1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/writeback.h> 11 #include <linux/pagemap.h> 12 #include <linux/blkdev.h> 13 #include <linux/uuid.h> 14 #include <linux/timekeeping.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "locking.h" 20 #include "tree-log.h" 21 #include "volumes.h" 22 #include "dev-replace.h" 23 #include "qgroup.h" 24 #include "block-group.h" 25 #include "space-info.h" 26 #include "fs.h" 27 #include "accessors.h" 28 #include "extent-tree.h" 29 #include "root-tree.h" 30 #include "dir-item.h" 31 #include "uuid-tree.h" 32 #include "ioctl.h" 33 #include "relocation.h" 34 #include "scrub.h" 35 36 static struct kmem_cache *btrfs_trans_handle_cachep; 37 38 /* 39 * Transaction states and transitions 40 * 41 * No running transaction (fs tree blocks are not modified) 42 * | 43 * | To next stage: 44 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 45 * V 46 * Transaction N [[TRANS_STATE_RUNNING]] 47 * | 48 * | New trans handles can be attached to transaction N by calling all 49 * | start_transaction() variants. 50 * | 51 * | To next stage: 52 * | Call btrfs_commit_transaction() on any trans handle attached to 53 * | transaction N 54 * V 55 * Transaction N [[TRANS_STATE_COMMIT_PREP]] 56 * | 57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win 58 * | the race and the rest will wait for the winner to commit the transaction. 59 * | 60 * | The winner will wait for previous running transaction to completely finish 61 * | if there is one. 62 * | 63 * Transaction N [[TRANS_STATE_COMMIT_START]] 64 * | 65 * | Then one of the following happens: 66 * | - Wait for all other trans handle holders to release. 67 * | The btrfs_commit_transaction() caller will do the commit work. 68 * | - Wait for current transaction to be committed by others. 69 * | Other btrfs_commit_transaction() caller will do the commit work. 70 * | 71 * | At this stage, only btrfs_join_transaction*() variants can attach 72 * | to this running transaction. 73 * | All other variants will wait for current one to finish and attach to 74 * | transaction N+1. 75 * | 76 * | To next stage: 77 * | Caller is chosen to commit transaction N, and all other trans handle 78 * | haven been released. 79 * V 80 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 81 * | 82 * | The heavy lifting transaction work is started. 83 * | From running delayed refs (modifying extent tree) to creating pending 84 * | snapshots, running qgroups. 85 * | In short, modify supporting trees to reflect modifications of subvolume 86 * | trees. 87 * | 88 * | At this stage, all start_transaction() calls will wait for this 89 * | transaction to finish and attach to transaction N+1. 90 * | 91 * | To next stage: 92 * | Until all supporting trees are updated. 93 * V 94 * Transaction N [[TRANS_STATE_UNBLOCKED]] 95 * | Transaction N+1 96 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 97 * | need to write them back to disk and update | 98 * | super blocks. | 99 * | | 100 * | At this stage, new transaction is allowed to | 101 * | start. | 102 * | All new start_transaction() calls will be | 103 * | attached to transid N+1. | 104 * | | 105 * | To next stage: | 106 * | Until all tree blocks are super blocks are | 107 * | written to block devices | 108 * V | 109 * Transaction N [[TRANS_STATE_COMPLETED]] V 110 * All tree blocks and super blocks are written. Transaction N+1 111 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 112 * data structures will be cleaned up. | Life goes on 113 */ 114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 115 [TRANS_STATE_RUNNING] = 0U, 116 [TRANS_STATE_COMMIT_PREP] = 0U, 117 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 118 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 119 __TRANS_ATTACH | 120 __TRANS_JOIN | 121 __TRANS_JOIN_NOSTART), 122 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 123 __TRANS_ATTACH | 124 __TRANS_JOIN | 125 __TRANS_JOIN_NOLOCK | 126 __TRANS_JOIN_NOSTART), 127 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 128 __TRANS_ATTACH | 129 __TRANS_JOIN | 130 __TRANS_JOIN_NOLOCK | 131 __TRANS_JOIN_NOSTART), 132 [TRANS_STATE_COMPLETED] = (__TRANS_START | 133 __TRANS_ATTACH | 134 __TRANS_JOIN | 135 __TRANS_JOIN_NOLOCK | 136 __TRANS_JOIN_NOSTART), 137 }; 138 139 void btrfs_put_transaction(struct btrfs_transaction *transaction) 140 { 141 WARN_ON(refcount_read(&transaction->use_count) == 0); 142 if (refcount_dec_and_test(&transaction->use_count)) { 143 BUG_ON(!list_empty(&transaction->list)); 144 WARN_ON(!RB_EMPTY_ROOT( 145 &transaction->delayed_refs.href_root.rb_root)); 146 WARN_ON(!RB_EMPTY_ROOT( 147 &transaction->delayed_refs.dirty_extent_root)); 148 if (transaction->delayed_refs.pending_csums) 149 btrfs_err(transaction->fs_info, 150 "pending csums is %llu", 151 transaction->delayed_refs.pending_csums); 152 /* 153 * If any block groups are found in ->deleted_bgs then it's 154 * because the transaction was aborted and a commit did not 155 * happen (things failed before writing the new superblock 156 * and calling btrfs_finish_extent_commit()), so we can not 157 * discard the physical locations of the block groups. 158 */ 159 while (!list_empty(&transaction->deleted_bgs)) { 160 struct btrfs_block_group *cache; 161 162 cache = list_first_entry(&transaction->deleted_bgs, 163 struct btrfs_block_group, 164 bg_list); 165 list_del_init(&cache->bg_list); 166 btrfs_unfreeze_block_group(cache); 167 btrfs_put_block_group(cache); 168 } 169 WARN_ON(!list_empty(&transaction->dev_update_list)); 170 kfree(transaction); 171 } 172 } 173 174 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 175 { 176 struct btrfs_transaction *cur_trans = trans->transaction; 177 struct btrfs_fs_info *fs_info = trans->fs_info; 178 struct btrfs_root *root, *tmp; 179 180 /* 181 * At this point no one can be using this transaction to modify any tree 182 * and no one can start another transaction to modify any tree either. 183 */ 184 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 185 186 down_write(&fs_info->commit_root_sem); 187 188 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 189 fs_info->last_reloc_trans = trans->transid; 190 191 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 192 dirty_list) { 193 list_del_init(&root->dirty_list); 194 free_extent_buffer(root->commit_root); 195 root->commit_root = btrfs_root_node(root); 196 extent_io_tree_release(&root->dirty_log_pages); 197 btrfs_qgroup_clean_swapped_blocks(root); 198 } 199 200 /* We can free old roots now. */ 201 spin_lock(&cur_trans->dropped_roots_lock); 202 while (!list_empty(&cur_trans->dropped_roots)) { 203 root = list_first_entry(&cur_trans->dropped_roots, 204 struct btrfs_root, root_list); 205 list_del_init(&root->root_list); 206 spin_unlock(&cur_trans->dropped_roots_lock); 207 btrfs_free_log(trans, root); 208 btrfs_drop_and_free_fs_root(fs_info, root); 209 spin_lock(&cur_trans->dropped_roots_lock); 210 } 211 spin_unlock(&cur_trans->dropped_roots_lock); 212 213 up_write(&fs_info->commit_root_sem); 214 } 215 216 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 217 unsigned int type) 218 { 219 if (type & TRANS_EXTWRITERS) 220 atomic_inc(&trans->num_extwriters); 221 } 222 223 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 224 unsigned int type) 225 { 226 if (type & TRANS_EXTWRITERS) 227 atomic_dec(&trans->num_extwriters); 228 } 229 230 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 231 unsigned int type) 232 { 233 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 234 } 235 236 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 237 { 238 return atomic_read(&trans->num_extwriters); 239 } 240 241 /* 242 * To be called after doing the chunk btree updates right after allocating a new 243 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 244 * chunk after all chunk btree updates and after finishing the second phase of 245 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 246 * group had its chunk item insertion delayed to the second phase. 247 */ 248 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 249 { 250 struct btrfs_fs_info *fs_info = trans->fs_info; 251 252 if (!trans->chunk_bytes_reserved) 253 return; 254 255 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 256 trans->chunk_bytes_reserved, NULL); 257 trans->chunk_bytes_reserved = 0; 258 } 259 260 /* 261 * either allocate a new transaction or hop into the existing one 262 */ 263 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 264 unsigned int type) 265 { 266 struct btrfs_transaction *cur_trans; 267 268 spin_lock(&fs_info->trans_lock); 269 loop: 270 /* The file system has been taken offline. No new transactions. */ 271 if (BTRFS_FS_ERROR(fs_info)) { 272 spin_unlock(&fs_info->trans_lock); 273 return -EROFS; 274 } 275 276 cur_trans = fs_info->running_transaction; 277 if (cur_trans) { 278 if (TRANS_ABORTED(cur_trans)) { 279 spin_unlock(&fs_info->trans_lock); 280 return cur_trans->aborted; 281 } 282 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 283 spin_unlock(&fs_info->trans_lock); 284 return -EBUSY; 285 } 286 refcount_inc(&cur_trans->use_count); 287 atomic_inc(&cur_trans->num_writers); 288 extwriter_counter_inc(cur_trans, type); 289 spin_unlock(&fs_info->trans_lock); 290 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 291 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 292 return 0; 293 } 294 spin_unlock(&fs_info->trans_lock); 295 296 /* 297 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the 298 * current transaction, and commit it. If there is no transaction, just 299 * return ENOENT. 300 */ 301 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART) 302 return -ENOENT; 303 304 /* 305 * JOIN_NOLOCK only happens during the transaction commit, so 306 * it is impossible that ->running_transaction is NULL 307 */ 308 BUG_ON(type == TRANS_JOIN_NOLOCK); 309 310 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 311 if (!cur_trans) 312 return -ENOMEM; 313 314 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 315 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 316 317 spin_lock(&fs_info->trans_lock); 318 if (fs_info->running_transaction) { 319 /* 320 * someone started a transaction after we unlocked. Make sure 321 * to redo the checks above 322 */ 323 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 324 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 325 kfree(cur_trans); 326 goto loop; 327 } else if (BTRFS_FS_ERROR(fs_info)) { 328 spin_unlock(&fs_info->trans_lock); 329 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 330 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 331 kfree(cur_trans); 332 return -EROFS; 333 } 334 335 cur_trans->fs_info = fs_info; 336 atomic_set(&cur_trans->pending_ordered, 0); 337 init_waitqueue_head(&cur_trans->pending_wait); 338 atomic_set(&cur_trans->num_writers, 1); 339 extwriter_counter_init(cur_trans, type); 340 init_waitqueue_head(&cur_trans->writer_wait); 341 init_waitqueue_head(&cur_trans->commit_wait); 342 cur_trans->state = TRANS_STATE_RUNNING; 343 /* 344 * One for this trans handle, one so it will live on until we 345 * commit the transaction. 346 */ 347 refcount_set(&cur_trans->use_count, 2); 348 cur_trans->flags = 0; 349 cur_trans->start_time = ktime_get_seconds(); 350 351 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 352 353 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 354 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 355 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 356 357 /* 358 * although the tree mod log is per file system and not per transaction, 359 * the log must never go across transaction boundaries. 360 */ 361 smp_mb(); 362 if (!list_empty(&fs_info->tree_mod_seq_list)) 363 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 364 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 365 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 366 atomic64_set(&fs_info->tree_mod_seq, 0); 367 368 spin_lock_init(&cur_trans->delayed_refs.lock); 369 370 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 371 INIT_LIST_HEAD(&cur_trans->dev_update_list); 372 INIT_LIST_HEAD(&cur_trans->switch_commits); 373 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 374 INIT_LIST_HEAD(&cur_trans->io_bgs); 375 INIT_LIST_HEAD(&cur_trans->dropped_roots); 376 mutex_init(&cur_trans->cache_write_mutex); 377 spin_lock_init(&cur_trans->dirty_bgs_lock); 378 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 379 spin_lock_init(&cur_trans->dropped_roots_lock); 380 list_add_tail(&cur_trans->list, &fs_info->trans_list); 381 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 382 IO_TREE_TRANS_DIRTY_PAGES); 383 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 384 IO_TREE_FS_PINNED_EXTENTS); 385 btrfs_set_fs_generation(fs_info, fs_info->generation + 1); 386 cur_trans->transid = fs_info->generation; 387 fs_info->running_transaction = cur_trans; 388 cur_trans->aborted = 0; 389 spin_unlock(&fs_info->trans_lock); 390 391 return 0; 392 } 393 394 /* 395 * This does all the record keeping required to make sure that a shareable root 396 * is properly recorded in a given transaction. This is required to make sure 397 * the old root from before we joined the transaction is deleted when the 398 * transaction commits. 399 */ 400 static int record_root_in_trans(struct btrfs_trans_handle *trans, 401 struct btrfs_root *root, 402 int force) 403 { 404 struct btrfs_fs_info *fs_info = root->fs_info; 405 int ret = 0; 406 407 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 408 btrfs_get_root_last_trans(root) < trans->transid) || force) { 409 WARN_ON(!force && root->commit_root != root->node); 410 411 /* 412 * see below for IN_TRANS_SETUP usage rules 413 * we have the reloc mutex held now, so there 414 * is only one writer in this function 415 */ 416 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 417 418 /* make sure readers find IN_TRANS_SETUP before 419 * they find our root->last_trans update 420 */ 421 smp_wmb(); 422 423 spin_lock(&fs_info->fs_roots_radix_lock); 424 if (btrfs_get_root_last_trans(root) == trans->transid && !force) { 425 spin_unlock(&fs_info->fs_roots_radix_lock); 426 return 0; 427 } 428 radix_tree_tag_set(&fs_info->fs_roots_radix, 429 (unsigned long)btrfs_root_id(root), 430 BTRFS_ROOT_TRANS_TAG); 431 spin_unlock(&fs_info->fs_roots_radix_lock); 432 btrfs_set_root_last_trans(root, trans->transid); 433 434 /* this is pretty tricky. We don't want to 435 * take the relocation lock in btrfs_record_root_in_trans 436 * unless we're really doing the first setup for this root in 437 * this transaction. 438 * 439 * Normally we'd use root->last_trans as a flag to decide 440 * if we want to take the expensive mutex. 441 * 442 * But, we have to set root->last_trans before we 443 * init the relocation root, otherwise, we trip over warnings 444 * in ctree.c. The solution used here is to flag ourselves 445 * with root IN_TRANS_SETUP. When this is 1, we're still 446 * fixing up the reloc trees and everyone must wait. 447 * 448 * When this is zero, they can trust root->last_trans and fly 449 * through btrfs_record_root_in_trans without having to take the 450 * lock. smp_wmb() makes sure that all the writes above are 451 * done before we pop in the zero below 452 */ 453 ret = btrfs_init_reloc_root(trans, root); 454 smp_mb__before_atomic(); 455 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 456 } 457 return ret; 458 } 459 460 461 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 462 struct btrfs_root *root) 463 { 464 struct btrfs_fs_info *fs_info = root->fs_info; 465 struct btrfs_transaction *cur_trans = trans->transaction; 466 467 /* Add ourselves to the transaction dropped list */ 468 spin_lock(&cur_trans->dropped_roots_lock); 469 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 470 spin_unlock(&cur_trans->dropped_roots_lock); 471 472 /* Make sure we don't try to update the root at commit time */ 473 spin_lock(&fs_info->fs_roots_radix_lock); 474 radix_tree_tag_clear(&fs_info->fs_roots_radix, 475 (unsigned long)btrfs_root_id(root), 476 BTRFS_ROOT_TRANS_TAG); 477 spin_unlock(&fs_info->fs_roots_radix_lock); 478 } 479 480 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 481 struct btrfs_root *root) 482 { 483 struct btrfs_fs_info *fs_info = root->fs_info; 484 int ret; 485 486 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 487 return 0; 488 489 /* 490 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 491 * and barriers 492 */ 493 smp_rmb(); 494 if (btrfs_get_root_last_trans(root) == trans->transid && 495 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 496 return 0; 497 498 mutex_lock(&fs_info->reloc_mutex); 499 ret = record_root_in_trans(trans, root, 0); 500 mutex_unlock(&fs_info->reloc_mutex); 501 502 return ret; 503 } 504 505 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 506 { 507 return (trans->state >= TRANS_STATE_COMMIT_START && 508 trans->state < TRANS_STATE_UNBLOCKED && 509 !TRANS_ABORTED(trans)); 510 } 511 512 /* wait for commit against the current transaction to become unblocked 513 * when this is done, it is safe to start a new transaction, but the current 514 * transaction might not be fully on disk. 515 */ 516 static void wait_current_trans(struct btrfs_fs_info *fs_info) 517 { 518 struct btrfs_transaction *cur_trans; 519 520 spin_lock(&fs_info->trans_lock); 521 cur_trans = fs_info->running_transaction; 522 if (cur_trans && is_transaction_blocked(cur_trans)) { 523 refcount_inc(&cur_trans->use_count); 524 spin_unlock(&fs_info->trans_lock); 525 526 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 527 wait_event(fs_info->transaction_wait, 528 cur_trans->state >= TRANS_STATE_UNBLOCKED || 529 TRANS_ABORTED(cur_trans)); 530 btrfs_put_transaction(cur_trans); 531 } else { 532 spin_unlock(&fs_info->trans_lock); 533 } 534 } 535 536 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 537 { 538 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 539 return 0; 540 541 if (type == TRANS_START) 542 return 1; 543 544 return 0; 545 } 546 547 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 548 { 549 struct btrfs_fs_info *fs_info = root->fs_info; 550 551 if (!fs_info->reloc_ctl || 552 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 553 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID || 554 root->reloc_root) 555 return false; 556 557 return true; 558 } 559 560 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info, 561 enum btrfs_reserve_flush_enum flush, 562 u64 num_bytes, 563 u64 *delayed_refs_bytes) 564 { 565 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info; 566 u64 bytes = num_bytes + *delayed_refs_bytes; 567 int ret; 568 569 /* 570 * We want to reserve all the bytes we may need all at once, so we only 571 * do 1 enospc flushing cycle per transaction start. 572 */ 573 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush); 574 575 /* 576 * If we are an emergency flush, which can steal from the global block 577 * reserve, then attempt to not reserve space for the delayed refs, as 578 * we will consume space for them from the global block reserve. 579 */ 580 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) { 581 bytes -= *delayed_refs_bytes; 582 *delayed_refs_bytes = 0; 583 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush); 584 } 585 586 return ret; 587 } 588 589 static struct btrfs_trans_handle * 590 start_transaction(struct btrfs_root *root, unsigned int num_items, 591 unsigned int type, enum btrfs_reserve_flush_enum flush, 592 bool enforce_qgroups) 593 { 594 struct btrfs_fs_info *fs_info = root->fs_info; 595 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 596 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv; 597 struct btrfs_trans_handle *h; 598 struct btrfs_transaction *cur_trans; 599 u64 num_bytes = 0; 600 u64 qgroup_reserved = 0; 601 u64 delayed_refs_bytes = 0; 602 bool reloc_reserved = false; 603 bool do_chunk_alloc = false; 604 int ret; 605 606 if (BTRFS_FS_ERROR(fs_info)) 607 return ERR_PTR(-EROFS); 608 609 if (current->journal_info) { 610 WARN_ON(type & TRANS_EXTWRITERS); 611 h = current->journal_info; 612 refcount_inc(&h->use_count); 613 WARN_ON(refcount_read(&h->use_count) > 2); 614 h->orig_rsv = h->block_rsv; 615 h->block_rsv = NULL; 616 goto got_it; 617 } 618 619 /* 620 * Do the reservation before we join the transaction so we can do all 621 * the appropriate flushing if need be. 622 */ 623 if (num_items && root != fs_info->chunk_root) { 624 qgroup_reserved = num_items * fs_info->nodesize; 625 /* 626 * Use prealloc for now, as there might be a currently running 627 * transaction that could free this reserved space prematurely 628 * by committing. 629 */ 630 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved, 631 enforce_qgroups, false); 632 if (ret) 633 return ERR_PTR(ret); 634 635 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 636 /* 637 * If we plan to insert/update/delete "num_items" from a btree, 638 * we will also generate delayed refs for extent buffers in the 639 * respective btree paths, so reserve space for the delayed refs 640 * that will be generated by the caller as it modifies btrees. 641 * Try to reserve them to avoid excessive use of the global 642 * block reserve. 643 */ 644 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items); 645 646 /* 647 * Do the reservation for the relocation root creation 648 */ 649 if (need_reserve_reloc_root(root)) { 650 num_bytes += fs_info->nodesize; 651 reloc_reserved = true; 652 } 653 654 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes, 655 &delayed_refs_bytes); 656 if (ret) 657 goto reserve_fail; 658 659 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true); 660 661 if (trans_rsv->space_info->force_alloc) 662 do_chunk_alloc = true; 663 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 664 !btrfs_block_rsv_full(delayed_refs_rsv)) { 665 /* 666 * Some people call with btrfs_start_transaction(root, 0) 667 * because they can be throttled, but have some other mechanism 668 * for reserving space. We still want these guys to refill the 669 * delayed block_rsv so just add 1 items worth of reservation 670 * here. 671 */ 672 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 673 if (ret) 674 goto reserve_fail; 675 } 676 again: 677 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 678 if (!h) { 679 ret = -ENOMEM; 680 goto alloc_fail; 681 } 682 683 /* 684 * If we are JOIN_NOLOCK we're already committing a transaction and 685 * waiting on this guy, so we don't need to do the sb_start_intwrite 686 * because we're already holding a ref. We need this because we could 687 * have raced in and did an fsync() on a file which can kick a commit 688 * and then we deadlock with somebody doing a freeze. 689 * 690 * If we are ATTACH, it means we just want to catch the current 691 * transaction and commit it, so we needn't do sb_start_intwrite(). 692 */ 693 if (type & __TRANS_FREEZABLE) 694 sb_start_intwrite(fs_info->sb); 695 696 if (may_wait_transaction(fs_info, type)) 697 wait_current_trans(fs_info); 698 699 do { 700 ret = join_transaction(fs_info, type); 701 if (ret == -EBUSY) { 702 wait_current_trans(fs_info); 703 if (unlikely(type == TRANS_ATTACH || 704 type == TRANS_JOIN_NOSTART)) 705 ret = -ENOENT; 706 } 707 } while (ret == -EBUSY); 708 709 if (ret < 0) 710 goto join_fail; 711 712 cur_trans = fs_info->running_transaction; 713 714 h->transid = cur_trans->transid; 715 h->transaction = cur_trans; 716 refcount_set(&h->use_count, 1); 717 h->fs_info = root->fs_info; 718 719 h->type = type; 720 INIT_LIST_HEAD(&h->new_bgs); 721 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS); 722 723 smp_mb(); 724 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 725 may_wait_transaction(fs_info, type)) { 726 current->journal_info = h; 727 btrfs_commit_transaction(h); 728 goto again; 729 } 730 731 if (num_bytes) { 732 trace_btrfs_space_reservation(fs_info, "transaction", 733 h->transid, num_bytes, 1); 734 h->block_rsv = trans_rsv; 735 h->bytes_reserved = num_bytes; 736 if (delayed_refs_bytes > 0) { 737 trace_btrfs_space_reservation(fs_info, 738 "local_delayed_refs_rsv", 739 h->transid, 740 delayed_refs_bytes, 1); 741 h->delayed_refs_bytes_reserved = delayed_refs_bytes; 742 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true); 743 delayed_refs_bytes = 0; 744 } 745 h->reloc_reserved = reloc_reserved; 746 } 747 748 got_it: 749 if (!current->journal_info) 750 current->journal_info = h; 751 752 /* 753 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 754 * ALLOC_FORCE the first run through, and then we won't allocate for 755 * anybody else who races in later. We don't care about the return 756 * value here. 757 */ 758 if (do_chunk_alloc && num_bytes) { 759 u64 flags = h->block_rsv->space_info->flags; 760 761 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 762 CHUNK_ALLOC_NO_FORCE); 763 } 764 765 /* 766 * btrfs_record_root_in_trans() needs to alloc new extents, and may 767 * call btrfs_join_transaction() while we're also starting a 768 * transaction. 769 * 770 * Thus it need to be called after current->journal_info initialized, 771 * or we can deadlock. 772 */ 773 ret = btrfs_record_root_in_trans(h, root); 774 if (ret) { 775 /* 776 * The transaction handle is fully initialized and linked with 777 * other structures so it needs to be ended in case of errors, 778 * not just freed. 779 */ 780 btrfs_end_transaction(h); 781 goto reserve_fail; 782 } 783 /* 784 * Now that we have found a transaction to be a part of, convert the 785 * qgroup reservation from prealloc to pertrans. A different transaction 786 * can't race in and free our pertrans out from under us. 787 */ 788 if (qgroup_reserved) 789 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 790 791 return h; 792 793 join_fail: 794 if (type & __TRANS_FREEZABLE) 795 sb_end_intwrite(fs_info->sb); 796 kmem_cache_free(btrfs_trans_handle_cachep, h); 797 alloc_fail: 798 if (num_bytes) 799 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL); 800 if (delayed_refs_bytes) 801 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info, 802 delayed_refs_bytes); 803 reserve_fail: 804 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 805 return ERR_PTR(ret); 806 } 807 808 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 809 unsigned int num_items) 810 { 811 return start_transaction(root, num_items, TRANS_START, 812 BTRFS_RESERVE_FLUSH_ALL, true); 813 } 814 815 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 816 struct btrfs_root *root, 817 unsigned int num_items) 818 { 819 return start_transaction(root, num_items, TRANS_START, 820 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 821 } 822 823 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 824 { 825 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 826 true); 827 } 828 829 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 830 { 831 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 832 BTRFS_RESERVE_NO_FLUSH, true); 833 } 834 835 /* 836 * Similar to regular join but it never starts a transaction when none is 837 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED. 838 * This is similar to btrfs_attach_transaction() but it allows the join to 839 * happen if the transaction commit already started but it's not yet in the 840 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING). 841 */ 842 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 843 { 844 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 845 BTRFS_RESERVE_NO_FLUSH, true); 846 } 847 848 /* 849 * Catch the running transaction. 850 * 851 * It is used when we want to commit the current the transaction, but 852 * don't want to start a new one. 853 * 854 * Note: If this function return -ENOENT, it just means there is no 855 * running transaction. But it is possible that the inactive transaction 856 * is still in the memory, not fully on disk. If you hope there is no 857 * inactive transaction in the fs when -ENOENT is returned, you should 858 * invoke 859 * btrfs_attach_transaction_barrier() 860 */ 861 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 862 { 863 return start_transaction(root, 0, TRANS_ATTACH, 864 BTRFS_RESERVE_NO_FLUSH, true); 865 } 866 867 /* 868 * Catch the running transaction. 869 * 870 * It is similar to the above function, the difference is this one 871 * will wait for all the inactive transactions until they fully 872 * complete. 873 */ 874 struct btrfs_trans_handle * 875 btrfs_attach_transaction_barrier(struct btrfs_root *root) 876 { 877 struct btrfs_trans_handle *trans; 878 879 trans = start_transaction(root, 0, TRANS_ATTACH, 880 BTRFS_RESERVE_NO_FLUSH, true); 881 if (trans == ERR_PTR(-ENOENT)) { 882 int ret; 883 884 ret = btrfs_wait_for_commit(root->fs_info, 0); 885 if (ret) 886 return ERR_PTR(ret); 887 } 888 889 return trans; 890 } 891 892 /* Wait for a transaction commit to reach at least the given state. */ 893 static noinline void wait_for_commit(struct btrfs_transaction *commit, 894 const enum btrfs_trans_state min_state) 895 { 896 struct btrfs_fs_info *fs_info = commit->fs_info; 897 u64 transid = commit->transid; 898 bool put = false; 899 900 /* 901 * At the moment this function is called with min_state either being 902 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED. 903 */ 904 if (min_state == TRANS_STATE_COMPLETED) 905 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 906 else 907 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 908 909 while (1) { 910 wait_event(commit->commit_wait, commit->state >= min_state); 911 if (put) 912 btrfs_put_transaction(commit); 913 914 if (min_state < TRANS_STATE_COMPLETED) 915 break; 916 917 /* 918 * A transaction isn't really completed until all of the 919 * previous transactions are completed, but with fsync we can 920 * end up with SUPER_COMMITTED transactions before a COMPLETED 921 * transaction. Wait for those. 922 */ 923 924 spin_lock(&fs_info->trans_lock); 925 commit = list_first_entry_or_null(&fs_info->trans_list, 926 struct btrfs_transaction, 927 list); 928 if (!commit || commit->transid > transid) { 929 spin_unlock(&fs_info->trans_lock); 930 break; 931 } 932 refcount_inc(&commit->use_count); 933 put = true; 934 spin_unlock(&fs_info->trans_lock); 935 } 936 } 937 938 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 939 { 940 struct btrfs_transaction *cur_trans = NULL, *t; 941 int ret = 0; 942 943 if (transid) { 944 if (transid <= btrfs_get_last_trans_committed(fs_info)) 945 goto out; 946 947 /* find specified transaction */ 948 spin_lock(&fs_info->trans_lock); 949 list_for_each_entry(t, &fs_info->trans_list, list) { 950 if (t->transid == transid) { 951 cur_trans = t; 952 refcount_inc(&cur_trans->use_count); 953 ret = 0; 954 break; 955 } 956 if (t->transid > transid) { 957 ret = 0; 958 break; 959 } 960 } 961 spin_unlock(&fs_info->trans_lock); 962 963 /* 964 * The specified transaction doesn't exist, or we 965 * raced with btrfs_commit_transaction 966 */ 967 if (!cur_trans) { 968 if (transid > btrfs_get_last_trans_committed(fs_info)) 969 ret = -EINVAL; 970 goto out; 971 } 972 } else { 973 /* find newest transaction that is committing | committed */ 974 spin_lock(&fs_info->trans_lock); 975 list_for_each_entry_reverse(t, &fs_info->trans_list, 976 list) { 977 if (t->state >= TRANS_STATE_COMMIT_START) { 978 if (t->state == TRANS_STATE_COMPLETED) 979 break; 980 cur_trans = t; 981 refcount_inc(&cur_trans->use_count); 982 break; 983 } 984 } 985 spin_unlock(&fs_info->trans_lock); 986 if (!cur_trans) 987 goto out; /* nothing committing|committed */ 988 } 989 990 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 991 ret = cur_trans->aborted; 992 btrfs_put_transaction(cur_trans); 993 out: 994 return ret; 995 } 996 997 void btrfs_throttle(struct btrfs_fs_info *fs_info) 998 { 999 wait_current_trans(fs_info); 1000 } 1001 1002 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 1003 { 1004 struct btrfs_transaction *cur_trans = trans->transaction; 1005 1006 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 1007 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 1008 return true; 1009 1010 if (btrfs_check_space_for_delayed_refs(trans->fs_info)) 1011 return true; 1012 1013 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50); 1014 } 1015 1016 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 1017 1018 { 1019 struct btrfs_fs_info *fs_info = trans->fs_info; 1020 1021 if (!trans->block_rsv) { 1022 ASSERT(!trans->bytes_reserved); 1023 ASSERT(!trans->delayed_refs_bytes_reserved); 1024 return; 1025 } 1026 1027 if (!trans->bytes_reserved) { 1028 ASSERT(!trans->delayed_refs_bytes_reserved); 1029 return; 1030 } 1031 1032 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 1033 trace_btrfs_space_reservation(fs_info, "transaction", 1034 trans->transid, trans->bytes_reserved, 0); 1035 btrfs_block_rsv_release(fs_info, trans->block_rsv, 1036 trans->bytes_reserved, NULL); 1037 trans->bytes_reserved = 0; 1038 1039 if (!trans->delayed_refs_bytes_reserved) 1040 return; 1041 1042 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv", 1043 trans->transid, 1044 trans->delayed_refs_bytes_reserved, 0); 1045 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv, 1046 trans->delayed_refs_bytes_reserved, NULL); 1047 trans->delayed_refs_bytes_reserved = 0; 1048 } 1049 1050 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 1051 int throttle) 1052 { 1053 struct btrfs_fs_info *info = trans->fs_info; 1054 struct btrfs_transaction *cur_trans = trans->transaction; 1055 int ret = 0; 1056 1057 if (refcount_read(&trans->use_count) > 1) { 1058 refcount_dec(&trans->use_count); 1059 trans->block_rsv = trans->orig_rsv; 1060 return 0; 1061 } 1062 1063 btrfs_trans_release_metadata(trans); 1064 trans->block_rsv = NULL; 1065 1066 btrfs_create_pending_block_groups(trans); 1067 1068 btrfs_trans_release_chunk_metadata(trans); 1069 1070 if (trans->type & __TRANS_FREEZABLE) 1071 sb_end_intwrite(info->sb); 1072 1073 WARN_ON(cur_trans != info->running_transaction); 1074 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 1075 atomic_dec(&cur_trans->num_writers); 1076 extwriter_counter_dec(cur_trans, trans->type); 1077 1078 cond_wake_up(&cur_trans->writer_wait); 1079 1080 btrfs_lockdep_release(info, btrfs_trans_num_extwriters); 1081 btrfs_lockdep_release(info, btrfs_trans_num_writers); 1082 1083 btrfs_put_transaction(cur_trans); 1084 1085 if (current->journal_info == trans) 1086 current->journal_info = NULL; 1087 1088 if (throttle) 1089 btrfs_run_delayed_iputs(info); 1090 1091 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1092 wake_up_process(info->transaction_kthread); 1093 if (TRANS_ABORTED(trans)) 1094 ret = trans->aborted; 1095 else 1096 ret = -EROFS; 1097 } 1098 1099 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1100 return ret; 1101 } 1102 1103 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1104 { 1105 return __btrfs_end_transaction(trans, 0); 1106 } 1107 1108 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1109 { 1110 return __btrfs_end_transaction(trans, 1); 1111 } 1112 1113 /* 1114 * when btree blocks are allocated, they have some corresponding bits set for 1115 * them in one of two extent_io trees. This is used to make sure all of 1116 * those extents are sent to disk but does not wait on them 1117 */ 1118 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1119 struct extent_io_tree *dirty_pages, int mark) 1120 { 1121 int ret = 0; 1122 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1123 struct extent_state *cached_state = NULL; 1124 u64 start = 0; 1125 u64 end; 1126 1127 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1128 mark, &cached_state)) { 1129 bool wait_writeback = false; 1130 1131 ret = convert_extent_bit(dirty_pages, start, end, 1132 EXTENT_NEED_WAIT, 1133 mark, &cached_state); 1134 /* 1135 * convert_extent_bit can return -ENOMEM, which is most of the 1136 * time a temporary error. So when it happens, ignore the error 1137 * and wait for writeback of this range to finish - because we 1138 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1139 * to __btrfs_wait_marked_extents() would not know that 1140 * writeback for this range started and therefore wouldn't 1141 * wait for it to finish - we don't want to commit a 1142 * superblock that points to btree nodes/leafs for which 1143 * writeback hasn't finished yet (and without errors). 1144 * We cleanup any entries left in the io tree when committing 1145 * the transaction (through extent_io_tree_release()). 1146 */ 1147 if (ret == -ENOMEM) { 1148 ret = 0; 1149 wait_writeback = true; 1150 } 1151 if (!ret) 1152 ret = filemap_fdatawrite_range(mapping, start, end); 1153 if (!ret && wait_writeback) 1154 ret = filemap_fdatawait_range(mapping, start, end); 1155 free_extent_state(cached_state); 1156 if (ret) 1157 break; 1158 cached_state = NULL; 1159 cond_resched(); 1160 start = end + 1; 1161 } 1162 return ret; 1163 } 1164 1165 /* 1166 * when btree blocks are allocated, they have some corresponding bits set for 1167 * them in one of two extent_io trees. This is used to make sure all of 1168 * those extents are on disk for transaction or log commit. We wait 1169 * on all the pages and clear them from the dirty pages state tree 1170 */ 1171 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1172 struct extent_io_tree *dirty_pages) 1173 { 1174 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1175 struct extent_state *cached_state = NULL; 1176 u64 start = 0; 1177 u64 end; 1178 int ret = 0; 1179 1180 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1181 EXTENT_NEED_WAIT, &cached_state)) { 1182 /* 1183 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1184 * When committing the transaction, we'll remove any entries 1185 * left in the io tree. For a log commit, we don't remove them 1186 * after committing the log because the tree can be accessed 1187 * concurrently - we do it only at transaction commit time when 1188 * it's safe to do it (through extent_io_tree_release()). 1189 */ 1190 ret = clear_extent_bit(dirty_pages, start, end, 1191 EXTENT_NEED_WAIT, &cached_state); 1192 if (ret == -ENOMEM) 1193 ret = 0; 1194 if (!ret) 1195 ret = filemap_fdatawait_range(mapping, start, end); 1196 free_extent_state(cached_state); 1197 if (ret) 1198 break; 1199 cached_state = NULL; 1200 cond_resched(); 1201 start = end + 1; 1202 } 1203 return ret; 1204 } 1205 1206 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1207 struct extent_io_tree *dirty_pages) 1208 { 1209 bool errors = false; 1210 int err; 1211 1212 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1213 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1214 errors = true; 1215 1216 if (errors && !err) 1217 err = -EIO; 1218 return err; 1219 } 1220 1221 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1222 { 1223 struct btrfs_fs_info *fs_info = log_root->fs_info; 1224 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1225 bool errors = false; 1226 int err; 1227 1228 ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID); 1229 1230 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1231 if ((mark & EXTENT_DIRTY) && 1232 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1233 errors = true; 1234 1235 if ((mark & EXTENT_NEW) && 1236 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1237 errors = true; 1238 1239 if (errors && !err) 1240 err = -EIO; 1241 return err; 1242 } 1243 1244 /* 1245 * When btree blocks are allocated the corresponding extents are marked dirty. 1246 * This function ensures such extents are persisted on disk for transaction or 1247 * log commit. 1248 * 1249 * @trans: transaction whose dirty pages we'd like to write 1250 */ 1251 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1252 { 1253 int ret; 1254 int ret2; 1255 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1256 struct btrfs_fs_info *fs_info = trans->fs_info; 1257 struct blk_plug plug; 1258 1259 blk_start_plug(&plug); 1260 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1261 blk_finish_plug(&plug); 1262 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1263 1264 extent_io_tree_release(&trans->transaction->dirty_pages); 1265 1266 if (ret) 1267 return ret; 1268 else if (ret2) 1269 return ret2; 1270 else 1271 return 0; 1272 } 1273 1274 /* 1275 * this is used to update the root pointer in the tree of tree roots. 1276 * 1277 * But, in the case of the extent allocation tree, updating the root 1278 * pointer may allocate blocks which may change the root of the extent 1279 * allocation tree. 1280 * 1281 * So, this loops and repeats and makes sure the cowonly root didn't 1282 * change while the root pointer was being updated in the metadata. 1283 */ 1284 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1285 struct btrfs_root *root) 1286 { 1287 int ret; 1288 u64 old_root_bytenr; 1289 u64 old_root_used; 1290 struct btrfs_fs_info *fs_info = root->fs_info; 1291 struct btrfs_root *tree_root = fs_info->tree_root; 1292 1293 old_root_used = btrfs_root_used(&root->root_item); 1294 1295 while (1) { 1296 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1297 if (old_root_bytenr == root->node->start && 1298 old_root_used == btrfs_root_used(&root->root_item)) 1299 break; 1300 1301 btrfs_set_root_node(&root->root_item, root->node); 1302 ret = btrfs_update_root(trans, tree_root, 1303 &root->root_key, 1304 &root->root_item); 1305 if (ret) 1306 return ret; 1307 1308 old_root_used = btrfs_root_used(&root->root_item); 1309 } 1310 1311 return 0; 1312 } 1313 1314 /* 1315 * update all the cowonly tree roots on disk 1316 * 1317 * The error handling in this function may not be obvious. Any of the 1318 * failures will cause the file system to go offline. We still need 1319 * to clean up the delayed refs. 1320 */ 1321 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1322 { 1323 struct btrfs_fs_info *fs_info = trans->fs_info; 1324 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1325 struct list_head *io_bgs = &trans->transaction->io_bgs; 1326 struct list_head *next; 1327 struct extent_buffer *eb; 1328 int ret; 1329 1330 /* 1331 * At this point no one can be using this transaction to modify any tree 1332 * and no one can start another transaction to modify any tree either. 1333 */ 1334 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1335 1336 eb = btrfs_lock_root_node(fs_info->tree_root); 1337 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1338 0, &eb, BTRFS_NESTING_COW); 1339 btrfs_tree_unlock(eb); 1340 free_extent_buffer(eb); 1341 1342 if (ret) 1343 return ret; 1344 1345 ret = btrfs_run_dev_stats(trans); 1346 if (ret) 1347 return ret; 1348 ret = btrfs_run_dev_replace(trans); 1349 if (ret) 1350 return ret; 1351 ret = btrfs_run_qgroups(trans); 1352 if (ret) 1353 return ret; 1354 1355 ret = btrfs_setup_space_cache(trans); 1356 if (ret) 1357 return ret; 1358 1359 again: 1360 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1361 struct btrfs_root *root; 1362 next = fs_info->dirty_cowonly_roots.next; 1363 list_del_init(next); 1364 root = list_entry(next, struct btrfs_root, dirty_list); 1365 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1366 1367 list_add_tail(&root->dirty_list, 1368 &trans->transaction->switch_commits); 1369 ret = update_cowonly_root(trans, root); 1370 if (ret) 1371 return ret; 1372 } 1373 1374 /* Now flush any delayed refs generated by updating all of the roots */ 1375 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1376 if (ret) 1377 return ret; 1378 1379 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1380 ret = btrfs_write_dirty_block_groups(trans); 1381 if (ret) 1382 return ret; 1383 1384 /* 1385 * We're writing the dirty block groups, which could generate 1386 * delayed refs, which could generate more dirty block groups, 1387 * so we want to keep this flushing in this loop to make sure 1388 * everything gets run. 1389 */ 1390 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1391 if (ret) 1392 return ret; 1393 } 1394 1395 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1396 goto again; 1397 1398 /* Update dev-replace pointer once everything is committed */ 1399 fs_info->dev_replace.committed_cursor_left = 1400 fs_info->dev_replace.cursor_left_last_write_of_item; 1401 1402 return 0; 1403 } 1404 1405 /* 1406 * If we had a pending drop we need to see if there are any others left in our 1407 * dead roots list, and if not clear our bit and wake any waiters. 1408 */ 1409 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1410 { 1411 /* 1412 * We put the drop in progress roots at the front of the list, so if the 1413 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1414 * up. 1415 */ 1416 spin_lock(&fs_info->trans_lock); 1417 if (!list_empty(&fs_info->dead_roots)) { 1418 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1419 struct btrfs_root, 1420 root_list); 1421 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1422 spin_unlock(&fs_info->trans_lock); 1423 return; 1424 } 1425 } 1426 spin_unlock(&fs_info->trans_lock); 1427 1428 btrfs_wake_unfinished_drop(fs_info); 1429 } 1430 1431 /* 1432 * dead roots are old snapshots that need to be deleted. This allocates 1433 * a dirty root struct and adds it into the list of dead roots that need to 1434 * be deleted 1435 */ 1436 void btrfs_add_dead_root(struct btrfs_root *root) 1437 { 1438 struct btrfs_fs_info *fs_info = root->fs_info; 1439 1440 spin_lock(&fs_info->trans_lock); 1441 if (list_empty(&root->root_list)) { 1442 btrfs_grab_root(root); 1443 1444 /* We want to process the partially complete drops first. */ 1445 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1446 list_add(&root->root_list, &fs_info->dead_roots); 1447 else 1448 list_add_tail(&root->root_list, &fs_info->dead_roots); 1449 } 1450 spin_unlock(&fs_info->trans_lock); 1451 } 1452 1453 /* 1454 * Update each subvolume root and its relocation root, if it exists, in the tree 1455 * of tree roots. Also free log roots if they exist. 1456 */ 1457 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1458 { 1459 struct btrfs_fs_info *fs_info = trans->fs_info; 1460 struct btrfs_root *gang[8]; 1461 int i; 1462 int ret; 1463 1464 /* 1465 * At this point no one can be using this transaction to modify any tree 1466 * and no one can start another transaction to modify any tree either. 1467 */ 1468 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1469 1470 spin_lock(&fs_info->fs_roots_radix_lock); 1471 while (1) { 1472 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1473 (void **)gang, 0, 1474 ARRAY_SIZE(gang), 1475 BTRFS_ROOT_TRANS_TAG); 1476 if (ret == 0) 1477 break; 1478 for (i = 0; i < ret; i++) { 1479 struct btrfs_root *root = gang[i]; 1480 int ret2; 1481 1482 /* 1483 * At this point we can neither have tasks logging inodes 1484 * from a root nor trying to commit a log tree. 1485 */ 1486 ASSERT(atomic_read(&root->log_writers) == 0); 1487 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1488 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1489 1490 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1491 (unsigned long)btrfs_root_id(root), 1492 BTRFS_ROOT_TRANS_TAG); 1493 btrfs_qgroup_free_meta_all_pertrans(root); 1494 spin_unlock(&fs_info->fs_roots_radix_lock); 1495 1496 btrfs_free_log(trans, root); 1497 ret2 = btrfs_update_reloc_root(trans, root); 1498 if (ret2) 1499 return ret2; 1500 1501 /* see comments in should_cow_block() */ 1502 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1503 smp_mb__after_atomic(); 1504 1505 if (root->commit_root != root->node) { 1506 list_add_tail(&root->dirty_list, 1507 &trans->transaction->switch_commits); 1508 btrfs_set_root_node(&root->root_item, 1509 root->node); 1510 } 1511 1512 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1513 &root->root_key, 1514 &root->root_item); 1515 if (ret2) 1516 return ret2; 1517 spin_lock(&fs_info->fs_roots_radix_lock); 1518 } 1519 } 1520 spin_unlock(&fs_info->fs_roots_radix_lock); 1521 return 0; 1522 } 1523 1524 /* 1525 * Do all special snapshot related qgroup dirty hack. 1526 * 1527 * Will do all needed qgroup inherit and dirty hack like switch commit 1528 * roots inside one transaction and write all btree into disk, to make 1529 * qgroup works. 1530 */ 1531 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1532 struct btrfs_root *src, 1533 struct btrfs_root *parent, 1534 struct btrfs_qgroup_inherit *inherit, 1535 u64 dst_objectid) 1536 { 1537 struct btrfs_fs_info *fs_info = src->fs_info; 1538 int ret; 1539 1540 /* 1541 * Save some performance in the case that qgroups are not enabled. If 1542 * this check races with the ioctl, rescan will kick in anyway. 1543 */ 1544 if (!btrfs_qgroup_full_accounting(fs_info)) 1545 return 0; 1546 1547 /* 1548 * Ensure dirty @src will be committed. Or, after coming 1549 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1550 * recorded root will never be updated again, causing an outdated root 1551 * item. 1552 */ 1553 ret = record_root_in_trans(trans, src, 1); 1554 if (ret) 1555 return ret; 1556 1557 /* 1558 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1559 * src root, so we must run the delayed refs here. 1560 * 1561 * However this isn't particularly fool proof, because there's no 1562 * synchronization keeping us from changing the tree after this point 1563 * before we do the qgroup_inherit, or even from making changes while 1564 * we're doing the qgroup_inherit. But that's a problem for the future, 1565 * for now flush the delayed refs to narrow the race window where the 1566 * qgroup counters could end up wrong. 1567 */ 1568 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1569 if (ret) { 1570 btrfs_abort_transaction(trans, ret); 1571 return ret; 1572 } 1573 1574 ret = commit_fs_roots(trans); 1575 if (ret) 1576 goto out; 1577 ret = btrfs_qgroup_account_extents(trans); 1578 if (ret < 0) 1579 goto out; 1580 1581 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1582 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid, 1583 btrfs_root_id(parent), inherit); 1584 if (ret < 0) 1585 goto out; 1586 1587 /* 1588 * Now we do a simplified commit transaction, which will: 1589 * 1) commit all subvolume and extent tree 1590 * To ensure all subvolume and extent tree have a valid 1591 * commit_root to accounting later insert_dir_item() 1592 * 2) write all btree blocks onto disk 1593 * This is to make sure later btree modification will be cowed 1594 * Or commit_root can be populated and cause wrong qgroup numbers 1595 * In this simplified commit, we don't really care about other trees 1596 * like chunk and root tree, as they won't affect qgroup. 1597 * And we don't write super to avoid half committed status. 1598 */ 1599 ret = commit_cowonly_roots(trans); 1600 if (ret) 1601 goto out; 1602 switch_commit_roots(trans); 1603 ret = btrfs_write_and_wait_transaction(trans); 1604 if (ret) 1605 btrfs_handle_fs_error(fs_info, ret, 1606 "Error while writing out transaction for qgroup"); 1607 1608 out: 1609 /* 1610 * Force parent root to be updated, as we recorded it before so its 1611 * last_trans == cur_transid. 1612 * Or it won't be committed again onto disk after later 1613 * insert_dir_item() 1614 */ 1615 if (!ret) 1616 ret = record_root_in_trans(trans, parent, 1); 1617 return ret; 1618 } 1619 1620 /* 1621 * new snapshots need to be created at a very specific time in the 1622 * transaction commit. This does the actual creation. 1623 * 1624 * Note: 1625 * If the error which may affect the commitment of the current transaction 1626 * happens, we should return the error number. If the error which just affect 1627 * the creation of the pending snapshots, just return 0. 1628 */ 1629 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1630 struct btrfs_pending_snapshot *pending) 1631 { 1632 1633 struct btrfs_fs_info *fs_info = trans->fs_info; 1634 struct btrfs_key key; 1635 struct btrfs_root_item *new_root_item; 1636 struct btrfs_root *tree_root = fs_info->tree_root; 1637 struct btrfs_root *root = pending->root; 1638 struct btrfs_root *parent_root; 1639 struct btrfs_block_rsv *rsv; 1640 struct inode *parent_inode = &pending->dir->vfs_inode; 1641 struct btrfs_path *path; 1642 struct btrfs_dir_item *dir_item; 1643 struct extent_buffer *tmp; 1644 struct extent_buffer *old; 1645 struct timespec64 cur_time; 1646 int ret = 0; 1647 u64 to_reserve = 0; 1648 u64 index = 0; 1649 u64 objectid; 1650 u64 root_flags; 1651 unsigned int nofs_flags; 1652 struct fscrypt_name fname; 1653 1654 ASSERT(pending->path); 1655 path = pending->path; 1656 1657 ASSERT(pending->root_item); 1658 new_root_item = pending->root_item; 1659 1660 /* 1661 * We're inside a transaction and must make sure that any potential 1662 * allocations with GFP_KERNEL in fscrypt won't recurse back to 1663 * filesystem. 1664 */ 1665 nofs_flags = memalloc_nofs_save(); 1666 pending->error = fscrypt_setup_filename(parent_inode, 1667 &pending->dentry->d_name, 0, 1668 &fname); 1669 memalloc_nofs_restore(nofs_flags); 1670 if (pending->error) 1671 goto free_pending; 1672 1673 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1674 if (pending->error) 1675 goto free_fname; 1676 1677 /* 1678 * Make qgroup to skip current new snapshot's qgroupid, as it is 1679 * accounted by later btrfs_qgroup_inherit(). 1680 */ 1681 btrfs_set_skip_qgroup(trans, objectid); 1682 1683 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1684 1685 if (to_reserve > 0) { 1686 pending->error = btrfs_block_rsv_add(fs_info, 1687 &pending->block_rsv, 1688 to_reserve, 1689 BTRFS_RESERVE_NO_FLUSH); 1690 if (pending->error) 1691 goto clear_skip_qgroup; 1692 } 1693 1694 key.objectid = objectid; 1695 key.offset = (u64)-1; 1696 key.type = BTRFS_ROOT_ITEM_KEY; 1697 1698 rsv = trans->block_rsv; 1699 trans->block_rsv = &pending->block_rsv; 1700 trans->bytes_reserved = trans->block_rsv->reserved; 1701 trace_btrfs_space_reservation(fs_info, "transaction", 1702 trans->transid, 1703 trans->bytes_reserved, 1); 1704 parent_root = BTRFS_I(parent_inode)->root; 1705 ret = record_root_in_trans(trans, parent_root, 0); 1706 if (ret) 1707 goto fail; 1708 cur_time = current_time(parent_inode); 1709 1710 /* 1711 * insert the directory item 1712 */ 1713 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1714 if (ret) { 1715 btrfs_abort_transaction(trans, ret); 1716 goto fail; 1717 } 1718 1719 /* check if there is a file/dir which has the same name. */ 1720 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1721 btrfs_ino(BTRFS_I(parent_inode)), 1722 &fname.disk_name, 0); 1723 if (dir_item != NULL && !IS_ERR(dir_item)) { 1724 pending->error = -EEXIST; 1725 goto dir_item_existed; 1726 } else if (IS_ERR(dir_item)) { 1727 ret = PTR_ERR(dir_item); 1728 btrfs_abort_transaction(trans, ret); 1729 goto fail; 1730 } 1731 btrfs_release_path(path); 1732 1733 ret = btrfs_create_qgroup(trans, objectid); 1734 if (ret && ret != -EEXIST) { 1735 btrfs_abort_transaction(trans, ret); 1736 goto fail; 1737 } 1738 1739 /* 1740 * pull in the delayed directory update 1741 * and the delayed inode item 1742 * otherwise we corrupt the FS during 1743 * snapshot 1744 */ 1745 ret = btrfs_run_delayed_items(trans); 1746 if (ret) { /* Transaction aborted */ 1747 btrfs_abort_transaction(trans, ret); 1748 goto fail; 1749 } 1750 1751 ret = record_root_in_trans(trans, root, 0); 1752 if (ret) { 1753 btrfs_abort_transaction(trans, ret); 1754 goto fail; 1755 } 1756 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1757 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1758 btrfs_check_and_init_root_item(new_root_item); 1759 1760 root_flags = btrfs_root_flags(new_root_item); 1761 if (pending->readonly) 1762 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1763 else 1764 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1765 btrfs_set_root_flags(new_root_item, root_flags); 1766 1767 btrfs_set_root_generation_v2(new_root_item, 1768 trans->transid); 1769 generate_random_guid(new_root_item->uuid); 1770 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1771 BTRFS_UUID_SIZE); 1772 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1773 memset(new_root_item->received_uuid, 0, 1774 sizeof(new_root_item->received_uuid)); 1775 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1776 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1777 btrfs_set_root_stransid(new_root_item, 0); 1778 btrfs_set_root_rtransid(new_root_item, 0); 1779 } 1780 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1781 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1782 btrfs_set_root_otransid(new_root_item, trans->transid); 1783 1784 old = btrfs_lock_root_node(root); 1785 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1786 BTRFS_NESTING_COW); 1787 if (ret) { 1788 btrfs_tree_unlock(old); 1789 free_extent_buffer(old); 1790 btrfs_abort_transaction(trans, ret); 1791 goto fail; 1792 } 1793 1794 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1795 /* clean up in any case */ 1796 btrfs_tree_unlock(old); 1797 free_extent_buffer(old); 1798 if (ret) { 1799 btrfs_abort_transaction(trans, ret); 1800 goto fail; 1801 } 1802 /* see comments in should_cow_block() */ 1803 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1804 smp_wmb(); 1805 1806 btrfs_set_root_node(new_root_item, tmp); 1807 /* record when the snapshot was created in key.offset */ 1808 key.offset = trans->transid; 1809 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1810 btrfs_tree_unlock(tmp); 1811 free_extent_buffer(tmp); 1812 if (ret) { 1813 btrfs_abort_transaction(trans, ret); 1814 goto fail; 1815 } 1816 1817 /* 1818 * insert root back/forward references 1819 */ 1820 ret = btrfs_add_root_ref(trans, objectid, 1821 btrfs_root_id(parent_root), 1822 btrfs_ino(BTRFS_I(parent_inode)), index, 1823 &fname.disk_name); 1824 if (ret) { 1825 btrfs_abort_transaction(trans, ret); 1826 goto fail; 1827 } 1828 1829 key.offset = (u64)-1; 1830 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev); 1831 if (IS_ERR(pending->snap)) { 1832 ret = PTR_ERR(pending->snap); 1833 pending->snap = NULL; 1834 btrfs_abort_transaction(trans, ret); 1835 goto fail; 1836 } 1837 1838 ret = btrfs_reloc_post_snapshot(trans, pending); 1839 if (ret) { 1840 btrfs_abort_transaction(trans, ret); 1841 goto fail; 1842 } 1843 1844 /* 1845 * Do special qgroup accounting for snapshot, as we do some qgroup 1846 * snapshot hack to do fast snapshot. 1847 * To co-operate with that hack, we do hack again. 1848 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1849 */ 1850 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL) 1851 ret = qgroup_account_snapshot(trans, root, parent_root, 1852 pending->inherit, objectid); 1853 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) 1854 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid, 1855 btrfs_root_id(parent_root), pending->inherit); 1856 if (ret < 0) 1857 goto fail; 1858 1859 ret = btrfs_insert_dir_item(trans, &fname.disk_name, 1860 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR, 1861 index); 1862 if (ret) { 1863 btrfs_abort_transaction(trans, ret); 1864 goto fail; 1865 } 1866 1867 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1868 fname.disk_name.len * 2); 1869 inode_set_mtime_to_ts(parent_inode, 1870 inode_set_ctime_current(parent_inode)); 1871 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode)); 1872 if (ret) { 1873 btrfs_abort_transaction(trans, ret); 1874 goto fail; 1875 } 1876 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1877 BTRFS_UUID_KEY_SUBVOL, 1878 objectid); 1879 if (ret) { 1880 btrfs_abort_transaction(trans, ret); 1881 goto fail; 1882 } 1883 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1884 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1885 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1886 objectid); 1887 if (ret && ret != -EEXIST) { 1888 btrfs_abort_transaction(trans, ret); 1889 goto fail; 1890 } 1891 } 1892 1893 fail: 1894 pending->error = ret; 1895 dir_item_existed: 1896 trans->block_rsv = rsv; 1897 trans->bytes_reserved = 0; 1898 clear_skip_qgroup: 1899 btrfs_clear_skip_qgroup(trans); 1900 free_fname: 1901 fscrypt_free_filename(&fname); 1902 free_pending: 1903 kfree(new_root_item); 1904 pending->root_item = NULL; 1905 btrfs_free_path(path); 1906 pending->path = NULL; 1907 1908 return ret; 1909 } 1910 1911 /* 1912 * create all the snapshots we've scheduled for creation 1913 */ 1914 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1915 { 1916 struct btrfs_pending_snapshot *pending, *next; 1917 struct list_head *head = &trans->transaction->pending_snapshots; 1918 int ret = 0; 1919 1920 list_for_each_entry_safe(pending, next, head, list) { 1921 list_del(&pending->list); 1922 ret = create_pending_snapshot(trans, pending); 1923 if (ret) 1924 break; 1925 } 1926 return ret; 1927 } 1928 1929 static void update_super_roots(struct btrfs_fs_info *fs_info) 1930 { 1931 struct btrfs_root_item *root_item; 1932 struct btrfs_super_block *super; 1933 1934 super = fs_info->super_copy; 1935 1936 root_item = &fs_info->chunk_root->root_item; 1937 super->chunk_root = root_item->bytenr; 1938 super->chunk_root_generation = root_item->generation; 1939 super->chunk_root_level = root_item->level; 1940 1941 root_item = &fs_info->tree_root->root_item; 1942 super->root = root_item->bytenr; 1943 super->generation = root_item->generation; 1944 super->root_level = root_item->level; 1945 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1946 super->cache_generation = root_item->generation; 1947 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1948 super->cache_generation = 0; 1949 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1950 super->uuid_tree_generation = root_item->generation; 1951 } 1952 1953 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1954 { 1955 struct btrfs_transaction *trans; 1956 int ret = 0; 1957 1958 spin_lock(&info->trans_lock); 1959 trans = info->running_transaction; 1960 if (trans) 1961 ret = is_transaction_blocked(trans); 1962 spin_unlock(&info->trans_lock); 1963 return ret; 1964 } 1965 1966 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1967 { 1968 struct btrfs_fs_info *fs_info = trans->fs_info; 1969 struct btrfs_transaction *cur_trans; 1970 1971 /* Kick the transaction kthread. */ 1972 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 1973 wake_up_process(fs_info->transaction_kthread); 1974 1975 /* take transaction reference */ 1976 cur_trans = trans->transaction; 1977 refcount_inc(&cur_trans->use_count); 1978 1979 btrfs_end_transaction(trans); 1980 1981 /* 1982 * Wait for the current transaction commit to start and block 1983 * subsequent transaction joins 1984 */ 1985 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 1986 wait_event(fs_info->transaction_blocked_wait, 1987 cur_trans->state >= TRANS_STATE_COMMIT_START || 1988 TRANS_ABORTED(cur_trans)); 1989 btrfs_put_transaction(cur_trans); 1990 } 1991 1992 /* 1993 * If there is a running transaction commit it or if it's already committing, 1994 * wait for its commit to complete. Does not start and commit a new transaction 1995 * if there isn't any running. 1996 */ 1997 int btrfs_commit_current_transaction(struct btrfs_root *root) 1998 { 1999 struct btrfs_trans_handle *trans; 2000 2001 trans = btrfs_attach_transaction_barrier(root); 2002 if (IS_ERR(trans)) { 2003 int ret = PTR_ERR(trans); 2004 2005 return (ret == -ENOENT) ? 0 : ret; 2006 } 2007 2008 return btrfs_commit_transaction(trans); 2009 } 2010 2011 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 2012 { 2013 struct btrfs_fs_info *fs_info = trans->fs_info; 2014 struct btrfs_transaction *cur_trans = trans->transaction; 2015 2016 WARN_ON(refcount_read(&trans->use_count) > 1); 2017 2018 btrfs_abort_transaction(trans, err); 2019 2020 spin_lock(&fs_info->trans_lock); 2021 2022 /* 2023 * If the transaction is removed from the list, it means this 2024 * transaction has been committed successfully, so it is impossible 2025 * to call the cleanup function. 2026 */ 2027 BUG_ON(list_empty(&cur_trans->list)); 2028 2029 if (cur_trans == fs_info->running_transaction) { 2030 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2031 spin_unlock(&fs_info->trans_lock); 2032 2033 /* 2034 * The thread has already released the lockdep map as reader 2035 * already in btrfs_commit_transaction(). 2036 */ 2037 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2038 wait_event(cur_trans->writer_wait, 2039 atomic_read(&cur_trans->num_writers) == 1); 2040 2041 spin_lock(&fs_info->trans_lock); 2042 } 2043 2044 /* 2045 * Now that we know no one else is still using the transaction we can 2046 * remove the transaction from the list of transactions. This avoids 2047 * the transaction kthread from cleaning up the transaction while some 2048 * other task is still using it, which could result in a use-after-free 2049 * on things like log trees, as it forces the transaction kthread to 2050 * wait for this transaction to be cleaned up by us. 2051 */ 2052 list_del_init(&cur_trans->list); 2053 2054 spin_unlock(&fs_info->trans_lock); 2055 2056 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 2057 2058 spin_lock(&fs_info->trans_lock); 2059 if (cur_trans == fs_info->running_transaction) 2060 fs_info->running_transaction = NULL; 2061 spin_unlock(&fs_info->trans_lock); 2062 2063 if (trans->type & __TRANS_FREEZABLE) 2064 sb_end_intwrite(fs_info->sb); 2065 btrfs_put_transaction(cur_trans); 2066 btrfs_put_transaction(cur_trans); 2067 2068 trace_btrfs_transaction_commit(fs_info); 2069 2070 if (current->journal_info == trans) 2071 current->journal_info = NULL; 2072 2073 /* 2074 * If relocation is running, we can't cancel scrub because that will 2075 * result in a deadlock. Before relocating a block group, relocation 2076 * pauses scrub, then starts and commits a transaction before unpausing 2077 * scrub. If the transaction commit is being done by the relocation 2078 * task or triggered by another task and the relocation task is waiting 2079 * for the commit, and we end up here due to an error in the commit 2080 * path, then calling btrfs_scrub_cancel() will deadlock, as we are 2081 * asking for scrub to stop while having it asked to be paused higher 2082 * above in relocation code. 2083 */ 2084 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 2085 btrfs_scrub_cancel(fs_info); 2086 2087 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2088 } 2089 2090 /* 2091 * Release reserved delayed ref space of all pending block groups of the 2092 * transaction and remove them from the list 2093 */ 2094 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2095 { 2096 struct btrfs_fs_info *fs_info = trans->fs_info; 2097 struct btrfs_block_group *block_group, *tmp; 2098 2099 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2100 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2101 list_del_init(&block_group->bg_list); 2102 } 2103 } 2104 2105 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2106 { 2107 /* 2108 * We use try_to_writeback_inodes_sb() here because if we used 2109 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2110 * Currently are holding the fs freeze lock, if we do an async flush 2111 * we'll do btrfs_join_transaction() and deadlock because we need to 2112 * wait for the fs freeze lock. Using the direct flushing we benefit 2113 * from already being in a transaction and our join_transaction doesn't 2114 * have to re-take the fs freeze lock. 2115 * 2116 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2117 * if it can read lock sb->s_umount. It will always be able to lock it, 2118 * except when the filesystem is being unmounted or being frozen, but in 2119 * those cases sync_filesystem() is called, which results in calling 2120 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2121 * Note that we don't call writeback_inodes_sb() directly, because it 2122 * will emit a warning if sb->s_umount is not locked. 2123 */ 2124 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2125 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2126 return 0; 2127 } 2128 2129 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2130 { 2131 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2132 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 2133 } 2134 2135 /* 2136 * Add a pending snapshot associated with the given transaction handle to the 2137 * respective handle. This must be called after the transaction commit started 2138 * and while holding fs_info->trans_lock. 2139 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2140 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2141 * returns an error. 2142 */ 2143 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2144 { 2145 struct btrfs_transaction *cur_trans = trans->transaction; 2146 2147 if (!trans->pending_snapshot) 2148 return; 2149 2150 lockdep_assert_held(&trans->fs_info->trans_lock); 2151 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP); 2152 2153 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2154 } 2155 2156 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval) 2157 { 2158 fs_info->commit_stats.commit_count++; 2159 fs_info->commit_stats.last_commit_dur = interval; 2160 fs_info->commit_stats.max_commit_dur = 2161 max_t(u64, fs_info->commit_stats.max_commit_dur, interval); 2162 fs_info->commit_stats.total_commit_dur += interval; 2163 } 2164 2165 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2166 { 2167 struct btrfs_fs_info *fs_info = trans->fs_info; 2168 struct btrfs_transaction *cur_trans = trans->transaction; 2169 struct btrfs_transaction *prev_trans = NULL; 2170 int ret; 2171 ktime_t start_time; 2172 ktime_t interval; 2173 2174 ASSERT(refcount_read(&trans->use_count) == 1); 2175 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2176 2177 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags); 2178 2179 /* Stop the commit early if ->aborted is set */ 2180 if (TRANS_ABORTED(cur_trans)) { 2181 ret = cur_trans->aborted; 2182 goto lockdep_trans_commit_start_release; 2183 } 2184 2185 btrfs_trans_release_metadata(trans); 2186 trans->block_rsv = NULL; 2187 2188 /* 2189 * We only want one transaction commit doing the flushing so we do not 2190 * waste a bunch of time on lock contention on the extent root node. 2191 */ 2192 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2193 &cur_trans->delayed_refs.flags)) { 2194 /* 2195 * Make a pass through all the delayed refs we have so far. 2196 * Any running threads may add more while we are here. 2197 */ 2198 ret = btrfs_run_delayed_refs(trans, 0); 2199 if (ret) 2200 goto lockdep_trans_commit_start_release; 2201 } 2202 2203 btrfs_create_pending_block_groups(trans); 2204 2205 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2206 int run_it = 0; 2207 2208 /* this mutex is also taken before trying to set 2209 * block groups readonly. We need to make sure 2210 * that nobody has set a block group readonly 2211 * after a extents from that block group have been 2212 * allocated for cache files. btrfs_set_block_group_ro 2213 * will wait for the transaction to commit if it 2214 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2215 * 2216 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2217 * only one process starts all the block group IO. It wouldn't 2218 * hurt to have more than one go through, but there's no 2219 * real advantage to it either. 2220 */ 2221 mutex_lock(&fs_info->ro_block_group_mutex); 2222 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2223 &cur_trans->flags)) 2224 run_it = 1; 2225 mutex_unlock(&fs_info->ro_block_group_mutex); 2226 2227 if (run_it) { 2228 ret = btrfs_start_dirty_block_groups(trans); 2229 if (ret) 2230 goto lockdep_trans_commit_start_release; 2231 } 2232 } 2233 2234 spin_lock(&fs_info->trans_lock); 2235 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) { 2236 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2237 2238 add_pending_snapshot(trans); 2239 2240 spin_unlock(&fs_info->trans_lock); 2241 refcount_inc(&cur_trans->use_count); 2242 2243 if (trans->in_fsync) 2244 want_state = TRANS_STATE_SUPER_COMMITTED; 2245 2246 btrfs_trans_state_lockdep_release(fs_info, 2247 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2248 ret = btrfs_end_transaction(trans); 2249 wait_for_commit(cur_trans, want_state); 2250 2251 if (TRANS_ABORTED(cur_trans)) 2252 ret = cur_trans->aborted; 2253 2254 btrfs_put_transaction(cur_trans); 2255 2256 return ret; 2257 } 2258 2259 cur_trans->state = TRANS_STATE_COMMIT_PREP; 2260 wake_up(&fs_info->transaction_blocked_wait); 2261 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2262 2263 if (cur_trans->list.prev != &fs_info->trans_list) { 2264 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2265 2266 if (trans->in_fsync) 2267 want_state = TRANS_STATE_SUPER_COMMITTED; 2268 2269 prev_trans = list_entry(cur_trans->list.prev, 2270 struct btrfs_transaction, list); 2271 if (prev_trans->state < want_state) { 2272 refcount_inc(&prev_trans->use_count); 2273 spin_unlock(&fs_info->trans_lock); 2274 2275 wait_for_commit(prev_trans, want_state); 2276 2277 ret = READ_ONCE(prev_trans->aborted); 2278 2279 btrfs_put_transaction(prev_trans); 2280 if (ret) 2281 goto lockdep_release; 2282 spin_lock(&fs_info->trans_lock); 2283 } 2284 } else { 2285 /* 2286 * The previous transaction was aborted and was already removed 2287 * from the list of transactions at fs_info->trans_list. So we 2288 * abort to prevent writing a new superblock that reflects a 2289 * corrupt state (pointing to trees with unwritten nodes/leafs). 2290 */ 2291 if (BTRFS_FS_ERROR(fs_info)) { 2292 spin_unlock(&fs_info->trans_lock); 2293 ret = -EROFS; 2294 goto lockdep_release; 2295 } 2296 } 2297 2298 cur_trans->state = TRANS_STATE_COMMIT_START; 2299 wake_up(&fs_info->transaction_blocked_wait); 2300 spin_unlock(&fs_info->trans_lock); 2301 2302 /* 2303 * Get the time spent on the work done by the commit thread and not 2304 * the time spent waiting on a previous commit 2305 */ 2306 start_time = ktime_get_ns(); 2307 2308 extwriter_counter_dec(cur_trans, trans->type); 2309 2310 ret = btrfs_start_delalloc_flush(fs_info); 2311 if (ret) 2312 goto lockdep_release; 2313 2314 ret = btrfs_run_delayed_items(trans); 2315 if (ret) 2316 goto lockdep_release; 2317 2318 /* 2319 * The thread has started/joined the transaction thus it holds the 2320 * lockdep map as a reader. It has to release it before acquiring the 2321 * lockdep map as a writer. 2322 */ 2323 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2324 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters); 2325 wait_event(cur_trans->writer_wait, 2326 extwriter_counter_read(cur_trans) == 0); 2327 2328 /* some pending stuffs might be added after the previous flush. */ 2329 ret = btrfs_run_delayed_items(trans); 2330 if (ret) { 2331 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2332 goto cleanup_transaction; 2333 } 2334 2335 btrfs_wait_delalloc_flush(fs_info); 2336 2337 /* 2338 * Wait for all ordered extents started by a fast fsync that joined this 2339 * transaction. Otherwise if this transaction commits before the ordered 2340 * extents complete we lose logged data after a power failure. 2341 */ 2342 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered); 2343 wait_event(cur_trans->pending_wait, 2344 atomic_read(&cur_trans->pending_ordered) == 0); 2345 2346 btrfs_scrub_pause(fs_info); 2347 /* 2348 * Ok now we need to make sure to block out any other joins while we 2349 * commit the transaction. We could have started a join before setting 2350 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2351 */ 2352 spin_lock(&fs_info->trans_lock); 2353 add_pending_snapshot(trans); 2354 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2355 spin_unlock(&fs_info->trans_lock); 2356 2357 /* 2358 * The thread has started/joined the transaction thus it holds the 2359 * lockdep map as a reader. It has to release it before acquiring the 2360 * lockdep map as a writer. 2361 */ 2362 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2363 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2364 wait_event(cur_trans->writer_wait, 2365 atomic_read(&cur_trans->num_writers) == 1); 2366 2367 /* 2368 * Make lockdep happy by acquiring the state locks after 2369 * btrfs_trans_num_writers is released. If we acquired the state locks 2370 * before releasing the btrfs_trans_num_writers lock then lockdep would 2371 * complain because we did not follow the reverse order unlocking rule. 2372 */ 2373 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2374 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2375 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2376 2377 /* 2378 * We've started the commit, clear the flag in case we were triggered to 2379 * do an async commit but somebody else started before the transaction 2380 * kthread could do the work. 2381 */ 2382 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2383 2384 if (TRANS_ABORTED(cur_trans)) { 2385 ret = cur_trans->aborted; 2386 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2387 goto scrub_continue; 2388 } 2389 /* 2390 * the reloc mutex makes sure that we stop 2391 * the balancing code from coming in and moving 2392 * extents around in the middle of the commit 2393 */ 2394 mutex_lock(&fs_info->reloc_mutex); 2395 2396 /* 2397 * We needn't worry about the delayed items because we will 2398 * deal with them in create_pending_snapshot(), which is the 2399 * core function of the snapshot creation. 2400 */ 2401 ret = create_pending_snapshots(trans); 2402 if (ret) 2403 goto unlock_reloc; 2404 2405 /* 2406 * We insert the dir indexes of the snapshots and update the inode 2407 * of the snapshots' parents after the snapshot creation, so there 2408 * are some delayed items which are not dealt with. Now deal with 2409 * them. 2410 * 2411 * We needn't worry that this operation will corrupt the snapshots, 2412 * because all the tree which are snapshoted will be forced to COW 2413 * the nodes and leaves. 2414 */ 2415 ret = btrfs_run_delayed_items(trans); 2416 if (ret) 2417 goto unlock_reloc; 2418 2419 ret = btrfs_run_delayed_refs(trans, U64_MAX); 2420 if (ret) 2421 goto unlock_reloc; 2422 2423 /* 2424 * make sure none of the code above managed to slip in a 2425 * delayed item 2426 */ 2427 btrfs_assert_delayed_root_empty(fs_info); 2428 2429 WARN_ON(cur_trans != trans->transaction); 2430 2431 ret = commit_fs_roots(trans); 2432 if (ret) 2433 goto unlock_reloc; 2434 2435 /* commit_fs_roots gets rid of all the tree log roots, it is now 2436 * safe to free the root of tree log roots 2437 */ 2438 btrfs_free_log_root_tree(trans, fs_info); 2439 2440 /* 2441 * Since fs roots are all committed, we can get a quite accurate 2442 * new_roots. So let's do quota accounting. 2443 */ 2444 ret = btrfs_qgroup_account_extents(trans); 2445 if (ret < 0) 2446 goto unlock_reloc; 2447 2448 ret = commit_cowonly_roots(trans); 2449 if (ret) 2450 goto unlock_reloc; 2451 2452 /* 2453 * The tasks which save the space cache and inode cache may also 2454 * update ->aborted, check it. 2455 */ 2456 if (TRANS_ABORTED(cur_trans)) { 2457 ret = cur_trans->aborted; 2458 goto unlock_reloc; 2459 } 2460 2461 cur_trans = fs_info->running_transaction; 2462 2463 btrfs_set_root_node(&fs_info->tree_root->root_item, 2464 fs_info->tree_root->node); 2465 list_add_tail(&fs_info->tree_root->dirty_list, 2466 &cur_trans->switch_commits); 2467 2468 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2469 fs_info->chunk_root->node); 2470 list_add_tail(&fs_info->chunk_root->dirty_list, 2471 &cur_trans->switch_commits); 2472 2473 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2474 btrfs_set_root_node(&fs_info->block_group_root->root_item, 2475 fs_info->block_group_root->node); 2476 list_add_tail(&fs_info->block_group_root->dirty_list, 2477 &cur_trans->switch_commits); 2478 } 2479 2480 switch_commit_roots(trans); 2481 2482 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2483 ASSERT(list_empty(&cur_trans->io_bgs)); 2484 update_super_roots(fs_info); 2485 2486 btrfs_set_super_log_root(fs_info->super_copy, 0); 2487 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2488 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2489 sizeof(*fs_info->super_copy)); 2490 2491 btrfs_commit_device_sizes(cur_trans); 2492 2493 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2494 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2495 2496 btrfs_trans_release_chunk_metadata(trans); 2497 2498 /* 2499 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2500 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2501 * make sure that before we commit our superblock, no other task can 2502 * start a new transaction and commit a log tree before we commit our 2503 * superblock. Anyone trying to commit a log tree locks this mutex before 2504 * writing its superblock. 2505 */ 2506 mutex_lock(&fs_info->tree_log_mutex); 2507 2508 spin_lock(&fs_info->trans_lock); 2509 cur_trans->state = TRANS_STATE_UNBLOCKED; 2510 fs_info->running_transaction = NULL; 2511 spin_unlock(&fs_info->trans_lock); 2512 mutex_unlock(&fs_info->reloc_mutex); 2513 2514 wake_up(&fs_info->transaction_wait); 2515 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2516 2517 /* If we have features changed, wake up the cleaner to update sysfs. */ 2518 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) && 2519 fs_info->cleaner_kthread) 2520 wake_up_process(fs_info->cleaner_kthread); 2521 2522 ret = btrfs_write_and_wait_transaction(trans); 2523 if (ret) { 2524 btrfs_handle_fs_error(fs_info, ret, 2525 "Error while writing out transaction"); 2526 mutex_unlock(&fs_info->tree_log_mutex); 2527 goto scrub_continue; 2528 } 2529 2530 ret = write_all_supers(fs_info, 0); 2531 /* 2532 * the super is written, we can safely allow the tree-loggers 2533 * to go about their business 2534 */ 2535 mutex_unlock(&fs_info->tree_log_mutex); 2536 if (ret) 2537 goto scrub_continue; 2538 2539 /* 2540 * We needn't acquire the lock here because there is no other task 2541 * which can change it. 2542 */ 2543 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2544 wake_up(&cur_trans->commit_wait); 2545 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2546 2547 btrfs_finish_extent_commit(trans); 2548 2549 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2550 btrfs_clear_space_info_full(fs_info); 2551 2552 btrfs_set_last_trans_committed(fs_info, cur_trans->transid); 2553 /* 2554 * We needn't acquire the lock here because there is no other task 2555 * which can change it. 2556 */ 2557 cur_trans->state = TRANS_STATE_COMPLETED; 2558 wake_up(&cur_trans->commit_wait); 2559 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2560 2561 spin_lock(&fs_info->trans_lock); 2562 list_del_init(&cur_trans->list); 2563 spin_unlock(&fs_info->trans_lock); 2564 2565 btrfs_put_transaction(cur_trans); 2566 btrfs_put_transaction(cur_trans); 2567 2568 if (trans->type & __TRANS_FREEZABLE) 2569 sb_end_intwrite(fs_info->sb); 2570 2571 trace_btrfs_transaction_commit(fs_info); 2572 2573 interval = ktime_get_ns() - start_time; 2574 2575 btrfs_scrub_continue(fs_info); 2576 2577 if (current->journal_info == trans) 2578 current->journal_info = NULL; 2579 2580 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2581 2582 update_commit_stats(fs_info, interval); 2583 2584 return ret; 2585 2586 unlock_reloc: 2587 mutex_unlock(&fs_info->reloc_mutex); 2588 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2589 scrub_continue: 2590 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2591 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2592 btrfs_scrub_continue(fs_info); 2593 cleanup_transaction: 2594 btrfs_trans_release_metadata(trans); 2595 btrfs_cleanup_pending_block_groups(trans); 2596 btrfs_trans_release_chunk_metadata(trans); 2597 trans->block_rsv = NULL; 2598 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2599 if (current->journal_info == trans) 2600 current->journal_info = NULL; 2601 cleanup_transaction(trans, ret); 2602 2603 return ret; 2604 2605 lockdep_release: 2606 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2607 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2608 goto cleanup_transaction; 2609 2610 lockdep_trans_commit_start_release: 2611 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2612 btrfs_end_transaction(trans); 2613 return ret; 2614 } 2615 2616 /* 2617 * return < 0 if error 2618 * 0 if there are no more dead_roots at the time of call 2619 * 1 there are more to be processed, call me again 2620 * 2621 * The return value indicates there are certainly more snapshots to delete, but 2622 * if there comes a new one during processing, it may return 0. We don't mind, 2623 * because btrfs_commit_super will poke cleaner thread and it will process it a 2624 * few seconds later. 2625 */ 2626 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info) 2627 { 2628 struct btrfs_root *root; 2629 int ret; 2630 2631 spin_lock(&fs_info->trans_lock); 2632 if (list_empty(&fs_info->dead_roots)) { 2633 spin_unlock(&fs_info->trans_lock); 2634 return 0; 2635 } 2636 root = list_first_entry(&fs_info->dead_roots, 2637 struct btrfs_root, root_list); 2638 list_del_init(&root->root_list); 2639 spin_unlock(&fs_info->trans_lock); 2640 2641 btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root)); 2642 2643 btrfs_kill_all_delayed_nodes(root); 2644 2645 if (btrfs_header_backref_rev(root->node) < 2646 BTRFS_MIXED_BACKREF_REV) 2647 ret = btrfs_drop_snapshot(root, 0, 0); 2648 else 2649 ret = btrfs_drop_snapshot(root, 1, 0); 2650 2651 btrfs_put_root(root); 2652 return (ret < 0) ? 0 : 1; 2653 } 2654 2655 /* 2656 * We only mark the transaction aborted and then set the file system read-only. 2657 * This will prevent new transactions from starting or trying to join this 2658 * one. 2659 * 2660 * This means that error recovery at the call site is limited to freeing 2661 * any local memory allocations and passing the error code up without 2662 * further cleanup. The transaction should complete as it normally would 2663 * in the call path but will return -EIO. 2664 * 2665 * We'll complete the cleanup in btrfs_end_transaction and 2666 * btrfs_commit_transaction. 2667 */ 2668 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 2669 const char *function, 2670 unsigned int line, int error, bool first_hit) 2671 { 2672 struct btrfs_fs_info *fs_info = trans->fs_info; 2673 2674 WRITE_ONCE(trans->aborted, error); 2675 WRITE_ONCE(trans->transaction->aborted, error); 2676 if (first_hit && error == -ENOSPC) 2677 btrfs_dump_space_info_for_trans_abort(fs_info); 2678 /* Wake up anybody who may be waiting on this transaction */ 2679 wake_up(&fs_info->transaction_wait); 2680 wake_up(&fs_info->transaction_blocked_wait); 2681 __btrfs_handle_fs_error(fs_info, function, line, error, NULL); 2682 } 2683 2684 int __init btrfs_transaction_init(void) 2685 { 2686 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY); 2687 if (!btrfs_trans_handle_cachep) 2688 return -ENOMEM; 2689 return 0; 2690 } 2691 2692 void __cold btrfs_transaction_exit(void) 2693 { 2694 kmem_cache_destroy(btrfs_trans_handle_cachep); 2695 } 2696
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.