~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/super.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2007 Oracle.  All rights reserved.
  4  */
  5 
  6 #include <linux/blkdev.h>
  7 #include <linux/module.h>
  8 #include <linux/fs.h>
  9 #include <linux/pagemap.h>
 10 #include <linux/highmem.h>
 11 #include <linux/time.h>
 12 #include <linux/init.h>
 13 #include <linux/seq_file.h>
 14 #include <linux/string.h>
 15 #include <linux/backing-dev.h>
 16 #include <linux/mount.h>
 17 #include <linux/writeback.h>
 18 #include <linux/statfs.h>
 19 #include <linux/compat.h>
 20 #include <linux/parser.h>
 21 #include <linux/ctype.h>
 22 #include <linux/namei.h>
 23 #include <linux/miscdevice.h>
 24 #include <linux/magic.h>
 25 #include <linux/slab.h>
 26 #include <linux/ratelimit.h>
 27 #include <linux/crc32c.h>
 28 #include <linux/btrfs.h>
 29 #include <linux/security.h>
 30 #include <linux/fs_parser.h>
 31 #include "messages.h"
 32 #include "delayed-inode.h"
 33 #include "ctree.h"
 34 #include "disk-io.h"
 35 #include "transaction.h"
 36 #include "btrfs_inode.h"
 37 #include "direct-io.h"
 38 #include "props.h"
 39 #include "xattr.h"
 40 #include "bio.h"
 41 #include "export.h"
 42 #include "compression.h"
 43 #include "dev-replace.h"
 44 #include "free-space-cache.h"
 45 #include "backref.h"
 46 #include "space-info.h"
 47 #include "sysfs.h"
 48 #include "zoned.h"
 49 #include "tests/btrfs-tests.h"
 50 #include "block-group.h"
 51 #include "discard.h"
 52 #include "qgroup.h"
 53 #include "raid56.h"
 54 #include "fs.h"
 55 #include "accessors.h"
 56 #include "defrag.h"
 57 #include "dir-item.h"
 58 #include "ioctl.h"
 59 #include "scrub.h"
 60 #include "verity.h"
 61 #include "super.h"
 62 #include "extent-tree.h"
 63 #define CREATE_TRACE_POINTS
 64 #include <trace/events/btrfs.h>
 65 
 66 static const struct super_operations btrfs_super_ops;
 67 static struct file_system_type btrfs_fs_type;
 68 
 69 static void btrfs_put_super(struct super_block *sb)
 70 {
 71         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 72 
 73         btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
 74         close_ctree(fs_info);
 75 }
 76 
 77 /* Store the mount options related information. */
 78 struct btrfs_fs_context {
 79         char *subvol_name;
 80         u64 subvol_objectid;
 81         u64 max_inline;
 82         u32 commit_interval;
 83         u32 metadata_ratio;
 84         u32 thread_pool_size;
 85         unsigned long long mount_opt;
 86         unsigned long compress_type:4;
 87         unsigned int compress_level;
 88         refcount_t refs;
 89 };
 90 
 91 enum {
 92         Opt_acl,
 93         Opt_clear_cache,
 94         Opt_commit_interval,
 95         Opt_compress,
 96         Opt_compress_force,
 97         Opt_compress_force_type,
 98         Opt_compress_type,
 99         Opt_degraded,
100         Opt_device,
101         Opt_fatal_errors,
102         Opt_flushoncommit,
103         Opt_max_inline,
104         Opt_barrier,
105         Opt_datacow,
106         Opt_datasum,
107         Opt_defrag,
108         Opt_discard,
109         Opt_discard_mode,
110         Opt_ratio,
111         Opt_rescan_uuid_tree,
112         Opt_skip_balance,
113         Opt_space_cache,
114         Opt_space_cache_version,
115         Opt_ssd,
116         Opt_ssd_spread,
117         Opt_subvol,
118         Opt_subvol_empty,
119         Opt_subvolid,
120         Opt_thread_pool,
121         Opt_treelog,
122         Opt_user_subvol_rm_allowed,
123         Opt_norecovery,
124 
125         /* Rescue options */
126         Opt_rescue,
127         Opt_usebackuproot,
128         Opt_nologreplay,
129 
130         /* Debugging options */
131         Opt_enospc_debug,
132 #ifdef CONFIG_BTRFS_DEBUG
133         Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
134 #endif
135 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
136         Opt_ref_verify,
137 #endif
138         Opt_err,
139 };
140 
141 enum {
142         Opt_fatal_errors_panic,
143         Opt_fatal_errors_bug,
144 };
145 
146 static const struct constant_table btrfs_parameter_fatal_errors[] = {
147         { "panic", Opt_fatal_errors_panic },
148         { "bug", Opt_fatal_errors_bug },
149         {}
150 };
151 
152 enum {
153         Opt_discard_sync,
154         Opt_discard_async,
155 };
156 
157 static const struct constant_table btrfs_parameter_discard[] = {
158         { "sync", Opt_discard_sync },
159         { "async", Opt_discard_async },
160         {}
161 };
162 
163 enum {
164         Opt_space_cache_v1,
165         Opt_space_cache_v2,
166 };
167 
168 static const struct constant_table btrfs_parameter_space_cache[] = {
169         { "v1", Opt_space_cache_v1 },
170         { "v2", Opt_space_cache_v2 },
171         {}
172 };
173 
174 enum {
175         Opt_rescue_usebackuproot,
176         Opt_rescue_nologreplay,
177         Opt_rescue_ignorebadroots,
178         Opt_rescue_ignoredatacsums,
179         Opt_rescue_ignoremetacsums,
180         Opt_rescue_ignoresuperflags,
181         Opt_rescue_parameter_all,
182 };
183 
184 static const struct constant_table btrfs_parameter_rescue[] = {
185         { "usebackuproot", Opt_rescue_usebackuproot },
186         { "nologreplay", Opt_rescue_nologreplay },
187         { "ignorebadroots", Opt_rescue_ignorebadroots },
188         { "ibadroots", Opt_rescue_ignorebadroots },
189         { "ignoredatacsums", Opt_rescue_ignoredatacsums },
190         { "ignoremetacsums", Opt_rescue_ignoremetacsums},
191         { "ignoresuperflags", Opt_rescue_ignoresuperflags},
192         { "idatacsums", Opt_rescue_ignoredatacsums },
193         { "imetacsums", Opt_rescue_ignoremetacsums},
194         { "isuperflags", Opt_rescue_ignoresuperflags},
195         { "all", Opt_rescue_parameter_all },
196         {}
197 };
198 
199 #ifdef CONFIG_BTRFS_DEBUG
200 enum {
201         Opt_fragment_parameter_data,
202         Opt_fragment_parameter_metadata,
203         Opt_fragment_parameter_all,
204 };
205 
206 static const struct constant_table btrfs_parameter_fragment[] = {
207         { "data", Opt_fragment_parameter_data },
208         { "metadata", Opt_fragment_parameter_metadata },
209         { "all", Opt_fragment_parameter_all },
210         {}
211 };
212 #endif
213 
214 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
215         fsparam_flag_no("acl", Opt_acl),
216         fsparam_flag_no("autodefrag", Opt_defrag),
217         fsparam_flag_no("barrier", Opt_barrier),
218         fsparam_flag("clear_cache", Opt_clear_cache),
219         fsparam_u32("commit", Opt_commit_interval),
220         fsparam_flag("compress", Opt_compress),
221         fsparam_string("compress", Opt_compress_type),
222         fsparam_flag("compress-force", Opt_compress_force),
223         fsparam_string("compress-force", Opt_compress_force_type),
224         fsparam_flag_no("datacow", Opt_datacow),
225         fsparam_flag_no("datasum", Opt_datasum),
226         fsparam_flag("degraded", Opt_degraded),
227         fsparam_string("device", Opt_device),
228         fsparam_flag_no("discard", Opt_discard),
229         fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
230         fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
231         fsparam_flag_no("flushoncommit", Opt_flushoncommit),
232         fsparam_string("max_inline", Opt_max_inline),
233         fsparam_u32("metadata_ratio", Opt_ratio),
234         fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
235         fsparam_flag("skip_balance", Opt_skip_balance),
236         fsparam_flag_no("space_cache", Opt_space_cache),
237         fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
238         fsparam_flag_no("ssd", Opt_ssd),
239         fsparam_flag_no("ssd_spread", Opt_ssd_spread),
240         fsparam_string("subvol", Opt_subvol),
241         fsparam_flag("subvol=", Opt_subvol_empty),
242         fsparam_u64("subvolid", Opt_subvolid),
243         fsparam_u32("thread_pool", Opt_thread_pool),
244         fsparam_flag_no("treelog", Opt_treelog),
245         fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
246 
247         /* Rescue options. */
248         fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
249         /* Deprecated, with alias rescue=nologreplay */
250         __fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
251         /* Deprecated, with alias rescue=usebackuproot */
252         __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
253         /* For compatibility only, alias for "rescue=nologreplay". */
254         fsparam_flag("norecovery", Opt_norecovery),
255 
256         /* Debugging options. */
257         fsparam_flag_no("enospc_debug", Opt_enospc_debug),
258 #ifdef CONFIG_BTRFS_DEBUG
259         fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
260 #endif
261 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
262         fsparam_flag("ref_verify", Opt_ref_verify),
263 #endif
264         {}
265 };
266 
267 /* No support for restricting writes to btrfs devices yet... */
268 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
269 {
270         return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
271 }
272 
273 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
274 {
275         struct btrfs_fs_context *ctx = fc->fs_private;
276         struct fs_parse_result result;
277         int opt;
278 
279         opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
280         if (opt < 0)
281                 return opt;
282 
283         switch (opt) {
284         case Opt_degraded:
285                 btrfs_set_opt(ctx->mount_opt, DEGRADED);
286                 break;
287         case Opt_subvol_empty:
288                 /*
289                  * This exists because we used to allow it on accident, so we're
290                  * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
291                  * empty subvol= again").
292                  */
293                 break;
294         case Opt_subvol:
295                 kfree(ctx->subvol_name);
296                 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
297                 if (!ctx->subvol_name)
298                         return -ENOMEM;
299                 break;
300         case Opt_subvolid:
301                 ctx->subvol_objectid = result.uint_64;
302 
303                 /* subvolid=0 means give me the original fs_tree. */
304                 if (!ctx->subvol_objectid)
305                         ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
306                 break;
307         case Opt_device: {
308                 struct btrfs_device *device;
309                 blk_mode_t mode = btrfs_open_mode(fc);
310 
311                 mutex_lock(&uuid_mutex);
312                 device = btrfs_scan_one_device(param->string, mode, false);
313                 mutex_unlock(&uuid_mutex);
314                 if (IS_ERR(device))
315                         return PTR_ERR(device);
316                 break;
317         }
318         case Opt_datasum:
319                 if (result.negated) {
320                         btrfs_set_opt(ctx->mount_opt, NODATASUM);
321                 } else {
322                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
323                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
324                 }
325                 break;
326         case Opt_datacow:
327                 if (result.negated) {
328                         btrfs_clear_opt(ctx->mount_opt, COMPRESS);
329                         btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
330                         btrfs_set_opt(ctx->mount_opt, NODATACOW);
331                         btrfs_set_opt(ctx->mount_opt, NODATASUM);
332                 } else {
333                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
334                 }
335                 break;
336         case Opt_compress_force:
337         case Opt_compress_force_type:
338                 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
339                 fallthrough;
340         case Opt_compress:
341         case Opt_compress_type:
342                 if (opt == Opt_compress || opt == Opt_compress_force) {
343                         ctx->compress_type = BTRFS_COMPRESS_ZLIB;
344                         ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
345                         btrfs_set_opt(ctx->mount_opt, COMPRESS);
346                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
347                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
348                 } else if (strncmp(param->string, "zlib", 4) == 0) {
349                         ctx->compress_type = BTRFS_COMPRESS_ZLIB;
350                         ctx->compress_level =
351                                 btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
352                                                          param->string + 4);
353                         btrfs_set_opt(ctx->mount_opt, COMPRESS);
354                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
355                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
356                 } else if (strncmp(param->string, "lzo", 3) == 0) {
357                         ctx->compress_type = BTRFS_COMPRESS_LZO;
358                         ctx->compress_level = 0;
359                         btrfs_set_opt(ctx->mount_opt, COMPRESS);
360                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
361                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
362                 } else if (strncmp(param->string, "zstd", 4) == 0) {
363                         ctx->compress_type = BTRFS_COMPRESS_ZSTD;
364                         ctx->compress_level =
365                                 btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
366                                                          param->string + 4);
367                         btrfs_set_opt(ctx->mount_opt, COMPRESS);
368                         btrfs_clear_opt(ctx->mount_opt, NODATACOW);
369                         btrfs_clear_opt(ctx->mount_opt, NODATASUM);
370                 } else if (strncmp(param->string, "no", 2) == 0) {
371                         ctx->compress_level = 0;
372                         ctx->compress_type = 0;
373                         btrfs_clear_opt(ctx->mount_opt, COMPRESS);
374                         btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
375                 } else {
376                         btrfs_err(NULL, "unrecognized compression value %s",
377                                   param->string);
378                         return -EINVAL;
379                 }
380                 break;
381         case Opt_ssd:
382                 if (result.negated) {
383                         btrfs_set_opt(ctx->mount_opt, NOSSD);
384                         btrfs_clear_opt(ctx->mount_opt, SSD);
385                         btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
386                 } else {
387                         btrfs_set_opt(ctx->mount_opt, SSD);
388                         btrfs_clear_opt(ctx->mount_opt, NOSSD);
389                 }
390                 break;
391         case Opt_ssd_spread:
392                 if (result.negated) {
393                         btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
394                 } else {
395                         btrfs_set_opt(ctx->mount_opt, SSD);
396                         btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
397                         btrfs_clear_opt(ctx->mount_opt, NOSSD);
398                 }
399                 break;
400         case Opt_barrier:
401                 if (result.negated)
402                         btrfs_set_opt(ctx->mount_opt, NOBARRIER);
403                 else
404                         btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
405                 break;
406         case Opt_thread_pool:
407                 if (result.uint_32 == 0) {
408                         btrfs_err(NULL, "invalid value 0 for thread_pool");
409                         return -EINVAL;
410                 }
411                 ctx->thread_pool_size = result.uint_32;
412                 break;
413         case Opt_max_inline:
414                 ctx->max_inline = memparse(param->string, NULL);
415                 break;
416         case Opt_acl:
417                 if (result.negated) {
418                         fc->sb_flags &= ~SB_POSIXACL;
419                 } else {
420 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
421                         fc->sb_flags |= SB_POSIXACL;
422 #else
423                         btrfs_err(NULL, "support for ACL not compiled in");
424                         return -EINVAL;
425 #endif
426                 }
427                 /*
428                  * VFS limits the ability to toggle ACL on and off via remount,
429                  * despite every file system allowing this.  This seems to be
430                  * an oversight since we all do, but it'll fail if we're
431                  * remounting.  So don't set the mask here, we'll check it in
432                  * btrfs_reconfigure and do the toggling ourselves.
433                  */
434                 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
435                         fc->sb_flags_mask |= SB_POSIXACL;
436                 break;
437         case Opt_treelog:
438                 if (result.negated)
439                         btrfs_set_opt(ctx->mount_opt, NOTREELOG);
440                 else
441                         btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
442                 break;
443         case Opt_nologreplay:
444                 btrfs_warn(NULL,
445                 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
446                 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
447                 break;
448         case Opt_norecovery:
449                 btrfs_info(NULL,
450 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
451                 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
452                 break;
453         case Opt_flushoncommit:
454                 if (result.negated)
455                         btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
456                 else
457                         btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
458                 break;
459         case Opt_ratio:
460                 ctx->metadata_ratio = result.uint_32;
461                 break;
462         case Opt_discard:
463                 if (result.negated) {
464                         btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
465                         btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
466                         btrfs_set_opt(ctx->mount_opt, NODISCARD);
467                 } else {
468                         btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
469                         btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
470                 }
471                 break;
472         case Opt_discard_mode:
473                 switch (result.uint_32) {
474                 case Opt_discard_sync:
475                         btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
476                         btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
477                         break;
478                 case Opt_discard_async:
479                         btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
480                         btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
481                         break;
482                 default:
483                         btrfs_err(NULL, "unrecognized discard mode value %s",
484                                   param->key);
485                         return -EINVAL;
486                 }
487                 btrfs_clear_opt(ctx->mount_opt, NODISCARD);
488                 break;
489         case Opt_space_cache:
490                 if (result.negated) {
491                         btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
492                         btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
493                         btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
494                 } else {
495                         btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
496                         btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
497                 }
498                 break;
499         case Opt_space_cache_version:
500                 switch (result.uint_32) {
501                 case Opt_space_cache_v1:
502                         btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
503                         btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
504                         break;
505                 case Opt_space_cache_v2:
506                         btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
507                         btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
508                         break;
509                 default:
510                         btrfs_err(NULL, "unrecognized space_cache value %s",
511                                   param->key);
512                         return -EINVAL;
513                 }
514                 break;
515         case Opt_rescan_uuid_tree:
516                 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
517                 break;
518         case Opt_clear_cache:
519                 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
520                 break;
521         case Opt_user_subvol_rm_allowed:
522                 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
523                 break;
524         case Opt_enospc_debug:
525                 if (result.negated)
526                         btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
527                 else
528                         btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
529                 break;
530         case Opt_defrag:
531                 if (result.negated)
532                         btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
533                 else
534                         btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
535                 break;
536         case Opt_usebackuproot:
537                 btrfs_warn(NULL,
538                            "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
539                 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
540 
541                 /* If we're loading the backup roots we can't trust the space cache. */
542                 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
543                 break;
544         case Opt_skip_balance:
545                 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
546                 break;
547         case Opt_fatal_errors:
548                 switch (result.uint_32) {
549                 case Opt_fatal_errors_panic:
550                         btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
551                         break;
552                 case Opt_fatal_errors_bug:
553                         btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
554                         break;
555                 default:
556                         btrfs_err(NULL, "unrecognized fatal_errors value %s",
557                                   param->key);
558                         return -EINVAL;
559                 }
560                 break;
561         case Opt_commit_interval:
562                 ctx->commit_interval = result.uint_32;
563                 if (ctx->commit_interval == 0)
564                         ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
565                 break;
566         case Opt_rescue:
567                 switch (result.uint_32) {
568                 case Opt_rescue_usebackuproot:
569                         btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
570                         break;
571                 case Opt_rescue_nologreplay:
572                         btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
573                         break;
574                 case Opt_rescue_ignorebadroots:
575                         btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
576                         break;
577                 case Opt_rescue_ignoredatacsums:
578                         btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
579                         break;
580                 case Opt_rescue_ignoremetacsums:
581                         btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
582                         break;
583                 case Opt_rescue_ignoresuperflags:
584                         btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
585                         break;
586                 case Opt_rescue_parameter_all:
587                         btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
588                         btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
589                         btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
590                         btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
591                         btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
592                         break;
593                 default:
594                         btrfs_info(NULL, "unrecognized rescue option '%s'",
595                                    param->key);
596                         return -EINVAL;
597                 }
598                 break;
599 #ifdef CONFIG_BTRFS_DEBUG
600         case Opt_fragment:
601                 switch (result.uint_32) {
602                 case Opt_fragment_parameter_all:
603                         btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
604                         btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
605                         break;
606                 case Opt_fragment_parameter_metadata:
607                         btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
608                         break;
609                 case Opt_fragment_parameter_data:
610                         btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
611                         break;
612                 default:
613                         btrfs_info(NULL, "unrecognized fragment option '%s'",
614                                    param->key);
615                         return -EINVAL;
616                 }
617                 break;
618 #endif
619 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
620         case Opt_ref_verify:
621                 btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
622                 break;
623 #endif
624         default:
625                 btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
626                 return -EINVAL;
627         }
628 
629         return 0;
630 }
631 
632 /*
633  * Some options only have meaning at mount time and shouldn't persist across
634  * remounts, or be displayed. Clear these at the end of mount and remount code
635  * paths.
636  */
637 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
638 {
639         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
640         btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
641         btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
642 }
643 
644 static bool check_ro_option(const struct btrfs_fs_info *fs_info,
645                             unsigned long long mount_opt, unsigned long long opt,
646                             const char *opt_name)
647 {
648         if (mount_opt & opt) {
649                 btrfs_err(fs_info, "%s must be used with ro mount option",
650                           opt_name);
651                 return true;
652         }
653         return false;
654 }
655 
656 bool btrfs_check_options(const struct btrfs_fs_info *info,
657                          unsigned long long *mount_opt,
658                          unsigned long flags)
659 {
660         bool ret = true;
661 
662         if (!(flags & SB_RDONLY) &&
663             (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
664              check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
665              check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
666              check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
667              check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
668                 ret = false;
669 
670         if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
671             !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
672             !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
673                 btrfs_err(info, "cannot disable free-space-tree");
674                 ret = false;
675         }
676         if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
677              !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
678                 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
679                 ret = false;
680         }
681 
682         if (btrfs_check_mountopts_zoned(info, mount_opt))
683                 ret = false;
684 
685         if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
686                 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
687                         btrfs_info(info, "disk space caching is enabled");
688                         btrfs_warn(info,
689 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
690                 }
691                 if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
692                         btrfs_info(info, "using free-space-tree");
693         }
694 
695         return ret;
696 }
697 
698 /*
699  * This is subtle, we only call this during open_ctree().  We need to pre-load
700  * the mount options with the on-disk settings.  Before the new mount API took
701  * effect we would do this on mount and remount.  With the new mount API we'll
702  * only do this on the initial mount.
703  *
704  * This isn't a change in behavior, because we're using the current state of the
705  * file system to set the current mount options.  If you mounted with special
706  * options to disable these features and then remounted we wouldn't revert the
707  * settings, because mounting without these features cleared the on-disk
708  * settings, so this being called on re-mount is not needed.
709  */
710 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
711 {
712         if (fs_info->sectorsize < PAGE_SIZE) {
713                 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
714                 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
715                         btrfs_info(fs_info,
716                                    "forcing free space tree for sector size %u with page size %lu",
717                                    fs_info->sectorsize, PAGE_SIZE);
718                         btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
719                 }
720         }
721 
722         /*
723          * At this point our mount options are populated, so we only mess with
724          * these settings if we don't have any settings already.
725          */
726         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
727                 return;
728 
729         if (btrfs_is_zoned(fs_info) &&
730             btrfs_free_space_cache_v1_active(fs_info)) {
731                 btrfs_info(fs_info, "zoned: clearing existing space cache");
732                 btrfs_set_super_cache_generation(fs_info->super_copy, 0);
733                 return;
734         }
735 
736         if (btrfs_test_opt(fs_info, SPACE_CACHE))
737                 return;
738 
739         if (btrfs_test_opt(fs_info, NOSPACECACHE))
740                 return;
741 
742         /*
743          * At this point we don't have explicit options set by the user, set
744          * them ourselves based on the state of the file system.
745          */
746         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
747                 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
748         else if (btrfs_free_space_cache_v1_active(fs_info))
749                 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
750 }
751 
752 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
753 {
754         if (!btrfs_test_opt(fs_info, NOSSD) &&
755             !fs_info->fs_devices->rotating)
756                 btrfs_set_opt(fs_info->mount_opt, SSD);
757 
758         /*
759          * For devices supporting discard turn on discard=async automatically,
760          * unless it's already set or disabled. This could be turned off by
761          * nodiscard for the same mount.
762          *
763          * The zoned mode piggy backs on the discard functionality for
764          * resetting a zone. There is no reason to delay the zone reset as it is
765          * fast enough. So, do not enable async discard for zoned mode.
766          */
767         if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
768               btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
769               btrfs_test_opt(fs_info, NODISCARD)) &&
770             fs_info->fs_devices->discardable &&
771             !btrfs_is_zoned(fs_info))
772                 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
773 }
774 
775 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
776                                           u64 subvol_objectid)
777 {
778         struct btrfs_root *root = fs_info->tree_root;
779         struct btrfs_root *fs_root = NULL;
780         struct btrfs_root_ref *root_ref;
781         struct btrfs_inode_ref *inode_ref;
782         struct btrfs_key key;
783         struct btrfs_path *path = NULL;
784         char *name = NULL, *ptr;
785         u64 dirid;
786         int len;
787         int ret;
788 
789         path = btrfs_alloc_path();
790         if (!path) {
791                 ret = -ENOMEM;
792                 goto err;
793         }
794 
795         name = kmalloc(PATH_MAX, GFP_KERNEL);
796         if (!name) {
797                 ret = -ENOMEM;
798                 goto err;
799         }
800         ptr = name + PATH_MAX - 1;
801         ptr[0] = '\0';
802 
803         /*
804          * Walk up the subvolume trees in the tree of tree roots by root
805          * backrefs until we hit the top-level subvolume.
806          */
807         while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
808                 key.objectid = subvol_objectid;
809                 key.type = BTRFS_ROOT_BACKREF_KEY;
810                 key.offset = (u64)-1;
811 
812                 ret = btrfs_search_backwards(root, &key, path);
813                 if (ret < 0) {
814                         goto err;
815                 } else if (ret > 0) {
816                         ret = -ENOENT;
817                         goto err;
818                 }
819 
820                 subvol_objectid = key.offset;
821 
822                 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
823                                           struct btrfs_root_ref);
824                 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
825                 ptr -= len + 1;
826                 if (ptr < name) {
827                         ret = -ENAMETOOLONG;
828                         goto err;
829                 }
830                 read_extent_buffer(path->nodes[0], ptr + 1,
831                                    (unsigned long)(root_ref + 1), len);
832                 ptr[0] = '/';
833                 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
834                 btrfs_release_path(path);
835 
836                 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
837                 if (IS_ERR(fs_root)) {
838                         ret = PTR_ERR(fs_root);
839                         fs_root = NULL;
840                         goto err;
841                 }
842 
843                 /*
844                  * Walk up the filesystem tree by inode refs until we hit the
845                  * root directory.
846                  */
847                 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
848                         key.objectid = dirid;
849                         key.type = BTRFS_INODE_REF_KEY;
850                         key.offset = (u64)-1;
851 
852                         ret = btrfs_search_backwards(fs_root, &key, path);
853                         if (ret < 0) {
854                                 goto err;
855                         } else if (ret > 0) {
856                                 ret = -ENOENT;
857                                 goto err;
858                         }
859 
860                         dirid = key.offset;
861 
862                         inode_ref = btrfs_item_ptr(path->nodes[0],
863                                                    path->slots[0],
864                                                    struct btrfs_inode_ref);
865                         len = btrfs_inode_ref_name_len(path->nodes[0],
866                                                        inode_ref);
867                         ptr -= len + 1;
868                         if (ptr < name) {
869                                 ret = -ENAMETOOLONG;
870                                 goto err;
871                         }
872                         read_extent_buffer(path->nodes[0], ptr + 1,
873                                            (unsigned long)(inode_ref + 1), len);
874                         ptr[0] = '/';
875                         btrfs_release_path(path);
876                 }
877                 btrfs_put_root(fs_root);
878                 fs_root = NULL;
879         }
880 
881         btrfs_free_path(path);
882         if (ptr == name + PATH_MAX - 1) {
883                 name[0] = '/';
884                 name[1] = '\0';
885         } else {
886                 memmove(name, ptr, name + PATH_MAX - ptr);
887         }
888         return name;
889 
890 err:
891         btrfs_put_root(fs_root);
892         btrfs_free_path(path);
893         kfree(name);
894         return ERR_PTR(ret);
895 }
896 
897 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
898 {
899         struct btrfs_root *root = fs_info->tree_root;
900         struct btrfs_dir_item *di;
901         struct btrfs_path *path;
902         struct btrfs_key location;
903         struct fscrypt_str name = FSTR_INIT("default", 7);
904         u64 dir_id;
905 
906         path = btrfs_alloc_path();
907         if (!path)
908                 return -ENOMEM;
909 
910         /*
911          * Find the "default" dir item which points to the root item that we
912          * will mount by default if we haven't been given a specific subvolume
913          * to mount.
914          */
915         dir_id = btrfs_super_root_dir(fs_info->super_copy);
916         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
917         if (IS_ERR(di)) {
918                 btrfs_free_path(path);
919                 return PTR_ERR(di);
920         }
921         if (!di) {
922                 /*
923                  * Ok the default dir item isn't there.  This is weird since
924                  * it's always been there, but don't freak out, just try and
925                  * mount the top-level subvolume.
926                  */
927                 btrfs_free_path(path);
928                 *objectid = BTRFS_FS_TREE_OBJECTID;
929                 return 0;
930         }
931 
932         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
933         btrfs_free_path(path);
934         *objectid = location.objectid;
935         return 0;
936 }
937 
938 static int btrfs_fill_super(struct super_block *sb,
939                             struct btrfs_fs_devices *fs_devices,
940                             void *data)
941 {
942         struct inode *inode;
943         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
944         int err;
945 
946         sb->s_maxbytes = MAX_LFS_FILESIZE;
947         sb->s_magic = BTRFS_SUPER_MAGIC;
948         sb->s_op = &btrfs_super_ops;
949         sb->s_d_op = &btrfs_dentry_operations;
950         sb->s_export_op = &btrfs_export_ops;
951 #ifdef CONFIG_FS_VERITY
952         sb->s_vop = &btrfs_verityops;
953 #endif
954         sb->s_xattr = btrfs_xattr_handlers;
955         sb->s_time_gran = 1;
956         sb->s_iflags |= SB_I_CGROUPWB;
957 
958         err = super_setup_bdi(sb);
959         if (err) {
960                 btrfs_err(fs_info, "super_setup_bdi failed");
961                 return err;
962         }
963 
964         err = open_ctree(sb, fs_devices, (char *)data);
965         if (err) {
966                 btrfs_err(fs_info, "open_ctree failed");
967                 return err;
968         }
969 
970         inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
971         if (IS_ERR(inode)) {
972                 err = PTR_ERR(inode);
973                 btrfs_handle_fs_error(fs_info, err, NULL);
974                 goto fail_close;
975         }
976 
977         sb->s_root = d_make_root(inode);
978         if (!sb->s_root) {
979                 err = -ENOMEM;
980                 goto fail_close;
981         }
982 
983         sb->s_flags |= SB_ACTIVE;
984         return 0;
985 
986 fail_close:
987         close_ctree(fs_info);
988         return err;
989 }
990 
991 int btrfs_sync_fs(struct super_block *sb, int wait)
992 {
993         struct btrfs_trans_handle *trans;
994         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
995         struct btrfs_root *root = fs_info->tree_root;
996 
997         trace_btrfs_sync_fs(fs_info, wait);
998 
999         if (!wait) {
1000                 filemap_flush(fs_info->btree_inode->i_mapping);
1001                 return 0;
1002         }
1003 
1004         btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1005 
1006         trans = btrfs_attach_transaction_barrier(root);
1007         if (IS_ERR(trans)) {
1008                 /* no transaction, don't bother */
1009                 if (PTR_ERR(trans) == -ENOENT) {
1010                         /*
1011                          * Exit unless we have some pending changes
1012                          * that need to go through commit
1013                          */
1014                         if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1015                                       &fs_info->flags))
1016                                 return 0;
1017                         /*
1018                          * A non-blocking test if the fs is frozen. We must not
1019                          * start a new transaction here otherwise a deadlock
1020                          * happens. The pending operations are delayed to the
1021                          * next commit after thawing.
1022                          */
1023                         if (sb_start_write_trylock(sb))
1024                                 sb_end_write(sb);
1025                         else
1026                                 return 0;
1027                         trans = btrfs_start_transaction(root, 0);
1028                 }
1029                 if (IS_ERR(trans))
1030                         return PTR_ERR(trans);
1031         }
1032         return btrfs_commit_transaction(trans);
1033 }
1034 
1035 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1036 {
1037         seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1038         *printed = true;
1039 }
1040 
1041 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1042 {
1043         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1044         const char *compress_type;
1045         const char *subvol_name;
1046         bool printed = false;
1047 
1048         if (btrfs_test_opt(info, DEGRADED))
1049                 seq_puts(seq, ",degraded");
1050         if (btrfs_test_opt(info, NODATASUM))
1051                 seq_puts(seq, ",nodatasum");
1052         if (btrfs_test_opt(info, NODATACOW))
1053                 seq_puts(seq, ",nodatacow");
1054         if (btrfs_test_opt(info, NOBARRIER))
1055                 seq_puts(seq, ",nobarrier");
1056         if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1057                 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1058         if (info->thread_pool_size !=  min_t(unsigned long,
1059                                              num_online_cpus() + 2, 8))
1060                 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1061         if (btrfs_test_opt(info, COMPRESS)) {
1062                 compress_type = btrfs_compress_type2str(info->compress_type);
1063                 if (btrfs_test_opt(info, FORCE_COMPRESS))
1064                         seq_printf(seq, ",compress-force=%s", compress_type);
1065                 else
1066                         seq_printf(seq, ",compress=%s", compress_type);
1067                 if (info->compress_level)
1068                         seq_printf(seq, ":%d", info->compress_level);
1069         }
1070         if (btrfs_test_opt(info, NOSSD))
1071                 seq_puts(seq, ",nossd");
1072         if (btrfs_test_opt(info, SSD_SPREAD))
1073                 seq_puts(seq, ",ssd_spread");
1074         else if (btrfs_test_opt(info, SSD))
1075                 seq_puts(seq, ",ssd");
1076         if (btrfs_test_opt(info, NOTREELOG))
1077                 seq_puts(seq, ",notreelog");
1078         if (btrfs_test_opt(info, NOLOGREPLAY))
1079                 print_rescue_option(seq, "nologreplay", &printed);
1080         if (btrfs_test_opt(info, USEBACKUPROOT))
1081                 print_rescue_option(seq, "usebackuproot", &printed);
1082         if (btrfs_test_opt(info, IGNOREBADROOTS))
1083                 print_rescue_option(seq, "ignorebadroots", &printed);
1084         if (btrfs_test_opt(info, IGNOREDATACSUMS))
1085                 print_rescue_option(seq, "ignoredatacsums", &printed);
1086         if (btrfs_test_opt(info, IGNOREMETACSUMS))
1087                 print_rescue_option(seq, "ignoremetacsums", &printed);
1088         if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1089                 print_rescue_option(seq, "ignoresuperflags", &printed);
1090         if (btrfs_test_opt(info, FLUSHONCOMMIT))
1091                 seq_puts(seq, ",flushoncommit");
1092         if (btrfs_test_opt(info, DISCARD_SYNC))
1093                 seq_puts(seq, ",discard");
1094         if (btrfs_test_opt(info, DISCARD_ASYNC))
1095                 seq_puts(seq, ",discard=async");
1096         if (!(info->sb->s_flags & SB_POSIXACL))
1097                 seq_puts(seq, ",noacl");
1098         if (btrfs_free_space_cache_v1_active(info))
1099                 seq_puts(seq, ",space_cache");
1100         else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1101                 seq_puts(seq, ",space_cache=v2");
1102         else
1103                 seq_puts(seq, ",nospace_cache");
1104         if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1105                 seq_puts(seq, ",rescan_uuid_tree");
1106         if (btrfs_test_opt(info, CLEAR_CACHE))
1107                 seq_puts(seq, ",clear_cache");
1108         if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1109                 seq_puts(seq, ",user_subvol_rm_allowed");
1110         if (btrfs_test_opt(info, ENOSPC_DEBUG))
1111                 seq_puts(seq, ",enospc_debug");
1112         if (btrfs_test_opt(info, AUTO_DEFRAG))
1113                 seq_puts(seq, ",autodefrag");
1114         if (btrfs_test_opt(info, SKIP_BALANCE))
1115                 seq_puts(seq, ",skip_balance");
1116         if (info->metadata_ratio)
1117                 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1118         if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1119                 seq_puts(seq, ",fatal_errors=panic");
1120         if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1121                 seq_printf(seq, ",commit=%u", info->commit_interval);
1122 #ifdef CONFIG_BTRFS_DEBUG
1123         if (btrfs_test_opt(info, FRAGMENT_DATA))
1124                 seq_puts(seq, ",fragment=data");
1125         if (btrfs_test_opt(info, FRAGMENT_METADATA))
1126                 seq_puts(seq, ",fragment=metadata");
1127 #endif
1128         if (btrfs_test_opt(info, REF_VERIFY))
1129                 seq_puts(seq, ",ref_verify");
1130         seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1131         subvol_name = btrfs_get_subvol_name_from_objectid(info,
1132                         btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1133         if (!IS_ERR(subvol_name)) {
1134                 seq_puts(seq, ",subvol=");
1135                 seq_escape(seq, subvol_name, " \t\n\\");
1136                 kfree(subvol_name);
1137         }
1138         return 0;
1139 }
1140 
1141 /*
1142  * subvolumes are identified by ino 256
1143  */
1144 static inline int is_subvolume_inode(struct inode *inode)
1145 {
1146         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1147                 return 1;
1148         return 0;
1149 }
1150 
1151 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1152                                    struct vfsmount *mnt)
1153 {
1154         struct dentry *root;
1155         int ret;
1156 
1157         if (!subvol_name) {
1158                 if (!subvol_objectid) {
1159                         ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1160                                                           &subvol_objectid);
1161                         if (ret) {
1162                                 root = ERR_PTR(ret);
1163                                 goto out;
1164                         }
1165                 }
1166                 subvol_name = btrfs_get_subvol_name_from_objectid(
1167                                         btrfs_sb(mnt->mnt_sb), subvol_objectid);
1168                 if (IS_ERR(subvol_name)) {
1169                         root = ERR_CAST(subvol_name);
1170                         subvol_name = NULL;
1171                         goto out;
1172                 }
1173 
1174         }
1175 
1176         root = mount_subtree(mnt, subvol_name);
1177         /* mount_subtree() drops our reference on the vfsmount. */
1178         mnt = NULL;
1179 
1180         if (!IS_ERR(root)) {
1181                 struct super_block *s = root->d_sb;
1182                 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1183                 struct inode *root_inode = d_inode(root);
1184                 u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1185 
1186                 ret = 0;
1187                 if (!is_subvolume_inode(root_inode)) {
1188                         btrfs_err(fs_info, "'%s' is not a valid subvolume",
1189                                subvol_name);
1190                         ret = -EINVAL;
1191                 }
1192                 if (subvol_objectid && root_objectid != subvol_objectid) {
1193                         /*
1194                          * This will also catch a race condition where a
1195                          * subvolume which was passed by ID is renamed and
1196                          * another subvolume is renamed over the old location.
1197                          */
1198                         btrfs_err(fs_info,
1199                                   "subvol '%s' does not match subvolid %llu",
1200                                   subvol_name, subvol_objectid);
1201                         ret = -EINVAL;
1202                 }
1203                 if (ret) {
1204                         dput(root);
1205                         root = ERR_PTR(ret);
1206                         deactivate_locked_super(s);
1207                 }
1208         }
1209 
1210 out:
1211         mntput(mnt);
1212         kfree(subvol_name);
1213         return root;
1214 }
1215 
1216 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1217                                      u32 new_pool_size, u32 old_pool_size)
1218 {
1219         if (new_pool_size == old_pool_size)
1220                 return;
1221 
1222         fs_info->thread_pool_size = new_pool_size;
1223 
1224         btrfs_info(fs_info, "resize thread pool %d -> %d",
1225                old_pool_size, new_pool_size);
1226 
1227         btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1228         btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1229         btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1230         workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1231         workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1232         btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1233         btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1234         btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1235 }
1236 
1237 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1238                                        unsigned long long old_opts, int flags)
1239 {
1240         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1241             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1242              (flags & SB_RDONLY))) {
1243                 /* wait for any defraggers to finish */
1244                 wait_event(fs_info->transaction_wait,
1245                            (atomic_read(&fs_info->defrag_running) == 0));
1246                 if (flags & SB_RDONLY)
1247                         sync_filesystem(fs_info->sb);
1248         }
1249 }
1250 
1251 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1252                                          unsigned long long old_opts)
1253 {
1254         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1255 
1256         /*
1257          * We need to cleanup all defragable inodes if the autodefragment is
1258          * close or the filesystem is read only.
1259          */
1260         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1261             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1262                 btrfs_cleanup_defrag_inodes(fs_info);
1263         }
1264 
1265         /* If we toggled discard async */
1266         if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1267             btrfs_test_opt(fs_info, DISCARD_ASYNC))
1268                 btrfs_discard_resume(fs_info);
1269         else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1270                  !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1271                 btrfs_discard_cleanup(fs_info);
1272 
1273         /* If we toggled space cache */
1274         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1275                 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1276 }
1277 
1278 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1279 {
1280         int ret;
1281 
1282         if (BTRFS_FS_ERROR(fs_info)) {
1283                 btrfs_err(fs_info,
1284                           "remounting read-write after error is not allowed");
1285                 return -EINVAL;
1286         }
1287 
1288         if (fs_info->fs_devices->rw_devices == 0)
1289                 return -EACCES;
1290 
1291         if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1292                 btrfs_warn(fs_info,
1293                            "too many missing devices, writable remount is not allowed");
1294                 return -EACCES;
1295         }
1296 
1297         if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1298                 btrfs_warn(fs_info,
1299                            "mount required to replay tree-log, cannot remount read-write");
1300                 return -EINVAL;
1301         }
1302 
1303         /*
1304          * NOTE: when remounting with a change that does writes, don't put it
1305          * anywhere above this point, as we are not sure to be safe to write
1306          * until we pass the above checks.
1307          */
1308         ret = btrfs_start_pre_rw_mount(fs_info);
1309         if (ret)
1310                 return ret;
1311 
1312         btrfs_clear_sb_rdonly(fs_info->sb);
1313 
1314         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1315 
1316         /*
1317          * If we've gone from readonly -> read-write, we need to get our
1318          * sync/async discard lists in the right state.
1319          */
1320         btrfs_discard_resume(fs_info);
1321 
1322         return 0;
1323 }
1324 
1325 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1326 {
1327         /*
1328          * This also happens on 'umount -rf' or on shutdown, when the
1329          * filesystem is busy.
1330          */
1331         cancel_work_sync(&fs_info->async_reclaim_work);
1332         cancel_work_sync(&fs_info->async_data_reclaim_work);
1333 
1334         btrfs_discard_cleanup(fs_info);
1335 
1336         /* Wait for the uuid_scan task to finish */
1337         down(&fs_info->uuid_tree_rescan_sem);
1338         /* Avoid complains from lockdep et al. */
1339         up(&fs_info->uuid_tree_rescan_sem);
1340 
1341         btrfs_set_sb_rdonly(fs_info->sb);
1342 
1343         /*
1344          * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1345          * loop if it's already active.  If it's already asleep, we'll leave
1346          * unused block groups on disk until we're mounted read-write again
1347          * unless we clean them up here.
1348          */
1349         btrfs_delete_unused_bgs(fs_info);
1350 
1351         /*
1352          * The cleaner task could be already running before we set the flag
1353          * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1354          * sure that after we finish the remount, i.e. after we call
1355          * btrfs_commit_super(), the cleaner can no longer start a transaction
1356          * - either because it was dropping a dead root, running delayed iputs
1357          *   or deleting an unused block group (the cleaner picked a block
1358          *   group from the list of unused block groups before we were able to
1359          *   in the previous call to btrfs_delete_unused_bgs()).
1360          */
1361         wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1362 
1363         /*
1364          * We've set the superblock to RO mode, so we might have made the
1365          * cleaner task sleep without running all pending delayed iputs. Go
1366          * through all the delayed iputs here, so that if an unmount happens
1367          * without remounting RW we don't end up at finishing close_ctree()
1368          * with a non-empty list of delayed iputs.
1369          */
1370         btrfs_run_delayed_iputs(fs_info);
1371 
1372         btrfs_dev_replace_suspend_for_unmount(fs_info);
1373         btrfs_scrub_cancel(fs_info);
1374         btrfs_pause_balance(fs_info);
1375 
1376         /*
1377          * Pause the qgroup rescan worker if it is running. We don't want it to
1378          * be still running after we are in RO mode, as after that, by the time
1379          * we unmount, it might have left a transaction open, so we would leak
1380          * the transaction and/or crash.
1381          */
1382         btrfs_qgroup_wait_for_completion(fs_info, false);
1383 
1384         return btrfs_commit_super(fs_info);
1385 }
1386 
1387 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1388 {
1389         fs_info->max_inline = ctx->max_inline;
1390         fs_info->commit_interval = ctx->commit_interval;
1391         fs_info->metadata_ratio = ctx->metadata_ratio;
1392         fs_info->thread_pool_size = ctx->thread_pool_size;
1393         fs_info->mount_opt = ctx->mount_opt;
1394         fs_info->compress_type = ctx->compress_type;
1395         fs_info->compress_level = ctx->compress_level;
1396 }
1397 
1398 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1399 {
1400         ctx->max_inline = fs_info->max_inline;
1401         ctx->commit_interval = fs_info->commit_interval;
1402         ctx->metadata_ratio = fs_info->metadata_ratio;
1403         ctx->thread_pool_size = fs_info->thread_pool_size;
1404         ctx->mount_opt = fs_info->mount_opt;
1405         ctx->compress_type = fs_info->compress_type;
1406         ctx->compress_level = fs_info->compress_level;
1407 }
1408 
1409 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)                  \
1410 do {                                                                            \
1411         if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&       \
1412             btrfs_raw_test_opt(fs_info->mount_opt, opt))                        \
1413                 btrfs_info(fs_info, fmt, ##args);                               \
1414 } while (0)
1415 
1416 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)        \
1417 do {                                                                    \
1418         if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1419             !btrfs_raw_test_opt(fs_info->mount_opt, opt))               \
1420                 btrfs_info(fs_info, fmt, ##args);                       \
1421 } while (0)
1422 
1423 static void btrfs_emit_options(struct btrfs_fs_info *info,
1424                                struct btrfs_fs_context *old)
1425 {
1426         btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1427         btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1428         btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1429         btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1430         btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1431         btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1432         btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1433         btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1434         btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1435         btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1436         btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1437         btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1438         btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1439         btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1440         btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1441         btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1442         btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1443         btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1444         btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1445         btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1446         btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1447         btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1448         btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1449 
1450         btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1451         btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1452         btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1453         btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1454         btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1455         btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1456         btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1457         btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1458         btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1459 
1460         /* Did the compression settings change? */
1461         if (btrfs_test_opt(info, COMPRESS) &&
1462             (!old ||
1463              old->compress_type != info->compress_type ||
1464              old->compress_level != info->compress_level ||
1465              (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1466               btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1467                 const char *compress_type = btrfs_compress_type2str(info->compress_type);
1468 
1469                 btrfs_info(info, "%s %s compression, level %d",
1470                            btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1471                            compress_type, info->compress_level);
1472         }
1473 
1474         if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1475                 btrfs_info(info, "max_inline set to %llu", info->max_inline);
1476 }
1477 
1478 static int btrfs_reconfigure(struct fs_context *fc)
1479 {
1480         struct super_block *sb = fc->root->d_sb;
1481         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1482         struct btrfs_fs_context *ctx = fc->fs_private;
1483         struct btrfs_fs_context old_ctx;
1484         int ret = 0;
1485         bool mount_reconfigure = (fc->s_fs_info != NULL);
1486 
1487         btrfs_info_to_ctx(fs_info, &old_ctx);
1488 
1489         /*
1490          * This is our "bind mount" trick, we don't want to allow the user to do
1491          * anything other than mount a different ro/rw and a different subvol,
1492          * all of the mount options should be maintained.
1493          */
1494         if (mount_reconfigure)
1495                 ctx->mount_opt = old_ctx.mount_opt;
1496 
1497         sync_filesystem(sb);
1498         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1499 
1500         if (!mount_reconfigure &&
1501             !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1502                 return -EINVAL;
1503 
1504         ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1505         if (ret < 0)
1506                 return ret;
1507 
1508         btrfs_ctx_to_info(fs_info, ctx);
1509         btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1510         btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1511                                  old_ctx.thread_pool_size);
1512 
1513         if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1514             (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1515             (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1516                 btrfs_warn(fs_info,
1517                 "remount supports changing free space tree only from RO to RW");
1518                 /* Make sure free space cache options match the state on disk. */
1519                 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1520                         btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1521                         btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1522                 }
1523                 if (btrfs_free_space_cache_v1_active(fs_info)) {
1524                         btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1525                         btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1526                 }
1527         }
1528 
1529         ret = 0;
1530         if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1531                 ret = btrfs_remount_ro(fs_info);
1532         else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1533                 ret = btrfs_remount_rw(fs_info);
1534         if (ret)
1535                 goto restore;
1536 
1537         /*
1538          * If we set the mask during the parameter parsing VFS would reject the
1539          * remount.  Here we can set the mask and the value will be updated
1540          * appropriately.
1541          */
1542         if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1543                 fc->sb_flags_mask |= SB_POSIXACL;
1544 
1545         btrfs_emit_options(fs_info, &old_ctx);
1546         wake_up_process(fs_info->transaction_kthread);
1547         btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1548         btrfs_clear_oneshot_options(fs_info);
1549         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1550 
1551         return 0;
1552 restore:
1553         btrfs_ctx_to_info(fs_info, &old_ctx);
1554         btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1555         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1556         return ret;
1557 }
1558 
1559 /* Used to sort the devices by max_avail(descending sort) */
1560 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1561 {
1562         const struct btrfs_device_info *dev_info1 = a;
1563         const struct btrfs_device_info *dev_info2 = b;
1564 
1565         if (dev_info1->max_avail > dev_info2->max_avail)
1566                 return -1;
1567         else if (dev_info1->max_avail < dev_info2->max_avail)
1568                 return 1;
1569         return 0;
1570 }
1571 
1572 /*
1573  * sort the devices by max_avail, in which max free extent size of each device
1574  * is stored.(Descending Sort)
1575  */
1576 static inline void btrfs_descending_sort_devices(
1577                                         struct btrfs_device_info *devices,
1578                                         size_t nr_devices)
1579 {
1580         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1581              btrfs_cmp_device_free_bytes, NULL);
1582 }
1583 
1584 /*
1585  * The helper to calc the free space on the devices that can be used to store
1586  * file data.
1587  */
1588 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1589                                               u64 *free_bytes)
1590 {
1591         struct btrfs_device_info *devices_info;
1592         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1593         struct btrfs_device *device;
1594         u64 type;
1595         u64 avail_space;
1596         u64 min_stripe_size;
1597         int num_stripes = 1;
1598         int i = 0, nr_devices;
1599         const struct btrfs_raid_attr *rattr;
1600 
1601         /*
1602          * We aren't under the device list lock, so this is racy-ish, but good
1603          * enough for our purposes.
1604          */
1605         nr_devices = fs_info->fs_devices->open_devices;
1606         if (!nr_devices) {
1607                 smp_mb();
1608                 nr_devices = fs_info->fs_devices->open_devices;
1609                 ASSERT(nr_devices);
1610                 if (!nr_devices) {
1611                         *free_bytes = 0;
1612                         return 0;
1613                 }
1614         }
1615 
1616         devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1617                                GFP_KERNEL);
1618         if (!devices_info)
1619                 return -ENOMEM;
1620 
1621         /* calc min stripe number for data space allocation */
1622         type = btrfs_data_alloc_profile(fs_info);
1623         rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1624 
1625         if (type & BTRFS_BLOCK_GROUP_RAID0)
1626                 num_stripes = nr_devices;
1627         else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1628                 num_stripes = rattr->ncopies;
1629         else if (type & BTRFS_BLOCK_GROUP_RAID10)
1630                 num_stripes = 4;
1631 
1632         /* Adjust for more than 1 stripe per device */
1633         min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1634 
1635         rcu_read_lock();
1636         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1637                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1638                                                 &device->dev_state) ||
1639                     !device->bdev ||
1640                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1641                         continue;
1642 
1643                 if (i >= nr_devices)
1644                         break;
1645 
1646                 avail_space = device->total_bytes - device->bytes_used;
1647 
1648                 /* align with stripe_len */
1649                 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1650 
1651                 /*
1652                  * Ensure we have at least min_stripe_size on top of the
1653                  * reserved space on the device.
1654                  */
1655                 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1656                         continue;
1657 
1658                 avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1659 
1660                 devices_info[i].dev = device;
1661                 devices_info[i].max_avail = avail_space;
1662 
1663                 i++;
1664         }
1665         rcu_read_unlock();
1666 
1667         nr_devices = i;
1668 
1669         btrfs_descending_sort_devices(devices_info, nr_devices);
1670 
1671         i = nr_devices - 1;
1672         avail_space = 0;
1673         while (nr_devices >= rattr->devs_min) {
1674                 num_stripes = min(num_stripes, nr_devices);
1675 
1676                 if (devices_info[i].max_avail >= min_stripe_size) {
1677                         int j;
1678                         u64 alloc_size;
1679 
1680                         avail_space += devices_info[i].max_avail * num_stripes;
1681                         alloc_size = devices_info[i].max_avail;
1682                         for (j = i + 1 - num_stripes; j <= i; j++)
1683                                 devices_info[j].max_avail -= alloc_size;
1684                 }
1685                 i--;
1686                 nr_devices--;
1687         }
1688 
1689         kfree(devices_info);
1690         *free_bytes = avail_space;
1691         return 0;
1692 }
1693 
1694 /*
1695  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1696  *
1697  * If there's a redundant raid level at DATA block groups, use the respective
1698  * multiplier to scale the sizes.
1699  *
1700  * Unused device space usage is based on simulating the chunk allocator
1701  * algorithm that respects the device sizes and order of allocations.  This is
1702  * a close approximation of the actual use but there are other factors that may
1703  * change the result (like a new metadata chunk).
1704  *
1705  * If metadata is exhausted, f_bavail will be 0.
1706  */
1707 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1708 {
1709         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1710         struct btrfs_super_block *disk_super = fs_info->super_copy;
1711         struct btrfs_space_info *found;
1712         u64 total_used = 0;
1713         u64 total_free_data = 0;
1714         u64 total_free_meta = 0;
1715         u32 bits = fs_info->sectorsize_bits;
1716         __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1717         unsigned factor = 1;
1718         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1719         int ret;
1720         u64 thresh = 0;
1721         int mixed = 0;
1722 
1723         list_for_each_entry(found, &fs_info->space_info, list) {
1724                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1725                         int i;
1726 
1727                         total_free_data += found->disk_total - found->disk_used;
1728                         total_free_data -=
1729                                 btrfs_account_ro_block_groups_free_space(found);
1730 
1731                         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1732                                 if (!list_empty(&found->block_groups[i]))
1733                                         factor = btrfs_bg_type_to_factor(
1734                                                 btrfs_raid_array[i].bg_flag);
1735                         }
1736                 }
1737 
1738                 /*
1739                  * Metadata in mixed block group profiles are accounted in data
1740                  */
1741                 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1742                         if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1743                                 mixed = 1;
1744                         else
1745                                 total_free_meta += found->disk_total -
1746                                         found->disk_used;
1747                 }
1748 
1749                 total_used += found->disk_used;
1750         }
1751 
1752         buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1753         buf->f_blocks >>= bits;
1754         buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1755 
1756         /* Account global block reserve as used, it's in logical size already */
1757         spin_lock(&block_rsv->lock);
1758         /* Mixed block groups accounting is not byte-accurate, avoid overflow */
1759         if (buf->f_bfree >= block_rsv->size >> bits)
1760                 buf->f_bfree -= block_rsv->size >> bits;
1761         else
1762                 buf->f_bfree = 0;
1763         spin_unlock(&block_rsv->lock);
1764 
1765         buf->f_bavail = div_u64(total_free_data, factor);
1766         ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1767         if (ret)
1768                 return ret;
1769         buf->f_bavail += div_u64(total_free_data, factor);
1770         buf->f_bavail = buf->f_bavail >> bits;
1771 
1772         /*
1773          * We calculate the remaining metadata space minus global reserve. If
1774          * this is (supposedly) smaller than zero, there's no space. But this
1775          * does not hold in practice, the exhausted state happens where's still
1776          * some positive delta. So we apply some guesswork and compare the
1777          * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1778          *
1779          * We probably cannot calculate the exact threshold value because this
1780          * depends on the internal reservations requested by various
1781          * operations, so some operations that consume a few metadata will
1782          * succeed even if the Avail is zero. But this is better than the other
1783          * way around.
1784          */
1785         thresh = SZ_4M;
1786 
1787         /*
1788          * We only want to claim there's no available space if we can no longer
1789          * allocate chunks for our metadata profile and our global reserve will
1790          * not fit in the free metadata space.  If we aren't ->full then we
1791          * still can allocate chunks and thus are fine using the currently
1792          * calculated f_bavail.
1793          */
1794         if (!mixed && block_rsv->space_info->full &&
1795             (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1796                 buf->f_bavail = 0;
1797 
1798         buf->f_type = BTRFS_SUPER_MAGIC;
1799         buf->f_bsize = fs_info->sectorsize;
1800         buf->f_namelen = BTRFS_NAME_LEN;
1801 
1802         /* We treat it as constant endianness (it doesn't matter _which_)
1803            because we want the fsid to come out the same whether mounted
1804            on a big-endian or little-endian host */
1805         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1806         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1807         /* Mask in the root object ID too, to disambiguate subvols */
1808         buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1809         buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1810 
1811         return 0;
1812 }
1813 
1814 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1815 {
1816         struct btrfs_fs_info *p = fc->s_fs_info;
1817         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1818 
1819         return fs_info->fs_devices == p->fs_devices;
1820 }
1821 
1822 static int btrfs_get_tree_super(struct fs_context *fc)
1823 {
1824         struct btrfs_fs_info *fs_info = fc->s_fs_info;
1825         struct btrfs_fs_context *ctx = fc->fs_private;
1826         struct btrfs_fs_devices *fs_devices = NULL;
1827         struct block_device *bdev;
1828         struct btrfs_device *device;
1829         struct super_block *sb;
1830         blk_mode_t mode = btrfs_open_mode(fc);
1831         int ret;
1832 
1833         btrfs_ctx_to_info(fs_info, ctx);
1834         mutex_lock(&uuid_mutex);
1835 
1836         /*
1837          * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1838          * either a valid device or an error.
1839          */
1840         device = btrfs_scan_one_device(fc->source, mode, true);
1841         ASSERT(device != NULL);
1842         if (IS_ERR(device)) {
1843                 mutex_unlock(&uuid_mutex);
1844                 return PTR_ERR(device);
1845         }
1846 
1847         fs_devices = device->fs_devices;
1848         fs_info->fs_devices = fs_devices;
1849 
1850         ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1851         mutex_unlock(&uuid_mutex);
1852         if (ret)
1853                 return ret;
1854 
1855         if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1856                 ret = -EACCES;
1857                 goto error;
1858         }
1859 
1860         bdev = fs_devices->latest_dev->bdev;
1861 
1862         /*
1863          * From now on the error handling is not straightforward.
1864          *
1865          * If successful, this will transfer the fs_info into the super block,
1866          * and fc->s_fs_info will be NULL.  However if there's an existing
1867          * super, we'll still have fc->s_fs_info populated.  If we error
1868          * completely out it'll be cleaned up when we drop the fs_context,
1869          * otherwise it's tied to the lifetime of the super_block.
1870          */
1871         sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1872         if (IS_ERR(sb)) {
1873                 ret = PTR_ERR(sb);
1874                 goto error;
1875         }
1876 
1877         set_device_specific_options(fs_info);
1878 
1879         if (sb->s_root) {
1880                 btrfs_close_devices(fs_devices);
1881                 if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1882                         ret = -EBUSY;
1883         } else {
1884                 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1885                 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1886                 btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1887                 ret = btrfs_fill_super(sb, fs_devices, NULL);
1888         }
1889 
1890         if (ret) {
1891                 deactivate_locked_super(sb);
1892                 return ret;
1893         }
1894 
1895         btrfs_clear_oneshot_options(fs_info);
1896 
1897         fc->root = dget(sb->s_root);
1898         return 0;
1899 
1900 error:
1901         btrfs_close_devices(fs_devices);
1902         return ret;
1903 }
1904 
1905 /*
1906  * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1907  * with different ro/rw options") the following works:
1908  *
1909  *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1910  *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1911  *
1912  * which looks nice and innocent but is actually pretty intricate and deserves
1913  * a long comment.
1914  *
1915  * On another filesystem a subvolume mount is close to something like:
1916  *
1917  *      (iii) # create rw superblock + initial mount
1918  *            mount -t xfs /dev/sdb /opt/
1919  *
1920  *            # create ro bind mount
1921  *            mount --bind -o ro /opt/foo /mnt/foo
1922  *
1923  *            # unmount initial mount
1924  *            umount /opt
1925  *
1926  * Of course, there's some special subvolume sauce and there's the fact that the
1927  * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1928  * it's very close and will help us understand the issue.
1929  *
1930  * The old mount API didn't cleanly distinguish between a mount being made ro
1931  * and a superblock being made ro.  The only way to change the ro state of
1932  * either object was by passing ms_rdonly. If a new mount was created via
1933  * mount(2) such as:
1934  *
1935  *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1936  *
1937  * the MS_RDONLY flag being specified had two effects:
1938  *
1939  * (1) MNT_READONLY was raised -> the resulting mount got
1940  *     @mnt->mnt_flags |= MNT_READONLY raised.
1941  *
1942  * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1943  *     made the superblock ro. Note, how SB_RDONLY has the same value as
1944  *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1945  *
1946  * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1947  * subtree mounted ro.
1948  *
1949  * But consider the effect on the old mount API on btrfs subvolume mounting
1950  * which combines the distinct step in (iii) into a single step.
1951  *
1952  * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1953  * is issued the superblock is ro and thus even if the mount created for (ii) is
1954  * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1955  * to rw for (ii) which it did using an internal remount call.
1956  *
1957  * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1958  * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1959  * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1960  * passed by mount(8) to mount(2).
1961  *
1962  * Enter the new mount API. The new mount API disambiguates making a mount ro
1963  * and making a superblock ro.
1964  *
1965  * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1966  *     fsmount() or mount_setattr() this is a pure VFS level change for a
1967  *     specific mount or mount tree that is never seen by the filesystem itself.
1968  *
1969  * (4) To turn a superblock ro the "ro" flag must be used with
1970  *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1971  *     in fc->sb_flags.
1972  *
1973  * This disambiguation has rather positive consequences.  Mounting a subvolume
1974  * ro will not also turn the superblock ro. Only the mount for the subvolume
1975  * will become ro.
1976  *
1977  * So, if the superblock creation request comes from the new mount API the
1978  * caller must have explicitly done:
1979  *
1980  *      fsconfig(FSCONFIG_SET_FLAG, "ro")
1981  *      fsmount/mount_setattr(MOUNT_ATTR_RDONLY)
1982  *
1983  * IOW, at some point the caller must have explicitly turned the whole
1984  * superblock ro and we shouldn't just undo it like we did for the old mount
1985  * API. In any case, it lets us avoid the hack in the new mount API.
1986  *
1987  * Consequently, the remounting hack must only be used for requests originating
1988  * from the old mount API and should be marked for full deprecation so it can be
1989  * turned off in a couple of years.
1990  *
1991  * The new mount API has no reason to support this hack.
1992  */
1993 static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1994 {
1995         struct vfsmount *mnt;
1996         int ret;
1997         const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1998 
1999         /*
2000          * We got an EBUSY because our SB_RDONLY flag didn't match the existing
2001          * super block, so invert our setting here and retry the mount so we
2002          * can get our vfsmount.
2003          */
2004         if (ro2rw)
2005                 fc->sb_flags |= SB_RDONLY;
2006         else
2007                 fc->sb_flags &= ~SB_RDONLY;
2008 
2009         mnt = fc_mount(fc);
2010         if (IS_ERR(mnt))
2011                 return mnt;
2012 
2013         if (!fc->oldapi || !ro2rw)
2014                 return mnt;
2015 
2016         /* We need to convert to rw, call reconfigure. */
2017         fc->sb_flags &= ~SB_RDONLY;
2018         down_write(&mnt->mnt_sb->s_umount);
2019         ret = btrfs_reconfigure(fc);
2020         up_write(&mnt->mnt_sb->s_umount);
2021         if (ret) {
2022                 mntput(mnt);
2023                 return ERR_PTR(ret);
2024         }
2025         return mnt;
2026 }
2027 
2028 static int btrfs_get_tree_subvol(struct fs_context *fc)
2029 {
2030         struct btrfs_fs_info *fs_info = NULL;
2031         struct btrfs_fs_context *ctx = fc->fs_private;
2032         struct fs_context *dup_fc;
2033         struct dentry *dentry;
2034         struct vfsmount *mnt;
2035 
2036         /*
2037          * Setup a dummy root and fs_info for test/set super.  This is because
2038          * we don't actually fill this stuff out until open_ctree, but we need
2039          * then open_ctree will properly initialize the file system specific
2040          * settings later.  btrfs_init_fs_info initializes the static elements
2041          * of the fs_info (locks and such) to make cleanup easier if we find a
2042          * superblock with our given fs_devices later on at sget() time.
2043          */
2044         fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2045         if (!fs_info)
2046                 return -ENOMEM;
2047 
2048         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2049         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2050         if (!fs_info->super_copy || !fs_info->super_for_commit) {
2051                 btrfs_free_fs_info(fs_info);
2052                 return -ENOMEM;
2053         }
2054         btrfs_init_fs_info(fs_info);
2055 
2056         dup_fc = vfs_dup_fs_context(fc);
2057         if (IS_ERR(dup_fc)) {
2058                 btrfs_free_fs_info(fs_info);
2059                 return PTR_ERR(dup_fc);
2060         }
2061 
2062         /*
2063          * When we do the sget_fc this gets transferred to the sb, so we only
2064          * need to set it on the dup_fc as this is what creates the super block.
2065          */
2066         dup_fc->s_fs_info = fs_info;
2067 
2068         /*
2069          * We'll do the security settings in our btrfs_get_tree_super() mount
2070          * loop, they were duplicated into dup_fc, we can drop the originals
2071          * here.
2072          */
2073         security_free_mnt_opts(&fc->security);
2074         fc->security = NULL;
2075 
2076         mnt = fc_mount(dup_fc);
2077         if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2078                 mnt = btrfs_reconfigure_for_mount(dup_fc);
2079         put_fs_context(dup_fc);
2080         if (IS_ERR(mnt))
2081                 return PTR_ERR(mnt);
2082 
2083         /*
2084          * This free's ->subvol_name, because if it isn't set we have to
2085          * allocate a buffer to hold the subvol_name, so we just drop our
2086          * reference to it here.
2087          */
2088         dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2089         ctx->subvol_name = NULL;
2090         if (IS_ERR(dentry))
2091                 return PTR_ERR(dentry);
2092 
2093         fc->root = dentry;
2094         return 0;
2095 }
2096 
2097 static int btrfs_get_tree(struct fs_context *fc)
2098 {
2099         /*
2100          * Since we use mount_subtree to mount the default/specified subvol, we
2101          * have to do mounts in two steps.
2102          *
2103          * First pass through we call btrfs_get_tree_subvol(), this is just a
2104          * wrapper around fc_mount() to call back into here again, and this time
2105          * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2106          * everything to open the devices and file system.  Then we return back
2107          * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2108          * from there we can do our mount_subvol() call, which will lookup
2109          * whichever subvol we're mounting and setup this fc with the
2110          * appropriate dentry for the subvol.
2111          */
2112         if (fc->s_fs_info)
2113                 return btrfs_get_tree_super(fc);
2114         return btrfs_get_tree_subvol(fc);
2115 }
2116 
2117 static void btrfs_kill_super(struct super_block *sb)
2118 {
2119         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2120         kill_anon_super(sb);
2121         btrfs_free_fs_info(fs_info);
2122 }
2123 
2124 static void btrfs_free_fs_context(struct fs_context *fc)
2125 {
2126         struct btrfs_fs_context *ctx = fc->fs_private;
2127         struct btrfs_fs_info *fs_info = fc->s_fs_info;
2128 
2129         if (fs_info)
2130                 btrfs_free_fs_info(fs_info);
2131 
2132         if (ctx && refcount_dec_and_test(&ctx->refs)) {
2133                 kfree(ctx->subvol_name);
2134                 kfree(ctx);
2135         }
2136 }
2137 
2138 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2139 {
2140         struct btrfs_fs_context *ctx = src_fc->fs_private;
2141 
2142         /*
2143          * Give a ref to our ctx to this dup, as we want to keep it around for
2144          * our original fc so we can have the subvolume name or objectid.
2145          *
2146          * We unset ->source in the original fc because the dup needs it for
2147          * mounting, and then once we free the dup it'll free ->source, so we
2148          * need to make sure we're only pointing to it in one fc.
2149          */
2150         refcount_inc(&ctx->refs);
2151         fc->fs_private = ctx;
2152         fc->source = src_fc->source;
2153         src_fc->source = NULL;
2154         return 0;
2155 }
2156 
2157 static const struct fs_context_operations btrfs_fs_context_ops = {
2158         .parse_param    = btrfs_parse_param,
2159         .reconfigure    = btrfs_reconfigure,
2160         .get_tree       = btrfs_get_tree,
2161         .dup            = btrfs_dup_fs_context,
2162         .free           = btrfs_free_fs_context,
2163 };
2164 
2165 static int btrfs_init_fs_context(struct fs_context *fc)
2166 {
2167         struct btrfs_fs_context *ctx;
2168 
2169         ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2170         if (!ctx)
2171                 return -ENOMEM;
2172 
2173         refcount_set(&ctx->refs, 1);
2174         fc->fs_private = ctx;
2175         fc->ops = &btrfs_fs_context_ops;
2176 
2177         if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2178                 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2179         } else {
2180                 ctx->thread_pool_size =
2181                         min_t(unsigned long, num_online_cpus() + 2, 8);
2182                 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2183                 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2184         }
2185 
2186 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2187         fc->sb_flags |= SB_POSIXACL;
2188 #endif
2189         fc->sb_flags |= SB_I_VERSION;
2190 
2191         return 0;
2192 }
2193 
2194 static struct file_system_type btrfs_fs_type = {
2195         .owner                  = THIS_MODULE,
2196         .name                   = "btrfs",
2197         .init_fs_context        = btrfs_init_fs_context,
2198         .parameters             = btrfs_fs_parameters,
2199         .kill_sb                = btrfs_kill_super,
2200         .fs_flags               = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2201  };
2202 
2203 MODULE_ALIAS_FS("btrfs");
2204 
2205 static int btrfs_control_open(struct inode *inode, struct file *file)
2206 {
2207         /*
2208          * The control file's private_data is used to hold the
2209          * transaction when it is started and is used to keep
2210          * track of whether a transaction is already in progress.
2211          */
2212         file->private_data = NULL;
2213         return 0;
2214 }
2215 
2216 /*
2217  * Used by /dev/btrfs-control for devices ioctls.
2218  */
2219 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2220                                 unsigned long arg)
2221 {
2222         struct btrfs_ioctl_vol_args *vol;
2223         struct btrfs_device *device = NULL;
2224         dev_t devt = 0;
2225         int ret = -ENOTTY;
2226 
2227         if (!capable(CAP_SYS_ADMIN))
2228                 return -EPERM;
2229 
2230         vol = memdup_user((void __user *)arg, sizeof(*vol));
2231         if (IS_ERR(vol))
2232                 return PTR_ERR(vol);
2233         ret = btrfs_check_ioctl_vol_args_path(vol);
2234         if (ret < 0)
2235                 goto out;
2236 
2237         switch (cmd) {
2238         case BTRFS_IOC_SCAN_DEV:
2239                 mutex_lock(&uuid_mutex);
2240                 /*
2241                  * Scanning outside of mount can return NULL which would turn
2242                  * into 0 error code.
2243                  */
2244                 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2245                 ret = PTR_ERR_OR_ZERO(device);
2246                 mutex_unlock(&uuid_mutex);
2247                 break;
2248         case BTRFS_IOC_FORGET_DEV:
2249                 if (vol->name[0] != 0) {
2250                         ret = lookup_bdev(vol->name, &devt);
2251                         if (ret)
2252                                 break;
2253                 }
2254                 ret = btrfs_forget_devices(devt);
2255                 break;
2256         case BTRFS_IOC_DEVICES_READY:
2257                 mutex_lock(&uuid_mutex);
2258                 /*
2259                  * Scanning outside of mount can return NULL which would turn
2260                  * into 0 error code.
2261                  */
2262                 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2263                 if (IS_ERR_OR_NULL(device)) {
2264                         mutex_unlock(&uuid_mutex);
2265                         ret = PTR_ERR(device);
2266                         break;
2267                 }
2268                 ret = !(device->fs_devices->num_devices ==
2269                         device->fs_devices->total_devices);
2270                 mutex_unlock(&uuid_mutex);
2271                 break;
2272         case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2273                 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2274                 break;
2275         }
2276 
2277 out:
2278         kfree(vol);
2279         return ret;
2280 }
2281 
2282 static int btrfs_freeze(struct super_block *sb)
2283 {
2284         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2285 
2286         set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2287         /*
2288          * We don't need a barrier here, we'll wait for any transaction that
2289          * could be in progress on other threads (and do delayed iputs that
2290          * we want to avoid on a frozen filesystem), or do the commit
2291          * ourselves.
2292          */
2293         return btrfs_commit_current_transaction(fs_info->tree_root);
2294 }
2295 
2296 static int check_dev_super(struct btrfs_device *dev)
2297 {
2298         struct btrfs_fs_info *fs_info = dev->fs_info;
2299         struct btrfs_super_block *sb;
2300         u64 last_trans;
2301         u16 csum_type;
2302         int ret = 0;
2303 
2304         /* This should be called with fs still frozen. */
2305         ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2306 
2307         /* Missing dev, no need to check. */
2308         if (!dev->bdev)
2309                 return 0;
2310 
2311         /* Only need to check the primary super block. */
2312         sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2313         if (IS_ERR(sb))
2314                 return PTR_ERR(sb);
2315 
2316         /* Verify the checksum. */
2317         csum_type = btrfs_super_csum_type(sb);
2318         if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2319                 btrfs_err(fs_info, "csum type changed, has %u expect %u",
2320                           csum_type, btrfs_super_csum_type(fs_info->super_copy));
2321                 ret = -EUCLEAN;
2322                 goto out;
2323         }
2324 
2325         if (btrfs_check_super_csum(fs_info, sb)) {
2326                 btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2327                 ret = -EUCLEAN;
2328                 goto out;
2329         }
2330 
2331         /* Btrfs_validate_super() includes fsid check against super->fsid. */
2332         ret = btrfs_validate_super(fs_info, sb, 0);
2333         if (ret < 0)
2334                 goto out;
2335 
2336         last_trans = btrfs_get_last_trans_committed(fs_info);
2337         if (btrfs_super_generation(sb) != last_trans) {
2338                 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2339                           btrfs_super_generation(sb), last_trans);
2340                 ret = -EUCLEAN;
2341                 goto out;
2342         }
2343 out:
2344         btrfs_release_disk_super(sb);
2345         return ret;
2346 }
2347 
2348 static int btrfs_unfreeze(struct super_block *sb)
2349 {
2350         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2351         struct btrfs_device *device;
2352         int ret = 0;
2353 
2354         /*
2355          * Make sure the fs is not changed by accident (like hibernation then
2356          * modified by other OS).
2357          * If we found anything wrong, we mark the fs error immediately.
2358          *
2359          * And since the fs is frozen, no one can modify the fs yet, thus
2360          * we don't need to hold device_list_mutex.
2361          */
2362         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2363                 ret = check_dev_super(device);
2364                 if (ret < 0) {
2365                         btrfs_handle_fs_error(fs_info, ret,
2366                                 "super block on devid %llu got modified unexpectedly",
2367                                 device->devid);
2368                         break;
2369                 }
2370         }
2371         clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2372 
2373         /*
2374          * We still return 0, to allow VFS layer to unfreeze the fs even the
2375          * above checks failed. Since the fs is either fine or read-only, we're
2376          * safe to continue, without causing further damage.
2377          */
2378         return 0;
2379 }
2380 
2381 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2382 {
2383         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2384 
2385         /*
2386          * There should be always a valid pointer in latest_dev, it may be stale
2387          * for a short moment in case it's being deleted but still valid until
2388          * the end of RCU grace period.
2389          */
2390         rcu_read_lock();
2391         seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2392         rcu_read_unlock();
2393 
2394         return 0;
2395 }
2396 
2397 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2398 {
2399         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2400         const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2401 
2402         trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2403 
2404         return nr;
2405 }
2406 
2407 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2408 {
2409         const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2410         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2411 
2412         return btrfs_free_extent_maps(fs_info, nr_to_scan);
2413 }
2414 
2415 static const struct super_operations btrfs_super_ops = {
2416         .drop_inode     = btrfs_drop_inode,
2417         .evict_inode    = btrfs_evict_inode,
2418         .put_super      = btrfs_put_super,
2419         .sync_fs        = btrfs_sync_fs,
2420         .show_options   = btrfs_show_options,
2421         .show_devname   = btrfs_show_devname,
2422         .alloc_inode    = btrfs_alloc_inode,
2423         .destroy_inode  = btrfs_destroy_inode,
2424         .free_inode     = btrfs_free_inode,
2425         .statfs         = btrfs_statfs,
2426         .freeze_fs      = btrfs_freeze,
2427         .unfreeze_fs    = btrfs_unfreeze,
2428         .nr_cached_objects = btrfs_nr_cached_objects,
2429         .free_cached_objects = btrfs_free_cached_objects,
2430 };
2431 
2432 static const struct file_operations btrfs_ctl_fops = {
2433         .open = btrfs_control_open,
2434         .unlocked_ioctl  = btrfs_control_ioctl,
2435         .compat_ioctl = compat_ptr_ioctl,
2436         .owner   = THIS_MODULE,
2437         .llseek = noop_llseek,
2438 };
2439 
2440 static struct miscdevice btrfs_misc = {
2441         .minor          = BTRFS_MINOR,
2442         .name           = "btrfs-control",
2443         .fops           = &btrfs_ctl_fops
2444 };
2445 
2446 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2447 MODULE_ALIAS("devname:btrfs-control");
2448 
2449 static int __init btrfs_interface_init(void)
2450 {
2451         return misc_register(&btrfs_misc);
2452 }
2453 
2454 static __cold void btrfs_interface_exit(void)
2455 {
2456         misc_deregister(&btrfs_misc);
2457 }
2458 
2459 static int __init btrfs_print_mod_info(void)
2460 {
2461         static const char options[] = ""
2462 #ifdef CONFIG_BTRFS_DEBUG
2463                         ", debug=on"
2464 #endif
2465 #ifdef CONFIG_BTRFS_ASSERT
2466                         ", assert=on"
2467 #endif
2468 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2469                         ", ref-verify=on"
2470 #endif
2471 #ifdef CONFIG_BLK_DEV_ZONED
2472                         ", zoned=yes"
2473 #else
2474                         ", zoned=no"
2475 #endif
2476 #ifdef CONFIG_FS_VERITY
2477                         ", fsverity=yes"
2478 #else
2479                         ", fsverity=no"
2480 #endif
2481                         ;
2482         pr_info("Btrfs loaded%s\n", options);
2483         return 0;
2484 }
2485 
2486 static int register_btrfs(void)
2487 {
2488         return register_filesystem(&btrfs_fs_type);
2489 }
2490 
2491 static void unregister_btrfs(void)
2492 {
2493         unregister_filesystem(&btrfs_fs_type);
2494 }
2495 
2496 /* Helper structure for long init/exit functions. */
2497 struct init_sequence {
2498         int (*init_func)(void);
2499         /* Can be NULL if the init_func doesn't need cleanup. */
2500         void (*exit_func)(void);
2501 };
2502 
2503 static const struct init_sequence mod_init_seq[] = {
2504         {
2505                 .init_func = btrfs_props_init,
2506                 .exit_func = NULL,
2507         }, {
2508                 .init_func = btrfs_init_sysfs,
2509                 .exit_func = btrfs_exit_sysfs,
2510         }, {
2511                 .init_func = btrfs_init_compress,
2512                 .exit_func = btrfs_exit_compress,
2513         }, {
2514                 .init_func = btrfs_init_cachep,
2515                 .exit_func = btrfs_destroy_cachep,
2516         }, {
2517                 .init_func = btrfs_init_dio,
2518                 .exit_func = btrfs_destroy_dio,
2519         }, {
2520                 .init_func = btrfs_transaction_init,
2521                 .exit_func = btrfs_transaction_exit,
2522         }, {
2523                 .init_func = btrfs_ctree_init,
2524                 .exit_func = btrfs_ctree_exit,
2525         }, {
2526                 .init_func = btrfs_free_space_init,
2527                 .exit_func = btrfs_free_space_exit,
2528         }, {
2529                 .init_func = extent_state_init_cachep,
2530                 .exit_func = extent_state_free_cachep,
2531         }, {
2532                 .init_func = extent_buffer_init_cachep,
2533                 .exit_func = extent_buffer_free_cachep,
2534         }, {
2535                 .init_func = btrfs_bioset_init,
2536                 .exit_func = btrfs_bioset_exit,
2537         }, {
2538                 .init_func = extent_map_init,
2539                 .exit_func = extent_map_exit,
2540         }, {
2541                 .init_func = ordered_data_init,
2542                 .exit_func = ordered_data_exit,
2543         }, {
2544                 .init_func = btrfs_delayed_inode_init,
2545                 .exit_func = btrfs_delayed_inode_exit,
2546         }, {
2547                 .init_func = btrfs_auto_defrag_init,
2548                 .exit_func = btrfs_auto_defrag_exit,
2549         }, {
2550                 .init_func = btrfs_delayed_ref_init,
2551                 .exit_func = btrfs_delayed_ref_exit,
2552         }, {
2553                 .init_func = btrfs_prelim_ref_init,
2554                 .exit_func = btrfs_prelim_ref_exit,
2555         }, {
2556                 .init_func = btrfs_interface_init,
2557                 .exit_func = btrfs_interface_exit,
2558         }, {
2559                 .init_func = btrfs_print_mod_info,
2560                 .exit_func = NULL,
2561         }, {
2562                 .init_func = btrfs_run_sanity_tests,
2563                 .exit_func = NULL,
2564         }, {
2565                 .init_func = register_btrfs,
2566                 .exit_func = unregister_btrfs,
2567         }
2568 };
2569 
2570 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2571 
2572 static __always_inline void btrfs_exit_btrfs_fs(void)
2573 {
2574         int i;
2575 
2576         for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2577                 if (!mod_init_result[i])
2578                         continue;
2579                 if (mod_init_seq[i].exit_func)
2580                         mod_init_seq[i].exit_func();
2581                 mod_init_result[i] = false;
2582         }
2583 }
2584 
2585 static void __exit exit_btrfs_fs(void)
2586 {
2587         btrfs_exit_btrfs_fs();
2588         btrfs_cleanup_fs_uuids();
2589 }
2590 
2591 static int __init init_btrfs_fs(void)
2592 {
2593         int ret;
2594         int i;
2595 
2596         for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2597                 ASSERT(!mod_init_result[i]);
2598                 ret = mod_init_seq[i].init_func();
2599                 if (ret < 0) {
2600                         btrfs_exit_btrfs_fs();
2601                         return ret;
2602                 }
2603                 mod_init_result[i] = true;
2604         }
2605         return 0;
2606 }
2607 
2608 late_initcall(init_btrfs_fs);
2609 module_exit(exit_btrfs_fs)
2610 
2611 MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2612 MODULE_LICENSE("GPL");
2613 MODULE_SOFTDEP("pre: crc32c");
2614 MODULE_SOFTDEP("pre: xxhash64");
2615 MODULE_SOFTDEP("pre: sha256");
2616 MODULE_SOFTDEP("pre: blake2b-256");
2617 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php