1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 29 #include <linux/security.h> 30 #include <linux/fs_parser.h> 31 #include <linux/swap.h> 32 #include "messages.h" 33 #include "delayed-inode.h" 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "direct-io.h" 39 #include "props.h" 40 #include "xattr.h" 41 #include "bio.h" 42 #include "export.h" 43 #include "compression.h" 44 #include "dev-replace.h" 45 #include "free-space-cache.h" 46 #include "backref.h" 47 #include "space-info.h" 48 #include "sysfs.h" 49 #include "zoned.h" 50 #include "tests/btrfs-tests.h" 51 #include "block-group.h" 52 #include "discard.h" 53 #include "qgroup.h" 54 #include "raid56.h" 55 #include "fs.h" 56 #include "accessors.h" 57 #include "defrag.h" 58 #include "dir-item.h" 59 #include "ioctl.h" 60 #include "scrub.h" 61 #include "verity.h" 62 #include "super.h" 63 #include "extent-tree.h" 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/btrfs.h> 66 67 static const struct super_operations btrfs_super_ops; 68 static struct file_system_type btrfs_fs_type; 69 70 static void btrfs_put_super(struct super_block *sb) 71 { 72 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 73 74 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid); 75 close_ctree(fs_info); 76 } 77 78 /* Store the mount options related information. */ 79 struct btrfs_fs_context { 80 char *subvol_name; 81 u64 subvol_objectid; 82 u64 max_inline; 83 u32 commit_interval; 84 u32 metadata_ratio; 85 u32 thread_pool_size; 86 unsigned long long mount_opt; 87 unsigned long compress_type:4; 88 unsigned int compress_level; 89 refcount_t refs; 90 }; 91 92 enum { 93 Opt_acl, 94 Opt_clear_cache, 95 Opt_commit_interval, 96 Opt_compress, 97 Opt_compress_force, 98 Opt_compress_force_type, 99 Opt_compress_type, 100 Opt_degraded, 101 Opt_device, 102 Opt_fatal_errors, 103 Opt_flushoncommit, 104 Opt_max_inline, 105 Opt_barrier, 106 Opt_datacow, 107 Opt_datasum, 108 Opt_defrag, 109 Opt_discard, 110 Opt_discard_mode, 111 Opt_ratio, 112 Opt_rescan_uuid_tree, 113 Opt_skip_balance, 114 Opt_space_cache, 115 Opt_space_cache_version, 116 Opt_ssd, 117 Opt_ssd_spread, 118 Opt_subvol, 119 Opt_subvol_empty, 120 Opt_subvolid, 121 Opt_thread_pool, 122 Opt_treelog, 123 Opt_user_subvol_rm_allowed, 124 Opt_norecovery, 125 126 /* Rescue options */ 127 Opt_rescue, 128 Opt_usebackuproot, 129 Opt_nologreplay, 130 131 /* Debugging options */ 132 Opt_enospc_debug, 133 #ifdef CONFIG_BTRFS_DEBUG 134 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 135 #endif 136 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 137 Opt_ref_verify, 138 #endif 139 Opt_err, 140 }; 141 142 enum { 143 Opt_fatal_errors_panic, 144 Opt_fatal_errors_bug, 145 }; 146 147 static const struct constant_table btrfs_parameter_fatal_errors[] = { 148 { "panic", Opt_fatal_errors_panic }, 149 { "bug", Opt_fatal_errors_bug }, 150 {} 151 }; 152 153 enum { 154 Opt_discard_sync, 155 Opt_discard_async, 156 }; 157 158 static const struct constant_table btrfs_parameter_discard[] = { 159 { "sync", Opt_discard_sync }, 160 { "async", Opt_discard_async }, 161 {} 162 }; 163 164 enum { 165 Opt_space_cache_v1, 166 Opt_space_cache_v2, 167 }; 168 169 static const struct constant_table btrfs_parameter_space_cache[] = { 170 { "v1", Opt_space_cache_v1 }, 171 { "v2", Opt_space_cache_v2 }, 172 {} 173 }; 174 175 enum { 176 Opt_rescue_usebackuproot, 177 Opt_rescue_nologreplay, 178 Opt_rescue_ignorebadroots, 179 Opt_rescue_ignoredatacsums, 180 Opt_rescue_ignoremetacsums, 181 Opt_rescue_ignoresuperflags, 182 Opt_rescue_parameter_all, 183 }; 184 185 static const struct constant_table btrfs_parameter_rescue[] = { 186 { "usebackuproot", Opt_rescue_usebackuproot }, 187 { "nologreplay", Opt_rescue_nologreplay }, 188 { "ignorebadroots", Opt_rescue_ignorebadroots }, 189 { "ibadroots", Opt_rescue_ignorebadroots }, 190 { "ignoredatacsums", Opt_rescue_ignoredatacsums }, 191 { "ignoremetacsums", Opt_rescue_ignoremetacsums}, 192 { "ignoresuperflags", Opt_rescue_ignoresuperflags}, 193 { "idatacsums", Opt_rescue_ignoredatacsums }, 194 { "imetacsums", Opt_rescue_ignoremetacsums}, 195 { "isuperflags", Opt_rescue_ignoresuperflags}, 196 { "all", Opt_rescue_parameter_all }, 197 {} 198 }; 199 200 #ifdef CONFIG_BTRFS_DEBUG 201 enum { 202 Opt_fragment_parameter_data, 203 Opt_fragment_parameter_metadata, 204 Opt_fragment_parameter_all, 205 }; 206 207 static const struct constant_table btrfs_parameter_fragment[] = { 208 { "data", Opt_fragment_parameter_data }, 209 { "metadata", Opt_fragment_parameter_metadata }, 210 { "all", Opt_fragment_parameter_all }, 211 {} 212 }; 213 #endif 214 215 static const struct fs_parameter_spec btrfs_fs_parameters[] = { 216 fsparam_flag_no("acl", Opt_acl), 217 fsparam_flag_no("autodefrag", Opt_defrag), 218 fsparam_flag_no("barrier", Opt_barrier), 219 fsparam_flag("clear_cache", Opt_clear_cache), 220 fsparam_u32("commit", Opt_commit_interval), 221 fsparam_flag("compress", Opt_compress), 222 fsparam_string("compress", Opt_compress_type), 223 fsparam_flag("compress-force", Opt_compress_force), 224 fsparam_string("compress-force", Opt_compress_force_type), 225 fsparam_flag_no("datacow", Opt_datacow), 226 fsparam_flag_no("datasum", Opt_datasum), 227 fsparam_flag("degraded", Opt_degraded), 228 fsparam_string("device", Opt_device), 229 fsparam_flag_no("discard", Opt_discard), 230 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard), 231 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors), 232 fsparam_flag_no("flushoncommit", Opt_flushoncommit), 233 fsparam_string("max_inline", Opt_max_inline), 234 fsparam_u32("metadata_ratio", Opt_ratio), 235 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree), 236 fsparam_flag("skip_balance", Opt_skip_balance), 237 fsparam_flag_no("space_cache", Opt_space_cache), 238 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache), 239 fsparam_flag_no("ssd", Opt_ssd), 240 fsparam_flag_no("ssd_spread", Opt_ssd_spread), 241 fsparam_string("subvol", Opt_subvol), 242 fsparam_flag("subvol=", Opt_subvol_empty), 243 fsparam_u64("subvolid", Opt_subvolid), 244 fsparam_u32("thread_pool", Opt_thread_pool), 245 fsparam_flag_no("treelog", Opt_treelog), 246 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed), 247 248 /* Rescue options. */ 249 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue), 250 /* Deprecated, with alias rescue=nologreplay */ 251 __fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL), 252 /* Deprecated, with alias rescue=usebackuproot */ 253 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL), 254 /* For compatibility only, alias for "rescue=nologreplay". */ 255 fsparam_flag("norecovery", Opt_norecovery), 256 257 /* Debugging options. */ 258 fsparam_flag_no("enospc_debug", Opt_enospc_debug), 259 #ifdef CONFIG_BTRFS_DEBUG 260 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment), 261 #endif 262 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 263 fsparam_flag("ref_verify", Opt_ref_verify), 264 #endif 265 {} 266 }; 267 268 /* No support for restricting writes to btrfs devices yet... */ 269 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc) 270 { 271 return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES; 272 } 273 274 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 275 { 276 struct btrfs_fs_context *ctx = fc->fs_private; 277 struct fs_parse_result result; 278 int opt; 279 280 opt = fs_parse(fc, btrfs_fs_parameters, param, &result); 281 if (opt < 0) 282 return opt; 283 284 switch (opt) { 285 case Opt_degraded: 286 btrfs_set_opt(ctx->mount_opt, DEGRADED); 287 break; 288 case Opt_subvol_empty: 289 /* 290 * This exists because we used to allow it on accident, so we're 291 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow 292 * empty subvol= again"). 293 */ 294 break; 295 case Opt_subvol: 296 kfree(ctx->subvol_name); 297 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL); 298 if (!ctx->subvol_name) 299 return -ENOMEM; 300 break; 301 case Opt_subvolid: 302 ctx->subvol_objectid = result.uint_64; 303 304 /* subvolid=0 means give me the original fs_tree. */ 305 if (!ctx->subvol_objectid) 306 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID; 307 break; 308 case Opt_device: { 309 struct btrfs_device *device; 310 blk_mode_t mode = btrfs_open_mode(fc); 311 312 mutex_lock(&uuid_mutex); 313 device = btrfs_scan_one_device(param->string, mode, false); 314 mutex_unlock(&uuid_mutex); 315 if (IS_ERR(device)) 316 return PTR_ERR(device); 317 break; 318 } 319 case Opt_datasum: 320 if (result.negated) { 321 btrfs_set_opt(ctx->mount_opt, NODATASUM); 322 } else { 323 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 324 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 325 } 326 break; 327 case Opt_datacow: 328 if (result.negated) { 329 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 330 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 331 btrfs_set_opt(ctx->mount_opt, NODATACOW); 332 btrfs_set_opt(ctx->mount_opt, NODATASUM); 333 } else { 334 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 335 } 336 break; 337 case Opt_compress_force: 338 case Opt_compress_force_type: 339 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS); 340 fallthrough; 341 case Opt_compress: 342 case Opt_compress_type: 343 if (opt == Opt_compress || opt == Opt_compress_force) { 344 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 345 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 346 btrfs_set_opt(ctx->mount_opt, COMPRESS); 347 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 348 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 349 } else if (strncmp(param->string, "zlib", 4) == 0) { 350 ctx->compress_type = BTRFS_COMPRESS_ZLIB; 351 ctx->compress_level = 352 btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB, 353 param->string + 4); 354 btrfs_set_opt(ctx->mount_opt, COMPRESS); 355 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 356 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 357 } else if (strncmp(param->string, "lzo", 3) == 0) { 358 ctx->compress_type = BTRFS_COMPRESS_LZO; 359 ctx->compress_level = 0; 360 btrfs_set_opt(ctx->mount_opt, COMPRESS); 361 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 362 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 363 } else if (strncmp(param->string, "zstd", 4) == 0) { 364 ctx->compress_type = BTRFS_COMPRESS_ZSTD; 365 ctx->compress_level = 366 btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD, 367 param->string + 4); 368 btrfs_set_opt(ctx->mount_opt, COMPRESS); 369 btrfs_clear_opt(ctx->mount_opt, NODATACOW); 370 btrfs_clear_opt(ctx->mount_opt, NODATASUM); 371 } else if (strncmp(param->string, "no", 2) == 0) { 372 ctx->compress_level = 0; 373 ctx->compress_type = 0; 374 btrfs_clear_opt(ctx->mount_opt, COMPRESS); 375 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS); 376 } else { 377 btrfs_err(NULL, "unrecognized compression value %s", 378 param->string); 379 return -EINVAL; 380 } 381 break; 382 case Opt_ssd: 383 if (result.negated) { 384 btrfs_set_opt(ctx->mount_opt, NOSSD); 385 btrfs_clear_opt(ctx->mount_opt, SSD); 386 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 387 } else { 388 btrfs_set_opt(ctx->mount_opt, SSD); 389 btrfs_clear_opt(ctx->mount_opt, NOSSD); 390 } 391 break; 392 case Opt_ssd_spread: 393 if (result.negated) { 394 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD); 395 } else { 396 btrfs_set_opt(ctx->mount_opt, SSD); 397 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD); 398 btrfs_clear_opt(ctx->mount_opt, NOSSD); 399 } 400 break; 401 case Opt_barrier: 402 if (result.negated) 403 btrfs_set_opt(ctx->mount_opt, NOBARRIER); 404 else 405 btrfs_clear_opt(ctx->mount_opt, NOBARRIER); 406 break; 407 case Opt_thread_pool: 408 if (result.uint_32 == 0) { 409 btrfs_err(NULL, "invalid value 0 for thread_pool"); 410 return -EINVAL; 411 } 412 ctx->thread_pool_size = result.uint_32; 413 break; 414 case Opt_max_inline: 415 ctx->max_inline = memparse(param->string, NULL); 416 break; 417 case Opt_acl: 418 if (result.negated) { 419 fc->sb_flags &= ~SB_POSIXACL; 420 } else { 421 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 422 fc->sb_flags |= SB_POSIXACL; 423 #else 424 btrfs_err(NULL, "support for ACL not compiled in"); 425 return -EINVAL; 426 #endif 427 } 428 /* 429 * VFS limits the ability to toggle ACL on and off via remount, 430 * despite every file system allowing this. This seems to be 431 * an oversight since we all do, but it'll fail if we're 432 * remounting. So don't set the mask here, we'll check it in 433 * btrfs_reconfigure and do the toggling ourselves. 434 */ 435 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE) 436 fc->sb_flags_mask |= SB_POSIXACL; 437 break; 438 case Opt_treelog: 439 if (result.negated) 440 btrfs_set_opt(ctx->mount_opt, NOTREELOG); 441 else 442 btrfs_clear_opt(ctx->mount_opt, NOTREELOG); 443 break; 444 case Opt_nologreplay: 445 btrfs_warn(NULL, 446 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 447 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 448 break; 449 case Opt_norecovery: 450 btrfs_info(NULL, 451 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'"); 452 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 453 break; 454 case Opt_flushoncommit: 455 if (result.negated) 456 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT); 457 else 458 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT); 459 break; 460 case Opt_ratio: 461 ctx->metadata_ratio = result.uint_32; 462 break; 463 case Opt_discard: 464 if (result.negated) { 465 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 466 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 467 btrfs_set_opt(ctx->mount_opt, NODISCARD); 468 } else { 469 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 470 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 471 } 472 break; 473 case Opt_discard_mode: 474 switch (result.uint_32) { 475 case Opt_discard_sync: 476 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC); 477 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC); 478 break; 479 case Opt_discard_async: 480 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC); 481 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC); 482 break; 483 default: 484 btrfs_err(NULL, "unrecognized discard mode value %s", 485 param->key); 486 return -EINVAL; 487 } 488 btrfs_clear_opt(ctx->mount_opt, NODISCARD); 489 break; 490 case Opt_space_cache: 491 if (result.negated) { 492 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE); 493 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 494 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 495 } else { 496 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 497 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 498 } 499 break; 500 case Opt_space_cache_version: 501 switch (result.uint_32) { 502 case Opt_space_cache_v1: 503 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE); 504 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE); 505 break; 506 case Opt_space_cache_v2: 507 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE); 508 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE); 509 break; 510 default: 511 btrfs_err(NULL, "unrecognized space_cache value %s", 512 param->key); 513 return -EINVAL; 514 } 515 break; 516 case Opt_rescan_uuid_tree: 517 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE); 518 break; 519 case Opt_clear_cache: 520 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 521 break; 522 case Opt_user_subvol_rm_allowed: 523 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED); 524 break; 525 case Opt_enospc_debug: 526 if (result.negated) 527 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG); 528 else 529 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG); 530 break; 531 case Opt_defrag: 532 if (result.negated) 533 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG); 534 else 535 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG); 536 break; 537 case Opt_usebackuproot: 538 btrfs_warn(NULL, 539 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead"); 540 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 541 542 /* If we're loading the backup roots we can't trust the space cache. */ 543 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE); 544 break; 545 case Opt_skip_balance: 546 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE); 547 break; 548 case Opt_fatal_errors: 549 switch (result.uint_32) { 550 case Opt_fatal_errors_panic: 551 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 552 break; 553 case Opt_fatal_errors_bug: 554 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR); 555 break; 556 default: 557 btrfs_err(NULL, "unrecognized fatal_errors value %s", 558 param->key); 559 return -EINVAL; 560 } 561 break; 562 case Opt_commit_interval: 563 ctx->commit_interval = result.uint_32; 564 if (ctx->commit_interval == 0) 565 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 566 break; 567 case Opt_rescue: 568 switch (result.uint_32) { 569 case Opt_rescue_usebackuproot: 570 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT); 571 break; 572 case Opt_rescue_nologreplay: 573 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 574 break; 575 case Opt_rescue_ignorebadroots: 576 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 577 break; 578 case Opt_rescue_ignoredatacsums: 579 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 580 break; 581 case Opt_rescue_ignoremetacsums: 582 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS); 583 break; 584 case Opt_rescue_ignoresuperflags: 585 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS); 586 break; 587 case Opt_rescue_parameter_all: 588 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS); 589 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS); 590 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS); 591 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS); 592 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY); 593 break; 594 default: 595 btrfs_info(NULL, "unrecognized rescue option '%s'", 596 param->key); 597 return -EINVAL; 598 } 599 break; 600 #ifdef CONFIG_BTRFS_DEBUG 601 case Opt_fragment: 602 switch (result.uint_32) { 603 case Opt_fragment_parameter_all: 604 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 605 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 606 break; 607 case Opt_fragment_parameter_metadata: 608 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA); 609 break; 610 case Opt_fragment_parameter_data: 611 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA); 612 break; 613 default: 614 btrfs_info(NULL, "unrecognized fragment option '%s'", 615 param->key); 616 return -EINVAL; 617 } 618 break; 619 #endif 620 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 621 case Opt_ref_verify: 622 btrfs_set_opt(ctx->mount_opt, REF_VERIFY); 623 break; 624 #endif 625 default: 626 btrfs_err(NULL, "unrecognized mount option '%s'", param->key); 627 return -EINVAL; 628 } 629 630 return 0; 631 } 632 633 /* 634 * Some options only have meaning at mount time and shouldn't persist across 635 * remounts, or be displayed. Clear these at the end of mount and remount code 636 * paths. 637 */ 638 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 639 { 640 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 641 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 642 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE); 643 } 644 645 static bool check_ro_option(const struct btrfs_fs_info *fs_info, 646 unsigned long long mount_opt, unsigned long long opt, 647 const char *opt_name) 648 { 649 if (mount_opt & opt) { 650 btrfs_err(fs_info, "%s must be used with ro mount option", 651 opt_name); 652 return true; 653 } 654 return false; 655 } 656 657 bool btrfs_check_options(const struct btrfs_fs_info *info, 658 unsigned long long *mount_opt, 659 unsigned long flags) 660 { 661 bool ret = true; 662 663 if (!(flags & SB_RDONLY) && 664 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 665 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 666 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") || 667 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") || 668 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags"))) 669 ret = false; 670 671 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 672 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) && 673 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) { 674 btrfs_err(info, "cannot disable free-space-tree"); 675 ret = false; 676 } 677 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) && 678 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) { 679 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature"); 680 ret = false; 681 } 682 683 if (btrfs_check_mountopts_zoned(info, mount_opt)) 684 ret = false; 685 686 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) { 687 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { 688 btrfs_info(info, "disk space caching is enabled"); 689 btrfs_warn(info, 690 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2"); 691 } 692 if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) 693 btrfs_info(info, "using free-space-tree"); 694 } 695 696 return ret; 697 } 698 699 /* 700 * This is subtle, we only call this during open_ctree(). We need to pre-load 701 * the mount options with the on-disk settings. Before the new mount API took 702 * effect we would do this on mount and remount. With the new mount API we'll 703 * only do this on the initial mount. 704 * 705 * This isn't a change in behavior, because we're using the current state of the 706 * file system to set the current mount options. If you mounted with special 707 * options to disable these features and then remounted we wouldn't revert the 708 * settings, because mounting without these features cleared the on-disk 709 * settings, so this being called on re-mount is not needed. 710 */ 711 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info) 712 { 713 if (fs_info->sectorsize < PAGE_SIZE) { 714 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 715 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 716 btrfs_info(fs_info, 717 "forcing free space tree for sector size %u with page size %lu", 718 fs_info->sectorsize, PAGE_SIZE); 719 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 720 } 721 } 722 723 /* 724 * At this point our mount options are populated, so we only mess with 725 * these settings if we don't have any settings already. 726 */ 727 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) 728 return; 729 730 if (btrfs_is_zoned(fs_info) && 731 btrfs_free_space_cache_v1_active(fs_info)) { 732 btrfs_info(fs_info, "zoned: clearing existing space cache"); 733 btrfs_set_super_cache_generation(fs_info->super_copy, 0); 734 return; 735 } 736 737 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 738 return; 739 740 if (btrfs_test_opt(fs_info, NOSPACECACHE)) 741 return; 742 743 /* 744 * At this point we don't have explicit options set by the user, set 745 * them ourselves based on the state of the file system. 746 */ 747 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 748 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 749 else if (btrfs_free_space_cache_v1_active(fs_info)) 750 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 751 } 752 753 static void set_device_specific_options(struct btrfs_fs_info *fs_info) 754 { 755 if (!btrfs_test_opt(fs_info, NOSSD) && 756 !fs_info->fs_devices->rotating) 757 btrfs_set_opt(fs_info->mount_opt, SSD); 758 759 /* 760 * For devices supporting discard turn on discard=async automatically, 761 * unless it's already set or disabled. This could be turned off by 762 * nodiscard for the same mount. 763 * 764 * The zoned mode piggy backs on the discard functionality for 765 * resetting a zone. There is no reason to delay the zone reset as it is 766 * fast enough. So, do not enable async discard for zoned mode. 767 */ 768 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 769 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 770 btrfs_test_opt(fs_info, NODISCARD)) && 771 fs_info->fs_devices->discardable && 772 !btrfs_is_zoned(fs_info)) 773 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC); 774 } 775 776 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 777 u64 subvol_objectid) 778 { 779 struct btrfs_root *root = fs_info->tree_root; 780 struct btrfs_root *fs_root = NULL; 781 struct btrfs_root_ref *root_ref; 782 struct btrfs_inode_ref *inode_ref; 783 struct btrfs_key key; 784 struct btrfs_path *path = NULL; 785 char *name = NULL, *ptr; 786 u64 dirid; 787 int len; 788 int ret; 789 790 path = btrfs_alloc_path(); 791 if (!path) { 792 ret = -ENOMEM; 793 goto err; 794 } 795 796 name = kmalloc(PATH_MAX, GFP_KERNEL); 797 if (!name) { 798 ret = -ENOMEM; 799 goto err; 800 } 801 ptr = name + PATH_MAX - 1; 802 ptr[0] = '\0'; 803 804 /* 805 * Walk up the subvolume trees in the tree of tree roots by root 806 * backrefs until we hit the top-level subvolume. 807 */ 808 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 809 key.objectid = subvol_objectid; 810 key.type = BTRFS_ROOT_BACKREF_KEY; 811 key.offset = (u64)-1; 812 813 ret = btrfs_search_backwards(root, &key, path); 814 if (ret < 0) { 815 goto err; 816 } else if (ret > 0) { 817 ret = -ENOENT; 818 goto err; 819 } 820 821 subvol_objectid = key.offset; 822 823 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 824 struct btrfs_root_ref); 825 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 826 ptr -= len + 1; 827 if (ptr < name) { 828 ret = -ENAMETOOLONG; 829 goto err; 830 } 831 read_extent_buffer(path->nodes[0], ptr + 1, 832 (unsigned long)(root_ref + 1), len); 833 ptr[0] = '/'; 834 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 835 btrfs_release_path(path); 836 837 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 838 if (IS_ERR(fs_root)) { 839 ret = PTR_ERR(fs_root); 840 fs_root = NULL; 841 goto err; 842 } 843 844 /* 845 * Walk up the filesystem tree by inode refs until we hit the 846 * root directory. 847 */ 848 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 849 key.objectid = dirid; 850 key.type = BTRFS_INODE_REF_KEY; 851 key.offset = (u64)-1; 852 853 ret = btrfs_search_backwards(fs_root, &key, path); 854 if (ret < 0) { 855 goto err; 856 } else if (ret > 0) { 857 ret = -ENOENT; 858 goto err; 859 } 860 861 dirid = key.offset; 862 863 inode_ref = btrfs_item_ptr(path->nodes[0], 864 path->slots[0], 865 struct btrfs_inode_ref); 866 len = btrfs_inode_ref_name_len(path->nodes[0], 867 inode_ref); 868 ptr -= len + 1; 869 if (ptr < name) { 870 ret = -ENAMETOOLONG; 871 goto err; 872 } 873 read_extent_buffer(path->nodes[0], ptr + 1, 874 (unsigned long)(inode_ref + 1), len); 875 ptr[0] = '/'; 876 btrfs_release_path(path); 877 } 878 btrfs_put_root(fs_root); 879 fs_root = NULL; 880 } 881 882 btrfs_free_path(path); 883 if (ptr == name + PATH_MAX - 1) { 884 name[0] = '/'; 885 name[1] = '\0'; 886 } else { 887 memmove(name, ptr, name + PATH_MAX - ptr); 888 } 889 return name; 890 891 err: 892 btrfs_put_root(fs_root); 893 btrfs_free_path(path); 894 kfree(name); 895 return ERR_PTR(ret); 896 } 897 898 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 899 { 900 struct btrfs_root *root = fs_info->tree_root; 901 struct btrfs_dir_item *di; 902 struct btrfs_path *path; 903 struct btrfs_key location; 904 struct fscrypt_str name = FSTR_INIT("default", 7); 905 u64 dir_id; 906 907 path = btrfs_alloc_path(); 908 if (!path) 909 return -ENOMEM; 910 911 /* 912 * Find the "default" dir item which points to the root item that we 913 * will mount by default if we haven't been given a specific subvolume 914 * to mount. 915 */ 916 dir_id = btrfs_super_root_dir(fs_info->super_copy); 917 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0); 918 if (IS_ERR(di)) { 919 btrfs_free_path(path); 920 return PTR_ERR(di); 921 } 922 if (!di) { 923 /* 924 * Ok the default dir item isn't there. This is weird since 925 * it's always been there, but don't freak out, just try and 926 * mount the top-level subvolume. 927 */ 928 btrfs_free_path(path); 929 *objectid = BTRFS_FS_TREE_OBJECTID; 930 return 0; 931 } 932 933 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 934 btrfs_free_path(path); 935 *objectid = location.objectid; 936 return 0; 937 } 938 939 static int btrfs_fill_super(struct super_block *sb, 940 struct btrfs_fs_devices *fs_devices, 941 void *data) 942 { 943 struct inode *inode; 944 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 945 int err; 946 947 sb->s_maxbytes = MAX_LFS_FILESIZE; 948 sb->s_magic = BTRFS_SUPER_MAGIC; 949 sb->s_op = &btrfs_super_ops; 950 sb->s_d_op = &btrfs_dentry_operations; 951 sb->s_export_op = &btrfs_export_ops; 952 #ifdef CONFIG_FS_VERITY 953 sb->s_vop = &btrfs_verityops; 954 #endif 955 sb->s_xattr = btrfs_xattr_handlers; 956 sb->s_time_gran = 1; 957 sb->s_iflags |= SB_I_CGROUPWB; 958 959 err = super_setup_bdi(sb); 960 if (err) { 961 btrfs_err(fs_info, "super_setup_bdi failed"); 962 return err; 963 } 964 965 err = open_ctree(sb, fs_devices, (char *)data); 966 if (err) { 967 btrfs_err(fs_info, "open_ctree failed"); 968 return err; 969 } 970 971 inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 972 if (IS_ERR(inode)) { 973 err = PTR_ERR(inode); 974 btrfs_handle_fs_error(fs_info, err, NULL); 975 goto fail_close; 976 } 977 978 sb->s_root = d_make_root(inode); 979 if (!sb->s_root) { 980 err = -ENOMEM; 981 goto fail_close; 982 } 983 984 sb->s_flags |= SB_ACTIVE; 985 return 0; 986 987 fail_close: 988 close_ctree(fs_info); 989 return err; 990 } 991 992 int btrfs_sync_fs(struct super_block *sb, int wait) 993 { 994 struct btrfs_trans_handle *trans; 995 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 996 struct btrfs_root *root = fs_info->tree_root; 997 998 trace_btrfs_sync_fs(fs_info, wait); 999 1000 if (!wait) { 1001 filemap_flush(fs_info->btree_inode->i_mapping); 1002 return 0; 1003 } 1004 1005 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 1006 1007 trans = btrfs_attach_transaction_barrier(root); 1008 if (IS_ERR(trans)) { 1009 /* no transaction, don't bother */ 1010 if (PTR_ERR(trans) == -ENOENT) { 1011 /* 1012 * Exit unless we have some pending changes 1013 * that need to go through commit 1014 */ 1015 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT, 1016 &fs_info->flags)) 1017 return 0; 1018 /* 1019 * A non-blocking test if the fs is frozen. We must not 1020 * start a new transaction here otherwise a deadlock 1021 * happens. The pending operations are delayed to the 1022 * next commit after thawing. 1023 */ 1024 if (sb_start_write_trylock(sb)) 1025 sb_end_write(sb); 1026 else 1027 return 0; 1028 trans = btrfs_start_transaction(root, 0); 1029 } 1030 if (IS_ERR(trans)) 1031 return PTR_ERR(trans); 1032 } 1033 return btrfs_commit_transaction(trans); 1034 } 1035 1036 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1037 { 1038 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1039 *printed = true; 1040 } 1041 1042 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1043 { 1044 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1045 const char *compress_type; 1046 const char *subvol_name; 1047 bool printed = false; 1048 1049 if (btrfs_test_opt(info, DEGRADED)) 1050 seq_puts(seq, ",degraded"); 1051 if (btrfs_test_opt(info, NODATASUM)) 1052 seq_puts(seq, ",nodatasum"); 1053 if (btrfs_test_opt(info, NODATACOW)) 1054 seq_puts(seq, ",nodatacow"); 1055 if (btrfs_test_opt(info, NOBARRIER)) 1056 seq_puts(seq, ",nobarrier"); 1057 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1058 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1059 if (info->thread_pool_size != min_t(unsigned long, 1060 num_online_cpus() + 2, 8)) 1061 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1062 if (btrfs_test_opt(info, COMPRESS)) { 1063 compress_type = btrfs_compress_type2str(info->compress_type); 1064 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1065 seq_printf(seq, ",compress-force=%s", compress_type); 1066 else 1067 seq_printf(seq, ",compress=%s", compress_type); 1068 if (info->compress_level) 1069 seq_printf(seq, ":%d", info->compress_level); 1070 } 1071 if (btrfs_test_opt(info, NOSSD)) 1072 seq_puts(seq, ",nossd"); 1073 if (btrfs_test_opt(info, SSD_SPREAD)) 1074 seq_puts(seq, ",ssd_spread"); 1075 else if (btrfs_test_opt(info, SSD)) 1076 seq_puts(seq, ",ssd"); 1077 if (btrfs_test_opt(info, NOTREELOG)) 1078 seq_puts(seq, ",notreelog"); 1079 if (btrfs_test_opt(info, NOLOGREPLAY)) 1080 print_rescue_option(seq, "nologreplay", &printed); 1081 if (btrfs_test_opt(info, USEBACKUPROOT)) 1082 print_rescue_option(seq, "usebackuproot", &printed); 1083 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1084 print_rescue_option(seq, "ignorebadroots", &printed); 1085 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1086 print_rescue_option(seq, "ignoredatacsums", &printed); 1087 if (btrfs_test_opt(info, IGNOREMETACSUMS)) 1088 print_rescue_option(seq, "ignoremetacsums", &printed); 1089 if (btrfs_test_opt(info, IGNORESUPERFLAGS)) 1090 print_rescue_option(seq, "ignoresuperflags", &printed); 1091 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1092 seq_puts(seq, ",flushoncommit"); 1093 if (btrfs_test_opt(info, DISCARD_SYNC)) 1094 seq_puts(seq, ",discard"); 1095 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1096 seq_puts(seq, ",discard=async"); 1097 if (!(info->sb->s_flags & SB_POSIXACL)) 1098 seq_puts(seq, ",noacl"); 1099 if (btrfs_free_space_cache_v1_active(info)) 1100 seq_puts(seq, ",space_cache"); 1101 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1102 seq_puts(seq, ",space_cache=v2"); 1103 else 1104 seq_puts(seq, ",nospace_cache"); 1105 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1106 seq_puts(seq, ",rescan_uuid_tree"); 1107 if (btrfs_test_opt(info, CLEAR_CACHE)) 1108 seq_puts(seq, ",clear_cache"); 1109 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1110 seq_puts(seq, ",user_subvol_rm_allowed"); 1111 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1112 seq_puts(seq, ",enospc_debug"); 1113 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1114 seq_puts(seq, ",autodefrag"); 1115 if (btrfs_test_opt(info, SKIP_BALANCE)) 1116 seq_puts(seq, ",skip_balance"); 1117 if (info->metadata_ratio) 1118 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1119 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1120 seq_puts(seq, ",fatal_errors=panic"); 1121 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1122 seq_printf(seq, ",commit=%u", info->commit_interval); 1123 #ifdef CONFIG_BTRFS_DEBUG 1124 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1125 seq_puts(seq, ",fragment=data"); 1126 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1127 seq_puts(seq, ",fragment=metadata"); 1128 #endif 1129 if (btrfs_test_opt(info, REF_VERIFY)) 1130 seq_puts(seq, ",ref_verify"); 1131 seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root)); 1132 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1133 btrfs_root_id(BTRFS_I(d_inode(dentry))->root)); 1134 if (!IS_ERR(subvol_name)) { 1135 seq_puts(seq, ",subvol="); 1136 seq_escape(seq, subvol_name, " \t\n\\"); 1137 kfree(subvol_name); 1138 } 1139 return 0; 1140 } 1141 1142 /* 1143 * subvolumes are identified by ino 256 1144 */ 1145 static inline int is_subvolume_inode(struct inode *inode) 1146 { 1147 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1148 return 1; 1149 return 0; 1150 } 1151 1152 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1153 struct vfsmount *mnt) 1154 { 1155 struct dentry *root; 1156 int ret; 1157 1158 if (!subvol_name) { 1159 if (!subvol_objectid) { 1160 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1161 &subvol_objectid); 1162 if (ret) { 1163 root = ERR_PTR(ret); 1164 goto out; 1165 } 1166 } 1167 subvol_name = btrfs_get_subvol_name_from_objectid( 1168 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1169 if (IS_ERR(subvol_name)) { 1170 root = ERR_CAST(subvol_name); 1171 subvol_name = NULL; 1172 goto out; 1173 } 1174 1175 } 1176 1177 root = mount_subtree(mnt, subvol_name); 1178 /* mount_subtree() drops our reference on the vfsmount. */ 1179 mnt = NULL; 1180 1181 if (!IS_ERR(root)) { 1182 struct super_block *s = root->d_sb; 1183 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1184 struct inode *root_inode = d_inode(root); 1185 u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root); 1186 1187 ret = 0; 1188 if (!is_subvolume_inode(root_inode)) { 1189 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1190 subvol_name); 1191 ret = -EINVAL; 1192 } 1193 if (subvol_objectid && root_objectid != subvol_objectid) { 1194 /* 1195 * This will also catch a race condition where a 1196 * subvolume which was passed by ID is renamed and 1197 * another subvolume is renamed over the old location. 1198 */ 1199 btrfs_err(fs_info, 1200 "subvol '%s' does not match subvolid %llu", 1201 subvol_name, subvol_objectid); 1202 ret = -EINVAL; 1203 } 1204 if (ret) { 1205 dput(root); 1206 root = ERR_PTR(ret); 1207 deactivate_locked_super(s); 1208 } 1209 } 1210 1211 out: 1212 mntput(mnt); 1213 kfree(subvol_name); 1214 return root; 1215 } 1216 1217 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1218 u32 new_pool_size, u32 old_pool_size) 1219 { 1220 if (new_pool_size == old_pool_size) 1221 return; 1222 1223 fs_info->thread_pool_size = new_pool_size; 1224 1225 btrfs_info(fs_info, "resize thread pool %d -> %d", 1226 old_pool_size, new_pool_size); 1227 1228 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1229 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1230 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1231 workqueue_set_max_active(fs_info->endio_workers, new_pool_size); 1232 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size); 1233 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1234 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1235 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1236 } 1237 1238 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1239 unsigned long long old_opts, int flags) 1240 { 1241 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1242 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1243 (flags & SB_RDONLY))) { 1244 /* wait for any defraggers to finish */ 1245 wait_event(fs_info->transaction_wait, 1246 (atomic_read(&fs_info->defrag_running) == 0)); 1247 if (flags & SB_RDONLY) 1248 sync_filesystem(fs_info->sb); 1249 } 1250 } 1251 1252 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1253 unsigned long long old_opts) 1254 { 1255 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1256 1257 /* 1258 * We need to cleanup all defragable inodes if the autodefragment is 1259 * close or the filesystem is read only. 1260 */ 1261 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1262 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1263 btrfs_cleanup_defrag_inodes(fs_info); 1264 } 1265 1266 /* If we toggled discard async */ 1267 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1268 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1269 btrfs_discard_resume(fs_info); 1270 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1271 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1272 btrfs_discard_cleanup(fs_info); 1273 1274 /* If we toggled space cache */ 1275 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1276 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1277 } 1278 1279 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info) 1280 { 1281 int ret; 1282 1283 if (BTRFS_FS_ERROR(fs_info)) { 1284 btrfs_err(fs_info, 1285 "remounting read-write after error is not allowed"); 1286 return -EINVAL; 1287 } 1288 1289 if (fs_info->fs_devices->rw_devices == 0) 1290 return -EACCES; 1291 1292 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1293 btrfs_warn(fs_info, 1294 "too many missing devices, writable remount is not allowed"); 1295 return -EACCES; 1296 } 1297 1298 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1299 btrfs_warn(fs_info, 1300 "mount required to replay tree-log, cannot remount read-write"); 1301 return -EINVAL; 1302 } 1303 1304 /* 1305 * NOTE: when remounting with a change that does writes, don't put it 1306 * anywhere above this point, as we are not sure to be safe to write 1307 * until we pass the above checks. 1308 */ 1309 ret = btrfs_start_pre_rw_mount(fs_info); 1310 if (ret) 1311 return ret; 1312 1313 btrfs_clear_sb_rdonly(fs_info->sb); 1314 1315 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1316 1317 /* 1318 * If we've gone from readonly -> read-write, we need to get our 1319 * sync/async discard lists in the right state. 1320 */ 1321 btrfs_discard_resume(fs_info); 1322 1323 return 0; 1324 } 1325 1326 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info) 1327 { 1328 /* 1329 * This also happens on 'umount -rf' or on shutdown, when the 1330 * filesystem is busy. 1331 */ 1332 cancel_work_sync(&fs_info->async_reclaim_work); 1333 cancel_work_sync(&fs_info->async_data_reclaim_work); 1334 1335 btrfs_discard_cleanup(fs_info); 1336 1337 /* Wait for the uuid_scan task to finish */ 1338 down(&fs_info->uuid_tree_rescan_sem); 1339 /* Avoid complains from lockdep et al. */ 1340 up(&fs_info->uuid_tree_rescan_sem); 1341 1342 btrfs_set_sb_rdonly(fs_info->sb); 1343 1344 /* 1345 * Setting SB_RDONLY will put the cleaner thread to sleep at the next 1346 * loop if it's already active. If it's already asleep, we'll leave 1347 * unused block groups on disk until we're mounted read-write again 1348 * unless we clean them up here. 1349 */ 1350 btrfs_delete_unused_bgs(fs_info); 1351 1352 /* 1353 * The cleaner task could be already running before we set the flag 1354 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make 1355 * sure that after we finish the remount, i.e. after we call 1356 * btrfs_commit_super(), the cleaner can no longer start a transaction 1357 * - either because it was dropping a dead root, running delayed iputs 1358 * or deleting an unused block group (the cleaner picked a block 1359 * group from the list of unused block groups before we were able to 1360 * in the previous call to btrfs_delete_unused_bgs()). 1361 */ 1362 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE); 1363 1364 /* 1365 * We've set the superblock to RO mode, so we might have made the 1366 * cleaner task sleep without running all pending delayed iputs. Go 1367 * through all the delayed iputs here, so that if an unmount happens 1368 * without remounting RW we don't end up at finishing close_ctree() 1369 * with a non-empty list of delayed iputs. 1370 */ 1371 btrfs_run_delayed_iputs(fs_info); 1372 1373 btrfs_dev_replace_suspend_for_unmount(fs_info); 1374 btrfs_scrub_cancel(fs_info); 1375 btrfs_pause_balance(fs_info); 1376 1377 /* 1378 * Pause the qgroup rescan worker if it is running. We don't want it to 1379 * be still running after we are in RO mode, as after that, by the time 1380 * we unmount, it might have left a transaction open, so we would leak 1381 * the transaction and/or crash. 1382 */ 1383 btrfs_qgroup_wait_for_completion(fs_info, false); 1384 1385 return btrfs_commit_super(fs_info); 1386 } 1387 1388 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1389 { 1390 fs_info->max_inline = ctx->max_inline; 1391 fs_info->commit_interval = ctx->commit_interval; 1392 fs_info->metadata_ratio = ctx->metadata_ratio; 1393 fs_info->thread_pool_size = ctx->thread_pool_size; 1394 fs_info->mount_opt = ctx->mount_opt; 1395 fs_info->compress_type = ctx->compress_type; 1396 fs_info->compress_level = ctx->compress_level; 1397 } 1398 1399 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx) 1400 { 1401 ctx->max_inline = fs_info->max_inline; 1402 ctx->commit_interval = fs_info->commit_interval; 1403 ctx->metadata_ratio = fs_info->metadata_ratio; 1404 ctx->thread_pool_size = fs_info->thread_pool_size; 1405 ctx->mount_opt = fs_info->mount_opt; 1406 ctx->compress_type = fs_info->compress_type; 1407 ctx->compress_level = fs_info->compress_level; 1408 } 1409 1410 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \ 1411 do { \ 1412 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1413 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1414 btrfs_info(fs_info, fmt, ##args); \ 1415 } while (0) 1416 1417 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \ 1418 do { \ 1419 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \ 1420 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \ 1421 btrfs_info(fs_info, fmt, ##args); \ 1422 } while (0) 1423 1424 static void btrfs_emit_options(struct btrfs_fs_info *info, 1425 struct btrfs_fs_context *old) 1426 { 1427 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1428 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts"); 1429 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum"); 1430 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations"); 1431 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme"); 1432 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers"); 1433 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log"); 1434 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time"); 1435 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit"); 1436 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard"); 1437 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard"); 1438 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree"); 1439 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching"); 1440 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache"); 1441 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag"); 1442 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data"); 1443 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata"); 1444 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification"); 1445 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time"); 1446 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots"); 1447 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums"); 1448 btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums"); 1449 btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags"); 1450 1451 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow"); 1452 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations"); 1453 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme"); 1454 btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers"); 1455 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log"); 1456 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching"); 1457 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree"); 1458 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag"); 1459 btrfs_info_if_unset(info, old, COMPRESS, "use no compression"); 1460 1461 /* Did the compression settings change? */ 1462 if (btrfs_test_opt(info, COMPRESS) && 1463 (!old || 1464 old->compress_type != info->compress_type || 1465 old->compress_level != info->compress_level || 1466 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) && 1467 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) { 1468 const char *compress_type = btrfs_compress_type2str(info->compress_type); 1469 1470 btrfs_info(info, "%s %s compression, level %d", 1471 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use", 1472 compress_type, info->compress_level); 1473 } 1474 1475 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1476 btrfs_info(info, "max_inline set to %llu", info->max_inline); 1477 } 1478 1479 static int btrfs_reconfigure(struct fs_context *fc) 1480 { 1481 struct super_block *sb = fc->root->d_sb; 1482 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1483 struct btrfs_fs_context *ctx = fc->fs_private; 1484 struct btrfs_fs_context old_ctx; 1485 int ret = 0; 1486 bool mount_reconfigure = (fc->s_fs_info != NULL); 1487 1488 btrfs_info_to_ctx(fs_info, &old_ctx); 1489 1490 /* 1491 * This is our "bind mount" trick, we don't want to allow the user to do 1492 * anything other than mount a different ro/rw and a different subvol, 1493 * all of the mount options should be maintained. 1494 */ 1495 if (mount_reconfigure) 1496 ctx->mount_opt = old_ctx.mount_opt; 1497 1498 sync_filesystem(sb); 1499 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1500 1501 if (!mount_reconfigure && 1502 !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags)) 1503 return -EINVAL; 1504 1505 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY)); 1506 if (ret < 0) 1507 return ret; 1508 1509 btrfs_ctx_to_info(fs_info, ctx); 1510 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags); 1511 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size, 1512 old_ctx.thread_pool_size); 1513 1514 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1515 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1516 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) { 1517 btrfs_warn(fs_info, 1518 "remount supports changing free space tree only from RO to RW"); 1519 /* Make sure free space cache options match the state on disk. */ 1520 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 1521 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1522 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 1523 } 1524 if (btrfs_free_space_cache_v1_active(fs_info)) { 1525 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1526 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 1527 } 1528 } 1529 1530 ret = 0; 1531 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY)) 1532 ret = btrfs_remount_ro(fs_info); 1533 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY)) 1534 ret = btrfs_remount_rw(fs_info); 1535 if (ret) 1536 goto restore; 1537 1538 /* 1539 * If we set the mask during the parameter parsing VFS would reject the 1540 * remount. Here we can set the mask and the value will be updated 1541 * appropriately. 1542 */ 1543 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL)) 1544 fc->sb_flags_mask |= SB_POSIXACL; 1545 1546 btrfs_emit_options(fs_info, &old_ctx); 1547 wake_up_process(fs_info->transaction_kthread); 1548 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1549 btrfs_clear_oneshot_options(fs_info); 1550 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1551 1552 return 0; 1553 restore: 1554 btrfs_ctx_to_info(fs_info, &old_ctx); 1555 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt); 1556 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1557 return ret; 1558 } 1559 1560 /* Used to sort the devices by max_avail(descending sort) */ 1561 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 1562 { 1563 const struct btrfs_device_info *dev_info1 = a; 1564 const struct btrfs_device_info *dev_info2 = b; 1565 1566 if (dev_info1->max_avail > dev_info2->max_avail) 1567 return -1; 1568 else if (dev_info1->max_avail < dev_info2->max_avail) 1569 return 1; 1570 return 0; 1571 } 1572 1573 /* 1574 * sort the devices by max_avail, in which max free extent size of each device 1575 * is stored.(Descending Sort) 1576 */ 1577 static inline void btrfs_descending_sort_devices( 1578 struct btrfs_device_info *devices, 1579 size_t nr_devices) 1580 { 1581 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1582 btrfs_cmp_device_free_bytes, NULL); 1583 } 1584 1585 /* 1586 * The helper to calc the free space on the devices that can be used to store 1587 * file data. 1588 */ 1589 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1590 u64 *free_bytes) 1591 { 1592 struct btrfs_device_info *devices_info; 1593 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1594 struct btrfs_device *device; 1595 u64 type; 1596 u64 avail_space; 1597 u64 min_stripe_size; 1598 int num_stripes = 1; 1599 int i = 0, nr_devices; 1600 const struct btrfs_raid_attr *rattr; 1601 1602 /* 1603 * We aren't under the device list lock, so this is racy-ish, but good 1604 * enough for our purposes. 1605 */ 1606 nr_devices = fs_info->fs_devices->open_devices; 1607 if (!nr_devices) { 1608 smp_mb(); 1609 nr_devices = fs_info->fs_devices->open_devices; 1610 ASSERT(nr_devices); 1611 if (!nr_devices) { 1612 *free_bytes = 0; 1613 return 0; 1614 } 1615 } 1616 1617 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1618 GFP_KERNEL); 1619 if (!devices_info) 1620 return -ENOMEM; 1621 1622 /* calc min stripe number for data space allocation */ 1623 type = btrfs_data_alloc_profile(fs_info); 1624 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1625 1626 if (type & BTRFS_BLOCK_GROUP_RAID0) 1627 num_stripes = nr_devices; 1628 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK) 1629 num_stripes = rattr->ncopies; 1630 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1631 num_stripes = 4; 1632 1633 /* Adjust for more than 1 stripe per device */ 1634 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1635 1636 rcu_read_lock(); 1637 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1638 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1639 &device->dev_state) || 1640 !device->bdev || 1641 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1642 continue; 1643 1644 if (i >= nr_devices) 1645 break; 1646 1647 avail_space = device->total_bytes - device->bytes_used; 1648 1649 /* align with stripe_len */ 1650 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 1651 1652 /* 1653 * Ensure we have at least min_stripe_size on top of the 1654 * reserved space on the device. 1655 */ 1656 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size) 1657 continue; 1658 1659 avail_space -= BTRFS_DEVICE_RANGE_RESERVED; 1660 1661 devices_info[i].dev = device; 1662 devices_info[i].max_avail = avail_space; 1663 1664 i++; 1665 } 1666 rcu_read_unlock(); 1667 1668 nr_devices = i; 1669 1670 btrfs_descending_sort_devices(devices_info, nr_devices); 1671 1672 i = nr_devices - 1; 1673 avail_space = 0; 1674 while (nr_devices >= rattr->devs_min) { 1675 num_stripes = min(num_stripes, nr_devices); 1676 1677 if (devices_info[i].max_avail >= min_stripe_size) { 1678 int j; 1679 u64 alloc_size; 1680 1681 avail_space += devices_info[i].max_avail * num_stripes; 1682 alloc_size = devices_info[i].max_avail; 1683 for (j = i + 1 - num_stripes; j <= i; j++) 1684 devices_info[j].max_avail -= alloc_size; 1685 } 1686 i--; 1687 nr_devices--; 1688 } 1689 1690 kfree(devices_info); 1691 *free_bytes = avail_space; 1692 return 0; 1693 } 1694 1695 /* 1696 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 1697 * 1698 * If there's a redundant raid level at DATA block groups, use the respective 1699 * multiplier to scale the sizes. 1700 * 1701 * Unused device space usage is based on simulating the chunk allocator 1702 * algorithm that respects the device sizes and order of allocations. This is 1703 * a close approximation of the actual use but there are other factors that may 1704 * change the result (like a new metadata chunk). 1705 * 1706 * If metadata is exhausted, f_bavail will be 0. 1707 */ 1708 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1709 { 1710 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 1711 struct btrfs_super_block *disk_super = fs_info->super_copy; 1712 struct btrfs_space_info *found; 1713 u64 total_used = 0; 1714 u64 total_free_data = 0; 1715 u64 total_free_meta = 0; 1716 u32 bits = fs_info->sectorsize_bits; 1717 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 1718 unsigned factor = 1; 1719 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 1720 int ret; 1721 u64 thresh = 0; 1722 int mixed = 0; 1723 1724 list_for_each_entry(found, &fs_info->space_info, list) { 1725 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1726 int i; 1727 1728 total_free_data += found->disk_total - found->disk_used; 1729 total_free_data -= 1730 btrfs_account_ro_block_groups_free_space(found); 1731 1732 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1733 if (!list_empty(&found->block_groups[i])) 1734 factor = btrfs_bg_type_to_factor( 1735 btrfs_raid_array[i].bg_flag); 1736 } 1737 } 1738 1739 /* 1740 * Metadata in mixed block group profiles are accounted in data 1741 */ 1742 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 1743 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 1744 mixed = 1; 1745 else 1746 total_free_meta += found->disk_total - 1747 found->disk_used; 1748 } 1749 1750 total_used += found->disk_used; 1751 } 1752 1753 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 1754 buf->f_blocks >>= bits; 1755 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 1756 1757 /* Account global block reserve as used, it's in logical size already */ 1758 spin_lock(&block_rsv->lock); 1759 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 1760 if (buf->f_bfree >= block_rsv->size >> bits) 1761 buf->f_bfree -= block_rsv->size >> bits; 1762 else 1763 buf->f_bfree = 0; 1764 spin_unlock(&block_rsv->lock); 1765 1766 buf->f_bavail = div_u64(total_free_data, factor); 1767 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 1768 if (ret) 1769 return ret; 1770 buf->f_bavail += div_u64(total_free_data, factor); 1771 buf->f_bavail = buf->f_bavail >> bits; 1772 1773 /* 1774 * We calculate the remaining metadata space minus global reserve. If 1775 * this is (supposedly) smaller than zero, there's no space. But this 1776 * does not hold in practice, the exhausted state happens where's still 1777 * some positive delta. So we apply some guesswork and compare the 1778 * delta to a 4M threshold. (Practically observed delta was ~2M.) 1779 * 1780 * We probably cannot calculate the exact threshold value because this 1781 * depends on the internal reservations requested by various 1782 * operations, so some operations that consume a few metadata will 1783 * succeed even if the Avail is zero. But this is better than the other 1784 * way around. 1785 */ 1786 thresh = SZ_4M; 1787 1788 /* 1789 * We only want to claim there's no available space if we can no longer 1790 * allocate chunks for our metadata profile and our global reserve will 1791 * not fit in the free metadata space. If we aren't ->full then we 1792 * still can allocate chunks and thus are fine using the currently 1793 * calculated f_bavail. 1794 */ 1795 if (!mixed && block_rsv->space_info->full && 1796 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size)) 1797 buf->f_bavail = 0; 1798 1799 buf->f_type = BTRFS_SUPER_MAGIC; 1800 buf->f_bsize = fs_info->sectorsize; 1801 buf->f_namelen = BTRFS_NAME_LEN; 1802 1803 /* We treat it as constant endianness (it doesn't matter _which_) 1804 because we want the fsid to come out the same whether mounted 1805 on a big-endian or little-endian host */ 1806 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1807 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1808 /* Mask in the root object ID too, to disambiguate subvols */ 1809 buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32; 1810 buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root); 1811 1812 return 0; 1813 } 1814 1815 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc) 1816 { 1817 struct btrfs_fs_info *p = fc->s_fs_info; 1818 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1819 1820 return fs_info->fs_devices == p->fs_devices; 1821 } 1822 1823 static int btrfs_get_tree_super(struct fs_context *fc) 1824 { 1825 struct btrfs_fs_info *fs_info = fc->s_fs_info; 1826 struct btrfs_fs_context *ctx = fc->fs_private; 1827 struct btrfs_fs_devices *fs_devices = NULL; 1828 struct block_device *bdev; 1829 struct btrfs_device *device; 1830 struct super_block *sb; 1831 blk_mode_t mode = btrfs_open_mode(fc); 1832 int ret; 1833 1834 btrfs_ctx_to_info(fs_info, ctx); 1835 mutex_lock(&uuid_mutex); 1836 1837 /* 1838 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect 1839 * either a valid device or an error. 1840 */ 1841 device = btrfs_scan_one_device(fc->source, mode, true); 1842 ASSERT(device != NULL); 1843 if (IS_ERR(device)) { 1844 mutex_unlock(&uuid_mutex); 1845 return PTR_ERR(device); 1846 } 1847 1848 fs_devices = device->fs_devices; 1849 fs_info->fs_devices = fs_devices; 1850 1851 ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type); 1852 mutex_unlock(&uuid_mutex); 1853 if (ret) 1854 return ret; 1855 1856 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1857 ret = -EACCES; 1858 goto error; 1859 } 1860 1861 bdev = fs_devices->latest_dev->bdev; 1862 1863 /* 1864 * From now on the error handling is not straightforward. 1865 * 1866 * If successful, this will transfer the fs_info into the super block, 1867 * and fc->s_fs_info will be NULL. However if there's an existing 1868 * super, we'll still have fc->s_fs_info populated. If we error 1869 * completely out it'll be cleaned up when we drop the fs_context, 1870 * otherwise it's tied to the lifetime of the super_block. 1871 */ 1872 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc); 1873 if (IS_ERR(sb)) { 1874 ret = PTR_ERR(sb); 1875 goto error; 1876 } 1877 1878 set_device_specific_options(fs_info); 1879 1880 if (sb->s_root) { 1881 btrfs_close_devices(fs_devices); 1882 if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY) 1883 ret = -EBUSY; 1884 } else { 1885 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); 1886 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id); 1887 btrfs_sb(sb)->bdev_holder = &btrfs_fs_type; 1888 ret = btrfs_fill_super(sb, fs_devices, NULL); 1889 } 1890 1891 if (ret) { 1892 deactivate_locked_super(sb); 1893 return ret; 1894 } 1895 1896 btrfs_clear_oneshot_options(fs_info); 1897 1898 fc->root = dget(sb->s_root); 1899 return 0; 1900 1901 error: 1902 btrfs_close_devices(fs_devices); 1903 return ret; 1904 } 1905 1906 /* 1907 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes 1908 * with different ro/rw options") the following works: 1909 * 1910 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo 1911 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar 1912 * 1913 * which looks nice and innocent but is actually pretty intricate and deserves 1914 * a long comment. 1915 * 1916 * On another filesystem a subvolume mount is close to something like: 1917 * 1918 * (iii) # create rw superblock + initial mount 1919 * mount -t xfs /dev/sdb /opt/ 1920 * 1921 * # create ro bind mount 1922 * mount --bind -o ro /opt/foo /mnt/foo 1923 * 1924 * # unmount initial mount 1925 * umount /opt 1926 * 1927 * Of course, there's some special subvolume sauce and there's the fact that the 1928 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually 1929 * it's very close and will help us understand the issue. 1930 * 1931 * The old mount API didn't cleanly distinguish between a mount being made ro 1932 * and a superblock being made ro. The only way to change the ro state of 1933 * either object was by passing ms_rdonly. If a new mount was created via 1934 * mount(2) such as: 1935 * 1936 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null); 1937 * 1938 * the MS_RDONLY flag being specified had two effects: 1939 * 1940 * (1) MNT_READONLY was raised -> the resulting mount got 1941 * @mnt->mnt_flags |= MNT_READONLY raised. 1942 * 1943 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems 1944 * made the superblock ro. Note, how SB_RDONLY has the same value as 1945 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2). 1946 * 1947 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a 1948 * subtree mounted ro. 1949 * 1950 * But consider the effect on the old mount API on btrfs subvolume mounting 1951 * which combines the distinct step in (iii) into a single step. 1952 * 1953 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii) 1954 * is issued the superblock is ro and thus even if the mount created for (ii) is 1955 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro 1956 * to rw for (ii) which it did using an internal remount call. 1957 * 1958 * IOW, subvolume mounting was inherently complicated due to the ambiguity of 1959 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate 1960 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when 1961 * passed by mount(8) to mount(2). 1962 * 1963 * Enter the new mount API. The new mount API disambiguates making a mount ro 1964 * and making a superblock ro. 1965 * 1966 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either 1967 * fsmount() or mount_setattr() this is a pure VFS level change for a 1968 * specific mount or mount tree that is never seen by the filesystem itself. 1969 * 1970 * (4) To turn a superblock ro the "ro" flag must be used with 1971 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem 1972 * in fc->sb_flags. 1973 * 1974 * This disambiguation has rather positive consequences. Mounting a subvolume 1975 * ro will not also turn the superblock ro. Only the mount for the subvolume 1976 * will become ro. 1977 * 1978 * So, if the superblock creation request comes from the new mount API the 1979 * caller must have explicitly done: 1980 * 1981 * fsconfig(FSCONFIG_SET_FLAG, "ro") 1982 * fsmount/mount_setattr(MOUNT_ATTR_RDONLY) 1983 * 1984 * IOW, at some point the caller must have explicitly turned the whole 1985 * superblock ro and we shouldn't just undo it like we did for the old mount 1986 * API. In any case, it lets us avoid the hack in the new mount API. 1987 * 1988 * Consequently, the remounting hack must only be used for requests originating 1989 * from the old mount API and should be marked for full deprecation so it can be 1990 * turned off in a couple of years. 1991 * 1992 * The new mount API has no reason to support this hack. 1993 */ 1994 static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc) 1995 { 1996 struct vfsmount *mnt; 1997 int ret; 1998 const bool ro2rw = !(fc->sb_flags & SB_RDONLY); 1999 2000 /* 2001 * We got an EBUSY because our SB_RDONLY flag didn't match the existing 2002 * super block, so invert our setting here and retry the mount so we 2003 * can get our vfsmount. 2004 */ 2005 if (ro2rw) 2006 fc->sb_flags |= SB_RDONLY; 2007 else 2008 fc->sb_flags &= ~SB_RDONLY; 2009 2010 mnt = fc_mount(fc); 2011 if (IS_ERR(mnt)) 2012 return mnt; 2013 2014 if (!fc->oldapi || !ro2rw) 2015 return mnt; 2016 2017 /* We need to convert to rw, call reconfigure. */ 2018 fc->sb_flags &= ~SB_RDONLY; 2019 down_write(&mnt->mnt_sb->s_umount); 2020 ret = btrfs_reconfigure(fc); 2021 up_write(&mnt->mnt_sb->s_umount); 2022 if (ret) { 2023 mntput(mnt); 2024 return ERR_PTR(ret); 2025 } 2026 return mnt; 2027 } 2028 2029 static int btrfs_get_tree_subvol(struct fs_context *fc) 2030 { 2031 struct btrfs_fs_info *fs_info = NULL; 2032 struct btrfs_fs_context *ctx = fc->fs_private; 2033 struct fs_context *dup_fc; 2034 struct dentry *dentry; 2035 struct vfsmount *mnt; 2036 2037 /* 2038 * Setup a dummy root and fs_info for test/set super. This is because 2039 * we don't actually fill this stuff out until open_ctree, but we need 2040 * then open_ctree will properly initialize the file system specific 2041 * settings later. btrfs_init_fs_info initializes the static elements 2042 * of the fs_info (locks and such) to make cleanup easier if we find a 2043 * superblock with our given fs_devices later on at sget() time. 2044 */ 2045 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 2046 if (!fs_info) 2047 return -ENOMEM; 2048 2049 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2050 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 2051 if (!fs_info->super_copy || !fs_info->super_for_commit) { 2052 btrfs_free_fs_info(fs_info); 2053 return -ENOMEM; 2054 } 2055 btrfs_init_fs_info(fs_info); 2056 2057 dup_fc = vfs_dup_fs_context(fc); 2058 if (IS_ERR(dup_fc)) { 2059 btrfs_free_fs_info(fs_info); 2060 return PTR_ERR(dup_fc); 2061 } 2062 2063 /* 2064 * When we do the sget_fc this gets transferred to the sb, so we only 2065 * need to set it on the dup_fc as this is what creates the super block. 2066 */ 2067 dup_fc->s_fs_info = fs_info; 2068 2069 /* 2070 * We'll do the security settings in our btrfs_get_tree_super() mount 2071 * loop, they were duplicated into dup_fc, we can drop the originals 2072 * here. 2073 */ 2074 security_free_mnt_opts(&fc->security); 2075 fc->security = NULL; 2076 2077 mnt = fc_mount(dup_fc); 2078 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) 2079 mnt = btrfs_reconfigure_for_mount(dup_fc); 2080 put_fs_context(dup_fc); 2081 if (IS_ERR(mnt)) 2082 return PTR_ERR(mnt); 2083 2084 /* 2085 * This free's ->subvol_name, because if it isn't set we have to 2086 * allocate a buffer to hold the subvol_name, so we just drop our 2087 * reference to it here. 2088 */ 2089 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt); 2090 ctx->subvol_name = NULL; 2091 if (IS_ERR(dentry)) 2092 return PTR_ERR(dentry); 2093 2094 fc->root = dentry; 2095 return 0; 2096 } 2097 2098 static int btrfs_get_tree(struct fs_context *fc) 2099 { 2100 /* 2101 * Since we use mount_subtree to mount the default/specified subvol, we 2102 * have to do mounts in two steps. 2103 * 2104 * First pass through we call btrfs_get_tree_subvol(), this is just a 2105 * wrapper around fc_mount() to call back into here again, and this time 2106 * we'll call btrfs_get_tree_super(). This will do the open_ctree() and 2107 * everything to open the devices and file system. Then we return back 2108 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and 2109 * from there we can do our mount_subvol() call, which will lookup 2110 * whichever subvol we're mounting and setup this fc with the 2111 * appropriate dentry for the subvol. 2112 */ 2113 if (fc->s_fs_info) 2114 return btrfs_get_tree_super(fc); 2115 return btrfs_get_tree_subvol(fc); 2116 } 2117 2118 static void btrfs_kill_super(struct super_block *sb) 2119 { 2120 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2121 kill_anon_super(sb); 2122 btrfs_free_fs_info(fs_info); 2123 } 2124 2125 static void btrfs_free_fs_context(struct fs_context *fc) 2126 { 2127 struct btrfs_fs_context *ctx = fc->fs_private; 2128 struct btrfs_fs_info *fs_info = fc->s_fs_info; 2129 2130 if (fs_info) 2131 btrfs_free_fs_info(fs_info); 2132 2133 if (ctx && refcount_dec_and_test(&ctx->refs)) { 2134 kfree(ctx->subvol_name); 2135 kfree(ctx); 2136 } 2137 } 2138 2139 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc) 2140 { 2141 struct btrfs_fs_context *ctx = src_fc->fs_private; 2142 2143 /* 2144 * Give a ref to our ctx to this dup, as we want to keep it around for 2145 * our original fc so we can have the subvolume name or objectid. 2146 * 2147 * We unset ->source in the original fc because the dup needs it for 2148 * mounting, and then once we free the dup it'll free ->source, so we 2149 * need to make sure we're only pointing to it in one fc. 2150 */ 2151 refcount_inc(&ctx->refs); 2152 fc->fs_private = ctx; 2153 fc->source = src_fc->source; 2154 src_fc->source = NULL; 2155 return 0; 2156 } 2157 2158 static const struct fs_context_operations btrfs_fs_context_ops = { 2159 .parse_param = btrfs_parse_param, 2160 .reconfigure = btrfs_reconfigure, 2161 .get_tree = btrfs_get_tree, 2162 .dup = btrfs_dup_fs_context, 2163 .free = btrfs_free_fs_context, 2164 }; 2165 2166 static int btrfs_init_fs_context(struct fs_context *fc) 2167 { 2168 struct btrfs_fs_context *ctx; 2169 2170 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL); 2171 if (!ctx) 2172 return -ENOMEM; 2173 2174 refcount_set(&ctx->refs, 1); 2175 fc->fs_private = ctx; 2176 fc->ops = &btrfs_fs_context_ops; 2177 2178 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2179 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx); 2180 } else { 2181 ctx->thread_pool_size = 2182 min_t(unsigned long, num_online_cpus() + 2, 8); 2183 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2184 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2185 } 2186 2187 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 2188 fc->sb_flags |= SB_POSIXACL; 2189 #endif 2190 fc->sb_flags |= SB_I_VERSION; 2191 2192 return 0; 2193 } 2194 2195 static struct file_system_type btrfs_fs_type = { 2196 .owner = THIS_MODULE, 2197 .name = "btrfs", 2198 .init_fs_context = btrfs_init_fs_context, 2199 .parameters = btrfs_fs_parameters, 2200 .kill_sb = btrfs_kill_super, 2201 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP, 2202 }; 2203 2204 MODULE_ALIAS_FS("btrfs"); 2205 2206 static int btrfs_control_open(struct inode *inode, struct file *file) 2207 { 2208 /* 2209 * The control file's private_data is used to hold the 2210 * transaction when it is started and is used to keep 2211 * track of whether a transaction is already in progress. 2212 */ 2213 file->private_data = NULL; 2214 return 0; 2215 } 2216 2217 /* 2218 * Used by /dev/btrfs-control for devices ioctls. 2219 */ 2220 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2221 unsigned long arg) 2222 { 2223 struct btrfs_ioctl_vol_args *vol; 2224 struct btrfs_device *device = NULL; 2225 dev_t devt = 0; 2226 int ret = -ENOTTY; 2227 2228 if (!capable(CAP_SYS_ADMIN)) 2229 return -EPERM; 2230 2231 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2232 if (IS_ERR(vol)) 2233 return PTR_ERR(vol); 2234 ret = btrfs_check_ioctl_vol_args_path(vol); 2235 if (ret < 0) 2236 goto out; 2237 2238 switch (cmd) { 2239 case BTRFS_IOC_SCAN_DEV: 2240 mutex_lock(&uuid_mutex); 2241 /* 2242 * Scanning outside of mount can return NULL which would turn 2243 * into 0 error code. 2244 */ 2245 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false); 2246 ret = PTR_ERR_OR_ZERO(device); 2247 mutex_unlock(&uuid_mutex); 2248 break; 2249 case BTRFS_IOC_FORGET_DEV: 2250 if (vol->name[0] != 0) { 2251 ret = lookup_bdev(vol->name, &devt); 2252 if (ret) 2253 break; 2254 } 2255 ret = btrfs_forget_devices(devt); 2256 break; 2257 case BTRFS_IOC_DEVICES_READY: 2258 mutex_lock(&uuid_mutex); 2259 /* 2260 * Scanning outside of mount can return NULL which would turn 2261 * into 0 error code. 2262 */ 2263 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false); 2264 if (IS_ERR_OR_NULL(device)) { 2265 mutex_unlock(&uuid_mutex); 2266 ret = PTR_ERR(device); 2267 break; 2268 } 2269 ret = !(device->fs_devices->num_devices == 2270 device->fs_devices->total_devices); 2271 mutex_unlock(&uuid_mutex); 2272 break; 2273 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2274 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2275 break; 2276 } 2277 2278 out: 2279 kfree(vol); 2280 return ret; 2281 } 2282 2283 static int btrfs_freeze(struct super_block *sb) 2284 { 2285 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2286 2287 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2288 /* 2289 * We don't need a barrier here, we'll wait for any transaction that 2290 * could be in progress on other threads (and do delayed iputs that 2291 * we want to avoid on a frozen filesystem), or do the commit 2292 * ourselves. 2293 */ 2294 return btrfs_commit_current_transaction(fs_info->tree_root); 2295 } 2296 2297 static int check_dev_super(struct btrfs_device *dev) 2298 { 2299 struct btrfs_fs_info *fs_info = dev->fs_info; 2300 struct btrfs_super_block *sb; 2301 u64 last_trans; 2302 u16 csum_type; 2303 int ret = 0; 2304 2305 /* This should be called with fs still frozen. */ 2306 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags)); 2307 2308 /* Missing dev, no need to check. */ 2309 if (!dev->bdev) 2310 return 0; 2311 2312 /* Only need to check the primary super block. */ 2313 sb = btrfs_read_dev_one_super(dev->bdev, 0, true); 2314 if (IS_ERR(sb)) 2315 return PTR_ERR(sb); 2316 2317 /* Verify the checksum. */ 2318 csum_type = btrfs_super_csum_type(sb); 2319 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) { 2320 btrfs_err(fs_info, "csum type changed, has %u expect %u", 2321 csum_type, btrfs_super_csum_type(fs_info->super_copy)); 2322 ret = -EUCLEAN; 2323 goto out; 2324 } 2325 2326 if (btrfs_check_super_csum(fs_info, sb)) { 2327 btrfs_err(fs_info, "csum for on-disk super block no longer matches"); 2328 ret = -EUCLEAN; 2329 goto out; 2330 } 2331 2332 /* Btrfs_validate_super() includes fsid check against super->fsid. */ 2333 ret = btrfs_validate_super(fs_info, sb, 0); 2334 if (ret < 0) 2335 goto out; 2336 2337 last_trans = btrfs_get_last_trans_committed(fs_info); 2338 if (btrfs_super_generation(sb) != last_trans) { 2339 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu", 2340 btrfs_super_generation(sb), last_trans); 2341 ret = -EUCLEAN; 2342 goto out; 2343 } 2344 out: 2345 btrfs_release_disk_super(sb); 2346 return ret; 2347 } 2348 2349 static int btrfs_unfreeze(struct super_block *sb) 2350 { 2351 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2352 struct btrfs_device *device; 2353 int ret = 0; 2354 2355 /* 2356 * Make sure the fs is not changed by accident (like hibernation then 2357 * modified by other OS). 2358 * If we found anything wrong, we mark the fs error immediately. 2359 * 2360 * And since the fs is frozen, no one can modify the fs yet, thus 2361 * we don't need to hold device_list_mutex. 2362 */ 2363 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 2364 ret = check_dev_super(device); 2365 if (ret < 0) { 2366 btrfs_handle_fs_error(fs_info, ret, 2367 "super block on devid %llu got modified unexpectedly", 2368 device->devid); 2369 break; 2370 } 2371 } 2372 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2373 2374 /* 2375 * We still return 0, to allow VFS layer to unfreeze the fs even the 2376 * above checks failed. Since the fs is either fine or read-only, we're 2377 * safe to continue, without causing further damage. 2378 */ 2379 return 0; 2380 } 2381 2382 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2383 { 2384 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2385 2386 /* 2387 * There should be always a valid pointer in latest_dev, it may be stale 2388 * for a short moment in case it's being deleted but still valid until 2389 * the end of RCU grace period. 2390 */ 2391 rcu_read_lock(); 2392 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\"); 2393 rcu_read_unlock(); 2394 2395 return 0; 2396 } 2397 2398 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc) 2399 { 2400 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2401 const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps); 2402 2403 trace_btrfs_extent_map_shrinker_count(fs_info, nr); 2404 2405 /* 2406 * Only report the real number for DEBUG builds, as there are reports of 2407 * serious performance degradation caused by too frequent shrinks. 2408 */ 2409 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) 2410 return nr; 2411 return 0; 2412 } 2413 2414 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc) 2415 { 2416 const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan); 2417 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2418 2419 /* 2420 * We may be called from any task trying to allocate memory and we don't 2421 * want to slow it down with scanning and dropping extent maps. It would 2422 * also cause heavy lock contention if many tasks concurrently enter 2423 * here. Therefore only allow kswapd tasks to scan and drop extent maps. 2424 */ 2425 if (!current_is_kswapd()) 2426 return 0; 2427 2428 return btrfs_free_extent_maps(fs_info, nr_to_scan); 2429 } 2430 2431 static const struct super_operations btrfs_super_ops = { 2432 .drop_inode = btrfs_drop_inode, 2433 .evict_inode = btrfs_evict_inode, 2434 .put_super = btrfs_put_super, 2435 .sync_fs = btrfs_sync_fs, 2436 .show_options = btrfs_show_options, 2437 .show_devname = btrfs_show_devname, 2438 .alloc_inode = btrfs_alloc_inode, 2439 .destroy_inode = btrfs_destroy_inode, 2440 .free_inode = btrfs_free_inode, 2441 .statfs = btrfs_statfs, 2442 .freeze_fs = btrfs_freeze, 2443 .unfreeze_fs = btrfs_unfreeze, 2444 .nr_cached_objects = btrfs_nr_cached_objects, 2445 .free_cached_objects = btrfs_free_cached_objects, 2446 }; 2447 2448 static const struct file_operations btrfs_ctl_fops = { 2449 .open = btrfs_control_open, 2450 .unlocked_ioctl = btrfs_control_ioctl, 2451 .compat_ioctl = compat_ptr_ioctl, 2452 .owner = THIS_MODULE, 2453 .llseek = noop_llseek, 2454 }; 2455 2456 static struct miscdevice btrfs_misc = { 2457 .minor = BTRFS_MINOR, 2458 .name = "btrfs-control", 2459 .fops = &btrfs_ctl_fops 2460 }; 2461 2462 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2463 MODULE_ALIAS("devname:btrfs-control"); 2464 2465 static int __init btrfs_interface_init(void) 2466 { 2467 return misc_register(&btrfs_misc); 2468 } 2469 2470 static __cold void btrfs_interface_exit(void) 2471 { 2472 misc_deregister(&btrfs_misc); 2473 } 2474 2475 static int __init btrfs_print_mod_info(void) 2476 { 2477 static const char options[] = "" 2478 #ifdef CONFIG_BTRFS_DEBUG 2479 ", debug=on" 2480 #endif 2481 #ifdef CONFIG_BTRFS_ASSERT 2482 ", assert=on" 2483 #endif 2484 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2485 ", ref-verify=on" 2486 #endif 2487 #ifdef CONFIG_BLK_DEV_ZONED 2488 ", zoned=yes" 2489 #else 2490 ", zoned=no" 2491 #endif 2492 #ifdef CONFIG_FS_VERITY 2493 ", fsverity=yes" 2494 #else 2495 ", fsverity=no" 2496 #endif 2497 ; 2498 pr_info("Btrfs loaded%s\n", options); 2499 return 0; 2500 } 2501 2502 static int register_btrfs(void) 2503 { 2504 return register_filesystem(&btrfs_fs_type); 2505 } 2506 2507 static void unregister_btrfs(void) 2508 { 2509 unregister_filesystem(&btrfs_fs_type); 2510 } 2511 2512 /* Helper structure for long init/exit functions. */ 2513 struct init_sequence { 2514 int (*init_func)(void); 2515 /* Can be NULL if the init_func doesn't need cleanup. */ 2516 void (*exit_func)(void); 2517 }; 2518 2519 static const struct init_sequence mod_init_seq[] = { 2520 { 2521 .init_func = btrfs_props_init, 2522 .exit_func = NULL, 2523 }, { 2524 .init_func = btrfs_init_sysfs, 2525 .exit_func = btrfs_exit_sysfs, 2526 }, { 2527 .init_func = btrfs_init_compress, 2528 .exit_func = btrfs_exit_compress, 2529 }, { 2530 .init_func = btrfs_init_cachep, 2531 .exit_func = btrfs_destroy_cachep, 2532 }, { 2533 .init_func = btrfs_init_dio, 2534 .exit_func = btrfs_destroy_dio, 2535 }, { 2536 .init_func = btrfs_transaction_init, 2537 .exit_func = btrfs_transaction_exit, 2538 }, { 2539 .init_func = btrfs_ctree_init, 2540 .exit_func = btrfs_ctree_exit, 2541 }, { 2542 .init_func = btrfs_free_space_init, 2543 .exit_func = btrfs_free_space_exit, 2544 }, { 2545 .init_func = extent_state_init_cachep, 2546 .exit_func = extent_state_free_cachep, 2547 }, { 2548 .init_func = extent_buffer_init_cachep, 2549 .exit_func = extent_buffer_free_cachep, 2550 }, { 2551 .init_func = btrfs_bioset_init, 2552 .exit_func = btrfs_bioset_exit, 2553 }, { 2554 .init_func = extent_map_init, 2555 .exit_func = extent_map_exit, 2556 }, { 2557 .init_func = ordered_data_init, 2558 .exit_func = ordered_data_exit, 2559 }, { 2560 .init_func = btrfs_delayed_inode_init, 2561 .exit_func = btrfs_delayed_inode_exit, 2562 }, { 2563 .init_func = btrfs_auto_defrag_init, 2564 .exit_func = btrfs_auto_defrag_exit, 2565 }, { 2566 .init_func = btrfs_delayed_ref_init, 2567 .exit_func = btrfs_delayed_ref_exit, 2568 }, { 2569 .init_func = btrfs_prelim_ref_init, 2570 .exit_func = btrfs_prelim_ref_exit, 2571 }, { 2572 .init_func = btrfs_interface_init, 2573 .exit_func = btrfs_interface_exit, 2574 }, { 2575 .init_func = btrfs_print_mod_info, 2576 .exit_func = NULL, 2577 }, { 2578 .init_func = btrfs_run_sanity_tests, 2579 .exit_func = NULL, 2580 }, { 2581 .init_func = register_btrfs, 2582 .exit_func = unregister_btrfs, 2583 } 2584 }; 2585 2586 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)]; 2587 2588 static __always_inline void btrfs_exit_btrfs_fs(void) 2589 { 2590 int i; 2591 2592 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) { 2593 if (!mod_init_result[i]) 2594 continue; 2595 if (mod_init_seq[i].exit_func) 2596 mod_init_seq[i].exit_func(); 2597 mod_init_result[i] = false; 2598 } 2599 } 2600 2601 static void __exit exit_btrfs_fs(void) 2602 { 2603 btrfs_exit_btrfs_fs(); 2604 btrfs_cleanup_fs_uuids(); 2605 } 2606 2607 static int __init init_btrfs_fs(void) 2608 { 2609 int ret; 2610 int i; 2611 2612 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) { 2613 ASSERT(!mod_init_result[i]); 2614 ret = mod_init_seq[i].init_func(); 2615 if (ret < 0) { 2616 btrfs_exit_btrfs_fs(); 2617 return ret; 2618 } 2619 mod_init_result[i] = true; 2620 } 2621 return 0; 2622 } 2623 2624 late_initcall(init_btrfs_fs); 2625 module_exit(exit_btrfs_fs) 2626 2627 MODULE_DESCRIPTION("B-Tree File System (BTRFS)"); 2628 MODULE_LICENSE("GPL"); 2629 MODULE_SOFTDEP("pre: crc32c"); 2630 MODULE_SOFTDEP("pre: xxhash64"); 2631 MODULE_SOFTDEP("pre: sha256"); 2632 MODULE_SOFTDEP("pre: blake2b-256"); 2633
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.