~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/tree-log.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2008 Oracle.  All rights reserved.
  4  */
  5 
  6 #include <linux/sched.h>
  7 #include <linux/slab.h>
  8 #include <linux/blkdev.h>
  9 #include <linux/list_sort.h>
 10 #include <linux/iversion.h>
 11 #include "misc.h"
 12 #include "ctree.h"
 13 #include "tree-log.h"
 14 #include "disk-io.h"
 15 #include "locking.h"
 16 #include "backref.h"
 17 #include "compression.h"
 18 #include "qgroup.h"
 19 #include "block-group.h"
 20 #include "space-info.h"
 21 #include "inode-item.h"
 22 #include "fs.h"
 23 #include "accessors.h"
 24 #include "extent-tree.h"
 25 #include "root-tree.h"
 26 #include "dir-item.h"
 27 #include "file-item.h"
 28 #include "file.h"
 29 #include "orphan.h"
 30 #include "tree-checker.h"
 31 
 32 #define MAX_CONFLICT_INODES 10
 33 
 34 /* magic values for the inode_only field in btrfs_log_inode:
 35  *
 36  * LOG_INODE_ALL means to log everything
 37  * LOG_INODE_EXISTS means to log just enough to recreate the inode
 38  * during log replay
 39  */
 40 enum {
 41         LOG_INODE_ALL,
 42         LOG_INODE_EXISTS,
 43 };
 44 
 45 /*
 46  * directory trouble cases
 47  *
 48  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
 49  * log, we must force a full commit before doing an fsync of the directory
 50  * where the unlink was done.
 51  * ---> record transid of last unlink/rename per directory
 52  *
 53  * mkdir foo/some_dir
 54  * normal commit
 55  * rename foo/some_dir foo2/some_dir
 56  * mkdir foo/some_dir
 57  * fsync foo/some_dir/some_file
 58  *
 59  * The fsync above will unlink the original some_dir without recording
 60  * it in its new location (foo2).  After a crash, some_dir will be gone
 61  * unless the fsync of some_file forces a full commit
 62  *
 63  * 2) we must log any new names for any file or dir that is in the fsync
 64  * log. ---> check inode while renaming/linking.
 65  *
 66  * 2a) we must log any new names for any file or dir during rename
 67  * when the directory they are being removed from was logged.
 68  * ---> check inode and old parent dir during rename
 69  *
 70  *  2a is actually the more important variant.  With the extra logging
 71  *  a crash might unlink the old name without recreating the new one
 72  *
 73  * 3) after a crash, we must go through any directories with a link count
 74  * of zero and redo the rm -rf
 75  *
 76  * mkdir f1/foo
 77  * normal commit
 78  * rm -rf f1/foo
 79  * fsync(f1)
 80  *
 81  * The directory f1 was fully removed from the FS, but fsync was never
 82  * called on f1, only its parent dir.  After a crash the rm -rf must
 83  * be replayed.  This must be able to recurse down the entire
 84  * directory tree.  The inode link count fixup code takes care of the
 85  * ugly details.
 86  */
 87 
 88 /*
 89  * stages for the tree walking.  The first
 90  * stage (0) is to only pin down the blocks we find
 91  * the second stage (1) is to make sure that all the inodes
 92  * we find in the log are created in the subvolume.
 93  *
 94  * The last stage is to deal with directories and links and extents
 95  * and all the other fun semantics
 96  */
 97 enum {
 98         LOG_WALK_PIN_ONLY,
 99         LOG_WALK_REPLAY_INODES,
100         LOG_WALK_REPLAY_DIR_INDEX,
101         LOG_WALK_REPLAY_ALL,
102 };
103 
104 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105                            struct btrfs_inode *inode,
106                            int inode_only,
107                            struct btrfs_log_ctx *ctx);
108 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109                              struct btrfs_root *root,
110                              struct btrfs_path *path, u64 objectid);
111 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112                                        struct btrfs_root *root,
113                                        struct btrfs_root *log,
114                                        struct btrfs_path *path,
115                                        u64 dirid, int del_all);
116 static void wait_log_commit(struct btrfs_root *root, int transid);
117 
118 /*
119  * tree logging is a special write ahead log used to make sure that
120  * fsyncs and O_SYNCs can happen without doing full tree commits.
121  *
122  * Full tree commits are expensive because they require commonly
123  * modified blocks to be recowed, creating many dirty pages in the
124  * extent tree an 4x-6x higher write load than ext3.
125  *
126  * Instead of doing a tree commit on every fsync, we use the
127  * key ranges and transaction ids to find items for a given file or directory
128  * that have changed in this transaction.  Those items are copied into
129  * a special tree (one per subvolume root), that tree is written to disk
130  * and then the fsync is considered complete.
131  *
132  * After a crash, items are copied out of the log-tree back into the
133  * subvolume tree.  Any file data extents found are recorded in the extent
134  * allocation tree, and the log-tree freed.
135  *
136  * The log tree is read three times, once to pin down all the extents it is
137  * using in ram and once, once to create all the inodes logged in the tree
138  * and once to do all the other items.
139  */
140 
141 static struct inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
142 {
143         unsigned int nofs_flag;
144         struct inode *inode;
145 
146         /*
147          * We're holding a transaction handle whether we are logging or
148          * replaying a log tree, so we must make sure NOFS semantics apply
149          * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
150          * to allocate an inode, which can recurse back into the filesystem and
151          * attempt a transaction commit, resulting in a deadlock.
152          */
153         nofs_flag = memalloc_nofs_save();
154         inode = btrfs_iget(objectid, root);
155         memalloc_nofs_restore(nofs_flag);
156 
157         return inode;
158 }
159 
160 /*
161  * start a sub transaction and setup the log tree
162  * this increments the log tree writer count to make the people
163  * syncing the tree wait for us to finish
164  */
165 static int start_log_trans(struct btrfs_trans_handle *trans,
166                            struct btrfs_root *root,
167                            struct btrfs_log_ctx *ctx)
168 {
169         struct btrfs_fs_info *fs_info = root->fs_info;
170         struct btrfs_root *tree_root = fs_info->tree_root;
171         const bool zoned = btrfs_is_zoned(fs_info);
172         int ret = 0;
173         bool created = false;
174 
175         /*
176          * First check if the log root tree was already created. If not, create
177          * it before locking the root's log_mutex, just to keep lockdep happy.
178          */
179         if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
180                 mutex_lock(&tree_root->log_mutex);
181                 if (!fs_info->log_root_tree) {
182                         ret = btrfs_init_log_root_tree(trans, fs_info);
183                         if (!ret) {
184                                 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
185                                 created = true;
186                         }
187                 }
188                 mutex_unlock(&tree_root->log_mutex);
189                 if (ret)
190                         return ret;
191         }
192 
193         mutex_lock(&root->log_mutex);
194 
195 again:
196         if (root->log_root) {
197                 int index = (root->log_transid + 1) % 2;
198 
199                 if (btrfs_need_log_full_commit(trans)) {
200                         ret = BTRFS_LOG_FORCE_COMMIT;
201                         goto out;
202                 }
203 
204                 if (zoned && atomic_read(&root->log_commit[index])) {
205                         wait_log_commit(root, root->log_transid - 1);
206                         goto again;
207                 }
208 
209                 if (!root->log_start_pid) {
210                         clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
211                         root->log_start_pid = current->pid;
212                 } else if (root->log_start_pid != current->pid) {
213                         set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214                 }
215         } else {
216                 /*
217                  * This means fs_info->log_root_tree was already created
218                  * for some other FS trees. Do the full commit not to mix
219                  * nodes from multiple log transactions to do sequential
220                  * writing.
221                  */
222                 if (zoned && !created) {
223                         ret = BTRFS_LOG_FORCE_COMMIT;
224                         goto out;
225                 }
226 
227                 ret = btrfs_add_log_tree(trans, root);
228                 if (ret)
229                         goto out;
230 
231                 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
232                 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
233                 root->log_start_pid = current->pid;
234         }
235 
236         atomic_inc(&root->log_writers);
237         if (!ctx->logging_new_name) {
238                 int index = root->log_transid % 2;
239                 list_add_tail(&ctx->list, &root->log_ctxs[index]);
240                 ctx->log_transid = root->log_transid;
241         }
242 
243 out:
244         mutex_unlock(&root->log_mutex);
245         return ret;
246 }
247 
248 /*
249  * returns 0 if there was a log transaction running and we were able
250  * to join, or returns -ENOENT if there were not transactions
251  * in progress
252  */
253 static int join_running_log_trans(struct btrfs_root *root)
254 {
255         const bool zoned = btrfs_is_zoned(root->fs_info);
256         int ret = -ENOENT;
257 
258         if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
259                 return ret;
260 
261         mutex_lock(&root->log_mutex);
262 again:
263         if (root->log_root) {
264                 int index = (root->log_transid + 1) % 2;
265 
266                 ret = 0;
267                 if (zoned && atomic_read(&root->log_commit[index])) {
268                         wait_log_commit(root, root->log_transid - 1);
269                         goto again;
270                 }
271                 atomic_inc(&root->log_writers);
272         }
273         mutex_unlock(&root->log_mutex);
274         return ret;
275 }
276 
277 /*
278  * This either makes the current running log transaction wait
279  * until you call btrfs_end_log_trans() or it makes any future
280  * log transactions wait until you call btrfs_end_log_trans()
281  */
282 void btrfs_pin_log_trans(struct btrfs_root *root)
283 {
284         atomic_inc(&root->log_writers);
285 }
286 
287 /*
288  * indicate we're done making changes to the log tree
289  * and wake up anyone waiting to do a sync
290  */
291 void btrfs_end_log_trans(struct btrfs_root *root)
292 {
293         if (atomic_dec_and_test(&root->log_writers)) {
294                 /* atomic_dec_and_test implies a barrier */
295                 cond_wake_up_nomb(&root->log_writer_wait);
296         }
297 }
298 
299 /*
300  * the walk control struct is used to pass state down the chain when
301  * processing the log tree.  The stage field tells us which part
302  * of the log tree processing we are currently doing.  The others
303  * are state fields used for that specific part
304  */
305 struct walk_control {
306         /* should we free the extent on disk when done?  This is used
307          * at transaction commit time while freeing a log tree
308          */
309         int free;
310 
311         /* pin only walk, we record which extents on disk belong to the
312          * log trees
313          */
314         int pin;
315 
316         /* what stage of the replay code we're currently in */
317         int stage;
318 
319         /*
320          * Ignore any items from the inode currently being processed. Needs
321          * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
322          * the LOG_WALK_REPLAY_INODES stage.
323          */
324         bool ignore_cur_inode;
325 
326         /* the root we are currently replaying */
327         struct btrfs_root *replay_dest;
328 
329         /* the trans handle for the current replay */
330         struct btrfs_trans_handle *trans;
331 
332         /* the function that gets used to process blocks we find in the
333          * tree.  Note the extent_buffer might not be up to date when it is
334          * passed in, and it must be checked or read if you need the data
335          * inside it
336          */
337         int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
338                             struct walk_control *wc, u64 gen, int level);
339 };
340 
341 /*
342  * process_func used to pin down extents, write them or wait on them
343  */
344 static int process_one_buffer(struct btrfs_root *log,
345                               struct extent_buffer *eb,
346                               struct walk_control *wc, u64 gen, int level)
347 {
348         struct btrfs_fs_info *fs_info = log->fs_info;
349         int ret = 0;
350 
351         /*
352          * If this fs is mixed then we need to be able to process the leaves to
353          * pin down any logged extents, so we have to read the block.
354          */
355         if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
356                 struct btrfs_tree_parent_check check = {
357                         .level = level,
358                         .transid = gen
359                 };
360 
361                 ret = btrfs_read_extent_buffer(eb, &check);
362                 if (ret)
363                         return ret;
364         }
365 
366         if (wc->pin) {
367                 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
368                 if (ret)
369                         return ret;
370 
371                 if (btrfs_buffer_uptodate(eb, gen, 0) &&
372                     btrfs_header_level(eb) == 0)
373                         ret = btrfs_exclude_logged_extents(eb);
374         }
375         return ret;
376 }
377 
378 /*
379  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
380  * to the src data we are copying out.
381  *
382  * root is the tree we are copying into, and path is a scratch
383  * path for use in this function (it should be released on entry and
384  * will be released on exit).
385  *
386  * If the key is already in the destination tree the existing item is
387  * overwritten.  If the existing item isn't big enough, it is extended.
388  * If it is too large, it is truncated.
389  *
390  * If the key isn't in the destination yet, a new item is inserted.
391  */
392 static int overwrite_item(struct btrfs_trans_handle *trans,
393                           struct btrfs_root *root,
394                           struct btrfs_path *path,
395                           struct extent_buffer *eb, int slot,
396                           struct btrfs_key *key)
397 {
398         int ret;
399         u32 item_size;
400         u64 saved_i_size = 0;
401         int save_old_i_size = 0;
402         unsigned long src_ptr;
403         unsigned long dst_ptr;
404         bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
405 
406         /*
407          * This is only used during log replay, so the root is always from a
408          * fs/subvolume tree. In case we ever need to support a log root, then
409          * we'll have to clone the leaf in the path, release the path and use
410          * the leaf before writing into the log tree. See the comments at
411          * copy_items() for more details.
412          */
413         ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
414 
415         item_size = btrfs_item_size(eb, slot);
416         src_ptr = btrfs_item_ptr_offset(eb, slot);
417 
418         /* Look for the key in the destination tree. */
419         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
420         if (ret < 0)
421                 return ret;
422 
423         if (ret == 0) {
424                 char *src_copy;
425                 char *dst_copy;
426                 u32 dst_size = btrfs_item_size(path->nodes[0],
427                                                   path->slots[0]);
428                 if (dst_size != item_size)
429                         goto insert;
430 
431                 if (item_size == 0) {
432                         btrfs_release_path(path);
433                         return 0;
434                 }
435                 dst_copy = kmalloc(item_size, GFP_NOFS);
436                 src_copy = kmalloc(item_size, GFP_NOFS);
437                 if (!dst_copy || !src_copy) {
438                         btrfs_release_path(path);
439                         kfree(dst_copy);
440                         kfree(src_copy);
441                         return -ENOMEM;
442                 }
443 
444                 read_extent_buffer(eb, src_copy, src_ptr, item_size);
445 
446                 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
447                 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
448                                    item_size);
449                 ret = memcmp(dst_copy, src_copy, item_size);
450 
451                 kfree(dst_copy);
452                 kfree(src_copy);
453                 /*
454                  * they have the same contents, just return, this saves
455                  * us from cowing blocks in the destination tree and doing
456                  * extra writes that may not have been done by a previous
457                  * sync
458                  */
459                 if (ret == 0) {
460                         btrfs_release_path(path);
461                         return 0;
462                 }
463 
464                 /*
465                  * We need to load the old nbytes into the inode so when we
466                  * replay the extents we've logged we get the right nbytes.
467                  */
468                 if (inode_item) {
469                         struct btrfs_inode_item *item;
470                         u64 nbytes;
471                         u32 mode;
472 
473                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
474                                               struct btrfs_inode_item);
475                         nbytes = btrfs_inode_nbytes(path->nodes[0], item);
476                         item = btrfs_item_ptr(eb, slot,
477                                               struct btrfs_inode_item);
478                         btrfs_set_inode_nbytes(eb, item, nbytes);
479 
480                         /*
481                          * If this is a directory we need to reset the i_size to
482                          * 0 so that we can set it up properly when replaying
483                          * the rest of the items in this log.
484                          */
485                         mode = btrfs_inode_mode(eb, item);
486                         if (S_ISDIR(mode))
487                                 btrfs_set_inode_size(eb, item, 0);
488                 }
489         } else if (inode_item) {
490                 struct btrfs_inode_item *item;
491                 u32 mode;
492 
493                 /*
494                  * New inode, set nbytes to 0 so that the nbytes comes out
495                  * properly when we replay the extents.
496                  */
497                 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
498                 btrfs_set_inode_nbytes(eb, item, 0);
499 
500                 /*
501                  * If this is a directory we need to reset the i_size to 0 so
502                  * that we can set it up properly when replaying the rest of
503                  * the items in this log.
504                  */
505                 mode = btrfs_inode_mode(eb, item);
506                 if (S_ISDIR(mode))
507                         btrfs_set_inode_size(eb, item, 0);
508         }
509 insert:
510         btrfs_release_path(path);
511         /* try to insert the key into the destination tree */
512         path->skip_release_on_error = 1;
513         ret = btrfs_insert_empty_item(trans, root, path,
514                                       key, item_size);
515         path->skip_release_on_error = 0;
516 
517         /* make sure any existing item is the correct size */
518         if (ret == -EEXIST || ret == -EOVERFLOW) {
519                 u32 found_size;
520                 found_size = btrfs_item_size(path->nodes[0],
521                                                 path->slots[0]);
522                 if (found_size > item_size)
523                         btrfs_truncate_item(trans, path, item_size, 1);
524                 else if (found_size < item_size)
525                         btrfs_extend_item(trans, path, item_size - found_size);
526         } else if (ret) {
527                 return ret;
528         }
529         dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
530                                         path->slots[0]);
531 
532         /* don't overwrite an existing inode if the generation number
533          * was logged as zero.  This is done when the tree logging code
534          * is just logging an inode to make sure it exists after recovery.
535          *
536          * Also, don't overwrite i_size on directories during replay.
537          * log replay inserts and removes directory items based on the
538          * state of the tree found in the subvolume, and i_size is modified
539          * as it goes
540          */
541         if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
542                 struct btrfs_inode_item *src_item;
543                 struct btrfs_inode_item *dst_item;
544 
545                 src_item = (struct btrfs_inode_item *)src_ptr;
546                 dst_item = (struct btrfs_inode_item *)dst_ptr;
547 
548                 if (btrfs_inode_generation(eb, src_item) == 0) {
549                         struct extent_buffer *dst_eb = path->nodes[0];
550                         const u64 ino_size = btrfs_inode_size(eb, src_item);
551 
552                         /*
553                          * For regular files an ino_size == 0 is used only when
554                          * logging that an inode exists, as part of a directory
555                          * fsync, and the inode wasn't fsynced before. In this
556                          * case don't set the size of the inode in the fs/subvol
557                          * tree, otherwise we would be throwing valid data away.
558                          */
559                         if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
560                             S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
561                             ino_size != 0)
562                                 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
563                         goto no_copy;
564                 }
565 
566                 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
567                     S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
568                         save_old_i_size = 1;
569                         saved_i_size = btrfs_inode_size(path->nodes[0],
570                                                         dst_item);
571                 }
572         }
573 
574         copy_extent_buffer(path->nodes[0], eb, dst_ptr,
575                            src_ptr, item_size);
576 
577         if (save_old_i_size) {
578                 struct btrfs_inode_item *dst_item;
579                 dst_item = (struct btrfs_inode_item *)dst_ptr;
580                 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
581         }
582 
583         /* make sure the generation is filled in */
584         if (key->type == BTRFS_INODE_ITEM_KEY) {
585                 struct btrfs_inode_item *dst_item;
586                 dst_item = (struct btrfs_inode_item *)dst_ptr;
587                 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
588                         btrfs_set_inode_generation(path->nodes[0], dst_item,
589                                                    trans->transid);
590                 }
591         }
592 no_copy:
593         btrfs_mark_buffer_dirty(trans, path->nodes[0]);
594         btrfs_release_path(path);
595         return 0;
596 }
597 
598 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
599                                struct fscrypt_str *name)
600 {
601         char *buf;
602 
603         buf = kmalloc(len, GFP_NOFS);
604         if (!buf)
605                 return -ENOMEM;
606 
607         read_extent_buffer(eb, buf, (unsigned long)start, len);
608         name->name = buf;
609         name->len = len;
610         return 0;
611 }
612 
613 /*
614  * simple helper to read an inode off the disk from a given root
615  * This can only be called for subvolume roots and not for the log
616  */
617 static noinline struct inode *read_one_inode(struct btrfs_root *root,
618                                              u64 objectid)
619 {
620         struct inode *inode;
621 
622         inode = btrfs_iget_logging(objectid, root);
623         if (IS_ERR(inode))
624                 inode = NULL;
625         return inode;
626 }
627 
628 /* replays a single extent in 'eb' at 'slot' with 'key' into the
629  * subvolume 'root'.  path is released on entry and should be released
630  * on exit.
631  *
632  * extents in the log tree have not been allocated out of the extent
633  * tree yet.  So, this completes the allocation, taking a reference
634  * as required if the extent already exists or creating a new extent
635  * if it isn't in the extent allocation tree yet.
636  *
637  * The extent is inserted into the file, dropping any existing extents
638  * from the file that overlap the new one.
639  */
640 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
641                                       struct btrfs_root *root,
642                                       struct btrfs_path *path,
643                                       struct extent_buffer *eb, int slot,
644                                       struct btrfs_key *key)
645 {
646         struct btrfs_drop_extents_args drop_args = { 0 };
647         struct btrfs_fs_info *fs_info = root->fs_info;
648         int found_type;
649         u64 extent_end;
650         u64 start = key->offset;
651         u64 nbytes = 0;
652         struct btrfs_file_extent_item *item;
653         struct inode *inode = NULL;
654         unsigned long size;
655         int ret = 0;
656 
657         item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
658         found_type = btrfs_file_extent_type(eb, item);
659 
660         if (found_type == BTRFS_FILE_EXTENT_REG ||
661             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
662                 nbytes = btrfs_file_extent_num_bytes(eb, item);
663                 extent_end = start + nbytes;
664 
665                 /*
666                  * We don't add to the inodes nbytes if we are prealloc or a
667                  * hole.
668                  */
669                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
670                         nbytes = 0;
671         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
672                 size = btrfs_file_extent_ram_bytes(eb, item);
673                 nbytes = btrfs_file_extent_ram_bytes(eb, item);
674                 extent_end = ALIGN(start + size,
675                                    fs_info->sectorsize);
676         } else {
677                 ret = 0;
678                 goto out;
679         }
680 
681         inode = read_one_inode(root, key->objectid);
682         if (!inode) {
683                 ret = -EIO;
684                 goto out;
685         }
686 
687         /*
688          * first check to see if we already have this extent in the
689          * file.  This must be done before the btrfs_drop_extents run
690          * so we don't try to drop this extent.
691          */
692         ret = btrfs_lookup_file_extent(trans, root, path,
693                         btrfs_ino(BTRFS_I(inode)), start, 0);
694 
695         if (ret == 0 &&
696             (found_type == BTRFS_FILE_EXTENT_REG ||
697              found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
698                 struct btrfs_file_extent_item cmp1;
699                 struct btrfs_file_extent_item cmp2;
700                 struct btrfs_file_extent_item *existing;
701                 struct extent_buffer *leaf;
702 
703                 leaf = path->nodes[0];
704                 existing = btrfs_item_ptr(leaf, path->slots[0],
705                                           struct btrfs_file_extent_item);
706 
707                 read_extent_buffer(eb, &cmp1, (unsigned long)item,
708                                    sizeof(cmp1));
709                 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
710                                    sizeof(cmp2));
711 
712                 /*
713                  * we already have a pointer to this exact extent,
714                  * we don't have to do anything
715                  */
716                 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
717                         btrfs_release_path(path);
718                         goto out;
719                 }
720         }
721         btrfs_release_path(path);
722 
723         /* drop any overlapping extents */
724         drop_args.start = start;
725         drop_args.end = extent_end;
726         drop_args.drop_cache = true;
727         ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
728         if (ret)
729                 goto out;
730 
731         if (found_type == BTRFS_FILE_EXTENT_REG ||
732             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
733                 u64 offset;
734                 unsigned long dest_offset;
735                 struct btrfs_key ins;
736 
737                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
738                     btrfs_fs_incompat(fs_info, NO_HOLES))
739                         goto update_inode;
740 
741                 ret = btrfs_insert_empty_item(trans, root, path, key,
742                                               sizeof(*item));
743                 if (ret)
744                         goto out;
745                 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
746                                                     path->slots[0]);
747                 copy_extent_buffer(path->nodes[0], eb, dest_offset,
748                                 (unsigned long)item,  sizeof(*item));
749 
750                 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
751                 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
752                 ins.type = BTRFS_EXTENT_ITEM_KEY;
753                 offset = key->offset - btrfs_file_extent_offset(eb, item);
754 
755                 /*
756                  * Manually record dirty extent, as here we did a shallow
757                  * file extent item copy and skip normal backref update,
758                  * but modifying extent tree all by ourselves.
759                  * So need to manually record dirty extent for qgroup,
760                  * as the owner of the file extent changed from log tree
761                  * (doesn't affect qgroup) to fs/file tree(affects qgroup)
762                  */
763                 ret = btrfs_qgroup_trace_extent(trans,
764                                 btrfs_file_extent_disk_bytenr(eb, item),
765                                 btrfs_file_extent_disk_num_bytes(eb, item));
766                 if (ret < 0)
767                         goto out;
768 
769                 if (ins.objectid > 0) {
770                         u64 csum_start;
771                         u64 csum_end;
772                         LIST_HEAD(ordered_sums);
773 
774                         /*
775                          * is this extent already allocated in the extent
776                          * allocation tree?  If so, just add a reference
777                          */
778                         ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
779                                                 ins.offset);
780                         if (ret < 0) {
781                                 goto out;
782                         } else if (ret == 0) {
783                                 struct btrfs_ref ref = {
784                                         .action = BTRFS_ADD_DELAYED_REF,
785                                         .bytenr = ins.objectid,
786                                         .num_bytes = ins.offset,
787                                         .owning_root = btrfs_root_id(root),
788                                         .ref_root = btrfs_root_id(root),
789                                 };
790                                 btrfs_init_data_ref(&ref, key->objectid, offset,
791                                                     0, false);
792                                 ret = btrfs_inc_extent_ref(trans, &ref);
793                                 if (ret)
794                                         goto out;
795                         } else {
796                                 /*
797                                  * insert the extent pointer in the extent
798                                  * allocation tree
799                                  */
800                                 ret = btrfs_alloc_logged_file_extent(trans,
801                                                 btrfs_root_id(root),
802                                                 key->objectid, offset, &ins);
803                                 if (ret)
804                                         goto out;
805                         }
806                         btrfs_release_path(path);
807 
808                         if (btrfs_file_extent_compression(eb, item)) {
809                                 csum_start = ins.objectid;
810                                 csum_end = csum_start + ins.offset;
811                         } else {
812                                 csum_start = ins.objectid +
813                                         btrfs_file_extent_offset(eb, item);
814                                 csum_end = csum_start +
815                                         btrfs_file_extent_num_bytes(eb, item);
816                         }
817 
818                         ret = btrfs_lookup_csums_list(root->log_root,
819                                                 csum_start, csum_end - 1,
820                                                 &ordered_sums, false);
821                         if (ret < 0)
822                                 goto out;
823                         ret = 0;
824                         /*
825                          * Now delete all existing cums in the csum root that
826                          * cover our range. We do this because we can have an
827                          * extent that is completely referenced by one file
828                          * extent item and partially referenced by another
829                          * file extent item (like after using the clone or
830                          * extent_same ioctls). In this case if we end up doing
831                          * the replay of the one that partially references the
832                          * extent first, and we do not do the csum deletion
833                          * below, we can get 2 csum items in the csum tree that
834                          * overlap each other. For example, imagine our log has
835                          * the two following file extent items:
836                          *
837                          * key (257 EXTENT_DATA 409600)
838                          *     extent data disk byte 12845056 nr 102400
839                          *     extent data offset 20480 nr 20480 ram 102400
840                          *
841                          * key (257 EXTENT_DATA 819200)
842                          *     extent data disk byte 12845056 nr 102400
843                          *     extent data offset 0 nr 102400 ram 102400
844                          *
845                          * Where the second one fully references the 100K extent
846                          * that starts at disk byte 12845056, and the log tree
847                          * has a single csum item that covers the entire range
848                          * of the extent:
849                          *
850                          * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
851                          *
852                          * After the first file extent item is replayed, the
853                          * csum tree gets the following csum item:
854                          *
855                          * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
856                          *
857                          * Which covers the 20K sub-range starting at offset 20K
858                          * of our extent. Now when we replay the second file
859                          * extent item, if we do not delete existing csum items
860                          * that cover any of its blocks, we end up getting two
861                          * csum items in our csum tree that overlap each other:
862                          *
863                          * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
864                          * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
865                          *
866                          * Which is a problem, because after this anyone trying
867                          * to lookup up for the checksum of any block of our
868                          * extent starting at an offset of 40K or higher, will
869                          * end up looking at the second csum item only, which
870                          * does not contain the checksum for any block starting
871                          * at offset 40K or higher of our extent.
872                          */
873                         while (!list_empty(&ordered_sums)) {
874                                 struct btrfs_ordered_sum *sums;
875                                 struct btrfs_root *csum_root;
876 
877                                 sums = list_entry(ordered_sums.next,
878                                                 struct btrfs_ordered_sum,
879                                                 list);
880                                 csum_root = btrfs_csum_root(fs_info,
881                                                             sums->logical);
882                                 if (!ret)
883                                         ret = btrfs_del_csums(trans, csum_root,
884                                                               sums->logical,
885                                                               sums->len);
886                                 if (!ret)
887                                         ret = btrfs_csum_file_blocks(trans,
888                                                                      csum_root,
889                                                                      sums);
890                                 list_del(&sums->list);
891                                 kfree(sums);
892                         }
893                         if (ret)
894                                 goto out;
895                 } else {
896                         btrfs_release_path(path);
897                 }
898         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
899                 /* inline extents are easy, we just overwrite them */
900                 ret = overwrite_item(trans, root, path, eb, slot, key);
901                 if (ret)
902                         goto out;
903         }
904 
905         ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
906                                                 extent_end - start);
907         if (ret)
908                 goto out;
909 
910 update_inode:
911         btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
912         ret = btrfs_update_inode(trans, BTRFS_I(inode));
913 out:
914         iput(inode);
915         return ret;
916 }
917 
918 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
919                                        struct btrfs_inode *dir,
920                                        struct btrfs_inode *inode,
921                                        const struct fscrypt_str *name)
922 {
923         int ret;
924 
925         ret = btrfs_unlink_inode(trans, dir, inode, name);
926         if (ret)
927                 return ret;
928         /*
929          * Whenever we need to check if a name exists or not, we check the
930          * fs/subvolume tree. So after an unlink we must run delayed items, so
931          * that future checks for a name during log replay see that the name
932          * does not exists anymore.
933          */
934         return btrfs_run_delayed_items(trans);
935 }
936 
937 /*
938  * when cleaning up conflicts between the directory names in the
939  * subvolume, directory names in the log and directory names in the
940  * inode back references, we may have to unlink inodes from directories.
941  *
942  * This is a helper function to do the unlink of a specific directory
943  * item
944  */
945 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
946                                       struct btrfs_path *path,
947                                       struct btrfs_inode *dir,
948                                       struct btrfs_dir_item *di)
949 {
950         struct btrfs_root *root = dir->root;
951         struct inode *inode;
952         struct fscrypt_str name;
953         struct extent_buffer *leaf;
954         struct btrfs_key location;
955         int ret;
956 
957         leaf = path->nodes[0];
958 
959         btrfs_dir_item_key_to_cpu(leaf, di, &location);
960         ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
961         if (ret)
962                 return -ENOMEM;
963 
964         btrfs_release_path(path);
965 
966         inode = read_one_inode(root, location.objectid);
967         if (!inode) {
968                 ret = -EIO;
969                 goto out;
970         }
971 
972         ret = link_to_fixup_dir(trans, root, path, location.objectid);
973         if (ret)
974                 goto out;
975 
976         ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
977 out:
978         kfree(name.name);
979         iput(inode);
980         return ret;
981 }
982 
983 /*
984  * See if a given name and sequence number found in an inode back reference are
985  * already in a directory and correctly point to this inode.
986  *
987  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
988  * exists.
989  */
990 static noinline int inode_in_dir(struct btrfs_root *root,
991                                  struct btrfs_path *path,
992                                  u64 dirid, u64 objectid, u64 index,
993                                  struct fscrypt_str *name)
994 {
995         struct btrfs_dir_item *di;
996         struct btrfs_key location;
997         int ret = 0;
998 
999         di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
1000                                          index, name, 0);
1001         if (IS_ERR(di)) {
1002                 ret = PTR_ERR(di);
1003                 goto out;
1004         } else if (di) {
1005                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006                 if (location.objectid != objectid)
1007                         goto out;
1008         } else {
1009                 goto out;
1010         }
1011 
1012         btrfs_release_path(path);
1013         di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1014         if (IS_ERR(di)) {
1015                 ret = PTR_ERR(di);
1016                 goto out;
1017         } else if (di) {
1018                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1019                 if (location.objectid == objectid)
1020                         ret = 1;
1021         }
1022 out:
1023         btrfs_release_path(path);
1024         return ret;
1025 }
1026 
1027 /*
1028  * helper function to check a log tree for a named back reference in
1029  * an inode.  This is used to decide if a back reference that is
1030  * found in the subvolume conflicts with what we find in the log.
1031  *
1032  * inode backreferences may have multiple refs in a single item,
1033  * during replay we process one reference at a time, and we don't
1034  * want to delete valid links to a file from the subvolume if that
1035  * link is also in the log.
1036  */
1037 static noinline int backref_in_log(struct btrfs_root *log,
1038                                    struct btrfs_key *key,
1039                                    u64 ref_objectid,
1040                                    const struct fscrypt_str *name)
1041 {
1042         struct btrfs_path *path;
1043         int ret;
1044 
1045         path = btrfs_alloc_path();
1046         if (!path)
1047                 return -ENOMEM;
1048 
1049         ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1050         if (ret < 0) {
1051                 goto out;
1052         } else if (ret == 1) {
1053                 ret = 0;
1054                 goto out;
1055         }
1056 
1057         if (key->type == BTRFS_INODE_EXTREF_KEY)
1058                 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1059                                                        path->slots[0],
1060                                                        ref_objectid, name);
1061         else
1062                 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1063                                                    path->slots[0], name);
1064 out:
1065         btrfs_free_path(path);
1066         return ret;
1067 }
1068 
1069 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1070                                   struct btrfs_root *root,
1071                                   struct btrfs_path *path,
1072                                   struct btrfs_root *log_root,
1073                                   struct btrfs_inode *dir,
1074                                   struct btrfs_inode *inode,
1075                                   u64 inode_objectid, u64 parent_objectid,
1076                                   u64 ref_index, struct fscrypt_str *name)
1077 {
1078         int ret;
1079         struct extent_buffer *leaf;
1080         struct btrfs_dir_item *di;
1081         struct btrfs_key search_key;
1082         struct btrfs_inode_extref *extref;
1083 
1084 again:
1085         /* Search old style refs */
1086         search_key.objectid = inode_objectid;
1087         search_key.type = BTRFS_INODE_REF_KEY;
1088         search_key.offset = parent_objectid;
1089         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1090         if (ret == 0) {
1091                 struct btrfs_inode_ref *victim_ref;
1092                 unsigned long ptr;
1093                 unsigned long ptr_end;
1094 
1095                 leaf = path->nodes[0];
1096 
1097                 /* are we trying to overwrite a back ref for the root directory
1098                  * if so, just jump out, we're done
1099                  */
1100                 if (search_key.objectid == search_key.offset)
1101                         return 1;
1102 
1103                 /* check all the names in this back reference to see
1104                  * if they are in the log.  if so, we allow them to stay
1105                  * otherwise they must be unlinked as a conflict
1106                  */
1107                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1108                 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1109                 while (ptr < ptr_end) {
1110                         struct fscrypt_str victim_name;
1111 
1112                         victim_ref = (struct btrfs_inode_ref *)ptr;
1113                         ret = read_alloc_one_name(leaf, (victim_ref + 1),
1114                                  btrfs_inode_ref_name_len(leaf, victim_ref),
1115                                  &victim_name);
1116                         if (ret)
1117                                 return ret;
1118 
1119                         ret = backref_in_log(log_root, &search_key,
1120                                              parent_objectid, &victim_name);
1121                         if (ret < 0) {
1122                                 kfree(victim_name.name);
1123                                 return ret;
1124                         } else if (!ret) {
1125                                 inc_nlink(&inode->vfs_inode);
1126                                 btrfs_release_path(path);
1127 
1128                                 ret = unlink_inode_for_log_replay(trans, dir, inode,
1129                                                 &victim_name);
1130                                 kfree(victim_name.name);
1131                                 if (ret)
1132                                         return ret;
1133                                 goto again;
1134                         }
1135                         kfree(victim_name.name);
1136 
1137                         ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1138                 }
1139         }
1140         btrfs_release_path(path);
1141 
1142         /* Same search but for extended refs */
1143         extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1144                                            inode_objectid, parent_objectid, 0,
1145                                            0);
1146         if (IS_ERR(extref)) {
1147                 return PTR_ERR(extref);
1148         } else if (extref) {
1149                 u32 item_size;
1150                 u32 cur_offset = 0;
1151                 unsigned long base;
1152                 struct inode *victim_parent;
1153 
1154                 leaf = path->nodes[0];
1155 
1156                 item_size = btrfs_item_size(leaf, path->slots[0]);
1157                 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1158 
1159                 while (cur_offset < item_size) {
1160                         struct fscrypt_str victim_name;
1161 
1162                         extref = (struct btrfs_inode_extref *)(base + cur_offset);
1163 
1164                         if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1165                                 goto next;
1166 
1167                         ret = read_alloc_one_name(leaf, &extref->name,
1168                                  btrfs_inode_extref_name_len(leaf, extref),
1169                                  &victim_name);
1170                         if (ret)
1171                                 return ret;
1172 
1173                         search_key.objectid = inode_objectid;
1174                         search_key.type = BTRFS_INODE_EXTREF_KEY;
1175                         search_key.offset = btrfs_extref_hash(parent_objectid,
1176                                                               victim_name.name,
1177                                                               victim_name.len);
1178                         ret = backref_in_log(log_root, &search_key,
1179                                              parent_objectid, &victim_name);
1180                         if (ret < 0) {
1181                                 kfree(victim_name.name);
1182                                 return ret;
1183                         } else if (!ret) {
1184                                 ret = -ENOENT;
1185                                 victim_parent = read_one_inode(root,
1186                                                 parent_objectid);
1187                                 if (victim_parent) {
1188                                         inc_nlink(&inode->vfs_inode);
1189                                         btrfs_release_path(path);
1190 
1191                                         ret = unlink_inode_for_log_replay(trans,
1192                                                         BTRFS_I(victim_parent),
1193                                                         inode, &victim_name);
1194                                 }
1195                                 iput(victim_parent);
1196                                 kfree(victim_name.name);
1197                                 if (ret)
1198                                         return ret;
1199                                 goto again;
1200                         }
1201                         kfree(victim_name.name);
1202 next:
1203                         cur_offset += victim_name.len + sizeof(*extref);
1204                 }
1205         }
1206         btrfs_release_path(path);
1207 
1208         /* look for a conflicting sequence number */
1209         di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1210                                          ref_index, name, 0);
1211         if (IS_ERR(di)) {
1212                 return PTR_ERR(di);
1213         } else if (di) {
1214                 ret = drop_one_dir_item(trans, path, dir, di);
1215                 if (ret)
1216                         return ret;
1217         }
1218         btrfs_release_path(path);
1219 
1220         /* look for a conflicting name */
1221         di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1222         if (IS_ERR(di)) {
1223                 return PTR_ERR(di);
1224         } else if (di) {
1225                 ret = drop_one_dir_item(trans, path, dir, di);
1226                 if (ret)
1227                         return ret;
1228         }
1229         btrfs_release_path(path);
1230 
1231         return 0;
1232 }
1233 
1234 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1235                              struct fscrypt_str *name, u64 *index,
1236                              u64 *parent_objectid)
1237 {
1238         struct btrfs_inode_extref *extref;
1239         int ret;
1240 
1241         extref = (struct btrfs_inode_extref *)ref_ptr;
1242 
1243         ret = read_alloc_one_name(eb, &extref->name,
1244                                   btrfs_inode_extref_name_len(eb, extref), name);
1245         if (ret)
1246                 return ret;
1247 
1248         if (index)
1249                 *index = btrfs_inode_extref_index(eb, extref);
1250         if (parent_objectid)
1251                 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1252 
1253         return 0;
1254 }
1255 
1256 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1257                           struct fscrypt_str *name, u64 *index)
1258 {
1259         struct btrfs_inode_ref *ref;
1260         int ret;
1261 
1262         ref = (struct btrfs_inode_ref *)ref_ptr;
1263 
1264         ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1265                                   name);
1266         if (ret)
1267                 return ret;
1268 
1269         if (index)
1270                 *index = btrfs_inode_ref_index(eb, ref);
1271 
1272         return 0;
1273 }
1274 
1275 /*
1276  * Take an inode reference item from the log tree and iterate all names from the
1277  * inode reference item in the subvolume tree with the same key (if it exists).
1278  * For any name that is not in the inode reference item from the log tree, do a
1279  * proper unlink of that name (that is, remove its entry from the inode
1280  * reference item and both dir index keys).
1281  */
1282 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1283                                  struct btrfs_root *root,
1284                                  struct btrfs_path *path,
1285                                  struct btrfs_inode *inode,
1286                                  struct extent_buffer *log_eb,
1287                                  int log_slot,
1288                                  struct btrfs_key *key)
1289 {
1290         int ret;
1291         unsigned long ref_ptr;
1292         unsigned long ref_end;
1293         struct extent_buffer *eb;
1294 
1295 again:
1296         btrfs_release_path(path);
1297         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1298         if (ret > 0) {
1299                 ret = 0;
1300                 goto out;
1301         }
1302         if (ret < 0)
1303                 goto out;
1304 
1305         eb = path->nodes[0];
1306         ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1307         ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1308         while (ref_ptr < ref_end) {
1309                 struct fscrypt_str name;
1310                 u64 parent_id;
1311 
1312                 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1313                         ret = extref_get_fields(eb, ref_ptr, &name,
1314                                                 NULL, &parent_id);
1315                 } else {
1316                         parent_id = key->offset;
1317                         ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1318                 }
1319                 if (ret)
1320                         goto out;
1321 
1322                 if (key->type == BTRFS_INODE_EXTREF_KEY)
1323                         ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1324                                                                parent_id, &name);
1325                 else
1326                         ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1327 
1328                 if (!ret) {
1329                         struct inode *dir;
1330 
1331                         btrfs_release_path(path);
1332                         dir = read_one_inode(root, parent_id);
1333                         if (!dir) {
1334                                 ret = -ENOENT;
1335                                 kfree(name.name);
1336                                 goto out;
1337                         }
1338                         ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1339                                                  inode, &name);
1340                         kfree(name.name);
1341                         iput(dir);
1342                         if (ret)
1343                                 goto out;
1344                         goto again;
1345                 }
1346 
1347                 kfree(name.name);
1348                 ref_ptr += name.len;
1349                 if (key->type == BTRFS_INODE_EXTREF_KEY)
1350                         ref_ptr += sizeof(struct btrfs_inode_extref);
1351                 else
1352                         ref_ptr += sizeof(struct btrfs_inode_ref);
1353         }
1354         ret = 0;
1355  out:
1356         btrfs_release_path(path);
1357         return ret;
1358 }
1359 
1360 /*
1361  * replay one inode back reference item found in the log tree.
1362  * eb, slot and key refer to the buffer and key found in the log tree.
1363  * root is the destination we are replaying into, and path is for temp
1364  * use by this function.  (it should be released on return).
1365  */
1366 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1367                                   struct btrfs_root *root,
1368                                   struct btrfs_root *log,
1369                                   struct btrfs_path *path,
1370                                   struct extent_buffer *eb, int slot,
1371                                   struct btrfs_key *key)
1372 {
1373         struct inode *dir = NULL;
1374         struct inode *inode = NULL;
1375         unsigned long ref_ptr;
1376         unsigned long ref_end;
1377         struct fscrypt_str name = { 0 };
1378         int ret;
1379         int log_ref_ver = 0;
1380         u64 parent_objectid;
1381         u64 inode_objectid;
1382         u64 ref_index = 0;
1383         int ref_struct_size;
1384 
1385         ref_ptr = btrfs_item_ptr_offset(eb, slot);
1386         ref_end = ref_ptr + btrfs_item_size(eb, slot);
1387 
1388         if (key->type == BTRFS_INODE_EXTREF_KEY) {
1389                 struct btrfs_inode_extref *r;
1390 
1391                 ref_struct_size = sizeof(struct btrfs_inode_extref);
1392                 log_ref_ver = 1;
1393                 r = (struct btrfs_inode_extref *)ref_ptr;
1394                 parent_objectid = btrfs_inode_extref_parent(eb, r);
1395         } else {
1396                 ref_struct_size = sizeof(struct btrfs_inode_ref);
1397                 parent_objectid = key->offset;
1398         }
1399         inode_objectid = key->objectid;
1400 
1401         /*
1402          * it is possible that we didn't log all the parent directories
1403          * for a given inode.  If we don't find the dir, just don't
1404          * copy the back ref in.  The link count fixup code will take
1405          * care of the rest
1406          */
1407         dir = read_one_inode(root, parent_objectid);
1408         if (!dir) {
1409                 ret = -ENOENT;
1410                 goto out;
1411         }
1412 
1413         inode = read_one_inode(root, inode_objectid);
1414         if (!inode) {
1415                 ret = -EIO;
1416                 goto out;
1417         }
1418 
1419         while (ref_ptr < ref_end) {
1420                 if (log_ref_ver) {
1421                         ret = extref_get_fields(eb, ref_ptr, &name,
1422                                                 &ref_index, &parent_objectid);
1423                         /*
1424                          * parent object can change from one array
1425                          * item to another.
1426                          */
1427                         if (!dir)
1428                                 dir = read_one_inode(root, parent_objectid);
1429                         if (!dir) {
1430                                 ret = -ENOENT;
1431                                 goto out;
1432                         }
1433                 } else {
1434                         ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1435                 }
1436                 if (ret)
1437                         goto out;
1438 
1439                 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1440                                    btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1441                 if (ret < 0) {
1442                         goto out;
1443                 } else if (ret == 0) {
1444                         /*
1445                          * look for a conflicting back reference in the
1446                          * metadata. if we find one we have to unlink that name
1447                          * of the file before we add our new link.  Later on, we
1448                          * overwrite any existing back reference, and we don't
1449                          * want to create dangling pointers in the directory.
1450                          */
1451                         ret = __add_inode_ref(trans, root, path, log,
1452                                               BTRFS_I(dir), BTRFS_I(inode),
1453                                               inode_objectid, parent_objectid,
1454                                               ref_index, &name);
1455                         if (ret) {
1456                                 if (ret == 1)
1457                                         ret = 0;
1458                                 goto out;
1459                         }
1460 
1461                         /* insert our name */
1462                         ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1463                                              &name, 0, ref_index);
1464                         if (ret)
1465                                 goto out;
1466 
1467                         ret = btrfs_update_inode(trans, BTRFS_I(inode));
1468                         if (ret)
1469                                 goto out;
1470                 }
1471                 /* Else, ret == 1, we already have a perfect match, we're done. */
1472 
1473                 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1474                 kfree(name.name);
1475                 name.name = NULL;
1476                 if (log_ref_ver) {
1477                         iput(dir);
1478                         dir = NULL;
1479                 }
1480         }
1481 
1482         /*
1483          * Before we overwrite the inode reference item in the subvolume tree
1484          * with the item from the log tree, we must unlink all names from the
1485          * parent directory that are in the subvolume's tree inode reference
1486          * item, otherwise we end up with an inconsistent subvolume tree where
1487          * dir index entries exist for a name but there is no inode reference
1488          * item with the same name.
1489          */
1490         ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1491                                     key);
1492         if (ret)
1493                 goto out;
1494 
1495         /* finally write the back reference in the inode */
1496         ret = overwrite_item(trans, root, path, eb, slot, key);
1497 out:
1498         btrfs_release_path(path);
1499         kfree(name.name);
1500         iput(dir);
1501         iput(inode);
1502         return ret;
1503 }
1504 
1505 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1506 {
1507         int ret = 0;
1508         int name_len;
1509         unsigned int nlink = 0;
1510         u32 item_size;
1511         u32 cur_offset = 0;
1512         u64 inode_objectid = btrfs_ino(inode);
1513         u64 offset = 0;
1514         unsigned long ptr;
1515         struct btrfs_inode_extref *extref;
1516         struct extent_buffer *leaf;
1517 
1518         while (1) {
1519                 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1520                                             path, &extref, &offset);
1521                 if (ret)
1522                         break;
1523 
1524                 leaf = path->nodes[0];
1525                 item_size = btrfs_item_size(leaf, path->slots[0]);
1526                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1527                 cur_offset = 0;
1528 
1529                 while (cur_offset < item_size) {
1530                         extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1531                         name_len = btrfs_inode_extref_name_len(leaf, extref);
1532 
1533                         nlink++;
1534 
1535                         cur_offset += name_len + sizeof(*extref);
1536                 }
1537 
1538                 offset++;
1539                 btrfs_release_path(path);
1540         }
1541         btrfs_release_path(path);
1542 
1543         if (ret < 0 && ret != -ENOENT)
1544                 return ret;
1545         return nlink;
1546 }
1547 
1548 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1549 {
1550         int ret;
1551         struct btrfs_key key;
1552         unsigned int nlink = 0;
1553         unsigned long ptr;
1554         unsigned long ptr_end;
1555         int name_len;
1556         u64 ino = btrfs_ino(inode);
1557 
1558         key.objectid = ino;
1559         key.type = BTRFS_INODE_REF_KEY;
1560         key.offset = (u64)-1;
1561 
1562         while (1) {
1563                 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1564                 if (ret < 0)
1565                         break;
1566                 if (ret > 0) {
1567                         if (path->slots[0] == 0)
1568                                 break;
1569                         path->slots[0]--;
1570                 }
1571 process_slot:
1572                 btrfs_item_key_to_cpu(path->nodes[0], &key,
1573                                       path->slots[0]);
1574                 if (key.objectid != ino ||
1575                     key.type != BTRFS_INODE_REF_KEY)
1576                         break;
1577                 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1578                 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1579                                                    path->slots[0]);
1580                 while (ptr < ptr_end) {
1581                         struct btrfs_inode_ref *ref;
1582 
1583                         ref = (struct btrfs_inode_ref *)ptr;
1584                         name_len = btrfs_inode_ref_name_len(path->nodes[0],
1585                                                             ref);
1586                         ptr = (unsigned long)(ref + 1) + name_len;
1587                         nlink++;
1588                 }
1589 
1590                 if (key.offset == 0)
1591                         break;
1592                 if (path->slots[0] > 0) {
1593                         path->slots[0]--;
1594                         goto process_slot;
1595                 }
1596                 key.offset--;
1597                 btrfs_release_path(path);
1598         }
1599         btrfs_release_path(path);
1600 
1601         return nlink;
1602 }
1603 
1604 /*
1605  * There are a few corners where the link count of the file can't
1606  * be properly maintained during replay.  So, instead of adding
1607  * lots of complexity to the log code, we just scan the backrefs
1608  * for any file that has been through replay.
1609  *
1610  * The scan will update the link count on the inode to reflect the
1611  * number of back refs found.  If it goes down to zero, the iput
1612  * will free the inode.
1613  */
1614 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1615                                            struct inode *inode)
1616 {
1617         struct btrfs_root *root = BTRFS_I(inode)->root;
1618         struct btrfs_path *path;
1619         int ret;
1620         u64 nlink = 0;
1621         u64 ino = btrfs_ino(BTRFS_I(inode));
1622 
1623         path = btrfs_alloc_path();
1624         if (!path)
1625                 return -ENOMEM;
1626 
1627         ret = count_inode_refs(BTRFS_I(inode), path);
1628         if (ret < 0)
1629                 goto out;
1630 
1631         nlink = ret;
1632 
1633         ret = count_inode_extrefs(BTRFS_I(inode), path);
1634         if (ret < 0)
1635                 goto out;
1636 
1637         nlink += ret;
1638 
1639         ret = 0;
1640 
1641         if (nlink != inode->i_nlink) {
1642                 set_nlink(inode, nlink);
1643                 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1644                 if (ret)
1645                         goto out;
1646         }
1647         if (S_ISDIR(inode->i_mode))
1648                 BTRFS_I(inode)->index_cnt = (u64)-1;
1649 
1650         if (inode->i_nlink == 0) {
1651                 if (S_ISDIR(inode->i_mode)) {
1652                         ret = replay_dir_deletes(trans, root, NULL, path,
1653                                                  ino, 1);
1654                         if (ret)
1655                                 goto out;
1656                 }
1657                 ret = btrfs_insert_orphan_item(trans, root, ino);
1658                 if (ret == -EEXIST)
1659                         ret = 0;
1660         }
1661 
1662 out:
1663         btrfs_free_path(path);
1664         return ret;
1665 }
1666 
1667 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1668                                             struct btrfs_root *root,
1669                                             struct btrfs_path *path)
1670 {
1671         int ret;
1672         struct btrfs_key key;
1673         struct inode *inode;
1674 
1675         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1676         key.type = BTRFS_ORPHAN_ITEM_KEY;
1677         key.offset = (u64)-1;
1678         while (1) {
1679                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1680                 if (ret < 0)
1681                         break;
1682 
1683                 if (ret == 1) {
1684                         ret = 0;
1685                         if (path->slots[0] == 0)
1686                                 break;
1687                         path->slots[0]--;
1688                 }
1689 
1690                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1691                 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1692                     key.type != BTRFS_ORPHAN_ITEM_KEY)
1693                         break;
1694 
1695                 ret = btrfs_del_item(trans, root, path);
1696                 if (ret)
1697                         break;
1698 
1699                 btrfs_release_path(path);
1700                 inode = read_one_inode(root, key.offset);
1701                 if (!inode) {
1702                         ret = -EIO;
1703                         break;
1704                 }
1705 
1706                 ret = fixup_inode_link_count(trans, inode);
1707                 iput(inode);
1708                 if (ret)
1709                         break;
1710 
1711                 /*
1712                  * fixup on a directory may create new entries,
1713                  * make sure we always look for the highset possible
1714                  * offset
1715                  */
1716                 key.offset = (u64)-1;
1717         }
1718         btrfs_release_path(path);
1719         return ret;
1720 }
1721 
1722 
1723 /*
1724  * record a given inode in the fixup dir so we can check its link
1725  * count when replay is done.  The link count is incremented here
1726  * so the inode won't go away until we check it
1727  */
1728 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1729                                       struct btrfs_root *root,
1730                                       struct btrfs_path *path,
1731                                       u64 objectid)
1732 {
1733         struct btrfs_key key;
1734         int ret = 0;
1735         struct inode *inode;
1736 
1737         inode = read_one_inode(root, objectid);
1738         if (!inode)
1739                 return -EIO;
1740 
1741         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1742         key.type = BTRFS_ORPHAN_ITEM_KEY;
1743         key.offset = objectid;
1744 
1745         ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1746 
1747         btrfs_release_path(path);
1748         if (ret == 0) {
1749                 if (!inode->i_nlink)
1750                         set_nlink(inode, 1);
1751                 else
1752                         inc_nlink(inode);
1753                 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1754         } else if (ret == -EEXIST) {
1755                 ret = 0;
1756         }
1757         iput(inode);
1758 
1759         return ret;
1760 }
1761 
1762 /*
1763  * when replaying the log for a directory, we only insert names
1764  * for inodes that actually exist.  This means an fsync on a directory
1765  * does not implicitly fsync all the new files in it
1766  */
1767 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1768                                     struct btrfs_root *root,
1769                                     u64 dirid, u64 index,
1770                                     const struct fscrypt_str *name,
1771                                     struct btrfs_key *location)
1772 {
1773         struct inode *inode;
1774         struct inode *dir;
1775         int ret;
1776 
1777         inode = read_one_inode(root, location->objectid);
1778         if (!inode)
1779                 return -ENOENT;
1780 
1781         dir = read_one_inode(root, dirid);
1782         if (!dir) {
1783                 iput(inode);
1784                 return -EIO;
1785         }
1786 
1787         ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1788                              1, index);
1789 
1790         /* FIXME, put inode into FIXUP list */
1791 
1792         iput(inode);
1793         iput(dir);
1794         return ret;
1795 }
1796 
1797 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1798                                         struct btrfs_inode *dir,
1799                                         struct btrfs_path *path,
1800                                         struct btrfs_dir_item *dst_di,
1801                                         const struct btrfs_key *log_key,
1802                                         u8 log_flags,
1803                                         bool exists)
1804 {
1805         struct btrfs_key found_key;
1806 
1807         btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1808         /* The existing dentry points to the same inode, don't delete it. */
1809         if (found_key.objectid == log_key->objectid &&
1810             found_key.type == log_key->type &&
1811             found_key.offset == log_key->offset &&
1812             btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1813                 return 1;
1814 
1815         /*
1816          * Don't drop the conflicting directory entry if the inode for the new
1817          * entry doesn't exist.
1818          */
1819         if (!exists)
1820                 return 0;
1821 
1822         return drop_one_dir_item(trans, path, dir, dst_di);
1823 }
1824 
1825 /*
1826  * take a single entry in a log directory item and replay it into
1827  * the subvolume.
1828  *
1829  * if a conflicting item exists in the subdirectory already,
1830  * the inode it points to is unlinked and put into the link count
1831  * fix up tree.
1832  *
1833  * If a name from the log points to a file or directory that does
1834  * not exist in the FS, it is skipped.  fsyncs on directories
1835  * do not force down inodes inside that directory, just changes to the
1836  * names or unlinks in a directory.
1837  *
1838  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1839  * non-existing inode) and 1 if the name was replayed.
1840  */
1841 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1842                                     struct btrfs_root *root,
1843                                     struct btrfs_path *path,
1844                                     struct extent_buffer *eb,
1845                                     struct btrfs_dir_item *di,
1846                                     struct btrfs_key *key)
1847 {
1848         struct fscrypt_str name = { 0 };
1849         struct btrfs_dir_item *dir_dst_di;
1850         struct btrfs_dir_item *index_dst_di;
1851         bool dir_dst_matches = false;
1852         bool index_dst_matches = false;
1853         struct btrfs_key log_key;
1854         struct btrfs_key search_key;
1855         struct inode *dir;
1856         u8 log_flags;
1857         bool exists;
1858         int ret;
1859         bool update_size = true;
1860         bool name_added = false;
1861 
1862         dir = read_one_inode(root, key->objectid);
1863         if (!dir)
1864                 return -EIO;
1865 
1866         ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1867         if (ret)
1868                 goto out;
1869 
1870         log_flags = btrfs_dir_flags(eb, di);
1871         btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1872         ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1873         btrfs_release_path(path);
1874         if (ret < 0)
1875                 goto out;
1876         exists = (ret == 0);
1877         ret = 0;
1878 
1879         dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1880                                            &name, 1);
1881         if (IS_ERR(dir_dst_di)) {
1882                 ret = PTR_ERR(dir_dst_di);
1883                 goto out;
1884         } else if (dir_dst_di) {
1885                 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1886                                                    dir_dst_di, &log_key,
1887                                                    log_flags, exists);
1888                 if (ret < 0)
1889                         goto out;
1890                 dir_dst_matches = (ret == 1);
1891         }
1892 
1893         btrfs_release_path(path);
1894 
1895         index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1896                                                    key->objectid, key->offset,
1897                                                    &name, 1);
1898         if (IS_ERR(index_dst_di)) {
1899                 ret = PTR_ERR(index_dst_di);
1900                 goto out;
1901         } else if (index_dst_di) {
1902                 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1903                                                    index_dst_di, &log_key,
1904                                                    log_flags, exists);
1905                 if (ret < 0)
1906                         goto out;
1907                 index_dst_matches = (ret == 1);
1908         }
1909 
1910         btrfs_release_path(path);
1911 
1912         if (dir_dst_matches && index_dst_matches) {
1913                 ret = 0;
1914                 update_size = false;
1915                 goto out;
1916         }
1917 
1918         /*
1919          * Check if the inode reference exists in the log for the given name,
1920          * inode and parent inode
1921          */
1922         search_key.objectid = log_key.objectid;
1923         search_key.type = BTRFS_INODE_REF_KEY;
1924         search_key.offset = key->objectid;
1925         ret = backref_in_log(root->log_root, &search_key, 0, &name);
1926         if (ret < 0) {
1927                 goto out;
1928         } else if (ret) {
1929                 /* The dentry will be added later. */
1930                 ret = 0;
1931                 update_size = false;
1932                 goto out;
1933         }
1934 
1935         search_key.objectid = log_key.objectid;
1936         search_key.type = BTRFS_INODE_EXTREF_KEY;
1937         search_key.offset = key->objectid;
1938         ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1939         if (ret < 0) {
1940                 goto out;
1941         } else if (ret) {
1942                 /* The dentry will be added later. */
1943                 ret = 0;
1944                 update_size = false;
1945                 goto out;
1946         }
1947         btrfs_release_path(path);
1948         ret = insert_one_name(trans, root, key->objectid, key->offset,
1949                               &name, &log_key);
1950         if (ret && ret != -ENOENT && ret != -EEXIST)
1951                 goto out;
1952         if (!ret)
1953                 name_added = true;
1954         update_size = false;
1955         ret = 0;
1956 
1957 out:
1958         if (!ret && update_size) {
1959                 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1960                 ret = btrfs_update_inode(trans, BTRFS_I(dir));
1961         }
1962         kfree(name.name);
1963         iput(dir);
1964         if (!ret && name_added)
1965                 ret = 1;
1966         return ret;
1967 }
1968 
1969 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1970 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1971                                         struct btrfs_root *root,
1972                                         struct btrfs_path *path,
1973                                         struct extent_buffer *eb, int slot,
1974                                         struct btrfs_key *key)
1975 {
1976         int ret;
1977         struct btrfs_dir_item *di;
1978 
1979         /* We only log dir index keys, which only contain a single dir item. */
1980         ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1981 
1982         di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1983         ret = replay_one_name(trans, root, path, eb, di, key);
1984         if (ret < 0)
1985                 return ret;
1986 
1987         /*
1988          * If this entry refers to a non-directory (directories can not have a
1989          * link count > 1) and it was added in the transaction that was not
1990          * committed, make sure we fixup the link count of the inode the entry
1991          * points to. Otherwise something like the following would result in a
1992          * directory pointing to an inode with a wrong link that does not account
1993          * for this dir entry:
1994          *
1995          * mkdir testdir
1996          * touch testdir/foo
1997          * touch testdir/bar
1998          * sync
1999          *
2000          * ln testdir/bar testdir/bar_link
2001          * ln testdir/foo testdir/foo_link
2002          * xfs_io -c "fsync" testdir/bar
2003          *
2004          * <power failure>
2005          *
2006          * mount fs, log replay happens
2007          *
2008          * File foo would remain with a link count of 1 when it has two entries
2009          * pointing to it in the directory testdir. This would make it impossible
2010          * to ever delete the parent directory has it would result in stale
2011          * dentries that can never be deleted.
2012          */
2013         if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2014                 struct btrfs_path *fixup_path;
2015                 struct btrfs_key di_key;
2016 
2017                 fixup_path = btrfs_alloc_path();
2018                 if (!fixup_path)
2019                         return -ENOMEM;
2020 
2021                 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2022                 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2023                 btrfs_free_path(fixup_path);
2024         }
2025 
2026         return ret;
2027 }
2028 
2029 /*
2030  * directory replay has two parts.  There are the standard directory
2031  * items in the log copied from the subvolume, and range items
2032  * created in the log while the subvolume was logged.
2033  *
2034  * The range items tell us which parts of the key space the log
2035  * is authoritative for.  During replay, if a key in the subvolume
2036  * directory is in a logged range item, but not actually in the log
2037  * that means it was deleted from the directory before the fsync
2038  * and should be removed.
2039  */
2040 static noinline int find_dir_range(struct btrfs_root *root,
2041                                    struct btrfs_path *path,
2042                                    u64 dirid,
2043                                    u64 *start_ret, u64 *end_ret)
2044 {
2045         struct btrfs_key key;
2046         u64 found_end;
2047         struct btrfs_dir_log_item *item;
2048         int ret;
2049         int nritems;
2050 
2051         if (*start_ret == (u64)-1)
2052                 return 1;
2053 
2054         key.objectid = dirid;
2055         key.type = BTRFS_DIR_LOG_INDEX_KEY;
2056         key.offset = *start_ret;
2057 
2058         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2059         if (ret < 0)
2060                 goto out;
2061         if (ret > 0) {
2062                 if (path->slots[0] == 0)
2063                         goto out;
2064                 path->slots[0]--;
2065         }
2066         if (ret != 0)
2067                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2068 
2069         if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2070                 ret = 1;
2071                 goto next;
2072         }
2073         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2074                               struct btrfs_dir_log_item);
2075         found_end = btrfs_dir_log_end(path->nodes[0], item);
2076 
2077         if (*start_ret >= key.offset && *start_ret <= found_end) {
2078                 ret = 0;
2079                 *start_ret = key.offset;
2080                 *end_ret = found_end;
2081                 goto out;
2082         }
2083         ret = 1;
2084 next:
2085         /* check the next slot in the tree to see if it is a valid item */
2086         nritems = btrfs_header_nritems(path->nodes[0]);
2087         path->slots[0]++;
2088         if (path->slots[0] >= nritems) {
2089                 ret = btrfs_next_leaf(root, path);
2090                 if (ret)
2091                         goto out;
2092         }
2093 
2094         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2095 
2096         if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2097                 ret = 1;
2098                 goto out;
2099         }
2100         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2101                               struct btrfs_dir_log_item);
2102         found_end = btrfs_dir_log_end(path->nodes[0], item);
2103         *start_ret = key.offset;
2104         *end_ret = found_end;
2105         ret = 0;
2106 out:
2107         btrfs_release_path(path);
2108         return ret;
2109 }
2110 
2111 /*
2112  * this looks for a given directory item in the log.  If the directory
2113  * item is not in the log, the item is removed and the inode it points
2114  * to is unlinked
2115  */
2116 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2117                                       struct btrfs_root *log,
2118                                       struct btrfs_path *path,
2119                                       struct btrfs_path *log_path,
2120                                       struct inode *dir,
2121                                       struct btrfs_key *dir_key)
2122 {
2123         struct btrfs_root *root = BTRFS_I(dir)->root;
2124         int ret;
2125         struct extent_buffer *eb;
2126         int slot;
2127         struct btrfs_dir_item *di;
2128         struct fscrypt_str name = { 0 };
2129         struct inode *inode = NULL;
2130         struct btrfs_key location;
2131 
2132         /*
2133          * Currently we only log dir index keys. Even if we replay a log created
2134          * by an older kernel that logged both dir index and dir item keys, all
2135          * we need to do is process the dir index keys, we (and our caller) can
2136          * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2137          */
2138         ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2139 
2140         eb = path->nodes[0];
2141         slot = path->slots[0];
2142         di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2143         ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2144         if (ret)
2145                 goto out;
2146 
2147         if (log) {
2148                 struct btrfs_dir_item *log_di;
2149 
2150                 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2151                                                      dir_key->objectid,
2152                                                      dir_key->offset, &name, 0);
2153                 if (IS_ERR(log_di)) {
2154                         ret = PTR_ERR(log_di);
2155                         goto out;
2156                 } else if (log_di) {
2157                         /* The dentry exists in the log, we have nothing to do. */
2158                         ret = 0;
2159                         goto out;
2160                 }
2161         }
2162 
2163         btrfs_dir_item_key_to_cpu(eb, di, &location);
2164         btrfs_release_path(path);
2165         btrfs_release_path(log_path);
2166         inode = read_one_inode(root, location.objectid);
2167         if (!inode) {
2168                 ret = -EIO;
2169                 goto out;
2170         }
2171 
2172         ret = link_to_fixup_dir(trans, root, path, location.objectid);
2173         if (ret)
2174                 goto out;
2175 
2176         inc_nlink(inode);
2177         ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2178                                           &name);
2179         /*
2180          * Unlike dir item keys, dir index keys can only have one name (entry) in
2181          * them, as there are no key collisions since each key has a unique offset
2182          * (an index number), so we're done.
2183          */
2184 out:
2185         btrfs_release_path(path);
2186         btrfs_release_path(log_path);
2187         kfree(name.name);
2188         iput(inode);
2189         return ret;
2190 }
2191 
2192 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2193                               struct btrfs_root *root,
2194                               struct btrfs_root *log,
2195                               struct btrfs_path *path,
2196                               const u64 ino)
2197 {
2198         struct btrfs_key search_key;
2199         struct btrfs_path *log_path;
2200         int i;
2201         int nritems;
2202         int ret;
2203 
2204         log_path = btrfs_alloc_path();
2205         if (!log_path)
2206                 return -ENOMEM;
2207 
2208         search_key.objectid = ino;
2209         search_key.type = BTRFS_XATTR_ITEM_KEY;
2210         search_key.offset = 0;
2211 again:
2212         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2213         if (ret < 0)
2214                 goto out;
2215 process_leaf:
2216         nritems = btrfs_header_nritems(path->nodes[0]);
2217         for (i = path->slots[0]; i < nritems; i++) {
2218                 struct btrfs_key key;
2219                 struct btrfs_dir_item *di;
2220                 struct btrfs_dir_item *log_di;
2221                 u32 total_size;
2222                 u32 cur;
2223 
2224                 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2225                 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2226                         ret = 0;
2227                         goto out;
2228                 }
2229 
2230                 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2231                 total_size = btrfs_item_size(path->nodes[0], i);
2232                 cur = 0;
2233                 while (cur < total_size) {
2234                         u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2235                         u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2236                         u32 this_len = sizeof(*di) + name_len + data_len;
2237                         char *name;
2238 
2239                         name = kmalloc(name_len, GFP_NOFS);
2240                         if (!name) {
2241                                 ret = -ENOMEM;
2242                                 goto out;
2243                         }
2244                         read_extent_buffer(path->nodes[0], name,
2245                                            (unsigned long)(di + 1), name_len);
2246 
2247                         log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2248                                                     name, name_len, 0);
2249                         btrfs_release_path(log_path);
2250                         if (!log_di) {
2251                                 /* Doesn't exist in log tree, so delete it. */
2252                                 btrfs_release_path(path);
2253                                 di = btrfs_lookup_xattr(trans, root, path, ino,
2254                                                         name, name_len, -1);
2255                                 kfree(name);
2256                                 if (IS_ERR(di)) {
2257                                         ret = PTR_ERR(di);
2258                                         goto out;
2259                                 }
2260                                 ASSERT(di);
2261                                 ret = btrfs_delete_one_dir_name(trans, root,
2262                                                                 path, di);
2263                                 if (ret)
2264                                         goto out;
2265                                 btrfs_release_path(path);
2266                                 search_key = key;
2267                                 goto again;
2268                         }
2269                         kfree(name);
2270                         if (IS_ERR(log_di)) {
2271                                 ret = PTR_ERR(log_di);
2272                                 goto out;
2273                         }
2274                         cur += this_len;
2275                         di = (struct btrfs_dir_item *)((char *)di + this_len);
2276                 }
2277         }
2278         ret = btrfs_next_leaf(root, path);
2279         if (ret > 0)
2280                 ret = 0;
2281         else if (ret == 0)
2282                 goto process_leaf;
2283 out:
2284         btrfs_free_path(log_path);
2285         btrfs_release_path(path);
2286         return ret;
2287 }
2288 
2289 
2290 /*
2291  * deletion replay happens before we copy any new directory items
2292  * out of the log or out of backreferences from inodes.  It
2293  * scans the log to find ranges of keys that log is authoritative for,
2294  * and then scans the directory to find items in those ranges that are
2295  * not present in the log.
2296  *
2297  * Anything we don't find in the log is unlinked and removed from the
2298  * directory.
2299  */
2300 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2301                                        struct btrfs_root *root,
2302                                        struct btrfs_root *log,
2303                                        struct btrfs_path *path,
2304                                        u64 dirid, int del_all)
2305 {
2306         u64 range_start;
2307         u64 range_end;
2308         int ret = 0;
2309         struct btrfs_key dir_key;
2310         struct btrfs_key found_key;
2311         struct btrfs_path *log_path;
2312         struct inode *dir;
2313 
2314         dir_key.objectid = dirid;
2315         dir_key.type = BTRFS_DIR_INDEX_KEY;
2316         log_path = btrfs_alloc_path();
2317         if (!log_path)
2318                 return -ENOMEM;
2319 
2320         dir = read_one_inode(root, dirid);
2321         /* it isn't an error if the inode isn't there, that can happen
2322          * because we replay the deletes before we copy in the inode item
2323          * from the log
2324          */
2325         if (!dir) {
2326                 btrfs_free_path(log_path);
2327                 return 0;
2328         }
2329 
2330         range_start = 0;
2331         range_end = 0;
2332         while (1) {
2333                 if (del_all)
2334                         range_end = (u64)-1;
2335                 else {
2336                         ret = find_dir_range(log, path, dirid,
2337                                              &range_start, &range_end);
2338                         if (ret < 0)
2339                                 goto out;
2340                         else if (ret > 0)
2341                                 break;
2342                 }
2343 
2344                 dir_key.offset = range_start;
2345                 while (1) {
2346                         int nritems;
2347                         ret = btrfs_search_slot(NULL, root, &dir_key, path,
2348                                                 0, 0);
2349                         if (ret < 0)
2350                                 goto out;
2351 
2352                         nritems = btrfs_header_nritems(path->nodes[0]);
2353                         if (path->slots[0] >= nritems) {
2354                                 ret = btrfs_next_leaf(root, path);
2355                                 if (ret == 1)
2356                                         break;
2357                                 else if (ret < 0)
2358                                         goto out;
2359                         }
2360                         btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2361                                               path->slots[0]);
2362                         if (found_key.objectid != dirid ||
2363                             found_key.type != dir_key.type) {
2364                                 ret = 0;
2365                                 goto out;
2366                         }
2367 
2368                         if (found_key.offset > range_end)
2369                                 break;
2370 
2371                         ret = check_item_in_log(trans, log, path,
2372                                                 log_path, dir,
2373                                                 &found_key);
2374                         if (ret)
2375                                 goto out;
2376                         if (found_key.offset == (u64)-1)
2377                                 break;
2378                         dir_key.offset = found_key.offset + 1;
2379                 }
2380                 btrfs_release_path(path);
2381                 if (range_end == (u64)-1)
2382                         break;
2383                 range_start = range_end + 1;
2384         }
2385         ret = 0;
2386 out:
2387         btrfs_release_path(path);
2388         btrfs_free_path(log_path);
2389         iput(dir);
2390         return ret;
2391 }
2392 
2393 /*
2394  * the process_func used to replay items from the log tree.  This
2395  * gets called in two different stages.  The first stage just looks
2396  * for inodes and makes sure they are all copied into the subvolume.
2397  *
2398  * The second stage copies all the other item types from the log into
2399  * the subvolume.  The two stage approach is slower, but gets rid of
2400  * lots of complexity around inodes referencing other inodes that exist
2401  * only in the log (references come from either directory items or inode
2402  * back refs).
2403  */
2404 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2405                              struct walk_control *wc, u64 gen, int level)
2406 {
2407         int nritems;
2408         struct btrfs_tree_parent_check check = {
2409                 .transid = gen,
2410                 .level = level
2411         };
2412         struct btrfs_path *path;
2413         struct btrfs_root *root = wc->replay_dest;
2414         struct btrfs_key key;
2415         int i;
2416         int ret;
2417 
2418         ret = btrfs_read_extent_buffer(eb, &check);
2419         if (ret)
2420                 return ret;
2421 
2422         level = btrfs_header_level(eb);
2423 
2424         if (level != 0)
2425                 return 0;
2426 
2427         path = btrfs_alloc_path();
2428         if (!path)
2429                 return -ENOMEM;
2430 
2431         nritems = btrfs_header_nritems(eb);
2432         for (i = 0; i < nritems; i++) {
2433                 btrfs_item_key_to_cpu(eb, &key, i);
2434 
2435                 /* inode keys are done during the first stage */
2436                 if (key.type == BTRFS_INODE_ITEM_KEY &&
2437                     wc->stage == LOG_WALK_REPLAY_INODES) {
2438                         struct btrfs_inode_item *inode_item;
2439                         u32 mode;
2440 
2441                         inode_item = btrfs_item_ptr(eb, i,
2442                                             struct btrfs_inode_item);
2443                         /*
2444                          * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2445                          * and never got linked before the fsync, skip it, as
2446                          * replaying it is pointless since it would be deleted
2447                          * later. We skip logging tmpfiles, but it's always
2448                          * possible we are replaying a log created with a kernel
2449                          * that used to log tmpfiles.
2450                          */
2451                         if (btrfs_inode_nlink(eb, inode_item) == 0) {
2452                                 wc->ignore_cur_inode = true;
2453                                 continue;
2454                         } else {
2455                                 wc->ignore_cur_inode = false;
2456                         }
2457                         ret = replay_xattr_deletes(wc->trans, root, log,
2458                                                    path, key.objectid);
2459                         if (ret)
2460                                 break;
2461                         mode = btrfs_inode_mode(eb, inode_item);
2462                         if (S_ISDIR(mode)) {
2463                                 ret = replay_dir_deletes(wc->trans,
2464                                          root, log, path, key.objectid, 0);
2465                                 if (ret)
2466                                         break;
2467                         }
2468                         ret = overwrite_item(wc->trans, root, path,
2469                                              eb, i, &key);
2470                         if (ret)
2471                                 break;
2472 
2473                         /*
2474                          * Before replaying extents, truncate the inode to its
2475                          * size. We need to do it now and not after log replay
2476                          * because before an fsync we can have prealloc extents
2477                          * added beyond the inode's i_size. If we did it after,
2478                          * through orphan cleanup for example, we would drop
2479                          * those prealloc extents just after replaying them.
2480                          */
2481                         if (S_ISREG(mode)) {
2482                                 struct btrfs_drop_extents_args drop_args = { 0 };
2483                                 struct inode *inode;
2484                                 u64 from;
2485 
2486                                 inode = read_one_inode(root, key.objectid);
2487                                 if (!inode) {
2488                                         ret = -EIO;
2489                                         break;
2490                                 }
2491                                 from = ALIGN(i_size_read(inode),
2492                                              root->fs_info->sectorsize);
2493                                 drop_args.start = from;
2494                                 drop_args.end = (u64)-1;
2495                                 drop_args.drop_cache = true;
2496                                 ret = btrfs_drop_extents(wc->trans, root,
2497                                                          BTRFS_I(inode),
2498                                                          &drop_args);
2499                                 if (!ret) {
2500                                         inode_sub_bytes(inode,
2501                                                         drop_args.bytes_found);
2502                                         /* Update the inode's nbytes. */
2503                                         ret = btrfs_update_inode(wc->trans,
2504                                                                  BTRFS_I(inode));
2505                                 }
2506                                 iput(inode);
2507                                 if (ret)
2508                                         break;
2509                         }
2510 
2511                         ret = link_to_fixup_dir(wc->trans, root,
2512                                                 path, key.objectid);
2513                         if (ret)
2514                                 break;
2515                 }
2516 
2517                 if (wc->ignore_cur_inode)
2518                         continue;
2519 
2520                 if (key.type == BTRFS_DIR_INDEX_KEY &&
2521                     wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2522                         ret = replay_one_dir_item(wc->trans, root, path,
2523                                                   eb, i, &key);
2524                         if (ret)
2525                                 break;
2526                 }
2527 
2528                 if (wc->stage < LOG_WALK_REPLAY_ALL)
2529                         continue;
2530 
2531                 /* these keys are simply copied */
2532                 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2533                         ret = overwrite_item(wc->trans, root, path,
2534                                              eb, i, &key);
2535                         if (ret)
2536                                 break;
2537                 } else if (key.type == BTRFS_INODE_REF_KEY ||
2538                            key.type == BTRFS_INODE_EXTREF_KEY) {
2539                         ret = add_inode_ref(wc->trans, root, log, path,
2540                                             eb, i, &key);
2541                         if (ret && ret != -ENOENT)
2542                                 break;
2543                         ret = 0;
2544                 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2545                         ret = replay_one_extent(wc->trans, root, path,
2546                                                 eb, i, &key);
2547                         if (ret)
2548                                 break;
2549                 }
2550                 /*
2551                  * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2552                  * BTRFS_DIR_INDEX_KEY items which we use to derive the
2553                  * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2554                  * older kernel with such keys, ignore them.
2555                  */
2556         }
2557         btrfs_free_path(path);
2558         return ret;
2559 }
2560 
2561 /*
2562  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2563  */
2564 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2565 {
2566         struct btrfs_block_group *cache;
2567 
2568         cache = btrfs_lookup_block_group(fs_info, start);
2569         if (!cache) {
2570                 btrfs_err(fs_info, "unable to find block group for %llu", start);
2571                 return;
2572         }
2573 
2574         spin_lock(&cache->space_info->lock);
2575         spin_lock(&cache->lock);
2576         cache->reserved -= fs_info->nodesize;
2577         cache->space_info->bytes_reserved -= fs_info->nodesize;
2578         spin_unlock(&cache->lock);
2579         spin_unlock(&cache->space_info->lock);
2580 
2581         btrfs_put_block_group(cache);
2582 }
2583 
2584 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2585                             struct extent_buffer *eb)
2586 {
2587         int ret;
2588 
2589         btrfs_tree_lock(eb);
2590         btrfs_clear_buffer_dirty(trans, eb);
2591         wait_on_extent_buffer_writeback(eb);
2592         btrfs_tree_unlock(eb);
2593 
2594         if (trans) {
2595                 ret = btrfs_pin_reserved_extent(trans, eb);
2596                 if (ret)
2597                         return ret;
2598         } else {
2599                 unaccount_log_buffer(eb->fs_info, eb->start);
2600         }
2601 
2602         return 0;
2603 }
2604 
2605 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2606                                    struct btrfs_root *root,
2607                                    struct btrfs_path *path, int *level,
2608                                    struct walk_control *wc)
2609 {
2610         struct btrfs_fs_info *fs_info = root->fs_info;
2611         u64 bytenr;
2612         u64 ptr_gen;
2613         struct extent_buffer *next;
2614         struct extent_buffer *cur;
2615         int ret = 0;
2616 
2617         while (*level > 0) {
2618                 struct btrfs_tree_parent_check check = { 0 };
2619 
2620                 cur = path->nodes[*level];
2621 
2622                 WARN_ON(btrfs_header_level(cur) != *level);
2623 
2624                 if (path->slots[*level] >=
2625                     btrfs_header_nritems(cur))
2626                         break;
2627 
2628                 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2629                 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2630                 check.transid = ptr_gen;
2631                 check.level = *level - 1;
2632                 check.has_first_key = true;
2633                 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2634 
2635                 next = btrfs_find_create_tree_block(fs_info, bytenr,
2636                                                     btrfs_header_owner(cur),
2637                                                     *level - 1);
2638                 if (IS_ERR(next))
2639                         return PTR_ERR(next);
2640 
2641                 if (*level == 1) {
2642                         ret = wc->process_func(root, next, wc, ptr_gen,
2643                                                *level - 1);
2644                         if (ret) {
2645                                 free_extent_buffer(next);
2646                                 return ret;
2647                         }
2648 
2649                         path->slots[*level]++;
2650                         if (wc->free) {
2651                                 ret = btrfs_read_extent_buffer(next, &check);
2652                                 if (ret) {
2653                                         free_extent_buffer(next);
2654                                         return ret;
2655                                 }
2656 
2657                                 ret = clean_log_buffer(trans, next);
2658                                 if (ret) {
2659                                         free_extent_buffer(next);
2660                                         return ret;
2661                                 }
2662                         }
2663                         free_extent_buffer(next);
2664                         continue;
2665                 }
2666                 ret = btrfs_read_extent_buffer(next, &check);
2667                 if (ret) {
2668                         free_extent_buffer(next);
2669                         return ret;
2670                 }
2671 
2672                 if (path->nodes[*level-1])
2673                         free_extent_buffer(path->nodes[*level-1]);
2674                 path->nodes[*level-1] = next;
2675                 *level = btrfs_header_level(next);
2676                 path->slots[*level] = 0;
2677                 cond_resched();
2678         }
2679         path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2680 
2681         cond_resched();
2682         return 0;
2683 }
2684 
2685 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2686                                  struct btrfs_root *root,
2687                                  struct btrfs_path *path, int *level,
2688                                  struct walk_control *wc)
2689 {
2690         int i;
2691         int slot;
2692         int ret;
2693 
2694         for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2695                 slot = path->slots[i];
2696                 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2697                         path->slots[i]++;
2698                         *level = i;
2699                         WARN_ON(*level == 0);
2700                         return 0;
2701                 } else {
2702                         ret = wc->process_func(root, path->nodes[*level], wc,
2703                                  btrfs_header_generation(path->nodes[*level]),
2704                                  *level);
2705                         if (ret)
2706                                 return ret;
2707 
2708                         if (wc->free) {
2709                                 ret = clean_log_buffer(trans, path->nodes[*level]);
2710                                 if (ret)
2711                                         return ret;
2712                         }
2713                         free_extent_buffer(path->nodes[*level]);
2714                         path->nodes[*level] = NULL;
2715                         *level = i + 1;
2716                 }
2717         }
2718         return 1;
2719 }
2720 
2721 /*
2722  * drop the reference count on the tree rooted at 'snap'.  This traverses
2723  * the tree freeing any blocks that have a ref count of zero after being
2724  * decremented.
2725  */
2726 static int walk_log_tree(struct btrfs_trans_handle *trans,
2727                          struct btrfs_root *log, struct walk_control *wc)
2728 {
2729         int ret = 0;
2730         int wret;
2731         int level;
2732         struct btrfs_path *path;
2733         int orig_level;
2734 
2735         path = btrfs_alloc_path();
2736         if (!path)
2737                 return -ENOMEM;
2738 
2739         level = btrfs_header_level(log->node);
2740         orig_level = level;
2741         path->nodes[level] = log->node;
2742         atomic_inc(&log->node->refs);
2743         path->slots[level] = 0;
2744 
2745         while (1) {
2746                 wret = walk_down_log_tree(trans, log, path, &level, wc);
2747                 if (wret > 0)
2748                         break;
2749                 if (wret < 0) {
2750                         ret = wret;
2751                         goto out;
2752                 }
2753 
2754                 wret = walk_up_log_tree(trans, log, path, &level, wc);
2755                 if (wret > 0)
2756                         break;
2757                 if (wret < 0) {
2758                         ret = wret;
2759                         goto out;
2760                 }
2761         }
2762 
2763         /* was the root node processed? if not, catch it here */
2764         if (path->nodes[orig_level]) {
2765                 ret = wc->process_func(log, path->nodes[orig_level], wc,
2766                          btrfs_header_generation(path->nodes[orig_level]),
2767                          orig_level);
2768                 if (ret)
2769                         goto out;
2770                 if (wc->free)
2771                         ret = clean_log_buffer(trans, path->nodes[orig_level]);
2772         }
2773 
2774 out:
2775         btrfs_free_path(path);
2776         return ret;
2777 }
2778 
2779 /*
2780  * helper function to update the item for a given subvolumes log root
2781  * in the tree of log roots
2782  */
2783 static int update_log_root(struct btrfs_trans_handle *trans,
2784                            struct btrfs_root *log,
2785                            struct btrfs_root_item *root_item)
2786 {
2787         struct btrfs_fs_info *fs_info = log->fs_info;
2788         int ret;
2789 
2790         if (log->log_transid == 1) {
2791                 /* insert root item on the first sync */
2792                 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2793                                 &log->root_key, root_item);
2794         } else {
2795                 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2796                                 &log->root_key, root_item);
2797         }
2798         return ret;
2799 }
2800 
2801 static void wait_log_commit(struct btrfs_root *root, int transid)
2802 {
2803         DEFINE_WAIT(wait);
2804         int index = transid % 2;
2805 
2806         /*
2807          * we only allow two pending log transactions at a time,
2808          * so we know that if ours is more than 2 older than the
2809          * current transaction, we're done
2810          */
2811         for (;;) {
2812                 prepare_to_wait(&root->log_commit_wait[index],
2813                                 &wait, TASK_UNINTERRUPTIBLE);
2814 
2815                 if (!(root->log_transid_committed < transid &&
2816                       atomic_read(&root->log_commit[index])))
2817                         break;
2818 
2819                 mutex_unlock(&root->log_mutex);
2820                 schedule();
2821                 mutex_lock(&root->log_mutex);
2822         }
2823         finish_wait(&root->log_commit_wait[index], &wait);
2824 }
2825 
2826 static void wait_for_writer(struct btrfs_root *root)
2827 {
2828         DEFINE_WAIT(wait);
2829 
2830         for (;;) {
2831                 prepare_to_wait(&root->log_writer_wait, &wait,
2832                                 TASK_UNINTERRUPTIBLE);
2833                 if (!atomic_read(&root->log_writers))
2834                         break;
2835 
2836                 mutex_unlock(&root->log_mutex);
2837                 schedule();
2838                 mutex_lock(&root->log_mutex);
2839         }
2840         finish_wait(&root->log_writer_wait, &wait);
2841 }
2842 
2843 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode)
2844 {
2845         ctx->log_ret = 0;
2846         ctx->log_transid = 0;
2847         ctx->log_new_dentries = false;
2848         ctx->logging_new_name = false;
2849         ctx->logging_new_delayed_dentries = false;
2850         ctx->logged_before = false;
2851         ctx->inode = inode;
2852         INIT_LIST_HEAD(&ctx->list);
2853         INIT_LIST_HEAD(&ctx->ordered_extents);
2854         INIT_LIST_HEAD(&ctx->conflict_inodes);
2855         ctx->num_conflict_inodes = 0;
2856         ctx->logging_conflict_inodes = false;
2857         ctx->scratch_eb = NULL;
2858 }
2859 
2860 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2861 {
2862         struct btrfs_inode *inode = ctx->inode;
2863 
2864         if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2865             !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2866                 return;
2867 
2868         /*
2869          * Don't care about allocation failure. This is just for optimization,
2870          * if we fail to allocate here, we will try again later if needed.
2871          */
2872         ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2873 }
2874 
2875 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2876 {
2877         struct btrfs_ordered_extent *ordered;
2878         struct btrfs_ordered_extent *tmp;
2879 
2880         ASSERT(inode_is_locked(&ctx->inode->vfs_inode));
2881 
2882         list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2883                 list_del_init(&ordered->log_list);
2884                 btrfs_put_ordered_extent(ordered);
2885         }
2886 }
2887 
2888 
2889 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2890                                         struct btrfs_log_ctx *ctx)
2891 {
2892         mutex_lock(&root->log_mutex);
2893         list_del_init(&ctx->list);
2894         mutex_unlock(&root->log_mutex);
2895 }
2896 
2897 /* 
2898  * Invoked in log mutex context, or be sure there is no other task which
2899  * can access the list.
2900  */
2901 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2902                                              int index, int error)
2903 {
2904         struct btrfs_log_ctx *ctx;
2905         struct btrfs_log_ctx *safe;
2906 
2907         list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2908                 list_del_init(&ctx->list);
2909                 ctx->log_ret = error;
2910         }
2911 }
2912 
2913 /*
2914  * Sends a given tree log down to the disk and updates the super blocks to
2915  * record it.  When this call is done, you know that any inodes previously
2916  * logged are safely on disk only if it returns 0.
2917  *
2918  * Any other return value means you need to call btrfs_commit_transaction.
2919  * Some of the edge cases for fsyncing directories that have had unlinks
2920  * or renames done in the past mean that sometimes the only safe
2921  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2922  * that has happened.
2923  */
2924 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2925                    struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2926 {
2927         int index1;
2928         int index2;
2929         int mark;
2930         int ret;
2931         struct btrfs_fs_info *fs_info = root->fs_info;
2932         struct btrfs_root *log = root->log_root;
2933         struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2934         struct btrfs_root_item new_root_item;
2935         int log_transid = 0;
2936         struct btrfs_log_ctx root_log_ctx;
2937         struct blk_plug plug;
2938         u64 log_root_start;
2939         u64 log_root_level;
2940 
2941         mutex_lock(&root->log_mutex);
2942         log_transid = ctx->log_transid;
2943         if (root->log_transid_committed >= log_transid) {
2944                 mutex_unlock(&root->log_mutex);
2945                 return ctx->log_ret;
2946         }
2947 
2948         index1 = log_transid % 2;
2949         if (atomic_read(&root->log_commit[index1])) {
2950                 wait_log_commit(root, log_transid);
2951                 mutex_unlock(&root->log_mutex);
2952                 return ctx->log_ret;
2953         }
2954         ASSERT(log_transid == root->log_transid);
2955         atomic_set(&root->log_commit[index1], 1);
2956 
2957         /* wait for previous tree log sync to complete */
2958         if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2959                 wait_log_commit(root, log_transid - 1);
2960 
2961         while (1) {
2962                 int batch = atomic_read(&root->log_batch);
2963                 /* when we're on an ssd, just kick the log commit out */
2964                 if (!btrfs_test_opt(fs_info, SSD) &&
2965                     test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2966                         mutex_unlock(&root->log_mutex);
2967                         schedule_timeout_uninterruptible(1);
2968                         mutex_lock(&root->log_mutex);
2969                 }
2970                 wait_for_writer(root);
2971                 if (batch == atomic_read(&root->log_batch))
2972                         break;
2973         }
2974 
2975         /* bail out if we need to do a full commit */
2976         if (btrfs_need_log_full_commit(trans)) {
2977                 ret = BTRFS_LOG_FORCE_COMMIT;
2978                 mutex_unlock(&root->log_mutex);
2979                 goto out;
2980         }
2981 
2982         if (log_transid % 2 == 0)
2983                 mark = EXTENT_DIRTY;
2984         else
2985                 mark = EXTENT_NEW;
2986 
2987         /* we start IO on  all the marked extents here, but we don't actually
2988          * wait for them until later.
2989          */
2990         blk_start_plug(&plug);
2991         ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2992         /*
2993          * -EAGAIN happens when someone, e.g., a concurrent transaction
2994          *  commit, writes a dirty extent in this tree-log commit. This
2995          *  concurrent write will create a hole writing out the extents,
2996          *  and we cannot proceed on a zoned filesystem, requiring
2997          *  sequential writing. While we can bail out to a full commit
2998          *  here, but we can continue hoping the concurrent writing fills
2999          *  the hole.
3000          */
3001         if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3002                 ret = 0;
3003         if (ret) {
3004                 blk_finish_plug(&plug);
3005                 btrfs_set_log_full_commit(trans);
3006                 mutex_unlock(&root->log_mutex);
3007                 goto out;
3008         }
3009 
3010         /*
3011          * We _must_ update under the root->log_mutex in order to make sure we
3012          * have a consistent view of the log root we are trying to commit at
3013          * this moment.
3014          *
3015          * We _must_ copy this into a local copy, because we are not holding the
3016          * log_root_tree->log_mutex yet.  This is important because when we
3017          * commit the log_root_tree we must have a consistent view of the
3018          * log_root_tree when we update the super block to point at the
3019          * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3020          * with the commit and possibly point at the new block which we may not
3021          * have written out.
3022          */
3023         btrfs_set_root_node(&log->root_item, log->node);
3024         memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3025 
3026         btrfs_set_root_log_transid(root, root->log_transid + 1);
3027         log->log_transid = root->log_transid;
3028         root->log_start_pid = 0;
3029         /*
3030          * IO has been started, blocks of the log tree have WRITTEN flag set
3031          * in their headers. new modifications of the log will be written to
3032          * new positions. so it's safe to allow log writers to go in.
3033          */
3034         mutex_unlock(&root->log_mutex);
3035 
3036         if (btrfs_is_zoned(fs_info)) {
3037                 mutex_lock(&fs_info->tree_root->log_mutex);
3038                 if (!log_root_tree->node) {
3039                         ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3040                         if (ret) {
3041                                 mutex_unlock(&fs_info->tree_root->log_mutex);
3042                                 blk_finish_plug(&plug);
3043                                 goto out;
3044                         }
3045                 }
3046                 mutex_unlock(&fs_info->tree_root->log_mutex);
3047         }
3048 
3049         btrfs_init_log_ctx(&root_log_ctx, NULL);
3050 
3051         mutex_lock(&log_root_tree->log_mutex);
3052 
3053         index2 = log_root_tree->log_transid % 2;
3054         list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3055         root_log_ctx.log_transid = log_root_tree->log_transid;
3056 
3057         /*
3058          * Now we are safe to update the log_root_tree because we're under the
3059          * log_mutex, and we're a current writer so we're holding the commit
3060          * open until we drop the log_mutex.
3061          */
3062         ret = update_log_root(trans, log, &new_root_item);
3063         if (ret) {
3064                 list_del_init(&root_log_ctx.list);
3065                 blk_finish_plug(&plug);
3066                 btrfs_set_log_full_commit(trans);
3067                 if (ret != -ENOSPC)
3068                         btrfs_err(fs_info,
3069                                   "failed to update log for root %llu ret %d",
3070                                   btrfs_root_id(root), ret);
3071                 btrfs_wait_tree_log_extents(log, mark);
3072                 mutex_unlock(&log_root_tree->log_mutex);
3073                 goto out;
3074         }
3075 
3076         if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3077                 blk_finish_plug(&plug);
3078                 list_del_init(&root_log_ctx.list);
3079                 mutex_unlock(&log_root_tree->log_mutex);
3080                 ret = root_log_ctx.log_ret;
3081                 goto out;
3082         }
3083 
3084         if (atomic_read(&log_root_tree->log_commit[index2])) {
3085                 blk_finish_plug(&plug);
3086                 ret = btrfs_wait_tree_log_extents(log, mark);
3087                 wait_log_commit(log_root_tree,
3088                                 root_log_ctx.log_transid);
3089                 mutex_unlock(&log_root_tree->log_mutex);
3090                 if (!ret)
3091                         ret = root_log_ctx.log_ret;
3092                 goto out;
3093         }
3094         ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3095         atomic_set(&log_root_tree->log_commit[index2], 1);
3096 
3097         if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3098                 wait_log_commit(log_root_tree,
3099                                 root_log_ctx.log_transid - 1);
3100         }
3101 
3102         /*
3103          * now that we've moved on to the tree of log tree roots,
3104          * check the full commit flag again
3105          */
3106         if (btrfs_need_log_full_commit(trans)) {
3107                 blk_finish_plug(&plug);
3108                 btrfs_wait_tree_log_extents(log, mark);
3109                 mutex_unlock(&log_root_tree->log_mutex);
3110                 ret = BTRFS_LOG_FORCE_COMMIT;
3111                 goto out_wake_log_root;
3112         }
3113 
3114         ret = btrfs_write_marked_extents(fs_info,
3115                                          &log_root_tree->dirty_log_pages,
3116                                          EXTENT_DIRTY | EXTENT_NEW);
3117         blk_finish_plug(&plug);
3118         /*
3119          * As described above, -EAGAIN indicates a hole in the extents. We
3120          * cannot wait for these write outs since the waiting cause a
3121          * deadlock. Bail out to the full commit instead.
3122          */
3123         if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3124                 btrfs_set_log_full_commit(trans);
3125                 btrfs_wait_tree_log_extents(log, mark);
3126                 mutex_unlock(&log_root_tree->log_mutex);
3127                 goto out_wake_log_root;
3128         } else if (ret) {
3129                 btrfs_set_log_full_commit(trans);
3130                 mutex_unlock(&log_root_tree->log_mutex);
3131                 goto out_wake_log_root;
3132         }
3133         ret = btrfs_wait_tree_log_extents(log, mark);
3134         if (!ret)
3135                 ret = btrfs_wait_tree_log_extents(log_root_tree,
3136                                                   EXTENT_NEW | EXTENT_DIRTY);
3137         if (ret) {
3138                 btrfs_set_log_full_commit(trans);
3139                 mutex_unlock(&log_root_tree->log_mutex);
3140                 goto out_wake_log_root;
3141         }
3142 
3143         log_root_start = log_root_tree->node->start;
3144         log_root_level = btrfs_header_level(log_root_tree->node);
3145         log_root_tree->log_transid++;
3146         mutex_unlock(&log_root_tree->log_mutex);
3147 
3148         /*
3149          * Here we are guaranteed that nobody is going to write the superblock
3150          * for the current transaction before us and that neither we do write
3151          * our superblock before the previous transaction finishes its commit
3152          * and writes its superblock, because:
3153          *
3154          * 1) We are holding a handle on the current transaction, so no body
3155          *    can commit it until we release the handle;
3156          *
3157          * 2) Before writing our superblock we acquire the tree_log_mutex, so
3158          *    if the previous transaction is still committing, and hasn't yet
3159          *    written its superblock, we wait for it to do it, because a
3160          *    transaction commit acquires the tree_log_mutex when the commit
3161          *    begins and releases it only after writing its superblock.
3162          */
3163         mutex_lock(&fs_info->tree_log_mutex);
3164 
3165         /*
3166          * The previous transaction writeout phase could have failed, and thus
3167          * marked the fs in an error state.  We must not commit here, as we
3168          * could have updated our generation in the super_for_commit and
3169          * writing the super here would result in transid mismatches.  If there
3170          * is an error here just bail.
3171          */
3172         if (BTRFS_FS_ERROR(fs_info)) {
3173                 ret = -EIO;
3174                 btrfs_set_log_full_commit(trans);
3175                 btrfs_abort_transaction(trans, ret);
3176                 mutex_unlock(&fs_info->tree_log_mutex);
3177                 goto out_wake_log_root;
3178         }
3179 
3180         btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3181         btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3182         ret = write_all_supers(fs_info, 1);
3183         mutex_unlock(&fs_info->tree_log_mutex);
3184         if (ret) {
3185                 btrfs_set_log_full_commit(trans);
3186                 btrfs_abort_transaction(trans, ret);
3187                 goto out_wake_log_root;
3188         }
3189 
3190         /*
3191          * We know there can only be one task here, since we have not yet set
3192          * root->log_commit[index1] to 0 and any task attempting to sync the
3193          * log must wait for the previous log transaction to commit if it's
3194          * still in progress or wait for the current log transaction commit if
3195          * someone else already started it. We use <= and not < because the
3196          * first log transaction has an ID of 0.
3197          */
3198         ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3199         btrfs_set_root_last_log_commit(root, log_transid);
3200 
3201 out_wake_log_root:
3202         mutex_lock(&log_root_tree->log_mutex);
3203         btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3204 
3205         log_root_tree->log_transid_committed++;
3206         atomic_set(&log_root_tree->log_commit[index2], 0);
3207         mutex_unlock(&log_root_tree->log_mutex);
3208 
3209         /*
3210          * The barrier before waitqueue_active (in cond_wake_up) is needed so
3211          * all the updates above are seen by the woken threads. It might not be
3212          * necessary, but proving that seems to be hard.
3213          */
3214         cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3215 out:
3216         mutex_lock(&root->log_mutex);
3217         btrfs_remove_all_log_ctxs(root, index1, ret);
3218         root->log_transid_committed++;
3219         atomic_set(&root->log_commit[index1], 0);
3220         mutex_unlock(&root->log_mutex);
3221 
3222         /*
3223          * The barrier before waitqueue_active (in cond_wake_up) is needed so
3224          * all the updates above are seen by the woken threads. It might not be
3225          * necessary, but proving that seems to be hard.
3226          */
3227         cond_wake_up(&root->log_commit_wait[index1]);
3228         return ret;
3229 }
3230 
3231 static void free_log_tree(struct btrfs_trans_handle *trans,
3232                           struct btrfs_root *log)
3233 {
3234         int ret;
3235         struct walk_control wc = {
3236                 .free = 1,
3237                 .process_func = process_one_buffer
3238         };
3239 
3240         if (log->node) {
3241                 ret = walk_log_tree(trans, log, &wc);
3242                 if (ret) {
3243                         /*
3244                          * We weren't able to traverse the entire log tree, the
3245                          * typical scenario is getting an -EIO when reading an
3246                          * extent buffer of the tree, due to a previous writeback
3247                          * failure of it.
3248                          */
3249                         set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3250                                 &log->fs_info->fs_state);
3251 
3252                         /*
3253                          * Some extent buffers of the log tree may still be dirty
3254                          * and not yet written back to storage, because we may
3255                          * have updates to a log tree without syncing a log tree,
3256                          * such as during rename and link operations. So flush
3257                          * them out and wait for their writeback to complete, so
3258                          * that we properly cleanup their state and pages.
3259                          */
3260                         btrfs_write_marked_extents(log->fs_info,
3261                                                    &log->dirty_log_pages,
3262                                                    EXTENT_DIRTY | EXTENT_NEW);
3263                         btrfs_wait_tree_log_extents(log,
3264                                                     EXTENT_DIRTY | EXTENT_NEW);
3265 
3266                         if (trans)
3267                                 btrfs_abort_transaction(trans, ret);
3268                         else
3269                                 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3270                 }
3271         }
3272 
3273         extent_io_tree_release(&log->dirty_log_pages);
3274         extent_io_tree_release(&log->log_csum_range);
3275 
3276         btrfs_put_root(log);
3277 }
3278 
3279 /*
3280  * free all the extents used by the tree log.  This should be called
3281  * at commit time of the full transaction
3282  */
3283 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3284 {
3285         if (root->log_root) {
3286                 free_log_tree(trans, root->log_root);
3287                 root->log_root = NULL;
3288                 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3289         }
3290         return 0;
3291 }
3292 
3293 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3294                              struct btrfs_fs_info *fs_info)
3295 {
3296         if (fs_info->log_root_tree) {
3297                 free_log_tree(trans, fs_info->log_root_tree);
3298                 fs_info->log_root_tree = NULL;
3299                 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3300         }
3301         return 0;
3302 }
3303 
3304 /*
3305  * Check if an inode was logged in the current transaction. This correctly deals
3306  * with the case where the inode was logged but has a logged_trans of 0, which
3307  * happens if the inode is evicted and loaded again, as logged_trans is an in
3308  * memory only field (not persisted).
3309  *
3310  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3311  * and < 0 on error.
3312  */
3313 static int inode_logged(const struct btrfs_trans_handle *trans,
3314                         struct btrfs_inode *inode,
3315                         struct btrfs_path *path_in)
3316 {
3317         struct btrfs_path *path = path_in;
3318         struct btrfs_key key;
3319         int ret;
3320 
3321         if (inode->logged_trans == trans->transid)
3322                 return 1;
3323 
3324         /*
3325          * If logged_trans is not 0, then we know the inode logged was not logged
3326          * in this transaction, so we can return false right away.
3327          */
3328         if (inode->logged_trans > 0)
3329                 return 0;
3330 
3331         /*
3332          * If no log tree was created for this root in this transaction, then
3333          * the inode can not have been logged in this transaction. In that case
3334          * set logged_trans to anything greater than 0 and less than the current
3335          * transaction's ID, to avoid the search below in a future call in case
3336          * a log tree gets created after this.
3337          */
3338         if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3339                 inode->logged_trans = trans->transid - 1;
3340                 return 0;
3341         }
3342 
3343         /*
3344          * We have a log tree and the inode's logged_trans is 0. We can't tell
3345          * for sure if the inode was logged before in this transaction by looking
3346          * only at logged_trans. We could be pessimistic and assume it was, but
3347          * that can lead to unnecessarily logging an inode during rename and link
3348          * operations, and then further updating the log in followup rename and
3349          * link operations, specially if it's a directory, which adds latency
3350          * visible to applications doing a series of rename or link operations.
3351          *
3352          * A logged_trans of 0 here can mean several things:
3353          *
3354          * 1) The inode was never logged since the filesystem was mounted, and may
3355          *    or may have not been evicted and loaded again;
3356          *
3357          * 2) The inode was logged in a previous transaction, then evicted and
3358          *    then loaded again;
3359          *
3360          * 3) The inode was logged in the current transaction, then evicted and
3361          *    then loaded again.
3362          *
3363          * For cases 1) and 2) we don't want to return true, but we need to detect
3364          * case 3) and return true. So we do a search in the log root for the inode
3365          * item.
3366          */
3367         key.objectid = btrfs_ino(inode);
3368         key.type = BTRFS_INODE_ITEM_KEY;
3369         key.offset = 0;
3370 
3371         if (!path) {
3372                 path = btrfs_alloc_path();
3373                 if (!path)
3374                         return -ENOMEM;
3375         }
3376 
3377         ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3378 
3379         if (path_in)
3380                 btrfs_release_path(path);
3381         else
3382                 btrfs_free_path(path);
3383 
3384         /*
3385          * Logging an inode always results in logging its inode item. So if we
3386          * did not find the item we know the inode was not logged for sure.
3387          */
3388         if (ret < 0) {
3389                 return ret;
3390         } else if (ret > 0) {
3391                 /*
3392                  * Set logged_trans to a value greater than 0 and less then the
3393                  * current transaction to avoid doing the search in future calls.
3394                  */
3395                 inode->logged_trans = trans->transid - 1;
3396                 return 0;
3397         }
3398 
3399         /*
3400          * The inode was previously logged and then evicted, set logged_trans to
3401          * the current transacion's ID, to avoid future tree searches as long as
3402          * the inode is not evicted again.
3403          */
3404         inode->logged_trans = trans->transid;
3405 
3406         /*
3407          * If it's a directory, then we must set last_dir_index_offset to the
3408          * maximum possible value, so that the next attempt to log the inode does
3409          * not skip checking if dir index keys found in modified subvolume tree
3410          * leaves have been logged before, otherwise it would result in attempts
3411          * to insert duplicate dir index keys in the log tree. This must be done
3412          * because last_dir_index_offset is an in-memory only field, not persisted
3413          * in the inode item or any other on-disk structure, so its value is lost
3414          * once the inode is evicted.
3415          */
3416         if (S_ISDIR(inode->vfs_inode.i_mode))
3417                 inode->last_dir_index_offset = (u64)-1;
3418 
3419         return 1;
3420 }
3421 
3422 /*
3423  * Delete a directory entry from the log if it exists.
3424  *
3425  * Returns < 0 on error
3426  *           1 if the entry does not exists
3427  *           0 if the entry existed and was successfully deleted
3428  */
3429 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3430                              struct btrfs_root *log,
3431                              struct btrfs_path *path,
3432                              u64 dir_ino,
3433                              const struct fscrypt_str *name,
3434                              u64 index)
3435 {
3436         struct btrfs_dir_item *di;
3437 
3438         /*
3439          * We only log dir index items of a directory, so we don't need to look
3440          * for dir item keys.
3441          */
3442         di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3443                                          index, name, -1);
3444         if (IS_ERR(di))
3445                 return PTR_ERR(di);
3446         else if (!di)
3447                 return 1;
3448 
3449         /*
3450          * We do not need to update the size field of the directory's
3451          * inode item because on log replay we update the field to reflect
3452          * all existing entries in the directory (see overwrite_item()).
3453          */
3454         return btrfs_delete_one_dir_name(trans, log, path, di);
3455 }
3456 
3457 /*
3458  * If both a file and directory are logged, and unlinks or renames are
3459  * mixed in, we have a few interesting corners:
3460  *
3461  * create file X in dir Y
3462  * link file X to X.link in dir Y
3463  * fsync file X
3464  * unlink file X but leave X.link
3465  * fsync dir Y
3466  *
3467  * After a crash we would expect only X.link to exist.  But file X
3468  * didn't get fsync'd again so the log has back refs for X and X.link.
3469  *
3470  * We solve this by removing directory entries and inode backrefs from the
3471  * log when a file that was logged in the current transaction is
3472  * unlinked.  Any later fsync will include the updated log entries, and
3473  * we'll be able to reconstruct the proper directory items from backrefs.
3474  *
3475  * This optimizations allows us to avoid relogging the entire inode
3476  * or the entire directory.
3477  */
3478 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3479                                   struct btrfs_root *root,
3480                                   const struct fscrypt_str *name,
3481                                   struct btrfs_inode *dir, u64 index)
3482 {
3483         struct btrfs_path *path;
3484         int ret;
3485 
3486         ret = inode_logged(trans, dir, NULL);
3487         if (ret == 0)
3488                 return;
3489         else if (ret < 0) {
3490                 btrfs_set_log_full_commit(trans);
3491                 return;
3492         }
3493 
3494         ret = join_running_log_trans(root);
3495         if (ret)
3496                 return;
3497 
3498         mutex_lock(&dir->log_mutex);
3499 
3500         path = btrfs_alloc_path();
3501         if (!path) {
3502                 ret = -ENOMEM;
3503                 goto out_unlock;
3504         }
3505 
3506         ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3507                                 name, index);
3508         btrfs_free_path(path);
3509 out_unlock:
3510         mutex_unlock(&dir->log_mutex);
3511         if (ret < 0)
3512                 btrfs_set_log_full_commit(trans);
3513         btrfs_end_log_trans(root);
3514 }
3515 
3516 /* see comments for btrfs_del_dir_entries_in_log */
3517 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3518                                 struct btrfs_root *root,
3519                                 const struct fscrypt_str *name,
3520                                 struct btrfs_inode *inode, u64 dirid)
3521 {
3522         struct btrfs_root *log;
3523         u64 index;
3524         int ret;
3525 
3526         ret = inode_logged(trans, inode, NULL);
3527         if (ret == 0)
3528                 return;
3529         else if (ret < 0) {
3530                 btrfs_set_log_full_commit(trans);
3531                 return;
3532         }
3533 
3534         ret = join_running_log_trans(root);
3535         if (ret)
3536                 return;
3537         log = root->log_root;
3538         mutex_lock(&inode->log_mutex);
3539 
3540         ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3541                                   dirid, &index);
3542         mutex_unlock(&inode->log_mutex);
3543         if (ret < 0 && ret != -ENOENT)
3544                 btrfs_set_log_full_commit(trans);
3545         btrfs_end_log_trans(root);
3546 }
3547 
3548 /*
3549  * creates a range item in the log for 'dirid'.  first_offset and
3550  * last_offset tell us which parts of the key space the log should
3551  * be considered authoritative for.
3552  */
3553 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3554                                        struct btrfs_root *log,
3555                                        struct btrfs_path *path,
3556                                        u64 dirid,
3557                                        u64 first_offset, u64 last_offset)
3558 {
3559         int ret;
3560         struct btrfs_key key;
3561         struct btrfs_dir_log_item *item;
3562 
3563         key.objectid = dirid;
3564         key.offset = first_offset;
3565         key.type = BTRFS_DIR_LOG_INDEX_KEY;
3566         ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3567         /*
3568          * -EEXIST is fine and can happen sporadically when we are logging a
3569          * directory and have concurrent insertions in the subvolume's tree for
3570          * items from other inodes and that result in pushing off some dir items
3571          * from one leaf to another in order to accommodate for the new items.
3572          * This results in logging the same dir index range key.
3573          */
3574         if (ret && ret != -EEXIST)
3575                 return ret;
3576 
3577         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3578                               struct btrfs_dir_log_item);
3579         if (ret == -EEXIST) {
3580                 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3581 
3582                 /*
3583                  * btrfs_del_dir_entries_in_log() might have been called during
3584                  * an unlink between the initial insertion of this key and the
3585                  * current update, or we might be logging a single entry deletion
3586                  * during a rename, so set the new last_offset to the max value.
3587                  */
3588                 last_offset = max(last_offset, curr_end);
3589         }
3590         btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3591         btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3592         btrfs_release_path(path);
3593         return 0;
3594 }
3595 
3596 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3597                                  struct btrfs_inode *inode,
3598                                  struct extent_buffer *src,
3599                                  struct btrfs_path *dst_path,
3600                                  int start_slot,
3601                                  int count)
3602 {
3603         struct btrfs_root *log = inode->root->log_root;
3604         char *ins_data = NULL;
3605         struct btrfs_item_batch batch;
3606         struct extent_buffer *dst;
3607         unsigned long src_offset;
3608         unsigned long dst_offset;
3609         u64 last_index;
3610         struct btrfs_key key;
3611         u32 item_size;
3612         int ret;
3613         int i;
3614 
3615         ASSERT(count > 0);
3616         batch.nr = count;
3617 
3618         if (count == 1) {
3619                 btrfs_item_key_to_cpu(src, &key, start_slot);
3620                 item_size = btrfs_item_size(src, start_slot);
3621                 batch.keys = &key;
3622                 batch.data_sizes = &item_size;
3623                 batch.total_data_size = item_size;
3624         } else {
3625                 struct btrfs_key *ins_keys;
3626                 u32 *ins_sizes;
3627 
3628                 ins_data = kmalloc(count * sizeof(u32) +
3629                                    count * sizeof(struct btrfs_key), GFP_NOFS);
3630                 if (!ins_data)
3631                         return -ENOMEM;
3632 
3633                 ins_sizes = (u32 *)ins_data;
3634                 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3635                 batch.keys = ins_keys;
3636                 batch.data_sizes = ins_sizes;
3637                 batch.total_data_size = 0;
3638 
3639                 for (i = 0; i < count; i++) {
3640                         const int slot = start_slot + i;
3641 
3642                         btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3643                         ins_sizes[i] = btrfs_item_size(src, slot);
3644                         batch.total_data_size += ins_sizes[i];
3645                 }
3646         }
3647 
3648         ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3649         if (ret)
3650                 goto out;
3651 
3652         dst = dst_path->nodes[0];
3653         /*
3654          * Copy all the items in bulk, in a single copy operation. Item data is
3655          * organized such that it's placed at the end of a leaf and from right
3656          * to left. For example, the data for the second item ends at an offset
3657          * that matches the offset where the data for the first item starts, the
3658          * data for the third item ends at an offset that matches the offset
3659          * where the data of the second items starts, and so on.
3660          * Therefore our source and destination start offsets for copy match the
3661          * offsets of the last items (highest slots).
3662          */
3663         dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3664         src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3665         copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3666         btrfs_release_path(dst_path);
3667 
3668         last_index = batch.keys[count - 1].offset;
3669         ASSERT(last_index > inode->last_dir_index_offset);
3670 
3671         /*
3672          * If for some unexpected reason the last item's index is not greater
3673          * than the last index we logged, warn and force a transaction commit.
3674          */
3675         if (WARN_ON(last_index <= inode->last_dir_index_offset))
3676                 ret = BTRFS_LOG_FORCE_COMMIT;
3677         else
3678                 inode->last_dir_index_offset = last_index;
3679 
3680         if (btrfs_get_first_dir_index_to_log(inode) == 0)
3681                 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3682 out:
3683         kfree(ins_data);
3684 
3685         return ret;
3686 }
3687 
3688 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3689 {
3690         const int slot = path->slots[0];
3691 
3692         if (ctx->scratch_eb) {
3693                 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3694         } else {
3695                 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3696                 if (!ctx->scratch_eb)
3697                         return -ENOMEM;
3698         }
3699 
3700         btrfs_release_path(path);
3701         path->nodes[0] = ctx->scratch_eb;
3702         path->slots[0] = slot;
3703         /*
3704          * Add extra ref to scratch eb so that it is not freed when callers
3705          * release the path, so we can reuse it later if needed.
3706          */
3707         atomic_inc(&ctx->scratch_eb->refs);
3708 
3709         return 0;
3710 }
3711 
3712 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3713                                   struct btrfs_inode *inode,
3714                                   struct btrfs_path *path,
3715                                   struct btrfs_path *dst_path,
3716                                   struct btrfs_log_ctx *ctx,
3717                                   u64 *last_old_dentry_offset)
3718 {
3719         struct btrfs_root *log = inode->root->log_root;
3720         struct extent_buffer *src;
3721         const int nritems = btrfs_header_nritems(path->nodes[0]);
3722         const u64 ino = btrfs_ino(inode);
3723         bool last_found = false;
3724         int batch_start = 0;
3725         int batch_size = 0;
3726         int ret;
3727 
3728         /*
3729          * We need to clone the leaf, release the read lock on it, and use the
3730          * clone before modifying the log tree. See the comment at copy_items()
3731          * about why we need to do this.
3732          */
3733         ret = clone_leaf(path, ctx);
3734         if (ret < 0)
3735                 return ret;
3736 
3737         src = path->nodes[0];
3738 
3739         for (int i = path->slots[0]; i < nritems; i++) {
3740                 struct btrfs_dir_item *di;
3741                 struct btrfs_key key;
3742                 int ret;
3743 
3744                 btrfs_item_key_to_cpu(src, &key, i);
3745 
3746                 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3747                         last_found = true;
3748                         break;
3749                 }
3750 
3751                 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3752 
3753                 /*
3754                  * Skip ranges of items that consist only of dir item keys created
3755                  * in past transactions. However if we find a gap, we must log a
3756                  * dir index range item for that gap, so that index keys in that
3757                  * gap are deleted during log replay.
3758                  */
3759                 if (btrfs_dir_transid(src, di) < trans->transid) {
3760                         if (key.offset > *last_old_dentry_offset + 1) {
3761                                 ret = insert_dir_log_key(trans, log, dst_path,
3762                                                  ino, *last_old_dentry_offset + 1,
3763                                                  key.offset - 1);
3764                                 if (ret < 0)
3765                                         return ret;
3766                         }
3767 
3768                         *last_old_dentry_offset = key.offset;
3769                         continue;
3770                 }
3771 
3772                 /* If we logged this dir index item before, we can skip it. */
3773                 if (key.offset <= inode->last_dir_index_offset)
3774                         continue;
3775 
3776                 /*
3777                  * We must make sure that when we log a directory entry, the
3778                  * corresponding inode, after log replay, has a matching link
3779                  * count. For example:
3780                  *
3781                  * touch foo
3782                  * mkdir mydir
3783                  * sync
3784                  * ln foo mydir/bar
3785                  * xfs_io -c "fsync" mydir
3786                  * <crash>
3787                  * <mount fs and log replay>
3788                  *
3789                  * Would result in a fsync log that when replayed, our file inode
3790                  * would have a link count of 1, but we get two directory entries
3791                  * pointing to the same inode. After removing one of the names,
3792                  * it would not be possible to remove the other name, which
3793                  * resulted always in stale file handle errors, and would not be
3794                  * possible to rmdir the parent directory, since its i_size could
3795                  * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3796                  * resulting in -ENOTEMPTY errors.
3797                  */
3798                 if (!ctx->log_new_dentries) {
3799                         struct btrfs_key di_key;
3800 
3801                         btrfs_dir_item_key_to_cpu(src, di, &di_key);
3802                         if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3803                                 ctx->log_new_dentries = true;
3804                 }
3805 
3806                 if (batch_size == 0)
3807                         batch_start = i;
3808                 batch_size++;
3809         }
3810 
3811         if (batch_size > 0) {
3812                 int ret;
3813 
3814                 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3815                                             batch_start, batch_size);
3816                 if (ret < 0)
3817                         return ret;
3818         }
3819 
3820         return last_found ? 1 : 0;
3821 }
3822 
3823 /*
3824  * log all the items included in the current transaction for a given
3825  * directory.  This also creates the range items in the log tree required
3826  * to replay anything deleted before the fsync
3827  */
3828 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3829                           struct btrfs_inode *inode,
3830                           struct btrfs_path *path,
3831                           struct btrfs_path *dst_path,
3832                           struct btrfs_log_ctx *ctx,
3833                           u64 min_offset, u64 *last_offset_ret)
3834 {
3835         struct btrfs_key min_key;
3836         struct btrfs_root *root = inode->root;
3837         struct btrfs_root *log = root->log_root;
3838         int ret;
3839         u64 last_old_dentry_offset = min_offset - 1;
3840         u64 last_offset = (u64)-1;
3841         u64 ino = btrfs_ino(inode);
3842 
3843         min_key.objectid = ino;
3844         min_key.type = BTRFS_DIR_INDEX_KEY;
3845         min_key.offset = min_offset;
3846 
3847         ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3848 
3849         /*
3850          * we didn't find anything from this transaction, see if there
3851          * is anything at all
3852          */
3853         if (ret != 0 || min_key.objectid != ino ||
3854             min_key.type != BTRFS_DIR_INDEX_KEY) {
3855                 min_key.objectid = ino;
3856                 min_key.type = BTRFS_DIR_INDEX_KEY;
3857                 min_key.offset = (u64)-1;
3858                 btrfs_release_path(path);
3859                 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3860                 if (ret < 0) {
3861                         btrfs_release_path(path);
3862                         return ret;
3863                 }
3864                 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3865 
3866                 /* if ret == 0 there are items for this type,
3867                  * create a range to tell us the last key of this type.
3868                  * otherwise, there are no items in this directory after
3869                  * *min_offset, and we create a range to indicate that.
3870                  */
3871                 if (ret == 0) {
3872                         struct btrfs_key tmp;
3873 
3874                         btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3875                                               path->slots[0]);
3876                         if (tmp.type == BTRFS_DIR_INDEX_KEY)
3877                                 last_old_dentry_offset = tmp.offset;
3878                 } else if (ret > 0) {
3879                         ret = 0;
3880                 }
3881 
3882                 goto done;
3883         }
3884 
3885         /* go backward to find any previous key */
3886         ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3887         if (ret == 0) {
3888                 struct btrfs_key tmp;
3889 
3890                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3891                 /*
3892                  * The dir index key before the first one we found that needs to
3893                  * be logged might be in a previous leaf, and there might be a
3894                  * gap between these keys, meaning that we had deletions that
3895                  * happened. So the key range item we log (key type
3896                  * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3897                  * previous key's offset plus 1, so that those deletes are replayed.
3898                  */
3899                 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3900                         last_old_dentry_offset = tmp.offset;
3901         } else if (ret < 0) {
3902                 goto done;
3903         }
3904 
3905         btrfs_release_path(path);
3906 
3907         /*
3908          * Find the first key from this transaction again or the one we were at
3909          * in the loop below in case we had to reschedule. We may be logging the
3910          * directory without holding its VFS lock, which happen when logging new
3911          * dentries (through log_new_dir_dentries()) or in some cases when we
3912          * need to log the parent directory of an inode. This means a dir index
3913          * key might be deleted from the inode's root, and therefore we may not
3914          * find it anymore. If we can't find it, just move to the next key. We
3915          * can not bail out and ignore, because if we do that we will simply
3916          * not log dir index keys that come after the one that was just deleted
3917          * and we can end up logging a dir index range that ends at (u64)-1
3918          * (@last_offset is initialized to that), resulting in removing dir
3919          * entries we should not remove at log replay time.
3920          */
3921 search:
3922         ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3923         if (ret > 0) {
3924                 ret = btrfs_next_item(root, path);
3925                 if (ret > 0) {
3926                         /* There are no more keys in the inode's root. */
3927                         ret = 0;
3928                         goto done;
3929                 }
3930         }
3931         if (ret < 0)
3932                 goto done;
3933 
3934         /*
3935          * we have a block from this transaction, log every item in it
3936          * from our directory
3937          */
3938         while (1) {
3939                 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3940                                              &last_old_dentry_offset);
3941                 if (ret != 0) {
3942                         if (ret > 0)
3943                                 ret = 0;
3944                         goto done;
3945                 }
3946                 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3947 
3948                 /*
3949                  * look ahead to the next item and see if it is also
3950                  * from this directory and from this transaction
3951                  */
3952                 ret = btrfs_next_leaf(root, path);
3953                 if (ret) {
3954                         if (ret == 1) {
3955                                 last_offset = (u64)-1;
3956                                 ret = 0;
3957                         }
3958                         goto done;
3959                 }
3960                 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3961                 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3962                         last_offset = (u64)-1;
3963                         goto done;
3964                 }
3965                 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3966                         /*
3967                          * The next leaf was not changed in the current transaction
3968                          * and has at least one dir index key.
3969                          * We check for the next key because there might have been
3970                          * one or more deletions between the last key we logged and
3971                          * that next key. So the key range item we log (key type
3972                          * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3973                          * offset minus 1, so that those deletes are replayed.
3974                          */
3975                         last_offset = min_key.offset - 1;
3976                         goto done;
3977                 }
3978                 if (need_resched()) {
3979                         btrfs_release_path(path);
3980                         cond_resched();
3981                         goto search;
3982                 }
3983         }
3984 done:
3985         btrfs_release_path(path);
3986         btrfs_release_path(dst_path);
3987 
3988         if (ret == 0) {
3989                 *last_offset_ret = last_offset;
3990                 /*
3991                  * In case the leaf was changed in the current transaction but
3992                  * all its dir items are from a past transaction, the last item
3993                  * in the leaf is a dir item and there's no gap between that last
3994                  * dir item and the first one on the next leaf (which did not
3995                  * change in the current transaction), then we don't need to log
3996                  * a range, last_old_dentry_offset is == to last_offset.
3997                  */
3998                 ASSERT(last_old_dentry_offset <= last_offset);
3999                 if (last_old_dentry_offset < last_offset)
4000                         ret = insert_dir_log_key(trans, log, path, ino,
4001                                                  last_old_dentry_offset + 1,
4002                                                  last_offset);
4003         }
4004 
4005         return ret;
4006 }
4007 
4008 /*
4009  * If the inode was logged before and it was evicted, then its
4010  * last_dir_index_offset is (u64)-1, so we don't the value of the last index
4011  * key offset. If that's the case, search for it and update the inode. This
4012  * is to avoid lookups in the log tree every time we try to insert a dir index
4013  * key from a leaf changed in the current transaction, and to allow us to always
4014  * do batch insertions of dir index keys.
4015  */
4016 static int update_last_dir_index_offset(struct btrfs_inode *inode,
4017                                         struct btrfs_path *path,
4018                                         const struct btrfs_log_ctx *ctx)
4019 {
4020         const u64 ino = btrfs_ino(inode);
4021         struct btrfs_key key;
4022         int ret;
4023 
4024         lockdep_assert_held(&inode->log_mutex);
4025 
4026         if (inode->last_dir_index_offset != (u64)-1)
4027                 return 0;
4028 
4029         if (!ctx->logged_before) {
4030                 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4031                 return 0;
4032         }
4033 
4034         key.objectid = ino;
4035         key.type = BTRFS_DIR_INDEX_KEY;
4036         key.offset = (u64)-1;
4037 
4038         ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4039         /*
4040          * An error happened or we actually have an index key with an offset
4041          * value of (u64)-1. Bail out, we're done.
4042          */
4043         if (ret <= 0)
4044                 goto out;
4045 
4046         ret = 0;
4047         inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4048 
4049         /*
4050          * No dir index items, bail out and leave last_dir_index_offset with
4051          * the value right before the first valid index value.
4052          */
4053         if (path->slots[0] == 0)
4054                 goto out;
4055 
4056         /*
4057          * btrfs_search_slot() left us at one slot beyond the slot with the last
4058          * index key, or beyond the last key of the directory that is not an
4059          * index key. If we have an index key before, set last_dir_index_offset
4060          * to its offset value, otherwise leave it with a value right before the
4061          * first valid index value, as it means we have an empty directory.
4062          */
4063         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4064         if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4065                 inode->last_dir_index_offset = key.offset;
4066 
4067 out:
4068         btrfs_release_path(path);
4069 
4070         return ret;
4071 }
4072 
4073 /*
4074  * logging directories is very similar to logging inodes, We find all the items
4075  * from the current transaction and write them to the log.
4076  *
4077  * The recovery code scans the directory in the subvolume, and if it finds a
4078  * key in the range logged that is not present in the log tree, then it means
4079  * that dir entry was unlinked during the transaction.
4080  *
4081  * In order for that scan to work, we must include one key smaller than
4082  * the smallest logged by this transaction and one key larger than the largest
4083  * key logged by this transaction.
4084  */
4085 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4086                           struct btrfs_inode *inode,
4087                           struct btrfs_path *path,
4088                           struct btrfs_path *dst_path,
4089                           struct btrfs_log_ctx *ctx)
4090 {
4091         u64 min_key;
4092         u64 max_key;
4093         int ret;
4094 
4095         ret = update_last_dir_index_offset(inode, path, ctx);
4096         if (ret)
4097                 return ret;
4098 
4099         min_key = BTRFS_DIR_START_INDEX;
4100         max_key = 0;
4101 
4102         while (1) {
4103                 ret = log_dir_items(trans, inode, path, dst_path,
4104                                 ctx, min_key, &max_key);
4105                 if (ret)
4106                         return ret;
4107                 if (max_key == (u64)-1)
4108                         break;
4109                 min_key = max_key + 1;
4110         }
4111 
4112         return 0;
4113 }
4114 
4115 /*
4116  * a helper function to drop items from the log before we relog an
4117  * inode.  max_key_type indicates the highest item type to remove.
4118  * This cannot be run for file data extents because it does not
4119  * free the extents they point to.
4120  */
4121 static int drop_inode_items(struct btrfs_trans_handle *trans,
4122                                   struct btrfs_root *log,
4123                                   struct btrfs_path *path,
4124                                   struct btrfs_inode *inode,
4125                                   int max_key_type)
4126 {
4127         int ret;
4128         struct btrfs_key key;
4129         struct btrfs_key found_key;
4130         int start_slot;
4131 
4132         key.objectid = btrfs_ino(inode);
4133         key.type = max_key_type;
4134         key.offset = (u64)-1;
4135 
4136         while (1) {
4137                 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4138                 if (ret < 0) {
4139                         break;
4140                 } else if (ret > 0) {
4141                         if (path->slots[0] == 0)
4142                                 break;
4143                         path->slots[0]--;
4144                 }
4145 
4146                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4147                                       path->slots[0]);
4148 
4149                 if (found_key.objectid != key.objectid)
4150                         break;
4151 
4152                 found_key.offset = 0;
4153                 found_key.type = 0;
4154                 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4155                 if (ret < 0)
4156                         break;
4157 
4158                 ret = btrfs_del_items(trans, log, path, start_slot,
4159                                       path->slots[0] - start_slot + 1);
4160                 /*
4161                  * If start slot isn't 0 then we don't need to re-search, we've
4162                  * found the last guy with the objectid in this tree.
4163                  */
4164                 if (ret || start_slot != 0)
4165                         break;
4166                 btrfs_release_path(path);
4167         }
4168         btrfs_release_path(path);
4169         if (ret > 0)
4170                 ret = 0;
4171         return ret;
4172 }
4173 
4174 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4175                                 struct btrfs_root *log_root,
4176                                 struct btrfs_inode *inode,
4177                                 u64 new_size, u32 min_type)
4178 {
4179         struct btrfs_truncate_control control = {
4180                 .new_size = new_size,
4181                 .ino = btrfs_ino(inode),
4182                 .min_type = min_type,
4183                 .skip_ref_updates = true,
4184         };
4185 
4186         return btrfs_truncate_inode_items(trans, log_root, &control);
4187 }
4188 
4189 static void fill_inode_item(struct btrfs_trans_handle *trans,
4190                             struct extent_buffer *leaf,
4191                             struct btrfs_inode_item *item,
4192                             struct inode *inode, int log_inode_only,
4193                             u64 logged_isize)
4194 {
4195         struct btrfs_map_token token;
4196         u64 flags;
4197 
4198         btrfs_init_map_token(&token, leaf);
4199 
4200         if (log_inode_only) {
4201                 /* set the generation to zero so the recover code
4202                  * can tell the difference between an logging
4203                  * just to say 'this inode exists' and a logging
4204                  * to say 'update this inode with these values'
4205                  */
4206                 btrfs_set_token_inode_generation(&token, item, 0);
4207                 btrfs_set_token_inode_size(&token, item, logged_isize);
4208         } else {
4209                 btrfs_set_token_inode_generation(&token, item,
4210                                                  BTRFS_I(inode)->generation);
4211                 btrfs_set_token_inode_size(&token, item, inode->i_size);
4212         }
4213 
4214         btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4215         btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4216         btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4217         btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4218 
4219         btrfs_set_token_timespec_sec(&token, &item->atime,
4220                                      inode_get_atime_sec(inode));
4221         btrfs_set_token_timespec_nsec(&token, &item->atime,
4222                                       inode_get_atime_nsec(inode));
4223 
4224         btrfs_set_token_timespec_sec(&token, &item->mtime,
4225                                      inode_get_mtime_sec(inode));
4226         btrfs_set_token_timespec_nsec(&token, &item->mtime,
4227                                       inode_get_mtime_nsec(inode));
4228 
4229         btrfs_set_token_timespec_sec(&token, &item->ctime,
4230                                      inode_get_ctime_sec(inode));
4231         btrfs_set_token_timespec_nsec(&token, &item->ctime,
4232                                       inode_get_ctime_nsec(inode));
4233 
4234         /*
4235          * We do not need to set the nbytes field, in fact during a fast fsync
4236          * its value may not even be correct, since a fast fsync does not wait
4237          * for ordered extent completion, which is where we update nbytes, it
4238          * only waits for writeback to complete. During log replay as we find
4239          * file extent items and replay them, we adjust the nbytes field of the
4240          * inode item in subvolume tree as needed (see overwrite_item()).
4241          */
4242 
4243         btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4244         btrfs_set_token_inode_transid(&token, item, trans->transid);
4245         btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4246         flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4247                                           BTRFS_I(inode)->ro_flags);
4248         btrfs_set_token_inode_flags(&token, item, flags);
4249         btrfs_set_token_inode_block_group(&token, item, 0);
4250 }
4251 
4252 static int log_inode_item(struct btrfs_trans_handle *trans,
4253                           struct btrfs_root *log, struct btrfs_path *path,
4254                           struct btrfs_inode *inode, bool inode_item_dropped)
4255 {
4256         struct btrfs_inode_item *inode_item;
4257         struct btrfs_key key;
4258         int ret;
4259 
4260         btrfs_get_inode_key(inode, &key);
4261         /*
4262          * If we are doing a fast fsync and the inode was logged before in the
4263          * current transaction, then we know the inode was previously logged and
4264          * it exists in the log tree. For performance reasons, in this case use
4265          * btrfs_search_slot() directly with ins_len set to 0 so that we never
4266          * attempt a write lock on the leaf's parent, which adds unnecessary lock
4267          * contention in case there are concurrent fsyncs for other inodes of the
4268          * same subvolume. Using btrfs_insert_empty_item() when the inode item
4269          * already exists can also result in unnecessarily splitting a leaf.
4270          */
4271         if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4272                 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4273                 ASSERT(ret <= 0);
4274                 if (ret > 0)
4275                         ret = -ENOENT;
4276         } else {
4277                 /*
4278                  * This means it is the first fsync in the current transaction,
4279                  * so the inode item is not in the log and we need to insert it.
4280                  * We can never get -EEXIST because we are only called for a fast
4281                  * fsync and in case an inode eviction happens after the inode was
4282                  * logged before in the current transaction, when we load again
4283                  * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4284                  * flags and set ->logged_trans to 0.
4285                  */
4286                 ret = btrfs_insert_empty_item(trans, log, path, &key,
4287                                               sizeof(*inode_item));
4288                 ASSERT(ret != -EEXIST);
4289         }
4290         if (ret)
4291                 return ret;
4292         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4293                                     struct btrfs_inode_item);
4294         fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4295                         0, 0);
4296         btrfs_release_path(path);
4297         return 0;
4298 }
4299 
4300 static int log_csums(struct btrfs_trans_handle *trans,
4301                      struct btrfs_inode *inode,
4302                      struct btrfs_root *log_root,
4303                      struct btrfs_ordered_sum *sums)
4304 {
4305         const u64 lock_end = sums->logical + sums->len - 1;
4306         struct extent_state *cached_state = NULL;
4307         int ret;
4308 
4309         /*
4310          * If this inode was not used for reflink operations in the current
4311          * transaction with new extents, then do the fast path, no need to
4312          * worry about logging checksum items with overlapping ranges.
4313          */
4314         if (inode->last_reflink_trans < trans->transid)
4315                 return btrfs_csum_file_blocks(trans, log_root, sums);
4316 
4317         /*
4318          * Serialize logging for checksums. This is to avoid racing with the
4319          * same checksum being logged by another task that is logging another
4320          * file which happens to refer to the same extent as well. Such races
4321          * can leave checksum items in the log with overlapping ranges.
4322          */
4323         ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4324                           &cached_state);
4325         if (ret)
4326                 return ret;
4327         /*
4328          * Due to extent cloning, we might have logged a csum item that covers a
4329          * subrange of a cloned extent, and later we can end up logging a csum
4330          * item for a larger subrange of the same extent or the entire range.
4331          * This would leave csum items in the log tree that cover the same range
4332          * and break the searches for checksums in the log tree, resulting in
4333          * some checksums missing in the fs/subvolume tree. So just delete (or
4334          * trim and adjust) any existing csum items in the log for this range.
4335          */
4336         ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4337         if (!ret)
4338                 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4339 
4340         unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4341                       &cached_state);
4342 
4343         return ret;
4344 }
4345 
4346 static noinline int copy_items(struct btrfs_trans_handle *trans,
4347                                struct btrfs_inode *inode,
4348                                struct btrfs_path *dst_path,
4349                                struct btrfs_path *src_path,
4350                                int start_slot, int nr, int inode_only,
4351                                u64 logged_isize, struct btrfs_log_ctx *ctx)
4352 {
4353         struct btrfs_root *log = inode->root->log_root;
4354         struct btrfs_file_extent_item *extent;
4355         struct extent_buffer *src;
4356         int ret;
4357         struct btrfs_key *ins_keys;
4358         u32 *ins_sizes;
4359         struct btrfs_item_batch batch;
4360         char *ins_data;
4361         int dst_index;
4362         const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4363         const u64 i_size = i_size_read(&inode->vfs_inode);
4364 
4365         /*
4366          * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4367          * use the clone. This is because otherwise we would be changing the log
4368          * tree, to insert items from the subvolume tree or insert csum items,
4369          * while holding a read lock on a leaf from the subvolume tree, which
4370          * creates a nasty lock dependency when COWing log tree nodes/leaves:
4371          *
4372          * 1) Modifying the log tree triggers an extent buffer allocation while
4373          *    holding a write lock on a parent extent buffer from the log tree.
4374          *    Allocating the pages for an extent buffer, or the extent buffer
4375          *    struct, can trigger inode eviction and finally the inode eviction
4376          *    will trigger a release/remove of a delayed node, which requires
4377          *    taking the delayed node's mutex;
4378          *
4379          * 2) Allocating a metadata extent for a log tree can trigger the async
4380          *    reclaim thread and make us wait for it to release enough space and
4381          *    unblock our reservation ticket. The reclaim thread can start
4382          *    flushing delayed items, and that in turn results in the need to
4383          *    lock delayed node mutexes and in the need to write lock extent
4384          *    buffers of a subvolume tree - all this while holding a write lock
4385          *    on the parent extent buffer in the log tree.
4386          *
4387          * So one task in scenario 1) running in parallel with another task in
4388          * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4389          * node mutex while having a read lock on a leaf from the subvolume,
4390          * while the other is holding the delayed node's mutex and wants to
4391          * write lock the same subvolume leaf for flushing delayed items.
4392          */
4393         ret = clone_leaf(src_path, ctx);
4394         if (ret < 0)
4395                 return ret;
4396 
4397         src = src_path->nodes[0];
4398 
4399         ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4400                            nr * sizeof(u32), GFP_NOFS);
4401         if (!ins_data)
4402                 return -ENOMEM;
4403 
4404         ins_sizes = (u32 *)ins_data;
4405         ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4406         batch.keys = ins_keys;
4407         batch.data_sizes = ins_sizes;
4408         batch.total_data_size = 0;
4409         batch.nr = 0;
4410 
4411         dst_index = 0;
4412         for (int i = 0; i < nr; i++) {
4413                 const int src_slot = start_slot + i;
4414                 struct btrfs_root *csum_root;
4415                 struct btrfs_ordered_sum *sums;
4416                 struct btrfs_ordered_sum *sums_next;
4417                 LIST_HEAD(ordered_sums);
4418                 u64 disk_bytenr;
4419                 u64 disk_num_bytes;
4420                 u64 extent_offset;
4421                 u64 extent_num_bytes;
4422                 bool is_old_extent;
4423 
4424                 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4425 
4426                 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4427                         goto add_to_batch;
4428 
4429                 extent = btrfs_item_ptr(src, src_slot,
4430                                         struct btrfs_file_extent_item);
4431 
4432                 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4433                                  trans->transid);
4434 
4435                 /*
4436                  * Don't copy extents from past generations. That would make us
4437                  * log a lot more metadata for common cases like doing only a
4438                  * few random writes into a file and then fsync it for the first
4439                  * time or after the full sync flag is set on the inode. We can
4440                  * get leaves full of extent items, most of which are from past
4441                  * generations, so we can skip them - as long as the inode has
4442                  * not been the target of a reflink operation in this transaction,
4443                  * as in that case it might have had file extent items with old
4444                  * generations copied into it. We also must always log prealloc
4445                  * extents that start at or beyond eof, otherwise we would lose
4446                  * them on log replay.
4447                  */
4448                 if (is_old_extent &&
4449                     ins_keys[dst_index].offset < i_size &&
4450                     inode->last_reflink_trans < trans->transid)
4451                         continue;
4452 
4453                 if (skip_csum)
4454                         goto add_to_batch;
4455 
4456                 /* Only regular extents have checksums. */
4457                 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4458                         goto add_to_batch;
4459 
4460                 /*
4461                  * If it's an extent created in a past transaction, then its
4462                  * checksums are already accessible from the committed csum tree,
4463                  * no need to log them.
4464                  */
4465                 if (is_old_extent)
4466                         goto add_to_batch;
4467 
4468                 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4469                 /* If it's an explicit hole, there are no checksums. */
4470                 if (disk_bytenr == 0)
4471                         goto add_to_batch;
4472 
4473                 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4474 
4475                 if (btrfs_file_extent_compression(src, extent)) {
4476                         extent_offset = 0;
4477                         extent_num_bytes = disk_num_bytes;
4478                 } else {
4479                         extent_offset = btrfs_file_extent_offset(src, extent);
4480                         extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4481                 }
4482 
4483                 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4484                 disk_bytenr += extent_offset;
4485                 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4486                                               disk_bytenr + extent_num_bytes - 1,
4487                                               &ordered_sums, false);
4488                 if (ret < 0)
4489                         goto out;
4490                 ret = 0;
4491 
4492                 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4493                         if (!ret)
4494                                 ret = log_csums(trans, inode, log, sums);
4495                         list_del(&sums->list);
4496                         kfree(sums);
4497                 }
4498                 if (ret)
4499                         goto out;
4500 
4501 add_to_batch:
4502                 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4503                 batch.total_data_size += ins_sizes[dst_index];
4504                 batch.nr++;
4505                 dst_index++;
4506         }
4507 
4508         /*
4509          * We have a leaf full of old extent items that don't need to be logged,
4510          * so we don't need to do anything.
4511          */
4512         if (batch.nr == 0)
4513                 goto out;
4514 
4515         ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4516         if (ret)
4517                 goto out;
4518 
4519         dst_index = 0;
4520         for (int i = 0; i < nr; i++) {
4521                 const int src_slot = start_slot + i;
4522                 const int dst_slot = dst_path->slots[0] + dst_index;
4523                 struct btrfs_key key;
4524                 unsigned long src_offset;
4525                 unsigned long dst_offset;
4526 
4527                 /*
4528                  * We're done, all the remaining items in the source leaf
4529                  * correspond to old file extent items.
4530                  */
4531                 if (dst_index >= batch.nr)
4532                         break;
4533 
4534                 btrfs_item_key_to_cpu(src, &key, src_slot);
4535 
4536                 if (key.type != BTRFS_EXTENT_DATA_KEY)
4537                         goto copy_item;
4538 
4539                 extent = btrfs_item_ptr(src, src_slot,
4540                                         struct btrfs_file_extent_item);
4541 
4542                 /* See the comment in the previous loop, same logic. */
4543                 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4544                     key.offset < i_size &&
4545                     inode->last_reflink_trans < trans->transid)
4546                         continue;
4547 
4548 copy_item:
4549                 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4550                 src_offset = btrfs_item_ptr_offset(src, src_slot);
4551 
4552                 if (key.type == BTRFS_INODE_ITEM_KEY) {
4553                         struct btrfs_inode_item *inode_item;
4554 
4555                         inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4556                                                     struct btrfs_inode_item);
4557                         fill_inode_item(trans, dst_path->nodes[0], inode_item,
4558                                         &inode->vfs_inode,
4559                                         inode_only == LOG_INODE_EXISTS,
4560                                         logged_isize);
4561                 } else {
4562                         copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4563                                            src_offset, ins_sizes[dst_index]);
4564                 }
4565 
4566                 dst_index++;
4567         }
4568 
4569         btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4570         btrfs_release_path(dst_path);
4571 out:
4572         kfree(ins_data);
4573 
4574         return ret;
4575 }
4576 
4577 static int extent_cmp(void *priv, const struct list_head *a,
4578                       const struct list_head *b)
4579 {
4580         const struct extent_map *em1, *em2;
4581 
4582         em1 = list_entry(a, struct extent_map, list);
4583         em2 = list_entry(b, struct extent_map, list);
4584 
4585         if (em1->start < em2->start)
4586                 return -1;
4587         else if (em1->start > em2->start)
4588                 return 1;
4589         return 0;
4590 }
4591 
4592 static int log_extent_csums(struct btrfs_trans_handle *trans,
4593                             struct btrfs_inode *inode,
4594                             struct btrfs_root *log_root,
4595                             const struct extent_map *em,
4596                             struct btrfs_log_ctx *ctx)
4597 {
4598         struct btrfs_ordered_extent *ordered;
4599         struct btrfs_root *csum_root;
4600         u64 block_start;
4601         u64 csum_offset;
4602         u64 csum_len;
4603         u64 mod_start = em->start;
4604         u64 mod_len = em->len;
4605         LIST_HEAD(ordered_sums);
4606         int ret = 0;
4607 
4608         if (inode->flags & BTRFS_INODE_NODATASUM ||
4609             (em->flags & EXTENT_FLAG_PREALLOC) ||
4610             em->disk_bytenr == EXTENT_MAP_HOLE)
4611                 return 0;
4612 
4613         list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4614                 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4615                 const u64 mod_end = mod_start + mod_len;
4616                 struct btrfs_ordered_sum *sums;
4617 
4618                 if (mod_len == 0)
4619                         break;
4620 
4621                 if (ordered_end <= mod_start)
4622                         continue;
4623                 if (mod_end <= ordered->file_offset)
4624                         break;
4625 
4626                 /*
4627                  * We are going to copy all the csums on this ordered extent, so
4628                  * go ahead and adjust mod_start and mod_len in case this ordered
4629                  * extent has already been logged.
4630                  */
4631                 if (ordered->file_offset > mod_start) {
4632                         if (ordered_end >= mod_end)
4633                                 mod_len = ordered->file_offset - mod_start;
4634                         /*
4635                          * If we have this case
4636                          *
4637                          * |--------- logged extent ---------|
4638                          *       |----- ordered extent ----|
4639                          *
4640                          * Just don't mess with mod_start and mod_len, we'll
4641                          * just end up logging more csums than we need and it
4642                          * will be ok.
4643                          */
4644                 } else {
4645                         if (ordered_end < mod_end) {
4646                                 mod_len = mod_end - ordered_end;
4647                                 mod_start = ordered_end;
4648                         } else {
4649                                 mod_len = 0;
4650                         }
4651                 }
4652 
4653                 /*
4654                  * To keep us from looping for the above case of an ordered
4655                  * extent that falls inside of the logged extent.
4656                  */
4657                 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4658                         continue;
4659 
4660                 list_for_each_entry(sums, &ordered->list, list) {
4661                         ret = log_csums(trans, inode, log_root, sums);
4662                         if (ret)
4663                                 return ret;
4664                 }
4665         }
4666 
4667         /* We're done, found all csums in the ordered extents. */
4668         if (mod_len == 0)
4669                 return 0;
4670 
4671         /* If we're compressed we have to save the entire range of csums. */
4672         if (extent_map_is_compressed(em)) {
4673                 csum_offset = 0;
4674                 csum_len = em->disk_num_bytes;
4675         } else {
4676                 csum_offset = mod_start - em->start;
4677                 csum_len = mod_len;
4678         }
4679 
4680         /* block start is already adjusted for the file extent offset. */
4681         block_start = extent_map_block_start(em);
4682         csum_root = btrfs_csum_root(trans->fs_info, block_start);
4683         ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset,
4684                                       block_start + csum_offset + csum_len - 1,
4685                                       &ordered_sums, false);
4686         if (ret < 0)
4687                 return ret;
4688         ret = 0;
4689 
4690         while (!list_empty(&ordered_sums)) {
4691                 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4692                                                    struct btrfs_ordered_sum,
4693                                                    list);
4694                 if (!ret)
4695                         ret = log_csums(trans, inode, log_root, sums);
4696                 list_del(&sums->list);
4697                 kfree(sums);
4698         }
4699 
4700         return ret;
4701 }
4702 
4703 static int log_one_extent(struct btrfs_trans_handle *trans,
4704                           struct btrfs_inode *inode,
4705                           const struct extent_map *em,
4706                           struct btrfs_path *path,
4707                           struct btrfs_log_ctx *ctx)
4708 {
4709         struct btrfs_drop_extents_args drop_args = { 0 };
4710         struct btrfs_root *log = inode->root->log_root;
4711         struct btrfs_file_extent_item fi = { 0 };
4712         struct extent_buffer *leaf;
4713         struct btrfs_key key;
4714         enum btrfs_compression_type compress_type;
4715         u64 extent_offset = em->offset;
4716         u64 block_start = extent_map_block_start(em);
4717         u64 block_len;
4718         int ret;
4719 
4720         btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4721         if (em->flags & EXTENT_FLAG_PREALLOC)
4722                 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4723         else
4724                 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4725 
4726         block_len = em->disk_num_bytes;
4727         compress_type = extent_map_compression(em);
4728         if (compress_type != BTRFS_COMPRESS_NONE) {
4729                 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start);
4730                 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4731         } else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
4732                 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset);
4733                 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4734         }
4735 
4736         btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4737         btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4738         btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4739         btrfs_set_stack_file_extent_compression(&fi, compress_type);
4740 
4741         ret = log_extent_csums(trans, inode, log, em, ctx);
4742         if (ret)
4743                 return ret;
4744 
4745         /*
4746          * If this is the first time we are logging the inode in the current
4747          * transaction, we can avoid btrfs_drop_extents(), which is expensive
4748          * because it does a deletion search, which always acquires write locks
4749          * for extent buffers at levels 2, 1 and 0. This not only wastes time
4750          * but also adds significant contention in a log tree, since log trees
4751          * are small, with a root at level 2 or 3 at most, due to their short
4752          * life span.
4753          */
4754         if (ctx->logged_before) {
4755                 drop_args.path = path;
4756                 drop_args.start = em->start;
4757                 drop_args.end = em->start + em->len;
4758                 drop_args.replace_extent = true;
4759                 drop_args.extent_item_size = sizeof(fi);
4760                 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4761                 if (ret)
4762                         return ret;
4763         }
4764 
4765         if (!drop_args.extent_inserted) {
4766                 key.objectid = btrfs_ino(inode);
4767                 key.type = BTRFS_EXTENT_DATA_KEY;
4768                 key.offset = em->start;
4769 
4770                 ret = btrfs_insert_empty_item(trans, log, path, &key,
4771                                               sizeof(fi));
4772                 if (ret)
4773                         return ret;
4774         }
4775         leaf = path->nodes[0];
4776         write_extent_buffer(leaf, &fi,
4777                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4778                             sizeof(fi));
4779         btrfs_mark_buffer_dirty(trans, leaf);
4780 
4781         btrfs_release_path(path);
4782 
4783         return ret;
4784 }
4785 
4786 /*
4787  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4788  * lose them after doing a full/fast fsync and replaying the log. We scan the
4789  * subvolume's root instead of iterating the inode's extent map tree because
4790  * otherwise we can log incorrect extent items based on extent map conversion.
4791  * That can happen due to the fact that extent maps are merged when they
4792  * are not in the extent map tree's list of modified extents.
4793  */
4794 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4795                                       struct btrfs_inode *inode,
4796                                       struct btrfs_path *path,
4797                                       struct btrfs_log_ctx *ctx)
4798 {
4799         struct btrfs_root *root = inode->root;
4800         struct btrfs_key key;
4801         const u64 i_size = i_size_read(&inode->vfs_inode);
4802         const u64 ino = btrfs_ino(inode);
4803         struct btrfs_path *dst_path = NULL;
4804         bool dropped_extents = false;
4805         u64 truncate_offset = i_size;
4806         struct extent_buffer *leaf;
4807         int slot;
4808         int ins_nr = 0;
4809         int start_slot = 0;
4810         int ret;
4811 
4812         if (!(inode->flags & BTRFS_INODE_PREALLOC))
4813                 return 0;
4814 
4815         key.objectid = ino;
4816         key.type = BTRFS_EXTENT_DATA_KEY;
4817         key.offset = i_size;
4818         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4819         if (ret < 0)
4820                 goto out;
4821 
4822         /*
4823          * We must check if there is a prealloc extent that starts before the
4824          * i_size and crosses the i_size boundary. This is to ensure later we
4825          * truncate down to the end of that extent and not to the i_size, as
4826          * otherwise we end up losing part of the prealloc extent after a log
4827          * replay and with an implicit hole if there is another prealloc extent
4828          * that starts at an offset beyond i_size.
4829          */
4830         ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4831         if (ret < 0)
4832                 goto out;
4833 
4834         if (ret == 0) {
4835                 struct btrfs_file_extent_item *ei;
4836 
4837                 leaf = path->nodes[0];
4838                 slot = path->slots[0];
4839                 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4840 
4841                 if (btrfs_file_extent_type(leaf, ei) ==
4842                     BTRFS_FILE_EXTENT_PREALLOC) {
4843                         u64 extent_end;
4844 
4845                         btrfs_item_key_to_cpu(leaf, &key, slot);
4846                         extent_end = key.offset +
4847                                 btrfs_file_extent_num_bytes(leaf, ei);
4848 
4849                         if (extent_end > i_size)
4850                                 truncate_offset = extent_end;
4851                 }
4852         } else {
4853                 ret = 0;
4854         }
4855 
4856         while (true) {
4857                 leaf = path->nodes[0];
4858                 slot = path->slots[0];
4859 
4860                 if (slot >= btrfs_header_nritems(leaf)) {
4861                         if (ins_nr > 0) {
4862                                 ret = copy_items(trans, inode, dst_path, path,
4863                                                  start_slot, ins_nr, 1, 0, ctx);
4864                                 if (ret < 0)
4865                                         goto out;
4866                                 ins_nr = 0;
4867                         }
4868                         ret = btrfs_next_leaf(root, path);
4869                         if (ret < 0)
4870                                 goto out;
4871                         if (ret > 0) {
4872                                 ret = 0;
4873                                 break;
4874                         }
4875                         continue;
4876                 }
4877 
4878                 btrfs_item_key_to_cpu(leaf, &key, slot);
4879                 if (key.objectid > ino)
4880                         break;
4881                 if (WARN_ON_ONCE(key.objectid < ino) ||
4882                     key.type < BTRFS_EXTENT_DATA_KEY ||
4883                     key.offset < i_size) {
4884                         path->slots[0]++;
4885                         continue;
4886                 }
4887                 /*
4888                  * Avoid overlapping items in the log tree. The first time we
4889                  * get here, get rid of everything from a past fsync. After
4890                  * that, if the current extent starts before the end of the last
4891                  * extent we copied, truncate the last one. This can happen if
4892                  * an ordered extent completion modifies the subvolume tree
4893                  * while btrfs_next_leaf() has the tree unlocked.
4894                  */
4895                 if (!dropped_extents || key.offset < truncate_offset) {
4896                         ret = truncate_inode_items(trans, root->log_root, inode,
4897                                                    min(key.offset, truncate_offset),
4898                                                    BTRFS_EXTENT_DATA_KEY);
4899                         if (ret)
4900                                 goto out;
4901                         dropped_extents = true;
4902                 }
4903                 truncate_offset = btrfs_file_extent_end(path);
4904                 if (ins_nr == 0)
4905                         start_slot = slot;
4906                 ins_nr++;
4907                 path->slots[0]++;
4908                 if (!dst_path) {
4909                         dst_path = btrfs_alloc_path();
4910                         if (!dst_path) {
4911                                 ret = -ENOMEM;
4912                                 goto out;
4913                         }
4914                 }
4915         }
4916         if (ins_nr > 0)
4917                 ret = copy_items(trans, inode, dst_path, path,
4918                                  start_slot, ins_nr, 1, 0, ctx);
4919 out:
4920         btrfs_release_path(path);
4921         btrfs_free_path(dst_path);
4922         return ret;
4923 }
4924 
4925 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4926                                      struct btrfs_inode *inode,
4927                                      struct btrfs_path *path,
4928                                      struct btrfs_log_ctx *ctx)
4929 {
4930         struct btrfs_ordered_extent *ordered;
4931         struct btrfs_ordered_extent *tmp;
4932         struct extent_map *em, *n;
4933         LIST_HEAD(extents);
4934         struct extent_map_tree *tree = &inode->extent_tree;
4935         int ret = 0;
4936         int num = 0;
4937 
4938         write_lock(&tree->lock);
4939 
4940         list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4941                 list_del_init(&em->list);
4942                 /*
4943                  * Just an arbitrary number, this can be really CPU intensive
4944                  * once we start getting a lot of extents, and really once we
4945                  * have a bunch of extents we just want to commit since it will
4946                  * be faster.
4947                  */
4948                 if (++num > 32768) {
4949                         list_del_init(&tree->modified_extents);
4950                         ret = -EFBIG;
4951                         goto process;
4952                 }
4953 
4954                 if (em->generation < trans->transid)
4955                         continue;
4956 
4957                 /* We log prealloc extents beyond eof later. */
4958                 if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4959                     em->start >= i_size_read(&inode->vfs_inode))
4960                         continue;
4961 
4962                 /* Need a ref to keep it from getting evicted from cache */
4963                 refcount_inc(&em->refs);
4964                 em->flags |= EXTENT_FLAG_LOGGING;
4965                 list_add_tail(&em->list, &extents);
4966                 num++;
4967         }
4968 
4969         list_sort(NULL, &extents, extent_cmp);
4970 process:
4971         while (!list_empty(&extents)) {
4972                 em = list_entry(extents.next, struct extent_map, list);
4973 
4974                 list_del_init(&em->list);
4975 
4976                 /*
4977                  * If we had an error we just need to delete everybody from our
4978                  * private list.
4979                  */
4980                 if (ret) {
4981                         clear_em_logging(inode, em);
4982                         free_extent_map(em);
4983                         continue;
4984                 }
4985 
4986                 write_unlock(&tree->lock);
4987 
4988                 ret = log_one_extent(trans, inode, em, path, ctx);
4989                 write_lock(&tree->lock);
4990                 clear_em_logging(inode, em);
4991                 free_extent_map(em);
4992         }
4993         WARN_ON(!list_empty(&extents));
4994         write_unlock(&tree->lock);
4995 
4996         if (!ret)
4997                 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4998         if (ret)
4999                 return ret;
5000 
5001         /*
5002          * We have logged all extents successfully, now make sure the commit of
5003          * the current transaction waits for the ordered extents to complete
5004          * before it commits and wipes out the log trees, otherwise we would
5005          * lose data if an ordered extents completes after the transaction
5006          * commits and a power failure happens after the transaction commit.
5007          */
5008         list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5009                 list_del_init(&ordered->log_list);
5010                 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5011 
5012                 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5013                         spin_lock_irq(&inode->ordered_tree_lock);
5014                         if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5015                                 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5016                                 atomic_inc(&trans->transaction->pending_ordered);
5017                         }
5018                         spin_unlock_irq(&inode->ordered_tree_lock);
5019                 }
5020                 btrfs_put_ordered_extent(ordered);
5021         }
5022 
5023         return 0;
5024 }
5025 
5026 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5027                              struct btrfs_path *path, u64 *size_ret)
5028 {
5029         struct btrfs_key key;
5030         int ret;
5031 
5032         key.objectid = btrfs_ino(inode);
5033         key.type = BTRFS_INODE_ITEM_KEY;
5034         key.offset = 0;
5035 
5036         ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5037         if (ret < 0) {
5038                 return ret;
5039         } else if (ret > 0) {
5040                 *size_ret = 0;
5041         } else {
5042                 struct btrfs_inode_item *item;
5043 
5044                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5045                                       struct btrfs_inode_item);
5046                 *size_ret = btrfs_inode_size(path->nodes[0], item);
5047                 /*
5048                  * If the in-memory inode's i_size is smaller then the inode
5049                  * size stored in the btree, return the inode's i_size, so
5050                  * that we get a correct inode size after replaying the log
5051                  * when before a power failure we had a shrinking truncate
5052                  * followed by addition of a new name (rename / new hard link).
5053                  * Otherwise return the inode size from the btree, to avoid
5054                  * data loss when replaying a log due to previously doing a
5055                  * write that expands the inode's size and logging a new name
5056                  * immediately after.
5057                  */
5058                 if (*size_ret > inode->vfs_inode.i_size)
5059                         *size_ret = inode->vfs_inode.i_size;
5060         }
5061 
5062         btrfs_release_path(path);
5063         return 0;
5064 }
5065 
5066 /*
5067  * At the moment we always log all xattrs. This is to figure out at log replay
5068  * time which xattrs must have their deletion replayed. If a xattr is missing
5069  * in the log tree and exists in the fs/subvol tree, we delete it. This is
5070  * because if a xattr is deleted, the inode is fsynced and a power failure
5071  * happens, causing the log to be replayed the next time the fs is mounted,
5072  * we want the xattr to not exist anymore (same behaviour as other filesystems
5073  * with a journal, ext3/4, xfs, f2fs, etc).
5074  */
5075 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5076                                 struct btrfs_inode *inode,
5077                                 struct btrfs_path *path,
5078                                 struct btrfs_path *dst_path,
5079                                 struct btrfs_log_ctx *ctx)
5080 {
5081         struct btrfs_root *root = inode->root;
5082         int ret;
5083         struct btrfs_key key;
5084         const u64 ino = btrfs_ino(inode);
5085         int ins_nr = 0;
5086         int start_slot = 0;
5087         bool found_xattrs = false;
5088 
5089         if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5090                 return 0;
5091 
5092         key.objectid = ino;
5093         key.type = BTRFS_XATTR_ITEM_KEY;
5094         key.offset = 0;
5095 
5096         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5097         if (ret < 0)
5098                 return ret;
5099 
5100         while (true) {
5101                 int slot = path->slots[0];
5102                 struct extent_buffer *leaf = path->nodes[0];
5103                 int nritems = btrfs_header_nritems(leaf);
5104 
5105                 if (slot >= nritems) {
5106                         if (ins_nr > 0) {
5107                                 ret = copy_items(trans, inode, dst_path, path,
5108                                                  start_slot, ins_nr, 1, 0, ctx);
5109                                 if (ret < 0)
5110                                         return ret;
5111                                 ins_nr = 0;
5112                         }
5113                         ret = btrfs_next_leaf(root, path);
5114                         if (ret < 0)
5115                                 return ret;
5116                         else if (ret > 0)
5117                                 break;
5118                         continue;
5119                 }
5120 
5121                 btrfs_item_key_to_cpu(leaf, &key, slot);
5122                 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5123                         break;
5124 
5125                 if (ins_nr == 0)
5126                         start_slot = slot;
5127                 ins_nr++;
5128                 path->slots[0]++;
5129                 found_xattrs = true;
5130                 cond_resched();
5131         }
5132         if (ins_nr > 0) {
5133                 ret = copy_items(trans, inode, dst_path, path,
5134                                  start_slot, ins_nr, 1, 0, ctx);
5135                 if (ret < 0)
5136                         return ret;
5137         }
5138 
5139         if (!found_xattrs)
5140                 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5141 
5142         return 0;
5143 }
5144 
5145 /*
5146  * When using the NO_HOLES feature if we punched a hole that causes the
5147  * deletion of entire leafs or all the extent items of the first leaf (the one
5148  * that contains the inode item and references) we may end up not processing
5149  * any extents, because there are no leafs with a generation matching the
5150  * current transaction that have extent items for our inode. So we need to find
5151  * if any holes exist and then log them. We also need to log holes after any
5152  * truncate operation that changes the inode's size.
5153  */
5154 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5155                            struct btrfs_inode *inode,
5156                            struct btrfs_path *path)
5157 {
5158         struct btrfs_root *root = inode->root;
5159         struct btrfs_fs_info *fs_info = root->fs_info;
5160         struct btrfs_key key;
5161         const u64 ino = btrfs_ino(inode);
5162         const u64 i_size = i_size_read(&inode->vfs_inode);
5163         u64 prev_extent_end = 0;
5164         int ret;
5165 
5166         if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5167                 return 0;
5168 
5169         key.objectid = ino;
5170         key.type = BTRFS_EXTENT_DATA_KEY;
5171         key.offset = 0;
5172 
5173         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5174         if (ret < 0)
5175                 return ret;
5176 
5177         while (true) {
5178                 struct extent_buffer *leaf = path->nodes[0];
5179 
5180                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5181                         ret = btrfs_next_leaf(root, path);
5182                         if (ret < 0)
5183                                 return ret;
5184                         if (ret > 0) {
5185                                 ret = 0;
5186                                 break;
5187                         }
5188                         leaf = path->nodes[0];
5189                 }
5190 
5191                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5192                 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5193                         break;
5194 
5195                 /* We have a hole, log it. */
5196                 if (prev_extent_end < key.offset) {
5197                         const u64 hole_len = key.offset - prev_extent_end;
5198 
5199                         /*
5200                          * Release the path to avoid deadlocks with other code
5201                          * paths that search the root while holding locks on
5202                          * leafs from the log root.
5203                          */
5204                         btrfs_release_path(path);
5205                         ret = btrfs_insert_hole_extent(trans, root->log_root,
5206                                                        ino, prev_extent_end,
5207                                                        hole_len);
5208                         if (ret < 0)
5209                                 return ret;
5210 
5211                         /*
5212                          * Search for the same key again in the root. Since it's
5213                          * an extent item and we are holding the inode lock, the
5214                          * key must still exist. If it doesn't just emit warning
5215                          * and return an error to fall back to a transaction
5216                          * commit.
5217                          */
5218                         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5219                         if (ret < 0)
5220                                 return ret;
5221                         if (WARN_ON(ret > 0))
5222                                 return -ENOENT;
5223                         leaf = path->nodes[0];
5224                 }
5225 
5226                 prev_extent_end = btrfs_file_extent_end(path);
5227                 path->slots[0]++;
5228                 cond_resched();
5229         }
5230 
5231         if (prev_extent_end < i_size) {
5232                 u64 hole_len;
5233 
5234                 btrfs_release_path(path);
5235                 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5236                 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5237                                                prev_extent_end, hole_len);
5238                 if (ret < 0)
5239                         return ret;
5240         }
5241 
5242         return 0;
5243 }
5244 
5245 /*
5246  * When we are logging a new inode X, check if it doesn't have a reference that
5247  * matches the reference from some other inode Y created in a past transaction
5248  * and that was renamed in the current transaction. If we don't do this, then at
5249  * log replay time we can lose inode Y (and all its files if it's a directory):
5250  *
5251  * mkdir /mnt/x
5252  * echo "hello world" > /mnt/x/foobar
5253  * sync
5254  * mv /mnt/x /mnt/y
5255  * mkdir /mnt/x                 # or touch /mnt/x
5256  * xfs_io -c fsync /mnt/x
5257  * <power fail>
5258  * mount fs, trigger log replay
5259  *
5260  * After the log replay procedure, we would lose the first directory and all its
5261  * files (file foobar).
5262  * For the case where inode Y is not a directory we simply end up losing it:
5263  *
5264  * echo "123" > /mnt/foo
5265  * sync
5266  * mv /mnt/foo /mnt/bar
5267  * echo "abc" > /mnt/foo
5268  * xfs_io -c fsync /mnt/foo
5269  * <power fail>
5270  *
5271  * We also need this for cases where a snapshot entry is replaced by some other
5272  * entry (file or directory) otherwise we end up with an unreplayable log due to
5273  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5274  * if it were a regular entry:
5275  *
5276  * mkdir /mnt/x
5277  * btrfs subvolume snapshot /mnt /mnt/x/snap
5278  * btrfs subvolume delete /mnt/x/snap
5279  * rmdir /mnt/x
5280  * mkdir /mnt/x
5281  * fsync /mnt/x or fsync some new file inside it
5282  * <power fail>
5283  *
5284  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5285  * the same transaction.
5286  */
5287 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5288                                          const int slot,
5289                                          const struct btrfs_key *key,
5290                                          struct btrfs_inode *inode,
5291                                          u64 *other_ino, u64 *other_parent)
5292 {
5293         int ret;
5294         struct btrfs_path *search_path;
5295         char *name = NULL;
5296         u32 name_len = 0;
5297         u32 item_size = btrfs_item_size(eb, slot);
5298         u32 cur_offset = 0;
5299         unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5300 
5301         search_path = btrfs_alloc_path();
5302         if (!search_path)
5303                 return -ENOMEM;
5304         search_path->search_commit_root = 1;
5305         search_path->skip_locking = 1;
5306 
5307         while (cur_offset < item_size) {
5308                 u64 parent;
5309                 u32 this_name_len;
5310                 u32 this_len;
5311                 unsigned long name_ptr;
5312                 struct btrfs_dir_item *di;
5313                 struct fscrypt_str name_str;
5314 
5315                 if (key->type == BTRFS_INODE_REF_KEY) {
5316                         struct btrfs_inode_ref *iref;
5317 
5318                         iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5319                         parent = key->offset;
5320                         this_name_len = btrfs_inode_ref_name_len(eb, iref);
5321                         name_ptr = (unsigned long)(iref + 1);
5322                         this_len = sizeof(*iref) + this_name_len;
5323                 } else {
5324                         struct btrfs_inode_extref *extref;
5325 
5326                         extref = (struct btrfs_inode_extref *)(ptr +
5327                                                                cur_offset);
5328                         parent = btrfs_inode_extref_parent(eb, extref);
5329                         this_name_len = btrfs_inode_extref_name_len(eb, extref);
5330                         name_ptr = (unsigned long)&extref->name;
5331                         this_len = sizeof(*extref) + this_name_len;
5332                 }
5333 
5334                 if (this_name_len > name_len) {
5335                         char *new_name;
5336 
5337                         new_name = krealloc(name, this_name_len, GFP_NOFS);
5338                         if (!new_name) {
5339                                 ret = -ENOMEM;
5340                                 goto out;
5341                         }
5342                         name_len = this_name_len;
5343                         name = new_name;
5344                 }
5345 
5346                 read_extent_buffer(eb, name, name_ptr, this_name_len);
5347 
5348                 name_str.name = name;
5349                 name_str.len = this_name_len;
5350                 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5351                                 parent, &name_str, 0);
5352                 if (di && !IS_ERR(di)) {
5353                         struct btrfs_key di_key;
5354 
5355                         btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5356                                                   di, &di_key);
5357                         if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5358                                 if (di_key.objectid != key->objectid) {
5359                                         ret = 1;
5360                                         *other_ino = di_key.objectid;
5361                                         *other_parent = parent;
5362                                 } else {
5363                                         ret = 0;
5364                                 }
5365                         } else {
5366                                 ret = -EAGAIN;
5367                         }
5368                         goto out;
5369                 } else if (IS_ERR(di)) {
5370                         ret = PTR_ERR(di);
5371                         goto out;
5372                 }
5373                 btrfs_release_path(search_path);
5374 
5375                 cur_offset += this_len;
5376         }
5377         ret = 0;
5378 out:
5379         btrfs_free_path(search_path);
5380         kfree(name);
5381         return ret;
5382 }
5383 
5384 /*
5385  * Check if we need to log an inode. This is used in contexts where while
5386  * logging an inode we need to log another inode (either that it exists or in
5387  * full mode). This is used instead of btrfs_inode_in_log() because the later
5388  * requires the inode to be in the log and have the log transaction committed,
5389  * while here we do not care if the log transaction was already committed - our
5390  * caller will commit the log later - and we want to avoid logging an inode
5391  * multiple times when multiple tasks have joined the same log transaction.
5392  */
5393 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5394                            struct btrfs_inode *inode)
5395 {
5396         /*
5397          * If a directory was not modified, no dentries added or removed, we can
5398          * and should avoid logging it.
5399          */
5400         if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5401                 return false;
5402 
5403         /*
5404          * If this inode does not have new/updated/deleted xattrs since the last
5405          * time it was logged and is flagged as logged in the current transaction,
5406          * we can skip logging it. As for new/deleted names, those are updated in
5407          * the log by link/unlink/rename operations.
5408          * In case the inode was logged and then evicted and reloaded, its
5409          * logged_trans will be 0, in which case we have to fully log it since
5410          * logged_trans is a transient field, not persisted.
5411          */
5412         if (inode_logged(trans, inode, NULL) == 1 &&
5413             !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5414                 return false;
5415 
5416         return true;
5417 }
5418 
5419 struct btrfs_dir_list {
5420         u64 ino;
5421         struct list_head list;
5422 };
5423 
5424 /*
5425  * Log the inodes of the new dentries of a directory.
5426  * See process_dir_items_leaf() for details about why it is needed.
5427  * This is a recursive operation - if an existing dentry corresponds to a
5428  * directory, that directory's new entries are logged too (same behaviour as
5429  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5430  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5431  * complains about the following circular lock dependency / possible deadlock:
5432  *
5433  *        CPU0                                        CPU1
5434  *        ----                                        ----
5435  * lock(&type->i_mutex_dir_key#3/2);
5436  *                                            lock(sb_internal#2);
5437  *                                            lock(&type->i_mutex_dir_key#3/2);
5438  * lock(&sb->s_type->i_mutex_key#14);
5439  *
5440  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5441  * sb_start_intwrite() in btrfs_start_transaction().
5442  * Not acquiring the VFS lock of the inodes is still safe because:
5443  *
5444  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5445  *    that while logging the inode new references (names) are added or removed
5446  *    from the inode, leaving the logged inode item with a link count that does
5447  *    not match the number of logged inode reference items. This is fine because
5448  *    at log replay time we compute the real number of links and correct the
5449  *    link count in the inode item (see replay_one_buffer() and
5450  *    link_to_fixup_dir());
5451  *
5452  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5453  *    while logging the inode's items new index items (key type
5454  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5455  *    has a size that doesn't match the sum of the lengths of all the logged
5456  *    names - this is ok, not a problem, because at log replay time we set the
5457  *    directory's i_size to the correct value (see replay_one_name() and
5458  *    overwrite_item()).
5459  */
5460 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5461                                 struct btrfs_inode *start_inode,
5462                                 struct btrfs_log_ctx *ctx)
5463 {
5464         struct btrfs_root *root = start_inode->root;
5465         struct btrfs_path *path;
5466         LIST_HEAD(dir_list);
5467         struct btrfs_dir_list *dir_elem;
5468         u64 ino = btrfs_ino(start_inode);
5469         struct btrfs_inode *curr_inode = start_inode;
5470         int ret = 0;
5471 
5472         /*
5473          * If we are logging a new name, as part of a link or rename operation,
5474          * don't bother logging new dentries, as we just want to log the names
5475          * of an inode and that any new parents exist.
5476          */
5477         if (ctx->logging_new_name)
5478                 return 0;
5479 
5480         path = btrfs_alloc_path();
5481         if (!path)
5482                 return -ENOMEM;
5483 
5484         /* Pairs with btrfs_add_delayed_iput below. */
5485         ihold(&curr_inode->vfs_inode);
5486 
5487         while (true) {
5488                 struct inode *vfs_inode;
5489                 struct btrfs_key key;
5490                 struct btrfs_key found_key;
5491                 u64 next_index;
5492                 bool continue_curr_inode = true;
5493                 int iter_ret;
5494 
5495                 key.objectid = ino;
5496                 key.type = BTRFS_DIR_INDEX_KEY;
5497                 key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5498                 next_index = key.offset;
5499 again:
5500                 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5501                         struct extent_buffer *leaf = path->nodes[0];
5502                         struct btrfs_dir_item *di;
5503                         struct btrfs_key di_key;
5504                         struct inode *di_inode;
5505                         int log_mode = LOG_INODE_EXISTS;
5506                         int type;
5507 
5508                         if (found_key.objectid != ino ||
5509                             found_key.type != BTRFS_DIR_INDEX_KEY) {
5510                                 continue_curr_inode = false;
5511                                 break;
5512                         }
5513 
5514                         next_index = found_key.offset + 1;
5515 
5516                         di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5517                         type = btrfs_dir_ftype(leaf, di);
5518                         if (btrfs_dir_transid(leaf, di) < trans->transid)
5519                                 continue;
5520                         btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5521                         if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5522                                 continue;
5523 
5524                         btrfs_release_path(path);
5525                         di_inode = btrfs_iget_logging(di_key.objectid, root);
5526                         if (IS_ERR(di_inode)) {
5527                                 ret = PTR_ERR(di_inode);
5528                                 goto out;
5529                         }
5530 
5531                         if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5532                                 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5533                                 break;
5534                         }
5535 
5536                         ctx->log_new_dentries = false;
5537                         if (type == BTRFS_FT_DIR)
5538                                 log_mode = LOG_INODE_ALL;
5539                         ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5540                                               log_mode, ctx);
5541                         btrfs_add_delayed_iput(BTRFS_I(di_inode));
5542                         if (ret)
5543                                 goto out;
5544                         if (ctx->log_new_dentries) {
5545                                 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5546                                 if (!dir_elem) {
5547                                         ret = -ENOMEM;
5548                                         goto out;
5549                                 }
5550                                 dir_elem->ino = di_key.objectid;
5551                                 list_add_tail(&dir_elem->list, &dir_list);
5552                         }
5553                         break;
5554                 }
5555 
5556                 btrfs_release_path(path);
5557 
5558                 if (iter_ret < 0) {
5559                         ret = iter_ret;
5560                         goto out;
5561                 } else if (iter_ret > 0) {
5562                         continue_curr_inode = false;
5563                 } else {
5564                         key = found_key;
5565                 }
5566 
5567                 if (continue_curr_inode && key.offset < (u64)-1) {
5568                         key.offset++;
5569                         goto again;
5570                 }
5571 
5572                 btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5573 
5574                 if (list_empty(&dir_list))
5575                         break;
5576 
5577                 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5578                 ino = dir_elem->ino;
5579                 list_del(&dir_elem->list);
5580                 kfree(dir_elem);
5581 
5582                 btrfs_add_delayed_iput(curr_inode);
5583                 curr_inode = NULL;
5584 
5585                 vfs_inode = btrfs_iget_logging(ino, root);
5586                 if (IS_ERR(vfs_inode)) {
5587                         ret = PTR_ERR(vfs_inode);
5588                         break;
5589                 }
5590                 curr_inode = BTRFS_I(vfs_inode);
5591         }
5592 out:
5593         btrfs_free_path(path);
5594         if (curr_inode)
5595                 btrfs_add_delayed_iput(curr_inode);
5596 
5597         if (ret) {
5598                 struct btrfs_dir_list *next;
5599 
5600                 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5601                         kfree(dir_elem);
5602         }
5603 
5604         return ret;
5605 }
5606 
5607 struct btrfs_ino_list {
5608         u64 ino;
5609         u64 parent;
5610         struct list_head list;
5611 };
5612 
5613 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5614 {
5615         struct btrfs_ino_list *curr;
5616         struct btrfs_ino_list *next;
5617 
5618         list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5619                 list_del(&curr->list);
5620                 kfree(curr);
5621         }
5622 }
5623 
5624 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5625                                     struct btrfs_path *path)
5626 {
5627         struct btrfs_key key;
5628         int ret;
5629 
5630         key.objectid = ino;
5631         key.type = BTRFS_INODE_ITEM_KEY;
5632         key.offset = 0;
5633 
5634         path->search_commit_root = 1;
5635         path->skip_locking = 1;
5636 
5637         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5638         if (WARN_ON_ONCE(ret > 0)) {
5639                 /*
5640                  * We have previously found the inode through the commit root
5641                  * so this should not happen. If it does, just error out and
5642                  * fallback to a transaction commit.
5643                  */
5644                 ret = -ENOENT;
5645         } else if (ret == 0) {
5646                 struct btrfs_inode_item *item;
5647 
5648                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5649                                       struct btrfs_inode_item);
5650                 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5651                         ret = 1;
5652         }
5653 
5654         btrfs_release_path(path);
5655         path->search_commit_root = 0;
5656         path->skip_locking = 0;
5657 
5658         return ret;
5659 }
5660 
5661 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5662                                  struct btrfs_root *root,
5663                                  struct btrfs_path *path,
5664                                  u64 ino, u64 parent,
5665                                  struct btrfs_log_ctx *ctx)
5666 {
5667         struct btrfs_ino_list *ino_elem;
5668         struct inode *inode;
5669 
5670         /*
5671          * It's rare to have a lot of conflicting inodes, in practice it is not
5672          * common to have more than 1 or 2. We don't want to collect too many,
5673          * as we could end up logging too many inodes (even if only in
5674          * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5675          * commits.
5676          */
5677         if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5678                 return BTRFS_LOG_FORCE_COMMIT;
5679 
5680         inode = btrfs_iget_logging(ino, root);
5681         /*
5682          * If the other inode that had a conflicting dir entry was deleted in
5683          * the current transaction then we either:
5684          *
5685          * 1) Log the parent directory (later after adding it to the list) if
5686          *    the inode is a directory. This is because it may be a deleted
5687          *    subvolume/snapshot or it may be a regular directory that had
5688          *    deleted subvolumes/snapshots (or subdirectories that had them),
5689          *    and at the moment we can't deal with dropping subvolumes/snapshots
5690          *    during log replay. So we just log the parent, which will result in
5691          *    a fallback to a transaction commit if we are dealing with those
5692          *    cases (last_unlink_trans will match the current transaction);
5693          *
5694          * 2) Do nothing if it's not a directory. During log replay we simply
5695          *    unlink the conflicting dentry from the parent directory and then
5696          *    add the dentry for our inode. Like this we can avoid logging the
5697          *    parent directory (and maybe fallback to a transaction commit in
5698          *    case it has a last_unlink_trans == trans->transid, due to moving
5699          *    some inode from it to some other directory).
5700          */
5701         if (IS_ERR(inode)) {
5702                 int ret = PTR_ERR(inode);
5703 
5704                 if (ret != -ENOENT)
5705                         return ret;
5706 
5707                 ret = conflicting_inode_is_dir(root, ino, path);
5708                 /* Not a directory or we got an error. */
5709                 if (ret <= 0)
5710                         return ret;
5711 
5712                 /* Conflicting inode is a directory, so we'll log its parent. */
5713                 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5714                 if (!ino_elem)
5715                         return -ENOMEM;
5716                 ino_elem->ino = ino;
5717                 ino_elem->parent = parent;
5718                 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5719                 ctx->num_conflict_inodes++;
5720 
5721                 return 0;
5722         }
5723 
5724         /*
5725          * If the inode was already logged skip it - otherwise we can hit an
5726          * infinite loop. Example:
5727          *
5728          * From the commit root (previous transaction) we have the following
5729          * inodes:
5730          *
5731          * inode 257 a directory
5732          * inode 258 with references "zz" and "zz_link" on inode 257
5733          * inode 259 with reference "a" on inode 257
5734          *
5735          * And in the current (uncommitted) transaction we have:
5736          *
5737          * inode 257 a directory, unchanged
5738          * inode 258 with references "a" and "a2" on inode 257
5739          * inode 259 with reference "zz_link" on inode 257
5740          * inode 261 with reference "zz" on inode 257
5741          *
5742          * When logging inode 261 the following infinite loop could
5743          * happen if we don't skip already logged inodes:
5744          *
5745          * - we detect inode 258 as a conflicting inode, with inode 261
5746          *   on reference "zz", and log it;
5747          *
5748          * - we detect inode 259 as a conflicting inode, with inode 258
5749          *   on reference "a", and log it;
5750          *
5751          * - we detect inode 258 as a conflicting inode, with inode 259
5752          *   on reference "zz_link", and log it - again! After this we
5753          *   repeat the above steps forever.
5754          *
5755          * Here we can use need_log_inode() because we only need to log the
5756          * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5757          * so that the log ends up with the new name and without the old name.
5758          */
5759         if (!need_log_inode(trans, BTRFS_I(inode))) {
5760                 btrfs_add_delayed_iput(BTRFS_I(inode));
5761                 return 0;
5762         }
5763 
5764         btrfs_add_delayed_iput(BTRFS_I(inode));
5765 
5766         ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5767         if (!ino_elem)
5768                 return -ENOMEM;
5769         ino_elem->ino = ino;
5770         ino_elem->parent = parent;
5771         list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5772         ctx->num_conflict_inodes++;
5773 
5774         return 0;
5775 }
5776 
5777 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5778                                   struct btrfs_root *root,
5779                                   struct btrfs_log_ctx *ctx)
5780 {
5781         int ret = 0;
5782 
5783         /*
5784          * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5785          * otherwise we could have unbounded recursion of btrfs_log_inode()
5786          * calls. This check guarantees we can have only 1 level of recursion.
5787          */
5788         if (ctx->logging_conflict_inodes)
5789                 return 0;
5790 
5791         ctx->logging_conflict_inodes = true;
5792 
5793         /*
5794          * New conflicting inodes may be found and added to the list while we
5795          * are logging a conflicting inode, so keep iterating while the list is
5796          * not empty.
5797          */
5798         while (!list_empty(&ctx->conflict_inodes)) {
5799                 struct btrfs_ino_list *curr;
5800                 struct inode *inode;
5801                 u64 ino;
5802                 u64 parent;
5803 
5804                 curr = list_first_entry(&ctx->conflict_inodes,
5805                                         struct btrfs_ino_list, list);
5806                 ino = curr->ino;
5807                 parent = curr->parent;
5808                 list_del(&curr->list);
5809                 kfree(curr);
5810 
5811                 inode = btrfs_iget_logging(ino, root);
5812                 /*
5813                  * If the other inode that had a conflicting dir entry was
5814                  * deleted in the current transaction, we need to log its parent
5815                  * directory. See the comment at add_conflicting_inode().
5816                  */
5817                 if (IS_ERR(inode)) {
5818                         ret = PTR_ERR(inode);
5819                         if (ret != -ENOENT)
5820                                 break;
5821 
5822                         inode = btrfs_iget_logging(parent, root);
5823                         if (IS_ERR(inode)) {
5824                                 ret = PTR_ERR(inode);
5825                                 break;
5826                         }
5827 
5828                         /*
5829                          * Always log the directory, we cannot make this
5830                          * conditional on need_log_inode() because the directory
5831                          * might have been logged in LOG_INODE_EXISTS mode or
5832                          * the dir index of the conflicting inode is not in a
5833                          * dir index key range logged for the directory. So we
5834                          * must make sure the deletion is recorded.
5835                          */
5836                         ret = btrfs_log_inode(trans, BTRFS_I(inode),
5837                                               LOG_INODE_ALL, ctx);
5838                         btrfs_add_delayed_iput(BTRFS_I(inode));
5839                         if (ret)
5840                                 break;
5841                         continue;
5842                 }
5843 
5844                 /*
5845                  * Here we can use need_log_inode() because we only need to log
5846                  * the inode in LOG_INODE_EXISTS mode and rename operations
5847                  * update the log, so that the log ends up with the new name and
5848                  * without the old name.
5849                  *
5850                  * We did this check at add_conflicting_inode(), but here we do
5851                  * it again because if some other task logged the inode after
5852                  * that, we can avoid doing it again.
5853                  */
5854                 if (!need_log_inode(trans, BTRFS_I(inode))) {
5855                         btrfs_add_delayed_iput(BTRFS_I(inode));
5856                         continue;
5857                 }
5858 
5859                 /*
5860                  * We are safe logging the other inode without acquiring its
5861                  * lock as long as we log with the LOG_INODE_EXISTS mode. We
5862                  * are safe against concurrent renames of the other inode as
5863                  * well because during a rename we pin the log and update the
5864                  * log with the new name before we unpin it.
5865                  */
5866                 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5867                 btrfs_add_delayed_iput(BTRFS_I(inode));
5868                 if (ret)
5869                         break;
5870         }
5871 
5872         ctx->logging_conflict_inodes = false;
5873         if (ret)
5874                 free_conflicting_inodes(ctx);
5875 
5876         return ret;
5877 }
5878 
5879 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5880                                    struct btrfs_inode *inode,
5881                                    struct btrfs_key *min_key,
5882                                    const struct btrfs_key *max_key,
5883                                    struct btrfs_path *path,
5884                                    struct btrfs_path *dst_path,
5885                                    const u64 logged_isize,
5886                                    const int inode_only,
5887                                    struct btrfs_log_ctx *ctx,
5888                                    bool *need_log_inode_item)
5889 {
5890         const u64 i_size = i_size_read(&inode->vfs_inode);
5891         struct btrfs_root *root = inode->root;
5892         int ins_start_slot = 0;
5893         int ins_nr = 0;
5894         int ret;
5895 
5896         while (1) {
5897                 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5898                 if (ret < 0)
5899                         return ret;
5900                 if (ret > 0) {
5901                         ret = 0;
5902                         break;
5903                 }
5904 again:
5905                 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5906                 if (min_key->objectid != max_key->objectid)
5907                         break;
5908                 if (min_key->type > max_key->type)
5909                         break;
5910 
5911                 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5912                         *need_log_inode_item = false;
5913                 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5914                            min_key->offset >= i_size) {
5915                         /*
5916                          * Extents at and beyond eof are logged with
5917                          * btrfs_log_prealloc_extents().
5918                          * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5919                          * and no keys greater than that, so bail out.
5920                          */
5921                         break;
5922                 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5923                             min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5924                            (inode->generation == trans->transid ||
5925                             ctx->logging_conflict_inodes)) {
5926                         u64 other_ino = 0;
5927                         u64 other_parent = 0;
5928 
5929                         ret = btrfs_check_ref_name_override(path->nodes[0],
5930                                         path->slots[0], min_key, inode,
5931                                         &other_ino, &other_parent);
5932                         if (ret < 0) {
5933                                 return ret;
5934                         } else if (ret > 0 &&
5935                                    other_ino != btrfs_ino(ctx->inode)) {
5936                                 if (ins_nr > 0) {
5937                                         ins_nr++;
5938                                 } else {
5939                                         ins_nr = 1;
5940                                         ins_start_slot = path->slots[0];
5941                                 }
5942                                 ret = copy_items(trans, inode, dst_path, path,
5943                                                  ins_start_slot, ins_nr,
5944                                                  inode_only, logged_isize, ctx);
5945                                 if (ret < 0)
5946                                         return ret;
5947                                 ins_nr = 0;
5948 
5949                                 btrfs_release_path(path);
5950                                 ret = add_conflicting_inode(trans, root, path,
5951                                                             other_ino,
5952                                                             other_parent, ctx);
5953                                 if (ret)
5954                                         return ret;
5955                                 goto next_key;
5956                         }
5957                 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5958                         /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5959                         if (ins_nr == 0)
5960                                 goto next_slot;
5961                         ret = copy_items(trans, inode, dst_path, path,
5962                                          ins_start_slot,
5963                                          ins_nr, inode_only, logged_isize, ctx);
5964                         if (ret < 0)
5965                                 return ret;
5966                         ins_nr = 0;
5967                         goto next_slot;
5968                 }
5969 
5970                 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5971                         ins_nr++;
5972                         goto next_slot;
5973                 } else if (!ins_nr) {
5974                         ins_start_slot = path->slots[0];
5975                         ins_nr = 1;
5976                         goto next_slot;
5977                 }
5978 
5979                 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5980                                  ins_nr, inode_only, logged_isize, ctx);
5981                 if (ret < 0)
5982                         return ret;
5983                 ins_nr = 1;
5984                 ins_start_slot = path->slots[0];
5985 next_slot:
5986                 path->slots[0]++;
5987                 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5988                         btrfs_item_key_to_cpu(path->nodes[0], min_key,
5989                                               path->slots[0]);
5990                         goto again;
5991                 }
5992                 if (ins_nr) {
5993                         ret = copy_items(trans, inode, dst_path, path,
5994                                          ins_start_slot, ins_nr, inode_only,
5995                                          logged_isize, ctx);
5996                         if (ret < 0)
5997                                 return ret;
5998                         ins_nr = 0;
5999                 }
6000                 btrfs_release_path(path);
6001 next_key:
6002                 if (min_key->offset < (u64)-1) {
6003                         min_key->offset++;
6004                 } else if (min_key->type < max_key->type) {
6005                         min_key->type++;
6006                         min_key->offset = 0;
6007                 } else {
6008                         break;
6009                 }
6010 
6011                 /*
6012                  * We may process many leaves full of items for our inode, so
6013                  * avoid monopolizing a cpu for too long by rescheduling while
6014                  * not holding locks on any tree.
6015                  */
6016                 cond_resched();
6017         }
6018         if (ins_nr) {
6019                 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6020                                  ins_nr, inode_only, logged_isize, ctx);
6021                 if (ret)
6022                         return ret;
6023         }
6024 
6025         if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6026                 /*
6027                  * Release the path because otherwise we might attempt to double
6028                  * lock the same leaf with btrfs_log_prealloc_extents() below.
6029                  */
6030                 btrfs_release_path(path);
6031                 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6032         }
6033 
6034         return ret;
6035 }
6036 
6037 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6038                                       struct btrfs_root *log,
6039                                       struct btrfs_path *path,
6040                                       const struct btrfs_item_batch *batch,
6041                                       const struct btrfs_delayed_item *first_item)
6042 {
6043         const struct btrfs_delayed_item *curr = first_item;
6044         int ret;
6045 
6046         ret = btrfs_insert_empty_items(trans, log, path, batch);
6047         if (ret)
6048                 return ret;
6049 
6050         for (int i = 0; i < batch->nr; i++) {
6051                 char *data_ptr;
6052 
6053                 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6054                 write_extent_buffer(path->nodes[0], &curr->data,
6055                                     (unsigned long)data_ptr, curr->data_len);
6056                 curr = list_next_entry(curr, log_list);
6057                 path->slots[0]++;
6058         }
6059 
6060         btrfs_release_path(path);
6061 
6062         return 0;
6063 }
6064 
6065 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6066                                        struct btrfs_inode *inode,
6067                                        struct btrfs_path *path,
6068                                        const struct list_head *delayed_ins_list,
6069                                        struct btrfs_log_ctx *ctx)
6070 {
6071         /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6072         const int max_batch_size = 195;
6073         const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6074         const u64 ino = btrfs_ino(inode);
6075         struct btrfs_root *log = inode->root->log_root;
6076         struct btrfs_item_batch batch = {
6077                 .nr = 0,
6078                 .total_data_size = 0,
6079         };
6080         const struct btrfs_delayed_item *first = NULL;
6081         const struct btrfs_delayed_item *curr;
6082         char *ins_data;
6083         struct btrfs_key *ins_keys;
6084         u32 *ins_sizes;
6085         u64 curr_batch_size = 0;
6086         int batch_idx = 0;
6087         int ret;
6088 
6089         /* We are adding dir index items to the log tree. */
6090         lockdep_assert_held(&inode->log_mutex);
6091 
6092         /*
6093          * We collect delayed items before copying index keys from the subvolume
6094          * to the log tree. However just after we collected them, they may have
6095          * been flushed (all of them or just some of them), and therefore we
6096          * could have copied them from the subvolume tree to the log tree.
6097          * So find the first delayed item that was not yet logged (they are
6098          * sorted by index number).
6099          */
6100         list_for_each_entry(curr, delayed_ins_list, log_list) {
6101                 if (curr->index > inode->last_dir_index_offset) {
6102                         first = curr;
6103                         break;
6104                 }
6105         }
6106 
6107         /* Empty list or all delayed items were already logged. */
6108         if (!first)
6109                 return 0;
6110 
6111         ins_data = kmalloc(max_batch_size * sizeof(u32) +
6112                            max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6113         if (!ins_data)
6114                 return -ENOMEM;
6115         ins_sizes = (u32 *)ins_data;
6116         batch.data_sizes = ins_sizes;
6117         ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6118         batch.keys = ins_keys;
6119 
6120         curr = first;
6121         while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6122                 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6123 
6124                 if (curr_batch_size + curr_size > leaf_data_size ||
6125                     batch.nr == max_batch_size) {
6126                         ret = insert_delayed_items_batch(trans, log, path,
6127                                                          &batch, first);
6128                         if (ret)
6129                                 goto out;
6130                         batch_idx = 0;
6131                         batch.nr = 0;
6132                         batch.total_data_size = 0;
6133                         curr_batch_size = 0;
6134                         first = curr;
6135                 }
6136 
6137                 ins_sizes[batch_idx] = curr->data_len;
6138                 ins_keys[batch_idx].objectid = ino;
6139                 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6140                 ins_keys[batch_idx].offset = curr->index;
6141                 curr_batch_size += curr_size;
6142                 batch.total_data_size += curr->data_len;
6143                 batch.nr++;
6144                 batch_idx++;
6145                 curr = list_next_entry(curr, log_list);
6146         }
6147 
6148         ASSERT(batch.nr >= 1);
6149         ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6150 
6151         curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6152                                log_list);
6153         inode->last_dir_index_offset = curr->index;
6154 out:
6155         kfree(ins_data);
6156 
6157         return ret;
6158 }
6159 
6160 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6161                                       struct btrfs_inode *inode,
6162                                       struct btrfs_path *path,
6163                                       const struct list_head *delayed_del_list,
6164                                       struct btrfs_log_ctx *ctx)
6165 {
6166         const u64 ino = btrfs_ino(inode);
6167         const struct btrfs_delayed_item *curr;
6168 
6169         curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6170                                 log_list);
6171 
6172         while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6173                 u64 first_dir_index = curr->index;
6174                 u64 last_dir_index;
6175                 const struct btrfs_delayed_item *next;
6176                 int ret;
6177 
6178                 /*
6179                  * Find a range of consecutive dir index items to delete. Like
6180                  * this we log a single dir range item spanning several contiguous
6181                  * dir items instead of logging one range item per dir index item.
6182                  */
6183                 next = list_next_entry(curr, log_list);
6184                 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6185                         if (next->index != curr->index + 1)
6186                                 break;
6187                         curr = next;
6188                         next = list_next_entry(next, log_list);
6189                 }
6190 
6191                 last_dir_index = curr->index;
6192                 ASSERT(last_dir_index >= first_dir_index);
6193 
6194                 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6195                                          ino, first_dir_index, last_dir_index);
6196                 if (ret)
6197                         return ret;
6198                 curr = list_next_entry(curr, log_list);
6199         }
6200 
6201         return 0;
6202 }
6203 
6204 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6205                                         struct btrfs_inode *inode,
6206                                         struct btrfs_path *path,
6207                                         struct btrfs_log_ctx *ctx,
6208                                         const struct list_head *delayed_del_list,
6209                                         const struct btrfs_delayed_item *first,
6210                                         const struct btrfs_delayed_item **last_ret)
6211 {
6212         const struct btrfs_delayed_item *next;
6213         struct extent_buffer *leaf = path->nodes[0];
6214         const int last_slot = btrfs_header_nritems(leaf) - 1;
6215         int slot = path->slots[0] + 1;
6216         const u64 ino = btrfs_ino(inode);
6217 
6218         next = list_next_entry(first, log_list);
6219 
6220         while (slot < last_slot &&
6221                !list_entry_is_head(next, delayed_del_list, log_list)) {
6222                 struct btrfs_key key;
6223 
6224                 btrfs_item_key_to_cpu(leaf, &key, slot);
6225                 if (key.objectid != ino ||
6226                     key.type != BTRFS_DIR_INDEX_KEY ||
6227                     key.offset != next->index)
6228                         break;
6229 
6230                 slot++;
6231                 *last_ret = next;
6232                 next = list_next_entry(next, log_list);
6233         }
6234 
6235         return btrfs_del_items(trans, inode->root->log_root, path,
6236                                path->slots[0], slot - path->slots[0]);
6237 }
6238 
6239 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6240                                              struct btrfs_inode *inode,
6241                                              struct btrfs_path *path,
6242                                              const struct list_head *delayed_del_list,
6243                                              struct btrfs_log_ctx *ctx)
6244 {
6245         struct btrfs_root *log = inode->root->log_root;
6246         const struct btrfs_delayed_item *curr;
6247         u64 last_range_start = 0;
6248         u64 last_range_end = 0;
6249         struct btrfs_key key;
6250 
6251         key.objectid = btrfs_ino(inode);
6252         key.type = BTRFS_DIR_INDEX_KEY;
6253         curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6254                                 log_list);
6255 
6256         while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6257                 const struct btrfs_delayed_item *last = curr;
6258                 u64 first_dir_index = curr->index;
6259                 u64 last_dir_index;
6260                 bool deleted_items = false;
6261                 int ret;
6262 
6263                 key.offset = curr->index;
6264                 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6265                 if (ret < 0) {
6266                         return ret;
6267                 } else if (ret == 0) {
6268                         ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6269                                                            delayed_del_list, curr,
6270                                                            &last);
6271                         if (ret)
6272                                 return ret;
6273                         deleted_items = true;
6274                 }
6275 
6276                 btrfs_release_path(path);
6277 
6278                 /*
6279                  * If we deleted items from the leaf, it means we have a range
6280                  * item logging their range, so no need to add one or update an
6281                  * existing one. Otherwise we have to log a dir range item.
6282                  */
6283                 if (deleted_items)
6284                         goto next_batch;
6285 
6286                 last_dir_index = last->index;
6287                 ASSERT(last_dir_index >= first_dir_index);
6288                 /*
6289                  * If this range starts right after where the previous one ends,
6290                  * then we want to reuse the previous range item and change its
6291                  * end offset to the end of this range. This is just to minimize
6292                  * leaf space usage, by avoiding adding a new range item.
6293                  */
6294                 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6295                         first_dir_index = last_range_start;
6296 
6297                 ret = insert_dir_log_key(trans, log, path, key.objectid,
6298                                          first_dir_index, last_dir_index);
6299                 if (ret)
6300                         return ret;
6301 
6302                 last_range_start = first_dir_index;
6303                 last_range_end = last_dir_index;
6304 next_batch:
6305                 curr = list_next_entry(last, log_list);
6306         }
6307 
6308         return 0;
6309 }
6310 
6311 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6312                                       struct btrfs_inode *inode,
6313                                       struct btrfs_path *path,
6314                                       const struct list_head *delayed_del_list,
6315                                       struct btrfs_log_ctx *ctx)
6316 {
6317         /*
6318          * We are deleting dir index items from the log tree or adding range
6319          * items to it.
6320          */
6321         lockdep_assert_held(&inode->log_mutex);
6322 
6323         if (list_empty(delayed_del_list))
6324                 return 0;
6325 
6326         if (ctx->logged_before)
6327                 return log_delayed_deletions_incremental(trans, inode, path,
6328                                                          delayed_del_list, ctx);
6329 
6330         return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6331                                           ctx);
6332 }
6333 
6334 /*
6335  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6336  * items instead of the subvolume tree.
6337  */
6338 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6339                                     struct btrfs_inode *inode,
6340                                     const struct list_head *delayed_ins_list,
6341                                     struct btrfs_log_ctx *ctx)
6342 {
6343         const bool orig_log_new_dentries = ctx->log_new_dentries;
6344         struct btrfs_delayed_item *item;
6345         int ret = 0;
6346 
6347         /*
6348          * No need for the log mutex, plus to avoid potential deadlocks or
6349          * lockdep annotations due to nesting of delayed inode mutexes and log
6350          * mutexes.
6351          */
6352         lockdep_assert_not_held(&inode->log_mutex);
6353 
6354         ASSERT(!ctx->logging_new_delayed_dentries);
6355         ctx->logging_new_delayed_dentries = true;
6356 
6357         list_for_each_entry(item, delayed_ins_list, log_list) {
6358                 struct btrfs_dir_item *dir_item;
6359                 struct inode *di_inode;
6360                 struct btrfs_key key;
6361                 int log_mode = LOG_INODE_EXISTS;
6362 
6363                 dir_item = (struct btrfs_dir_item *)item->data;
6364                 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6365 
6366                 if (key.type == BTRFS_ROOT_ITEM_KEY)
6367                         continue;
6368 
6369                 di_inode = btrfs_iget_logging(key.objectid, inode->root);
6370                 if (IS_ERR(di_inode)) {
6371                         ret = PTR_ERR(di_inode);
6372                         break;
6373                 }
6374 
6375                 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6376                         btrfs_add_delayed_iput(BTRFS_I(di_inode));
6377                         continue;
6378                 }
6379 
6380                 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6381                         log_mode = LOG_INODE_ALL;
6382 
6383                 ctx->log_new_dentries = false;
6384                 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6385 
6386                 if (!ret && ctx->log_new_dentries)
6387                         ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6388 
6389                 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6390 
6391                 if (ret)
6392                         break;
6393         }
6394 
6395         ctx->log_new_dentries = orig_log_new_dentries;
6396         ctx->logging_new_delayed_dentries = false;
6397 
6398         return ret;
6399 }
6400 
6401 /* log a single inode in the tree log.
6402  * At least one parent directory for this inode must exist in the tree
6403  * or be logged already.
6404  *
6405  * Any items from this inode changed by the current transaction are copied
6406  * to the log tree.  An extra reference is taken on any extents in this
6407  * file, allowing us to avoid a whole pile of corner cases around logging
6408  * blocks that have been removed from the tree.
6409  *
6410  * See LOG_INODE_ALL and related defines for a description of what inode_only
6411  * does.
6412  *
6413  * This handles both files and directories.
6414  */
6415 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6416                            struct btrfs_inode *inode,
6417                            int inode_only,
6418                            struct btrfs_log_ctx *ctx)
6419 {
6420         struct btrfs_path *path;
6421         struct btrfs_path *dst_path;
6422         struct btrfs_key min_key;
6423         struct btrfs_key max_key;
6424         struct btrfs_root *log = inode->root->log_root;
6425         int ret;
6426         bool fast_search = false;
6427         u64 ino = btrfs_ino(inode);
6428         struct extent_map_tree *em_tree = &inode->extent_tree;
6429         u64 logged_isize = 0;
6430         bool need_log_inode_item = true;
6431         bool xattrs_logged = false;
6432         bool inode_item_dropped = true;
6433         bool full_dir_logging = false;
6434         LIST_HEAD(delayed_ins_list);
6435         LIST_HEAD(delayed_del_list);
6436 
6437         path = btrfs_alloc_path();
6438         if (!path)
6439                 return -ENOMEM;
6440         dst_path = btrfs_alloc_path();
6441         if (!dst_path) {
6442                 btrfs_free_path(path);
6443                 return -ENOMEM;
6444         }
6445 
6446         min_key.objectid = ino;
6447         min_key.type = BTRFS_INODE_ITEM_KEY;
6448         min_key.offset = 0;
6449 
6450         max_key.objectid = ino;
6451 
6452 
6453         /* today the code can only do partial logging of directories */
6454         if (S_ISDIR(inode->vfs_inode.i_mode) ||
6455             (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6456                        &inode->runtime_flags) &&
6457              inode_only >= LOG_INODE_EXISTS))
6458                 max_key.type = BTRFS_XATTR_ITEM_KEY;
6459         else
6460                 max_key.type = (u8)-1;
6461         max_key.offset = (u64)-1;
6462 
6463         if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6464                 full_dir_logging = true;
6465 
6466         /*
6467          * If we are logging a directory while we are logging dentries of the
6468          * delayed items of some other inode, then we need to flush the delayed
6469          * items of this directory and not log the delayed items directly. This
6470          * is to prevent more than one level of recursion into btrfs_log_inode()
6471          * by having something like this:
6472          *
6473          *     $ mkdir -p a/b/c/d/e/f/g/h/...
6474          *     $ xfs_io -c "fsync" a
6475          *
6476          * Where all directories in the path did not exist before and are
6477          * created in the current transaction.
6478          * So in such a case we directly log the delayed items of the main
6479          * directory ("a") without flushing them first, while for each of its
6480          * subdirectories we flush their delayed items before logging them.
6481          * This prevents a potential unbounded recursion like this:
6482          *
6483          * btrfs_log_inode()
6484          *   log_new_delayed_dentries()
6485          *      btrfs_log_inode()
6486          *        log_new_delayed_dentries()
6487          *          btrfs_log_inode()
6488          *            log_new_delayed_dentries()
6489          *              (...)
6490          *
6491          * We have thresholds for the maximum number of delayed items to have in
6492          * memory, and once they are hit, the items are flushed asynchronously.
6493          * However the limit is quite high, so lets prevent deep levels of
6494          * recursion to happen by limiting the maximum depth to be 1.
6495          */
6496         if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6497                 ret = btrfs_commit_inode_delayed_items(trans, inode);
6498                 if (ret)
6499                         goto out;
6500         }
6501 
6502         mutex_lock(&inode->log_mutex);
6503 
6504         /*
6505          * For symlinks, we must always log their content, which is stored in an
6506          * inline extent, otherwise we could end up with an empty symlink after
6507          * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6508          * one attempts to create an empty symlink).
6509          * We don't need to worry about flushing delalloc, because when we create
6510          * the inline extent when the symlink is created (we never have delalloc
6511          * for symlinks).
6512          */
6513         if (S_ISLNK(inode->vfs_inode.i_mode))
6514                 inode_only = LOG_INODE_ALL;
6515 
6516         /*
6517          * Before logging the inode item, cache the value returned by
6518          * inode_logged(), because after that we have the need to figure out if
6519          * the inode was previously logged in this transaction.
6520          */
6521         ret = inode_logged(trans, inode, path);
6522         if (ret < 0)
6523                 goto out_unlock;
6524         ctx->logged_before = (ret == 1);
6525         ret = 0;
6526 
6527         /*
6528          * This is for cases where logging a directory could result in losing a
6529          * a file after replaying the log. For example, if we move a file from a
6530          * directory A to a directory B, then fsync directory A, we have no way
6531          * to known the file was moved from A to B, so logging just A would
6532          * result in losing the file after a log replay.
6533          */
6534         if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6535                 ret = BTRFS_LOG_FORCE_COMMIT;
6536                 goto out_unlock;
6537         }
6538 
6539         /*
6540          * a brute force approach to making sure we get the most uptodate
6541          * copies of everything.
6542          */
6543         if (S_ISDIR(inode->vfs_inode.i_mode)) {
6544                 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6545                 if (ctx->logged_before)
6546                         ret = drop_inode_items(trans, log, path, inode,
6547                                                BTRFS_XATTR_ITEM_KEY);
6548         } else {
6549                 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6550                         /*
6551                          * Make sure the new inode item we write to the log has
6552                          * the same isize as the current one (if it exists).
6553                          * This is necessary to prevent data loss after log
6554                          * replay, and also to prevent doing a wrong expanding
6555                          * truncate - for e.g. create file, write 4K into offset
6556                          * 0, fsync, write 4K into offset 4096, add hard link,
6557                          * fsync some other file (to sync log), power fail - if
6558                          * we use the inode's current i_size, after log replay
6559                          * we get a 8Kb file, with the last 4Kb extent as a hole
6560                          * (zeroes), as if an expanding truncate happened,
6561                          * instead of getting a file of 4Kb only.
6562                          */
6563                         ret = logged_inode_size(log, inode, path, &logged_isize);
6564                         if (ret)
6565                                 goto out_unlock;
6566                 }
6567                 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6568                              &inode->runtime_flags)) {
6569                         if (inode_only == LOG_INODE_EXISTS) {
6570                                 max_key.type = BTRFS_XATTR_ITEM_KEY;
6571                                 if (ctx->logged_before)
6572                                         ret = drop_inode_items(trans, log, path,
6573                                                                inode, max_key.type);
6574                         } else {
6575                                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6576                                           &inode->runtime_flags);
6577                                 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6578                                           &inode->runtime_flags);
6579                                 if (ctx->logged_before)
6580                                         ret = truncate_inode_items(trans, log,
6581                                                                    inode, 0, 0);
6582                         }
6583                 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6584                                               &inode->runtime_flags) ||
6585                            inode_only == LOG_INODE_EXISTS) {
6586                         if (inode_only == LOG_INODE_ALL)
6587                                 fast_search = true;
6588                         max_key.type = BTRFS_XATTR_ITEM_KEY;
6589                         if (ctx->logged_before)
6590                                 ret = drop_inode_items(trans, log, path, inode,
6591                                                        max_key.type);
6592                 } else {
6593                         if (inode_only == LOG_INODE_ALL)
6594                                 fast_search = true;
6595                         inode_item_dropped = false;
6596                         goto log_extents;
6597                 }
6598 
6599         }
6600         if (ret)
6601                 goto out_unlock;
6602 
6603         /*
6604          * If we are logging a directory in full mode, collect the delayed items
6605          * before iterating the subvolume tree, so that we don't miss any new
6606          * dir index items in case they get flushed while or right after we are
6607          * iterating the subvolume tree.
6608          */
6609         if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6610                 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6611                                             &delayed_del_list);
6612 
6613         ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6614                                       path, dst_path, logged_isize,
6615                                       inode_only, ctx,
6616                                       &need_log_inode_item);
6617         if (ret)
6618                 goto out_unlock;
6619 
6620         btrfs_release_path(path);
6621         btrfs_release_path(dst_path);
6622         ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6623         if (ret)
6624                 goto out_unlock;
6625         xattrs_logged = true;
6626         if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6627                 btrfs_release_path(path);
6628                 btrfs_release_path(dst_path);
6629                 ret = btrfs_log_holes(trans, inode, path);
6630                 if (ret)
6631                         goto out_unlock;
6632         }
6633 log_extents:
6634         btrfs_release_path(path);
6635         btrfs_release_path(dst_path);
6636         if (need_log_inode_item) {
6637                 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6638                 if (ret)
6639                         goto out_unlock;
6640                 /*
6641                  * If we are doing a fast fsync and the inode was logged before
6642                  * in this transaction, we don't need to log the xattrs because
6643                  * they were logged before. If xattrs were added, changed or
6644                  * deleted since the last time we logged the inode, then we have
6645                  * already logged them because the inode had the runtime flag
6646                  * BTRFS_INODE_COPY_EVERYTHING set.
6647                  */
6648                 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6649                         ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6650                         if (ret)
6651                                 goto out_unlock;
6652                         btrfs_release_path(path);
6653                 }
6654         }
6655         if (fast_search) {
6656                 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6657                 if (ret)
6658                         goto out_unlock;
6659         } else if (inode_only == LOG_INODE_ALL) {
6660                 struct extent_map *em, *n;
6661 
6662                 write_lock(&em_tree->lock);
6663                 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6664                         list_del_init(&em->list);
6665                 write_unlock(&em_tree->lock);
6666         }
6667 
6668         if (full_dir_logging) {
6669                 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6670                 if (ret)
6671                         goto out_unlock;
6672                 ret = log_delayed_insertion_items(trans, inode, path,
6673                                                   &delayed_ins_list, ctx);
6674                 if (ret)
6675                         goto out_unlock;
6676                 ret = log_delayed_deletion_items(trans, inode, path,
6677                                                  &delayed_del_list, ctx);
6678                 if (ret)
6679                         goto out_unlock;
6680         }
6681 
6682         spin_lock(&inode->lock);
6683         inode->logged_trans = trans->transid;
6684         /*
6685          * Don't update last_log_commit if we logged that an inode exists.
6686          * We do this for three reasons:
6687          *
6688          * 1) We might have had buffered writes to this inode that were
6689          *    flushed and had their ordered extents completed in this
6690          *    transaction, but we did not previously log the inode with
6691          *    LOG_INODE_ALL. Later the inode was evicted and after that
6692          *    it was loaded again and this LOG_INODE_EXISTS log operation
6693          *    happened. We must make sure that if an explicit fsync against
6694          *    the inode is performed later, it logs the new extents, an
6695          *    updated inode item, etc, and syncs the log. The same logic
6696          *    applies to direct IO writes instead of buffered writes.
6697          *
6698          * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6699          *    is logged with an i_size of 0 or whatever value was logged
6700          *    before. If later the i_size of the inode is increased by a
6701          *    truncate operation, the log is synced through an fsync of
6702          *    some other inode and then finally an explicit fsync against
6703          *    this inode is made, we must make sure this fsync logs the
6704          *    inode with the new i_size, the hole between old i_size and
6705          *    the new i_size, and syncs the log.
6706          *
6707          * 3) If we are logging that an ancestor inode exists as part of
6708          *    logging a new name from a link or rename operation, don't update
6709          *    its last_log_commit - otherwise if an explicit fsync is made
6710          *    against an ancestor, the fsync considers the inode in the log
6711          *    and doesn't sync the log, resulting in the ancestor missing after
6712          *    a power failure unless the log was synced as part of an fsync
6713          *    against any other unrelated inode.
6714          */
6715         if (inode_only != LOG_INODE_EXISTS)
6716                 inode->last_log_commit = inode->last_sub_trans;
6717         spin_unlock(&inode->lock);
6718 
6719         /*
6720          * Reset the last_reflink_trans so that the next fsync does not need to
6721          * go through the slower path when logging extents and their checksums.
6722          */
6723         if (inode_only == LOG_INODE_ALL)
6724                 inode->last_reflink_trans = 0;
6725 
6726 out_unlock:
6727         mutex_unlock(&inode->log_mutex);
6728 out:
6729         btrfs_free_path(path);
6730         btrfs_free_path(dst_path);
6731 
6732         if (ret)
6733                 free_conflicting_inodes(ctx);
6734         else
6735                 ret = log_conflicting_inodes(trans, inode->root, ctx);
6736 
6737         if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6738                 if (!ret)
6739                         ret = log_new_delayed_dentries(trans, inode,
6740                                                        &delayed_ins_list, ctx);
6741 
6742                 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6743                                             &delayed_del_list);
6744         }
6745 
6746         return ret;
6747 }
6748 
6749 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6750                                  struct btrfs_inode *inode,
6751                                  struct btrfs_log_ctx *ctx)
6752 {
6753         int ret;
6754         struct btrfs_path *path;
6755         struct btrfs_key key;
6756         struct btrfs_root *root = inode->root;
6757         const u64 ino = btrfs_ino(inode);
6758 
6759         path = btrfs_alloc_path();
6760         if (!path)
6761                 return -ENOMEM;
6762         path->skip_locking = 1;
6763         path->search_commit_root = 1;
6764 
6765         key.objectid = ino;
6766         key.type = BTRFS_INODE_REF_KEY;
6767         key.offset = 0;
6768         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6769         if (ret < 0)
6770                 goto out;
6771 
6772         while (true) {
6773                 struct extent_buffer *leaf = path->nodes[0];
6774                 int slot = path->slots[0];
6775                 u32 cur_offset = 0;
6776                 u32 item_size;
6777                 unsigned long ptr;
6778 
6779                 if (slot >= btrfs_header_nritems(leaf)) {
6780                         ret = btrfs_next_leaf(root, path);
6781                         if (ret < 0)
6782                                 goto out;
6783                         else if (ret > 0)
6784                                 break;
6785                         continue;
6786                 }
6787 
6788                 btrfs_item_key_to_cpu(leaf, &key, slot);
6789                 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6790                 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6791                         break;
6792 
6793                 item_size = btrfs_item_size(leaf, slot);
6794                 ptr = btrfs_item_ptr_offset(leaf, slot);
6795                 while (cur_offset < item_size) {
6796                         struct btrfs_key inode_key;
6797                         struct inode *dir_inode;
6798 
6799                         inode_key.type = BTRFS_INODE_ITEM_KEY;
6800                         inode_key.offset = 0;
6801 
6802                         if (key.type == BTRFS_INODE_EXTREF_KEY) {
6803                                 struct btrfs_inode_extref *extref;
6804 
6805                                 extref = (struct btrfs_inode_extref *)
6806                                         (ptr + cur_offset);
6807                                 inode_key.objectid = btrfs_inode_extref_parent(
6808                                         leaf, extref);
6809                                 cur_offset += sizeof(*extref);
6810                                 cur_offset += btrfs_inode_extref_name_len(leaf,
6811                                         extref);
6812                         } else {
6813                                 inode_key.objectid = key.offset;
6814                                 cur_offset = item_size;
6815                         }
6816 
6817                         dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6818                         /*
6819                          * If the parent inode was deleted, return an error to
6820                          * fallback to a transaction commit. This is to prevent
6821                          * getting an inode that was moved from one parent A to
6822                          * a parent B, got its former parent A deleted and then
6823                          * it got fsync'ed, from existing at both parents after
6824                          * a log replay (and the old parent still existing).
6825                          * Example:
6826                          *
6827                          * mkdir /mnt/A
6828                          * mkdir /mnt/B
6829                          * touch /mnt/B/bar
6830                          * sync
6831                          * mv /mnt/B/bar /mnt/A/bar
6832                          * mv -T /mnt/A /mnt/B
6833                          * fsync /mnt/B/bar
6834                          * <power fail>
6835                          *
6836                          * If we ignore the old parent B which got deleted,
6837                          * after a log replay we would have file bar linked
6838                          * at both parents and the old parent B would still
6839                          * exist.
6840                          */
6841                         if (IS_ERR(dir_inode)) {
6842                                 ret = PTR_ERR(dir_inode);
6843                                 goto out;
6844                         }
6845 
6846                         if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6847                                 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6848                                 continue;
6849                         }
6850 
6851                         ctx->log_new_dentries = false;
6852                         ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6853                                               LOG_INODE_ALL, ctx);
6854                         if (!ret && ctx->log_new_dentries)
6855                                 ret = log_new_dir_dentries(trans,
6856                                                    BTRFS_I(dir_inode), ctx);
6857                         btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6858                         if (ret)
6859                                 goto out;
6860                 }
6861                 path->slots[0]++;
6862         }
6863         ret = 0;
6864 out:
6865         btrfs_free_path(path);
6866         return ret;
6867 }
6868 
6869 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6870                              struct btrfs_root *root,
6871                              struct btrfs_path *path,
6872                              struct btrfs_log_ctx *ctx)
6873 {
6874         struct btrfs_key found_key;
6875 
6876         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6877 
6878         while (true) {
6879                 struct extent_buffer *leaf;
6880                 int slot;
6881                 struct btrfs_key search_key;
6882                 struct inode *inode;
6883                 u64 ino;
6884                 int ret = 0;
6885 
6886                 btrfs_release_path(path);
6887 
6888                 ino = found_key.offset;
6889 
6890                 search_key.objectid = found_key.offset;
6891                 search_key.type = BTRFS_INODE_ITEM_KEY;
6892                 search_key.offset = 0;
6893                 inode = btrfs_iget_logging(ino, root);
6894                 if (IS_ERR(inode))
6895                         return PTR_ERR(inode);
6896 
6897                 if (BTRFS_I(inode)->generation >= trans->transid &&
6898                     need_log_inode(trans, BTRFS_I(inode)))
6899                         ret = btrfs_log_inode(trans, BTRFS_I(inode),
6900                                               LOG_INODE_EXISTS, ctx);
6901                 btrfs_add_delayed_iput(BTRFS_I(inode));
6902                 if (ret)
6903                         return ret;
6904 
6905                 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6906                         break;
6907 
6908                 search_key.type = BTRFS_INODE_REF_KEY;
6909                 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6910                 if (ret < 0)
6911                         return ret;
6912 
6913                 leaf = path->nodes[0];
6914                 slot = path->slots[0];
6915                 if (slot >= btrfs_header_nritems(leaf)) {
6916                         ret = btrfs_next_leaf(root, path);
6917                         if (ret < 0)
6918                                 return ret;
6919                         else if (ret > 0)
6920                                 return -ENOENT;
6921                         leaf = path->nodes[0];
6922                         slot = path->slots[0];
6923                 }
6924 
6925                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6926                 if (found_key.objectid != search_key.objectid ||
6927                     found_key.type != BTRFS_INODE_REF_KEY)
6928                         return -ENOENT;
6929         }
6930         return 0;
6931 }
6932 
6933 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6934                                   struct btrfs_inode *inode,
6935                                   struct dentry *parent,
6936                                   struct btrfs_log_ctx *ctx)
6937 {
6938         struct btrfs_root *root = inode->root;
6939         struct dentry *old_parent = NULL;
6940         struct super_block *sb = inode->vfs_inode.i_sb;
6941         int ret = 0;
6942 
6943         while (true) {
6944                 if (!parent || d_really_is_negative(parent) ||
6945                     sb != parent->d_sb)
6946                         break;
6947 
6948                 inode = BTRFS_I(d_inode(parent));
6949                 if (root != inode->root)
6950                         break;
6951 
6952                 if (inode->generation >= trans->transid &&
6953                     need_log_inode(trans, inode)) {
6954                         ret = btrfs_log_inode(trans, inode,
6955                                               LOG_INODE_EXISTS, ctx);
6956                         if (ret)
6957                                 break;
6958                 }
6959                 if (IS_ROOT(parent))
6960                         break;
6961 
6962                 parent = dget_parent(parent);
6963                 dput(old_parent);
6964                 old_parent = parent;
6965         }
6966         dput(old_parent);
6967 
6968         return ret;
6969 }
6970 
6971 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6972                                  struct btrfs_inode *inode,
6973                                  struct dentry *parent,
6974                                  struct btrfs_log_ctx *ctx)
6975 {
6976         struct btrfs_root *root = inode->root;
6977         const u64 ino = btrfs_ino(inode);
6978         struct btrfs_path *path;
6979         struct btrfs_key search_key;
6980         int ret;
6981 
6982         /*
6983          * For a single hard link case, go through a fast path that does not
6984          * need to iterate the fs/subvolume tree.
6985          */
6986         if (inode->vfs_inode.i_nlink < 2)
6987                 return log_new_ancestors_fast(trans, inode, parent, ctx);
6988 
6989         path = btrfs_alloc_path();
6990         if (!path)
6991                 return -ENOMEM;
6992 
6993         search_key.objectid = ino;
6994         search_key.type = BTRFS_INODE_REF_KEY;
6995         search_key.offset = 0;
6996 again:
6997         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6998         if (ret < 0)
6999                 goto out;
7000         if (ret == 0)
7001                 path->slots[0]++;
7002 
7003         while (true) {
7004                 struct extent_buffer *leaf = path->nodes[0];
7005                 int slot = path->slots[0];
7006                 struct btrfs_key found_key;
7007 
7008                 if (slot >= btrfs_header_nritems(leaf)) {
7009                         ret = btrfs_next_leaf(root, path);
7010                         if (ret < 0)
7011                                 goto out;
7012                         else if (ret > 0)
7013                                 break;
7014                         continue;
7015                 }
7016 
7017                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7018                 if (found_key.objectid != ino ||
7019                     found_key.type > BTRFS_INODE_EXTREF_KEY)
7020                         break;
7021 
7022                 /*
7023                  * Don't deal with extended references because they are rare
7024                  * cases and too complex to deal with (we would need to keep
7025                  * track of which subitem we are processing for each item in
7026                  * this loop, etc). So just return some error to fallback to
7027                  * a transaction commit.
7028                  */
7029                 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7030                         ret = -EMLINK;
7031                         goto out;
7032                 }
7033 
7034                 /*
7035                  * Logging ancestors needs to do more searches on the fs/subvol
7036                  * tree, so it releases the path as needed to avoid deadlocks.
7037                  * Keep track of the last inode ref key and resume from that key
7038                  * after logging all new ancestors for the current hard link.
7039                  */
7040                 memcpy(&search_key, &found_key, sizeof(search_key));
7041 
7042                 ret = log_new_ancestors(trans, root, path, ctx);
7043                 if (ret)
7044                         goto out;
7045                 btrfs_release_path(path);
7046                 goto again;
7047         }
7048         ret = 0;
7049 out:
7050         btrfs_free_path(path);
7051         return ret;
7052 }
7053 
7054 /*
7055  * helper function around btrfs_log_inode to make sure newly created
7056  * parent directories also end up in the log.  A minimal inode and backref
7057  * only logging is done of any parent directories that are older than
7058  * the last committed transaction
7059  */
7060 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7061                                   struct btrfs_inode *inode,
7062                                   struct dentry *parent,
7063                                   int inode_only,
7064                                   struct btrfs_log_ctx *ctx)
7065 {
7066         struct btrfs_root *root = inode->root;
7067         struct btrfs_fs_info *fs_info = root->fs_info;
7068         int ret = 0;
7069         bool log_dentries = false;
7070 
7071         if (btrfs_test_opt(fs_info, NOTREELOG)) {
7072                 ret = BTRFS_LOG_FORCE_COMMIT;
7073                 goto end_no_trans;
7074         }
7075 
7076         if (btrfs_root_refs(&root->root_item) == 0) {
7077                 ret = BTRFS_LOG_FORCE_COMMIT;
7078                 goto end_no_trans;
7079         }
7080 
7081         /*
7082          * If we're logging an inode from a subvolume created in the current
7083          * transaction we must force a commit since the root is not persisted.
7084          */
7085         if (btrfs_root_generation(&root->root_item) == trans->transid) {
7086                 ret = BTRFS_LOG_FORCE_COMMIT;
7087                 goto end_no_trans;
7088         }
7089 
7090         /*
7091          * Skip already logged inodes or inodes corresponding to tmpfiles
7092          * (since logging them is pointless, a link count of 0 means they
7093          * will never be accessible).
7094          */
7095         if ((btrfs_inode_in_log(inode, trans->transid) &&
7096              list_empty(&ctx->ordered_extents)) ||
7097             inode->vfs_inode.i_nlink == 0) {
7098                 ret = BTRFS_NO_LOG_SYNC;
7099                 goto end_no_trans;
7100         }
7101 
7102         ret = start_log_trans(trans, root, ctx);
7103         if (ret)
7104                 goto end_no_trans;
7105 
7106         ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7107         if (ret)
7108                 goto end_trans;
7109 
7110         /*
7111          * for regular files, if its inode is already on disk, we don't
7112          * have to worry about the parents at all.  This is because
7113          * we can use the last_unlink_trans field to record renames
7114          * and other fun in this file.
7115          */
7116         if (S_ISREG(inode->vfs_inode.i_mode) &&
7117             inode->generation < trans->transid &&
7118             inode->last_unlink_trans < trans->transid) {
7119                 ret = 0;
7120                 goto end_trans;
7121         }
7122 
7123         if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7124                 log_dentries = true;
7125 
7126         /*
7127          * On unlink we must make sure all our current and old parent directory
7128          * inodes are fully logged. This is to prevent leaving dangling
7129          * directory index entries in directories that were our parents but are
7130          * not anymore. Not doing this results in old parent directory being
7131          * impossible to delete after log replay (rmdir will always fail with
7132          * error -ENOTEMPTY).
7133          *
7134          * Example 1:
7135          *
7136          * mkdir testdir
7137          * touch testdir/foo
7138          * ln testdir/foo testdir/bar
7139          * sync
7140          * unlink testdir/bar
7141          * xfs_io -c fsync testdir/foo
7142          * <power failure>
7143          * mount fs, triggers log replay
7144          *
7145          * If we don't log the parent directory (testdir), after log replay the
7146          * directory still has an entry pointing to the file inode using the bar
7147          * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7148          * the file inode has a link count of 1.
7149          *
7150          * Example 2:
7151          *
7152          * mkdir testdir
7153          * touch foo
7154          * ln foo testdir/foo2
7155          * ln foo testdir/foo3
7156          * sync
7157          * unlink testdir/foo3
7158          * xfs_io -c fsync foo
7159          * <power failure>
7160          * mount fs, triggers log replay
7161          *
7162          * Similar as the first example, after log replay the parent directory
7163          * testdir still has an entry pointing to the inode file with name foo3
7164          * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7165          * and has a link count of 2.
7166          */
7167         if (inode->last_unlink_trans >= trans->transid) {
7168                 ret = btrfs_log_all_parents(trans, inode, ctx);
7169                 if (ret)
7170                         goto end_trans;
7171         }
7172 
7173         ret = log_all_new_ancestors(trans, inode, parent, ctx);
7174         if (ret)
7175                 goto end_trans;
7176 
7177         if (log_dentries)
7178                 ret = log_new_dir_dentries(trans, inode, ctx);
7179         else
7180                 ret = 0;
7181 end_trans:
7182         if (ret < 0) {
7183                 btrfs_set_log_full_commit(trans);
7184                 ret = BTRFS_LOG_FORCE_COMMIT;
7185         }
7186 
7187         if (ret)
7188                 btrfs_remove_log_ctx(root, ctx);
7189         btrfs_end_log_trans(root);
7190 end_no_trans:
7191         return ret;
7192 }
7193 
7194 /*
7195  * it is not safe to log dentry if the chunk root has added new
7196  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7197  * If this returns 1, you must commit the transaction to safely get your
7198  * data on disk.
7199  */
7200 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7201                           struct dentry *dentry,
7202                           struct btrfs_log_ctx *ctx)
7203 {
7204         struct dentry *parent = dget_parent(dentry);
7205         int ret;
7206 
7207         ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7208                                      LOG_INODE_ALL, ctx);
7209         dput(parent);
7210 
7211         return ret;
7212 }
7213 
7214 /*
7215  * should be called during mount to recover any replay any log trees
7216  * from the FS
7217  */
7218 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7219 {
7220         int ret;
7221         struct btrfs_path *path;
7222         struct btrfs_trans_handle *trans;
7223         struct btrfs_key key;
7224         struct btrfs_key found_key;
7225         struct btrfs_root *log;
7226         struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7227         struct walk_control wc = {
7228                 .process_func = process_one_buffer,
7229                 .stage = LOG_WALK_PIN_ONLY,
7230         };
7231 
7232         path = btrfs_alloc_path();
7233         if (!path)
7234                 return -ENOMEM;
7235 
7236         set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7237 
7238         trans = btrfs_start_transaction(fs_info->tree_root, 0);
7239         if (IS_ERR(trans)) {
7240                 ret = PTR_ERR(trans);
7241                 goto error;
7242         }
7243 
7244         wc.trans = trans;
7245         wc.pin = 1;
7246 
7247         ret = walk_log_tree(trans, log_root_tree, &wc);
7248         if (ret) {
7249                 btrfs_abort_transaction(trans, ret);
7250                 goto error;
7251         }
7252 
7253 again:
7254         key.objectid = BTRFS_TREE_LOG_OBJECTID;
7255         key.offset = (u64)-1;
7256         key.type = BTRFS_ROOT_ITEM_KEY;
7257 
7258         while (1) {
7259                 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7260 
7261                 if (ret < 0) {
7262                         btrfs_abort_transaction(trans, ret);
7263                         goto error;
7264                 }
7265                 if (ret > 0) {
7266                         if (path->slots[0] == 0)
7267                                 break;
7268                         path->slots[0]--;
7269                 }
7270                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7271                                       path->slots[0]);
7272                 btrfs_release_path(path);
7273                 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7274                         break;
7275 
7276                 log = btrfs_read_tree_root(log_root_tree, &found_key);
7277                 if (IS_ERR(log)) {
7278                         ret = PTR_ERR(log);
7279                         btrfs_abort_transaction(trans, ret);
7280                         goto error;
7281                 }
7282 
7283                 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7284                                                    true);
7285                 if (IS_ERR(wc.replay_dest)) {
7286                         ret = PTR_ERR(wc.replay_dest);
7287 
7288                         /*
7289                          * We didn't find the subvol, likely because it was
7290                          * deleted.  This is ok, simply skip this log and go to
7291                          * the next one.
7292                          *
7293                          * We need to exclude the root because we can't have
7294                          * other log replays overwriting this log as we'll read
7295                          * it back in a few more times.  This will keep our
7296                          * block from being modified, and we'll just bail for
7297                          * each subsequent pass.
7298                          */
7299                         if (ret == -ENOENT)
7300                                 ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7301                         btrfs_put_root(log);
7302 
7303                         if (!ret)
7304                                 goto next;
7305                         btrfs_abort_transaction(trans, ret);
7306                         goto error;
7307                 }
7308 
7309                 wc.replay_dest->log_root = log;
7310                 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7311                 if (ret)
7312                         /* The loop needs to continue due to the root refs */
7313                         btrfs_abort_transaction(trans, ret);
7314                 else
7315                         ret = walk_log_tree(trans, log, &wc);
7316 
7317                 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7318                         ret = fixup_inode_link_counts(trans, wc.replay_dest,
7319                                                       path);
7320                         if (ret)
7321                                 btrfs_abort_transaction(trans, ret);
7322                 }
7323 
7324                 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7325                         struct btrfs_root *root = wc.replay_dest;
7326 
7327                         btrfs_release_path(path);
7328 
7329                         /*
7330                          * We have just replayed everything, and the highest
7331                          * objectid of fs roots probably has changed in case
7332                          * some inode_item's got replayed.
7333                          *
7334                          * root->objectid_mutex is not acquired as log replay
7335                          * could only happen during mount.
7336                          */
7337                         ret = btrfs_init_root_free_objectid(root);
7338                         if (ret)
7339                                 btrfs_abort_transaction(trans, ret);
7340                 }
7341 
7342                 wc.replay_dest->log_root = NULL;
7343                 btrfs_put_root(wc.replay_dest);
7344                 btrfs_put_root(log);
7345 
7346                 if (ret)
7347                         goto error;
7348 next:
7349                 if (found_key.offset == 0)
7350                         break;
7351                 key.offset = found_key.offset - 1;
7352         }
7353         btrfs_release_path(path);
7354 
7355         /* step one is to pin it all, step two is to replay just inodes */
7356         if (wc.pin) {
7357                 wc.pin = 0;
7358                 wc.process_func = replay_one_buffer;
7359                 wc.stage = LOG_WALK_REPLAY_INODES;
7360                 goto again;
7361         }
7362         /* step three is to replay everything */
7363         if (wc.stage < LOG_WALK_REPLAY_ALL) {
7364                 wc.stage++;
7365                 goto again;
7366         }
7367 
7368         btrfs_free_path(path);
7369 
7370         /* step 4: commit the transaction, which also unpins the blocks */
7371         ret = btrfs_commit_transaction(trans);
7372         if (ret)
7373                 return ret;
7374 
7375         log_root_tree->log_root = NULL;
7376         clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7377         btrfs_put_root(log_root_tree);
7378 
7379         return 0;
7380 error:
7381         if (wc.trans)
7382                 btrfs_end_transaction(wc.trans);
7383         clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7384         btrfs_free_path(path);
7385         return ret;
7386 }
7387 
7388 /*
7389  * there are some corner cases where we want to force a full
7390  * commit instead of allowing a directory to be logged.
7391  *
7392  * They revolve around files there were unlinked from the directory, and
7393  * this function updates the parent directory so that a full commit is
7394  * properly done if it is fsync'd later after the unlinks are done.
7395  *
7396  * Must be called before the unlink operations (updates to the subvolume tree,
7397  * inodes, etc) are done.
7398  */
7399 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7400                              struct btrfs_inode *dir, struct btrfs_inode *inode,
7401                              bool for_rename)
7402 {
7403         /*
7404          * when we're logging a file, if it hasn't been renamed
7405          * or unlinked, and its inode is fully committed on disk,
7406          * we don't have to worry about walking up the directory chain
7407          * to log its parents.
7408          *
7409          * So, we use the last_unlink_trans field to put this transid
7410          * into the file.  When the file is logged we check it and
7411          * don't log the parents if the file is fully on disk.
7412          */
7413         mutex_lock(&inode->log_mutex);
7414         inode->last_unlink_trans = trans->transid;
7415         mutex_unlock(&inode->log_mutex);
7416 
7417         if (!for_rename)
7418                 return;
7419 
7420         /*
7421          * If this directory was already logged, any new names will be logged
7422          * with btrfs_log_new_name() and old names will be deleted from the log
7423          * tree with btrfs_del_dir_entries_in_log() or with
7424          * btrfs_del_inode_ref_in_log().
7425          */
7426         if (inode_logged(trans, dir, NULL) == 1)
7427                 return;
7428 
7429         /*
7430          * If the inode we're about to unlink was logged before, the log will be
7431          * properly updated with the new name with btrfs_log_new_name() and the
7432          * old name removed with btrfs_del_dir_entries_in_log() or with
7433          * btrfs_del_inode_ref_in_log().
7434          */
7435         if (inode_logged(trans, inode, NULL) == 1)
7436                 return;
7437 
7438         /*
7439          * when renaming files across directories, if the directory
7440          * there we're unlinking from gets fsync'd later on, there's
7441          * no way to find the destination directory later and fsync it
7442          * properly.  So, we have to be conservative and force commits
7443          * so the new name gets discovered.
7444          */
7445         mutex_lock(&dir->log_mutex);
7446         dir->last_unlink_trans = trans->transid;
7447         mutex_unlock(&dir->log_mutex);
7448 }
7449 
7450 /*
7451  * Make sure that if someone attempts to fsync the parent directory of a deleted
7452  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7453  * that after replaying the log tree of the parent directory's root we will not
7454  * see the snapshot anymore and at log replay time we will not see any log tree
7455  * corresponding to the deleted snapshot's root, which could lead to replaying
7456  * it after replaying the log tree of the parent directory (which would replay
7457  * the snapshot delete operation).
7458  *
7459  * Must be called before the actual snapshot destroy operation (updates to the
7460  * parent root and tree of tree roots trees, etc) are done.
7461  */
7462 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7463                                    struct btrfs_inode *dir)
7464 {
7465         mutex_lock(&dir->log_mutex);
7466         dir->last_unlink_trans = trans->transid;
7467         mutex_unlock(&dir->log_mutex);
7468 }
7469 
7470 /*
7471  * Call this when creating a subvolume in a directory.
7472  * Because we don't commit a transaction when creating a subvolume, we can't
7473  * allow the directory pointing to the subvolume to be logged with an entry that
7474  * points to an unpersisted root if we are still in the transaction used to
7475  * create the subvolume, so make any attempt to log the directory to result in a
7476  * full log sync.
7477  * Also we don't need to worry with renames, since btrfs_rename() marks the log
7478  * for full commit when renaming a subvolume.
7479  */
7480 void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans,
7481                                 struct btrfs_inode *dir)
7482 {
7483         mutex_lock(&dir->log_mutex);
7484         dir->last_unlink_trans = trans->transid;
7485         mutex_unlock(&dir->log_mutex);
7486 }
7487 
7488 /*
7489  * Update the log after adding a new name for an inode.
7490  *
7491  * @trans:              Transaction handle.
7492  * @old_dentry:         The dentry associated with the old name and the old
7493  *                      parent directory.
7494  * @old_dir:            The inode of the previous parent directory for the case
7495  *                      of a rename. For a link operation, it must be NULL.
7496  * @old_dir_index:      The index number associated with the old name, meaningful
7497  *                      only for rename operations (when @old_dir is not NULL).
7498  *                      Ignored for link operations.
7499  * @parent:             The dentry associated with the directory under which the
7500  *                      new name is located.
7501  *
7502  * Call this after adding a new name for an inode, as a result of a link or
7503  * rename operation, and it will properly update the log to reflect the new name.
7504  */
7505 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7506                         struct dentry *old_dentry, struct btrfs_inode *old_dir,
7507                         u64 old_dir_index, struct dentry *parent)
7508 {
7509         struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7510         struct btrfs_root *root = inode->root;
7511         struct btrfs_log_ctx ctx;
7512         bool log_pinned = false;
7513         int ret;
7514 
7515         /*
7516          * this will force the logging code to walk the dentry chain
7517          * up for the file
7518          */
7519         if (!S_ISDIR(inode->vfs_inode.i_mode))
7520                 inode->last_unlink_trans = trans->transid;
7521 
7522         /*
7523          * if this inode hasn't been logged and directory we're renaming it
7524          * from hasn't been logged, we don't need to log it
7525          */
7526         ret = inode_logged(trans, inode, NULL);
7527         if (ret < 0) {
7528                 goto out;
7529         } else if (ret == 0) {
7530                 if (!old_dir)
7531                         return;
7532                 /*
7533                  * If the inode was not logged and we are doing a rename (old_dir is not
7534                  * NULL), check if old_dir was logged - if it was not we can return and
7535                  * do nothing.
7536                  */
7537                 ret = inode_logged(trans, old_dir, NULL);
7538                 if (ret < 0)
7539                         goto out;
7540                 else if (ret == 0)
7541                         return;
7542         }
7543         ret = 0;
7544 
7545         /*
7546          * If we are doing a rename (old_dir is not NULL) from a directory that
7547          * was previously logged, make sure that on log replay we get the old
7548          * dir entry deleted. This is needed because we will also log the new
7549          * name of the renamed inode, so we need to make sure that after log
7550          * replay we don't end up with both the new and old dir entries existing.
7551          */
7552         if (old_dir && old_dir->logged_trans == trans->transid) {
7553                 struct btrfs_root *log = old_dir->root->log_root;
7554                 struct btrfs_path *path;
7555                 struct fscrypt_name fname;
7556 
7557                 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7558 
7559                 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7560                                              &old_dentry->d_name, 0, &fname);
7561                 if (ret)
7562                         goto out;
7563                 /*
7564                  * We have two inodes to update in the log, the old directory and
7565                  * the inode that got renamed, so we must pin the log to prevent
7566                  * anyone from syncing the log until we have updated both inodes
7567                  * in the log.
7568                  */
7569                 ret = join_running_log_trans(root);
7570                 /*
7571                  * At least one of the inodes was logged before, so this should
7572                  * not fail, but if it does, it's not serious, just bail out and
7573                  * mark the log for a full commit.
7574                  */
7575                 if (WARN_ON_ONCE(ret < 0)) {
7576                         fscrypt_free_filename(&fname);
7577                         goto out;
7578                 }
7579 
7580                 log_pinned = true;
7581 
7582                 path = btrfs_alloc_path();
7583                 if (!path) {
7584                         ret = -ENOMEM;
7585                         fscrypt_free_filename(&fname);
7586                         goto out;
7587                 }
7588 
7589                 /*
7590                  * Other concurrent task might be logging the old directory,
7591                  * as it can be triggered when logging other inode that had or
7592                  * still has a dentry in the old directory. We lock the old
7593                  * directory's log_mutex to ensure the deletion of the old
7594                  * name is persisted, because during directory logging we
7595                  * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7596                  * the old name's dir index item is in the delayed items, so
7597                  * it could be missed by an in progress directory logging.
7598                  */
7599                 mutex_lock(&old_dir->log_mutex);
7600                 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7601                                         &fname.disk_name, old_dir_index);
7602                 if (ret > 0) {
7603                         /*
7604                          * The dentry does not exist in the log, so record its
7605                          * deletion.
7606                          */
7607                         btrfs_release_path(path);
7608                         ret = insert_dir_log_key(trans, log, path,
7609                                                  btrfs_ino(old_dir),
7610                                                  old_dir_index, old_dir_index);
7611                 }
7612                 mutex_unlock(&old_dir->log_mutex);
7613 
7614                 btrfs_free_path(path);
7615                 fscrypt_free_filename(&fname);
7616                 if (ret < 0)
7617                         goto out;
7618         }
7619 
7620         btrfs_init_log_ctx(&ctx, inode);
7621         ctx.logging_new_name = true;
7622         btrfs_init_log_ctx_scratch_eb(&ctx);
7623         /*
7624          * We don't care about the return value. If we fail to log the new name
7625          * then we know the next attempt to sync the log will fallback to a full
7626          * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7627          * we don't need to worry about getting a log committed that has an
7628          * inconsistent state after a rename operation.
7629          */
7630         btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7631         free_extent_buffer(ctx.scratch_eb);
7632         ASSERT(list_empty(&ctx.conflict_inodes));
7633 out:
7634         /*
7635          * If an error happened mark the log for a full commit because it's not
7636          * consistent and up to date or we couldn't find out if one of the
7637          * inodes was logged before in this transaction. Do it before unpinning
7638          * the log, to avoid any races with someone else trying to commit it.
7639          */
7640         if (ret < 0)
7641                 btrfs_set_log_full_commit(trans);
7642         if (log_pinned)
7643                 btrfs_end_log_trans(root);
7644 }
7645 
7646 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php