~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/verity.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 
  3 #include <linux/init.h>
  4 #include <linux/fs.h>
  5 #include <linux/slab.h>
  6 #include <linux/rwsem.h>
  7 #include <linux/xattr.h>
  8 #include <linux/security.h>
  9 #include <linux/posix_acl_xattr.h>
 10 #include <linux/iversion.h>
 11 #include <linux/fsverity.h>
 12 #include <linux/sched/mm.h>
 13 #include "messages.h"
 14 #include "ctree.h"
 15 #include "btrfs_inode.h"
 16 #include "transaction.h"
 17 #include "locking.h"
 18 #include "fs.h"
 19 #include "accessors.h"
 20 #include "ioctl.h"
 21 #include "verity.h"
 22 #include "orphan.h"
 23 
 24 /*
 25  * Implementation of the interface defined in struct fsverity_operations.
 26  *
 27  * The main question is how and where to store the verity descriptor and the
 28  * Merkle tree. We store both in dedicated btree items in the filesystem tree,
 29  * together with the rest of the inode metadata. This means we'll need to do
 30  * extra work to encrypt them once encryption is supported in btrfs, but btrfs
 31  * has a lot of careful code around i_size and it seems better to make a new key
 32  * type than try and adjust all of our expectations for i_size.
 33  *
 34  * Note that this differs from the implementation in ext4 and f2fs, where
 35  * this data is stored as if it were in the file, but past EOF. However, btrfs
 36  * does not have a widespread mechanism for caching opaque metadata pages, so we
 37  * do pretend that the Merkle tree pages themselves are past EOF for the
 38  * purposes of caching them (as opposed to creating a virtual inode).
 39  *
 40  * fs verity items are stored under two different key types on disk.
 41  * The descriptor items:
 42  * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
 43  *
 44  * At offset 0, we store a btrfs_verity_descriptor_item which tracks the
 45  * size of the descriptor item and some extra data for encryption.
 46  * Starting at offset 1, these hold the generic fs verity descriptor.
 47  * The latter are opaque to btrfs, we just read and write them as a blob for
 48  * the higher level verity code.  The most common descriptor size is 256 bytes.
 49  *
 50  * The merkle tree items:
 51  * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
 52  *
 53  * These also start at offset 0, and correspond to the merkle tree bytes.
 54  * So when fsverity asks for page 0 of the merkle tree, we pull up one page
 55  * starting at offset 0 for this key type.  These are also opaque to btrfs,
 56  * we're blindly storing whatever fsverity sends down.
 57  *
 58  * Another important consideration is the fact that the Merkle tree data scales
 59  * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's
 60  * ~1/127th the size) so for large files, writing the tree can be a lengthy
 61  * operation. For that reason, we guard the whole enable verity operation
 62  * (between begin_enable_verity and end_enable_verity) with an orphan item.
 63  * Again, because the data can be pretty large, it's quite possible that we
 64  * could run out of space writing it, so we try our best to handle errors by
 65  * stopping and rolling back rather than aborting the victim transaction.
 66  */
 67 
 68 #define MERKLE_START_ALIGN                      65536
 69 
 70 /*
 71  * Compute the logical file offset where we cache the Merkle tree.
 72  *
 73  * @inode:  inode of the verity file
 74  *
 75  * For the purposes of caching the Merkle tree pages, as required by
 76  * fs-verity, it is convenient to do size computations in terms of a file
 77  * offset, rather than in terms of page indices.
 78  *
 79  * Use 64K to be sure it's past the last page in the file, even with 64K pages.
 80  * That rounding operation itself can overflow loff_t, so we do it in u64 and
 81  * check.
 82  *
 83  * Returns the file offset on success, negative error code on failure.
 84  */
 85 static loff_t merkle_file_pos(const struct inode *inode)
 86 {
 87         u64 sz = inode->i_size;
 88         u64 rounded = round_up(sz, MERKLE_START_ALIGN);
 89 
 90         if (rounded > inode->i_sb->s_maxbytes)
 91                 return -EFBIG;
 92 
 93         return rounded;
 94 }
 95 
 96 /*
 97  * Drop all the items for this inode with this key_type.
 98  *
 99  * @inode:     inode to drop items for
100  * @key_type:  type of items to drop (BTRFS_VERITY_DESC_ITEM or
101  *             BTRFS_VERITY_MERKLE_ITEM)
102  *
103  * Before doing a verity enable we cleanup any existing verity items.
104  * This is also used to clean up if a verity enable failed half way through.
105  *
106  * Returns number of dropped items on success, negative error code on failure.
107  */
108 static int drop_verity_items(struct btrfs_inode *inode, u8 key_type)
109 {
110         struct btrfs_trans_handle *trans;
111         struct btrfs_root *root = inode->root;
112         struct btrfs_path *path;
113         struct btrfs_key key;
114         int count = 0;
115         int ret;
116 
117         path = btrfs_alloc_path();
118         if (!path)
119                 return -ENOMEM;
120 
121         while (1) {
122                 /* 1 for the item being dropped */
123                 trans = btrfs_start_transaction(root, 1);
124                 if (IS_ERR(trans)) {
125                         ret = PTR_ERR(trans);
126                         goto out;
127                 }
128 
129                 /*
130                  * Walk backwards through all the items until we find one that
131                  * isn't from our key type or objectid
132                  */
133                 key.objectid = btrfs_ino(inode);
134                 key.type = key_type;
135                 key.offset = (u64)-1;
136 
137                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
138                 if (ret > 0) {
139                         ret = 0;
140                         /* No more keys of this type, we're done */
141                         if (path->slots[0] == 0)
142                                 break;
143                         path->slots[0]--;
144                 } else if (ret < 0) {
145                         btrfs_end_transaction(trans);
146                         goto out;
147                 }
148 
149                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
150 
151                 /* No more keys of this type, we're done */
152                 if (key.objectid != btrfs_ino(inode) || key.type != key_type)
153                         break;
154 
155                 /*
156                  * This shouldn't be a performance sensitive function because
157                  * it's not used as part of truncate.  If it ever becomes
158                  * perf sensitive, change this to walk forward and bulk delete
159                  * items
160                  */
161                 ret = btrfs_del_items(trans, root, path, path->slots[0], 1);
162                 if (ret) {
163                         btrfs_end_transaction(trans);
164                         goto out;
165                 }
166                 count++;
167                 btrfs_release_path(path);
168                 btrfs_end_transaction(trans);
169         }
170         ret = count;
171         btrfs_end_transaction(trans);
172 out:
173         btrfs_free_path(path);
174         return ret;
175 }
176 
177 /*
178  * Drop all verity items
179  *
180  * @inode:  inode to drop verity items for
181  *
182  * In most contexts where we are dropping verity items, we want to do it for all
183  * the types of verity items, not a particular one.
184  *
185  * Returns: 0 on success, negative error code on failure.
186  */
187 int btrfs_drop_verity_items(struct btrfs_inode *inode)
188 {
189         int ret;
190 
191         ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY);
192         if (ret < 0)
193                 return ret;
194         ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY);
195         if (ret < 0)
196                 return ret;
197 
198         return 0;
199 }
200 
201 /*
202  * Insert and write inode items with a given key type and offset.
203  *
204  * @inode:     inode to insert for
205  * @key_type:  key type to insert
206  * @offset:    item offset to insert at
207  * @src:       source data to write
208  * @len:       length of source data to write
209  *
210  * Write len bytes from src into items of up to 2K length.
211  * The inserted items will have key (ino, key_type, offset + off) where off is
212  * consecutively increasing from 0 up to the last item ending at offset + len.
213  *
214  * Returns 0 on success and a negative error code on failure.
215  */
216 static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
217                            const char *src, u64 len)
218 {
219         struct btrfs_trans_handle *trans;
220         struct btrfs_path *path;
221         struct btrfs_root *root = inode->root;
222         struct extent_buffer *leaf;
223         struct btrfs_key key;
224         unsigned long copy_bytes;
225         unsigned long src_offset = 0;
226         void *data;
227         int ret = 0;
228 
229         path = btrfs_alloc_path();
230         if (!path)
231                 return -ENOMEM;
232 
233         while (len > 0) {
234                 /* 1 for the new item being inserted */
235                 trans = btrfs_start_transaction(root, 1);
236                 if (IS_ERR(trans)) {
237                         ret = PTR_ERR(trans);
238                         break;
239                 }
240 
241                 key.objectid = btrfs_ino(inode);
242                 key.type = key_type;
243                 key.offset = offset;
244 
245                 /*
246                  * Insert 2K at a time mostly to be friendly for smaller leaf
247                  * size filesystems
248                  */
249                 copy_bytes = min_t(u64, len, 2048);
250 
251                 ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes);
252                 if (ret) {
253                         btrfs_end_transaction(trans);
254                         break;
255                 }
256 
257                 leaf = path->nodes[0];
258 
259                 data = btrfs_item_ptr(leaf, path->slots[0], void);
260                 write_extent_buffer(leaf, src + src_offset,
261                                     (unsigned long)data, copy_bytes);
262                 offset += copy_bytes;
263                 src_offset += copy_bytes;
264                 len -= copy_bytes;
265 
266                 btrfs_release_path(path);
267                 btrfs_end_transaction(trans);
268         }
269 
270         btrfs_free_path(path);
271         return ret;
272 }
273 
274 /*
275  * Read inode items of the given key type and offset from the btree.
276  *
277  * @inode:      inode to read items of
278  * @key_type:   key type to read
279  * @offset:     item offset to read from
280  * @dest:       Buffer to read into. This parameter has slightly tricky
281  *              semantics.  If it is NULL, the function will not do any copying
282  *              and will just return the size of all the items up to len bytes.
283  *              If dest_page is passed, then the function will kmap_local the
284  *              page and ignore dest, but it must still be non-NULL to avoid the
285  *              counting-only behavior.
286  * @len:        length in bytes to read
287  * @dest_page:  copy into this page instead of the dest buffer
288  *
289  * Helper function to read items from the btree.  This returns the number of
290  * bytes read or < 0 for errors.  We can return short reads if the items don't
291  * exist on disk or aren't big enough to fill the desired length.  Supports
292  * reading into a provided buffer (dest) or into the page cache
293  *
294  * Returns number of bytes read or a negative error code on failure.
295  */
296 static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
297                           char *dest, u64 len, struct page *dest_page)
298 {
299         struct btrfs_path *path;
300         struct btrfs_root *root = inode->root;
301         struct extent_buffer *leaf;
302         struct btrfs_key key;
303         u64 item_end;
304         u64 copy_end;
305         int copied = 0;
306         u32 copy_offset;
307         unsigned long copy_bytes;
308         unsigned long dest_offset = 0;
309         void *data;
310         char *kaddr = dest;
311         int ret;
312 
313         path = btrfs_alloc_path();
314         if (!path)
315                 return -ENOMEM;
316 
317         if (dest_page)
318                 path->reada = READA_FORWARD;
319 
320         key.objectid = btrfs_ino(inode);
321         key.type = key_type;
322         key.offset = offset;
323 
324         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
325         if (ret < 0) {
326                 goto out;
327         } else if (ret > 0) {
328                 ret = 0;
329                 if (path->slots[0] == 0)
330                         goto out;
331                 path->slots[0]--;
332         }
333 
334         while (len > 0) {
335                 leaf = path->nodes[0];
336                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
337 
338                 if (key.objectid != btrfs_ino(inode) || key.type != key_type)
339                         break;
340 
341                 item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset;
342 
343                 if (copied > 0) {
344                         /*
345                          * Once we've copied something, we want all of the items
346                          * to be sequential
347                          */
348                         if (key.offset != offset)
349                                 break;
350                 } else {
351                         /*
352                          * Our initial offset might be in the middle of an
353                          * item.  Make sure it all makes sense.
354                          */
355                         if (key.offset > offset)
356                                 break;
357                         if (item_end <= offset)
358                                 break;
359                 }
360 
361                 /* desc = NULL to just sum all the item lengths */
362                 if (!dest)
363                         copy_end = item_end;
364                 else
365                         copy_end = min(offset + len, item_end);
366 
367                 /* Number of bytes in this item we want to copy */
368                 copy_bytes = copy_end - offset;
369 
370                 /* Offset from the start of item for copying */
371                 copy_offset = offset - key.offset;
372 
373                 if (dest) {
374                         if (dest_page)
375                                 kaddr = kmap_local_page(dest_page);
376 
377                         data = btrfs_item_ptr(leaf, path->slots[0], void);
378                         read_extent_buffer(leaf, kaddr + dest_offset,
379                                            (unsigned long)data + copy_offset,
380                                            copy_bytes);
381 
382                         if (dest_page)
383                                 kunmap_local(kaddr);
384                 }
385 
386                 offset += copy_bytes;
387                 dest_offset += copy_bytes;
388                 len -= copy_bytes;
389                 copied += copy_bytes;
390 
391                 path->slots[0]++;
392                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
393                         /*
394                          * We've reached the last slot in this leaf and we need
395                          * to go to the next leaf.
396                          */
397                         ret = btrfs_next_leaf(root, path);
398                         if (ret < 0) {
399                                 break;
400                         } else if (ret > 0) {
401                                 ret = 0;
402                                 break;
403                         }
404                 }
405         }
406 out:
407         btrfs_free_path(path);
408         if (!ret)
409                 ret = copied;
410         return ret;
411 }
412 
413 /*
414  * Delete an fsverity orphan
415  *
416  * @trans:  transaction to do the delete in
417  * @inode:  inode to orphan
418  *
419  * Capture verity orphan specific logic that is repeated in the couple places
420  * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes
421  * with 0 links.
422  *
423  * Returns zero on success or a negative error code on failure.
424  */
425 static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode)
426 {
427         struct btrfs_root *root = inode->root;
428         int ret;
429 
430         /*
431          * If the inode has no links, it is either already unlinked, or was
432          * created with O_TMPFILE. In either case, it should have an orphan from
433          * that other operation. Rather than reference count the orphans, we
434          * simply ignore them here, because we only invoke the verity path in
435          * the orphan logic when i_nlink is 1.
436          */
437         if (!inode->vfs_inode.i_nlink)
438                 return 0;
439 
440         ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
441         if (ret == -ENOENT)
442                 ret = 0;
443         return ret;
444 }
445 
446 /*
447  * Rollback in-progress verity if we encounter an error.
448  *
449  * @inode:  inode verity had an error for
450  *
451  * We try to handle recoverable errors while enabling verity by rolling it back
452  * and just failing the operation, rather than having an fs level error no
453  * matter what. However, any error in rollback is unrecoverable.
454  *
455  * Returns 0 on success, negative error code on failure.
456  */
457 static int rollback_verity(struct btrfs_inode *inode)
458 {
459         struct btrfs_trans_handle *trans = NULL;
460         struct btrfs_root *root = inode->root;
461         int ret;
462 
463         ASSERT(inode_is_locked(&inode->vfs_inode));
464         truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size);
465         clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
466         ret = btrfs_drop_verity_items(inode);
467         if (ret) {
468                 btrfs_handle_fs_error(root->fs_info, ret,
469                                 "failed to drop verity items in rollback %llu",
470                                 (u64)inode->vfs_inode.i_ino);
471                 goto out;
472         }
473 
474         /*
475          * 1 for updating the inode flag
476          * 1 for deleting the orphan
477          */
478         trans = btrfs_start_transaction(root, 2);
479         if (IS_ERR(trans)) {
480                 ret = PTR_ERR(trans);
481                 trans = NULL;
482                 btrfs_handle_fs_error(root->fs_info, ret,
483                         "failed to start transaction in verity rollback %llu",
484                         (u64)inode->vfs_inode.i_ino);
485                 goto out;
486         }
487         inode->ro_flags &= ~BTRFS_INODE_RO_VERITY;
488         btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
489         ret = btrfs_update_inode(trans, inode);
490         if (ret) {
491                 btrfs_abort_transaction(trans, ret);
492                 goto out;
493         }
494         ret = del_orphan(trans, inode);
495         if (ret) {
496                 btrfs_abort_transaction(trans, ret);
497                 goto out;
498         }
499 out:
500         if (trans)
501                 btrfs_end_transaction(trans);
502         return ret;
503 }
504 
505 /*
506  * Finalize making the file a valid verity file
507  *
508  * @inode:      inode to be marked as verity
509  * @desc:       contents of the verity descriptor to write (not NULL)
510  * @desc_size:  size of the verity descriptor
511  *
512  * Do the actual work of finalizing verity after successfully writing the Merkle
513  * tree:
514  *
515  * - write out the descriptor items
516  * - mark the inode with the verity flag
517  * - delete the orphan item
518  * - mark the ro compat bit
519  * - clear the in progress bit
520  *
521  * Returns 0 on success, negative error code on failure.
522  */
523 static int finish_verity(struct btrfs_inode *inode, const void *desc,
524                          size_t desc_size)
525 {
526         struct btrfs_trans_handle *trans = NULL;
527         struct btrfs_root *root = inode->root;
528         struct btrfs_verity_descriptor_item item;
529         int ret;
530 
531         /* Write out the descriptor item */
532         memset(&item, 0, sizeof(item));
533         btrfs_set_stack_verity_descriptor_size(&item, desc_size);
534         ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0,
535                               (const char *)&item, sizeof(item));
536         if (ret)
537                 goto out;
538 
539         /* Write out the descriptor itself */
540         ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1,
541                               desc, desc_size);
542         if (ret)
543                 goto out;
544 
545         /*
546          * 1 for updating the inode flag
547          * 1 for deleting the orphan
548          */
549         trans = btrfs_start_transaction(root, 2);
550         if (IS_ERR(trans)) {
551                 ret = PTR_ERR(trans);
552                 goto out;
553         }
554         inode->ro_flags |= BTRFS_INODE_RO_VERITY;
555         btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
556         ret = btrfs_update_inode(trans, inode);
557         if (ret)
558                 goto end_trans;
559         ret = del_orphan(trans, inode);
560         if (ret)
561                 goto end_trans;
562         clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
563         btrfs_set_fs_compat_ro(root->fs_info, VERITY);
564 end_trans:
565         btrfs_end_transaction(trans);
566 out:
567         return ret;
568 
569 }
570 
571 /*
572  * fsverity op that begins enabling verity.
573  *
574  * @filp:  file to enable verity on
575  *
576  * Begin enabling fsverity for the file. We drop any existing verity items, add
577  * an orphan and set the in progress bit.
578  *
579  * Returns 0 on success, negative error code on failure.
580  */
581 static int btrfs_begin_enable_verity(struct file *filp)
582 {
583         struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
584         struct btrfs_root *root = inode->root;
585         struct btrfs_trans_handle *trans;
586         int ret;
587 
588         ASSERT(inode_is_locked(file_inode(filp)));
589 
590         if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags))
591                 return -EBUSY;
592 
593         /*
594          * This should almost never do anything, but theoretically, it's
595          * possible that we failed to enable verity on a file, then were
596          * interrupted or failed while rolling back, failed to cleanup the
597          * orphan, and finally attempt to enable verity again.
598          */
599         ret = btrfs_drop_verity_items(inode);
600         if (ret)
601                 return ret;
602 
603         /* 1 for the orphan item */
604         trans = btrfs_start_transaction(root, 1);
605         if (IS_ERR(trans))
606                 return PTR_ERR(trans);
607 
608         ret = btrfs_orphan_add(trans, inode);
609         if (!ret)
610                 set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
611         btrfs_end_transaction(trans);
612 
613         return 0;
614 }
615 
616 /*
617  * fsverity op that ends enabling verity.
618  *
619  * @filp:              file we are finishing enabling verity on
620  * @desc:              verity descriptor to write out (NULL in error conditions)
621  * @desc_size:         size of the verity descriptor (variable with signatures)
622  * @merkle_tree_size:  size of the merkle tree in bytes
623  *
624  * If desc is null, then VFS is signaling an error occurred during verity
625  * enable, and we should try to rollback. Otherwise, attempt to finish verity.
626  *
627  * Returns 0 on success, negative error code on error.
628  */
629 static int btrfs_end_enable_verity(struct file *filp, const void *desc,
630                                    size_t desc_size, u64 merkle_tree_size)
631 {
632         struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
633         int ret = 0;
634         int rollback_ret;
635 
636         ASSERT(inode_is_locked(file_inode(filp)));
637 
638         if (desc == NULL)
639                 goto rollback;
640 
641         ret = finish_verity(inode, desc, desc_size);
642         if (ret)
643                 goto rollback;
644         return ret;
645 
646 rollback:
647         rollback_ret = rollback_verity(inode);
648         if (rollback_ret)
649                 btrfs_err(inode->root->fs_info,
650                           "failed to rollback verity items: %d", rollback_ret);
651         return ret;
652 }
653 
654 /*
655  * fsverity op that gets the struct fsverity_descriptor.
656  *
657  * @inode:     inode to get the descriptor of
658  * @buf:       output buffer for the descriptor contents
659  * @buf_size:  size of the output buffer. 0 to query the size
660  *
661  * fsverity does a two pass setup for reading the descriptor, in the first pass
662  * it calls with buf_size = 0 to query the size of the descriptor, and then in
663  * the second pass it actually reads the descriptor off disk.
664  *
665  * Returns the size on success or a negative error code on failure.
666  */
667 int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size)
668 {
669         u64 true_size;
670         int ret = 0;
671         struct btrfs_verity_descriptor_item item;
672 
673         memset(&item, 0, sizeof(item));
674         ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0,
675                              (char *)&item, sizeof(item), NULL);
676         if (ret < 0)
677                 return ret;
678 
679         if (item.reserved[0] != 0 || item.reserved[1] != 0)
680                 return -EUCLEAN;
681 
682         true_size = btrfs_stack_verity_descriptor_size(&item);
683         if (true_size > INT_MAX)
684                 return -EUCLEAN;
685 
686         if (buf_size == 0)
687                 return true_size;
688         if (buf_size < true_size)
689                 return -ERANGE;
690 
691         ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1,
692                              buf, buf_size, NULL);
693         if (ret < 0)
694                 return ret;
695         if (ret != true_size)
696                 return -EIO;
697 
698         return true_size;
699 }
700 
701 /*
702  * fsverity op that reads and caches a merkle tree page.
703  *
704  * @inode:         inode to read a merkle tree page for
705  * @index:         page index relative to the start of the merkle tree
706  * @num_ra_pages:  number of pages to readahead. Optional, we ignore it
707  *
708  * The Merkle tree is stored in the filesystem btree, but its pages are cached
709  * with a logical position past EOF in the inode's mapping.
710  *
711  * Returns the page we read, or an ERR_PTR on error.
712  */
713 static struct page *btrfs_read_merkle_tree_page(struct inode *inode,
714                                                 pgoff_t index,
715                                                 unsigned long num_ra_pages)
716 {
717         struct folio *folio;
718         u64 off = (u64)index << PAGE_SHIFT;
719         loff_t merkle_pos = merkle_file_pos(inode);
720         int ret;
721 
722         if (merkle_pos < 0)
723                 return ERR_PTR(merkle_pos);
724         if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE)
725                 return ERR_PTR(-EFBIG);
726         index += merkle_pos >> PAGE_SHIFT;
727 again:
728         folio = __filemap_get_folio(inode->i_mapping, index, FGP_ACCESSED, 0);
729         if (!IS_ERR(folio)) {
730                 if (folio_test_uptodate(folio))
731                         goto out;
732 
733                 folio_lock(folio);
734                 /* If it's not uptodate after we have the lock, we got a read error. */
735                 if (!folio_test_uptodate(folio)) {
736                         folio_unlock(folio);
737                         folio_put(folio);
738                         return ERR_PTR(-EIO);
739                 }
740                 folio_unlock(folio);
741                 goto out;
742         }
743 
744         folio = filemap_alloc_folio(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS),
745                                     0);
746         if (!folio)
747                 return ERR_PTR(-ENOMEM);
748 
749         ret = filemap_add_folio(inode->i_mapping, folio, index, GFP_NOFS);
750         if (ret) {
751                 folio_put(folio);
752                 /* Did someone else insert a folio here? */
753                 if (ret == -EEXIST)
754                         goto again;
755                 return ERR_PTR(ret);
756         }
757 
758         /*
759          * Merkle item keys are indexed from byte 0 in the merkle tree.
760          * They have the form:
761          *
762          * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ]
763          */
764         ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off,
765                              folio_address(folio), PAGE_SIZE, &folio->page);
766         if (ret < 0) {
767                 folio_put(folio);
768                 return ERR_PTR(ret);
769         }
770         if (ret < PAGE_SIZE)
771                 folio_zero_segment(folio, ret, PAGE_SIZE);
772 
773         folio_mark_uptodate(folio);
774         folio_unlock(folio);
775 
776 out:
777         return folio_file_page(folio, index);
778 }
779 
780 /*
781  * fsverity op that writes a Merkle tree block into the btree.
782  *
783  * @inode:      inode to write a Merkle tree block for
784  * @buf:        Merkle tree block to write
785  * @pos:        the position of the block in the Merkle tree (in bytes)
786  * @size:       the Merkle tree block size (in bytes)
787  *
788  * Returns 0 on success or negative error code on failure
789  */
790 static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf,
791                                          u64 pos, unsigned int size)
792 {
793         loff_t merkle_pos = merkle_file_pos(inode);
794 
795         if (merkle_pos < 0)
796                 return merkle_pos;
797         if (merkle_pos > inode->i_sb->s_maxbytes - pos - size)
798                 return -EFBIG;
799 
800         return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY,
801                                pos, buf, size);
802 }
803 
804 const struct fsverity_operations btrfs_verityops = {
805         .begin_enable_verity     = btrfs_begin_enable_verity,
806         .end_enable_verity       = btrfs_end_enable_verity,
807         .get_verity_descriptor   = btrfs_get_verity_descriptor,
808         .read_merkle_tree_page   = btrfs_read_merkle_tree_page,
809         .write_merkle_tree_block = btrfs_write_merkle_tree_block,
810 };
811 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php