that can now be satisfied with 1458 * the available space. 1459 */ 1460 btrfs_try_granting_tickets(fs_info, space_info); 1461 spin_unlock(&space_info->lock); 1462 } 1463 1464 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1465 struct btrfs_space_info *space_info, 1466 struct reserve_ticket *ticket) 1467 { 1468 spin_lock(&space_info->lock); 1469 1470 /* We could have been granted before we got here. */ 1471 if (ticket->bytes == 0) { 1472 spin_unlock(&space_info->lock); 1473 return; 1474 } 1475 1476 while (!space_info->full) { 1477 spin_unlock(&space_info->lock); 1478 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1479 spin_lock(&space_info->lock); 1480 if (ticket->bytes == 0) { 1481 spin_unlock(&space_info->lock); 1482 return; 1483 } 1484 } 1485 1486 ticket->error = -ENOSPC; 1487 remove_ticket(space_info, ticket); 1488 btrfs_try_granting_tickets(fs_info, space_info); 1489 spin_unlock(&space_info->lock); 1490 } 1491 1492 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1493 struct btrfs_space_info *space_info, 1494 struct reserve_ticket *ticket) 1495 1496 { 1497 DEFINE_WAIT(wait); 1498 int ret = 0; 1499 1500 spin_lock(&space_info->lock); 1501 while (ticket->bytes > 0 && ticket->error == 0) { 1502 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1503 if (ret) { 1504 /* 1505 * Delete us from the list. After we unlock the space 1506 * info, we don't want the async reclaim job to reserve 1507 * space for this ticket. If that would happen, then the 1508 * ticket's task would not known that space was reserved 1509 * despite getting an error, resulting in a space leak 1510 * (bytes_may_use counter of our space_info). 1511 */ 1512 remove_ticket(space_info, ticket); 1513 ticket->error = -EINTR; 1514 break; 1515 } 1516 spin_unlock(&space_info->lock); 1517 1518 schedule(); 1519 1520 finish_wait(&ticket->wait, &wait); 1521 spin_lock(&space_info->lock); 1522 } 1523 spin_unlock(&space_info->lock); 1524 } 1525 1526 /* 1527 * Do the appropriate flushing and waiting for a ticket. 1528 * 1529 * @fs_info: the filesystem 1530 * @space_info: space info for the reservation 1531 * @ticket: ticket for the reservation 1532 * @start_ns: timestamp when the reservation started 1533 * @orig_bytes: amount of bytes originally reserved 1534 * @flush: how much we can flush 1535 * 1536 * This does the work of figuring out how to flush for the ticket, waiting for 1537 * the reservation, and returning the appropriate error if there is one. 1538 */ 1539 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1540 struct btrfs_space_info *space_info, 1541 struct reserve_ticket *ticket, 1542 u64 start_ns, u64 orig_bytes, 1543 enum btrfs_reserve_flush_enum flush) 1544 { 1545 int ret; 1546 1547 switch (flush) { 1548 case BTRFS_RESERVE_FLUSH_DATA: 1549 case BTRFS_RESERVE_FLUSH_ALL: 1550 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1551 wait_reserve_ticket(fs_info, space_info, ticket); 1552 break; 1553 case BTRFS_RESERVE_FLUSH_LIMIT: 1554 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1555 priority_flush_states, 1556 ARRAY_SIZE(priority_flush_states)); 1557 break; 1558 case BTRFS_RESERVE_FLUSH_EVICT: 1559 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1560 evict_flush_states, 1561 ARRAY_SIZE(evict_flush_states)); 1562 break; 1563 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1564 priority_reclaim_data_space(fs_info, space_info, ticket); 1565 break; 1566 default: 1567 ASSERT(0); 1568 break; 1569 } 1570 1571 ret = ticket->error; 1572 ASSERT(list_empty(&ticket->list)); 1573 /* 1574 * Check that we can't have an error set if the reservation succeeded, 1575 * as that would confuse tasks and lead them to error out without 1576 * releasing reserved space (if an error happens the expectation is that 1577 * space wasn't reserved at all). 1578 */ 1579 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1580 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1581 start_ns, flush, ticket->error); 1582 return ret; 1583 } 1584 1585 /* 1586 * This returns true if this flush state will go through the ordinary flushing 1587 * code. 1588 */ 1589 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1590 { 1591 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1592 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1593 } 1594 1595 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1596 struct btrfs_space_info *space_info) 1597 { 1598 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1599 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1600 1601 /* 1602 * If we're heavy on ordered operations then clamping won't help us. We 1603 * need to clamp specifically to keep up with dirty'ing buffered 1604 * writers, because there's not a 1:1 correlation of writing delalloc 1605 * and freeing space, like there is with flushing delayed refs or 1606 * delayed nodes. If we're already more ordered than delalloc then 1607 * we're keeping up, otherwise we aren't and should probably clamp. 1608 */ 1609 if (ordered < delalloc) 1610 space_info->clamp = min(space_info->clamp + 1, 8); 1611 } 1612 1613 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1614 { 1615 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1616 flush == BTRFS_RESERVE_FLUSH_EVICT); 1617 } 1618 1619 /* 1620 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1621 * fail as quickly as possible. 1622 */ 1623 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1624 { 1625 return (flush != BTRFS_RESERVE_NO_FLUSH && 1626 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1627 } 1628 1629 /* 1630 * Try to reserve bytes from the block_rsv's space. 1631 * 1632 * @fs_info: the filesystem 1633 * @space_info: space info we want to allocate from 1634 * @orig_bytes: number of bytes we want 1635 * @flush: whether or not we can flush to make our reservation 1636 * 1637 * This will reserve orig_bytes number of bytes from the space info associated 1638 * with the block_rsv. If there is not enough space it will make an attempt to 1639 * flush out space to make room. It will do this by flushing delalloc if 1640 * possible or committing the transaction. If flush is 0 then no attempts to 1641 * regain reservations will be made and this will fail if there is not enough 1642 * space already. 1643 */ 1644 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1645 struct btrfs_space_info *space_info, u64 orig_bytes, 1646 enum btrfs_reserve_flush_enum flush) 1647 { 1648 struct work_struct *async_work; 1649 struct reserve_ticket ticket; 1650 u64 start_ns = 0; 1651 u64 used; 1652 int ret = -ENOSPC; 1653 bool pending_tickets; 1654 1655 ASSERT(orig_bytes); 1656 /* 1657 * If have a transaction handle (current->journal_info != NULL), then 1658 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor 1659 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those 1660 * flushing methods can trigger transaction commits. 1661 */ 1662 if (current->journal_info) { 1663 /* One assert per line for easier debugging. */ 1664 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL); 1665 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL); 1666 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT); 1667 } 1668 1669 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1670 async_work = &fs_info->async_data_reclaim_work; 1671 else 1672 async_work = &fs_info->async_reclaim_work; 1673 1674 spin_lock(&space_info->lock); 1675 used = btrfs_space_info_used(space_info, true); 1676 1677 /* 1678 * We don't want NO_FLUSH allocations to jump everybody, they can 1679 * generally handle ENOSPC in a different way, so treat them the same as 1680 * normal flushers when it comes to skipping pending tickets. 1681 */ 1682 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1683 pending_tickets = !list_empty(&space_info->tickets) || 1684 !list_empty(&space_info->priority_tickets); 1685 else 1686 pending_tickets = !list_empty(&space_info->priority_tickets); 1687 1688 /* 1689 * Carry on if we have enough space (short-circuit) OR call 1690 * can_overcommit() to ensure we can overcommit to continue. 1691 */ 1692 if (!pending_tickets && 1693 ((used + orig_bytes <= space_info->total_bytes) || 1694 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1695 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1696 orig_bytes); 1697 ret = 0; 1698 } 1699 1700 /* 1701 * Things are dire, we need to make a reservation so we don't abort. We 1702 * will let this reservation go through as long as we have actual space 1703 * left to allocate for the block. 1704 */ 1705 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1706 used = btrfs_space_info_used(space_info, false); 1707 if (used + orig_bytes <= space_info->total_bytes) { 1708 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1709 orig_bytes); 1710 ret = 0; 1711 } 1712 } 1713 1714 /* 1715 * If we couldn't make a reservation then setup our reservation ticket 1716 * and kick the async worker if it's not already running. 1717 * 1718 * If we are a priority flusher then we just need to add our ticket to 1719 * the list and we will do our own flushing further down. 1720 */ 1721 if (ret && can_ticket(flush)) { 1722 ticket.bytes = orig_bytes; 1723 ticket.error = 0; 1724 space_info->reclaim_size += ticket.bytes; 1725 init_waitqueue_head(&ticket.wait); 1726 ticket.steal = can_steal(flush); 1727 if (trace_btrfs_reserve_ticket_enabled()) 1728 start_ns = ktime_get_ns(); 1729 1730 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1731 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1732 flush == BTRFS_RESERVE_FLUSH_DATA) { 1733 list_add_tail(&ticket.list, &space_info->tickets); 1734 if (!space_info->flush) { 1735 /* 1736 * We were forced to add a reserve ticket, so 1737 * our preemptive flushing is unable to keep 1738 * up. Clamp down on the threshold for the 1739 * preemptive flushing in order to keep up with 1740 * the workload. 1741 */ 1742 maybe_clamp_preempt(fs_info, space_info); 1743 1744 space_info->flush = 1; 1745 trace_btrfs_trigger_flush(fs_info, 1746 space_info->flags, 1747 orig_bytes, flush, 1748 "enospc"); 1749 queue_work(system_unbound_wq, async_work); 1750 } 1751 } else { 1752 list_add_tail(&ticket.list, 1753 &space_info->priority_tickets); 1754 } 1755 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1756 /* 1757 * We will do the space reservation dance during log replay, 1758 * which means we won't have fs_info->fs_root set, so don't do 1759 * the async reclaim as we will panic. 1760 */ 1761 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1762 !work_busy(&fs_info->preempt_reclaim_work) && 1763 need_preemptive_reclaim(fs_info, space_info)) { 1764 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1765 orig_bytes, flush, "preempt"); 1766 queue_work(system_unbound_wq, 1767 &fs_info->preempt_reclaim_work); 1768 } 1769 } 1770 spin_unlock(&space_info->lock); 1771 if (!ret || !can_ticket(flush)) 1772 return ret; 1773 1774 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1775 orig_bytes, flush); 1776 } 1777 1778 /* 1779 * Try to reserve metadata bytes from the block_rsv's space. 1780 * 1781 * @fs_info: the filesystem 1782 * @space_info: the space_info we're allocating for 1783 * @orig_bytes: number of bytes we want 1784 * @flush: whether or not we can flush to make our reservation 1785 * 1786 * This will reserve orig_bytes number of bytes from the space info associated 1787 * with the block_rsv. If there is not enough space it will make an attempt to 1788 * flush out space to make room. It will do this by flushing delalloc if 1789 * possible or committing the transaction. If flush is 0 then no attempts to 1790 * regain reservations will be made and this will fail if there is not enough 1791 * space already. 1792 */ 1793 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1794 struct btrfs_space_info *space_info, 1795 u64 orig_bytes, 1796 enum btrfs_reserve_flush_enum flush) 1797 { 1798 int ret; 1799 1800 ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush); 1801 if (ret == -ENOSPC) { 1802 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1803 space_info->flags, orig_bytes, 1); 1804 1805 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1806 btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0); 1807 } 1808 return ret; 1809 } 1810 1811 /* 1812 * Try to reserve data bytes for an allocation. 1813 * 1814 * @fs_info: the filesystem 1815 * @bytes: number of bytes we need 1816 * @flush: how we are allowed to flush 1817 * 1818 * This will reserve bytes from the data space info. If there is not enough 1819 * space then we will attempt to flush space as specified by flush. 1820 */ 1821 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1822 enum btrfs_reserve_flush_enum flush) 1823 { 1824 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1825 int ret; 1826 1827 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1828 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1829 flush == BTRFS_RESERVE_NO_FLUSH); 1830 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1831 1832 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1833 if (ret == -ENOSPC) { 1834 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1835 data_sinfo->flags, bytes, 1); 1836 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1837 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1838 } 1839 return ret; 1840 } 1841 1842 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1843 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1844 { 1845 struct btrfs_space_info *space_info; 1846 1847 btrfs_info(fs_info, "dumping space info:"); 1848 list_for_each_entry(space_info, &fs_info->space_info, list) { 1849 spin_lock(&space_info->lock); 1850 __btrfs_dump_space_info(fs_info, space_info); 1851 spin_unlock(&space_info->lock); 1852 } 1853 dump_global_block_rsv(fs_info); 1854 } 1855 1856 /* 1857 * Account the unused space of all the readonly block group in the space_info. 1858 * takes mirrors into account. 1859 */ 1860 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1861 { 1862 struct btrfs_block_group *block_group; 1863 u64 free_bytes = 0; 1864 int factor; 1865 1866 /* It's df, we don't care if it's racy */ 1867 if (list_empty(&sinfo->ro_bgs)) 1868 return 0; 1869 1870 spin_lock(&sinfo->lock); 1871 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1872 spin_lock(&block_group->lock); 1873 1874 if (!block_group->ro) { 1875 spin_unlock(&block_group->lock); 1876 continue; 1877 } 1878 1879 factor = btrfs_bg_type_to_factor(block_group->flags); 1880 free_bytes += (block_group->length - 1881 block_group->used) * factor; 1882 1883 spin_unlock(&block_group->lock); 1884 } 1885 spin_unlock(&sinfo->lock); 1886 1887 return free_bytes; 1888 } 1889 1890 static u64 calc_pct_ratio(u64 x, u64 y) 1891 { 1892 int err; 1893 1894 if (!y) 1895 return 0; 1896 again: 1897 err = check_mul_overflow(100, x, &x); 1898 if (err) 1899 goto lose_precision; 1900 return div64_u64(x, y); 1901 lose_precision: 1902 x >>= 10; 1903 y >>= 10; 1904 if (!y) 1905 y = 1; 1906 goto again; 1907 } 1908 1909 /* 1910 * A reasonable buffer for unallocated space is 10 data block_groups. 1911 * If we claw this back repeatedly, we can still achieve efficient 1912 * utilization when near full, and not do too much reclaim while 1913 * always maintaining a solid buffer for workloads that quickly 1914 * allocate and pressure the unallocated space. 1915 */ 1916 static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info) 1917 { 1918 u64 chunk_sz = calc_effective_data_chunk_size(fs_info); 1919 1920 return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz; 1921 } 1922 1923 /* 1924 * The fundamental goal of automatic reclaim is to protect the filesystem's 1925 * unallocated space and thus minimize the probability of the filesystem going 1926 * read only when a metadata allocation failure causes a transaction abort. 1927 * 1928 * However, relocations happen into the space_info's unused space, therefore 1929 * automatic reclaim must also back off as that space runs low. There is no 1930 * value in doing trivial "relocations" of re-writing the same block group 1931 * into a fresh one. 1932 * 1933 * Furthermore, we want to avoid doing too much reclaim even if there are good 1934 * candidates. This is because the allocator is pretty good at filling up the 1935 * holes with writes. So we want to do just enough reclaim to try and stay 1936 * safe from running out of unallocated space but not be wasteful about it. 1937 * 1938 * Therefore, the dynamic reclaim threshold is calculated as follows: 1939 * - calculate a target unallocated amount of 5 block group sized chunks 1940 * - ratchet up the intensity of reclaim depending on how far we are from 1941 * that target by using a formula of unalloc / target to set the threshold. 1942 * 1943 * Typically with 10 block groups as the target, the discrete values this comes 1944 * out to are 0, 10, 20, ... , 80, 90, and 99. 1945 */ 1946 static int calc_dynamic_reclaim_threshold(struct btrfs_space_info *space_info) 1947 { 1948 struct btrfs_fs_info *fs_info = space_info->fs_info; 1949 u64 unalloc = atomic64_read(&fs_info->free_chunk_space); 1950 u64 target = calc_unalloc_target(fs_info); 1951 u64 alloc = space_info->total_bytes; 1952 u64 used = btrfs_space_info_used(space_info, false); 1953 u64 unused = alloc - used; 1954 u64 want = target > unalloc ? target - unalloc : 0; 1955 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info); 1956 1957 /* If we have no unused space, don't bother, it won't work anyway. */ 1958 if (unused < data_chunk_size) 1959 return 0; 1960 1961 /* Cast to int is OK because want <= target. */ 1962 return calc_pct_ratio(want, target); 1963 } 1964 1965 int btrfs_calc_reclaim_threshold(struct btrfs_space_info *space_info) 1966 { 1967 lockdep_assert_held(&space_info->lock); 1968 1969 if (READ_ONCE(space_info->dynamic_reclaim)) 1970 return calc_dynamic_reclaim_threshold(space_info); 1971 return READ_ONCE(space_info->bg_reclaim_threshold); 1972 } 1973 1974 /* 1975 * Under "urgent" reclaim, we will reclaim even fresh block groups that have 1976 * recently seen successful allocations, as we are desperate to reclaim 1977 * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs. 1978 */ 1979 static bool is_reclaim_urgent(struct btrfs_space_info *space_info) 1980 { 1981 struct btrfs_fs_info *fs_info = space_info->fs_info; 1982 u64 unalloc = atomic64_read(&fs_info->free_chunk_space); 1983 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info); 1984 1985 return unalloc < data_chunk_size; 1986 } 1987 1988 static void do_reclaim_sweep(struct btrfs_fs_info *fs_info, 1989 struct btrfs_space_info *space_info, int raid) 1990 { 1991 struct btrfs_block_group *bg; 1992 int thresh_pct; 1993 bool try_again = true; 1994 bool urgent; 1995 1996 spin_lock(&space_info->lock); 1997 urgent = is_reclaim_urgent(space_info); 1998 thresh_pct = btrfs_calc_reclaim_threshold(space_info); 1999 spin_unlock(&space_info->lock); 2000 2001 down_read(&space_info->groups_sem); 2002 again: 2003 list_for_each_entry(bg, &space_info->block_groups[raid], list) { 2004 u64 thresh; 2005 bool reclaim = false; 2006 2007 btrfs_get_block_group(bg); 2008 spin_lock(&bg->lock); 2009 thresh = mult_perc(bg->length, thresh_pct); 2010 if (bg->used < thresh && bg->reclaim_mark) { 2011 try_again = false; 2012 reclaim = true; 2013 } 2014 bg->reclaim_mark++; 2015 spin_unlock(&bg->lock); 2016 if (reclaim) 2017 btrfs_mark_bg_to_reclaim(bg); 2018 btrfs_put_block_group(bg); 2019 } 2020 2021 /* 2022 * In situations where we are very motivated to reclaim (low unalloc) 2023 * use two passes to make the reclaim mark check best effort. 2024 * 2025 * If we have any staler groups, we don't touch the fresher ones, but if we 2026 * really need a block group, do take a fresh one. 2027 */ 2028 if (try_again && urgent) { 2029 try_again = false; 2030 goto again; 2031 } 2032 2033 up_read(&space_info->groups_sem); 2034 } 2035 2036 void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes) 2037 { 2038 u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info); 2039 2040 lockdep_assert_held(&space_info->lock); 2041 space_info->reclaimable_bytes += bytes; 2042 2043 if (space_info->reclaimable_bytes >= chunk_sz) 2044 btrfs_set_periodic_reclaim_ready(space_info, true); 2045 } 2046 2047 void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready) 2048 { 2049 lockdep_assert_held(&space_info->lock); 2050 if (!READ_ONCE(space_info->periodic_reclaim)) 2051 return; 2052 if (ready != space_info->periodic_reclaim_ready) { 2053 space_info->periodic_reclaim_ready = ready; 2054 if (!ready) 2055 space_info->reclaimable_bytes = 0; 2056 } 2057 } 2058 2059 bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info) 2060 { 2061 bool ret; 2062 2063 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 2064 return false; 2065 if (!READ_ONCE(space_info->periodic_reclaim)) 2066 return false; 2067 2068 spin_lock(&space_info->lock); 2069 ret = space_info->periodic_reclaim_ready; 2070 btrfs_set_periodic_reclaim_ready(space_info, false); 2071 spin_unlock(&space_info->lock); 2072 2073 return ret; 2074 } 2075 2076 void btrfs_reclaim_sweep(struct btrfs_fs_info *fs_info) 2077 { 2078 int raid; 2079 struct btrfs_space_info *space_info; 2080 2081 list_for_each_entry(space_info, &fs_info->space_info, list) { 2082 if (!btrfs_should_periodic_reclaim(space_info)) 2083 continue; 2084 for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++) 2085 do_reclaim_sweep(fs_info, space_info, raid); 2086 } 2087 } 2088
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.