1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/init.h> 4 #include <linux/fs.h> 5 #include <linux/slab.h> 6 #include <linux/rwsem.h> 7 #include <linux/xattr.h> 8 #include <linux/security.h> 9 #include <linux/posix_acl_xattr.h> 10 #include <linux/iversion.h> 11 #include <linux/fsverity.h> 12 #include <linux/sched/mm.h> 13 #include "messages.h" 14 #include "ctree.h" 15 #include "btrfs_inode.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "ioctl.h" 21 #include "verity.h" 22 #include "orphan.h" 23 24 /* 25 * Implementation of the interface defined in struct fsverity_operations. 26 * 27 * The main question is how and where to store the verity descriptor and the 28 * Merkle tree. We store both in dedicated btree items in the filesystem tree, 29 * together with the rest of the inode metadata. This means we'll need to do 30 * extra work to encrypt them once encryption is supported in btrfs, but btrfs 31 * has a lot of careful code around i_size and it seems better to make a new key 32 * type than try and adjust all of our expectations for i_size. 33 * 34 * Note that this differs from the implementation in ext4 and f2fs, where 35 * this data is stored as if it were in the file, but past EOF. However, btrfs 36 * does not have a widespread mechanism for caching opaque metadata pages, so we 37 * do pretend that the Merkle tree pages themselves are past EOF for the 38 * purposes of caching them (as opposed to creating a virtual inode). 39 * 40 * fs verity items are stored under two different key types on disk. 41 * The descriptor items: 42 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ] 43 * 44 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the 45 * size of the descriptor item and some extra data for encryption. 46 * Starting at offset 1, these hold the generic fs verity descriptor. 47 * The latter are opaque to btrfs, we just read and write them as a blob for 48 * the higher level verity code. The most common descriptor size is 256 bytes. 49 * 50 * The merkle tree items: 51 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ] 52 * 53 * These also start at offset 0, and correspond to the merkle tree bytes. 54 * So when fsverity asks for page 0 of the merkle tree, we pull up one page 55 * starting at offset 0 for this key type. These are also opaque to btrfs, 56 * we're blindly storing whatever fsverity sends down. 57 * 58 * Another important consideration is the fact that the Merkle tree data scales 59 * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's 60 * ~1/127th the size) so for large files, writing the tree can be a lengthy 61 * operation. For that reason, we guard the whole enable verity operation 62 * (between begin_enable_verity and end_enable_verity) with an orphan item. 63 * Again, because the data can be pretty large, it's quite possible that we 64 * could run out of space writing it, so we try our best to handle errors by 65 * stopping and rolling back rather than aborting the victim transaction. 66 */ 67 68 #define MERKLE_START_ALIGN 65536 69 70 /* 71 * Compute the logical file offset where we cache the Merkle tree. 72 * 73 * @inode: inode of the verity file 74 * 75 * For the purposes of caching the Merkle tree pages, as required by 76 * fs-verity, it is convenient to do size computations in terms of a file 77 * offset, rather than in terms of page indices. 78 * 79 * Use 64K to be sure it's past the last page in the file, even with 64K pages. 80 * That rounding operation itself can overflow loff_t, so we do it in u64 and 81 * check. 82 * 83 * Returns the file offset on success, negative error code on failure. 84 */ 85 static loff_t merkle_file_pos(const struct inode *inode) 86 { 87 u64 sz = inode->i_size; 88 u64 rounded = round_up(sz, MERKLE_START_ALIGN); 89 90 if (rounded > inode->i_sb->s_maxbytes) 91 return -EFBIG; 92 93 return rounded; 94 } 95 96 /* 97 * Drop all the items for this inode with this key_type. 98 * 99 * @inode: inode to drop items for 100 * @key_type: type of items to drop (BTRFS_VERITY_DESC_ITEM or 101 * BTRFS_VERITY_MERKLE_ITEM) 102 * 103 * Before doing a verity enable we cleanup any existing verity items. 104 * This is also used to clean up if a verity enable failed half way through. 105 * 106 * Returns number of dropped items on success, negative error code on failure. 107 */ 108 static int drop_verity_items(struct btrfs_inode *inode, u8 key_type) 109 { 110 struct btrfs_trans_handle *trans; 111 struct btrfs_root *root = inode->root; 112 struct btrfs_path *path; 113 struct btrfs_key key; 114 int count = 0; 115 int ret; 116 117 path = btrfs_alloc_path(); 118 if (!path) 119 return -ENOMEM; 120 121 while (1) { 122 /* 1 for the item being dropped */ 123 trans = btrfs_start_transaction(root, 1); 124 if (IS_ERR(trans)) { 125 ret = PTR_ERR(trans); 126 goto out; 127 } 128 129 /* 130 * Walk backwards through all the items until we find one that 131 * isn't from our key type or objectid 132 */ 133 key.objectid = btrfs_ino(inode); 134 key.type = key_type; 135 key.offset = (u64)-1; 136 137 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 138 if (ret > 0) { 139 ret = 0; 140 /* No more keys of this type, we're done */ 141 if (path->slots[0] == 0) 142 break; 143 path->slots[0]--; 144 } else if (ret < 0) { 145 btrfs_end_transaction(trans); 146 goto out; 147 } 148 149 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 150 151 /* No more keys of this type, we're done */ 152 if (key.objectid != btrfs_ino(inode) || key.type != key_type) 153 break; 154 155 /* 156 * This shouldn't be a performance sensitive function because 157 * it's not used as part of truncate. If it ever becomes 158 * perf sensitive, change this to walk forward and bulk delete 159 * items 160 */ 161 ret = btrfs_del_items(trans, root, path, path->slots[0], 1); 162 if (ret) { 163 btrfs_end_transaction(trans); 164 goto out; 165 } 166 count++; 167 btrfs_release_path(path); 168 btrfs_end_transaction(trans); 169 } 170 ret = count; 171 btrfs_end_transaction(trans); 172 out: 173 btrfs_free_path(path); 174 return ret; 175 } 176 177 /* 178 * Drop all verity items 179 * 180 * @inode: inode to drop verity items for 181 * 182 * In most contexts where we are dropping verity items, we want to do it for all 183 * the types of verity items, not a particular one. 184 * 185 * Returns: 0 on success, negative error code on failure. 186 */ 187 int btrfs_drop_verity_items(struct btrfs_inode *inode) 188 { 189 int ret; 190 191 ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY); 192 if (ret < 0) 193 return ret; 194 ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY); 195 if (ret < 0) 196 return ret; 197 198 return 0; 199 } 200 201 /* 202 * Insert and write inode items with a given key type and offset. 203 * 204 * @inode: inode to insert for 205 * @key_type: key type to insert 206 * @offset: item offset to insert at 207 * @src: source data to write 208 * @len: length of source data to write 209 * 210 * Write len bytes from src into items of up to 2K length. 211 * The inserted items will have key (ino, key_type, offset + off) where off is 212 * consecutively increasing from 0 up to the last item ending at offset + len. 213 * 214 * Returns 0 on success and a negative error code on failure. 215 */ 216 static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, 217 const char *src, u64 len) 218 { 219 struct btrfs_trans_handle *trans; 220 struct btrfs_path *path; 221 struct btrfs_root *root = inode->root; 222 struct extent_buffer *leaf; 223 struct btrfs_key key; 224 unsigned long copy_bytes; 225 unsigned long src_offset = 0; 226 void *data; 227 int ret = 0; 228 229 path = btrfs_alloc_path(); 230 if (!path) 231 return -ENOMEM; 232 233 while (len > 0) { 234 /* 1 for the new item being inserted */ 235 trans = btrfs_start_transaction(root, 1); 236 if (IS_ERR(trans)) { 237 ret = PTR_ERR(trans); 238 break; 239 } 240 241 key.objectid = btrfs_ino(inode); 242 key.type = key_type; 243 key.offset = offset; 244 245 /* 246 * Insert 2K at a time mostly to be friendly for smaller leaf 247 * size filesystems 248 */ 249 copy_bytes = min_t(u64, len, 2048); 250 251 ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes); 252 if (ret) { 253 btrfs_end_transaction(trans); 254 break; 255 } 256 257 leaf = path->nodes[0]; 258 259 data = btrfs_item_ptr(leaf, path->slots[0], void); 260 write_extent_buffer(leaf, src + src_offset, 261 (unsigned long)data, copy_bytes); 262 offset += copy_bytes; 263 src_offset += copy_bytes; 264 len -= copy_bytes; 265 266 btrfs_release_path(path); 267 btrfs_end_transaction(trans); 268 } 269 270 btrfs_free_path(path); 271 return ret; 272 } 273 274 /* 275 * Read inode items of the given key type and offset from the btree. 276 * 277 * @inode: inode to read items of 278 * @key_type: key type to read 279 * @offset: item offset to read from 280 * @dest: Buffer to read into. This parameter has slightly tricky 281 * semantics. If it is NULL, the function will not do any copying 282 * and will just return the size of all the items up to len bytes. 283 * If dest_page is passed, then the function will kmap_local the 284 * page and ignore dest, but it must still be non-NULL to avoid the 285 * counting-only behavior. 286 * @len: length in bytes to read 287 * @dest_page: copy into this page instead of the dest buffer 288 * 289 * Helper function to read items from the btree. This returns the number of 290 * bytes read or < 0 for errors. We can return short reads if the items don't 291 * exist on disk or aren't big enough to fill the desired length. Supports 292 * reading into a provided buffer (dest) or into the page cache 293 * 294 * Returns number of bytes read or a negative error code on failure. 295 */ 296 static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, 297 char *dest, u64 len, struct page *dest_page) 298 { 299 struct btrfs_path *path; 300 struct btrfs_root *root = inode->root; 301 struct extent_buffer *leaf; 302 struct btrfs_key key; 303 u64 item_end; 304 u64 copy_end; 305 int copied = 0; 306 u32 copy_offset; 307 unsigned long copy_bytes; 308 unsigned long dest_offset = 0; 309 void *data; 310 char *kaddr = dest; 311 int ret; 312 313 path = btrfs_alloc_path(); 314 if (!path) 315 return -ENOMEM; 316 317 if (dest_page) 318 path->reada = READA_FORWARD; 319 320 key.objectid = btrfs_ino(inode); 321 key.type = key_type; 322 key.offset = offset; 323 324 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 325 if (ret < 0) { 326 goto out; 327 } else if (ret > 0) { 328 ret = 0; 329 if (path->slots[0] == 0) 330 goto out; 331 path->slots[0]--; 332 } 333 334 while (len > 0) { 335 leaf = path->nodes[0]; 336 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 337 338 if (key.objectid != btrfs_ino(inode) || key.type != key_type) 339 break; 340 341 item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset; 342 343 if (copied > 0) { 344 /* 345 * Once we've copied something, we want all of the items 346 * to be sequential 347 */ 348 if (key.offset != offset) 349 break; 350 } else { 351 /* 352 * Our initial offset might be in the middle of an 353 * item. Make sure it all makes sense. 354 */ 355 if (key.offset > offset) 356 break; 357 if (item_end <= offset) 358 break; 359 } 360 361 /* desc = NULL to just sum all the item lengths */ 362 if (!dest) 363 copy_end = item_end; 364 else 365 copy_end = min(offset + len, item_end); 366 367 /* Number of bytes in this item we want to copy */ 368 copy_bytes = copy_end - offset; 369 370 /* Offset from the start of item for copying */ 371 copy_offset = offset - key.offset; 372 373 if (dest) { 374 if (dest_page) 375 kaddr = kmap_local_page(dest_page); 376 377 data = btrfs_item_ptr(leaf, path->slots[0], void); 378 read_extent_buffer(leaf, kaddr + dest_offset, 379 (unsigned long)data + copy_offset, 380 copy_bytes); 381 382 if (dest_page) 383 kunmap_local(kaddr); 384 } 385 386 offset += copy_bytes; 387 dest_offset += copy_bytes; 388 len -= copy_bytes; 389 copied += copy_bytes; 390 391 path->slots[0]++; 392 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 393 /* 394 * We've reached the last slot in this leaf and we need 395 * to go to the next leaf. 396 */ 397 ret = btrfs_next_leaf(root, path); 398 if (ret < 0) { 399 break; 400 } else if (ret > 0) { 401 ret = 0; 402 break; 403 } 404 } 405 } 406 out: 407 btrfs_free_path(path); 408 if (!ret) 409 ret = copied; 410 return ret; 411 } 412 413 /* 414 * Delete an fsverity orphan 415 * 416 * @trans: transaction to do the delete in 417 * @inode: inode to orphan 418 * 419 * Capture verity orphan specific logic that is repeated in the couple places 420 * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes 421 * with 0 links. 422 * 423 * Returns zero on success or a negative error code on failure. 424 */ 425 static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode) 426 { 427 struct btrfs_root *root = inode->root; 428 int ret; 429 430 /* 431 * If the inode has no links, it is either already unlinked, or was 432 * created with O_TMPFILE. In either case, it should have an orphan from 433 * that other operation. Rather than reference count the orphans, we 434 * simply ignore them here, because we only invoke the verity path in 435 * the orphan logic when i_nlink is 1. 436 */ 437 if (!inode->vfs_inode.i_nlink) 438 return 0; 439 440 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 441 if (ret == -ENOENT) 442 ret = 0; 443 return ret; 444 } 445 446 /* 447 * Rollback in-progress verity if we encounter an error. 448 * 449 * @inode: inode verity had an error for 450 * 451 * We try to handle recoverable errors while enabling verity by rolling it back 452 * and just failing the operation, rather than having an fs level error no 453 * matter what. However, any error in rollback is unrecoverable. 454 * 455 * Returns 0 on success, negative error code on failure. 456 */ 457 static int rollback_verity(struct btrfs_inode *inode) 458 { 459 struct btrfs_trans_handle *trans = NULL; 460 struct btrfs_root *root = inode->root; 461 int ret; 462 463 ASSERT(inode_is_locked(&inode->vfs_inode)); 464 truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size); 465 clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 466 ret = btrfs_drop_verity_items(inode); 467 if (ret) { 468 btrfs_handle_fs_error(root->fs_info, ret, 469 "failed to drop verity items in rollback %llu", 470 (u64)inode->vfs_inode.i_ino); 471 goto out; 472 } 473 474 /* 475 * 1 for updating the inode flag 476 * 1 for deleting the orphan 477 */ 478 trans = btrfs_start_transaction(root, 2); 479 if (IS_ERR(trans)) { 480 ret = PTR_ERR(trans); 481 trans = NULL; 482 btrfs_handle_fs_error(root->fs_info, ret, 483 "failed to start transaction in verity rollback %llu", 484 (u64)inode->vfs_inode.i_ino); 485 goto out; 486 } 487 inode->ro_flags &= ~BTRFS_INODE_RO_VERITY; 488 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 489 ret = btrfs_update_inode(trans, inode); 490 if (ret) { 491 btrfs_abort_transaction(trans, ret); 492 goto out; 493 } 494 ret = del_orphan(trans, inode); 495 if (ret) { 496 btrfs_abort_transaction(trans, ret); 497 goto out; 498 } 499 out: 500 if (trans) 501 btrfs_end_transaction(trans); 502 return ret; 503 } 504 505 /* 506 * Finalize making the file a valid verity file 507 * 508 * @inode: inode to be marked as verity 509 * @desc: contents of the verity descriptor to write (not NULL) 510 * @desc_size: size of the verity descriptor 511 * 512 * Do the actual work of finalizing verity after successfully writing the Merkle 513 * tree: 514 * 515 * - write out the descriptor items 516 * - mark the inode with the verity flag 517 * - delete the orphan item 518 * - mark the ro compat bit 519 * - clear the in progress bit 520 * 521 * Returns 0 on success, negative error code on failure. 522 */ 523 static int finish_verity(struct btrfs_inode *inode, const void *desc, 524 size_t desc_size) 525 { 526 struct btrfs_trans_handle *trans = NULL; 527 struct btrfs_root *root = inode->root; 528 struct btrfs_verity_descriptor_item item; 529 int ret; 530 531 /* Write out the descriptor item */ 532 memset(&item, 0, sizeof(item)); 533 btrfs_set_stack_verity_descriptor_size(&item, desc_size); 534 ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0, 535 (const char *)&item, sizeof(item)); 536 if (ret) 537 goto out; 538 539 /* Write out the descriptor itself */ 540 ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1, 541 desc, desc_size); 542 if (ret) 543 goto out; 544 545 /* 546 * 1 for updating the inode flag 547 * 1 for deleting the orphan 548 */ 549 trans = btrfs_start_transaction(root, 2); 550 if (IS_ERR(trans)) { 551 ret = PTR_ERR(trans); 552 goto out; 553 } 554 inode->ro_flags |= BTRFS_INODE_RO_VERITY; 555 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 556 ret = btrfs_update_inode(trans, inode); 557 if (ret) 558 goto end_trans; 559 ret = del_orphan(trans, inode); 560 if (ret) 561 goto end_trans; 562 clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 563 btrfs_set_fs_compat_ro(root->fs_info, VERITY); 564 end_trans: 565 btrfs_end_transaction(trans); 566 out: 567 return ret; 568 569 } 570 571 /* 572 * fsverity op that begins enabling verity. 573 * 574 * @filp: file to enable verity on 575 * 576 * Begin enabling fsverity for the file. We drop any existing verity items, add 577 * an orphan and set the in progress bit. 578 * 579 * Returns 0 on success, negative error code on failure. 580 */ 581 static int btrfs_begin_enable_verity(struct file *filp) 582 { 583 struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); 584 struct btrfs_root *root = inode->root; 585 struct btrfs_trans_handle *trans; 586 int ret; 587 588 ASSERT(inode_is_locked(file_inode(filp))); 589 590 if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags)) 591 return -EBUSY; 592 593 /* 594 * This should almost never do anything, but theoretically, it's 595 * possible that we failed to enable verity on a file, then were 596 * interrupted or failed while rolling back, failed to cleanup the 597 * orphan, and finally attempt to enable verity again. 598 */ 599 ret = btrfs_drop_verity_items(inode); 600 if (ret) 601 return ret; 602 603 /* 1 for the orphan item */ 604 trans = btrfs_start_transaction(root, 1); 605 if (IS_ERR(trans)) 606 return PTR_ERR(trans); 607 608 ret = btrfs_orphan_add(trans, inode); 609 if (!ret) 610 set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 611 btrfs_end_transaction(trans); 612 613 return 0; 614 } 615 616 /* 617 * fsverity op that ends enabling verity. 618 * 619 * @filp: file we are finishing enabling verity on 620 * @desc: verity descriptor to write out (NULL in error conditions) 621 * @desc_size: size of the verity descriptor (variable with signatures) 622 * @merkle_tree_size: size of the merkle tree in bytes 623 * 624 * If desc is null, then VFS is signaling an error occurred during verity 625 * enable, and we should try to rollback. Otherwise, attempt to finish verity. 626 * 627 * Returns 0 on success, negative error code on error. 628 */ 629 static int btrfs_end_enable_verity(struct file *filp, const void *desc, 630 size_t desc_size, u64 merkle_tree_size) 631 { 632 struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); 633 int ret = 0; 634 int rollback_ret; 635 636 ASSERT(inode_is_locked(file_inode(filp))); 637 638 if (desc == NULL) 639 goto rollback; 640 641 ret = finish_verity(inode, desc, desc_size); 642 if (ret) 643 goto rollback; 644 return ret; 645 646 rollback: 647 rollback_ret = rollback_verity(inode); 648 if (rollback_ret) 649 btrfs_err(inode->root->fs_info, 650 "failed to rollback verity items: %d", rollback_ret); 651 return ret; 652 } 653 654 /* 655 * fsverity op that gets the struct fsverity_descriptor. 656 * 657 * @inode: inode to get the descriptor of 658 * @buf: output buffer for the descriptor contents 659 * @buf_size: size of the output buffer. 0 to query the size 660 * 661 * fsverity does a two pass setup for reading the descriptor, in the first pass 662 * it calls with buf_size = 0 to query the size of the descriptor, and then in 663 * the second pass it actually reads the descriptor off disk. 664 * 665 * Returns the size on success or a negative error code on failure. 666 */ 667 int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size) 668 { 669 u64 true_size; 670 int ret = 0; 671 struct btrfs_verity_descriptor_item item; 672 673 memset(&item, 0, sizeof(item)); 674 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0, 675 (char *)&item, sizeof(item), NULL); 676 if (ret < 0) 677 return ret; 678 679 if (item.reserved[0] != 0 || item.reserved[1] != 0) 680 return -EUCLEAN; 681 682 true_size = btrfs_stack_verity_descriptor_size(&item); 683 if (true_size > INT_MAX) 684 return -EUCLEAN; 685 686 if (buf_size == 0) 687 return true_size; 688 if (buf_size < true_size) 689 return -ERANGE; 690 691 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1, 692 buf, buf_size, NULL); 693 if (ret < 0) 694 return ret; 695 if (ret != true_size) 696 return -EIO; 697 698 return true_size; 699 } 700 701 /* 702 * fsverity op that reads and caches a merkle tree page. 703 * 704 * @inode: inode to read a merkle tree page for 705 * @index: page index relative to the start of the merkle tree 706 * @num_ra_pages: number of pages to readahead. Optional, we ignore it 707 * 708 * The Merkle tree is stored in the filesystem btree, but its pages are cached 709 * with a logical position past EOF in the inode's mapping. 710 * 711 * Returns the page we read, or an ERR_PTR on error. 712 */ 713 static struct page *btrfs_read_merkle_tree_page(struct inode *inode, 714 pgoff_t index, 715 unsigned long num_ra_pages) 716 { 717 struct folio *folio; 718 u64 off = (u64)index << PAGE_SHIFT; 719 loff_t merkle_pos = merkle_file_pos(inode); 720 int ret; 721 722 if (merkle_pos < 0) 723 return ERR_PTR(merkle_pos); 724 if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE) 725 return ERR_PTR(-EFBIG); 726 index += merkle_pos >> PAGE_SHIFT; 727 again: 728 folio = __filemap_get_folio(inode->i_mapping, index, FGP_ACCESSED, 0); 729 if (!IS_ERR(folio)) { 730 if (folio_test_uptodate(folio)) 731 goto out; 732 733 folio_lock(folio); 734 /* If it's not uptodate after we have the lock, we got a read error. */ 735 if (!folio_test_uptodate(folio)) { 736 folio_unlock(folio); 737 folio_put(folio); 738 return ERR_PTR(-EIO); 739 } 740 folio_unlock(folio); 741 goto out; 742 } 743 744 folio = filemap_alloc_folio(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS), 745 0); 746 if (!folio) 747 return ERR_PTR(-ENOMEM); 748 749 ret = filemap_add_folio(inode->i_mapping, folio, index, GFP_NOFS); 750 if (ret) { 751 folio_put(folio); 752 /* Did someone else insert a folio here? */ 753 if (ret == -EEXIST) 754 goto again; 755 return ERR_PTR(ret); 756 } 757 758 /* 759 * Merkle item keys are indexed from byte 0 in the merkle tree. 760 * They have the form: 761 * 762 * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ] 763 */ 764 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off, 765 folio_address(folio), PAGE_SIZE, &folio->page); 766 if (ret < 0) { 767 folio_put(folio); 768 return ERR_PTR(ret); 769 } 770 if (ret < PAGE_SIZE) 771 folio_zero_segment(folio, ret, PAGE_SIZE); 772 773 folio_mark_uptodate(folio); 774 folio_unlock(folio); 775 776 out: 777 return folio_file_page(folio, index); 778 } 779 780 /* 781 * fsverity op that writes a Merkle tree block into the btree. 782 * 783 * @inode: inode to write a Merkle tree block for 784 * @buf: Merkle tree block to write 785 * @pos: the position of the block in the Merkle tree (in bytes) 786 * @size: the Merkle tree block size (in bytes) 787 * 788 * Returns 0 on success or negative error code on failure 789 */ 790 static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf, 791 u64 pos, unsigned int size) 792 { 793 loff_t merkle_pos = merkle_file_pos(inode); 794 795 if (merkle_pos < 0) 796 return merkle_pos; 797 if (merkle_pos > inode->i_sb->s_maxbytes - pos - size) 798 return -EFBIG; 799 800 return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, 801 pos, buf, size); 802 } 803 804 const struct fsverity_operations btrfs_verityops = { 805 .begin_enable_verity = btrfs_begin_enable_verity, 806 .end_enable_verity = btrfs_end_enable_verity, 807 .get_verity_descriptor = btrfs_get_verity_descriptor, 808 .read_merkle_tree_page = btrfs_read_merkle_tree_page, 809 .write_merkle_tree_block = btrfs_write_merkle_tree_block, 810 }; 811
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.