~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/space-info.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 
  3 #include "linux/spinlock.h"
  4 #include <linux/minmax.h>
  5 #include "misc.h"
  6 #include "ctree.h"
  7 #include "space-info.h"
  8 #include "sysfs.h"
  9 #include "volumes.h"
 10 #include "free-space-cache.h"
 11 #include "ordered-data.h"
 12 #include "transaction.h"
 13 #include "block-group.h"
 14 #include "fs.h"
 15 #include "accessors.h"
 16 #include "extent-tree.h"
 17 
 18 /*
 19  * HOW DOES SPACE RESERVATION WORK
 20  *
 21  * If you want to know about delalloc specifically, there is a separate comment
 22  * for that with the delalloc code.  This comment is about how the whole system
 23  * works generally.
 24  *
 25  * BASIC CONCEPTS
 26  *
 27  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
 28  *   There's a description of the bytes_ fields with the struct declaration,
 29  *   refer to that for specifics on each field.  Suffice it to say that for
 30  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
 31  *   determining if there is space to make an allocation.  There is a space_info
 32  *   for METADATA, SYSTEM, and DATA areas.
 33  *
 34  *   2) block_rsv's.  These are basically buckets for every different type of
 35  *   metadata reservation we have.  You can see the comment in the block_rsv
 36  *   code on the rules for each type, but generally block_rsv->reserved is how
 37  *   much space is accounted for in space_info->bytes_may_use.
 38  *
 39  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
 40  *   on the number of items we will want to modify.  We have one for changing
 41  *   items, and one for inserting new items.  Generally we use these helpers to
 42  *   determine the size of the block reserves, and then use the actual bytes
 43  *   values to adjust the space_info counters.
 44  *
 45  * MAKING RESERVATIONS, THE NORMAL CASE
 46  *
 47  *   We call into either btrfs_reserve_data_bytes() or
 48  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
 49  *   num_bytes we want to reserve.
 50  *
 51  *   ->reserve
 52  *     space_info->bytes_may_reserve += num_bytes
 53  *
 54  *   ->extent allocation
 55  *     Call btrfs_add_reserved_bytes() which does
 56  *     space_info->bytes_may_reserve -= num_bytes
 57  *     space_info->bytes_reserved += extent_bytes
 58  *
 59  *   ->insert reference
 60  *     Call btrfs_update_block_group() which does
 61  *     space_info->bytes_reserved -= extent_bytes
 62  *     space_info->bytes_used += extent_bytes
 63  *
 64  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
 65  *
 66  *   Assume we are unable to simply make the reservation because we do not have
 67  *   enough space
 68  *
 69  *   -> __reserve_bytes
 70  *     create a reserve_ticket with ->bytes set to our reservation, add it to
 71  *     the tail of space_info->tickets, kick async flush thread
 72  *
 73  *   ->handle_reserve_ticket
 74  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
 75  *     on the ticket.
 76  *
 77  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
 78  *     Flushes various things attempting to free up space.
 79  *
 80  *   -> btrfs_try_granting_tickets()
 81  *     This is called by anything that either subtracts space from
 82  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
 83  *     space_info->total_bytes.  This loops through the ->priority_tickets and
 84  *     then the ->tickets list checking to see if the reservation can be
 85  *     completed.  If it can the space is added to space_info->bytes_may_use and
 86  *     the ticket is woken up.
 87  *
 88  *   -> ticket wakeup
 89  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
 90  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
 91  *     were interrupted.)
 92  *
 93  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
 94  *
 95  *   Same as the above, except we add ourselves to the
 96  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
 97  *   call flush_space() ourselves for the states that are safe for us to call
 98  *   without deadlocking and hope for the best.
 99  *
100  * THE FLUSHING STATES
101  *
102  *   Generally speaking we will have two cases for each state, a "nice" state
103  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
104  *   reduce the locking over head on the various trees, and even to keep from
105  *   doing any work at all in the case of delayed refs.  Each of these delayed
106  *   things however hold reservations, and so letting them run allows us to
107  *   reclaim space so we can make new reservations.
108  *
109  *   FLUSH_DELAYED_ITEMS
110  *     Every inode has a delayed item to update the inode.  Take a simple write
111  *     for example, we would update the inode item at write time to update the
112  *     mtime, and then again at finish_ordered_io() time in order to update the
113  *     isize or bytes.  We keep these delayed items to coalesce these operations
114  *     into a single operation done on demand.  These are an easy way to reclaim
115  *     metadata space.
116  *
117  *   FLUSH_DELALLOC
118  *     Look at the delalloc comment to get an idea of how much space is reserved
119  *     for delayed allocation.  We can reclaim some of this space simply by
120  *     running delalloc, but usually we need to wait for ordered extents to
121  *     reclaim the bulk of this space.
122  *
123  *   FLUSH_DELAYED_REFS
124  *     We have a block reserve for the outstanding delayed refs space, and every
125  *     delayed ref operation holds a reservation.  Running these is a quick way
126  *     to reclaim space, but we want to hold this until the end because COW can
127  *     churn a lot and we can avoid making some extent tree modifications if we
128  *     are able to delay for as long as possible.
129  *
130  *   ALLOC_CHUNK
131  *     We will skip this the first time through space reservation, because of
132  *     overcommit and we don't want to have a lot of useless metadata space when
133  *     our worst case reservations will likely never come true.
134  *
135  *   RUN_DELAYED_IPUTS
136  *     If we're freeing inodes we're likely freeing checksums, file extent
137  *     items, and extent tree items.  Loads of space could be freed up by these
138  *     operations, however they won't be usable until the transaction commits.
139  *
140  *   COMMIT_TRANS
141  *     This will commit the transaction.  Historically we had a lot of logic
142  *     surrounding whether or not we'd commit the transaction, but this waits born
143  *     out of a pre-tickets era where we could end up committing the transaction
144  *     thousands of times in a row without making progress.  Now thanks to our
145  *     ticketing system we know if we're not making progress and can error
146  *     everybody out after a few commits rather than burning the disk hoping for
147  *     a different answer.
148  *
149  * OVERCOMMIT
150  *
151  *   Because we hold so many reservations for metadata we will allow you to
152  *   reserve more space than is currently free in the currently allocate
153  *   metadata space.  This only happens with metadata, data does not allow
154  *   overcommitting.
155  *
156  *   You can see the current logic for when we allow overcommit in
157  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
158  *   is no unallocated space to be had, all reservations are kept within the
159  *   free space in the allocated metadata chunks.
160  *
161  *   Because of overcommitting, you generally want to use the
162  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
163  *   thing with or without extra unallocated space.
164  */
165 
166 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
167                           bool may_use_included)
168 {
169         ASSERT(s_info);
170         return s_info->bytes_used + s_info->bytes_reserved +
171                 s_info->bytes_pinned + s_info->bytes_readonly +
172                 s_info->bytes_zone_unusable +
173                 (may_use_included ? s_info->bytes_may_use : 0);
174 }
175 
176 /*
177  * after adding space to the filesystem, we need to clear the full flags
178  * on all the space infos.
179  */
180 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
181 {
182         struct list_head *head = &info->space_info;
183         struct btrfs_space_info *found;
184 
185         list_for_each_entry(found, head, list)
186                 found->full = 0;
187 }
188 
189 /*
190  * Block groups with more than this value (percents) of unusable space will be
191  * scheduled for background reclaim.
192  */
193 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH                      (75)
194 
195 #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET                        (10ULL)
196 
197 /*
198  * Calculate chunk size depending on volume type (regular or zoned).
199  */
200 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
201 {
202         if (btrfs_is_zoned(fs_info))
203                 return fs_info->zone_size;
204 
205         ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
206 
207         if (flags & BTRFS_BLOCK_GROUP_DATA)
208                 return BTRFS_MAX_DATA_CHUNK_SIZE;
209         else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
210                 return SZ_32M;
211 
212         /* Handle BTRFS_BLOCK_GROUP_METADATA */
213         if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
214                 return SZ_1G;
215 
216         return SZ_256M;
217 }
218 
219 /*
220  * Update default chunk size.
221  */
222 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
223                                         u64 chunk_size)
224 {
225         WRITE_ONCE(space_info->chunk_size, chunk_size);
226 }
227 
228 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
229 {
230 
231         struct btrfs_space_info *space_info;
232         int i;
233         int ret;
234 
235         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
236         if (!space_info)
237                 return -ENOMEM;
238 
239         space_info->fs_info = info;
240         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
241                 INIT_LIST_HEAD(&space_info->block_groups[i]);
242         init_rwsem(&space_info->groups_sem);
243         spin_lock_init(&space_info->lock);
244         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
245         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
246         INIT_LIST_HEAD(&space_info->ro_bgs);
247         INIT_LIST_HEAD(&space_info->tickets);
248         INIT_LIST_HEAD(&space_info->priority_tickets);
249         space_info->clamp = 1;
250         btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
251 
252         if (btrfs_is_zoned(info))
253                 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
254 
255         ret = btrfs_sysfs_add_space_info_type(info, space_info);
256         if (ret)
257                 return ret;
258 
259         list_add(&space_info->list, &info->space_info);
260         if (flags & BTRFS_BLOCK_GROUP_DATA)
261                 info->data_sinfo = space_info;
262 
263         return ret;
264 }
265 
266 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
267 {
268         struct btrfs_super_block *disk_super;
269         u64 features;
270         u64 flags;
271         int mixed = 0;
272         int ret;
273 
274         disk_super = fs_info->super_copy;
275         if (!btrfs_super_root(disk_super))
276                 return -EINVAL;
277 
278         features = btrfs_super_incompat_flags(disk_super);
279         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
280                 mixed = 1;
281 
282         flags = BTRFS_BLOCK_GROUP_SYSTEM;
283         ret = create_space_info(fs_info, flags);
284         if (ret)
285                 goto out;
286 
287         if (mixed) {
288                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
289                 ret = create_space_info(fs_info, flags);
290         } else {
291                 flags = BTRFS_BLOCK_GROUP_METADATA;
292                 ret = create_space_info(fs_info, flags);
293                 if (ret)
294                         goto out;
295 
296                 flags = BTRFS_BLOCK_GROUP_DATA;
297                 ret = create_space_info(fs_info, flags);
298         }
299 out:
300         return ret;
301 }
302 
303 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
304                                 struct btrfs_block_group *block_group)
305 {
306         struct btrfs_space_info *found;
307         int factor, index;
308 
309         factor = btrfs_bg_type_to_factor(block_group->flags);
310 
311         found = btrfs_find_space_info(info, block_group->flags);
312         ASSERT(found);
313         spin_lock(&found->lock);
314         found->total_bytes += block_group->length;
315         found->disk_total += block_group->length * factor;
316         found->bytes_used += block_group->used;
317         found->disk_used += block_group->used * factor;
318         found->bytes_readonly += block_group->bytes_super;
319         btrfs_space_info_update_bytes_zone_unusable(info, found, block_group->zone_unusable);
320         if (block_group->length > 0)
321                 found->full = 0;
322         btrfs_try_granting_tickets(info, found);
323         spin_unlock(&found->lock);
324 
325         block_group->space_info = found;
326 
327         index = btrfs_bg_flags_to_raid_index(block_group->flags);
328         down_write(&found->groups_sem);
329         list_add_tail(&block_group->list, &found->block_groups[index]);
330         up_write(&found->groups_sem);
331 }
332 
333 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
334                                                u64 flags)
335 {
336         struct list_head *head = &info->space_info;
337         struct btrfs_space_info *found;
338 
339         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
340 
341         list_for_each_entry(found, head, list) {
342                 if (found->flags & flags)
343                         return found;
344         }
345         return NULL;
346 }
347 
348 static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info)
349 {
350         struct btrfs_space_info *data_sinfo;
351         u64 data_chunk_size;
352 
353         /*
354          * Calculate the data_chunk_size, space_info->chunk_size is the
355          * "optimal" chunk size based on the fs size.  However when we actually
356          * allocate the chunk we will strip this down further, making it no
357          * more than 10% of the disk or 1G, whichever is smaller.
358          *
359          * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size)
360          * as it is.
361          */
362         data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
363         if (btrfs_is_zoned(fs_info))
364                 return data_sinfo->chunk_size;
365         data_chunk_size = min(data_sinfo->chunk_size,
366                               mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
367         return min_t(u64, data_chunk_size, SZ_1G);
368 }
369 
370 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
371                           struct btrfs_space_info *space_info,
372                           enum btrfs_reserve_flush_enum flush)
373 {
374         u64 profile;
375         u64 avail;
376         u64 data_chunk_size;
377         int factor;
378 
379         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
380                 profile = btrfs_system_alloc_profile(fs_info);
381         else
382                 profile = btrfs_metadata_alloc_profile(fs_info);
383 
384         avail = atomic64_read(&fs_info->free_chunk_space);
385 
386         /*
387          * If we have dup, raid1 or raid10 then only half of the free
388          * space is actually usable.  For raid56, the space info used
389          * doesn't include the parity drive, so we don't have to
390          * change the math
391          */
392         factor = btrfs_bg_type_to_factor(profile);
393         avail = div_u64(avail, factor);
394         if (avail == 0)
395                 return 0;
396 
397         data_chunk_size = calc_effective_data_chunk_size(fs_info);
398 
399         /*
400          * Since data allocations immediately use block groups as part of the
401          * reservation, because we assume that data reservations will == actual
402          * usage, we could potentially overcommit and then immediately have that
403          * available space used by a data allocation, which could put us in a
404          * bind when we get close to filling the file system.
405          *
406          * To handle this simply remove the data_chunk_size from the available
407          * space.  If we are relatively empty this won't affect our ability to
408          * overcommit much, and if we're very close to full it'll keep us from
409          * getting into a position where we've given ourselves very little
410          * metadata wiggle room.
411          */
412         if (avail <= data_chunk_size)
413                 return 0;
414         avail -= data_chunk_size;
415 
416         /*
417          * If we aren't flushing all things, let us overcommit up to
418          * 1/2th of the space. If we can flush, don't let us overcommit
419          * too much, let it overcommit up to 1/8 of the space.
420          */
421         if (flush == BTRFS_RESERVE_FLUSH_ALL)
422                 avail >>= 3;
423         else
424                 avail >>= 1;
425 
426         /*
427          * On the zoned mode, we always allocate one zone as one chunk.
428          * Returning non-zone size alingned bytes here will result in
429          * less pressure for the async metadata reclaim process, and it
430          * will over-commit too much leading to ENOSPC. Align down to the
431          * zone size to avoid that.
432          */
433         if (btrfs_is_zoned(fs_info))
434                 avail = ALIGN_DOWN(avail, fs_info->zone_size);
435 
436         return avail;
437 }
438 
439 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
440                          struct btrfs_space_info *space_info, u64 bytes,
441                          enum btrfs_reserve_flush_enum flush)
442 {
443         u64 avail;
444         u64 used;
445 
446         /* Don't overcommit when in mixed mode */
447         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
448                 return 0;
449 
450         used = btrfs_space_info_used(space_info, true);
451         avail = calc_available_free_space(fs_info, space_info, flush);
452 
453         if (used + bytes < space_info->total_bytes + avail)
454                 return 1;
455         return 0;
456 }
457 
458 static void remove_ticket(struct btrfs_space_info *space_info,
459                           struct reserve_ticket *ticket)
460 {
461         if (!list_empty(&ticket->list)) {
462                 list_del_init(&ticket->list);
463                 ASSERT(space_info->reclaim_size >= ticket->bytes);
464                 space_info->reclaim_size -= ticket->bytes;
465         }
466 }
467 
468 /*
469  * This is for space we already have accounted in space_info->bytes_may_use, so
470  * basically when we're returning space from block_rsv's.
471  */
472 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
473                                 struct btrfs_space_info *space_info)
474 {
475         struct list_head *head;
476         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
477 
478         lockdep_assert_held(&space_info->lock);
479 
480         head = &space_info->priority_tickets;
481 again:
482         while (!list_empty(head)) {
483                 struct reserve_ticket *ticket;
484                 u64 used = btrfs_space_info_used(space_info, true);
485 
486                 ticket = list_first_entry(head, struct reserve_ticket, list);
487 
488                 /* Check and see if our ticket can be satisfied now. */
489                 if ((used + ticket->bytes <= space_info->total_bytes) ||
490                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
491                                          flush)) {
492                         btrfs_space_info_update_bytes_may_use(fs_info,
493                                                               space_info,
494                                                               ticket->bytes);
495                         remove_ticket(space_info, ticket);
496                         ticket->bytes = 0;
497                         space_info->tickets_id++;
498                         wake_up(&ticket->wait);
499                 } else {
500                         break;
501                 }
502         }
503 
504         if (head == &space_info->priority_tickets) {
505                 head = &space_info->tickets;
506                 flush = BTRFS_RESERVE_FLUSH_ALL;
507                 goto again;
508         }
509 }
510 
511 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
512 do {                                                                    \
513         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
514         spin_lock(&__rsv->lock);                                        \
515         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
516                    __rsv->size, __rsv->reserved);                       \
517         spin_unlock(&__rsv->lock);                                      \
518 } while (0)
519 
520 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
521 {
522         switch (space_info->flags) {
523         case BTRFS_BLOCK_GROUP_SYSTEM:
524                 return "SYSTEM";
525         case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
526                 return "DATA+METADATA";
527         case BTRFS_BLOCK_GROUP_DATA:
528                 return "DATA";
529         case BTRFS_BLOCK_GROUP_METADATA:
530                 return "METADATA";
531         default:
532                 return "UNKNOWN";
533         }
534 }
535 
536 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
537 {
538         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
539         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
540         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
541         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
542         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
543 }
544 
545 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
546                                     struct btrfs_space_info *info)
547 {
548         const char *flag_str = space_info_flag_to_str(info);
549         lockdep_assert_held(&info->lock);
550 
551         /* The free space could be negative in case of overcommit */
552         btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
553                    flag_str,
554                    (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
555                    info->full ? "" : "not ");
556         btrfs_info(fs_info,
557 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
558                 info->total_bytes, info->bytes_used, info->bytes_pinned,
559                 info->bytes_reserved, info->bytes_may_use,
560                 info->bytes_readonly, info->bytes_zone_unusable);
561 }
562 
563 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
564                            struct btrfs_space_info *info, u64 bytes,
565                            int dump_block_groups)
566 {
567         struct btrfs_block_group *cache;
568         u64 total_avail = 0;
569         int index = 0;
570 
571         spin_lock(&info->lock);
572         __btrfs_dump_space_info(fs_info, info);
573         dump_global_block_rsv(fs_info);
574         spin_unlock(&info->lock);
575 
576         if (!dump_block_groups)
577                 return;
578 
579         down_read(&info->groups_sem);
580 again:
581         list_for_each_entry(cache, &info->block_groups[index], list) {
582                 u64 avail;
583 
584                 spin_lock(&cache->lock);
585                 avail = cache->length - cache->used - cache->pinned -
586                         cache->reserved - cache->bytes_super - cache->zone_unusable;
587                 btrfs_info(fs_info,
588 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
589                            cache->start, cache->length, cache->used, cache->pinned,
590                            cache->reserved, cache->delalloc_bytes,
591                            cache->bytes_super, cache->zone_unusable,
592                            avail, cache->ro ? "[readonly]" : "");
593                 spin_unlock(&cache->lock);
594                 btrfs_dump_free_space(cache, bytes);
595                 total_avail += avail;
596         }
597         if (++index < BTRFS_NR_RAID_TYPES)
598                 goto again;
599         up_read(&info->groups_sem);
600 
601         btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
602 }
603 
604 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
605                                         u64 to_reclaim)
606 {
607         u64 bytes;
608         u64 nr;
609 
610         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
611         nr = div64_u64(to_reclaim, bytes);
612         if (!nr)
613                 nr = 1;
614         return nr;
615 }
616 
617 /*
618  * shrink metadata reservation for delalloc
619  */
620 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
621                             struct btrfs_space_info *space_info,
622                             u64 to_reclaim, bool wait_ordered,
623                             bool for_preempt)
624 {
625         struct btrfs_trans_handle *trans;
626         u64 delalloc_bytes;
627         u64 ordered_bytes;
628         u64 items;
629         long time_left;
630         int loops;
631 
632         delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
633         ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
634         if (delalloc_bytes == 0 && ordered_bytes == 0)
635                 return;
636 
637         /* Calc the number of the pages we need flush for space reservation */
638         if (to_reclaim == U64_MAX) {
639                 items = U64_MAX;
640         } else {
641                 /*
642                  * to_reclaim is set to however much metadata we need to
643                  * reclaim, but reclaiming that much data doesn't really track
644                  * exactly.  What we really want to do is reclaim full inode's
645                  * worth of reservations, however that's not available to us
646                  * here.  We will take a fraction of the delalloc bytes for our
647                  * flushing loops and hope for the best.  Delalloc will expand
648                  * the amount we write to cover an entire dirty extent, which
649                  * will reclaim the metadata reservation for that range.  If
650                  * it's not enough subsequent flush stages will be more
651                  * aggressive.
652                  */
653                 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
654                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
655         }
656 
657         trans = current->journal_info;
658 
659         /*
660          * If we are doing more ordered than delalloc we need to just wait on
661          * ordered extents, otherwise we'll waste time trying to flush delalloc
662          * that likely won't give us the space back we need.
663          */
664         if (ordered_bytes > delalloc_bytes && !for_preempt)
665                 wait_ordered = true;
666 
667         loops = 0;
668         while ((delalloc_bytes || ordered_bytes) && loops < 3) {
669                 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
670                 long nr_pages = min_t(u64, temp, LONG_MAX);
671                 int async_pages;
672 
673                 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
674 
675                 /*
676                  * We need to make sure any outstanding async pages are now
677                  * processed before we continue.  This is because things like
678                  * sync_inode() try to be smart and skip writing if the inode is
679                  * marked clean.  We don't use filemap_fwrite for flushing
680                  * because we want to control how many pages we write out at a
681                  * time, thus this is the only safe way to make sure we've
682                  * waited for outstanding compressed workers to have started
683                  * their jobs and thus have ordered extents set up properly.
684                  *
685                  * This exists because we do not want to wait for each
686                  * individual inode to finish its async work, we simply want to
687                  * start the IO on everybody, and then come back here and wait
688                  * for all of the async work to catch up.  Once we're done with
689                  * that we know we'll have ordered extents for everything and we
690                  * can decide if we wait for that or not.
691                  *
692                  * If we choose to replace this in the future, make absolutely
693                  * sure that the proper waiting is being done in the async case,
694                  * as there have been bugs in that area before.
695                  */
696                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
697                 if (!async_pages)
698                         goto skip_async;
699 
700                 /*
701                  * We don't want to wait forever, if we wrote less pages in this
702                  * loop than we have outstanding, only wait for that number of
703                  * pages, otherwise we can wait for all async pages to finish
704                  * before continuing.
705                  */
706                 if (async_pages > nr_pages)
707                         async_pages -= nr_pages;
708                 else
709                         async_pages = 0;
710                 wait_event(fs_info->async_submit_wait,
711                            atomic_read(&fs_info->async_delalloc_pages) <=
712                            async_pages);
713 skip_async:
714                 loops++;
715                 if (wait_ordered && !trans) {
716                         btrfs_wait_ordered_roots(fs_info, items, NULL);
717                 } else {
718                         time_left = schedule_timeout_killable(1);
719                         if (time_left)
720                                 break;
721                 }
722 
723                 /*
724                  * If we are for preemption we just want a one-shot of delalloc
725                  * flushing so we can stop flushing if we decide we don't need
726                  * to anymore.
727                  */
728                 if (for_preempt)
729                         break;
730 
731                 spin_lock(&space_info->lock);
732                 if (list_empty(&space_info->tickets) &&
733                     list_empty(&space_info->priority_tickets)) {
734                         spin_unlock(&space_info->lock);
735                         break;
736                 }
737                 spin_unlock(&space_info->lock);
738 
739                 delalloc_bytes = percpu_counter_sum_positive(
740                                                 &fs_info->delalloc_bytes);
741                 ordered_bytes = percpu_counter_sum_positive(
742                                                 &fs_info->ordered_bytes);
743         }
744 }
745 
746 /*
747  * Try to flush some data based on policy set by @state. This is only advisory
748  * and may fail for various reasons. The caller is supposed to examine the
749  * state of @space_info to detect the outcome.
750  */
751 static void flush_space(struct btrfs_fs_info *fs_info,
752                        struct btrfs_space_info *space_info, u64 num_bytes,
753                        enum btrfs_flush_state state, bool for_preempt)
754 {
755         struct btrfs_root *root = fs_info->tree_root;
756         struct btrfs_trans_handle *trans;
757         int nr;
758         int ret = 0;
759 
760         switch (state) {
761         case FLUSH_DELAYED_ITEMS_NR:
762         case FLUSH_DELAYED_ITEMS:
763                 if (state == FLUSH_DELAYED_ITEMS_NR)
764                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
765                 else
766                         nr = -1;
767 
768                 trans = btrfs_join_transaction_nostart(root);
769                 if (IS_ERR(trans)) {
770                         ret = PTR_ERR(trans);
771                         if (ret == -ENOENT)
772                                 ret = 0;
773                         break;
774                 }
775                 ret = btrfs_run_delayed_items_nr(trans, nr);
776                 btrfs_end_transaction(trans);
777                 break;
778         case FLUSH_DELALLOC:
779         case FLUSH_DELALLOC_WAIT:
780         case FLUSH_DELALLOC_FULL:
781                 if (state == FLUSH_DELALLOC_FULL)
782                         num_bytes = U64_MAX;
783                 shrink_delalloc(fs_info, space_info, num_bytes,
784                                 state != FLUSH_DELALLOC, for_preempt);
785                 break;
786         case FLUSH_DELAYED_REFS_NR:
787         case FLUSH_DELAYED_REFS:
788                 trans = btrfs_join_transaction_nostart(root);
789                 if (IS_ERR(trans)) {
790                         ret = PTR_ERR(trans);
791                         if (ret == -ENOENT)
792                                 ret = 0;
793                         break;
794                 }
795                 if (state == FLUSH_DELAYED_REFS_NR)
796                         btrfs_run_delayed_refs(trans, num_bytes);
797                 else
798                         btrfs_run_delayed_refs(trans, 0);
799                 btrfs_end_transaction(trans);
800                 break;
801         case ALLOC_CHUNK:
802         case ALLOC_CHUNK_FORCE:
803                 trans = btrfs_join_transaction(root);
804                 if (IS_ERR(trans)) {
805                         ret = PTR_ERR(trans);
806                         break;
807                 }
808                 ret = btrfs_chunk_alloc(trans,
809                                 btrfs_get_alloc_profile(fs_info, space_info->flags),
810                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
811                                         CHUNK_ALLOC_FORCE);
812                 btrfs_end_transaction(trans);
813 
814                 if (ret > 0 || ret == -ENOSPC)
815                         ret = 0;
816                 break;
817         case RUN_DELAYED_IPUTS:
818                 /*
819                  * If we have pending delayed iputs then we could free up a
820                  * bunch of pinned space, so make sure we run the iputs before
821                  * we do our pinned bytes check below.
822                  */
823                 btrfs_run_delayed_iputs(fs_info);
824                 btrfs_wait_on_delayed_iputs(fs_info);
825                 break;
826         case COMMIT_TRANS:
827                 ASSERT(current->journal_info == NULL);
828                 /*
829                  * We don't want to start a new transaction, just attach to the
830                  * current one or wait it fully commits in case its commit is
831                  * happening at the moment. Note: we don't use a nostart join
832                  * because that does not wait for a transaction to fully commit
833                  * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
834                  */
835                 ret = btrfs_commit_current_transaction(root);
836                 break;
837         default:
838                 ret = -ENOSPC;
839                 break;
840         }
841 
842         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
843                                 ret, for_preempt);
844         return;
845 }
846 
847 static inline u64
848 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
849                                  struct btrfs_space_info *space_info)
850 {
851         u64 used;
852         u64 avail;
853         u64 to_reclaim = space_info->reclaim_size;
854 
855         lockdep_assert_held(&space_info->lock);
856 
857         avail = calc_available_free_space(fs_info, space_info,
858                                           BTRFS_RESERVE_FLUSH_ALL);
859         used = btrfs_space_info_used(space_info, true);
860 
861         /*
862          * We may be flushing because suddenly we have less space than we had
863          * before, and now we're well over-committed based on our current free
864          * space.  If that's the case add in our overage so we make sure to put
865          * appropriate pressure on the flushing state machine.
866          */
867         if (space_info->total_bytes + avail < used)
868                 to_reclaim += used - (space_info->total_bytes + avail);
869 
870         return to_reclaim;
871 }
872 
873 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
874                                     struct btrfs_space_info *space_info)
875 {
876         const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
877         u64 ordered, delalloc;
878         u64 thresh;
879         u64 used;
880 
881         thresh = mult_perc(space_info->total_bytes, 90);
882 
883         lockdep_assert_held(&space_info->lock);
884 
885         /* If we're just plain full then async reclaim just slows us down. */
886         if ((space_info->bytes_used + space_info->bytes_reserved +
887              global_rsv_size) >= thresh)
888                 return false;
889 
890         used = space_info->bytes_may_use + space_info->bytes_pinned;
891 
892         /* The total flushable belongs to the global rsv, don't flush. */
893         if (global_rsv_size >= used)
894                 return false;
895 
896         /*
897          * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
898          * that devoted to other reservations then there's no sense in flushing,
899          * we don't have a lot of things that need flushing.
900          */
901         if (used - global_rsv_size <= SZ_128M)
902                 return false;
903 
904         /*
905          * We have tickets queued, bail so we don't compete with the async
906          * flushers.
907          */
908         if (space_info->reclaim_size)
909                 return false;
910 
911         /*
912          * If we have over half of the free space occupied by reservations or
913          * pinned then we want to start flushing.
914          *
915          * We do not do the traditional thing here, which is to say
916          *
917          *   if (used >= ((total_bytes + avail) / 2))
918          *     return 1;
919          *
920          * because this doesn't quite work how we want.  If we had more than 50%
921          * of the space_info used by bytes_used and we had 0 available we'd just
922          * constantly run the background flusher.  Instead we want it to kick in
923          * if our reclaimable space exceeds our clamped free space.
924          *
925          * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
926          * the following:
927          *
928          * Amount of RAM        Minimum threshold       Maximum threshold
929          *
930          *        256GiB                     1GiB                  128GiB
931          *        128GiB                   512MiB                   64GiB
932          *         64GiB                   256MiB                   32GiB
933          *         32GiB                   128MiB                   16GiB
934          *         16GiB                    64MiB                    8GiB
935          *
936          * These are the range our thresholds will fall in, corresponding to how
937          * much delalloc we need for the background flusher to kick in.
938          */
939 
940         thresh = calc_available_free_space(fs_info, space_info,
941                                            BTRFS_RESERVE_FLUSH_ALL);
942         used = space_info->bytes_used + space_info->bytes_reserved +
943                space_info->bytes_readonly + global_rsv_size;
944         if (used < space_info->total_bytes)
945                 thresh += space_info->total_bytes - used;
946         thresh >>= space_info->clamp;
947 
948         used = space_info->bytes_pinned;
949 
950         /*
951          * If we have more ordered bytes than delalloc bytes then we're either
952          * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
953          * around.  Preemptive flushing is only useful in that it can free up
954          * space before tickets need to wait for things to finish.  In the case
955          * of ordered extents, preemptively waiting on ordered extents gets us
956          * nothing, if our reservations are tied up in ordered extents we'll
957          * simply have to slow down writers by forcing them to wait on ordered
958          * extents.
959          *
960          * In the case that ordered is larger than delalloc, only include the
961          * block reserves that we would actually be able to directly reclaim
962          * from.  In this case if we're heavy on metadata operations this will
963          * clearly be heavy enough to warrant preemptive flushing.  In the case
964          * of heavy DIO or ordered reservations, preemptive flushing will just
965          * waste time and cause us to slow down.
966          *
967          * We want to make sure we truly are maxed out on ordered however, so
968          * cut ordered in half, and if it's still higher than delalloc then we
969          * can keep flushing.  This is to avoid the case where we start
970          * flushing, and now delalloc == ordered and we stop preemptively
971          * flushing when we could still have several gigs of delalloc to flush.
972          */
973         ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
974         delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
975         if (ordered >= delalloc)
976                 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
977                         btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
978         else
979                 used += space_info->bytes_may_use - global_rsv_size;
980 
981         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
982                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
983 }
984 
985 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
986                                   struct btrfs_space_info *space_info,
987                                   struct reserve_ticket *ticket)
988 {
989         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
990         u64 min_bytes;
991 
992         if (!ticket->steal)
993                 return false;
994 
995         if (global_rsv->space_info != space_info)
996                 return false;
997 
998         spin_lock(&global_rsv->lock);
999         min_bytes = mult_perc(global_rsv->size, 10);
1000         if (global_rsv->reserved < min_bytes + ticket->bytes) {
1001                 spin_unlock(&global_rsv->lock);
1002                 return false;
1003         }
1004         global_rsv->reserved -= ticket->bytes;
1005         remove_ticket(space_info, ticket);
1006         ticket->bytes = 0;
1007         wake_up(&ticket->wait);
1008         space_info->tickets_id++;
1009         if (global_rsv->reserved < global_rsv->size)
1010                 global_rsv->full = 0;
1011         spin_unlock(&global_rsv->lock);
1012 
1013         return true;
1014 }
1015 
1016 /*
1017  * We've exhausted our flushing, start failing tickets.
1018  *
1019  * @fs_info - fs_info for this fs
1020  * @space_info - the space info we were flushing
1021  *
1022  * We call this when we've exhausted our flushing ability and haven't made
1023  * progress in satisfying tickets.  The reservation code handles tickets in
1024  * order, so if there is a large ticket first and then smaller ones we could
1025  * very well satisfy the smaller tickets.  This will attempt to wake up any
1026  * tickets in the list to catch this case.
1027  *
1028  * This function returns true if it was able to make progress by clearing out
1029  * other tickets, or if it stumbles across a ticket that was smaller than the
1030  * first ticket.
1031  */
1032 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1033                                    struct btrfs_space_info *space_info)
1034 {
1035         struct reserve_ticket *ticket;
1036         u64 tickets_id = space_info->tickets_id;
1037         const bool aborted = BTRFS_FS_ERROR(fs_info);
1038 
1039         trace_btrfs_fail_all_tickets(fs_info, space_info);
1040 
1041         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1042                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1043                 __btrfs_dump_space_info(fs_info, space_info);
1044         }
1045 
1046         while (!list_empty(&space_info->tickets) &&
1047                tickets_id == space_info->tickets_id) {
1048                 ticket = list_first_entry(&space_info->tickets,
1049                                           struct reserve_ticket, list);
1050 
1051                 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1052                         return true;
1053 
1054                 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1055                         btrfs_info(fs_info, "failing ticket with %llu bytes",
1056                                    ticket->bytes);
1057 
1058                 remove_ticket(space_info, ticket);
1059                 if (aborted)
1060                         ticket->error = -EIO;
1061                 else
1062                         ticket->error = -ENOSPC;
1063                 wake_up(&ticket->wait);
1064 
1065                 /*
1066                  * We're just throwing tickets away, so more flushing may not
1067                  * trip over btrfs_try_granting_tickets, so we need to call it
1068                  * here to see if we can make progress with the next ticket in
1069                  * the list.
1070                  */
1071                 if (!aborted)
1072                         btrfs_try_granting_tickets(fs_info, space_info);
1073         }
1074         return (tickets_id != space_info->tickets_id);
1075 }
1076 
1077 /*
1078  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1079  * will loop and continuously try to flush as long as we are making progress.
1080  * We count progress as clearing off tickets each time we have to loop.
1081  */
1082 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1083 {
1084         struct btrfs_fs_info *fs_info;
1085         struct btrfs_space_info *space_info;
1086         u64 to_reclaim;
1087         enum btrfs_flush_state flush_state;
1088         int commit_cycles = 0;
1089         u64 last_tickets_id;
1090 
1091         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1092         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1093 
1094         spin_lock(&space_info->lock);
1095         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1096         if (!to_reclaim) {
1097                 space_info->flush = 0;
1098                 spin_unlock(&space_info->lock);
1099                 return;
1100         }
1101         last_tickets_id = space_info->tickets_id;
1102         spin_unlock(&space_info->lock);
1103 
1104         flush_state = FLUSH_DELAYED_ITEMS_NR;
1105         do {
1106                 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1107                 spin_lock(&space_info->lock);
1108                 if (list_empty(&space_info->tickets)) {
1109                         space_info->flush = 0;
1110                         spin_unlock(&space_info->lock);
1111                         return;
1112                 }
1113                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1114                                                               space_info);
1115                 if (last_tickets_id == space_info->tickets_id) {
1116                         flush_state++;
1117                 } else {
1118                         last_tickets_id = space_info->tickets_id;
1119                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1120                         if (commit_cycles)
1121                                 commit_cycles--;
1122                 }
1123 
1124                 /*
1125                  * We do not want to empty the system of delalloc unless we're
1126                  * under heavy pressure, so allow one trip through the flushing
1127                  * logic before we start doing a FLUSH_DELALLOC_FULL.
1128                  */
1129                 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1130                         flush_state++;
1131 
1132                 /*
1133                  * We don't want to force a chunk allocation until we've tried
1134                  * pretty hard to reclaim space.  Think of the case where we
1135                  * freed up a bunch of space and so have a lot of pinned space
1136                  * to reclaim.  We would rather use that than possibly create a
1137                  * underutilized metadata chunk.  So if this is our first run
1138                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1139                  * commit the transaction.  If nothing has changed the next go
1140                  * around then we can force a chunk allocation.
1141                  */
1142                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1143                         flush_state++;
1144 
1145                 if (flush_state > COMMIT_TRANS) {
1146                         commit_cycles++;
1147                         if (commit_cycles > 2) {
1148                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
1149                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1150                                         commit_cycles--;
1151                                 } else {
1152                                         space_info->flush = 0;
1153                                 }
1154                         } else {
1155                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
1156                         }
1157                 }
1158                 spin_unlock(&space_info->lock);
1159         } while (flush_state <= COMMIT_TRANS);
1160 }
1161 
1162 /*
1163  * This handles pre-flushing of metadata space before we get to the point that
1164  * we need to start blocking threads on tickets.  The logic here is different
1165  * from the other flush paths because it doesn't rely on tickets to tell us how
1166  * much we need to flush, instead it attempts to keep us below the 80% full
1167  * watermark of space by flushing whichever reservation pool is currently the
1168  * largest.
1169  */
1170 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1171 {
1172         struct btrfs_fs_info *fs_info;
1173         struct btrfs_space_info *space_info;
1174         struct btrfs_block_rsv *delayed_block_rsv;
1175         struct btrfs_block_rsv *delayed_refs_rsv;
1176         struct btrfs_block_rsv *global_rsv;
1177         struct btrfs_block_rsv *trans_rsv;
1178         int loops = 0;
1179 
1180         fs_info = container_of(work, struct btrfs_fs_info,
1181                                preempt_reclaim_work);
1182         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1183         delayed_block_rsv = &fs_info->delayed_block_rsv;
1184         delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1185         global_rsv = &fs_info->global_block_rsv;
1186         trans_rsv = &fs_info->trans_block_rsv;
1187 
1188         spin_lock(&space_info->lock);
1189         while (need_preemptive_reclaim(fs_info, space_info)) {
1190                 enum btrfs_flush_state flush;
1191                 u64 delalloc_size = 0;
1192                 u64 to_reclaim, block_rsv_size;
1193                 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1194 
1195                 loops++;
1196 
1197                 /*
1198                  * We don't have a precise counter for the metadata being
1199                  * reserved for delalloc, so we'll approximate it by subtracting
1200                  * out the block rsv's space from the bytes_may_use.  If that
1201                  * amount is higher than the individual reserves, then we can
1202                  * assume it's tied up in delalloc reservations.
1203                  */
1204                 block_rsv_size = global_rsv_size +
1205                         btrfs_block_rsv_reserved(delayed_block_rsv) +
1206                         btrfs_block_rsv_reserved(delayed_refs_rsv) +
1207                         btrfs_block_rsv_reserved(trans_rsv);
1208                 if (block_rsv_size < space_info->bytes_may_use)
1209                         delalloc_size = space_info->bytes_may_use - block_rsv_size;
1210 
1211                 /*
1212                  * We don't want to include the global_rsv in our calculation,
1213                  * because that's space we can't touch.  Subtract it from the
1214                  * block_rsv_size for the next checks.
1215                  */
1216                 block_rsv_size -= global_rsv_size;
1217 
1218                 /*
1219                  * We really want to avoid flushing delalloc too much, as it
1220                  * could result in poor allocation patterns, so only flush it if
1221                  * it's larger than the rest of the pools combined.
1222                  */
1223                 if (delalloc_size > block_rsv_size) {
1224                         to_reclaim = delalloc_size;
1225                         flush = FLUSH_DELALLOC;
1226                 } else if (space_info->bytes_pinned >
1227                            (btrfs_block_rsv_reserved(delayed_block_rsv) +
1228                             btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1229                         to_reclaim = space_info->bytes_pinned;
1230                         flush = COMMIT_TRANS;
1231                 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1232                            btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1233                         to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1234                         flush = FLUSH_DELAYED_ITEMS_NR;
1235                 } else {
1236                         to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1237                         flush = FLUSH_DELAYED_REFS_NR;
1238                 }
1239 
1240                 spin_unlock(&space_info->lock);
1241 
1242                 /*
1243                  * We don't want to reclaim everything, just a portion, so scale
1244                  * down the to_reclaim by 1/4.  If it takes us down to 0,
1245                  * reclaim 1 items worth.
1246                  */
1247                 to_reclaim >>= 2;
1248                 if (!to_reclaim)
1249                         to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1250                 flush_space(fs_info, space_info, to_reclaim, flush, true);
1251                 cond_resched();
1252                 spin_lock(&space_info->lock);
1253         }
1254 
1255         /* We only went through once, back off our clamping. */
1256         if (loops == 1 && !space_info->reclaim_size)
1257                 space_info->clamp = max(1, space_info->clamp - 1);
1258         trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1259         spin_unlock(&space_info->lock);
1260 }
1261 
1262 /*
1263  * FLUSH_DELALLOC_WAIT:
1264  *   Space is freed from flushing delalloc in one of two ways.
1265  *
1266  *   1) compression is on and we allocate less space than we reserved
1267  *   2) we are overwriting existing space
1268  *
1269  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1270  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1271  *   length to ->bytes_reserved, and subtracts the reserved space from
1272  *   ->bytes_may_use.
1273  *
1274  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1275  *   extent in the range we are overwriting, which creates a delayed ref for
1276  *   that freed extent.  This however is not reclaimed until the transaction
1277  *   commits, thus the next stages.
1278  *
1279  * RUN_DELAYED_IPUTS
1280  *   If we are freeing inodes, we want to make sure all delayed iputs have
1281  *   completed, because they could have been on an inode with i_nlink == 0, and
1282  *   thus have been truncated and freed up space.  But again this space is not
1283  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1284  *   run and then the transaction must be committed.
1285  *
1286  * COMMIT_TRANS
1287  *   This is where we reclaim all of the pinned space generated by running the
1288  *   iputs
1289  *
1290  * ALLOC_CHUNK_FORCE
1291  *   For data we start with alloc chunk force, however we could have been full
1292  *   before, and then the transaction commit could have freed new block groups,
1293  *   so if we now have space to allocate do the force chunk allocation.
1294  */
1295 static const enum btrfs_flush_state data_flush_states[] = {
1296         FLUSH_DELALLOC_FULL,
1297         RUN_DELAYED_IPUTS,
1298         COMMIT_TRANS,
1299         ALLOC_CHUNK_FORCE,
1300 };
1301 
1302 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1303 {
1304         struct btrfs_fs_info *fs_info;
1305         struct btrfs_space_info *space_info;
1306         u64 last_tickets_id;
1307         enum btrfs_flush_state flush_state = 0;
1308 
1309         fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1310         space_info = fs_info->data_sinfo;
1311 
1312         spin_lock(&space_info->lock);
1313         if (list_empty(&space_info->tickets)) {
1314                 space_info->flush = 0;
1315                 spin_unlock(&space_info->lock);
1316                 return;
1317         }
1318         last_tickets_id = space_info->tickets_id;
1319         spin_unlock(&space_info->lock);
1320 
1321         while (!space_info->full) {
1322                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1323                 spin_lock(&space_info->lock);
1324                 if (list_empty(&space_info->tickets)) {
1325                         space_info->flush = 0;
1326                         spin_unlock(&space_info->lock);
1327                         return;
1328                 }
1329 
1330                 /* Something happened, fail everything and bail. */
1331                 if (BTRFS_FS_ERROR(fs_info))
1332                         goto aborted_fs;
1333                 last_tickets_id = space_info->tickets_id;
1334                 spin_unlock(&space_info->lock);
1335         }
1336 
1337         while (flush_state < ARRAY_SIZE(data_flush_states)) {
1338                 flush_space(fs_info, space_info, U64_MAX,
1339                             data_flush_states[flush_state], false);
1340                 spin_lock(&space_info->lock);
1341                 if (list_empty(&space_info->tickets)) {
1342                         space_info->flush = 0;
1343                         spin_unlock(&space_info->lock);
1344                         return;
1345                 }
1346 
1347                 if (last_tickets_id == space_info->tickets_id) {
1348                         flush_state++;
1349                 } else {
1350                         last_tickets_id = space_info->tickets_id;
1351                         flush_state = 0;
1352                 }
1353 
1354                 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1355                         if (space_info->full) {
1356                                 if (maybe_fail_all_tickets(fs_info, space_info))
1357                                         flush_state = 0;
1358                                 else
1359                                         space_info->flush = 0;
1360                         } else {
1361                                 flush_state = 0;
1362                         }
1363 
1364                         /* Something happened, fail everything and bail. */
1365                         if (BTRFS_FS_ERROR(fs_info))
1366                                 goto aborted_fs;
1367 
1368                 }
1369                 spin_unlock(&space_info->lock);
1370         }
1371         return;
1372 
1373 aborted_fs:
1374         maybe_fail_all_tickets(fs_info, space_info);
1375         space_info->flush = 0;
1376         spin_unlock(&space_info->lock);
1377 }
1378 
1379 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1380 {
1381         INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1382         INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1383         INIT_WORK(&fs_info->preempt_reclaim_work,
1384                   btrfs_preempt_reclaim_metadata_space);
1385 }
1386 
1387 static const enum btrfs_flush_state priority_flush_states[] = {
1388         FLUSH_DELAYED_ITEMS_NR,
1389         FLUSH_DELAYED_ITEMS,
1390         ALLOC_CHUNK,
1391 };
1392 
1393 static const enum btrfs_flush_state evict_flush_states[] = {
1394         FLUSH_DELAYED_ITEMS_NR,
1395         FLUSH_DELAYED_ITEMS,
1396         FLUSH_DELAYED_REFS_NR,
1397         FLUSH_DELAYED_REFS,
1398         FLUSH_DELALLOC,
1399         FLUSH_DELALLOC_WAIT,
1400         FLUSH_DELALLOC_FULL,
1401         ALLOC_CHUNK,
1402         COMMIT_TRANS,
1403 };
1404 
1405 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1406                                 struct btrfs_space_info *space_info,
1407                                 struct reserve_ticket *ticket,
1408                                 const enum btrfs_flush_state *states,
1409                                 int states_nr)
1410 {
1411         u64 to_reclaim;
1412         int flush_state = 0;
1413 
1414         spin_lock(&space_info->lock);
1415         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1416         /*
1417          * This is the priority reclaim path, so to_reclaim could be >0 still
1418          * because we may have only satisfied the priority tickets and still
1419          * left non priority tickets on the list.  We would then have
1420          * to_reclaim but ->bytes == 0.
1421          */
1422         if (ticket->bytes == 0) {
1423                 spin_unlock(&space_info->lock);
1424                 return;
1425         }
1426 
1427         while (flush_state < states_nr) {
1428                 spin_unlock(&space_info->lock);
1429                 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1430                             false);
1431                 flush_state++;
1432                 spin_lock(&space_info->lock);
1433                 if (ticket->bytes == 0) {
1434                         spin_unlock(&space_info->lock);
1435                         return;
1436                 }
1437         }
1438 
1439         /*
1440          * Attempt to steal from the global rsv if we can, except if the fs was
1441          * turned into error mode due to a transaction abort when flushing space
1442          * above, in that case fail with the abort error instead of returning
1443          * success to the caller if we can steal from the global rsv - this is
1444          * just to have caller fail immeditelly instead of later when trying to
1445          * modify the fs, making it easier to debug -ENOSPC problems.
1446          */
1447         if (BTRFS_FS_ERROR(fs_info)) {
1448                 ticket->error = BTRFS_FS_ERROR(fs_info);
1449                 remove_ticket(space_info, ticket);
1450         } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1451                 ticket->error = -ENOSPC;
1452                 remove_ticket(space_info, ticket);
1453         }
1454 
1455         /*
1456          * We must run try_granting_tickets here because we could be a large
1457          * ticket in front of a smaller ticket that can now be satisfied with
1458          * the available space.
1459          */
1460         btrfs_try_granting_tickets(fs_info, space_info);
1461         spin_unlock(&space_info->lock);
1462 }
1463 
1464 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1465                                         struct btrfs_space_info *space_info,
1466                                         struct reserve_ticket *ticket)
1467 {
1468         spin_lock(&space_info->lock);
1469 
1470         /* We could have been granted before we got here. */
1471         if (ticket->bytes == 0) {
1472                 spin_unlock(&space_info->lock);
1473                 return;
1474         }
1475 
1476         while (!space_info->full) {
1477                 spin_unlock(&space_info->lock);
1478                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1479                 spin_lock(&space_info->lock);
1480                 if (ticket->bytes == 0) {
1481                         spin_unlock(&space_info->lock);
1482                         return;
1483                 }
1484         }
1485 
1486         ticket->error = -ENOSPC;
1487         remove_ticket(space_info, ticket);
1488         btrfs_try_granting_tickets(fs_info, space_info);
1489         spin_unlock(&space_info->lock);
1490 }
1491 
1492 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1493                                 struct btrfs_space_info *space_info,
1494                                 struct reserve_ticket *ticket)
1495 
1496 {
1497         DEFINE_WAIT(wait);
1498         int ret = 0;
1499 
1500         spin_lock(&space_info->lock);
1501         while (ticket->bytes > 0 && ticket->error == 0) {
1502                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1503                 if (ret) {
1504                         /*
1505                          * Delete us from the list. After we unlock the space
1506                          * info, we don't want the async reclaim job to reserve
1507                          * space for this ticket. If that would happen, then the
1508                          * ticket's task would not known that space was reserved
1509                          * despite getting an error, resulting in a space leak
1510                          * (bytes_may_use counter of our space_info).
1511                          */
1512                         remove_ticket(space_info, ticket);
1513                         ticket->error = -EINTR;
1514                         break;
1515                 }
1516                 spin_unlock(&space_info->lock);
1517 
1518                 schedule();
1519 
1520                 finish_wait(&ticket->wait, &wait);
1521                 spin_lock(&space_info->lock);
1522         }
1523         spin_unlock(&space_info->lock);
1524 }
1525 
1526 /*
1527  * Do the appropriate flushing and waiting for a ticket.
1528  *
1529  * @fs_info:    the filesystem
1530  * @space_info: space info for the reservation
1531  * @ticket:     ticket for the reservation
1532  * @start_ns:   timestamp when the reservation started
1533  * @orig_bytes: amount of bytes originally reserved
1534  * @flush:      how much we can flush
1535  *
1536  * This does the work of figuring out how to flush for the ticket, waiting for
1537  * the reservation, and returning the appropriate error if there is one.
1538  */
1539 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1540                                  struct btrfs_space_info *space_info,
1541                                  struct reserve_ticket *ticket,
1542                                  u64 start_ns, u64 orig_bytes,
1543                                  enum btrfs_reserve_flush_enum flush)
1544 {
1545         int ret;
1546 
1547         switch (flush) {
1548         case BTRFS_RESERVE_FLUSH_DATA:
1549         case BTRFS_RESERVE_FLUSH_ALL:
1550         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1551                 wait_reserve_ticket(fs_info, space_info, ticket);
1552                 break;
1553         case BTRFS_RESERVE_FLUSH_LIMIT:
1554                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1555                                                 priority_flush_states,
1556                                                 ARRAY_SIZE(priority_flush_states));
1557                 break;
1558         case BTRFS_RESERVE_FLUSH_EVICT:
1559                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1560                                                 evict_flush_states,
1561                                                 ARRAY_SIZE(evict_flush_states));
1562                 break;
1563         case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1564                 priority_reclaim_data_space(fs_info, space_info, ticket);
1565                 break;
1566         default:
1567                 ASSERT(0);
1568                 break;
1569         }
1570 
1571         ret = ticket->error;
1572         ASSERT(list_empty(&ticket->list));
1573         /*
1574          * Check that we can't have an error set if the reservation succeeded,
1575          * as that would confuse tasks and lead them to error out without
1576          * releasing reserved space (if an error happens the expectation is that
1577          * space wasn't reserved at all).
1578          */
1579         ASSERT(!(ticket->bytes == 0 && ticket->error));
1580         trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1581                                    start_ns, flush, ticket->error);
1582         return ret;
1583 }
1584 
1585 /*
1586  * This returns true if this flush state will go through the ordinary flushing
1587  * code.
1588  */
1589 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1590 {
1591         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1592                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1593 }
1594 
1595 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1596                                        struct btrfs_space_info *space_info)
1597 {
1598         u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1599         u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1600 
1601         /*
1602          * If we're heavy on ordered operations then clamping won't help us.  We
1603          * need to clamp specifically to keep up with dirty'ing buffered
1604          * writers, because there's not a 1:1 correlation of writing delalloc
1605          * and freeing space, like there is with flushing delayed refs or
1606          * delayed nodes.  If we're already more ordered than delalloc then
1607          * we're keeping up, otherwise we aren't and should probably clamp.
1608          */
1609         if (ordered < delalloc)
1610                 space_info->clamp = min(space_info->clamp + 1, 8);
1611 }
1612 
1613 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1614 {
1615         return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1616                 flush == BTRFS_RESERVE_FLUSH_EVICT);
1617 }
1618 
1619 /*
1620  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1621  * fail as quickly as possible.
1622  */
1623 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1624 {
1625         return (flush != BTRFS_RESERVE_NO_FLUSH &&
1626                 flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1627 }
1628 
1629 /*
1630  * Try to reserve bytes from the block_rsv's space.
1631  *
1632  * @fs_info:    the filesystem
1633  * @space_info: space info we want to allocate from
1634  * @orig_bytes: number of bytes we want
1635  * @flush:      whether or not we can flush to make our reservation
1636  *
1637  * This will reserve orig_bytes number of bytes from the space info associated
1638  * with the block_rsv.  If there is not enough space it will make an attempt to
1639  * flush out space to make room.  It will do this by flushing delalloc if
1640  * possible or committing the transaction.  If flush is 0 then no attempts to
1641  * regain reservations will be made and this will fail if there is not enough
1642  * space already.
1643  */
1644 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1645                            struct btrfs_space_info *space_info, u64 orig_bytes,
1646                            enum btrfs_reserve_flush_enum flush)
1647 {
1648         struct work_struct *async_work;
1649         struct reserve_ticket ticket;
1650         u64 start_ns = 0;
1651         u64 used;
1652         int ret = -ENOSPC;
1653         bool pending_tickets;
1654 
1655         ASSERT(orig_bytes);
1656         /*
1657          * If have a transaction handle (current->journal_info != NULL), then
1658          * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1659          * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1660          * flushing methods can trigger transaction commits.
1661          */
1662         if (current->journal_info) {
1663                 /* One assert per line for easier debugging. */
1664                 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1665                 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1666                 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1667         }
1668 
1669         if (flush == BTRFS_RESERVE_FLUSH_DATA)
1670                 async_work = &fs_info->async_data_reclaim_work;
1671         else
1672                 async_work = &fs_info->async_reclaim_work;
1673 
1674         spin_lock(&space_info->lock);
1675         used = btrfs_space_info_used(space_info, true);
1676 
1677         /*
1678          * We don't want NO_FLUSH allocations to jump everybody, they can
1679          * generally handle ENOSPC in a different way, so treat them the same as
1680          * normal flushers when it comes to skipping pending tickets.
1681          */
1682         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1683                 pending_tickets = !list_empty(&space_info->tickets) ||
1684                         !list_empty(&space_info->priority_tickets);
1685         else
1686                 pending_tickets = !list_empty(&space_info->priority_tickets);
1687 
1688         /*
1689          * Carry on if we have enough space (short-circuit) OR call
1690          * can_overcommit() to ensure we can overcommit to continue.
1691          */
1692         if (!pending_tickets &&
1693             ((used + orig_bytes <= space_info->total_bytes) ||
1694              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1695                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1696                                                       orig_bytes);
1697                 ret = 0;
1698         }
1699 
1700         /*
1701          * Things are dire, we need to make a reservation so we don't abort.  We
1702          * will let this reservation go through as long as we have actual space
1703          * left to allocate for the block.
1704          */
1705         if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1706                 used = btrfs_space_info_used(space_info, false);
1707                 if (used + orig_bytes <= space_info->total_bytes) {
1708                         btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1709                                                               orig_bytes);
1710                         ret = 0;
1711                 }
1712         }
1713 
1714         /*
1715          * If we couldn't make a reservation then setup our reservation ticket
1716          * and kick the async worker if it's not already running.
1717          *
1718          * If we are a priority flusher then we just need to add our ticket to
1719          * the list and we will do our own flushing further down.
1720          */
1721         if (ret && can_ticket(flush)) {
1722                 ticket.bytes = orig_bytes;
1723                 ticket.error = 0;
1724                 space_info->reclaim_size += ticket.bytes;
1725                 init_waitqueue_head(&ticket.wait);
1726                 ticket.steal = can_steal(flush);
1727                 if (trace_btrfs_reserve_ticket_enabled())
1728                         start_ns = ktime_get_ns();
1729 
1730                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1731                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1732                     flush == BTRFS_RESERVE_FLUSH_DATA) {
1733                         list_add_tail(&ticket.list, &space_info->tickets);
1734                         if (!space_info->flush) {
1735                                 /*
1736                                  * We were forced to add a reserve ticket, so
1737                                  * our preemptive flushing is unable to keep
1738                                  * up.  Clamp down on the threshold for the
1739                                  * preemptive flushing in order to keep up with
1740                                  * the workload.
1741                                  */
1742                                 maybe_clamp_preempt(fs_info, space_info);
1743 
1744                                 space_info->flush = 1;
1745                                 trace_btrfs_trigger_flush(fs_info,
1746                                                           space_info->flags,
1747                                                           orig_bytes, flush,
1748                                                           "enospc");
1749                                 queue_work(system_unbound_wq, async_work);
1750                         }
1751                 } else {
1752                         list_add_tail(&ticket.list,
1753                                       &space_info->priority_tickets);
1754                 }
1755         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1756                 /*
1757                  * We will do the space reservation dance during log replay,
1758                  * which means we won't have fs_info->fs_root set, so don't do
1759                  * the async reclaim as we will panic.
1760                  */
1761                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1762                     !work_busy(&fs_info->preempt_reclaim_work) &&
1763                     need_preemptive_reclaim(fs_info, space_info)) {
1764                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1765                                                   orig_bytes, flush, "preempt");
1766                         queue_work(system_unbound_wq,
1767                                    &fs_info->preempt_reclaim_work);
1768                 }
1769         }
1770         spin_unlock(&space_info->lock);
1771         if (!ret || !can_ticket(flush))
1772                 return ret;
1773 
1774         return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1775                                      orig_bytes, flush);
1776 }
1777 
1778 /*
1779  * Try to reserve metadata bytes from the block_rsv's space.
1780  *
1781  * @fs_info:    the filesystem
1782  * @space_info: the space_info we're allocating for
1783  * @orig_bytes: number of bytes we want
1784  * @flush:      whether or not we can flush to make our reservation
1785  *
1786  * This will reserve orig_bytes number of bytes from the space info associated
1787  * with the block_rsv.  If there is not enough space it will make an attempt to
1788  * flush out space to make room.  It will do this by flushing delalloc if
1789  * possible or committing the transaction.  If flush is 0 then no attempts to
1790  * regain reservations will be made and this will fail if there is not enough
1791  * space already.
1792  */
1793 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1794                                  struct btrfs_space_info *space_info,
1795                                  u64 orig_bytes,
1796                                  enum btrfs_reserve_flush_enum flush)
1797 {
1798         int ret;
1799 
1800         ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush);
1801         if (ret == -ENOSPC) {
1802                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1803                                               space_info->flags, orig_bytes, 1);
1804 
1805                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1806                         btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0);
1807         }
1808         return ret;
1809 }
1810 
1811 /*
1812  * Try to reserve data bytes for an allocation.
1813  *
1814  * @fs_info: the filesystem
1815  * @bytes:   number of bytes we need
1816  * @flush:   how we are allowed to flush
1817  *
1818  * This will reserve bytes from the data space info.  If there is not enough
1819  * space then we will attempt to flush space as specified by flush.
1820  */
1821 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1822                              enum btrfs_reserve_flush_enum flush)
1823 {
1824         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1825         int ret;
1826 
1827         ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1828                flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1829                flush == BTRFS_RESERVE_NO_FLUSH);
1830         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1831 
1832         ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1833         if (ret == -ENOSPC) {
1834                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1835                                               data_sinfo->flags, bytes, 1);
1836                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1837                         btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1838         }
1839         return ret;
1840 }
1841 
1842 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1843 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1844 {
1845         struct btrfs_space_info *space_info;
1846 
1847         btrfs_info(fs_info, "dumping space info:");
1848         list_for_each_entry(space_info, &fs_info->space_info, list) {
1849                 spin_lock(&space_info->lock);
1850                 __btrfs_dump_space_info(fs_info, space_info);
1851                 spin_unlock(&space_info->lock);
1852         }
1853         dump_global_block_rsv(fs_info);
1854 }
1855 
1856 /*
1857  * Account the unused space of all the readonly block group in the space_info.
1858  * takes mirrors into account.
1859  */
1860 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1861 {
1862         struct btrfs_block_group *block_group;
1863         u64 free_bytes = 0;
1864         int factor;
1865 
1866         /* It's df, we don't care if it's racy */
1867         if (list_empty(&sinfo->ro_bgs))
1868                 return 0;
1869 
1870         spin_lock(&sinfo->lock);
1871         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1872                 spin_lock(&block_group->lock);
1873 
1874                 if (!block_group->ro) {
1875                         spin_unlock(&block_group->lock);
1876                         continue;
1877                 }
1878 
1879                 factor = btrfs_bg_type_to_factor(block_group->flags);
1880                 free_bytes += (block_group->length -
1881                                block_group->used) * factor;
1882 
1883                 spin_unlock(&block_group->lock);
1884         }
1885         spin_unlock(&sinfo->lock);
1886 
1887         return free_bytes;
1888 }
1889 
1890 static u64 calc_pct_ratio(u64 x, u64 y)
1891 {
1892         int err;
1893 
1894         if (!y)
1895                 return 0;
1896 again:
1897         err = check_mul_overflow(100, x, &x);
1898         if (err)
1899                 goto lose_precision;
1900         return div64_u64(x, y);
1901 lose_precision:
1902         x >>= 10;
1903         y >>= 10;
1904         if (!y)
1905                 y = 1;
1906         goto again;
1907 }
1908 
1909 /*
1910  * A reasonable buffer for unallocated space is 10 data block_groups.
1911  * If we claw this back repeatedly, we can still achieve efficient
1912  * utilization when near full, and not do too much reclaim while
1913  * always maintaining a solid buffer for workloads that quickly
1914  * allocate and pressure the unallocated space.
1915  */
1916 static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info)
1917 {
1918         u64 chunk_sz = calc_effective_data_chunk_size(fs_info);
1919 
1920         return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz;
1921 }
1922 
1923 /*
1924  * The fundamental goal of automatic reclaim is to protect the filesystem's
1925  * unallocated space and thus minimize the probability of the filesystem going
1926  * read only when a metadata allocation failure causes a transaction abort.
1927  *
1928  * However, relocations happen into the space_info's unused space, therefore
1929  * automatic reclaim must also back off as that space runs low. There is no
1930  * value in doing trivial "relocations" of re-writing the same block group
1931  * into a fresh one.
1932  *
1933  * Furthermore, we want to avoid doing too much reclaim even if there are good
1934  * candidates. This is because the allocator is pretty good at filling up the
1935  * holes with writes. So we want to do just enough reclaim to try and stay
1936  * safe from running out of unallocated space but not be wasteful about it.
1937  *
1938  * Therefore, the dynamic reclaim threshold is calculated as follows:
1939  * - calculate a target unallocated amount of 5 block group sized chunks
1940  * - ratchet up the intensity of reclaim depending on how far we are from
1941  *   that target by using a formula of unalloc / target to set the threshold.
1942  *
1943  * Typically with 10 block groups as the target, the discrete values this comes
1944  * out to are 0, 10, 20, ... , 80, 90, and 99.
1945  */
1946 static int calc_dynamic_reclaim_threshold(struct btrfs_space_info *space_info)
1947 {
1948         struct btrfs_fs_info *fs_info = space_info->fs_info;
1949         u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
1950         u64 target = calc_unalloc_target(fs_info);
1951         u64 alloc = space_info->total_bytes;
1952         u64 used = btrfs_space_info_used(space_info, false);
1953         u64 unused = alloc - used;
1954         u64 want = target > unalloc ? target - unalloc : 0;
1955         u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
1956 
1957         /* If we have no unused space, don't bother, it won't work anyway. */
1958         if (unused < data_chunk_size)
1959                 return 0;
1960 
1961         /* Cast to int is OK because want <= target. */
1962         return calc_pct_ratio(want, target);
1963 }
1964 
1965 int btrfs_calc_reclaim_threshold(struct btrfs_space_info *space_info)
1966 {
1967         lockdep_assert_held(&space_info->lock);
1968 
1969         if (READ_ONCE(space_info->dynamic_reclaim))
1970                 return calc_dynamic_reclaim_threshold(space_info);
1971         return READ_ONCE(space_info->bg_reclaim_threshold);
1972 }
1973 
1974 /*
1975  * Under "urgent" reclaim, we will reclaim even fresh block groups that have
1976  * recently seen successful allocations, as we are desperate to reclaim
1977  * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs.
1978  */
1979 static bool is_reclaim_urgent(struct btrfs_space_info *space_info)
1980 {
1981         struct btrfs_fs_info *fs_info = space_info->fs_info;
1982         u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
1983         u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
1984 
1985         return unalloc < data_chunk_size;
1986 }
1987 
1988 static int do_reclaim_sweep(struct btrfs_fs_info *fs_info,
1989                             struct btrfs_space_info *space_info, int raid)
1990 {
1991         struct btrfs_block_group *bg;
1992         int thresh_pct;
1993         bool try_again = true;
1994         bool urgent;
1995 
1996         spin_lock(&space_info->lock);
1997         urgent = is_reclaim_urgent(space_info);
1998         thresh_pct = btrfs_calc_reclaim_threshold(space_info);
1999         spin_unlock(&space_info->lock);
2000 
2001         down_read(&space_info->groups_sem);
2002 again:
2003         list_for_each_entry(bg, &space_info->block_groups[raid], list) {
2004                 u64 thresh;
2005                 bool reclaim = false;
2006 
2007                 btrfs_get_block_group(bg);
2008                 spin_lock(&bg->lock);
2009                 thresh = mult_perc(bg->length, thresh_pct);
2010                 if (bg->used < thresh && bg->reclaim_mark) {
2011                         try_again = false;
2012                         reclaim = true;
2013                 }
2014                 bg->reclaim_mark++;
2015                 spin_unlock(&bg->lock);
2016                 if (reclaim)
2017                         btrfs_mark_bg_to_reclaim(bg);
2018                 btrfs_put_block_group(bg);
2019         }
2020 
2021         /*
2022          * In situations where we are very motivated to reclaim (low unalloc)
2023          * use two passes to make the reclaim mark check best effort.
2024          *
2025          * If we have any staler groups, we don't touch the fresher ones, but if we
2026          * really need a block group, do take a fresh one.
2027          */
2028         if (try_again && urgent) {
2029                 try_again = false;
2030                 goto again;
2031         }
2032 
2033         up_read(&space_info->groups_sem);
2034         return 0;
2035 }
2036 
2037 void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes)
2038 {
2039         u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info);
2040 
2041         lockdep_assert_held(&space_info->lock);
2042         space_info->reclaimable_bytes += bytes;
2043 
2044         if (space_info->reclaimable_bytes >= chunk_sz)
2045                 btrfs_set_periodic_reclaim_ready(space_info, true);
2046 }
2047 
2048 void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready)
2049 {
2050         lockdep_assert_held(&space_info->lock);
2051         if (!READ_ONCE(space_info->periodic_reclaim))
2052                 return;
2053         if (ready != space_info->periodic_reclaim_ready) {
2054                 space_info->periodic_reclaim_ready = ready;
2055                 if (!ready)
2056                         space_info->reclaimable_bytes = 0;
2057         }
2058 }
2059 
2060 bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info)
2061 {
2062         bool ret;
2063 
2064         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2065                 return false;
2066         if (!READ_ONCE(space_info->periodic_reclaim))
2067                 return false;
2068 
2069         spin_lock(&space_info->lock);
2070         ret = space_info->periodic_reclaim_ready;
2071         btrfs_set_periodic_reclaim_ready(space_info, false);
2072         spin_unlock(&space_info->lock);
2073 
2074         return ret;
2075 }
2076 
2077 int btrfs_reclaim_sweep(struct btrfs_fs_info *fs_info)
2078 {
2079         int ret;
2080         int raid;
2081         struct btrfs_space_info *space_info;
2082 
2083         list_for_each_entry(space_info, &fs_info->space_info, list) {
2084                 if (!btrfs_should_periodic_reclaim(space_info))
2085                         continue;
2086                 for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++) {
2087                         ret = do_reclaim_sweep(fs_info, space_info, raid);
2088                         if (ret)
2089                                 return ret;
2090                 }
2091         }
2092 
2093         return ret;
2094 }
2095 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php