~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/transaction.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2007 Oracle.  All rights reserved.
  4  */
  5 
  6 #include <linux/fs.h>
  7 #include <linux/slab.h>
  8 #include <linux/sched.h>
  9 #include <linux/sched/mm.h>
 10 #include <linux/writeback.h>
 11 #include <linux/pagemap.h>
 12 #include <linux/blkdev.h>
 13 #include <linux/uuid.h>
 14 #include <linux/timekeeping.h>
 15 #include "misc.h"
 16 #include "ctree.h"
 17 #include "disk-io.h"
 18 #include "transaction.h"
 19 #include "locking.h"
 20 #include "tree-log.h"
 21 #include "volumes.h"
 22 #include "dev-replace.h"
 23 #include "qgroup.h"
 24 #include "block-group.h"
 25 #include "space-info.h"
 26 #include "fs.h"
 27 #include "accessors.h"
 28 #include "extent-tree.h"
 29 #include "root-tree.h"
 30 #include "dir-item.h"
 31 #include "uuid-tree.h"
 32 #include "ioctl.h"
 33 #include "relocation.h"
 34 #include "scrub.h"
 35 
 36 static struct kmem_cache *btrfs_trans_handle_cachep;
 37 
 38 /*
 39  * Transaction states and transitions
 40  *
 41  * No running transaction (fs tree blocks are not modified)
 42  * |
 43  * | To next stage:
 44  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
 45  * V
 46  * Transaction N [[TRANS_STATE_RUNNING]]
 47  * |
 48  * | New trans handles can be attached to transaction N by calling all
 49  * | start_transaction() variants.
 50  * |
 51  * | To next stage:
 52  * |  Call btrfs_commit_transaction() on any trans handle attached to
 53  * |  transaction N
 54  * V
 55  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
 56  * |
 57  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
 58  * | the race and the rest will wait for the winner to commit the transaction.
 59  * |
 60  * | The winner will wait for previous running transaction to completely finish
 61  * | if there is one.
 62  * |
 63  * Transaction N [[TRANS_STATE_COMMIT_START]]
 64  * |
 65  * | Then one of the following happens:
 66  * | - Wait for all other trans handle holders to release.
 67  * |   The btrfs_commit_transaction() caller will do the commit work.
 68  * | - Wait for current transaction to be committed by others.
 69  * |   Other btrfs_commit_transaction() caller will do the commit work.
 70  * |
 71  * | At this stage, only btrfs_join_transaction*() variants can attach
 72  * | to this running transaction.
 73  * | All other variants will wait for current one to finish and attach to
 74  * | transaction N+1.
 75  * |
 76  * | To next stage:
 77  * |  Caller is chosen to commit transaction N, and all other trans handle
 78  * |  haven been released.
 79  * V
 80  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
 81  * |
 82  * | The heavy lifting transaction work is started.
 83  * | From running delayed refs (modifying extent tree) to creating pending
 84  * | snapshots, running qgroups.
 85  * | In short, modify supporting trees to reflect modifications of subvolume
 86  * | trees.
 87  * |
 88  * | At this stage, all start_transaction() calls will wait for this
 89  * | transaction to finish and attach to transaction N+1.
 90  * |
 91  * | To next stage:
 92  * |  Until all supporting trees are updated.
 93  * V
 94  * Transaction N [[TRANS_STATE_UNBLOCKED]]
 95  * |                                                Transaction N+1
 96  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
 97  * | need to write them back to disk and update     |
 98  * | super blocks.                                  |
 99  * |                                                |
100  * | At this stage, new transaction is allowed to   |
101  * | start.                                         |
102  * | All new start_transaction() calls will be      |
103  * | attached to transid N+1.                       |
104  * |                                                |
105  * | To next stage:                                 |
106  * |  Until all tree blocks are super blocks are    |
107  * |  written to block devices                      |
108  * V                                                |
109  * Transaction N [[TRANS_STATE_COMPLETED]]          V
110  *   All tree blocks and super blocks are written.  Transaction N+1
111  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
112  *   data structures will be cleaned up.            | Life goes on
113  */
114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115         [TRANS_STATE_RUNNING]           = 0U,
116         [TRANS_STATE_COMMIT_PREP]       = 0U,
117         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
118         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
119                                            __TRANS_ATTACH |
120                                            __TRANS_JOIN |
121                                            __TRANS_JOIN_NOSTART),
122         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
123                                            __TRANS_ATTACH |
124                                            __TRANS_JOIN |
125                                            __TRANS_JOIN_NOLOCK |
126                                            __TRANS_JOIN_NOSTART),
127         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
128                                            __TRANS_ATTACH |
129                                            __TRANS_JOIN |
130                                            __TRANS_JOIN_NOLOCK |
131                                            __TRANS_JOIN_NOSTART),
132         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
133                                            __TRANS_ATTACH |
134                                            __TRANS_JOIN |
135                                            __TRANS_JOIN_NOLOCK |
136                                            __TRANS_JOIN_NOSTART),
137 };
138 
139 void btrfs_put_transaction(struct btrfs_transaction *transaction)
140 {
141         WARN_ON(refcount_read(&transaction->use_count) == 0);
142         if (refcount_dec_and_test(&transaction->use_count)) {
143                 BUG_ON(!list_empty(&transaction->list));
144                 WARN_ON(!RB_EMPTY_ROOT(
145                                 &transaction->delayed_refs.href_root.rb_root));
146                 WARN_ON(!RB_EMPTY_ROOT(
147                                 &transaction->delayed_refs.dirty_extent_root));
148                 if (transaction->delayed_refs.pending_csums)
149                         btrfs_err(transaction->fs_info,
150                                   "pending csums is %llu",
151                                   transaction->delayed_refs.pending_csums);
152                 /*
153                  * If any block groups are found in ->deleted_bgs then it's
154                  * because the transaction was aborted and a commit did not
155                  * happen (things failed before writing the new superblock
156                  * and calling btrfs_finish_extent_commit()), so we can not
157                  * discard the physical locations of the block groups.
158                  */
159                 while (!list_empty(&transaction->deleted_bgs)) {
160                         struct btrfs_block_group *cache;
161 
162                         cache = list_first_entry(&transaction->deleted_bgs,
163                                                  struct btrfs_block_group,
164                                                  bg_list);
165                         list_del_init(&cache->bg_list);
166                         btrfs_unfreeze_block_group(cache);
167                         btrfs_put_block_group(cache);
168                 }
169                 WARN_ON(!list_empty(&transaction->dev_update_list));
170                 kfree(transaction);
171         }
172 }
173 
174 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
175 {
176         struct btrfs_transaction *cur_trans = trans->transaction;
177         struct btrfs_fs_info *fs_info = trans->fs_info;
178         struct btrfs_root *root, *tmp;
179 
180         /*
181          * At this point no one can be using this transaction to modify any tree
182          * and no one can start another transaction to modify any tree either.
183          */
184         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
185 
186         down_write(&fs_info->commit_root_sem);
187 
188         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
189                 fs_info->last_reloc_trans = trans->transid;
190 
191         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
192                                  dirty_list) {
193                 list_del_init(&root->dirty_list);
194                 free_extent_buffer(root->commit_root);
195                 root->commit_root = btrfs_root_node(root);
196                 extent_io_tree_release(&root->dirty_log_pages);
197                 btrfs_qgroup_clean_swapped_blocks(root);
198         }
199 
200         /* We can free old roots now. */
201         spin_lock(&cur_trans->dropped_roots_lock);
202         while (!list_empty(&cur_trans->dropped_roots)) {
203                 root = list_first_entry(&cur_trans->dropped_roots,
204                                         struct btrfs_root, root_list);
205                 list_del_init(&root->root_list);
206                 spin_unlock(&cur_trans->dropped_roots_lock);
207                 btrfs_free_log(trans, root);
208                 btrfs_drop_and_free_fs_root(fs_info, root);
209                 spin_lock(&cur_trans->dropped_roots_lock);
210         }
211         spin_unlock(&cur_trans->dropped_roots_lock);
212 
213         up_write(&fs_info->commit_root_sem);
214 }
215 
216 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
217                                          unsigned int type)
218 {
219         if (type & TRANS_EXTWRITERS)
220                 atomic_inc(&trans->num_extwriters);
221 }
222 
223 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
224                                          unsigned int type)
225 {
226         if (type & TRANS_EXTWRITERS)
227                 atomic_dec(&trans->num_extwriters);
228 }
229 
230 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
231                                           unsigned int type)
232 {
233         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
234 }
235 
236 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
237 {
238         return atomic_read(&trans->num_extwriters);
239 }
240 
241 /*
242  * To be called after doing the chunk btree updates right after allocating a new
243  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
244  * chunk after all chunk btree updates and after finishing the second phase of
245  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
246  * group had its chunk item insertion delayed to the second phase.
247  */
248 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
249 {
250         struct btrfs_fs_info *fs_info = trans->fs_info;
251 
252         if (!trans->chunk_bytes_reserved)
253                 return;
254 
255         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
256                                 trans->chunk_bytes_reserved, NULL);
257         trans->chunk_bytes_reserved = 0;
258 }
259 
260 /*
261  * either allocate a new transaction or hop into the existing one
262  */
263 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
264                                      unsigned int type)
265 {
266         struct btrfs_transaction *cur_trans;
267 
268         spin_lock(&fs_info->trans_lock);
269 loop:
270         /* The file system has been taken offline. No new transactions. */
271         if (BTRFS_FS_ERROR(fs_info)) {
272                 spin_unlock(&fs_info->trans_lock);
273                 return -EROFS;
274         }
275 
276         cur_trans = fs_info->running_transaction;
277         if (cur_trans) {
278                 if (TRANS_ABORTED(cur_trans)) {
279                         spin_unlock(&fs_info->trans_lock);
280                         return cur_trans->aborted;
281                 }
282                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
283                         spin_unlock(&fs_info->trans_lock);
284                         return -EBUSY;
285                 }
286                 refcount_inc(&cur_trans->use_count);
287                 atomic_inc(&cur_trans->num_writers);
288                 extwriter_counter_inc(cur_trans, type);
289                 spin_unlock(&fs_info->trans_lock);
290                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
291                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
292                 return 0;
293         }
294         spin_unlock(&fs_info->trans_lock);
295 
296         /*
297          * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
298          * current transaction, and commit it. If there is no transaction, just
299          * return ENOENT.
300          */
301         if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
302                 return -ENOENT;
303 
304         /*
305          * JOIN_NOLOCK only happens during the transaction commit, so
306          * it is impossible that ->running_transaction is NULL
307          */
308         BUG_ON(type == TRANS_JOIN_NOLOCK);
309 
310         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
311         if (!cur_trans)
312                 return -ENOMEM;
313 
314         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
315         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
316 
317         spin_lock(&fs_info->trans_lock);
318         if (fs_info->running_transaction) {
319                 /*
320                  * someone started a transaction after we unlocked.  Make sure
321                  * to redo the checks above
322                  */
323                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
324                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
325                 kfree(cur_trans);
326                 goto loop;
327         } else if (BTRFS_FS_ERROR(fs_info)) {
328                 spin_unlock(&fs_info->trans_lock);
329                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
330                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
331                 kfree(cur_trans);
332                 return -EROFS;
333         }
334 
335         cur_trans->fs_info = fs_info;
336         atomic_set(&cur_trans->pending_ordered, 0);
337         init_waitqueue_head(&cur_trans->pending_wait);
338         atomic_set(&cur_trans->num_writers, 1);
339         extwriter_counter_init(cur_trans, type);
340         init_waitqueue_head(&cur_trans->writer_wait);
341         init_waitqueue_head(&cur_trans->commit_wait);
342         cur_trans->state = TRANS_STATE_RUNNING;
343         /*
344          * One for this trans handle, one so it will live on until we
345          * commit the transaction.
346          */
347         refcount_set(&cur_trans->use_count, 2);
348         cur_trans->flags = 0;
349         cur_trans->start_time = ktime_get_seconds();
350 
351         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
352 
353         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
354         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
355         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
356 
357         /*
358          * although the tree mod log is per file system and not per transaction,
359          * the log must never go across transaction boundaries.
360          */
361         smp_mb();
362         if (!list_empty(&fs_info->tree_mod_seq_list))
363                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
364         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
365                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
366         atomic64_set(&fs_info->tree_mod_seq, 0);
367 
368         spin_lock_init(&cur_trans->delayed_refs.lock);
369 
370         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
371         INIT_LIST_HEAD(&cur_trans->dev_update_list);
372         INIT_LIST_HEAD(&cur_trans->switch_commits);
373         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
374         INIT_LIST_HEAD(&cur_trans->io_bgs);
375         INIT_LIST_HEAD(&cur_trans->dropped_roots);
376         mutex_init(&cur_trans->cache_write_mutex);
377         spin_lock_init(&cur_trans->dirty_bgs_lock);
378         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
379         spin_lock_init(&cur_trans->dropped_roots_lock);
380         list_add_tail(&cur_trans->list, &fs_info->trans_list);
381         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
382                         IO_TREE_TRANS_DIRTY_PAGES);
383         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
384                         IO_TREE_FS_PINNED_EXTENTS);
385         btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
386         cur_trans->transid = fs_info->generation;
387         fs_info->running_transaction = cur_trans;
388         cur_trans->aborted = 0;
389         spin_unlock(&fs_info->trans_lock);
390 
391         return 0;
392 }
393 
394 /*
395  * This does all the record keeping required to make sure that a shareable root
396  * is properly recorded in a given transaction.  This is required to make sure
397  * the old root from before we joined the transaction is deleted when the
398  * transaction commits.
399  */
400 static int record_root_in_trans(struct btrfs_trans_handle *trans,
401                                struct btrfs_root *root,
402                                int force)
403 {
404         struct btrfs_fs_info *fs_info = root->fs_info;
405         int ret = 0;
406 
407         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
408             btrfs_get_root_last_trans(root) < trans->transid) || force) {
409                 WARN_ON(!force && root->commit_root != root->node);
410 
411                 /*
412                  * see below for IN_TRANS_SETUP usage rules
413                  * we have the reloc mutex held now, so there
414                  * is only one writer in this function
415                  */
416                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
417 
418                 /* make sure readers find IN_TRANS_SETUP before
419                  * they find our root->last_trans update
420                  */
421                 smp_wmb();
422 
423                 spin_lock(&fs_info->fs_roots_radix_lock);
424                 if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
425                         spin_unlock(&fs_info->fs_roots_radix_lock);
426                         return 0;
427                 }
428                 radix_tree_tag_set(&fs_info->fs_roots_radix,
429                                    (unsigned long)btrfs_root_id(root),
430                                    BTRFS_ROOT_TRANS_TAG);
431                 spin_unlock(&fs_info->fs_roots_radix_lock);
432                 btrfs_set_root_last_trans(root, trans->transid);
433 
434                 /* this is pretty tricky.  We don't want to
435                  * take the relocation lock in btrfs_record_root_in_trans
436                  * unless we're really doing the first setup for this root in
437                  * this transaction.
438                  *
439                  * Normally we'd use root->last_trans as a flag to decide
440                  * if we want to take the expensive mutex.
441                  *
442                  * But, we have to set root->last_trans before we
443                  * init the relocation root, otherwise, we trip over warnings
444                  * in ctree.c.  The solution used here is to flag ourselves
445                  * with root IN_TRANS_SETUP.  When this is 1, we're still
446                  * fixing up the reloc trees and everyone must wait.
447                  *
448                  * When this is zero, they can trust root->last_trans and fly
449                  * through btrfs_record_root_in_trans without having to take the
450                  * lock.  smp_wmb() makes sure that all the writes above are
451                  * done before we pop in the zero below
452                  */
453                 ret = btrfs_init_reloc_root(trans, root);
454                 smp_mb__before_atomic();
455                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
456         }
457         return ret;
458 }
459 
460 
461 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
462                             struct btrfs_root *root)
463 {
464         struct btrfs_fs_info *fs_info = root->fs_info;
465         struct btrfs_transaction *cur_trans = trans->transaction;
466 
467         /* Add ourselves to the transaction dropped list */
468         spin_lock(&cur_trans->dropped_roots_lock);
469         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
470         spin_unlock(&cur_trans->dropped_roots_lock);
471 
472         /* Make sure we don't try to update the root at commit time */
473         spin_lock(&fs_info->fs_roots_radix_lock);
474         radix_tree_tag_clear(&fs_info->fs_roots_radix,
475                              (unsigned long)btrfs_root_id(root),
476                              BTRFS_ROOT_TRANS_TAG);
477         spin_unlock(&fs_info->fs_roots_radix_lock);
478 }
479 
480 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
481                                struct btrfs_root *root)
482 {
483         struct btrfs_fs_info *fs_info = root->fs_info;
484         int ret;
485 
486         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
487                 return 0;
488 
489         /*
490          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
491          * and barriers
492          */
493         smp_rmb();
494         if (btrfs_get_root_last_trans(root) == trans->transid &&
495             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
496                 return 0;
497 
498         mutex_lock(&fs_info->reloc_mutex);
499         ret = record_root_in_trans(trans, root, 0);
500         mutex_unlock(&fs_info->reloc_mutex);
501 
502         return ret;
503 }
504 
505 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
506 {
507         return (trans->state >= TRANS_STATE_COMMIT_START &&
508                 trans->state < TRANS_STATE_UNBLOCKED &&
509                 !TRANS_ABORTED(trans));
510 }
511 
512 /* wait for commit against the current transaction to become unblocked
513  * when this is done, it is safe to start a new transaction, but the current
514  * transaction might not be fully on disk.
515  */
516 static void wait_current_trans(struct btrfs_fs_info *fs_info)
517 {
518         struct btrfs_transaction *cur_trans;
519 
520         spin_lock(&fs_info->trans_lock);
521         cur_trans = fs_info->running_transaction;
522         if (cur_trans && is_transaction_blocked(cur_trans)) {
523                 refcount_inc(&cur_trans->use_count);
524                 spin_unlock(&fs_info->trans_lock);
525 
526                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
527                 wait_event(fs_info->transaction_wait,
528                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
529                            TRANS_ABORTED(cur_trans));
530                 btrfs_put_transaction(cur_trans);
531         } else {
532                 spin_unlock(&fs_info->trans_lock);
533         }
534 }
535 
536 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
537 {
538         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
539                 return 0;
540 
541         if (type == TRANS_START)
542                 return 1;
543 
544         return 0;
545 }
546 
547 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
548 {
549         struct btrfs_fs_info *fs_info = root->fs_info;
550 
551         if (!fs_info->reloc_ctl ||
552             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
553             btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
554             root->reloc_root)
555                 return false;
556 
557         return true;
558 }
559 
560 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
561                                         enum btrfs_reserve_flush_enum flush,
562                                         u64 num_bytes,
563                                         u64 *delayed_refs_bytes)
564 {
565         struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
566         u64 bytes = num_bytes + *delayed_refs_bytes;
567         int ret;
568 
569         /*
570          * We want to reserve all the bytes we may need all at once, so we only
571          * do 1 enospc flushing cycle per transaction start.
572          */
573         ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
574 
575         /*
576          * If we are an emergency flush, which can steal from the global block
577          * reserve, then attempt to not reserve space for the delayed refs, as
578          * we will consume space for them from the global block reserve.
579          */
580         if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
581                 bytes -= *delayed_refs_bytes;
582                 *delayed_refs_bytes = 0;
583                 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
584         }
585 
586         return ret;
587 }
588 
589 static struct btrfs_trans_handle *
590 start_transaction(struct btrfs_root *root, unsigned int num_items,
591                   unsigned int type, enum btrfs_reserve_flush_enum flush,
592                   bool enforce_qgroups)
593 {
594         struct btrfs_fs_info *fs_info = root->fs_info;
595         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
596         struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
597         struct btrfs_trans_handle *h;
598         struct btrfs_transaction *cur_trans;
599         u64 num_bytes = 0;
600         u64 qgroup_reserved = 0;
601         u64 delayed_refs_bytes = 0;
602         bool reloc_reserved = false;
603         bool do_chunk_alloc = false;
604         int ret;
605 
606         if (BTRFS_FS_ERROR(fs_info))
607                 return ERR_PTR(-EROFS);
608 
609         if (current->journal_info) {
610                 WARN_ON(type & TRANS_EXTWRITERS);
611                 h = current->journal_info;
612                 refcount_inc(&h->use_count);
613                 WARN_ON(refcount_read(&h->use_count) > 2);
614                 h->orig_rsv = h->block_rsv;
615                 h->block_rsv = NULL;
616                 goto got_it;
617         }
618 
619         /*
620          * Do the reservation before we join the transaction so we can do all
621          * the appropriate flushing if need be.
622          */
623         if (num_items && root != fs_info->chunk_root) {
624                 qgroup_reserved = num_items * fs_info->nodesize;
625                 /*
626                  * Use prealloc for now, as there might be a currently running
627                  * transaction that could free this reserved space prematurely
628                  * by committing.
629                  */
630                 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
631                                                          enforce_qgroups, false);
632                 if (ret)
633                         return ERR_PTR(ret);
634 
635                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
636                 /*
637                  * If we plan to insert/update/delete "num_items" from a btree,
638                  * we will also generate delayed refs for extent buffers in the
639                  * respective btree paths, so reserve space for the delayed refs
640                  * that will be generated by the caller as it modifies btrees.
641                  * Try to reserve them to avoid excessive use of the global
642                  * block reserve.
643                  */
644                 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
645 
646                 /*
647                  * Do the reservation for the relocation root creation
648                  */
649                 if (need_reserve_reloc_root(root)) {
650                         num_bytes += fs_info->nodesize;
651                         reloc_reserved = true;
652                 }
653 
654                 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
655                                                    &delayed_refs_bytes);
656                 if (ret)
657                         goto reserve_fail;
658 
659                 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
660 
661                 if (trans_rsv->space_info->force_alloc)
662                         do_chunk_alloc = true;
663         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
664                    !btrfs_block_rsv_full(delayed_refs_rsv)) {
665                 /*
666                  * Some people call with btrfs_start_transaction(root, 0)
667                  * because they can be throttled, but have some other mechanism
668                  * for reserving space.  We still want these guys to refill the
669                  * delayed block_rsv so just add 1 items worth of reservation
670                  * here.
671                  */
672                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
673                 if (ret)
674                         goto reserve_fail;
675         }
676 again:
677         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
678         if (!h) {
679                 ret = -ENOMEM;
680                 goto alloc_fail;
681         }
682 
683         /*
684          * If we are JOIN_NOLOCK we're already committing a transaction and
685          * waiting on this guy, so we don't need to do the sb_start_intwrite
686          * because we're already holding a ref.  We need this because we could
687          * have raced in and did an fsync() on a file which can kick a commit
688          * and then we deadlock with somebody doing a freeze.
689          *
690          * If we are ATTACH, it means we just want to catch the current
691          * transaction and commit it, so we needn't do sb_start_intwrite(). 
692          */
693         if (type & __TRANS_FREEZABLE)
694                 sb_start_intwrite(fs_info->sb);
695 
696         if (may_wait_transaction(fs_info, type))
697                 wait_current_trans(fs_info);
698 
699         do {
700                 ret = join_transaction(fs_info, type);
701                 if (ret == -EBUSY) {
702                         wait_current_trans(fs_info);
703                         if (unlikely(type == TRANS_ATTACH ||
704                                      type == TRANS_JOIN_NOSTART))
705                                 ret = -ENOENT;
706                 }
707         } while (ret == -EBUSY);
708 
709         if (ret < 0)
710                 goto join_fail;
711 
712         cur_trans = fs_info->running_transaction;
713 
714         h->transid = cur_trans->transid;
715         h->transaction = cur_trans;
716         refcount_set(&h->use_count, 1);
717         h->fs_info = root->fs_info;
718 
719         h->type = type;
720         INIT_LIST_HEAD(&h->new_bgs);
721         btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
722 
723         smp_mb();
724         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
725             may_wait_transaction(fs_info, type)) {
726                 current->journal_info = h;
727                 btrfs_commit_transaction(h);
728                 goto again;
729         }
730 
731         if (num_bytes) {
732                 trace_btrfs_space_reservation(fs_info, "transaction",
733                                               h->transid, num_bytes, 1);
734                 h->block_rsv = trans_rsv;
735                 h->bytes_reserved = num_bytes;
736                 if (delayed_refs_bytes > 0) {
737                         trace_btrfs_space_reservation(fs_info,
738                                                       "local_delayed_refs_rsv",
739                                                       h->transid,
740                                                       delayed_refs_bytes, 1);
741                         h->delayed_refs_bytes_reserved = delayed_refs_bytes;
742                         btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
743                         delayed_refs_bytes = 0;
744                 }
745                 h->reloc_reserved = reloc_reserved;
746         }
747 
748 got_it:
749         if (!current->journal_info)
750                 current->journal_info = h;
751 
752         /*
753          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
754          * ALLOC_FORCE the first run through, and then we won't allocate for
755          * anybody else who races in later.  We don't care about the return
756          * value here.
757          */
758         if (do_chunk_alloc && num_bytes) {
759                 u64 flags = h->block_rsv->space_info->flags;
760 
761                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
762                                   CHUNK_ALLOC_NO_FORCE);
763         }
764 
765         /*
766          * btrfs_record_root_in_trans() needs to alloc new extents, and may
767          * call btrfs_join_transaction() while we're also starting a
768          * transaction.
769          *
770          * Thus it need to be called after current->journal_info initialized,
771          * or we can deadlock.
772          */
773         ret = btrfs_record_root_in_trans(h, root);
774         if (ret) {
775                 /*
776                  * The transaction handle is fully initialized and linked with
777                  * other structures so it needs to be ended in case of errors,
778                  * not just freed.
779                  */
780                 btrfs_end_transaction(h);
781                 goto reserve_fail;
782         }
783         /*
784          * Now that we have found a transaction to be a part of, convert the
785          * qgroup reservation from prealloc to pertrans. A different transaction
786          * can't race in and free our pertrans out from under us.
787          */
788         if (qgroup_reserved)
789                 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
790 
791         return h;
792 
793 join_fail:
794         if (type & __TRANS_FREEZABLE)
795                 sb_end_intwrite(fs_info->sb);
796         kmem_cache_free(btrfs_trans_handle_cachep, h);
797 alloc_fail:
798         if (num_bytes)
799                 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
800         if (delayed_refs_bytes)
801                 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
802                                                     delayed_refs_bytes);
803 reserve_fail:
804         btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
805         return ERR_PTR(ret);
806 }
807 
808 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
809                                                    unsigned int num_items)
810 {
811         return start_transaction(root, num_items, TRANS_START,
812                                  BTRFS_RESERVE_FLUSH_ALL, true);
813 }
814 
815 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
816                                         struct btrfs_root *root,
817                                         unsigned int num_items)
818 {
819         return start_transaction(root, num_items, TRANS_START,
820                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
821 }
822 
823 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
824 {
825         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
826                                  true);
827 }
828 
829 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
830 {
831         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
832                                  BTRFS_RESERVE_NO_FLUSH, true);
833 }
834 
835 /*
836  * Similar to regular join but it never starts a transaction when none is
837  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
838  * This is similar to btrfs_attach_transaction() but it allows the join to
839  * happen if the transaction commit already started but it's not yet in the
840  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
841  */
842 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
843 {
844         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
845                                  BTRFS_RESERVE_NO_FLUSH, true);
846 }
847 
848 /*
849  * Catch the running transaction.
850  *
851  * It is used when we want to commit the current the transaction, but
852  * don't want to start a new one.
853  *
854  * Note: If this function return -ENOENT, it just means there is no
855  * running transaction. But it is possible that the inactive transaction
856  * is still in the memory, not fully on disk. If you hope there is no
857  * inactive transaction in the fs when -ENOENT is returned, you should
858  * invoke
859  *     btrfs_attach_transaction_barrier()
860  */
861 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
862 {
863         return start_transaction(root, 0, TRANS_ATTACH,
864                                  BTRFS_RESERVE_NO_FLUSH, true);
865 }
866 
867 /*
868  * Catch the running transaction.
869  *
870  * It is similar to the above function, the difference is this one
871  * will wait for all the inactive transactions until they fully
872  * complete.
873  */
874 struct btrfs_trans_handle *
875 btrfs_attach_transaction_barrier(struct btrfs_root *root)
876 {
877         struct btrfs_trans_handle *trans;
878 
879         trans = start_transaction(root, 0, TRANS_ATTACH,
880                                   BTRFS_RESERVE_NO_FLUSH, true);
881         if (trans == ERR_PTR(-ENOENT)) {
882                 int ret;
883 
884                 ret = btrfs_wait_for_commit(root->fs_info, 0);
885                 if (ret)
886                         return ERR_PTR(ret);
887         }
888 
889         return trans;
890 }
891 
892 /* Wait for a transaction commit to reach at least the given state. */
893 static noinline void wait_for_commit(struct btrfs_transaction *commit,
894                                      const enum btrfs_trans_state min_state)
895 {
896         struct btrfs_fs_info *fs_info = commit->fs_info;
897         u64 transid = commit->transid;
898         bool put = false;
899 
900         /*
901          * At the moment this function is called with min_state either being
902          * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
903          */
904         if (min_state == TRANS_STATE_COMPLETED)
905                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
906         else
907                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
908 
909         while (1) {
910                 wait_event(commit->commit_wait, commit->state >= min_state);
911                 if (put)
912                         btrfs_put_transaction(commit);
913 
914                 if (min_state < TRANS_STATE_COMPLETED)
915                         break;
916 
917                 /*
918                  * A transaction isn't really completed until all of the
919                  * previous transactions are completed, but with fsync we can
920                  * end up with SUPER_COMMITTED transactions before a COMPLETED
921                  * transaction. Wait for those.
922                  */
923 
924                 spin_lock(&fs_info->trans_lock);
925                 commit = list_first_entry_or_null(&fs_info->trans_list,
926                                                   struct btrfs_transaction,
927                                                   list);
928                 if (!commit || commit->transid > transid) {
929                         spin_unlock(&fs_info->trans_lock);
930                         break;
931                 }
932                 refcount_inc(&commit->use_count);
933                 put = true;
934                 spin_unlock(&fs_info->trans_lock);
935         }
936 }
937 
938 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
939 {
940         struct btrfs_transaction *cur_trans = NULL, *t;
941         int ret = 0;
942 
943         if (transid) {
944                 if (transid <= btrfs_get_last_trans_committed(fs_info))
945                         goto out;
946 
947                 /* find specified transaction */
948                 spin_lock(&fs_info->trans_lock);
949                 list_for_each_entry(t, &fs_info->trans_list, list) {
950                         if (t->transid == transid) {
951                                 cur_trans = t;
952                                 refcount_inc(&cur_trans->use_count);
953                                 ret = 0;
954                                 break;
955                         }
956                         if (t->transid > transid) {
957                                 ret = 0;
958                                 break;
959                         }
960                 }
961                 spin_unlock(&fs_info->trans_lock);
962 
963                 /*
964                  * The specified transaction doesn't exist, or we
965                  * raced with btrfs_commit_transaction
966                  */
967                 if (!cur_trans) {
968                         if (transid > btrfs_get_last_trans_committed(fs_info))
969                                 ret = -EINVAL;
970                         goto out;
971                 }
972         } else {
973                 /* find newest transaction that is committing | committed */
974                 spin_lock(&fs_info->trans_lock);
975                 list_for_each_entry_reverse(t, &fs_info->trans_list,
976                                             list) {
977                         if (t->state >= TRANS_STATE_COMMIT_START) {
978                                 if (t->state == TRANS_STATE_COMPLETED)
979                                         break;
980                                 cur_trans = t;
981                                 refcount_inc(&cur_trans->use_count);
982                                 break;
983                         }
984                 }
985                 spin_unlock(&fs_info->trans_lock);
986                 if (!cur_trans)
987                         goto out;  /* nothing committing|committed */
988         }
989 
990         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
991         ret = cur_trans->aborted;
992         btrfs_put_transaction(cur_trans);
993 out:
994         return ret;
995 }
996 
997 void btrfs_throttle(struct btrfs_fs_info *fs_info)
998 {
999         wait_current_trans(fs_info);
1000 }
1001 
1002 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1003 {
1004         struct btrfs_transaction *cur_trans = trans->transaction;
1005 
1006         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1007             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1008                 return true;
1009 
1010         if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1011                 return true;
1012 
1013         return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1014 }
1015 
1016 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1017 
1018 {
1019         struct btrfs_fs_info *fs_info = trans->fs_info;
1020 
1021         if (!trans->block_rsv) {
1022                 ASSERT(!trans->bytes_reserved);
1023                 ASSERT(!trans->delayed_refs_bytes_reserved);
1024                 return;
1025         }
1026 
1027         if (!trans->bytes_reserved) {
1028                 ASSERT(!trans->delayed_refs_bytes_reserved);
1029                 return;
1030         }
1031 
1032         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1033         trace_btrfs_space_reservation(fs_info, "transaction",
1034                                       trans->transid, trans->bytes_reserved, 0);
1035         btrfs_block_rsv_release(fs_info, trans->block_rsv,
1036                                 trans->bytes_reserved, NULL);
1037         trans->bytes_reserved = 0;
1038 
1039         if (!trans->delayed_refs_bytes_reserved)
1040                 return;
1041 
1042         trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1043                                       trans->transid,
1044                                       trans->delayed_refs_bytes_reserved, 0);
1045         btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1046                                 trans->delayed_refs_bytes_reserved, NULL);
1047         trans->delayed_refs_bytes_reserved = 0;
1048 }
1049 
1050 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1051                                    int throttle)
1052 {
1053         struct btrfs_fs_info *info = trans->fs_info;
1054         struct btrfs_transaction *cur_trans = trans->transaction;
1055         int ret = 0;
1056 
1057         if (refcount_read(&trans->use_count) > 1) {
1058                 refcount_dec(&trans->use_count);
1059                 trans->block_rsv = trans->orig_rsv;
1060                 return 0;
1061         }
1062 
1063         btrfs_trans_release_metadata(trans);
1064         trans->block_rsv = NULL;
1065 
1066         btrfs_create_pending_block_groups(trans);
1067 
1068         btrfs_trans_release_chunk_metadata(trans);
1069 
1070         if (trans->type & __TRANS_FREEZABLE)
1071                 sb_end_intwrite(info->sb);
1072 
1073         WARN_ON(cur_trans != info->running_transaction);
1074         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1075         atomic_dec(&cur_trans->num_writers);
1076         extwriter_counter_dec(cur_trans, trans->type);
1077 
1078         cond_wake_up(&cur_trans->writer_wait);
1079 
1080         btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1081         btrfs_lockdep_release(info, btrfs_trans_num_writers);
1082 
1083         btrfs_put_transaction(cur_trans);
1084 
1085         if (current->journal_info == trans)
1086                 current->journal_info = NULL;
1087 
1088         if (throttle)
1089                 btrfs_run_delayed_iputs(info);
1090 
1091         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1092                 wake_up_process(info->transaction_kthread);
1093                 if (TRANS_ABORTED(trans))
1094                         ret = trans->aborted;
1095                 else
1096                         ret = -EROFS;
1097         }
1098 
1099         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1100         return ret;
1101 }
1102 
1103 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1104 {
1105         return __btrfs_end_transaction(trans, 0);
1106 }
1107 
1108 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1109 {
1110         return __btrfs_end_transaction(trans, 1);
1111 }
1112 
1113 /*
1114  * when btree blocks are allocated, they have some corresponding bits set for
1115  * them in one of two extent_io trees.  This is used to make sure all of
1116  * those extents are sent to disk but does not wait on them
1117  */
1118 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1119                                struct extent_io_tree *dirty_pages, int mark)
1120 {
1121         int ret = 0;
1122         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1123         struct extent_state *cached_state = NULL;
1124         u64 start = 0;
1125         u64 end;
1126 
1127         while (find_first_extent_bit(dirty_pages, start, &start, &end,
1128                                      mark, &cached_state)) {
1129                 bool wait_writeback = false;
1130 
1131                 ret = convert_extent_bit(dirty_pages, start, end,
1132                                          EXTENT_NEED_WAIT,
1133                                          mark, &cached_state);
1134                 /*
1135                  * convert_extent_bit can return -ENOMEM, which is most of the
1136                  * time a temporary error. So when it happens, ignore the error
1137                  * and wait for writeback of this range to finish - because we
1138                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1139                  * to __btrfs_wait_marked_extents() would not know that
1140                  * writeback for this range started and therefore wouldn't
1141                  * wait for it to finish - we don't want to commit a
1142                  * superblock that points to btree nodes/leafs for which
1143                  * writeback hasn't finished yet (and without errors).
1144                  * We cleanup any entries left in the io tree when committing
1145                  * the transaction (through extent_io_tree_release()).
1146                  */
1147                 if (ret == -ENOMEM) {
1148                         ret = 0;
1149                         wait_writeback = true;
1150                 }
1151                 if (!ret)
1152                         ret = filemap_fdatawrite_range(mapping, start, end);
1153                 if (!ret && wait_writeback)
1154                         ret = filemap_fdatawait_range(mapping, start, end);
1155                 free_extent_state(cached_state);
1156                 if (ret)
1157                         break;
1158                 cached_state = NULL;
1159                 cond_resched();
1160                 start = end + 1;
1161         }
1162         return ret;
1163 }
1164 
1165 /*
1166  * when btree blocks are allocated, they have some corresponding bits set for
1167  * them in one of two extent_io trees.  This is used to make sure all of
1168  * those extents are on disk for transaction or log commit.  We wait
1169  * on all the pages and clear them from the dirty pages state tree
1170  */
1171 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1172                                        struct extent_io_tree *dirty_pages)
1173 {
1174         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1175         struct extent_state *cached_state = NULL;
1176         u64 start = 0;
1177         u64 end;
1178         int ret = 0;
1179 
1180         while (find_first_extent_bit(dirty_pages, start, &start, &end,
1181                                      EXTENT_NEED_WAIT, &cached_state)) {
1182                 /*
1183                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1184                  * When committing the transaction, we'll remove any entries
1185                  * left in the io tree. For a log commit, we don't remove them
1186                  * after committing the log because the tree can be accessed
1187                  * concurrently - we do it only at transaction commit time when
1188                  * it's safe to do it (through extent_io_tree_release()).
1189                  */
1190                 ret = clear_extent_bit(dirty_pages, start, end,
1191                                        EXTENT_NEED_WAIT, &cached_state);
1192                 if (ret == -ENOMEM)
1193                         ret = 0;
1194                 if (!ret)
1195                         ret = filemap_fdatawait_range(mapping, start, end);
1196                 free_extent_state(cached_state);
1197                 if (ret)
1198                         break;
1199                 cached_state = NULL;
1200                 cond_resched();
1201                 start = end + 1;
1202         }
1203         return ret;
1204 }
1205 
1206 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1207                        struct extent_io_tree *dirty_pages)
1208 {
1209         bool errors = false;
1210         int err;
1211 
1212         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1213         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1214                 errors = true;
1215 
1216         if (errors && !err)
1217                 err = -EIO;
1218         return err;
1219 }
1220 
1221 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1222 {
1223         struct btrfs_fs_info *fs_info = log_root->fs_info;
1224         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1225         bool errors = false;
1226         int err;
1227 
1228         ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
1229 
1230         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1231         if ((mark & EXTENT_DIRTY) &&
1232             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1233                 errors = true;
1234 
1235         if ((mark & EXTENT_NEW) &&
1236             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1237                 errors = true;
1238 
1239         if (errors && !err)
1240                 err = -EIO;
1241         return err;
1242 }
1243 
1244 /*
1245  * When btree blocks are allocated the corresponding extents are marked dirty.
1246  * This function ensures such extents are persisted on disk for transaction or
1247  * log commit.
1248  *
1249  * @trans: transaction whose dirty pages we'd like to write
1250  */
1251 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1252 {
1253         int ret;
1254         int ret2;
1255         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1256         struct btrfs_fs_info *fs_info = trans->fs_info;
1257         struct blk_plug plug;
1258 
1259         blk_start_plug(&plug);
1260         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1261         blk_finish_plug(&plug);
1262         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1263 
1264         extent_io_tree_release(&trans->transaction->dirty_pages);
1265 
1266         if (ret)
1267                 return ret;
1268         else if (ret2)
1269                 return ret2;
1270         else
1271                 return 0;
1272 }
1273 
1274 /*
1275  * this is used to update the root pointer in the tree of tree roots.
1276  *
1277  * But, in the case of the extent allocation tree, updating the root
1278  * pointer may allocate blocks which may change the root of the extent
1279  * allocation tree.
1280  *
1281  * So, this loops and repeats and makes sure the cowonly root didn't
1282  * change while the root pointer was being updated in the metadata.
1283  */
1284 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1285                                struct btrfs_root *root)
1286 {
1287         int ret;
1288         u64 old_root_bytenr;
1289         u64 old_root_used;
1290         struct btrfs_fs_info *fs_info = root->fs_info;
1291         struct btrfs_root *tree_root = fs_info->tree_root;
1292 
1293         old_root_used = btrfs_root_used(&root->root_item);
1294 
1295         while (1) {
1296                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1297                 if (old_root_bytenr == root->node->start &&
1298                     old_root_used == btrfs_root_used(&root->root_item))
1299                         break;
1300 
1301                 btrfs_set_root_node(&root->root_item, root->node);
1302                 ret = btrfs_update_root(trans, tree_root,
1303                                         &root->root_key,
1304                                         &root->root_item);
1305                 if (ret)
1306                         return ret;
1307 
1308                 old_root_used = btrfs_root_used(&root->root_item);
1309         }
1310 
1311         return 0;
1312 }
1313 
1314 /*
1315  * update all the cowonly tree roots on disk
1316  *
1317  * The error handling in this function may not be obvious. Any of the
1318  * failures will cause the file system to go offline. We still need
1319  * to clean up the delayed refs.
1320  */
1321 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1322 {
1323         struct btrfs_fs_info *fs_info = trans->fs_info;
1324         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1325         struct list_head *io_bgs = &trans->transaction->io_bgs;
1326         struct list_head *next;
1327         struct extent_buffer *eb;
1328         int ret;
1329 
1330         /*
1331          * At this point no one can be using this transaction to modify any tree
1332          * and no one can start another transaction to modify any tree either.
1333          */
1334         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1335 
1336         eb = btrfs_lock_root_node(fs_info->tree_root);
1337         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1338                               0, &eb, BTRFS_NESTING_COW);
1339         btrfs_tree_unlock(eb);
1340         free_extent_buffer(eb);
1341 
1342         if (ret)
1343                 return ret;
1344 
1345         ret = btrfs_run_dev_stats(trans);
1346         if (ret)
1347                 return ret;
1348         ret = btrfs_run_dev_replace(trans);
1349         if (ret)
1350                 return ret;
1351         ret = btrfs_run_qgroups(trans);
1352         if (ret)
1353                 return ret;
1354 
1355         ret = btrfs_setup_space_cache(trans);
1356         if (ret)
1357                 return ret;
1358 
1359 again:
1360         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1361                 struct btrfs_root *root;
1362                 next = fs_info->dirty_cowonly_roots.next;
1363                 list_del_init(next);
1364                 root = list_entry(next, struct btrfs_root, dirty_list);
1365                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1366 
1367                 list_add_tail(&root->dirty_list,
1368                               &trans->transaction->switch_commits);
1369                 ret = update_cowonly_root(trans, root);
1370                 if (ret)
1371                         return ret;
1372         }
1373 
1374         /* Now flush any delayed refs generated by updating all of the roots */
1375         ret = btrfs_run_delayed_refs(trans, U64_MAX);
1376         if (ret)
1377                 return ret;
1378 
1379         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1380                 ret = btrfs_write_dirty_block_groups(trans);
1381                 if (ret)
1382                         return ret;
1383 
1384                 /*
1385                  * We're writing the dirty block groups, which could generate
1386                  * delayed refs, which could generate more dirty block groups,
1387                  * so we want to keep this flushing in this loop to make sure
1388                  * everything gets run.
1389                  */
1390                 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1391                 if (ret)
1392                         return ret;
1393         }
1394 
1395         if (!list_empty(&fs_info->dirty_cowonly_roots))
1396                 goto again;
1397 
1398         /* Update dev-replace pointer once everything is committed */
1399         fs_info->dev_replace.committed_cursor_left =
1400                 fs_info->dev_replace.cursor_left_last_write_of_item;
1401 
1402         return 0;
1403 }
1404 
1405 /*
1406  * If we had a pending drop we need to see if there are any others left in our
1407  * dead roots list, and if not clear our bit and wake any waiters.
1408  */
1409 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1410 {
1411         /*
1412          * We put the drop in progress roots at the front of the list, so if the
1413          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1414          * up.
1415          */
1416         spin_lock(&fs_info->trans_lock);
1417         if (!list_empty(&fs_info->dead_roots)) {
1418                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1419                                                            struct btrfs_root,
1420                                                            root_list);
1421                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1422                         spin_unlock(&fs_info->trans_lock);
1423                         return;
1424                 }
1425         }
1426         spin_unlock(&fs_info->trans_lock);
1427 
1428         btrfs_wake_unfinished_drop(fs_info);
1429 }
1430 
1431 /*
1432  * dead roots are old snapshots that need to be deleted.  This allocates
1433  * a dirty root struct and adds it into the list of dead roots that need to
1434  * be deleted
1435  */
1436 void btrfs_add_dead_root(struct btrfs_root *root)
1437 {
1438         struct btrfs_fs_info *fs_info = root->fs_info;
1439 
1440         spin_lock(&fs_info->trans_lock);
1441         if (list_empty(&root->root_list)) {
1442                 btrfs_grab_root(root);
1443 
1444                 /* We want to process the partially complete drops first. */
1445                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1446                         list_add(&root->root_list, &fs_info->dead_roots);
1447                 else
1448                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1449         }
1450         spin_unlock(&fs_info->trans_lock);
1451 }
1452 
1453 /*
1454  * Update each subvolume root and its relocation root, if it exists, in the tree
1455  * of tree roots. Also free log roots if they exist.
1456  */
1457 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1458 {
1459         struct btrfs_fs_info *fs_info = trans->fs_info;
1460         struct btrfs_root *gang[8];
1461         int i;
1462         int ret;
1463 
1464         /*
1465          * At this point no one can be using this transaction to modify any tree
1466          * and no one can start another transaction to modify any tree either.
1467          */
1468         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1469 
1470         spin_lock(&fs_info->fs_roots_radix_lock);
1471         while (1) {
1472                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1473                                                  (void **)gang, 0,
1474                                                  ARRAY_SIZE(gang),
1475                                                  BTRFS_ROOT_TRANS_TAG);
1476                 if (ret == 0)
1477                         break;
1478                 for (i = 0; i < ret; i++) {
1479                         struct btrfs_root *root = gang[i];
1480                         int ret2;
1481 
1482                         /*
1483                          * At this point we can neither have tasks logging inodes
1484                          * from a root nor trying to commit a log tree.
1485                          */
1486                         ASSERT(atomic_read(&root->log_writers) == 0);
1487                         ASSERT(atomic_read(&root->log_commit[0]) == 0);
1488                         ASSERT(atomic_read(&root->log_commit[1]) == 0);
1489 
1490                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1491                                         (unsigned long)btrfs_root_id(root),
1492                                         BTRFS_ROOT_TRANS_TAG);
1493                         btrfs_qgroup_free_meta_all_pertrans(root);
1494                         spin_unlock(&fs_info->fs_roots_radix_lock);
1495 
1496                         btrfs_free_log(trans, root);
1497                         ret2 = btrfs_update_reloc_root(trans, root);
1498                         if (ret2)
1499                                 return ret2;
1500 
1501                         /* see comments in should_cow_block() */
1502                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1503                         smp_mb__after_atomic();
1504 
1505                         if (root->commit_root != root->node) {
1506                                 list_add_tail(&root->dirty_list,
1507                                         &trans->transaction->switch_commits);
1508                                 btrfs_set_root_node(&root->root_item,
1509                                                     root->node);
1510                         }
1511 
1512                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1513                                                 &root->root_key,
1514                                                 &root->root_item);
1515                         if (ret2)
1516                                 return ret2;
1517                         spin_lock(&fs_info->fs_roots_radix_lock);
1518                 }
1519         }
1520         spin_unlock(&fs_info->fs_roots_radix_lock);
1521         return 0;
1522 }
1523 
1524 /*
1525  * Do all special snapshot related qgroup dirty hack.
1526  *
1527  * Will do all needed qgroup inherit and dirty hack like switch commit
1528  * roots inside one transaction and write all btree into disk, to make
1529  * qgroup works.
1530  */
1531 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1532                                    struct btrfs_root *src,
1533                                    struct btrfs_root *parent,
1534                                    struct btrfs_qgroup_inherit *inherit,
1535                                    u64 dst_objectid)
1536 {
1537         struct btrfs_fs_info *fs_info = src->fs_info;
1538         int ret;
1539 
1540         /*
1541          * Save some performance in the case that qgroups are not enabled. If
1542          * this check races with the ioctl, rescan will kick in anyway.
1543          */
1544         if (!btrfs_qgroup_full_accounting(fs_info))
1545                 return 0;
1546 
1547         /*
1548          * Ensure dirty @src will be committed.  Or, after coming
1549          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1550          * recorded root will never be updated again, causing an outdated root
1551          * item.
1552          */
1553         ret = record_root_in_trans(trans, src, 1);
1554         if (ret)
1555                 return ret;
1556 
1557         /*
1558          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1559          * src root, so we must run the delayed refs here.
1560          *
1561          * However this isn't particularly fool proof, because there's no
1562          * synchronization keeping us from changing the tree after this point
1563          * before we do the qgroup_inherit, or even from making changes while
1564          * we're doing the qgroup_inherit.  But that's a problem for the future,
1565          * for now flush the delayed refs to narrow the race window where the
1566          * qgroup counters could end up wrong.
1567          */
1568         ret = btrfs_run_delayed_refs(trans, U64_MAX);
1569         if (ret) {
1570                 btrfs_abort_transaction(trans, ret);
1571                 return ret;
1572         }
1573 
1574         ret = commit_fs_roots(trans);
1575         if (ret)
1576                 goto out;
1577         ret = btrfs_qgroup_account_extents(trans);
1578         if (ret < 0)
1579                 goto out;
1580 
1581         /* Now qgroup are all updated, we can inherit it to new qgroups */
1582         ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1583                                    btrfs_root_id(parent), inherit);
1584         if (ret < 0)
1585                 goto out;
1586 
1587         /*
1588          * Now we do a simplified commit transaction, which will:
1589          * 1) commit all subvolume and extent tree
1590          *    To ensure all subvolume and extent tree have a valid
1591          *    commit_root to accounting later insert_dir_item()
1592          * 2) write all btree blocks onto disk
1593          *    This is to make sure later btree modification will be cowed
1594          *    Or commit_root can be populated and cause wrong qgroup numbers
1595          * In this simplified commit, we don't really care about other trees
1596          * like chunk and root tree, as they won't affect qgroup.
1597          * And we don't write super to avoid half committed status.
1598          */
1599         ret = commit_cowonly_roots(trans);
1600         if (ret)
1601                 goto out;
1602         switch_commit_roots(trans);
1603         ret = btrfs_write_and_wait_transaction(trans);
1604         if (ret)
1605                 btrfs_handle_fs_error(fs_info, ret,
1606                         "Error while writing out transaction for qgroup");
1607 
1608 out:
1609         /*
1610          * Force parent root to be updated, as we recorded it before so its
1611          * last_trans == cur_transid.
1612          * Or it won't be committed again onto disk after later
1613          * insert_dir_item()
1614          */
1615         if (!ret)
1616                 ret = record_root_in_trans(trans, parent, 1);
1617         return ret;
1618 }
1619 
1620 /*
1621  * new snapshots need to be created at a very specific time in the
1622  * transaction commit.  This does the actual creation.
1623  *
1624  * Note:
1625  * If the error which may affect the commitment of the current transaction
1626  * happens, we should return the error number. If the error which just affect
1627  * the creation of the pending snapshots, just return 0.
1628  */
1629 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1630                                    struct btrfs_pending_snapshot *pending)
1631 {
1632 
1633         struct btrfs_fs_info *fs_info = trans->fs_info;
1634         struct btrfs_key key;
1635         struct btrfs_root_item *new_root_item;
1636         struct btrfs_root *tree_root = fs_info->tree_root;
1637         struct btrfs_root *root = pending->root;
1638         struct btrfs_root *parent_root;
1639         struct btrfs_block_rsv *rsv;
1640         struct inode *parent_inode = &pending->dir->vfs_inode;
1641         struct btrfs_path *path;
1642         struct btrfs_dir_item *dir_item;
1643         struct extent_buffer *tmp;
1644         struct extent_buffer *old;
1645         struct timespec64 cur_time;
1646         int ret = 0;
1647         u64 to_reserve = 0;
1648         u64 index = 0;
1649         u64 objectid;
1650         u64 root_flags;
1651         unsigned int nofs_flags;
1652         struct fscrypt_name fname;
1653 
1654         ASSERT(pending->path);
1655         path = pending->path;
1656 
1657         ASSERT(pending->root_item);
1658         new_root_item = pending->root_item;
1659 
1660         /*
1661          * We're inside a transaction and must make sure that any potential
1662          * allocations with GFP_KERNEL in fscrypt won't recurse back to
1663          * filesystem.
1664          */
1665         nofs_flags = memalloc_nofs_save();
1666         pending->error = fscrypt_setup_filename(parent_inode,
1667                                                 &pending->dentry->d_name, 0,
1668                                                 &fname);
1669         memalloc_nofs_restore(nofs_flags);
1670         if (pending->error)
1671                 goto free_pending;
1672 
1673         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1674         if (pending->error)
1675                 goto free_fname;
1676 
1677         /*
1678          * Make qgroup to skip current new snapshot's qgroupid, as it is
1679          * accounted by later btrfs_qgroup_inherit().
1680          */
1681         btrfs_set_skip_qgroup(trans, objectid);
1682 
1683         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1684 
1685         if (to_reserve > 0) {
1686                 pending->error = btrfs_block_rsv_add(fs_info,
1687                                                      &pending->block_rsv,
1688                                                      to_reserve,
1689                                                      BTRFS_RESERVE_NO_FLUSH);
1690                 if (pending->error)
1691                         goto clear_skip_qgroup;
1692         }
1693 
1694         key.objectid = objectid;
1695         key.offset = (u64)-1;
1696         key.type = BTRFS_ROOT_ITEM_KEY;
1697 
1698         rsv = trans->block_rsv;
1699         trans->block_rsv = &pending->block_rsv;
1700         trans->bytes_reserved = trans->block_rsv->reserved;
1701         trace_btrfs_space_reservation(fs_info, "transaction",
1702                                       trans->transid,
1703                                       trans->bytes_reserved, 1);
1704         parent_root = BTRFS_I(parent_inode)->root;
1705         ret = record_root_in_trans(trans, parent_root, 0);
1706         if (ret)
1707                 goto fail;
1708         cur_time = current_time(parent_inode);
1709 
1710         /*
1711          * insert the directory item
1712          */
1713         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1714         if (ret) {
1715                 btrfs_abort_transaction(trans, ret);
1716                 goto fail;
1717         }
1718 
1719         /* check if there is a file/dir which has the same name. */
1720         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1721                                          btrfs_ino(BTRFS_I(parent_inode)),
1722                                          &fname.disk_name, 0);
1723         if (dir_item != NULL && !IS_ERR(dir_item)) {
1724                 pending->error = -EEXIST;
1725                 goto dir_item_existed;
1726         } else if (IS_ERR(dir_item)) {
1727                 ret = PTR_ERR(dir_item);
1728                 btrfs_abort_transaction(trans, ret);
1729                 goto fail;
1730         }
1731         btrfs_release_path(path);
1732 
1733         ret = btrfs_create_qgroup(trans, objectid);
1734         if (ret && ret != -EEXIST) {
1735                 btrfs_abort_transaction(trans, ret);
1736                 goto fail;
1737         }
1738 
1739         /*
1740          * pull in the delayed directory update
1741          * and the delayed inode item
1742          * otherwise we corrupt the FS during
1743          * snapshot
1744          */
1745         ret = btrfs_run_delayed_items(trans);
1746         if (ret) {      /* Transaction aborted */
1747                 btrfs_abort_transaction(trans, ret);
1748                 goto fail;
1749         }
1750 
1751         ret = record_root_in_trans(trans, root, 0);
1752         if (ret) {
1753                 btrfs_abort_transaction(trans, ret);
1754                 goto fail;
1755         }
1756         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1757         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1758         btrfs_check_and_init_root_item(new_root_item);
1759 
1760         root_flags = btrfs_root_flags(new_root_item);
1761         if (pending->readonly)
1762                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1763         else
1764                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1765         btrfs_set_root_flags(new_root_item, root_flags);
1766 
1767         btrfs_set_root_generation_v2(new_root_item,
1768                         trans->transid);
1769         generate_random_guid(new_root_item->uuid);
1770         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1771                         BTRFS_UUID_SIZE);
1772         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1773                 memset(new_root_item->received_uuid, 0,
1774                        sizeof(new_root_item->received_uuid));
1775                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1776                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1777                 btrfs_set_root_stransid(new_root_item, 0);
1778                 btrfs_set_root_rtransid(new_root_item, 0);
1779         }
1780         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1781         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1782         btrfs_set_root_otransid(new_root_item, trans->transid);
1783 
1784         old = btrfs_lock_root_node(root);
1785         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1786                               BTRFS_NESTING_COW);
1787         if (ret) {
1788                 btrfs_tree_unlock(old);
1789                 free_extent_buffer(old);
1790                 btrfs_abort_transaction(trans, ret);
1791                 goto fail;
1792         }
1793 
1794         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1795         /* clean up in any case */
1796         btrfs_tree_unlock(old);
1797         free_extent_buffer(old);
1798         if (ret) {
1799                 btrfs_abort_transaction(trans, ret);
1800                 goto fail;
1801         }
1802         /* see comments in should_cow_block() */
1803         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1804         smp_wmb();
1805 
1806         btrfs_set_root_node(new_root_item, tmp);
1807         /* record when the snapshot was created in key.offset */
1808         key.offset = trans->transid;
1809         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1810         btrfs_tree_unlock(tmp);
1811         free_extent_buffer(tmp);
1812         if (ret) {
1813                 btrfs_abort_transaction(trans, ret);
1814                 goto fail;
1815         }
1816 
1817         /*
1818          * insert root back/forward references
1819          */
1820         ret = btrfs_add_root_ref(trans, objectid,
1821                                  btrfs_root_id(parent_root),
1822                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1823                                  &fname.disk_name);
1824         if (ret) {
1825                 btrfs_abort_transaction(trans, ret);
1826                 goto fail;
1827         }
1828 
1829         key.offset = (u64)-1;
1830         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1831         if (IS_ERR(pending->snap)) {
1832                 ret = PTR_ERR(pending->snap);
1833                 pending->snap = NULL;
1834                 btrfs_abort_transaction(trans, ret);
1835                 goto fail;
1836         }
1837 
1838         ret = btrfs_reloc_post_snapshot(trans, pending);
1839         if (ret) {
1840                 btrfs_abort_transaction(trans, ret);
1841                 goto fail;
1842         }
1843 
1844         /*
1845          * Do special qgroup accounting for snapshot, as we do some qgroup
1846          * snapshot hack to do fast snapshot.
1847          * To co-operate with that hack, we do hack again.
1848          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1849          */
1850         if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1851                 ret = qgroup_account_snapshot(trans, root, parent_root,
1852                                               pending->inherit, objectid);
1853         else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1854                 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1855                                            btrfs_root_id(parent_root), pending->inherit);
1856         if (ret < 0)
1857                 goto fail;
1858 
1859         ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1860                                     BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1861                                     index);
1862         if (ret) {
1863                 btrfs_abort_transaction(trans, ret);
1864                 goto fail;
1865         }
1866 
1867         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1868                                                   fname.disk_name.len * 2);
1869         inode_set_mtime_to_ts(parent_inode,
1870                               inode_set_ctime_current(parent_inode));
1871         ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1872         if (ret) {
1873                 btrfs_abort_transaction(trans, ret);
1874                 goto fail;
1875         }
1876         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1877                                   BTRFS_UUID_KEY_SUBVOL,
1878                                   objectid);
1879         if (ret) {
1880                 btrfs_abort_transaction(trans, ret);
1881                 goto fail;
1882         }
1883         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1884                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1885                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1886                                           objectid);
1887                 if (ret && ret != -EEXIST) {
1888                         btrfs_abort_transaction(trans, ret);
1889                         goto fail;
1890                 }
1891         }
1892 
1893 fail:
1894         pending->error = ret;
1895 dir_item_existed:
1896         trans->block_rsv = rsv;
1897         trans->bytes_reserved = 0;
1898 clear_skip_qgroup:
1899         btrfs_clear_skip_qgroup(trans);
1900 free_fname:
1901         fscrypt_free_filename(&fname);
1902 free_pending:
1903         kfree(new_root_item);
1904         pending->root_item = NULL;
1905         btrfs_free_path(path);
1906         pending->path = NULL;
1907 
1908         return ret;
1909 }
1910 
1911 /*
1912  * create all the snapshots we've scheduled for creation
1913  */
1914 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1915 {
1916         struct btrfs_pending_snapshot *pending, *next;
1917         struct list_head *head = &trans->transaction->pending_snapshots;
1918         int ret = 0;
1919 
1920         list_for_each_entry_safe(pending, next, head, list) {
1921                 list_del(&pending->list);
1922                 ret = create_pending_snapshot(trans, pending);
1923                 if (ret)
1924                         break;
1925         }
1926         return ret;
1927 }
1928 
1929 static void update_super_roots(struct btrfs_fs_info *fs_info)
1930 {
1931         struct btrfs_root_item *root_item;
1932         struct btrfs_super_block *super;
1933 
1934         super = fs_info->super_copy;
1935 
1936         root_item = &fs_info->chunk_root->root_item;
1937         super->chunk_root = root_item->bytenr;
1938         super->chunk_root_generation = root_item->generation;
1939         super->chunk_root_level = root_item->level;
1940 
1941         root_item = &fs_info->tree_root->root_item;
1942         super->root = root_item->bytenr;
1943         super->generation = root_item->generation;
1944         super->root_level = root_item->level;
1945         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1946                 super->cache_generation = root_item->generation;
1947         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1948                 super->cache_generation = 0;
1949         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1950                 super->uuid_tree_generation = root_item->generation;
1951 }
1952 
1953 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1954 {
1955         struct btrfs_transaction *trans;
1956         int ret = 0;
1957 
1958         spin_lock(&info->trans_lock);
1959         trans = info->running_transaction;
1960         if (trans)
1961                 ret = is_transaction_blocked(trans);
1962         spin_unlock(&info->trans_lock);
1963         return ret;
1964 }
1965 
1966 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1967 {
1968         struct btrfs_fs_info *fs_info = trans->fs_info;
1969         struct btrfs_transaction *cur_trans;
1970 
1971         /* Kick the transaction kthread. */
1972         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1973         wake_up_process(fs_info->transaction_kthread);
1974 
1975         /* take transaction reference */
1976         cur_trans = trans->transaction;
1977         refcount_inc(&cur_trans->use_count);
1978 
1979         btrfs_end_transaction(trans);
1980 
1981         /*
1982          * Wait for the current transaction commit to start and block
1983          * subsequent transaction joins
1984          */
1985         btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1986         wait_event(fs_info->transaction_blocked_wait,
1987                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1988                    TRANS_ABORTED(cur_trans));
1989         btrfs_put_transaction(cur_trans);
1990 }
1991 
1992 /*
1993  * If there is a running transaction commit it or if it's already committing,
1994  * wait for its commit to complete. Does not start and commit a new transaction
1995  * if there isn't any running.
1996  */
1997 int btrfs_commit_current_transaction(struct btrfs_root *root)
1998 {
1999         struct btrfs_trans_handle *trans;
2000 
2001         trans = btrfs_attach_transaction_barrier(root);
2002         if (IS_ERR(trans)) {
2003                 int ret = PTR_ERR(trans);
2004 
2005                 return (ret == -ENOENT) ? 0 : ret;
2006         }
2007 
2008         return btrfs_commit_transaction(trans);
2009 }
2010 
2011 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2012 {
2013         struct btrfs_fs_info *fs_info = trans->fs_info;
2014         struct btrfs_transaction *cur_trans = trans->transaction;
2015 
2016         WARN_ON(refcount_read(&trans->use_count) > 1);
2017 
2018         btrfs_abort_transaction(trans, err);
2019 
2020         spin_lock(&fs_info->trans_lock);
2021 
2022         /*
2023          * If the transaction is removed from the list, it means this
2024          * transaction has been committed successfully, so it is impossible
2025          * to call the cleanup function.
2026          */
2027         BUG_ON(list_empty(&cur_trans->list));
2028 
2029         if (cur_trans == fs_info->running_transaction) {
2030                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2031                 spin_unlock(&fs_info->trans_lock);
2032 
2033                 /*
2034                  * The thread has already released the lockdep map as reader
2035                  * already in btrfs_commit_transaction().
2036                  */
2037                 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2038                 wait_event(cur_trans->writer_wait,
2039                            atomic_read(&cur_trans->num_writers) == 1);
2040 
2041                 spin_lock(&fs_info->trans_lock);
2042         }
2043 
2044         /*
2045          * Now that we know no one else is still using the transaction we can
2046          * remove the transaction from the list of transactions. This avoids
2047          * the transaction kthread from cleaning up the transaction while some
2048          * other task is still using it, which could result in a use-after-free
2049          * on things like log trees, as it forces the transaction kthread to
2050          * wait for this transaction to be cleaned up by us.
2051          */
2052         list_del_init(&cur_trans->list);
2053 
2054         spin_unlock(&fs_info->trans_lock);
2055 
2056         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2057 
2058         spin_lock(&fs_info->trans_lock);
2059         if (cur_trans == fs_info->running_transaction)
2060                 fs_info->running_transaction = NULL;
2061         spin_unlock(&fs_info->trans_lock);
2062 
2063         if (trans->type & __TRANS_FREEZABLE)
2064                 sb_end_intwrite(fs_info->sb);
2065         btrfs_put_transaction(cur_trans);
2066         btrfs_put_transaction(cur_trans);
2067 
2068         trace_btrfs_transaction_commit(fs_info);
2069 
2070         if (current->journal_info == trans)
2071                 current->journal_info = NULL;
2072 
2073         /*
2074          * If relocation is running, we can't cancel scrub because that will
2075          * result in a deadlock. Before relocating a block group, relocation
2076          * pauses scrub, then starts and commits a transaction before unpausing
2077          * scrub. If the transaction commit is being done by the relocation
2078          * task or triggered by another task and the relocation task is waiting
2079          * for the commit, and we end up here due to an error in the commit
2080          * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2081          * asking for scrub to stop while having it asked to be paused higher
2082          * above in relocation code.
2083          */
2084         if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2085                 btrfs_scrub_cancel(fs_info);
2086 
2087         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2088 }
2089 
2090 /*
2091  * Release reserved delayed ref space of all pending block groups of the
2092  * transaction and remove them from the list
2093  */
2094 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2095 {
2096        struct btrfs_fs_info *fs_info = trans->fs_info;
2097        struct btrfs_block_group *block_group, *tmp;
2098 
2099        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2100                btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2101                list_del_init(&block_group->bg_list);
2102        }
2103 }
2104 
2105 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2106 {
2107         /*
2108          * We use try_to_writeback_inodes_sb() here because if we used
2109          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2110          * Currently are holding the fs freeze lock, if we do an async flush
2111          * we'll do btrfs_join_transaction() and deadlock because we need to
2112          * wait for the fs freeze lock.  Using the direct flushing we benefit
2113          * from already being in a transaction and our join_transaction doesn't
2114          * have to re-take the fs freeze lock.
2115          *
2116          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2117          * if it can read lock sb->s_umount. It will always be able to lock it,
2118          * except when the filesystem is being unmounted or being frozen, but in
2119          * those cases sync_filesystem() is called, which results in calling
2120          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2121          * Note that we don't call writeback_inodes_sb() directly, because it
2122          * will emit a warning if sb->s_umount is not locked.
2123          */
2124         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2125                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2126         return 0;
2127 }
2128 
2129 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2130 {
2131         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2132                 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2133 }
2134 
2135 /*
2136  * Add a pending snapshot associated with the given transaction handle to the
2137  * respective handle. This must be called after the transaction commit started
2138  * and while holding fs_info->trans_lock.
2139  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2140  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2141  * returns an error.
2142  */
2143 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2144 {
2145         struct btrfs_transaction *cur_trans = trans->transaction;
2146 
2147         if (!trans->pending_snapshot)
2148                 return;
2149 
2150         lockdep_assert_held(&trans->fs_info->trans_lock);
2151         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2152 
2153         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2154 }
2155 
2156 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2157 {
2158         fs_info->commit_stats.commit_count++;
2159         fs_info->commit_stats.last_commit_dur = interval;
2160         fs_info->commit_stats.max_commit_dur =
2161                         max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2162         fs_info->commit_stats.total_commit_dur += interval;
2163 }
2164 
2165 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2166 {
2167         struct btrfs_fs_info *fs_info = trans->fs_info;
2168         struct btrfs_transaction *cur_trans = trans->transaction;
2169         struct btrfs_transaction *prev_trans = NULL;
2170         int ret;
2171         ktime_t start_time;
2172         ktime_t interval;
2173 
2174         ASSERT(refcount_read(&trans->use_count) == 1);
2175         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2176 
2177         clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2178 
2179         /* Stop the commit early if ->aborted is set */
2180         if (TRANS_ABORTED(cur_trans)) {
2181                 ret = cur_trans->aborted;
2182                 goto lockdep_trans_commit_start_release;
2183         }
2184 
2185         btrfs_trans_release_metadata(trans);
2186         trans->block_rsv = NULL;
2187 
2188         /*
2189          * We only want one transaction commit doing the flushing so we do not
2190          * waste a bunch of time on lock contention on the extent root node.
2191          */
2192         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2193                               &cur_trans->delayed_refs.flags)) {
2194                 /*
2195                  * Make a pass through all the delayed refs we have so far.
2196                  * Any running threads may add more while we are here.
2197                  */
2198                 ret = btrfs_run_delayed_refs(trans, 0);
2199                 if (ret)
2200                         goto lockdep_trans_commit_start_release;
2201         }
2202 
2203         btrfs_create_pending_block_groups(trans);
2204 
2205         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2206                 int run_it = 0;
2207 
2208                 /* this mutex is also taken before trying to set
2209                  * block groups readonly.  We need to make sure
2210                  * that nobody has set a block group readonly
2211                  * after a extents from that block group have been
2212                  * allocated for cache files.  btrfs_set_block_group_ro
2213                  * will wait for the transaction to commit if it
2214                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2215                  *
2216                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2217                  * only one process starts all the block group IO.  It wouldn't
2218                  * hurt to have more than one go through, but there's no
2219                  * real advantage to it either.
2220                  */
2221                 mutex_lock(&fs_info->ro_block_group_mutex);
2222                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2223                                       &cur_trans->flags))
2224                         run_it = 1;
2225                 mutex_unlock(&fs_info->ro_block_group_mutex);
2226 
2227                 if (run_it) {
2228                         ret = btrfs_start_dirty_block_groups(trans);
2229                         if (ret)
2230                                 goto lockdep_trans_commit_start_release;
2231                 }
2232         }
2233 
2234         spin_lock(&fs_info->trans_lock);
2235         if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2236                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2237 
2238                 add_pending_snapshot(trans);
2239 
2240                 spin_unlock(&fs_info->trans_lock);
2241                 refcount_inc(&cur_trans->use_count);
2242 
2243                 if (trans->in_fsync)
2244                         want_state = TRANS_STATE_SUPER_COMMITTED;
2245 
2246                 btrfs_trans_state_lockdep_release(fs_info,
2247                                                   BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2248                 ret = btrfs_end_transaction(trans);
2249                 wait_for_commit(cur_trans, want_state);
2250 
2251                 if (TRANS_ABORTED(cur_trans))
2252                         ret = cur_trans->aborted;
2253 
2254                 btrfs_put_transaction(cur_trans);
2255 
2256                 return ret;
2257         }
2258 
2259         cur_trans->state = TRANS_STATE_COMMIT_PREP;
2260         wake_up(&fs_info->transaction_blocked_wait);
2261         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2262 
2263         if (cur_trans->list.prev != &fs_info->trans_list) {
2264                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2265 
2266                 if (trans->in_fsync)
2267                         want_state = TRANS_STATE_SUPER_COMMITTED;
2268 
2269                 prev_trans = list_entry(cur_trans->list.prev,
2270                                         struct btrfs_transaction, list);
2271                 if (prev_trans->state < want_state) {
2272                         refcount_inc(&prev_trans->use_count);
2273                         spin_unlock(&fs_info->trans_lock);
2274 
2275                         wait_for_commit(prev_trans, want_state);
2276 
2277                         ret = READ_ONCE(prev_trans->aborted);
2278 
2279                         btrfs_put_transaction(prev_trans);
2280                         if (ret)
2281                                 goto lockdep_release;
2282                         spin_lock(&fs_info->trans_lock);
2283                 }
2284         } else {
2285                 /*
2286                  * The previous transaction was aborted and was already removed
2287                  * from the list of transactions at fs_info->trans_list. So we
2288                  * abort to prevent writing a new superblock that reflects a
2289                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2290                  */
2291                 if (BTRFS_FS_ERROR(fs_info)) {
2292                         spin_unlock(&fs_info->trans_lock);
2293                         ret = -EROFS;
2294                         goto lockdep_release;
2295                 }
2296         }
2297 
2298         cur_trans->state = TRANS_STATE_COMMIT_START;
2299         wake_up(&fs_info->transaction_blocked_wait);
2300         spin_unlock(&fs_info->trans_lock);
2301 
2302         /*
2303          * Get the time spent on the work done by the commit thread and not
2304          * the time spent waiting on a previous commit
2305          */
2306         start_time = ktime_get_ns();
2307 
2308         extwriter_counter_dec(cur_trans, trans->type);
2309 
2310         ret = btrfs_start_delalloc_flush(fs_info);
2311         if (ret)
2312                 goto lockdep_release;
2313 
2314         ret = btrfs_run_delayed_items(trans);
2315         if (ret)
2316                 goto lockdep_release;
2317 
2318         /*
2319          * The thread has started/joined the transaction thus it holds the
2320          * lockdep map as a reader. It has to release it before acquiring the
2321          * lockdep map as a writer.
2322          */
2323         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2324         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2325         wait_event(cur_trans->writer_wait,
2326                    extwriter_counter_read(cur_trans) == 0);
2327 
2328         /* some pending stuffs might be added after the previous flush. */
2329         ret = btrfs_run_delayed_items(trans);
2330         if (ret) {
2331                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2332                 goto cleanup_transaction;
2333         }
2334 
2335         btrfs_wait_delalloc_flush(fs_info);
2336 
2337         /*
2338          * Wait for all ordered extents started by a fast fsync that joined this
2339          * transaction. Otherwise if this transaction commits before the ordered
2340          * extents complete we lose logged data after a power failure.
2341          */
2342         btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2343         wait_event(cur_trans->pending_wait,
2344                    atomic_read(&cur_trans->pending_ordered) == 0);
2345 
2346         btrfs_scrub_pause(fs_info);
2347         /*
2348          * Ok now we need to make sure to block out any other joins while we
2349          * commit the transaction.  We could have started a join before setting
2350          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2351          */
2352         spin_lock(&fs_info->trans_lock);
2353         add_pending_snapshot(trans);
2354         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2355         spin_unlock(&fs_info->trans_lock);
2356 
2357         /*
2358          * The thread has started/joined the transaction thus it holds the
2359          * lockdep map as a reader. It has to release it before acquiring the
2360          * lockdep map as a writer.
2361          */
2362         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2363         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2364         wait_event(cur_trans->writer_wait,
2365                    atomic_read(&cur_trans->num_writers) == 1);
2366 
2367         /*
2368          * Make lockdep happy by acquiring the state locks after
2369          * btrfs_trans_num_writers is released. If we acquired the state locks
2370          * before releasing the btrfs_trans_num_writers lock then lockdep would
2371          * complain because we did not follow the reverse order unlocking rule.
2372          */
2373         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2374         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2375         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2376 
2377         /*
2378          * We've started the commit, clear the flag in case we were triggered to
2379          * do an async commit but somebody else started before the transaction
2380          * kthread could do the work.
2381          */
2382         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2383 
2384         if (TRANS_ABORTED(cur_trans)) {
2385                 ret = cur_trans->aborted;
2386                 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2387                 goto scrub_continue;
2388         }
2389         /*
2390          * the reloc mutex makes sure that we stop
2391          * the balancing code from coming in and moving
2392          * extents around in the middle of the commit
2393          */
2394         mutex_lock(&fs_info->reloc_mutex);
2395 
2396         /*
2397          * We needn't worry about the delayed items because we will
2398          * deal with them in create_pending_snapshot(), which is the
2399          * core function of the snapshot creation.
2400          */
2401         ret = create_pending_snapshots(trans);
2402         if (ret)
2403                 goto unlock_reloc;
2404 
2405         /*
2406          * We insert the dir indexes of the snapshots and update the inode
2407          * of the snapshots' parents after the snapshot creation, so there
2408          * are some delayed items which are not dealt with. Now deal with
2409          * them.
2410          *
2411          * We needn't worry that this operation will corrupt the snapshots,
2412          * because all the tree which are snapshoted will be forced to COW
2413          * the nodes and leaves.
2414          */
2415         ret = btrfs_run_delayed_items(trans);
2416         if (ret)
2417                 goto unlock_reloc;
2418 
2419         ret = btrfs_run_delayed_refs(trans, U64_MAX);
2420         if (ret)
2421                 goto unlock_reloc;
2422 
2423         /*
2424          * make sure none of the code above managed to slip in a
2425          * delayed item
2426          */
2427         btrfs_assert_delayed_root_empty(fs_info);
2428 
2429         WARN_ON(cur_trans != trans->transaction);
2430 
2431         ret = commit_fs_roots(trans);
2432         if (ret)
2433                 goto unlock_reloc;
2434 
2435         /* commit_fs_roots gets rid of all the tree log roots, it is now
2436          * safe to free the root of tree log roots
2437          */
2438         btrfs_free_log_root_tree(trans, fs_info);
2439 
2440         /*
2441          * Since fs roots are all committed, we can get a quite accurate
2442          * new_roots. So let's do quota accounting.
2443          */
2444         ret = btrfs_qgroup_account_extents(trans);
2445         if (ret < 0)
2446                 goto unlock_reloc;
2447 
2448         ret = commit_cowonly_roots(trans);
2449         if (ret)
2450                 goto unlock_reloc;
2451 
2452         /*
2453          * The tasks which save the space cache and inode cache may also
2454          * update ->aborted, check it.
2455          */
2456         if (TRANS_ABORTED(cur_trans)) {
2457                 ret = cur_trans->aborted;
2458                 goto unlock_reloc;
2459         }
2460 
2461         cur_trans = fs_info->running_transaction;
2462 
2463         btrfs_set_root_node(&fs_info->tree_root->root_item,
2464                             fs_info->tree_root->node);
2465         list_add_tail(&fs_info->tree_root->dirty_list,
2466                       &cur_trans->switch_commits);
2467 
2468         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2469                             fs_info->chunk_root->node);
2470         list_add_tail(&fs_info->chunk_root->dirty_list,
2471                       &cur_trans->switch_commits);
2472 
2473         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2474                 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2475                                     fs_info->block_group_root->node);
2476                 list_add_tail(&fs_info->block_group_root->dirty_list,
2477                               &cur_trans->switch_commits);
2478         }
2479 
2480         switch_commit_roots(trans);
2481 
2482         ASSERT(list_empty(&cur_trans->dirty_bgs));
2483         ASSERT(list_empty(&cur_trans->io_bgs));
2484         update_super_roots(fs_info);
2485 
2486         btrfs_set_super_log_root(fs_info->super_copy, 0);
2487         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2488         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2489                sizeof(*fs_info->super_copy));
2490 
2491         btrfs_commit_device_sizes(cur_trans);
2492 
2493         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2494         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2495 
2496         btrfs_trans_release_chunk_metadata(trans);
2497 
2498         /*
2499          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2500          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2501          * make sure that before we commit our superblock, no other task can
2502          * start a new transaction and commit a log tree before we commit our
2503          * superblock. Anyone trying to commit a log tree locks this mutex before
2504          * writing its superblock.
2505          */
2506         mutex_lock(&fs_info->tree_log_mutex);
2507 
2508         spin_lock(&fs_info->trans_lock);
2509         cur_trans->state = TRANS_STATE_UNBLOCKED;
2510         fs_info->running_transaction = NULL;
2511         spin_unlock(&fs_info->trans_lock);
2512         mutex_unlock(&fs_info->reloc_mutex);
2513 
2514         wake_up(&fs_info->transaction_wait);
2515         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2516 
2517         /* If we have features changed, wake up the cleaner to update sysfs. */
2518         if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2519             fs_info->cleaner_kthread)
2520                 wake_up_process(fs_info->cleaner_kthread);
2521 
2522         ret = btrfs_write_and_wait_transaction(trans);
2523         if (ret) {
2524                 btrfs_handle_fs_error(fs_info, ret,
2525                                       "Error while writing out transaction");
2526                 mutex_unlock(&fs_info->tree_log_mutex);
2527                 goto scrub_continue;
2528         }
2529 
2530         ret = write_all_supers(fs_info, 0);
2531         /*
2532          * the super is written, we can safely allow the tree-loggers
2533          * to go about their business
2534          */
2535         mutex_unlock(&fs_info->tree_log_mutex);
2536         if (ret)
2537                 goto scrub_continue;
2538 
2539         /*
2540          * We needn't acquire the lock here because there is no other task
2541          * which can change it.
2542          */
2543         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2544         wake_up(&cur_trans->commit_wait);
2545         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2546 
2547         btrfs_finish_extent_commit(trans);
2548 
2549         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2550                 btrfs_clear_space_info_full(fs_info);
2551 
2552         btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2553         /*
2554          * We needn't acquire the lock here because there is no other task
2555          * which can change it.
2556          */
2557         cur_trans->state = TRANS_STATE_COMPLETED;
2558         wake_up(&cur_trans->commit_wait);
2559         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2560 
2561         spin_lock(&fs_info->trans_lock);
2562         list_del_init(&cur_trans->list);
2563         spin_unlock(&fs_info->trans_lock);
2564 
2565         btrfs_put_transaction(cur_trans);
2566         btrfs_put_transaction(cur_trans);
2567 
2568         if (trans->type & __TRANS_FREEZABLE)
2569                 sb_end_intwrite(fs_info->sb);
2570 
2571         trace_btrfs_transaction_commit(fs_info);
2572 
2573         interval = ktime_get_ns() - start_time;
2574 
2575         btrfs_scrub_continue(fs_info);
2576 
2577         if (current->journal_info == trans)
2578                 current->journal_info = NULL;
2579 
2580         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2581 
2582         update_commit_stats(fs_info, interval);
2583 
2584         return ret;
2585 
2586 unlock_reloc:
2587         mutex_unlock(&fs_info->reloc_mutex);
2588         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2589 scrub_continue:
2590         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2591         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2592         btrfs_scrub_continue(fs_info);
2593 cleanup_transaction:
2594         btrfs_trans_release_metadata(trans);
2595         btrfs_cleanup_pending_block_groups(trans);
2596         btrfs_trans_release_chunk_metadata(trans);
2597         trans->block_rsv = NULL;
2598         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2599         if (current->journal_info == trans)
2600                 current->journal_info = NULL;
2601         cleanup_transaction(trans, ret);
2602 
2603         return ret;
2604 
2605 lockdep_release:
2606         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2607         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2608         goto cleanup_transaction;
2609 
2610 lockdep_trans_commit_start_release:
2611         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2612         btrfs_end_transaction(trans);
2613         return ret;
2614 }
2615 
2616 /*
2617  * return < 0 if error
2618  * 0 if there are no more dead_roots at the time of call
2619  * 1 there are more to be processed, call me again
2620  *
2621  * The return value indicates there are certainly more snapshots to delete, but
2622  * if there comes a new one during processing, it may return 0. We don't mind,
2623  * because btrfs_commit_super will poke cleaner thread and it will process it a
2624  * few seconds later.
2625  */
2626 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2627 {
2628         struct btrfs_root *root;
2629         int ret;
2630 
2631         spin_lock(&fs_info->trans_lock);
2632         if (list_empty(&fs_info->dead_roots)) {
2633                 spin_unlock(&fs_info->trans_lock);
2634                 return 0;
2635         }
2636         root = list_first_entry(&fs_info->dead_roots,
2637                         struct btrfs_root, root_list);
2638         list_del_init(&root->root_list);
2639         spin_unlock(&fs_info->trans_lock);
2640 
2641         btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2642 
2643         btrfs_kill_all_delayed_nodes(root);
2644 
2645         if (btrfs_header_backref_rev(root->node) <
2646                         BTRFS_MIXED_BACKREF_REV)
2647                 ret = btrfs_drop_snapshot(root, 0, 0);
2648         else
2649                 ret = btrfs_drop_snapshot(root, 1, 0);
2650 
2651         btrfs_put_root(root);
2652         return (ret < 0) ? 0 : 1;
2653 }
2654 
2655 /*
2656  * We only mark the transaction aborted and then set the file system read-only.
2657  * This will prevent new transactions from starting or trying to join this
2658  * one.
2659  *
2660  * This means that error recovery at the call site is limited to freeing
2661  * any local memory allocations and passing the error code up without
2662  * further cleanup. The transaction should complete as it normally would
2663  * in the call path but will return -EIO.
2664  *
2665  * We'll complete the cleanup in btrfs_end_transaction and
2666  * btrfs_commit_transaction.
2667  */
2668 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2669                                       const char *function,
2670                                       unsigned int line, int error, bool first_hit)
2671 {
2672         struct btrfs_fs_info *fs_info = trans->fs_info;
2673 
2674         WRITE_ONCE(trans->aborted, error);
2675         WRITE_ONCE(trans->transaction->aborted, error);
2676         if (first_hit && error == -ENOSPC)
2677                 btrfs_dump_space_info_for_trans_abort(fs_info);
2678         /* Wake up anybody who may be waiting on this transaction */
2679         wake_up(&fs_info->transaction_wait);
2680         wake_up(&fs_info->transaction_blocked_wait);
2681         __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2682 }
2683 
2684 int __init btrfs_transaction_init(void)
2685 {
2686         btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2687         if (!btrfs_trans_handle_cachep)
2688                 return -ENOMEM;
2689         return 0;
2690 }
2691 
2692 void __cold btrfs_transaction_exit(void)
2693 {
2694         kmem_cache_destroy(btrfs_trans_handle_cachep);
2695 }
2696 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php