~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/volumes.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (C) 2007 Oracle.  All rights reserved.
  4  */
  5 
  6 #include <linux/sched.h>
  7 #include <linux/sched/mm.h>
  8 #include <linux/slab.h>
  9 #include <linux/ratelimit.h>
 10 #include <linux/kthread.h>
 11 #include <linux/semaphore.h>
 12 #include <linux/uuid.h>
 13 #include <linux/list_sort.h>
 14 #include <linux/namei.h>
 15 #include "misc.h"
 16 #include "ctree.h"
 17 #include "disk-io.h"
 18 #include "transaction.h"
 19 #include "volumes.h"
 20 #include "raid56.h"
 21 #include "rcu-string.h"
 22 #include "dev-replace.h"
 23 #include "sysfs.h"
 24 #include "tree-checker.h"
 25 #include "space-info.h"
 26 #include "block-group.h"
 27 #include "discard.h"
 28 #include "zoned.h"
 29 #include "fs.h"
 30 #include "accessors.h"
 31 #include "uuid-tree.h"
 32 #include "ioctl.h"
 33 #include "relocation.h"
 34 #include "scrub.h"
 35 #include "super.h"
 36 #include "raid-stripe-tree.h"
 37 
 38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK   (BTRFS_BLOCK_GROUP_RAID0 | \
 39                                          BTRFS_BLOCK_GROUP_RAID10 | \
 40                                          BTRFS_BLOCK_GROUP_RAID56_MASK)
 41 
 42 struct btrfs_io_geometry {
 43         u32 stripe_index;
 44         u32 stripe_nr;
 45         int mirror_num;
 46         int num_stripes;
 47         u64 stripe_offset;
 48         u64 raid56_full_stripe_start;
 49         int max_errors;
 50         enum btrfs_map_op op;
 51 };
 52 
 53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
 54         [BTRFS_RAID_RAID10] = {
 55                 .sub_stripes    = 2,
 56                 .dev_stripes    = 1,
 57                 .devs_max       = 0,    /* 0 == as many as possible */
 58                 .devs_min       = 2,
 59                 .tolerated_failures = 1,
 60                 .devs_increment = 2,
 61                 .ncopies        = 2,
 62                 .nparity        = 0,
 63                 .raid_name      = "raid10",
 64                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
 65                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
 66         },
 67         [BTRFS_RAID_RAID1] = {
 68                 .sub_stripes    = 1,
 69                 .dev_stripes    = 1,
 70                 .devs_max       = 2,
 71                 .devs_min       = 2,
 72                 .tolerated_failures = 1,
 73                 .devs_increment = 2,
 74                 .ncopies        = 2,
 75                 .nparity        = 0,
 76                 .raid_name      = "raid1",
 77                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
 78                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
 79         },
 80         [BTRFS_RAID_RAID1C3] = {
 81                 .sub_stripes    = 1,
 82                 .dev_stripes    = 1,
 83                 .devs_max       = 3,
 84                 .devs_min       = 3,
 85                 .tolerated_failures = 2,
 86                 .devs_increment = 3,
 87                 .ncopies        = 3,
 88                 .nparity        = 0,
 89                 .raid_name      = "raid1c3",
 90                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
 91                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
 92         },
 93         [BTRFS_RAID_RAID1C4] = {
 94                 .sub_stripes    = 1,
 95                 .dev_stripes    = 1,
 96                 .devs_max       = 4,
 97                 .devs_min       = 4,
 98                 .tolerated_failures = 3,
 99                 .devs_increment = 4,
100                 .ncopies        = 4,
101                 .nparity        = 0,
102                 .raid_name      = "raid1c4",
103                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
104                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105         },
106         [BTRFS_RAID_DUP] = {
107                 .sub_stripes    = 1,
108                 .dev_stripes    = 2,
109                 .devs_max       = 1,
110                 .devs_min       = 1,
111                 .tolerated_failures = 0,
112                 .devs_increment = 1,
113                 .ncopies        = 2,
114                 .nparity        = 0,
115                 .raid_name      = "dup",
116                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
117                 .mindev_error   = 0,
118         },
119         [BTRFS_RAID_RAID0] = {
120                 .sub_stripes    = 1,
121                 .dev_stripes    = 1,
122                 .devs_max       = 0,
123                 .devs_min       = 1,
124                 .tolerated_failures = 0,
125                 .devs_increment = 1,
126                 .ncopies        = 1,
127                 .nparity        = 0,
128                 .raid_name      = "raid0",
129                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
130                 .mindev_error   = 0,
131         },
132         [BTRFS_RAID_SINGLE] = {
133                 .sub_stripes    = 1,
134                 .dev_stripes    = 1,
135                 .devs_max       = 1,
136                 .devs_min       = 1,
137                 .tolerated_failures = 0,
138                 .devs_increment = 1,
139                 .ncopies        = 1,
140                 .nparity        = 0,
141                 .raid_name      = "single",
142                 .bg_flag        = 0,
143                 .mindev_error   = 0,
144         },
145         [BTRFS_RAID_RAID5] = {
146                 .sub_stripes    = 1,
147                 .dev_stripes    = 1,
148                 .devs_max       = 0,
149                 .devs_min       = 2,
150                 .tolerated_failures = 1,
151                 .devs_increment = 1,
152                 .ncopies        = 1,
153                 .nparity        = 1,
154                 .raid_name      = "raid5",
155                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
156                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157         },
158         [BTRFS_RAID_RAID6] = {
159                 .sub_stripes    = 1,
160                 .dev_stripes    = 1,
161                 .devs_max       = 0,
162                 .devs_min       = 3,
163                 .tolerated_failures = 2,
164                 .devs_increment = 1,
165                 .ncopies        = 1,
166                 .nparity        = 2,
167                 .raid_name      = "raid6",
168                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
169                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170         },
171 };
172 
173 /*
174  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175  * can be used as index to access btrfs_raid_array[].
176  */
177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179         const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180 
181         if (!profile)
182                 return BTRFS_RAID_SINGLE;
183 
184         return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186 
187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189         const int index = btrfs_bg_flags_to_raid_index(flags);
190 
191         if (index >= BTRFS_NR_RAID_TYPES)
192                 return NULL;
193 
194         return btrfs_raid_array[index].raid_name;
195 }
196 
197 int btrfs_nr_parity_stripes(u64 type)
198 {
199         enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200 
201         return btrfs_raid_array[index].nparity;
202 }
203 
204 /*
205  * Fill @buf with textual description of @bg_flags, no more than @size_buf
206  * bytes including terminating null byte.
207  */
208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210         int i;
211         int ret;
212         char *bp = buf;
213         u64 flags = bg_flags;
214         u32 size_bp = size_buf;
215 
216         if (!flags) {
217                 strcpy(bp, "NONE");
218                 return;
219         }
220 
221 #define DESCRIBE_FLAG(flag, desc)                                               \
222         do {                                                            \
223                 if (flags & (flag)) {                                   \
224                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
225                         if (ret < 0 || ret >= size_bp)                  \
226                                 goto out_overflow;                      \
227                         size_bp -= ret;                                 \
228                         bp += ret;                                      \
229                         flags &= ~(flag);                               \
230                 }                                                       \
231         } while (0)
232 
233         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236 
237         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240                               btrfs_raid_array[i].raid_name);
241 #undef DESCRIBE_FLAG
242 
243         if (flags) {
244                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
245                 size_bp -= ret;
246         }
247 
248         if (size_bp < size_buf)
249                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250 
251         /*
252          * The text is trimmed, it's up to the caller to provide sufficiently
253          * large buffer
254          */
255 out_overflow:;
256 }
257 
258 static int init_first_rw_device(struct btrfs_trans_handle *trans);
259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261 
262 /*
263  * Device locking
264  * ==============
265  *
266  * There are several mutexes that protect manipulation of devices and low-level
267  * structures like chunks but not block groups, extents or files
268  *
269  * uuid_mutex (global lock)
270  * ------------------------
271  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273  * device) or requested by the device= mount option
274  *
275  * the mutex can be very coarse and can cover long-running operations
276  *
277  * protects: updates to fs_devices counters like missing devices, rw devices,
278  * seeding, structure cloning, opening/closing devices at mount/umount time
279  *
280  * global::fs_devs - add, remove, updates to the global list
281  *
282  * does not protect: manipulation of the fs_devices::devices list in general
283  * but in mount context it could be used to exclude list modifications by eg.
284  * scan ioctl
285  *
286  * btrfs_device::name - renames (write side), read is RCU
287  *
288  * fs_devices::device_list_mutex (per-fs, with RCU)
289  * ------------------------------------------------
290  * protects updates to fs_devices::devices, ie. adding and deleting
291  *
292  * simple list traversal with read-only actions can be done with RCU protection
293  *
294  * may be used to exclude some operations from running concurrently without any
295  * modifications to the list (see write_all_supers)
296  *
297  * Is not required at mount and close times, because our device list is
298  * protected by the uuid_mutex at that point.
299  *
300  * balance_mutex
301  * -------------
302  * protects balance structures (status, state) and context accessed from
303  * several places (internally, ioctl)
304  *
305  * chunk_mutex
306  * -----------
307  * protects chunks, adding or removing during allocation, trim or when a new
308  * device is added/removed. Additionally it also protects post_commit_list of
309  * individual devices, since they can be added to the transaction's
310  * post_commit_list only with chunk_mutex held.
311  *
312  * cleaner_mutex
313  * -------------
314  * a big lock that is held by the cleaner thread and prevents running subvolume
315  * cleaning together with relocation or delayed iputs
316  *
317  *
318  * Lock nesting
319  * ============
320  *
321  * uuid_mutex
322  *   device_list_mutex
323  *     chunk_mutex
324  *   balance_mutex
325  *
326  *
327  * Exclusive operations
328  * ====================
329  *
330  * Maintains the exclusivity of the following operations that apply to the
331  * whole filesystem and cannot run in parallel.
332  *
333  * - Balance (*)
334  * - Device add
335  * - Device remove
336  * - Device replace (*)
337  * - Resize
338  *
339  * The device operations (as above) can be in one of the following states:
340  *
341  * - Running state
342  * - Paused state
343  * - Completed state
344  *
345  * Only device operations marked with (*) can go into the Paused state for the
346  * following reasons:
347  *
348  * - ioctl (only Balance can be Paused through ioctl)
349  * - filesystem remounted as read-only
350  * - filesystem unmounted and mounted as read-only
351  * - system power-cycle and filesystem mounted as read-only
352  * - filesystem or device errors leading to forced read-only
353  *
354  * The status of exclusive operation is set and cleared atomically.
355  * During the course of Paused state, fs_info::exclusive_operation remains set.
356  * A device operation in Paused or Running state can be canceled or resumed
357  * either by ioctl (Balance only) or when remounted as read-write.
358  * The exclusive status is cleared when the device operation is canceled or
359  * completed.
360  */
361 
362 DEFINE_MUTEX(uuid_mutex);
363 static LIST_HEAD(fs_uuids);
364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365 {
366         return &fs_uuids;
367 }
368 
369 /*
370  * Allocate new btrfs_fs_devices structure identified by a fsid.
371  *
372  * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
373  *           fs_devices::metadata_fsid
374  *
375  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376  * The returned struct is not linked onto any lists and can be destroyed with
377  * kfree() right away.
378  */
379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380 {
381         struct btrfs_fs_devices *fs_devs;
382 
383         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384         if (!fs_devs)
385                 return ERR_PTR(-ENOMEM);
386 
387         mutex_init(&fs_devs->device_list_mutex);
388 
389         INIT_LIST_HEAD(&fs_devs->devices);
390         INIT_LIST_HEAD(&fs_devs->alloc_list);
391         INIT_LIST_HEAD(&fs_devs->fs_list);
392         INIT_LIST_HEAD(&fs_devs->seed_list);
393 
394         if (fsid) {
395                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397         }
398 
399         return fs_devs;
400 }
401 
402 static void btrfs_free_device(struct btrfs_device *device)
403 {
404         WARN_ON(!list_empty(&device->post_commit_list));
405         rcu_string_free(device->name);
406         extent_io_tree_release(&device->alloc_state);
407         btrfs_destroy_dev_zone_info(device);
408         kfree(device);
409 }
410 
411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412 {
413         struct btrfs_device *device;
414 
415         WARN_ON(fs_devices->opened);
416         while (!list_empty(&fs_devices->devices)) {
417                 device = list_entry(fs_devices->devices.next,
418                                     struct btrfs_device, dev_list);
419                 list_del(&device->dev_list);
420                 btrfs_free_device(device);
421         }
422         kfree(fs_devices);
423 }
424 
425 void __exit btrfs_cleanup_fs_uuids(void)
426 {
427         struct btrfs_fs_devices *fs_devices;
428 
429         while (!list_empty(&fs_uuids)) {
430                 fs_devices = list_entry(fs_uuids.next,
431                                         struct btrfs_fs_devices, fs_list);
432                 list_del(&fs_devices->fs_list);
433                 free_fs_devices(fs_devices);
434         }
435 }
436 
437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438                                   const u8 *fsid, const u8 *metadata_fsid)
439 {
440         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441                 return false;
442 
443         if (!metadata_fsid)
444                 return true;
445 
446         if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447                 return false;
448 
449         return true;
450 }
451 
452 static noinline struct btrfs_fs_devices *find_fsid(
453                 const u8 *fsid, const u8 *metadata_fsid)
454 {
455         struct btrfs_fs_devices *fs_devices;
456 
457         ASSERT(fsid);
458 
459         /* Handle non-split brain cases */
460         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461                 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462                         return fs_devices;
463         }
464         return NULL;
465 }
466 
467 static int
468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469                       int flush, struct file **bdev_file,
470                       struct btrfs_super_block **disk_super)
471 {
472         struct block_device *bdev;
473         int ret;
474 
475         *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476 
477         if (IS_ERR(*bdev_file)) {
478                 ret = PTR_ERR(*bdev_file);
479                 goto error;
480         }
481         bdev = file_bdev(*bdev_file);
482 
483         if (flush)
484                 sync_blockdev(bdev);
485         if (holder) {
486                 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
487                 if (ret) {
488                         fput(*bdev_file);
489                         goto error;
490                 }
491         }
492         invalidate_bdev(bdev);
493         *disk_super = btrfs_read_dev_super(bdev);
494         if (IS_ERR(*disk_super)) {
495                 ret = PTR_ERR(*disk_super);
496                 fput(*bdev_file);
497                 goto error;
498         }
499 
500         return 0;
501 
502 error:
503         *disk_super = NULL;
504         *bdev_file = NULL;
505         return ret;
506 }
507 
508 /*
509  *  Search and remove all stale devices (which are not mounted).  When both
510  *  inputs are NULL, it will search and release all stale devices.
511  *
512  *  @devt:         Optional. When provided will it release all unmounted devices
513  *                 matching this devt only.
514  *  @skip_device:  Optional. Will skip this device when searching for the stale
515  *                 devices.
516  *
517  *  Return:     0 for success or if @devt is 0.
518  *              -EBUSY if @devt is a mounted device.
519  *              -ENOENT if @devt does not match any device in the list.
520  */
521 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
522 {
523         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
524         struct btrfs_device *device, *tmp_device;
525         int ret;
526         bool freed = false;
527 
528         lockdep_assert_held(&uuid_mutex);
529 
530         /* Return good status if there is no instance of devt. */
531         ret = 0;
532         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
533 
534                 mutex_lock(&fs_devices->device_list_mutex);
535                 list_for_each_entry_safe(device, tmp_device,
536                                          &fs_devices->devices, dev_list) {
537                         if (skip_device && skip_device == device)
538                                 continue;
539                         if (devt && devt != device->devt)
540                                 continue;
541                         if (fs_devices->opened) {
542                                 if (devt)
543                                         ret = -EBUSY;
544                                 break;
545                         }
546 
547                         /* delete the stale device */
548                         fs_devices->num_devices--;
549                         list_del(&device->dev_list);
550                         btrfs_free_device(device);
551 
552                         freed = true;
553                 }
554                 mutex_unlock(&fs_devices->device_list_mutex);
555 
556                 if (fs_devices->num_devices == 0) {
557                         btrfs_sysfs_remove_fsid(fs_devices);
558                         list_del(&fs_devices->fs_list);
559                         free_fs_devices(fs_devices);
560                 }
561         }
562 
563         /* If there is at least one freed device return 0. */
564         if (freed)
565                 return 0;
566 
567         return ret;
568 }
569 
570 static struct btrfs_fs_devices *find_fsid_by_device(
571                                         struct btrfs_super_block *disk_super,
572                                         dev_t devt, bool *same_fsid_diff_dev)
573 {
574         struct btrfs_fs_devices *fsid_fs_devices;
575         struct btrfs_fs_devices *devt_fs_devices;
576         const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
577                                         BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
578         bool found_by_devt = false;
579 
580         /* Find the fs_device by the usual method, if found use it. */
581         fsid_fs_devices = find_fsid(disk_super->fsid,
582                     has_metadata_uuid ? disk_super->metadata_uuid : NULL);
583 
584         /* The temp_fsid feature is supported only with single device filesystem. */
585         if (btrfs_super_num_devices(disk_super) != 1)
586                 return fsid_fs_devices;
587 
588         /*
589          * A seed device is an integral component of the sprout device, which
590          * functions as a multi-device filesystem. So, temp-fsid feature is
591          * not supported.
592          */
593         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
594                 return fsid_fs_devices;
595 
596         /* Try to find a fs_devices by matching devt. */
597         list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
598                 struct btrfs_device *device;
599 
600                 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
601                         if (device->devt == devt) {
602                                 found_by_devt = true;
603                                 break;
604                         }
605                 }
606                 if (found_by_devt)
607                         break;
608         }
609 
610         if (found_by_devt) {
611                 /* Existing device. */
612                 if (fsid_fs_devices == NULL) {
613                         if (devt_fs_devices->opened == 0) {
614                                 /* Stale device. */
615                                 return NULL;
616                         } else {
617                                 /* temp_fsid is mounting a subvol. */
618                                 return devt_fs_devices;
619                         }
620                 } else {
621                         /* Regular or temp_fsid device mounting a subvol. */
622                         return devt_fs_devices;
623                 }
624         } else {
625                 /* New device. */
626                 if (fsid_fs_devices == NULL) {
627                         return NULL;
628                 } else {
629                         /* sb::fsid is already used create a new temp_fsid. */
630                         *same_fsid_diff_dev = true;
631                         return NULL;
632                 }
633         }
634 
635         /* Not reached. */
636 }
637 
638 /*
639  * This is only used on mount, and we are protected from competing things
640  * messing with our fs_devices by the uuid_mutex, thus we do not need the
641  * fs_devices->device_list_mutex here.
642  */
643 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
644                         struct btrfs_device *device, blk_mode_t flags,
645                         void *holder)
646 {
647         struct file *bdev_file;
648         struct btrfs_super_block *disk_super;
649         u64 devid;
650         int ret;
651 
652         if (device->bdev)
653                 return -EINVAL;
654         if (!device->name)
655                 return -EINVAL;
656 
657         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
658                                     &bdev_file, &disk_super);
659         if (ret)
660                 return ret;
661 
662         devid = btrfs_stack_device_id(&disk_super->dev_item);
663         if (devid != device->devid)
664                 goto error_free_page;
665 
666         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
667                 goto error_free_page;
668 
669         device->generation = btrfs_super_generation(disk_super);
670 
671         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
672                 if (btrfs_super_incompat_flags(disk_super) &
673                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
674                         pr_err(
675                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
676                         goto error_free_page;
677                 }
678 
679                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
680                 fs_devices->seeding = true;
681         } else {
682                 if (bdev_read_only(file_bdev(bdev_file)))
683                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
684                 else
685                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
686         }
687 
688         if (!bdev_nonrot(file_bdev(bdev_file)))
689                 fs_devices->rotating = true;
690 
691         if (bdev_max_discard_sectors(file_bdev(bdev_file)))
692                 fs_devices->discardable = true;
693 
694         device->bdev_file = bdev_file;
695         device->bdev = file_bdev(bdev_file);
696         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
697 
698         if (device->devt != device->bdev->bd_dev) {
699                 btrfs_warn(NULL,
700                            "device %s maj:min changed from %d:%d to %d:%d",
701                            device->name->str, MAJOR(device->devt),
702                            MINOR(device->devt), MAJOR(device->bdev->bd_dev),
703                            MINOR(device->bdev->bd_dev));
704 
705                 device->devt = device->bdev->bd_dev;
706         }
707 
708         fs_devices->open_devices++;
709         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
710             device->devid != BTRFS_DEV_REPLACE_DEVID) {
711                 fs_devices->rw_devices++;
712                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
713         }
714         btrfs_release_disk_super(disk_super);
715 
716         return 0;
717 
718 error_free_page:
719         btrfs_release_disk_super(disk_super);
720         fput(bdev_file);
721 
722         return -EINVAL;
723 }
724 
725 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
726 {
727         bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
728                                   BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
729 
730         return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
731 }
732 
733 /*
734  * Add new device to list of registered devices
735  *
736  * Returns:
737  * device pointer which was just added or updated when successful
738  * error pointer when failed
739  */
740 static noinline struct btrfs_device *device_list_add(const char *path,
741                            struct btrfs_super_block *disk_super,
742                            bool *new_device_added)
743 {
744         struct btrfs_device *device;
745         struct btrfs_fs_devices *fs_devices = NULL;
746         struct rcu_string *name;
747         u64 found_transid = btrfs_super_generation(disk_super);
748         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
749         dev_t path_devt;
750         int error;
751         bool same_fsid_diff_dev = false;
752         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
753                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
754 
755         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
756                 btrfs_err(NULL,
757 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
758                           path);
759                 return ERR_PTR(-EAGAIN);
760         }
761 
762         error = lookup_bdev(path, &path_devt);
763         if (error) {
764                 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
765                           path, error);
766                 return ERR_PTR(error);
767         }
768 
769         fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
770 
771         if (!fs_devices) {
772                 fs_devices = alloc_fs_devices(disk_super->fsid);
773                 if (IS_ERR(fs_devices))
774                         return ERR_CAST(fs_devices);
775 
776                 if (has_metadata_uuid)
777                         memcpy(fs_devices->metadata_uuid,
778                                disk_super->metadata_uuid, BTRFS_FSID_SIZE);
779 
780                 if (same_fsid_diff_dev) {
781                         generate_random_uuid(fs_devices->fsid);
782                         fs_devices->temp_fsid = true;
783                 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
784                                 path, MAJOR(path_devt), MINOR(path_devt),
785                                 fs_devices->fsid);
786                 }
787 
788                 mutex_lock(&fs_devices->device_list_mutex);
789                 list_add(&fs_devices->fs_list, &fs_uuids);
790 
791                 device = NULL;
792         } else {
793                 struct btrfs_dev_lookup_args args = {
794                         .devid = devid,
795                         .uuid = disk_super->dev_item.uuid,
796                 };
797 
798                 mutex_lock(&fs_devices->device_list_mutex);
799                 device = btrfs_find_device(fs_devices, &args);
800 
801                 if (found_transid > fs_devices->latest_generation) {
802                         memcpy(fs_devices->fsid, disk_super->fsid,
803                                         BTRFS_FSID_SIZE);
804                         memcpy(fs_devices->metadata_uuid,
805                                btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
806                 }
807         }
808 
809         if (!device) {
810                 unsigned int nofs_flag;
811 
812                 if (fs_devices->opened) {
813                         btrfs_err(NULL,
814 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
815                                   path, MAJOR(path_devt), MINOR(path_devt),
816                                   fs_devices->fsid, current->comm,
817                                   task_pid_nr(current));
818                         mutex_unlock(&fs_devices->device_list_mutex);
819                         return ERR_PTR(-EBUSY);
820                 }
821 
822                 nofs_flag = memalloc_nofs_save();
823                 device = btrfs_alloc_device(NULL, &devid,
824                                             disk_super->dev_item.uuid, path);
825                 memalloc_nofs_restore(nofs_flag);
826                 if (IS_ERR(device)) {
827                         mutex_unlock(&fs_devices->device_list_mutex);
828                         /* we can safely leave the fs_devices entry around */
829                         return device;
830                 }
831 
832                 device->devt = path_devt;
833 
834                 list_add_rcu(&device->dev_list, &fs_devices->devices);
835                 fs_devices->num_devices++;
836 
837                 device->fs_devices = fs_devices;
838                 *new_device_added = true;
839 
840                 if (disk_super->label[0])
841                         pr_info(
842 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
843                                 disk_super->label, devid, found_transid, path,
844                                 MAJOR(path_devt), MINOR(path_devt),
845                                 current->comm, task_pid_nr(current));
846                 else
847                         pr_info(
848 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
849                                 disk_super->fsid, devid, found_transid, path,
850                                 MAJOR(path_devt), MINOR(path_devt),
851                                 current->comm, task_pid_nr(current));
852 
853         } else if (!device->name || strcmp(device->name->str, path)) {
854                 /*
855                  * When FS is already mounted.
856                  * 1. If you are here and if the device->name is NULL that
857                  *    means this device was missing at time of FS mount.
858                  * 2. If you are here and if the device->name is different
859                  *    from 'path' that means either
860                  *      a. The same device disappeared and reappeared with
861                  *         different name. or
862                  *      b. The missing-disk-which-was-replaced, has
863                  *         reappeared now.
864                  *
865                  * We must allow 1 and 2a above. But 2b would be a spurious
866                  * and unintentional.
867                  *
868                  * Further in case of 1 and 2a above, the disk at 'path'
869                  * would have missed some transaction when it was away and
870                  * in case of 2a the stale bdev has to be updated as well.
871                  * 2b must not be allowed at all time.
872                  */
873 
874                 /*
875                  * For now, we do allow update to btrfs_fs_device through the
876                  * btrfs dev scan cli after FS has been mounted.  We're still
877                  * tracking a problem where systems fail mount by subvolume id
878                  * when we reject replacement on a mounted FS.
879                  */
880                 if (!fs_devices->opened && found_transid < device->generation) {
881                         /*
882                          * That is if the FS is _not_ mounted and if you
883                          * are here, that means there is more than one
884                          * disk with same uuid and devid.We keep the one
885                          * with larger generation number or the last-in if
886                          * generation are equal.
887                          */
888                         mutex_unlock(&fs_devices->device_list_mutex);
889                         btrfs_err(NULL,
890 "device %s already registered with a higher generation, found %llu expect %llu",
891                                   path, found_transid, device->generation);
892                         return ERR_PTR(-EEXIST);
893                 }
894 
895                 /*
896                  * We are going to replace the device path for a given devid,
897                  * make sure it's the same device if the device is mounted
898                  *
899                  * NOTE: the device->fs_info may not be reliable here so pass
900                  * in a NULL to message helpers instead. This avoids a possible
901                  * use-after-free when the fs_info and fs_info->sb are already
902                  * torn down.
903                  */
904                 if (device->bdev) {
905                         if (device->devt != path_devt) {
906                                 mutex_unlock(&fs_devices->device_list_mutex);
907                                 btrfs_warn_in_rcu(NULL,
908         "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
909                                                   path, devid, found_transid,
910                                                   current->comm,
911                                                   task_pid_nr(current));
912                                 return ERR_PTR(-EEXIST);
913                         }
914                         btrfs_info_in_rcu(NULL,
915         "devid %llu device path %s changed to %s scanned by %s (%d)",
916                                           devid, btrfs_dev_name(device),
917                                           path, current->comm,
918                                           task_pid_nr(current));
919                 }
920 
921                 name = rcu_string_strdup(path, GFP_NOFS);
922                 if (!name) {
923                         mutex_unlock(&fs_devices->device_list_mutex);
924                         return ERR_PTR(-ENOMEM);
925                 }
926                 rcu_string_free(device->name);
927                 rcu_assign_pointer(device->name, name);
928                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
929                         fs_devices->missing_devices--;
930                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
931                 }
932                 device->devt = path_devt;
933         }
934 
935         /*
936          * Unmount does not free the btrfs_device struct but would zero
937          * generation along with most of the other members. So just update
938          * it back. We need it to pick the disk with largest generation
939          * (as above).
940          */
941         if (!fs_devices->opened) {
942                 device->generation = found_transid;
943                 fs_devices->latest_generation = max_t(u64, found_transid,
944                                                 fs_devices->latest_generation);
945         }
946 
947         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
948 
949         mutex_unlock(&fs_devices->device_list_mutex);
950         return device;
951 }
952 
953 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
954 {
955         struct btrfs_fs_devices *fs_devices;
956         struct btrfs_device *device;
957         struct btrfs_device *orig_dev;
958         int ret = 0;
959 
960         lockdep_assert_held(&uuid_mutex);
961 
962         fs_devices = alloc_fs_devices(orig->fsid);
963         if (IS_ERR(fs_devices))
964                 return fs_devices;
965 
966         fs_devices->total_devices = orig->total_devices;
967 
968         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
969                 const char *dev_path = NULL;
970 
971                 /*
972                  * This is ok to do without RCU read locked because we hold the
973                  * uuid mutex so nothing we touch in here is going to disappear.
974                  */
975                 if (orig_dev->name)
976                         dev_path = orig_dev->name->str;
977 
978                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
979                                             orig_dev->uuid, dev_path);
980                 if (IS_ERR(device)) {
981                         ret = PTR_ERR(device);
982                         goto error;
983                 }
984 
985                 if (orig_dev->zone_info) {
986                         struct btrfs_zoned_device_info *zone_info;
987 
988                         zone_info = btrfs_clone_dev_zone_info(orig_dev);
989                         if (!zone_info) {
990                                 btrfs_free_device(device);
991                                 ret = -ENOMEM;
992                                 goto error;
993                         }
994                         device->zone_info = zone_info;
995                 }
996 
997                 list_add(&device->dev_list, &fs_devices->devices);
998                 device->fs_devices = fs_devices;
999                 fs_devices->num_devices++;
1000         }
1001         return fs_devices;
1002 error:
1003         free_fs_devices(fs_devices);
1004         return ERR_PTR(ret);
1005 }
1006 
1007 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1008                                       struct btrfs_device **latest_dev)
1009 {
1010         struct btrfs_device *device, *next;
1011 
1012         /* This is the initialized path, it is safe to release the devices. */
1013         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1014                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1015                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1016                                       &device->dev_state) &&
1017                             !test_bit(BTRFS_DEV_STATE_MISSING,
1018                                       &device->dev_state) &&
1019                             (!*latest_dev ||
1020                              device->generation > (*latest_dev)->generation)) {
1021                                 *latest_dev = device;
1022                         }
1023                         continue;
1024                 }
1025 
1026                 /*
1027                  * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1028                  * in btrfs_init_dev_replace() so just continue.
1029                  */
1030                 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1031                         continue;
1032 
1033                 if (device->bdev_file) {
1034                         fput(device->bdev_file);
1035                         device->bdev = NULL;
1036                         device->bdev_file = NULL;
1037                         fs_devices->open_devices--;
1038                 }
1039                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1040                         list_del_init(&device->dev_alloc_list);
1041                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1042                         fs_devices->rw_devices--;
1043                 }
1044                 list_del_init(&device->dev_list);
1045                 fs_devices->num_devices--;
1046                 btrfs_free_device(device);
1047         }
1048 
1049 }
1050 
1051 /*
1052  * After we have read the system tree and know devids belonging to this
1053  * filesystem, remove the device which does not belong there.
1054  */
1055 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1056 {
1057         struct btrfs_device *latest_dev = NULL;
1058         struct btrfs_fs_devices *seed_dev;
1059 
1060         mutex_lock(&uuid_mutex);
1061         __btrfs_free_extra_devids(fs_devices, &latest_dev);
1062 
1063         list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1064                 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1065 
1066         fs_devices->latest_dev = latest_dev;
1067 
1068         mutex_unlock(&uuid_mutex);
1069 }
1070 
1071 static void btrfs_close_bdev(struct btrfs_device *device)
1072 {
1073         if (!device->bdev)
1074                 return;
1075 
1076         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1077                 sync_blockdev(device->bdev);
1078                 invalidate_bdev(device->bdev);
1079         }
1080 
1081         fput(device->bdev_file);
1082 }
1083 
1084 static void btrfs_close_one_device(struct btrfs_device *device)
1085 {
1086         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1087 
1088         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1089             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1090                 list_del_init(&device->dev_alloc_list);
1091                 fs_devices->rw_devices--;
1092         }
1093 
1094         if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1095                 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1096 
1097         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1098                 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1099                 fs_devices->missing_devices--;
1100         }
1101 
1102         btrfs_close_bdev(device);
1103         if (device->bdev) {
1104                 fs_devices->open_devices--;
1105                 device->bdev = NULL;
1106         }
1107         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1108         btrfs_destroy_dev_zone_info(device);
1109 
1110         device->fs_info = NULL;
1111         atomic_set(&device->dev_stats_ccnt, 0);
1112         extent_io_tree_release(&device->alloc_state);
1113 
1114         /*
1115          * Reset the flush error record. We might have a transient flush error
1116          * in this mount, and if so we aborted the current transaction and set
1117          * the fs to an error state, guaranteeing no super blocks can be further
1118          * committed. However that error might be transient and if we unmount the
1119          * filesystem and mount it again, we should allow the mount to succeed
1120          * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1121          * filesystem again we still get flush errors, then we will again abort
1122          * any transaction and set the error state, guaranteeing no commits of
1123          * unsafe super blocks.
1124          */
1125         device->last_flush_error = 0;
1126 
1127         /* Verify the device is back in a pristine state  */
1128         WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1129         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1130         WARN_ON(!list_empty(&device->dev_alloc_list));
1131         WARN_ON(!list_empty(&device->post_commit_list));
1132 }
1133 
1134 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1135 {
1136         struct btrfs_device *device, *tmp;
1137 
1138         lockdep_assert_held(&uuid_mutex);
1139 
1140         if (--fs_devices->opened > 0)
1141                 return;
1142 
1143         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1144                 btrfs_close_one_device(device);
1145 
1146         WARN_ON(fs_devices->open_devices);
1147         WARN_ON(fs_devices->rw_devices);
1148         fs_devices->opened = 0;
1149         fs_devices->seeding = false;
1150         fs_devices->fs_info = NULL;
1151 }
1152 
1153 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1154 {
1155         LIST_HEAD(list);
1156         struct btrfs_fs_devices *tmp;
1157 
1158         mutex_lock(&uuid_mutex);
1159         close_fs_devices(fs_devices);
1160         if (!fs_devices->opened) {
1161                 list_splice_init(&fs_devices->seed_list, &list);
1162 
1163                 /*
1164                  * If the struct btrfs_fs_devices is not assembled with any
1165                  * other device, it can be re-initialized during the next mount
1166                  * without the needing device-scan step. Therefore, it can be
1167                  * fully freed.
1168                  */
1169                 if (fs_devices->num_devices == 1) {
1170                         list_del(&fs_devices->fs_list);
1171                         free_fs_devices(fs_devices);
1172                 }
1173         }
1174 
1175 
1176         list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1177                 close_fs_devices(fs_devices);
1178                 list_del(&fs_devices->seed_list);
1179                 free_fs_devices(fs_devices);
1180         }
1181         mutex_unlock(&uuid_mutex);
1182 }
1183 
1184 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1185                                 blk_mode_t flags, void *holder)
1186 {
1187         struct btrfs_device *device;
1188         struct btrfs_device *latest_dev = NULL;
1189         struct btrfs_device *tmp_device;
1190         int ret = 0;
1191 
1192         list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1193                                  dev_list) {
1194                 int ret2;
1195 
1196                 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1197                 if (ret2 == 0 &&
1198                     (!latest_dev || device->generation > latest_dev->generation)) {
1199                         latest_dev = device;
1200                 } else if (ret2 == -ENODATA) {
1201                         fs_devices->num_devices--;
1202                         list_del(&device->dev_list);
1203                         btrfs_free_device(device);
1204                 }
1205                 if (ret == 0 && ret2 != 0)
1206                         ret = ret2;
1207         }
1208 
1209         if (fs_devices->open_devices == 0) {
1210                 if (ret)
1211                         return ret;
1212                 return -EINVAL;
1213         }
1214 
1215         fs_devices->opened = 1;
1216         fs_devices->latest_dev = latest_dev;
1217         fs_devices->total_rw_bytes = 0;
1218         fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1219         fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1220 
1221         return 0;
1222 }
1223 
1224 static int devid_cmp(void *priv, const struct list_head *a,
1225                      const struct list_head *b)
1226 {
1227         const struct btrfs_device *dev1, *dev2;
1228 
1229         dev1 = list_entry(a, struct btrfs_device, dev_list);
1230         dev2 = list_entry(b, struct btrfs_device, dev_list);
1231 
1232         if (dev1->devid < dev2->devid)
1233                 return -1;
1234         else if (dev1->devid > dev2->devid)
1235                 return 1;
1236         return 0;
1237 }
1238 
1239 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1240                        blk_mode_t flags, void *holder)
1241 {
1242         int ret;
1243 
1244         lockdep_assert_held(&uuid_mutex);
1245         /*
1246          * The device_list_mutex cannot be taken here in case opening the
1247          * underlying device takes further locks like open_mutex.
1248          *
1249          * We also don't need the lock here as this is called during mount and
1250          * exclusion is provided by uuid_mutex
1251          */
1252 
1253         if (fs_devices->opened) {
1254                 fs_devices->opened++;
1255                 ret = 0;
1256         } else {
1257                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1258                 ret = open_fs_devices(fs_devices, flags, holder);
1259         }
1260 
1261         return ret;
1262 }
1263 
1264 void btrfs_release_disk_super(struct btrfs_super_block *super)
1265 {
1266         struct page *page = virt_to_page(super);
1267 
1268         put_page(page);
1269 }
1270 
1271 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1272                                                        u64 bytenr, u64 bytenr_orig)
1273 {
1274         struct btrfs_super_block *disk_super;
1275         struct page *page;
1276         void *p;
1277         pgoff_t index;
1278 
1279         /* make sure our super fits in the device */
1280         if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1281                 return ERR_PTR(-EINVAL);
1282 
1283         /* make sure our super fits in the page */
1284         if (sizeof(*disk_super) > PAGE_SIZE)
1285                 return ERR_PTR(-EINVAL);
1286 
1287         /* make sure our super doesn't straddle pages on disk */
1288         index = bytenr >> PAGE_SHIFT;
1289         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1290                 return ERR_PTR(-EINVAL);
1291 
1292         /* pull in the page with our super */
1293         page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL);
1294 
1295         if (IS_ERR(page))
1296                 return ERR_CAST(page);
1297 
1298         p = page_address(page);
1299 
1300         /* align our pointer to the offset of the super block */
1301         disk_super = p + offset_in_page(bytenr);
1302 
1303         if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1304             btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1305                 btrfs_release_disk_super(p);
1306                 return ERR_PTR(-EINVAL);
1307         }
1308 
1309         if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1310                 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1311 
1312         return disk_super;
1313 }
1314 
1315 int btrfs_forget_devices(dev_t devt)
1316 {
1317         int ret;
1318 
1319         mutex_lock(&uuid_mutex);
1320         ret = btrfs_free_stale_devices(devt, NULL);
1321         mutex_unlock(&uuid_mutex);
1322 
1323         return ret;
1324 }
1325 
1326 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1327                                     const char *path, dev_t devt,
1328                                     bool mount_arg_dev)
1329 {
1330         struct btrfs_fs_devices *fs_devices;
1331 
1332         /*
1333          * Do not skip device registration for mounted devices with matching
1334          * maj:min but different paths. Booting without initrd relies on
1335          * /dev/root initially, later replaced with the actual root device.
1336          * A successful scan ensures grub2-probe selects the correct device.
1337          */
1338         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1339                 struct btrfs_device *device;
1340 
1341                 mutex_lock(&fs_devices->device_list_mutex);
1342 
1343                 if (!fs_devices->opened) {
1344                         mutex_unlock(&fs_devices->device_list_mutex);
1345                         continue;
1346                 }
1347 
1348                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1349                         if (device->bdev && (device->bdev->bd_dev == devt) &&
1350                             strcmp(device->name->str, path) != 0) {
1351                                 mutex_unlock(&fs_devices->device_list_mutex);
1352 
1353                                 /* Do not skip registration. */
1354                                 return false;
1355                         }
1356                 }
1357                 mutex_unlock(&fs_devices->device_list_mutex);
1358         }
1359 
1360         if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1361             !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1362                 return true;
1363 
1364         return false;
1365 }
1366 
1367 /*
1368  * Look for a btrfs signature on a device. This may be called out of the mount path
1369  * and we are not allowed to call set_blocksize during the scan. The superblock
1370  * is read via pagecache.
1371  *
1372  * With @mount_arg_dev it's a scan during mount time that will always register
1373  * the device or return an error. Multi-device and seeding devices are registered
1374  * in both cases.
1375  */
1376 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1377                                            bool mount_arg_dev)
1378 {
1379         struct btrfs_super_block *disk_super;
1380         bool new_device_added = false;
1381         struct btrfs_device *device = NULL;
1382         struct file *bdev_file;
1383         u64 bytenr;
1384         dev_t devt;
1385         int ret;
1386 
1387         lockdep_assert_held(&uuid_mutex);
1388 
1389         /*
1390          * Avoid an exclusive open here, as the systemd-udev may initiate the
1391          * device scan which may race with the user's mount or mkfs command,
1392          * resulting in failure.
1393          * Since the device scan is solely for reading purposes, there is no
1394          * need for an exclusive open. Additionally, the devices are read again
1395          * during the mount process. It is ok to get some inconsistent
1396          * values temporarily, as the device paths of the fsid are the only
1397          * required information for assembling the volume.
1398          */
1399         bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1400         if (IS_ERR(bdev_file))
1401                 return ERR_CAST(bdev_file);
1402 
1403         /*
1404          * We would like to check all the super blocks, but doing so would
1405          * allow a mount to succeed after a mkfs from a different filesystem.
1406          * Currently, recovery from a bad primary btrfs superblock is done
1407          * using the userspace command 'btrfs check --super'.
1408          */
1409         ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1410         if (ret) {
1411                 device = ERR_PTR(ret);
1412                 goto error_bdev_put;
1413         }
1414 
1415         disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1416                                            btrfs_sb_offset(0));
1417         if (IS_ERR(disk_super)) {
1418                 device = ERR_CAST(disk_super);
1419                 goto error_bdev_put;
1420         }
1421 
1422         devt = file_bdev(bdev_file)->bd_dev;
1423         if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1424                 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1425                           path, MAJOR(devt), MINOR(devt));
1426 
1427                 btrfs_free_stale_devices(devt, NULL);
1428 
1429                 device = NULL;
1430                 goto free_disk_super;
1431         }
1432 
1433         device = device_list_add(path, disk_super, &new_device_added);
1434         if (!IS_ERR(device) && new_device_added)
1435                 btrfs_free_stale_devices(device->devt, device);
1436 
1437 free_disk_super:
1438         btrfs_release_disk_super(disk_super);
1439 
1440 error_bdev_put:
1441         fput(bdev_file);
1442 
1443         return device;
1444 }
1445 
1446 /*
1447  * Try to find a chunk that intersects [start, start + len] range and when one
1448  * such is found, record the end of it in *start
1449  */
1450 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1451                                     u64 len)
1452 {
1453         u64 physical_start, physical_end;
1454 
1455         lockdep_assert_held(&device->fs_info->chunk_mutex);
1456 
1457         if (find_first_extent_bit(&device->alloc_state, *start,
1458                                   &physical_start, &physical_end,
1459                                   CHUNK_ALLOCATED, NULL)) {
1460 
1461                 if (in_range(physical_start, *start, len) ||
1462                     in_range(*start, physical_start,
1463                              physical_end + 1 - physical_start)) {
1464                         *start = physical_end + 1;
1465                         return true;
1466                 }
1467         }
1468         return false;
1469 }
1470 
1471 static u64 dev_extent_search_start(struct btrfs_device *device)
1472 {
1473         switch (device->fs_devices->chunk_alloc_policy) {
1474         case BTRFS_CHUNK_ALLOC_REGULAR:
1475                 return BTRFS_DEVICE_RANGE_RESERVED;
1476         case BTRFS_CHUNK_ALLOC_ZONED:
1477                 /*
1478                  * We don't care about the starting region like regular
1479                  * allocator, because we anyway use/reserve the first two zones
1480                  * for superblock logging.
1481                  */
1482                 return 0;
1483         default:
1484                 BUG();
1485         }
1486 }
1487 
1488 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1489                                         u64 *hole_start, u64 *hole_size,
1490                                         u64 num_bytes)
1491 {
1492         u64 zone_size = device->zone_info->zone_size;
1493         u64 pos;
1494         int ret;
1495         bool changed = false;
1496 
1497         ASSERT(IS_ALIGNED(*hole_start, zone_size));
1498 
1499         while (*hole_size > 0) {
1500                 pos = btrfs_find_allocatable_zones(device, *hole_start,
1501                                                    *hole_start + *hole_size,
1502                                                    num_bytes);
1503                 if (pos != *hole_start) {
1504                         *hole_size = *hole_start + *hole_size - pos;
1505                         *hole_start = pos;
1506                         changed = true;
1507                         if (*hole_size < num_bytes)
1508                                 break;
1509                 }
1510 
1511                 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1512 
1513                 /* Range is ensured to be empty */
1514                 if (!ret)
1515                         return changed;
1516 
1517                 /* Given hole range was invalid (outside of device) */
1518                 if (ret == -ERANGE) {
1519                         *hole_start += *hole_size;
1520                         *hole_size = 0;
1521                         return true;
1522                 }
1523 
1524                 *hole_start += zone_size;
1525                 *hole_size -= zone_size;
1526                 changed = true;
1527         }
1528 
1529         return changed;
1530 }
1531 
1532 /*
1533  * Check if specified hole is suitable for allocation.
1534  *
1535  * @device:     the device which we have the hole
1536  * @hole_start: starting position of the hole
1537  * @hole_size:  the size of the hole
1538  * @num_bytes:  the size of the free space that we need
1539  *
1540  * This function may modify @hole_start and @hole_size to reflect the suitable
1541  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1542  */
1543 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1544                                   u64 *hole_size, u64 num_bytes)
1545 {
1546         bool changed = false;
1547         u64 hole_end = *hole_start + *hole_size;
1548 
1549         for (;;) {
1550                 /*
1551                  * Check before we set max_hole_start, otherwise we could end up
1552                  * sending back this offset anyway.
1553                  */
1554                 if (contains_pending_extent(device, hole_start, *hole_size)) {
1555                         if (hole_end >= *hole_start)
1556                                 *hole_size = hole_end - *hole_start;
1557                         else
1558                                 *hole_size = 0;
1559                         changed = true;
1560                 }
1561 
1562                 switch (device->fs_devices->chunk_alloc_policy) {
1563                 case BTRFS_CHUNK_ALLOC_REGULAR:
1564                         /* No extra check */
1565                         break;
1566                 case BTRFS_CHUNK_ALLOC_ZONED:
1567                         if (dev_extent_hole_check_zoned(device, hole_start,
1568                                                         hole_size, num_bytes)) {
1569                                 changed = true;
1570                                 /*
1571                                  * The changed hole can contain pending extent.
1572                                  * Loop again to check that.
1573                                  */
1574                                 continue;
1575                         }
1576                         break;
1577                 default:
1578                         BUG();
1579                 }
1580 
1581                 break;
1582         }
1583 
1584         return changed;
1585 }
1586 
1587 /*
1588  * Find free space in the specified device.
1589  *
1590  * @device:       the device which we search the free space in
1591  * @num_bytes:    the size of the free space that we need
1592  * @search_start: the position from which to begin the search
1593  * @start:        store the start of the free space.
1594  * @len:          the size of the free space. that we find, or the size
1595  *                of the max free space if we don't find suitable free space
1596  *
1597  * This does a pretty simple search, the expectation is that it is called very
1598  * infrequently and that a given device has a small number of extents.
1599  *
1600  * @start is used to store the start of the free space if we find. But if we
1601  * don't find suitable free space, it will be used to store the start position
1602  * of the max free space.
1603  *
1604  * @len is used to store the size of the free space that we find.
1605  * But if we don't find suitable free space, it is used to store the size of
1606  * the max free space.
1607  *
1608  * NOTE: This function will search *commit* root of device tree, and does extra
1609  * check to ensure dev extents are not double allocated.
1610  * This makes the function safe to allocate dev extents but may not report
1611  * correct usable device space, as device extent freed in current transaction
1612  * is not reported as available.
1613  */
1614 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1615                                 u64 *start, u64 *len)
1616 {
1617         struct btrfs_fs_info *fs_info = device->fs_info;
1618         struct btrfs_root *root = fs_info->dev_root;
1619         struct btrfs_key key;
1620         struct btrfs_dev_extent *dev_extent;
1621         struct btrfs_path *path;
1622         u64 search_start;
1623         u64 hole_size;
1624         u64 max_hole_start;
1625         u64 max_hole_size = 0;
1626         u64 extent_end;
1627         u64 search_end = device->total_bytes;
1628         int ret;
1629         int slot;
1630         struct extent_buffer *l;
1631 
1632         search_start = dev_extent_search_start(device);
1633         max_hole_start = search_start;
1634 
1635         WARN_ON(device->zone_info &&
1636                 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1637 
1638         path = btrfs_alloc_path();
1639         if (!path) {
1640                 ret = -ENOMEM;
1641                 goto out;
1642         }
1643 again:
1644         if (search_start >= search_end ||
1645                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1646                 ret = -ENOSPC;
1647                 goto out;
1648         }
1649 
1650         path->reada = READA_FORWARD;
1651         path->search_commit_root = 1;
1652         path->skip_locking = 1;
1653 
1654         key.objectid = device->devid;
1655         key.offset = search_start;
1656         key.type = BTRFS_DEV_EXTENT_KEY;
1657 
1658         ret = btrfs_search_backwards(root, &key, path);
1659         if (ret < 0)
1660                 goto out;
1661 
1662         while (search_start < search_end) {
1663                 l = path->nodes[0];
1664                 slot = path->slots[0];
1665                 if (slot >= btrfs_header_nritems(l)) {
1666                         ret = btrfs_next_leaf(root, path);
1667                         if (ret == 0)
1668                                 continue;
1669                         if (ret < 0)
1670                                 goto out;
1671 
1672                         break;
1673                 }
1674                 btrfs_item_key_to_cpu(l, &key, slot);
1675 
1676                 if (key.objectid < device->devid)
1677                         goto next;
1678 
1679                 if (key.objectid > device->devid)
1680                         break;
1681 
1682                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1683                         goto next;
1684 
1685                 if (key.offset > search_end)
1686                         break;
1687 
1688                 if (key.offset > search_start) {
1689                         hole_size = key.offset - search_start;
1690                         dev_extent_hole_check(device, &search_start, &hole_size,
1691                                               num_bytes);
1692 
1693                         if (hole_size > max_hole_size) {
1694                                 max_hole_start = search_start;
1695                                 max_hole_size = hole_size;
1696                         }
1697 
1698                         /*
1699                          * If this free space is greater than which we need,
1700                          * it must be the max free space that we have found
1701                          * until now, so max_hole_start must point to the start
1702                          * of this free space and the length of this free space
1703                          * is stored in max_hole_size. Thus, we return
1704                          * max_hole_start and max_hole_size and go back to the
1705                          * caller.
1706                          */
1707                         if (hole_size >= num_bytes) {
1708                                 ret = 0;
1709                                 goto out;
1710                         }
1711                 }
1712 
1713                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1714                 extent_end = key.offset + btrfs_dev_extent_length(l,
1715                                                                   dev_extent);
1716                 if (extent_end > search_start)
1717                         search_start = extent_end;
1718 next:
1719                 path->slots[0]++;
1720                 cond_resched();
1721         }
1722 
1723         /*
1724          * At this point, search_start should be the end of
1725          * allocated dev extents, and when shrinking the device,
1726          * search_end may be smaller than search_start.
1727          */
1728         if (search_end > search_start) {
1729                 hole_size = search_end - search_start;
1730                 if (dev_extent_hole_check(device, &search_start, &hole_size,
1731                                           num_bytes)) {
1732                         btrfs_release_path(path);
1733                         goto again;
1734                 }
1735 
1736                 if (hole_size > max_hole_size) {
1737                         max_hole_start = search_start;
1738                         max_hole_size = hole_size;
1739                 }
1740         }
1741 
1742         /* See above. */
1743         if (max_hole_size < num_bytes)
1744                 ret = -ENOSPC;
1745         else
1746                 ret = 0;
1747 
1748         ASSERT(max_hole_start + max_hole_size <= search_end);
1749 out:
1750         btrfs_free_path(path);
1751         *start = max_hole_start;
1752         if (len)
1753                 *len = max_hole_size;
1754         return ret;
1755 }
1756 
1757 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1758                           struct btrfs_device *device,
1759                           u64 start, u64 *dev_extent_len)
1760 {
1761         struct btrfs_fs_info *fs_info = device->fs_info;
1762         struct btrfs_root *root = fs_info->dev_root;
1763         int ret;
1764         struct btrfs_path *path;
1765         struct btrfs_key key;
1766         struct btrfs_key found_key;
1767         struct extent_buffer *leaf = NULL;
1768         struct btrfs_dev_extent *extent = NULL;
1769 
1770         path = btrfs_alloc_path();
1771         if (!path)
1772                 return -ENOMEM;
1773 
1774         key.objectid = device->devid;
1775         key.offset = start;
1776         key.type = BTRFS_DEV_EXTENT_KEY;
1777 again:
1778         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1779         if (ret > 0) {
1780                 ret = btrfs_previous_item(root, path, key.objectid,
1781                                           BTRFS_DEV_EXTENT_KEY);
1782                 if (ret)
1783                         goto out;
1784                 leaf = path->nodes[0];
1785                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1786                 extent = btrfs_item_ptr(leaf, path->slots[0],
1787                                         struct btrfs_dev_extent);
1788                 BUG_ON(found_key.offset > start || found_key.offset +
1789                        btrfs_dev_extent_length(leaf, extent) < start);
1790                 key = found_key;
1791                 btrfs_release_path(path);
1792                 goto again;
1793         } else if (ret == 0) {
1794                 leaf = path->nodes[0];
1795                 extent = btrfs_item_ptr(leaf, path->slots[0],
1796                                         struct btrfs_dev_extent);
1797         } else {
1798                 goto out;
1799         }
1800 
1801         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1802 
1803         ret = btrfs_del_item(trans, root, path);
1804         if (ret == 0)
1805                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1806 out:
1807         btrfs_free_path(path);
1808         return ret;
1809 }
1810 
1811 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1812 {
1813         struct rb_node *n;
1814         u64 ret = 0;
1815 
1816         read_lock(&fs_info->mapping_tree_lock);
1817         n = rb_last(&fs_info->mapping_tree.rb_root);
1818         if (n) {
1819                 struct btrfs_chunk_map *map;
1820 
1821                 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1822                 ret = map->start + map->chunk_len;
1823         }
1824         read_unlock(&fs_info->mapping_tree_lock);
1825 
1826         return ret;
1827 }
1828 
1829 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1830                                     u64 *devid_ret)
1831 {
1832         int ret;
1833         struct btrfs_key key;
1834         struct btrfs_key found_key;
1835         struct btrfs_path *path;
1836 
1837         path = btrfs_alloc_path();
1838         if (!path)
1839                 return -ENOMEM;
1840 
1841         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1842         key.type = BTRFS_DEV_ITEM_KEY;
1843         key.offset = (u64)-1;
1844 
1845         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1846         if (ret < 0)
1847                 goto error;
1848 
1849         if (ret == 0) {
1850                 /* Corruption */
1851                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1852                 ret = -EUCLEAN;
1853                 goto error;
1854         }
1855 
1856         ret = btrfs_previous_item(fs_info->chunk_root, path,
1857                                   BTRFS_DEV_ITEMS_OBJECTID,
1858                                   BTRFS_DEV_ITEM_KEY);
1859         if (ret) {
1860                 *devid_ret = 1;
1861         } else {
1862                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1863                                       path->slots[0]);
1864                 *devid_ret = found_key.offset + 1;
1865         }
1866         ret = 0;
1867 error:
1868         btrfs_free_path(path);
1869         return ret;
1870 }
1871 
1872 /*
1873  * the device information is stored in the chunk root
1874  * the btrfs_device struct should be fully filled in
1875  */
1876 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1877                             struct btrfs_device *device)
1878 {
1879         int ret;
1880         struct btrfs_path *path;
1881         struct btrfs_dev_item *dev_item;
1882         struct extent_buffer *leaf;
1883         struct btrfs_key key;
1884         unsigned long ptr;
1885 
1886         path = btrfs_alloc_path();
1887         if (!path)
1888                 return -ENOMEM;
1889 
1890         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1891         key.type = BTRFS_DEV_ITEM_KEY;
1892         key.offset = device->devid;
1893 
1894         btrfs_reserve_chunk_metadata(trans, true);
1895         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1896                                       &key, sizeof(*dev_item));
1897         btrfs_trans_release_chunk_metadata(trans);
1898         if (ret)
1899                 goto out;
1900 
1901         leaf = path->nodes[0];
1902         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1903 
1904         btrfs_set_device_id(leaf, dev_item, device->devid);
1905         btrfs_set_device_generation(leaf, dev_item, 0);
1906         btrfs_set_device_type(leaf, dev_item, device->type);
1907         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1908         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1909         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1910         btrfs_set_device_total_bytes(leaf, dev_item,
1911                                      btrfs_device_get_disk_total_bytes(device));
1912         btrfs_set_device_bytes_used(leaf, dev_item,
1913                                     btrfs_device_get_bytes_used(device));
1914         btrfs_set_device_group(leaf, dev_item, 0);
1915         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1916         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1917         btrfs_set_device_start_offset(leaf, dev_item, 0);
1918 
1919         ptr = btrfs_device_uuid(dev_item);
1920         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1921         ptr = btrfs_device_fsid(dev_item);
1922         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1923                             ptr, BTRFS_FSID_SIZE);
1924         btrfs_mark_buffer_dirty(trans, leaf);
1925 
1926         ret = 0;
1927 out:
1928         btrfs_free_path(path);
1929         return ret;
1930 }
1931 
1932 /*
1933  * Function to update ctime/mtime for a given device path.
1934  * Mainly used for ctime/mtime based probe like libblkid.
1935  *
1936  * We don't care about errors here, this is just to be kind to userspace.
1937  */
1938 static void update_dev_time(const char *device_path)
1939 {
1940         struct path path;
1941         int ret;
1942 
1943         ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1944         if (ret)
1945                 return;
1946 
1947         inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1948         path_put(&path);
1949 }
1950 
1951 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1952                              struct btrfs_device *device)
1953 {
1954         struct btrfs_root *root = device->fs_info->chunk_root;
1955         int ret;
1956         struct btrfs_path *path;
1957         struct btrfs_key key;
1958 
1959         path = btrfs_alloc_path();
1960         if (!path)
1961                 return -ENOMEM;
1962 
1963         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1964         key.type = BTRFS_DEV_ITEM_KEY;
1965         key.offset = device->devid;
1966 
1967         btrfs_reserve_chunk_metadata(trans, false);
1968         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1969         btrfs_trans_release_chunk_metadata(trans);
1970         if (ret) {
1971                 if (ret > 0)
1972                         ret = -ENOENT;
1973                 goto out;
1974         }
1975 
1976         ret = btrfs_del_item(trans, root, path);
1977 out:
1978         btrfs_free_path(path);
1979         return ret;
1980 }
1981 
1982 /*
1983  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1984  * filesystem. It's up to the caller to adjust that number regarding eg. device
1985  * replace.
1986  */
1987 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1988                 u64 num_devices)
1989 {
1990         u64 all_avail;
1991         unsigned seq;
1992         int i;
1993 
1994         do {
1995                 seq = read_seqbegin(&fs_info->profiles_lock);
1996 
1997                 all_avail = fs_info->avail_data_alloc_bits |
1998                             fs_info->avail_system_alloc_bits |
1999                             fs_info->avail_metadata_alloc_bits;
2000         } while (read_seqretry(&fs_info->profiles_lock, seq));
2001 
2002         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2003                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2004                         continue;
2005 
2006                 if (num_devices < btrfs_raid_array[i].devs_min)
2007                         return btrfs_raid_array[i].mindev_error;
2008         }
2009 
2010         return 0;
2011 }
2012 
2013 static struct btrfs_device * btrfs_find_next_active_device(
2014                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2015 {
2016         struct btrfs_device *next_device;
2017 
2018         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2019                 if (next_device != device &&
2020                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2021                     && next_device->bdev)
2022                         return next_device;
2023         }
2024 
2025         return NULL;
2026 }
2027 
2028 /*
2029  * Helper function to check if the given device is part of s_bdev / latest_dev
2030  * and replace it with the provided or the next active device, in the context
2031  * where this function called, there should be always be another device (or
2032  * this_dev) which is active.
2033  */
2034 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2035                                             struct btrfs_device *next_device)
2036 {
2037         struct btrfs_fs_info *fs_info = device->fs_info;
2038 
2039         if (!next_device)
2040                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2041                                                             device);
2042         ASSERT(next_device);
2043 
2044         if (fs_info->sb->s_bdev &&
2045                         (fs_info->sb->s_bdev == device->bdev))
2046                 fs_info->sb->s_bdev = next_device->bdev;
2047 
2048         if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2049                 fs_info->fs_devices->latest_dev = next_device;
2050 }
2051 
2052 /*
2053  * Return btrfs_fs_devices::num_devices excluding the device that's being
2054  * currently replaced.
2055  */
2056 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2057 {
2058         u64 num_devices = fs_info->fs_devices->num_devices;
2059 
2060         down_read(&fs_info->dev_replace.rwsem);
2061         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2062                 ASSERT(num_devices > 1);
2063                 num_devices--;
2064         }
2065         up_read(&fs_info->dev_replace.rwsem);
2066 
2067         return num_devices;
2068 }
2069 
2070 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2071                                      struct block_device *bdev, int copy_num)
2072 {
2073         struct btrfs_super_block *disk_super;
2074         const size_t len = sizeof(disk_super->magic);
2075         const u64 bytenr = btrfs_sb_offset(copy_num);
2076         int ret;
2077 
2078         disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2079         if (IS_ERR(disk_super))
2080                 return;
2081 
2082         memset(&disk_super->magic, 0, len);
2083         folio_mark_dirty(virt_to_folio(disk_super));
2084         btrfs_release_disk_super(disk_super);
2085 
2086         ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2087         if (ret)
2088                 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2089                         copy_num, ret);
2090 }
2091 
2092 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2093 {
2094         int copy_num;
2095         struct block_device *bdev = device->bdev;
2096 
2097         if (!bdev)
2098                 return;
2099 
2100         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2101                 if (bdev_is_zoned(bdev))
2102                         btrfs_reset_sb_log_zones(bdev, copy_num);
2103                 else
2104                         btrfs_scratch_superblock(fs_info, bdev, copy_num);
2105         }
2106 
2107         /* Notify udev that device has changed */
2108         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2109 
2110         /* Update ctime/mtime for device path for libblkid */
2111         update_dev_time(device->name->str);
2112 }
2113 
2114 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2115                     struct btrfs_dev_lookup_args *args,
2116                     struct file **bdev_file)
2117 {
2118         struct btrfs_trans_handle *trans;
2119         struct btrfs_device *device;
2120         struct btrfs_fs_devices *cur_devices;
2121         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2122         u64 num_devices;
2123         int ret = 0;
2124 
2125         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2126                 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2127                 return -EINVAL;
2128         }
2129 
2130         /*
2131          * The device list in fs_devices is accessed without locks (neither
2132          * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2133          * filesystem and another device rm cannot run.
2134          */
2135         num_devices = btrfs_num_devices(fs_info);
2136 
2137         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2138         if (ret)
2139                 return ret;
2140 
2141         device = btrfs_find_device(fs_info->fs_devices, args);
2142         if (!device) {
2143                 if (args->missing)
2144                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2145                 else
2146                         ret = -ENOENT;
2147                 return ret;
2148         }
2149 
2150         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2151                 btrfs_warn_in_rcu(fs_info,
2152                   "cannot remove device %s (devid %llu) due to active swapfile",
2153                                   btrfs_dev_name(device), device->devid);
2154                 return -ETXTBSY;
2155         }
2156 
2157         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2158                 return BTRFS_ERROR_DEV_TGT_REPLACE;
2159 
2160         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2161             fs_info->fs_devices->rw_devices == 1)
2162                 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2163 
2164         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2165                 mutex_lock(&fs_info->chunk_mutex);
2166                 list_del_init(&device->dev_alloc_list);
2167                 device->fs_devices->rw_devices--;
2168                 mutex_unlock(&fs_info->chunk_mutex);
2169         }
2170 
2171         ret = btrfs_shrink_device(device, 0);
2172         if (ret)
2173                 goto error_undo;
2174 
2175         trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2176         if (IS_ERR(trans)) {
2177                 ret = PTR_ERR(trans);
2178                 goto error_undo;
2179         }
2180 
2181         ret = btrfs_rm_dev_item(trans, device);
2182         if (ret) {
2183                 /* Any error in dev item removal is critical */
2184                 btrfs_crit(fs_info,
2185                            "failed to remove device item for devid %llu: %d",
2186                            device->devid, ret);
2187                 btrfs_abort_transaction(trans, ret);
2188                 btrfs_end_transaction(trans);
2189                 return ret;
2190         }
2191 
2192         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2193         btrfs_scrub_cancel_dev(device);
2194 
2195         /*
2196          * the device list mutex makes sure that we don't change
2197          * the device list while someone else is writing out all
2198          * the device supers. Whoever is writing all supers, should
2199          * lock the device list mutex before getting the number of
2200          * devices in the super block (super_copy). Conversely,
2201          * whoever updates the number of devices in the super block
2202          * (super_copy) should hold the device list mutex.
2203          */
2204 
2205         /*
2206          * In normal cases the cur_devices == fs_devices. But in case
2207          * of deleting a seed device, the cur_devices should point to
2208          * its own fs_devices listed under the fs_devices->seed_list.
2209          */
2210         cur_devices = device->fs_devices;
2211         mutex_lock(&fs_devices->device_list_mutex);
2212         list_del_rcu(&device->dev_list);
2213 
2214         cur_devices->num_devices--;
2215         cur_devices->total_devices--;
2216         /* Update total_devices of the parent fs_devices if it's seed */
2217         if (cur_devices != fs_devices)
2218                 fs_devices->total_devices--;
2219 
2220         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2221                 cur_devices->missing_devices--;
2222 
2223         btrfs_assign_next_active_device(device, NULL);
2224 
2225         if (device->bdev_file) {
2226                 cur_devices->open_devices--;
2227                 /* remove sysfs entry */
2228                 btrfs_sysfs_remove_device(device);
2229         }
2230 
2231         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2232         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2233         mutex_unlock(&fs_devices->device_list_mutex);
2234 
2235         /*
2236          * At this point, the device is zero sized and detached from the
2237          * devices list.  All that's left is to zero out the old supers and
2238          * free the device.
2239          *
2240          * We cannot call btrfs_close_bdev() here because we're holding the sb
2241          * write lock, and fput() on the block device will pull in the
2242          * ->open_mutex on the block device and it's dependencies.  Instead
2243          *  just flush the device and let the caller do the final bdev_release.
2244          */
2245         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2246                 btrfs_scratch_superblocks(fs_info, device);
2247                 if (device->bdev) {
2248                         sync_blockdev(device->bdev);
2249                         invalidate_bdev(device->bdev);
2250                 }
2251         }
2252 
2253         *bdev_file = device->bdev_file;
2254         synchronize_rcu();
2255         btrfs_free_device(device);
2256 
2257         /*
2258          * This can happen if cur_devices is the private seed devices list.  We
2259          * cannot call close_fs_devices() here because it expects the uuid_mutex
2260          * to be held, but in fact we don't need that for the private
2261          * seed_devices, we can simply decrement cur_devices->opened and then
2262          * remove it from our list and free the fs_devices.
2263          */
2264         if (cur_devices->num_devices == 0) {
2265                 list_del_init(&cur_devices->seed_list);
2266                 ASSERT(cur_devices->opened == 1);
2267                 cur_devices->opened--;
2268                 free_fs_devices(cur_devices);
2269         }
2270 
2271         ret = btrfs_commit_transaction(trans);
2272 
2273         return ret;
2274 
2275 error_undo:
2276         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2277                 mutex_lock(&fs_info->chunk_mutex);
2278                 list_add(&device->dev_alloc_list,
2279                          &fs_devices->alloc_list);
2280                 device->fs_devices->rw_devices++;
2281                 mutex_unlock(&fs_info->chunk_mutex);
2282         }
2283         return ret;
2284 }
2285 
2286 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2287 {
2288         struct btrfs_fs_devices *fs_devices;
2289 
2290         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2291 
2292         /*
2293          * in case of fs with no seed, srcdev->fs_devices will point
2294          * to fs_devices of fs_info. However when the dev being replaced is
2295          * a seed dev it will point to the seed's local fs_devices. In short
2296          * srcdev will have its correct fs_devices in both the cases.
2297          */
2298         fs_devices = srcdev->fs_devices;
2299 
2300         list_del_rcu(&srcdev->dev_list);
2301         list_del(&srcdev->dev_alloc_list);
2302         fs_devices->num_devices--;
2303         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2304                 fs_devices->missing_devices--;
2305 
2306         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2307                 fs_devices->rw_devices--;
2308 
2309         if (srcdev->bdev)
2310                 fs_devices->open_devices--;
2311 }
2312 
2313 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2314 {
2315         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2316 
2317         mutex_lock(&uuid_mutex);
2318 
2319         btrfs_close_bdev(srcdev);
2320         synchronize_rcu();
2321         btrfs_free_device(srcdev);
2322 
2323         /* if this is no devs we rather delete the fs_devices */
2324         if (!fs_devices->num_devices) {
2325                 /*
2326                  * On a mounted FS, num_devices can't be zero unless it's a
2327                  * seed. In case of a seed device being replaced, the replace
2328                  * target added to the sprout FS, so there will be no more
2329                  * device left under the seed FS.
2330                  */
2331                 ASSERT(fs_devices->seeding);
2332 
2333                 list_del_init(&fs_devices->seed_list);
2334                 close_fs_devices(fs_devices);
2335                 free_fs_devices(fs_devices);
2336         }
2337         mutex_unlock(&uuid_mutex);
2338 }
2339 
2340 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2341 {
2342         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2343 
2344         mutex_lock(&fs_devices->device_list_mutex);
2345 
2346         btrfs_sysfs_remove_device(tgtdev);
2347 
2348         if (tgtdev->bdev)
2349                 fs_devices->open_devices--;
2350 
2351         fs_devices->num_devices--;
2352 
2353         btrfs_assign_next_active_device(tgtdev, NULL);
2354 
2355         list_del_rcu(&tgtdev->dev_list);
2356 
2357         mutex_unlock(&fs_devices->device_list_mutex);
2358 
2359         btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2360 
2361         btrfs_close_bdev(tgtdev);
2362         synchronize_rcu();
2363         btrfs_free_device(tgtdev);
2364 }
2365 
2366 /*
2367  * Populate args from device at path.
2368  *
2369  * @fs_info:    the filesystem
2370  * @args:       the args to populate
2371  * @path:       the path to the device
2372  *
2373  * This will read the super block of the device at @path and populate @args with
2374  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2375  * lookup a device to operate on, but need to do it before we take any locks.
2376  * This properly handles the special case of "missing" that a user may pass in,
2377  * and does some basic sanity checks.  The caller must make sure that @path is
2378  * properly NUL terminated before calling in, and must call
2379  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2380  * uuid buffers.
2381  *
2382  * Return: 0 for success, -errno for failure
2383  */
2384 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2385                                  struct btrfs_dev_lookup_args *args,
2386                                  const char *path)
2387 {
2388         struct btrfs_super_block *disk_super;
2389         struct file *bdev_file;
2390         int ret;
2391 
2392         if (!path || !path[0])
2393                 return -EINVAL;
2394         if (!strcmp(path, "missing")) {
2395                 args->missing = true;
2396                 return 0;
2397         }
2398 
2399         args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2400         args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2401         if (!args->uuid || !args->fsid) {
2402                 btrfs_put_dev_args_from_path(args);
2403                 return -ENOMEM;
2404         }
2405 
2406         ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2407                                     &bdev_file, &disk_super);
2408         if (ret) {
2409                 btrfs_put_dev_args_from_path(args);
2410                 return ret;
2411         }
2412 
2413         args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2414         memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2415         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2416                 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2417         else
2418                 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2419         btrfs_release_disk_super(disk_super);
2420         fput(bdev_file);
2421         return 0;
2422 }
2423 
2424 /*
2425  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2426  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2427  * that don't need to be freed.
2428  */
2429 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2430 {
2431         kfree(args->uuid);
2432         kfree(args->fsid);
2433         args->uuid = NULL;
2434         args->fsid = NULL;
2435 }
2436 
2437 struct btrfs_device *btrfs_find_device_by_devspec(
2438                 struct btrfs_fs_info *fs_info, u64 devid,
2439                 const char *device_path)
2440 {
2441         BTRFS_DEV_LOOKUP_ARGS(args);
2442         struct btrfs_device *device;
2443         int ret;
2444 
2445         if (devid) {
2446                 args.devid = devid;
2447                 device = btrfs_find_device(fs_info->fs_devices, &args);
2448                 if (!device)
2449                         return ERR_PTR(-ENOENT);
2450                 return device;
2451         }
2452 
2453         ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2454         if (ret)
2455                 return ERR_PTR(ret);
2456         device = btrfs_find_device(fs_info->fs_devices, &args);
2457         btrfs_put_dev_args_from_path(&args);
2458         if (!device)
2459                 return ERR_PTR(-ENOENT);
2460         return device;
2461 }
2462 
2463 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2464 {
2465         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2466         struct btrfs_fs_devices *old_devices;
2467         struct btrfs_fs_devices *seed_devices;
2468 
2469         lockdep_assert_held(&uuid_mutex);
2470         if (!fs_devices->seeding)
2471                 return ERR_PTR(-EINVAL);
2472 
2473         /*
2474          * Private copy of the seed devices, anchored at
2475          * fs_info->fs_devices->seed_list
2476          */
2477         seed_devices = alloc_fs_devices(NULL);
2478         if (IS_ERR(seed_devices))
2479                 return seed_devices;
2480 
2481         /*
2482          * It's necessary to retain a copy of the original seed fs_devices in
2483          * fs_uuids so that filesystems which have been seeded can successfully
2484          * reference the seed device from open_seed_devices. This also supports
2485          * multiple fs seed.
2486          */
2487         old_devices = clone_fs_devices(fs_devices);
2488         if (IS_ERR(old_devices)) {
2489                 kfree(seed_devices);
2490                 return old_devices;
2491         }
2492 
2493         list_add(&old_devices->fs_list, &fs_uuids);
2494 
2495         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2496         seed_devices->opened = 1;
2497         INIT_LIST_HEAD(&seed_devices->devices);
2498         INIT_LIST_HEAD(&seed_devices->alloc_list);
2499         mutex_init(&seed_devices->device_list_mutex);
2500 
2501         return seed_devices;
2502 }
2503 
2504 /*
2505  * Splice seed devices into the sprout fs_devices.
2506  * Generate a new fsid for the sprouted read-write filesystem.
2507  */
2508 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2509                                struct btrfs_fs_devices *seed_devices)
2510 {
2511         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2512         struct btrfs_super_block *disk_super = fs_info->super_copy;
2513         struct btrfs_device *device;
2514         u64 super_flags;
2515 
2516         /*
2517          * We are updating the fsid, the thread leading to device_list_add()
2518          * could race, so uuid_mutex is needed.
2519          */
2520         lockdep_assert_held(&uuid_mutex);
2521 
2522         /*
2523          * The threads listed below may traverse dev_list but can do that without
2524          * device_list_mutex:
2525          * - All device ops and balance - as we are in btrfs_exclop_start.
2526          * - Various dev_list readers - are using RCU.
2527          * - btrfs_ioctl_fitrim() - is using RCU.
2528          *
2529          * For-read threads as below are using device_list_mutex:
2530          * - Readonly scrub btrfs_scrub_dev()
2531          * - Readonly scrub btrfs_scrub_progress()
2532          * - btrfs_get_dev_stats()
2533          */
2534         lockdep_assert_held(&fs_devices->device_list_mutex);
2535 
2536         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2537                               synchronize_rcu);
2538         list_for_each_entry(device, &seed_devices->devices, dev_list)
2539                 device->fs_devices = seed_devices;
2540 
2541         fs_devices->seeding = false;
2542         fs_devices->num_devices = 0;
2543         fs_devices->open_devices = 0;
2544         fs_devices->missing_devices = 0;
2545         fs_devices->rotating = false;
2546         list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2547 
2548         generate_random_uuid(fs_devices->fsid);
2549         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2550         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2551 
2552         super_flags = btrfs_super_flags(disk_super) &
2553                       ~BTRFS_SUPER_FLAG_SEEDING;
2554         btrfs_set_super_flags(disk_super, super_flags);
2555 }
2556 
2557 /*
2558  * Store the expected generation for seed devices in device items.
2559  */
2560 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2561 {
2562         BTRFS_DEV_LOOKUP_ARGS(args);
2563         struct btrfs_fs_info *fs_info = trans->fs_info;
2564         struct btrfs_root *root = fs_info->chunk_root;
2565         struct btrfs_path *path;
2566         struct extent_buffer *leaf;
2567         struct btrfs_dev_item *dev_item;
2568         struct btrfs_device *device;
2569         struct btrfs_key key;
2570         u8 fs_uuid[BTRFS_FSID_SIZE];
2571         u8 dev_uuid[BTRFS_UUID_SIZE];
2572         int ret;
2573 
2574         path = btrfs_alloc_path();
2575         if (!path)
2576                 return -ENOMEM;
2577 
2578         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2579         key.offset = 0;
2580         key.type = BTRFS_DEV_ITEM_KEY;
2581 
2582         while (1) {
2583                 btrfs_reserve_chunk_metadata(trans, false);
2584                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2585                 btrfs_trans_release_chunk_metadata(trans);
2586                 if (ret < 0)
2587                         goto error;
2588 
2589                 leaf = path->nodes[0];
2590 next_slot:
2591                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2592                         ret = btrfs_next_leaf(root, path);
2593                         if (ret > 0)
2594                                 break;
2595                         if (ret < 0)
2596                                 goto error;
2597                         leaf = path->nodes[0];
2598                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2599                         btrfs_release_path(path);
2600                         continue;
2601                 }
2602 
2603                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2604                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2605                     key.type != BTRFS_DEV_ITEM_KEY)
2606                         break;
2607 
2608                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2609                                           struct btrfs_dev_item);
2610                 args.devid = btrfs_device_id(leaf, dev_item);
2611                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2612                                    BTRFS_UUID_SIZE);
2613                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2614                                    BTRFS_FSID_SIZE);
2615                 args.uuid = dev_uuid;
2616                 args.fsid = fs_uuid;
2617                 device = btrfs_find_device(fs_info->fs_devices, &args);
2618                 BUG_ON(!device); /* Logic error */
2619 
2620                 if (device->fs_devices->seeding) {
2621                         btrfs_set_device_generation(leaf, dev_item,
2622                                                     device->generation);
2623                         btrfs_mark_buffer_dirty(trans, leaf);
2624                 }
2625 
2626                 path->slots[0]++;
2627                 goto next_slot;
2628         }
2629         ret = 0;
2630 error:
2631         btrfs_free_path(path);
2632         return ret;
2633 }
2634 
2635 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2636 {
2637         struct btrfs_root *root = fs_info->dev_root;
2638         struct btrfs_trans_handle *trans;
2639         struct btrfs_device *device;
2640         struct file *bdev_file;
2641         struct super_block *sb = fs_info->sb;
2642         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2643         struct btrfs_fs_devices *seed_devices = NULL;
2644         u64 orig_super_total_bytes;
2645         u64 orig_super_num_devices;
2646         int ret = 0;
2647         bool seeding_dev = false;
2648         bool locked = false;
2649 
2650         if (sb_rdonly(sb) && !fs_devices->seeding)
2651                 return -EROFS;
2652 
2653         bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2654                                         fs_info->bdev_holder, NULL);
2655         if (IS_ERR(bdev_file))
2656                 return PTR_ERR(bdev_file);
2657 
2658         if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2659                 ret = -EINVAL;
2660                 goto error;
2661         }
2662 
2663         if (fs_devices->seeding) {
2664                 seeding_dev = true;
2665                 down_write(&sb->s_umount);
2666                 mutex_lock(&uuid_mutex);
2667                 locked = true;
2668         }
2669 
2670         sync_blockdev(file_bdev(bdev_file));
2671 
2672         rcu_read_lock();
2673         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2674                 if (device->bdev == file_bdev(bdev_file)) {
2675                         ret = -EEXIST;
2676                         rcu_read_unlock();
2677                         goto error;
2678                 }
2679         }
2680         rcu_read_unlock();
2681 
2682         device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2683         if (IS_ERR(device)) {
2684                 /* we can safely leave the fs_devices entry around */
2685                 ret = PTR_ERR(device);
2686                 goto error;
2687         }
2688 
2689         device->fs_info = fs_info;
2690         device->bdev_file = bdev_file;
2691         device->bdev = file_bdev(bdev_file);
2692         ret = lookup_bdev(device_path, &device->devt);
2693         if (ret)
2694                 goto error_free_device;
2695 
2696         ret = btrfs_get_dev_zone_info(device, false);
2697         if (ret)
2698                 goto error_free_device;
2699 
2700         trans = btrfs_start_transaction(root, 0);
2701         if (IS_ERR(trans)) {
2702                 ret = PTR_ERR(trans);
2703                 goto error_free_zone;
2704         }
2705 
2706         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2707         device->generation = trans->transid;
2708         device->io_width = fs_info->sectorsize;
2709         device->io_align = fs_info->sectorsize;
2710         device->sector_size = fs_info->sectorsize;
2711         device->total_bytes =
2712                 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2713         device->disk_total_bytes = device->total_bytes;
2714         device->commit_total_bytes = device->total_bytes;
2715         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2716         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2717         device->dev_stats_valid = 1;
2718         set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2719 
2720         if (seeding_dev) {
2721                 btrfs_clear_sb_rdonly(sb);
2722 
2723                 /* GFP_KERNEL allocation must not be under device_list_mutex */
2724                 seed_devices = btrfs_init_sprout(fs_info);
2725                 if (IS_ERR(seed_devices)) {
2726                         ret = PTR_ERR(seed_devices);
2727                         btrfs_abort_transaction(trans, ret);
2728                         goto error_trans;
2729                 }
2730         }
2731 
2732         mutex_lock(&fs_devices->device_list_mutex);
2733         if (seeding_dev) {
2734                 btrfs_setup_sprout(fs_info, seed_devices);
2735                 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2736                                                 device);
2737         }
2738 
2739         device->fs_devices = fs_devices;
2740 
2741         mutex_lock(&fs_info->chunk_mutex);
2742         list_add_rcu(&device->dev_list, &fs_devices->devices);
2743         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2744         fs_devices->num_devices++;
2745         fs_devices->open_devices++;
2746         fs_devices->rw_devices++;
2747         fs_devices->total_devices++;
2748         fs_devices->total_rw_bytes += device->total_bytes;
2749 
2750         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2751 
2752         if (!bdev_nonrot(device->bdev))
2753                 fs_devices->rotating = true;
2754 
2755         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2756         btrfs_set_super_total_bytes(fs_info->super_copy,
2757                 round_down(orig_super_total_bytes + device->total_bytes,
2758                            fs_info->sectorsize));
2759 
2760         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2761         btrfs_set_super_num_devices(fs_info->super_copy,
2762                                     orig_super_num_devices + 1);
2763 
2764         /*
2765          * we've got more storage, clear any full flags on the space
2766          * infos
2767          */
2768         btrfs_clear_space_info_full(fs_info);
2769 
2770         mutex_unlock(&fs_info->chunk_mutex);
2771 
2772         /* Add sysfs device entry */
2773         btrfs_sysfs_add_device(device);
2774 
2775         mutex_unlock(&fs_devices->device_list_mutex);
2776 
2777         if (seeding_dev) {
2778                 mutex_lock(&fs_info->chunk_mutex);
2779                 ret = init_first_rw_device(trans);
2780                 mutex_unlock(&fs_info->chunk_mutex);
2781                 if (ret) {
2782                         btrfs_abort_transaction(trans, ret);
2783                         goto error_sysfs;
2784                 }
2785         }
2786 
2787         ret = btrfs_add_dev_item(trans, device);
2788         if (ret) {
2789                 btrfs_abort_transaction(trans, ret);
2790                 goto error_sysfs;
2791         }
2792 
2793         if (seeding_dev) {
2794                 ret = btrfs_finish_sprout(trans);
2795                 if (ret) {
2796                         btrfs_abort_transaction(trans, ret);
2797                         goto error_sysfs;
2798                 }
2799 
2800                 /*
2801                  * fs_devices now represents the newly sprouted filesystem and
2802                  * its fsid has been changed by btrfs_sprout_splice().
2803                  */
2804                 btrfs_sysfs_update_sprout_fsid(fs_devices);
2805         }
2806 
2807         ret = btrfs_commit_transaction(trans);
2808 
2809         if (seeding_dev) {
2810                 mutex_unlock(&uuid_mutex);
2811                 up_write(&sb->s_umount);
2812                 locked = false;
2813 
2814                 if (ret) /* transaction commit */
2815                         return ret;
2816 
2817                 ret = btrfs_relocate_sys_chunks(fs_info);
2818                 if (ret < 0)
2819                         btrfs_handle_fs_error(fs_info, ret,
2820                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2821                 trans = btrfs_attach_transaction(root);
2822                 if (IS_ERR(trans)) {
2823                         if (PTR_ERR(trans) == -ENOENT)
2824                                 return 0;
2825                         ret = PTR_ERR(trans);
2826                         trans = NULL;
2827                         goto error_sysfs;
2828                 }
2829                 ret = btrfs_commit_transaction(trans);
2830         }
2831 
2832         /*
2833          * Now that we have written a new super block to this device, check all
2834          * other fs_devices list if device_path alienates any other scanned
2835          * device.
2836          * We can ignore the return value as it typically returns -EINVAL and
2837          * only succeeds if the device was an alien.
2838          */
2839         btrfs_forget_devices(device->devt);
2840 
2841         /* Update ctime/mtime for blkid or udev */
2842         update_dev_time(device_path);
2843 
2844         return ret;
2845 
2846 error_sysfs:
2847         btrfs_sysfs_remove_device(device);
2848         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2849         mutex_lock(&fs_info->chunk_mutex);
2850         list_del_rcu(&device->dev_list);
2851         list_del(&device->dev_alloc_list);
2852         fs_info->fs_devices->num_devices--;
2853         fs_info->fs_devices->open_devices--;
2854         fs_info->fs_devices->rw_devices--;
2855         fs_info->fs_devices->total_devices--;
2856         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2857         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2858         btrfs_set_super_total_bytes(fs_info->super_copy,
2859                                     orig_super_total_bytes);
2860         btrfs_set_super_num_devices(fs_info->super_copy,
2861                                     orig_super_num_devices);
2862         mutex_unlock(&fs_info->chunk_mutex);
2863         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2864 error_trans:
2865         if (seeding_dev)
2866                 btrfs_set_sb_rdonly(sb);
2867         if (trans)
2868                 btrfs_end_transaction(trans);
2869 error_free_zone:
2870         btrfs_destroy_dev_zone_info(device);
2871 error_free_device:
2872         btrfs_free_device(device);
2873 error:
2874         fput(bdev_file);
2875         if (locked) {
2876                 mutex_unlock(&uuid_mutex);
2877                 up_write(&sb->s_umount);
2878         }
2879         return ret;
2880 }
2881 
2882 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2883                                         struct btrfs_device *device)
2884 {
2885         int ret;
2886         struct btrfs_path *path;
2887         struct btrfs_root *root = device->fs_info->chunk_root;
2888         struct btrfs_dev_item *dev_item;
2889         struct extent_buffer *leaf;
2890         struct btrfs_key key;
2891 
2892         path = btrfs_alloc_path();
2893         if (!path)
2894                 return -ENOMEM;
2895 
2896         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2897         key.type = BTRFS_DEV_ITEM_KEY;
2898         key.offset = device->devid;
2899 
2900         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2901         if (ret < 0)
2902                 goto out;
2903 
2904         if (ret > 0) {
2905                 ret = -ENOENT;
2906                 goto out;
2907         }
2908 
2909         leaf = path->nodes[0];
2910         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2911 
2912         btrfs_set_device_id(leaf, dev_item, device->devid);
2913         btrfs_set_device_type(leaf, dev_item, device->type);
2914         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2915         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2916         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2917         btrfs_set_device_total_bytes(leaf, dev_item,
2918                                      btrfs_device_get_disk_total_bytes(device));
2919         btrfs_set_device_bytes_used(leaf, dev_item,
2920                                     btrfs_device_get_bytes_used(device));
2921         btrfs_mark_buffer_dirty(trans, leaf);
2922 
2923 out:
2924         btrfs_free_path(path);
2925         return ret;
2926 }
2927 
2928 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2929                       struct btrfs_device *device, u64 new_size)
2930 {
2931         struct btrfs_fs_info *fs_info = device->fs_info;
2932         struct btrfs_super_block *super_copy = fs_info->super_copy;
2933         u64 old_total;
2934         u64 diff;
2935         int ret;
2936 
2937         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2938                 return -EACCES;
2939 
2940         new_size = round_down(new_size, fs_info->sectorsize);
2941 
2942         mutex_lock(&fs_info->chunk_mutex);
2943         old_total = btrfs_super_total_bytes(super_copy);
2944         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2945 
2946         if (new_size <= device->total_bytes ||
2947             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2948                 mutex_unlock(&fs_info->chunk_mutex);
2949                 return -EINVAL;
2950         }
2951 
2952         btrfs_set_super_total_bytes(super_copy,
2953                         round_down(old_total + diff, fs_info->sectorsize));
2954         device->fs_devices->total_rw_bytes += diff;
2955         atomic64_add(diff, &fs_info->free_chunk_space);
2956 
2957         btrfs_device_set_total_bytes(device, new_size);
2958         btrfs_device_set_disk_total_bytes(device, new_size);
2959         btrfs_clear_space_info_full(device->fs_info);
2960         if (list_empty(&device->post_commit_list))
2961                 list_add_tail(&device->post_commit_list,
2962                               &trans->transaction->dev_update_list);
2963         mutex_unlock(&fs_info->chunk_mutex);
2964 
2965         btrfs_reserve_chunk_metadata(trans, false);
2966         ret = btrfs_update_device(trans, device);
2967         btrfs_trans_release_chunk_metadata(trans);
2968 
2969         return ret;
2970 }
2971 
2972 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2973 {
2974         struct btrfs_fs_info *fs_info = trans->fs_info;
2975         struct btrfs_root *root = fs_info->chunk_root;
2976         int ret;
2977         struct btrfs_path *path;
2978         struct btrfs_key key;
2979 
2980         path = btrfs_alloc_path();
2981         if (!path)
2982                 return -ENOMEM;
2983 
2984         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2985         key.offset = chunk_offset;
2986         key.type = BTRFS_CHUNK_ITEM_KEY;
2987 
2988         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2989         if (ret < 0)
2990                 goto out;
2991         else if (ret > 0) { /* Logic error or corruption */
2992                 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
2993                           chunk_offset);
2994                 btrfs_abort_transaction(trans, -ENOENT);
2995                 ret = -EUCLEAN;
2996                 goto out;
2997         }
2998 
2999         ret = btrfs_del_item(trans, root, path);
3000         if (ret < 0) {
3001                 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3002                 btrfs_abort_transaction(trans, ret);
3003                 goto out;
3004         }
3005 out:
3006         btrfs_free_path(path);
3007         return ret;
3008 }
3009 
3010 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3011 {
3012         struct btrfs_super_block *super_copy = fs_info->super_copy;
3013         struct btrfs_disk_key *disk_key;
3014         struct btrfs_chunk *chunk;
3015         u8 *ptr;
3016         int ret = 0;
3017         u32 num_stripes;
3018         u32 array_size;
3019         u32 len = 0;
3020         u32 cur;
3021         struct btrfs_key key;
3022 
3023         lockdep_assert_held(&fs_info->chunk_mutex);
3024         array_size = btrfs_super_sys_array_size(super_copy);
3025 
3026         ptr = super_copy->sys_chunk_array;
3027         cur = 0;
3028 
3029         while (cur < array_size) {
3030                 disk_key = (struct btrfs_disk_key *)ptr;
3031                 btrfs_disk_key_to_cpu(&key, disk_key);
3032 
3033                 len = sizeof(*disk_key);
3034 
3035                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3036                         chunk = (struct btrfs_chunk *)(ptr + len);
3037                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3038                         len += btrfs_chunk_item_size(num_stripes);
3039                 } else {
3040                         ret = -EIO;
3041                         break;
3042                 }
3043                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3044                     key.offset == chunk_offset) {
3045                         memmove(ptr, ptr + len, array_size - (cur + len));
3046                         array_size -= len;
3047                         btrfs_set_super_sys_array_size(super_copy, array_size);
3048                 } else {
3049                         ptr += len;
3050                         cur += len;
3051                 }
3052         }
3053         return ret;
3054 }
3055 
3056 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3057                                                     u64 logical, u64 length)
3058 {
3059         struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3060         struct rb_node *prev = NULL;
3061         struct rb_node *orig_prev;
3062         struct btrfs_chunk_map *map;
3063         struct btrfs_chunk_map *prev_map = NULL;
3064 
3065         while (node) {
3066                 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3067                 prev = node;
3068                 prev_map = map;
3069 
3070                 if (logical < map->start) {
3071                         node = node->rb_left;
3072                 } else if (logical >= map->start + map->chunk_len) {
3073                         node = node->rb_right;
3074                 } else {
3075                         refcount_inc(&map->refs);
3076                         return map;
3077                 }
3078         }
3079 
3080         if (!prev)
3081                 return NULL;
3082 
3083         orig_prev = prev;
3084         while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3085                 prev = rb_next(prev);
3086                 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3087         }
3088 
3089         if (!prev) {
3090                 prev = orig_prev;
3091                 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3092                 while (prev && logical < prev_map->start) {
3093                         prev = rb_prev(prev);
3094                         prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3095                 }
3096         }
3097 
3098         if (prev) {
3099                 u64 end = logical + length;
3100 
3101                 /*
3102                  * Caller can pass a U64_MAX length when it wants to get any
3103                  * chunk starting at an offset of 'logical' or higher, so deal
3104                  * with underflow by resetting the end offset to U64_MAX.
3105                  */
3106                 if (end < logical)
3107                         end = U64_MAX;
3108 
3109                 if (end > prev_map->start &&
3110                     logical < prev_map->start + prev_map->chunk_len) {
3111                         refcount_inc(&prev_map->refs);
3112                         return prev_map;
3113                 }
3114         }
3115 
3116         return NULL;
3117 }
3118 
3119 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3120                                              u64 logical, u64 length)
3121 {
3122         struct btrfs_chunk_map *map;
3123 
3124         read_lock(&fs_info->mapping_tree_lock);
3125         map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3126         read_unlock(&fs_info->mapping_tree_lock);
3127 
3128         return map;
3129 }
3130 
3131 /*
3132  * Find the mapping containing the given logical extent.
3133  *
3134  * @logical: Logical block offset in bytes.
3135  * @length: Length of extent in bytes.
3136  *
3137  * Return: Chunk mapping or ERR_PTR.
3138  */
3139 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3140                                             u64 logical, u64 length)
3141 {
3142         struct btrfs_chunk_map *map;
3143 
3144         map = btrfs_find_chunk_map(fs_info, logical, length);
3145 
3146         if (unlikely(!map)) {
3147                 btrfs_crit(fs_info,
3148                            "unable to find chunk map for logical %llu length %llu",
3149                            logical, length);
3150                 return ERR_PTR(-EINVAL);
3151         }
3152 
3153         if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3154                 btrfs_crit(fs_info,
3155                            "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3156                            logical, logical + length, map->start,
3157                            map->start + map->chunk_len);
3158                 btrfs_free_chunk_map(map);
3159                 return ERR_PTR(-EINVAL);
3160         }
3161 
3162         /* Callers are responsible for dropping the reference. */
3163         return map;
3164 }
3165 
3166 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3167                              struct btrfs_chunk_map *map, u64 chunk_offset)
3168 {
3169         int i;
3170 
3171         /*
3172          * Removing chunk items and updating the device items in the chunks btree
3173          * requires holding the chunk_mutex.
3174          * See the comment at btrfs_chunk_alloc() for the details.
3175          */
3176         lockdep_assert_held(&trans->fs_info->chunk_mutex);
3177 
3178         for (i = 0; i < map->num_stripes; i++) {
3179                 int ret;
3180 
3181                 ret = btrfs_update_device(trans, map->stripes[i].dev);
3182                 if (ret)
3183                         return ret;
3184         }
3185 
3186         return btrfs_free_chunk(trans, chunk_offset);
3187 }
3188 
3189 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3190 {
3191         struct btrfs_fs_info *fs_info = trans->fs_info;
3192         struct btrfs_chunk_map *map;
3193         u64 dev_extent_len = 0;
3194         int i, ret = 0;
3195         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3196 
3197         map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3198         if (IS_ERR(map)) {
3199                 /*
3200                  * This is a logic error, but we don't want to just rely on the
3201                  * user having built with ASSERT enabled, so if ASSERT doesn't
3202                  * do anything we still error out.
3203                  */
3204                 ASSERT(0);
3205                 return PTR_ERR(map);
3206         }
3207 
3208         /*
3209          * First delete the device extent items from the devices btree.
3210          * We take the device_list_mutex to avoid racing with the finishing phase
3211          * of a device replace operation. See the comment below before acquiring
3212          * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3213          * because that can result in a deadlock when deleting the device extent
3214          * items from the devices btree - COWing an extent buffer from the btree
3215          * may result in allocating a new metadata chunk, which would attempt to
3216          * lock again fs_info->chunk_mutex.
3217          */
3218         mutex_lock(&fs_devices->device_list_mutex);
3219         for (i = 0; i < map->num_stripes; i++) {
3220                 struct btrfs_device *device = map->stripes[i].dev;
3221                 ret = btrfs_free_dev_extent(trans, device,
3222                                             map->stripes[i].physical,
3223                                             &dev_extent_len);
3224                 if (ret) {
3225                         mutex_unlock(&fs_devices->device_list_mutex);
3226                         btrfs_abort_transaction(trans, ret);
3227                         goto out;
3228                 }
3229 
3230                 if (device->bytes_used > 0) {
3231                         mutex_lock(&fs_info->chunk_mutex);
3232                         btrfs_device_set_bytes_used(device,
3233                                         device->bytes_used - dev_extent_len);
3234                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3235                         btrfs_clear_space_info_full(fs_info);
3236                         mutex_unlock(&fs_info->chunk_mutex);
3237                 }
3238         }
3239         mutex_unlock(&fs_devices->device_list_mutex);
3240 
3241         /*
3242          * We acquire fs_info->chunk_mutex for 2 reasons:
3243          *
3244          * 1) Just like with the first phase of the chunk allocation, we must
3245          *    reserve system space, do all chunk btree updates and deletions, and
3246          *    update the system chunk array in the superblock while holding this
3247          *    mutex. This is for similar reasons as explained on the comment at
3248          *    the top of btrfs_chunk_alloc();
3249          *
3250          * 2) Prevent races with the final phase of a device replace operation
3251          *    that replaces the device object associated with the map's stripes,
3252          *    because the device object's id can change at any time during that
3253          *    final phase of the device replace operation
3254          *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3255          *    replaced device and then see it with an ID of
3256          *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3257          *    the device item, which does not exists on the chunk btree.
3258          *    The finishing phase of device replace acquires both the
3259          *    device_list_mutex and the chunk_mutex, in that order, so we are
3260          *    safe by just acquiring the chunk_mutex.
3261          */
3262         trans->removing_chunk = true;
3263         mutex_lock(&fs_info->chunk_mutex);
3264 
3265         check_system_chunk(trans, map->type);
3266 
3267         ret = remove_chunk_item(trans, map, chunk_offset);
3268         /*
3269          * Normally we should not get -ENOSPC since we reserved space before
3270          * through the call to check_system_chunk().
3271          *
3272          * Despite our system space_info having enough free space, we may not
3273          * be able to allocate extents from its block groups, because all have
3274          * an incompatible profile, which will force us to allocate a new system
3275          * block group with the right profile, or right after we called
3276          * check_system_space() above, a scrub turned the only system block group
3277          * with enough free space into RO mode.
3278          * This is explained with more detail at do_chunk_alloc().
3279          *
3280          * So if we get -ENOSPC, allocate a new system chunk and retry once.
3281          */
3282         if (ret == -ENOSPC) {
3283                 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3284                 struct btrfs_block_group *sys_bg;
3285 
3286                 sys_bg = btrfs_create_chunk(trans, sys_flags);
3287                 if (IS_ERR(sys_bg)) {
3288                         ret = PTR_ERR(sys_bg);
3289                         btrfs_abort_transaction(trans, ret);
3290                         goto out;
3291                 }
3292 
3293                 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3294                 if (ret) {
3295                         btrfs_abort_transaction(trans, ret);
3296                         goto out;
3297                 }
3298 
3299                 ret = remove_chunk_item(trans, map, chunk_offset);
3300                 if (ret) {
3301                         btrfs_abort_transaction(trans, ret);
3302                         goto out;
3303                 }
3304         } else if (ret) {
3305                 btrfs_abort_transaction(trans, ret);
3306                 goto out;
3307         }
3308 
3309         trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3310 
3311         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3312                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3313                 if (ret) {
3314                         btrfs_abort_transaction(trans, ret);
3315                         goto out;
3316                 }
3317         }
3318 
3319         mutex_unlock(&fs_info->chunk_mutex);
3320         trans->removing_chunk = false;
3321 
3322         /*
3323          * We are done with chunk btree updates and deletions, so release the
3324          * system space we previously reserved (with check_system_chunk()).
3325          */
3326         btrfs_trans_release_chunk_metadata(trans);
3327 
3328         ret = btrfs_remove_block_group(trans, map);
3329         if (ret) {
3330                 btrfs_abort_transaction(trans, ret);
3331                 goto out;
3332         }
3333 
3334 out:
3335         if (trans->removing_chunk) {
3336                 mutex_unlock(&fs_info->chunk_mutex);
3337                 trans->removing_chunk = false;
3338         }
3339         /* once for us */
3340         btrfs_free_chunk_map(map);
3341         return ret;
3342 }
3343 
3344 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3345 {
3346         struct btrfs_root *root = fs_info->chunk_root;
3347         struct btrfs_trans_handle *trans;
3348         struct btrfs_block_group *block_group;
3349         u64 length;
3350         int ret;
3351 
3352         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3353                 btrfs_err(fs_info,
3354                           "relocate: not supported on extent tree v2 yet");
3355                 return -EINVAL;
3356         }
3357 
3358         /*
3359          * Prevent races with automatic removal of unused block groups.
3360          * After we relocate and before we remove the chunk with offset
3361          * chunk_offset, automatic removal of the block group can kick in,
3362          * resulting in a failure when calling btrfs_remove_chunk() below.
3363          *
3364          * Make sure to acquire this mutex before doing a tree search (dev
3365          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3366          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3367          * we release the path used to search the chunk/dev tree and before
3368          * the current task acquires this mutex and calls us.
3369          */
3370         lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3371 
3372         /* step one, relocate all the extents inside this chunk */
3373         btrfs_scrub_pause(fs_info);
3374         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3375         btrfs_scrub_continue(fs_info);
3376         if (ret) {
3377                 /*
3378                  * If we had a transaction abort, stop all running scrubs.
3379                  * See transaction.c:cleanup_transaction() why we do it here.
3380                  */
3381                 if (BTRFS_FS_ERROR(fs_info))
3382                         btrfs_scrub_cancel(fs_info);
3383                 return ret;
3384         }
3385 
3386         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3387         if (!block_group)
3388                 return -ENOENT;
3389         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3390         length = block_group->length;
3391         btrfs_put_block_group(block_group);
3392 
3393         /*
3394          * On a zoned file system, discard the whole block group, this will
3395          * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3396          * resetting the zone fails, don't treat it as a fatal problem from the
3397          * filesystem's point of view.
3398          */
3399         if (btrfs_is_zoned(fs_info)) {
3400                 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3401                 if (ret)
3402                         btrfs_info(fs_info,
3403                                 "failed to reset zone %llu after relocation",
3404                                 chunk_offset);
3405         }
3406 
3407         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3408                                                      chunk_offset);
3409         if (IS_ERR(trans)) {
3410                 ret = PTR_ERR(trans);
3411                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3412                 return ret;
3413         }
3414 
3415         /*
3416          * step two, delete the device extents and the
3417          * chunk tree entries
3418          */
3419         ret = btrfs_remove_chunk(trans, chunk_offset);
3420         btrfs_end_transaction(trans);
3421         return ret;
3422 }
3423 
3424 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3425 {
3426         struct btrfs_root *chunk_root = fs_info->chunk_root;
3427         struct btrfs_path *path;
3428         struct extent_buffer *leaf;
3429         struct btrfs_chunk *chunk;
3430         struct btrfs_key key;
3431         struct btrfs_key found_key;
3432         u64 chunk_type;
3433         bool retried = false;
3434         int failed = 0;
3435         int ret;
3436 
3437         path = btrfs_alloc_path();
3438         if (!path)
3439                 return -ENOMEM;
3440 
3441 again:
3442         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3443         key.offset = (u64)-1;
3444         key.type = BTRFS_CHUNK_ITEM_KEY;
3445 
3446         while (1) {
3447                 mutex_lock(&fs_info->reclaim_bgs_lock);
3448                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3449                 if (ret < 0) {
3450                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3451                         goto error;
3452                 }
3453                 if (ret == 0) {
3454                         /*
3455                          * On the first search we would find chunk tree with
3456                          * offset -1, which is not possible. On subsequent
3457                          * loops this would find an existing item on an invalid
3458                          * offset (one less than the previous one, wrong
3459                          * alignment and size).
3460                          */
3461                         ret = -EUCLEAN;
3462                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3463                         goto error;
3464                 }
3465 
3466                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3467                                           key.type);
3468                 if (ret)
3469                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3470                 if (ret < 0)
3471                         goto error;
3472                 if (ret > 0)
3473                         break;
3474 
3475                 leaf = path->nodes[0];
3476                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3477 
3478                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3479                                        struct btrfs_chunk);
3480                 chunk_type = btrfs_chunk_type(leaf, chunk);
3481                 btrfs_release_path(path);
3482 
3483                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3484                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3485                         if (ret == -ENOSPC)
3486                                 failed++;
3487                         else
3488                                 BUG_ON(ret);
3489                 }
3490                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3491 
3492                 if (found_key.offset == 0)
3493                         break;
3494                 key.offset = found_key.offset - 1;
3495         }
3496         ret = 0;
3497         if (failed && !retried) {
3498                 failed = 0;
3499                 retried = true;
3500                 goto again;
3501         } else if (WARN_ON(failed && retried)) {
3502                 ret = -ENOSPC;
3503         }
3504 error:
3505         btrfs_free_path(path);
3506         return ret;
3507 }
3508 
3509 /*
3510  * return 1 : allocate a data chunk successfully,
3511  * return <0: errors during allocating a data chunk,
3512  * return 0 : no need to allocate a data chunk.
3513  */
3514 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3515                                       u64 chunk_offset)
3516 {
3517         struct btrfs_block_group *cache;
3518         u64 bytes_used;
3519         u64 chunk_type;
3520 
3521         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3522         ASSERT(cache);
3523         chunk_type = cache->flags;
3524         btrfs_put_block_group(cache);
3525 
3526         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3527                 return 0;
3528 
3529         spin_lock(&fs_info->data_sinfo->lock);
3530         bytes_used = fs_info->data_sinfo->bytes_used;
3531         spin_unlock(&fs_info->data_sinfo->lock);
3532 
3533         if (!bytes_used) {
3534                 struct btrfs_trans_handle *trans;
3535                 int ret;
3536 
3537                 trans = btrfs_join_transaction(fs_info->tree_root);
3538                 if (IS_ERR(trans))
3539                         return PTR_ERR(trans);
3540 
3541                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3542                 btrfs_end_transaction(trans);
3543                 if (ret < 0)
3544                         return ret;
3545                 return 1;
3546         }
3547 
3548         return 0;
3549 }
3550 
3551 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3552                                            const struct btrfs_disk_balance_args *disk)
3553 {
3554         memset(cpu, 0, sizeof(*cpu));
3555 
3556         cpu->profiles = le64_to_cpu(disk->profiles);
3557         cpu->usage = le64_to_cpu(disk->usage);
3558         cpu->devid = le64_to_cpu(disk->devid);
3559         cpu->pstart = le64_to_cpu(disk->pstart);
3560         cpu->pend = le64_to_cpu(disk->pend);
3561         cpu->vstart = le64_to_cpu(disk->vstart);
3562         cpu->vend = le64_to_cpu(disk->vend);
3563         cpu->target = le64_to_cpu(disk->target);
3564         cpu->flags = le64_to_cpu(disk->flags);
3565         cpu->limit = le64_to_cpu(disk->limit);
3566         cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3567         cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3568 }
3569 
3570 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3571                                            const struct btrfs_balance_args *cpu)
3572 {
3573         memset(disk, 0, sizeof(*disk));
3574 
3575         disk->profiles = cpu_to_le64(cpu->profiles);
3576         disk->usage = cpu_to_le64(cpu->usage);
3577         disk->devid = cpu_to_le64(cpu->devid);
3578         disk->pstart = cpu_to_le64(cpu->pstart);
3579         disk->pend = cpu_to_le64(cpu->pend);
3580         disk->vstart = cpu_to_le64(cpu->vstart);
3581         disk->vend = cpu_to_le64(cpu->vend);
3582         disk->target = cpu_to_le64(cpu->target);
3583         disk->flags = cpu_to_le64(cpu->flags);
3584         disk->limit = cpu_to_le64(cpu->limit);
3585         disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3586         disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3587 }
3588 
3589 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3590                                struct btrfs_balance_control *bctl)
3591 {
3592         struct btrfs_root *root = fs_info->tree_root;
3593         struct btrfs_trans_handle *trans;
3594         struct btrfs_balance_item *item;
3595         struct btrfs_disk_balance_args disk_bargs;
3596         struct btrfs_path *path;
3597         struct extent_buffer *leaf;
3598         struct btrfs_key key;
3599         int ret, err;
3600 
3601         path = btrfs_alloc_path();
3602         if (!path)
3603                 return -ENOMEM;
3604 
3605         trans = btrfs_start_transaction(root, 0);
3606         if (IS_ERR(trans)) {
3607                 btrfs_free_path(path);
3608                 return PTR_ERR(trans);
3609         }
3610 
3611         key.objectid = BTRFS_BALANCE_OBJECTID;
3612         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3613         key.offset = 0;
3614 
3615         ret = btrfs_insert_empty_item(trans, root, path, &key,
3616                                       sizeof(*item));
3617         if (ret)
3618                 goto out;
3619 
3620         leaf = path->nodes[0];
3621         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3622 
3623         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3624 
3625         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3626         btrfs_set_balance_data(leaf, item, &disk_bargs);
3627         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3628         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3629         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3630         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3631 
3632         btrfs_set_balance_flags(leaf, item, bctl->flags);
3633 
3634         btrfs_mark_buffer_dirty(trans, leaf);
3635 out:
3636         btrfs_free_path(path);
3637         err = btrfs_commit_transaction(trans);
3638         if (err && !ret)
3639                 ret = err;
3640         return ret;
3641 }
3642 
3643 static int del_balance_item(struct btrfs_fs_info *fs_info)
3644 {
3645         struct btrfs_root *root = fs_info->tree_root;
3646         struct btrfs_trans_handle *trans;
3647         struct btrfs_path *path;
3648         struct btrfs_key key;
3649         int ret, err;
3650 
3651         path = btrfs_alloc_path();
3652         if (!path)
3653                 return -ENOMEM;
3654 
3655         trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3656         if (IS_ERR(trans)) {
3657                 btrfs_free_path(path);
3658                 return PTR_ERR(trans);
3659         }
3660 
3661         key.objectid = BTRFS_BALANCE_OBJECTID;
3662         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3663         key.offset = 0;
3664 
3665         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3666         if (ret < 0)
3667                 goto out;
3668         if (ret > 0) {
3669                 ret = -ENOENT;
3670                 goto out;
3671         }
3672 
3673         ret = btrfs_del_item(trans, root, path);
3674 out:
3675         btrfs_free_path(path);
3676         err = btrfs_commit_transaction(trans);
3677         if (err && !ret)
3678                 ret = err;
3679         return ret;
3680 }
3681 
3682 /*
3683  * This is a heuristic used to reduce the number of chunks balanced on
3684  * resume after balance was interrupted.
3685  */
3686 static void update_balance_args(struct btrfs_balance_control *bctl)
3687 {
3688         /*
3689          * Turn on soft mode for chunk types that were being converted.
3690          */
3691         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3692                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3693         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3694                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3695         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3696                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3697 
3698         /*
3699          * Turn on usage filter if is not already used.  The idea is
3700          * that chunks that we have already balanced should be
3701          * reasonably full.  Don't do it for chunks that are being
3702          * converted - that will keep us from relocating unconverted
3703          * (albeit full) chunks.
3704          */
3705         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3706             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3707             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3708                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3709                 bctl->data.usage = 90;
3710         }
3711         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3712             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3713             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3714                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3715                 bctl->sys.usage = 90;
3716         }
3717         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3718             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3719             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3720                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3721                 bctl->meta.usage = 90;
3722         }
3723 }
3724 
3725 /*
3726  * Clear the balance status in fs_info and delete the balance item from disk.
3727  */
3728 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3729 {
3730         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3731         int ret;
3732 
3733         ASSERT(fs_info->balance_ctl);
3734 
3735         spin_lock(&fs_info->balance_lock);
3736         fs_info->balance_ctl = NULL;
3737         spin_unlock(&fs_info->balance_lock);
3738 
3739         kfree(bctl);
3740         ret = del_balance_item(fs_info);
3741         if (ret)
3742                 btrfs_handle_fs_error(fs_info, ret, NULL);
3743 }
3744 
3745 /*
3746  * Balance filters.  Return 1 if chunk should be filtered out
3747  * (should not be balanced).
3748  */
3749 static int chunk_profiles_filter(u64 chunk_type,
3750                                  struct btrfs_balance_args *bargs)
3751 {
3752         chunk_type = chunk_to_extended(chunk_type) &
3753                                 BTRFS_EXTENDED_PROFILE_MASK;
3754 
3755         if (bargs->profiles & chunk_type)
3756                 return 0;
3757 
3758         return 1;
3759 }
3760 
3761 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3762                               struct btrfs_balance_args *bargs)
3763 {
3764         struct btrfs_block_group *cache;
3765         u64 chunk_used;
3766         u64 user_thresh_min;
3767         u64 user_thresh_max;
3768         int ret = 1;
3769 
3770         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3771         chunk_used = cache->used;
3772 
3773         if (bargs->usage_min == 0)
3774                 user_thresh_min = 0;
3775         else
3776                 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3777 
3778         if (bargs->usage_max == 0)
3779                 user_thresh_max = 1;
3780         else if (bargs->usage_max > 100)
3781                 user_thresh_max = cache->length;
3782         else
3783                 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3784 
3785         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3786                 ret = 0;
3787 
3788         btrfs_put_block_group(cache);
3789         return ret;
3790 }
3791 
3792 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3793                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3794 {
3795         struct btrfs_block_group *cache;
3796         u64 chunk_used, user_thresh;
3797         int ret = 1;
3798 
3799         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3800         chunk_used = cache->used;
3801 
3802         if (bargs->usage_min == 0)
3803                 user_thresh = 1;
3804         else if (bargs->usage > 100)
3805                 user_thresh = cache->length;
3806         else
3807                 user_thresh = mult_perc(cache->length, bargs->usage);
3808 
3809         if (chunk_used < user_thresh)
3810                 ret = 0;
3811 
3812         btrfs_put_block_group(cache);
3813         return ret;
3814 }
3815 
3816 static int chunk_devid_filter(struct extent_buffer *leaf,
3817                               struct btrfs_chunk *chunk,
3818                               struct btrfs_balance_args *bargs)
3819 {
3820         struct btrfs_stripe *stripe;
3821         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3822         int i;
3823 
3824         for (i = 0; i < num_stripes; i++) {
3825                 stripe = btrfs_stripe_nr(chunk, i);
3826                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3827                         return 0;
3828         }
3829 
3830         return 1;
3831 }
3832 
3833 static u64 calc_data_stripes(u64 type, int num_stripes)
3834 {
3835         const int index = btrfs_bg_flags_to_raid_index(type);
3836         const int ncopies = btrfs_raid_array[index].ncopies;
3837         const int nparity = btrfs_raid_array[index].nparity;
3838 
3839         return (num_stripes - nparity) / ncopies;
3840 }
3841 
3842 /* [pstart, pend) */
3843 static int chunk_drange_filter(struct extent_buffer *leaf,
3844                                struct btrfs_chunk *chunk,
3845                                struct btrfs_balance_args *bargs)
3846 {
3847         struct btrfs_stripe *stripe;
3848         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3849         u64 stripe_offset;
3850         u64 stripe_length;
3851         u64 type;
3852         int factor;
3853         int i;
3854 
3855         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3856                 return 0;
3857 
3858         type = btrfs_chunk_type(leaf, chunk);
3859         factor = calc_data_stripes(type, num_stripes);
3860 
3861         for (i = 0; i < num_stripes; i++) {
3862                 stripe = btrfs_stripe_nr(chunk, i);
3863                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3864                         continue;
3865 
3866                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3867                 stripe_length = btrfs_chunk_length(leaf, chunk);
3868                 stripe_length = div_u64(stripe_length, factor);
3869 
3870                 if (stripe_offset < bargs->pend &&
3871                     stripe_offset + stripe_length > bargs->pstart)
3872                         return 0;
3873         }
3874 
3875         return 1;
3876 }
3877 
3878 /* [vstart, vend) */
3879 static int chunk_vrange_filter(struct extent_buffer *leaf,
3880                                struct btrfs_chunk *chunk,
3881                                u64 chunk_offset,
3882                                struct btrfs_balance_args *bargs)
3883 {
3884         if (chunk_offset < bargs->vend &&
3885             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3886                 /* at least part of the chunk is inside this vrange */
3887                 return 0;
3888 
3889         return 1;
3890 }
3891 
3892 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3893                                struct btrfs_chunk *chunk,
3894                                struct btrfs_balance_args *bargs)
3895 {
3896         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3897 
3898         if (bargs->stripes_min <= num_stripes
3899                         && num_stripes <= bargs->stripes_max)
3900                 return 0;
3901 
3902         return 1;
3903 }
3904 
3905 static int chunk_soft_convert_filter(u64 chunk_type,
3906                                      struct btrfs_balance_args *bargs)
3907 {
3908         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3909                 return 0;
3910 
3911         chunk_type = chunk_to_extended(chunk_type) &
3912                                 BTRFS_EXTENDED_PROFILE_MASK;
3913 
3914         if (bargs->target == chunk_type)
3915                 return 1;
3916 
3917         return 0;
3918 }
3919 
3920 static int should_balance_chunk(struct extent_buffer *leaf,
3921                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3922 {
3923         struct btrfs_fs_info *fs_info = leaf->fs_info;
3924         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3925         struct btrfs_balance_args *bargs = NULL;
3926         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3927 
3928         /* type filter */
3929         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3930               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3931                 return 0;
3932         }
3933 
3934         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3935                 bargs = &bctl->data;
3936         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3937                 bargs = &bctl->sys;
3938         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3939                 bargs = &bctl->meta;
3940 
3941         /* profiles filter */
3942         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3943             chunk_profiles_filter(chunk_type, bargs)) {
3944                 return 0;
3945         }
3946 
3947         /* usage filter */
3948         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3949             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3950                 return 0;
3951         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3952             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3953                 return 0;
3954         }
3955 
3956         /* devid filter */
3957         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3958             chunk_devid_filter(leaf, chunk, bargs)) {
3959                 return 0;
3960         }
3961 
3962         /* drange filter, makes sense only with devid filter */
3963         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3964             chunk_drange_filter(leaf, chunk, bargs)) {
3965                 return 0;
3966         }
3967 
3968         /* vrange filter */
3969         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3970             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3971                 return 0;
3972         }
3973 
3974         /* stripes filter */
3975         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3976             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3977                 return 0;
3978         }
3979 
3980         /* soft profile changing mode */
3981         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3982             chunk_soft_convert_filter(chunk_type, bargs)) {
3983                 return 0;
3984         }
3985 
3986         /*
3987          * limited by count, must be the last filter
3988          */
3989         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3990                 if (bargs->limit == 0)
3991                         return 0;
3992                 else
3993                         bargs->limit--;
3994         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3995                 /*
3996                  * Same logic as the 'limit' filter; the minimum cannot be
3997                  * determined here because we do not have the global information
3998                  * about the count of all chunks that satisfy the filters.
3999                  */
4000                 if (bargs->limit_max == 0)
4001                         return 0;
4002                 else
4003                         bargs->limit_max--;
4004         }
4005 
4006         return 1;
4007 }
4008 
4009 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4010 {
4011         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4012         struct btrfs_root *chunk_root = fs_info->chunk_root;
4013         u64 chunk_type;
4014         struct btrfs_chunk *chunk;
4015         struct btrfs_path *path = NULL;
4016         struct btrfs_key key;
4017         struct btrfs_key found_key;
4018         struct extent_buffer *leaf;
4019         int slot;
4020         int ret;
4021         int enospc_errors = 0;
4022         bool counting = true;
4023         /* The single value limit and min/max limits use the same bytes in the */
4024         u64 limit_data = bctl->data.limit;
4025         u64 limit_meta = bctl->meta.limit;
4026         u64 limit_sys = bctl->sys.limit;
4027         u32 count_data = 0;
4028         u32 count_meta = 0;
4029         u32 count_sys = 0;
4030         int chunk_reserved = 0;
4031 
4032         path = btrfs_alloc_path();
4033         if (!path) {
4034                 ret = -ENOMEM;
4035                 goto error;
4036         }
4037 
4038         /* zero out stat counters */
4039         spin_lock(&fs_info->balance_lock);
4040         memset(&bctl->stat, 0, sizeof(bctl->stat));
4041         spin_unlock(&fs_info->balance_lock);
4042 again:
4043         if (!counting) {
4044                 /*
4045                  * The single value limit and min/max limits use the same bytes
4046                  * in the
4047                  */
4048                 bctl->data.limit = limit_data;
4049                 bctl->meta.limit = limit_meta;
4050                 bctl->sys.limit = limit_sys;
4051         }
4052         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4053         key.offset = (u64)-1;
4054         key.type = BTRFS_CHUNK_ITEM_KEY;
4055 
4056         while (1) {
4057                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4058                     atomic_read(&fs_info->balance_cancel_req)) {
4059                         ret = -ECANCELED;
4060                         goto error;
4061                 }
4062 
4063                 mutex_lock(&fs_info->reclaim_bgs_lock);
4064                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4065                 if (ret < 0) {
4066                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4067                         goto error;
4068                 }
4069 
4070                 /*
4071                  * this shouldn't happen, it means the last relocate
4072                  * failed
4073                  */
4074                 if (ret == 0)
4075                         BUG(); /* FIXME break ? */
4076 
4077                 ret = btrfs_previous_item(chunk_root, path, 0,
4078                                           BTRFS_CHUNK_ITEM_KEY);
4079                 if (ret) {
4080                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4081                         ret = 0;
4082                         break;
4083                 }
4084 
4085                 leaf = path->nodes[0];
4086                 slot = path->slots[0];
4087                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4088 
4089                 if (found_key.objectid != key.objectid) {
4090                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4091                         break;
4092                 }
4093 
4094                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4095                 chunk_type = btrfs_chunk_type(leaf, chunk);
4096 
4097                 if (!counting) {
4098                         spin_lock(&fs_info->balance_lock);
4099                         bctl->stat.considered++;
4100                         spin_unlock(&fs_info->balance_lock);
4101                 }
4102 
4103                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4104 
4105                 btrfs_release_path(path);
4106                 if (!ret) {
4107                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4108                         goto loop;
4109                 }
4110 
4111                 if (counting) {
4112                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4113                         spin_lock(&fs_info->balance_lock);
4114                         bctl->stat.expected++;
4115                         spin_unlock(&fs_info->balance_lock);
4116 
4117                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4118                                 count_data++;
4119                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4120                                 count_sys++;
4121                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4122                                 count_meta++;
4123 
4124                         goto loop;
4125                 }
4126 
4127                 /*
4128                  * Apply limit_min filter, no need to check if the LIMITS
4129                  * filter is used, limit_min is 0 by default
4130                  */
4131                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4132                                         count_data < bctl->data.limit_min)
4133                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4134                                         count_meta < bctl->meta.limit_min)
4135                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4136                                         count_sys < bctl->sys.limit_min)) {
4137                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4138                         goto loop;
4139                 }
4140 
4141                 if (!chunk_reserved) {
4142                         /*
4143                          * We may be relocating the only data chunk we have,
4144                          * which could potentially end up with losing data's
4145                          * raid profile, so lets allocate an empty one in
4146                          * advance.
4147                          */
4148                         ret = btrfs_may_alloc_data_chunk(fs_info,
4149                                                          found_key.offset);
4150                         if (ret < 0) {
4151                                 mutex_unlock(&fs_info->reclaim_bgs_lock);
4152                                 goto error;
4153                         } else if (ret == 1) {
4154                                 chunk_reserved = 1;
4155                         }
4156                 }
4157 
4158                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4159                 mutex_unlock(&fs_info->reclaim_bgs_lock);
4160                 if (ret == -ENOSPC) {
4161                         enospc_errors++;
4162                 } else if (ret == -ETXTBSY) {
4163                         btrfs_info(fs_info,
4164            "skipping relocation of block group %llu due to active swapfile",
4165                                    found_key.offset);
4166                         ret = 0;
4167                 } else if (ret) {
4168                         goto error;
4169                 } else {
4170                         spin_lock(&fs_info->balance_lock);
4171                         bctl->stat.completed++;
4172                         spin_unlock(&fs_info->balance_lock);
4173                 }
4174 loop:
4175                 if (found_key.offset == 0)
4176                         break;
4177                 key.offset = found_key.offset - 1;
4178         }
4179 
4180         if (counting) {
4181                 btrfs_release_path(path);
4182                 counting = false;
4183                 goto again;
4184         }
4185 error:
4186         btrfs_free_path(path);
4187         if (enospc_errors) {
4188                 btrfs_info(fs_info, "%d enospc errors during balance",
4189                            enospc_errors);
4190                 if (!ret)
4191                         ret = -ENOSPC;
4192         }
4193 
4194         return ret;
4195 }
4196 
4197 /*
4198  * See if a given profile is valid and reduced.
4199  *
4200  * @flags:     profile to validate
4201  * @extended:  if true @flags is treated as an extended profile
4202  */
4203 static int alloc_profile_is_valid(u64 flags, int extended)
4204 {
4205         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4206                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
4207 
4208         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4209 
4210         /* 1) check that all other bits are zeroed */
4211         if (flags & ~mask)
4212                 return 0;
4213 
4214         /* 2) see if profile is reduced */
4215         if (flags == 0)
4216                 return !extended; /* "" is valid for usual profiles */
4217 
4218         return has_single_bit_set(flags);
4219 }
4220 
4221 /*
4222  * Validate target profile against allowed profiles and return true if it's OK.
4223  * Otherwise print the error message and return false.
4224  */
4225 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4226                 const struct btrfs_balance_args *bargs,
4227                 u64 allowed, const char *type)
4228 {
4229         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4230                 return true;
4231 
4232         /* Profile is valid and does not have bits outside of the allowed set */
4233         if (alloc_profile_is_valid(bargs->target, 1) &&
4234             (bargs->target & ~allowed) == 0)
4235                 return true;
4236 
4237         btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4238                         type, btrfs_bg_type_to_raid_name(bargs->target));
4239         return false;
4240 }
4241 
4242 /*
4243  * Fill @buf with textual description of balance filter flags @bargs, up to
4244  * @size_buf including the terminating null. The output may be trimmed if it
4245  * does not fit into the provided buffer.
4246  */
4247 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4248                                  u32 size_buf)
4249 {
4250         int ret;
4251         u32 size_bp = size_buf;
4252         char *bp = buf;
4253         u64 flags = bargs->flags;
4254         char tmp_buf[128] = {'\0'};
4255 
4256         if (!flags)
4257                 return;
4258 
4259 #define CHECK_APPEND_NOARG(a)                                           \
4260         do {                                                            \
4261                 ret = snprintf(bp, size_bp, (a));                       \
4262                 if (ret < 0 || ret >= size_bp)                          \
4263                         goto out_overflow;                              \
4264                 size_bp -= ret;                                         \
4265                 bp += ret;                                              \
4266         } while (0)
4267 
4268 #define CHECK_APPEND_1ARG(a, v1)                                        \
4269         do {                                                            \
4270                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4271                 if (ret < 0 || ret >= size_bp)                          \
4272                         goto out_overflow;                              \
4273                 size_bp -= ret;                                         \
4274                 bp += ret;                                              \
4275         } while (0)
4276 
4277 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
4278         do {                                                            \
4279                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
4280                 if (ret < 0 || ret >= size_bp)                          \
4281                         goto out_overflow;                              \
4282                 size_bp -= ret;                                         \
4283                 bp += ret;                                              \
4284         } while (0)
4285 
4286         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4287                 CHECK_APPEND_1ARG("convert=%s,",
4288                                   btrfs_bg_type_to_raid_name(bargs->target));
4289 
4290         if (flags & BTRFS_BALANCE_ARGS_SOFT)
4291                 CHECK_APPEND_NOARG("soft,");
4292 
4293         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4294                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4295                                             sizeof(tmp_buf));
4296                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4297         }
4298 
4299         if (flags & BTRFS_BALANCE_ARGS_USAGE)
4300                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4301 
4302         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4303                 CHECK_APPEND_2ARG("usage=%u..%u,",
4304                                   bargs->usage_min, bargs->usage_max);
4305 
4306         if (flags & BTRFS_BALANCE_ARGS_DEVID)
4307                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4308 
4309         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4310                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4311                                   bargs->pstart, bargs->pend);
4312 
4313         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4314                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4315                                   bargs->vstart, bargs->vend);
4316 
4317         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4318                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4319 
4320         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4321                 CHECK_APPEND_2ARG("limit=%u..%u,",
4322                                 bargs->limit_min, bargs->limit_max);
4323 
4324         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4325                 CHECK_APPEND_2ARG("stripes=%u..%u,",
4326                                   bargs->stripes_min, bargs->stripes_max);
4327 
4328 #undef CHECK_APPEND_2ARG
4329 #undef CHECK_APPEND_1ARG
4330 #undef CHECK_APPEND_NOARG
4331 
4332 out_overflow:
4333 
4334         if (size_bp < size_buf)
4335                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4336         else
4337                 buf[0] = '\0';
4338 }
4339 
4340 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4341 {
4342         u32 size_buf = 1024;
4343         char tmp_buf[192] = {'\0'};
4344         char *buf;
4345         char *bp;
4346         u32 size_bp = size_buf;
4347         int ret;
4348         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4349 
4350         buf = kzalloc(size_buf, GFP_KERNEL);
4351         if (!buf)
4352                 return;
4353 
4354         bp = buf;
4355 
4356 #define CHECK_APPEND_1ARG(a, v1)                                        \
4357         do {                                                            \
4358                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4359                 if (ret < 0 || ret >= size_bp)                          \
4360                         goto out_overflow;                              \
4361                 size_bp -= ret;                                         \
4362                 bp += ret;                                              \
4363         } while (0)
4364 
4365         if (bctl->flags & BTRFS_BALANCE_FORCE)
4366                 CHECK_APPEND_1ARG("%s", "-f ");
4367 
4368         if (bctl->flags & BTRFS_BALANCE_DATA) {
4369                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4370                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4371         }
4372 
4373         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4374                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4375                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4376         }
4377 
4378         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4379                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4380                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4381         }
4382 
4383 #undef CHECK_APPEND_1ARG
4384 
4385 out_overflow:
4386 
4387         if (size_bp < size_buf)
4388                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4389         btrfs_info(fs_info, "balance: %s %s",
4390                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4391                    "resume" : "start", buf);
4392 
4393         kfree(buf);
4394 }
4395 
4396 /*
4397  * Should be called with balance mutexe held
4398  */
4399 int btrfs_balance(struct btrfs_fs_info *fs_info,
4400                   struct btrfs_balance_control *bctl,
4401                   struct btrfs_ioctl_balance_args *bargs)
4402 {
4403         u64 meta_target, data_target;
4404         u64 allowed;
4405         int mixed = 0;
4406         int ret;
4407         u64 num_devices;
4408         unsigned seq;
4409         bool reducing_redundancy;
4410         bool paused = false;
4411         int i;
4412 
4413         if (btrfs_fs_closing(fs_info) ||
4414             atomic_read(&fs_info->balance_pause_req) ||
4415             btrfs_should_cancel_balance(fs_info)) {
4416                 ret = -EINVAL;
4417                 goto out;
4418         }
4419 
4420         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4421         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4422                 mixed = 1;
4423 
4424         /*
4425          * In case of mixed groups both data and meta should be picked,
4426          * and identical options should be given for both of them.
4427          */
4428         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4429         if (mixed && (bctl->flags & allowed)) {
4430                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4431                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4432                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4433                         btrfs_err(fs_info,
4434           "balance: mixed groups data and metadata options must be the same");
4435                         ret = -EINVAL;
4436                         goto out;
4437                 }
4438         }
4439 
4440         /*
4441          * rw_devices will not change at the moment, device add/delete/replace
4442          * are exclusive
4443          */
4444         num_devices = fs_info->fs_devices->rw_devices;
4445 
4446         /*
4447          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4448          * special bit for it, to make it easier to distinguish.  Thus we need
4449          * to set it manually, or balance would refuse the profile.
4450          */
4451         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4452         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4453                 if (num_devices >= btrfs_raid_array[i].devs_min)
4454                         allowed |= btrfs_raid_array[i].bg_flag;
4455 
4456         if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4457             !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4458             !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4459                 ret = -EINVAL;
4460                 goto out;
4461         }
4462 
4463         /*
4464          * Allow to reduce metadata or system integrity only if force set for
4465          * profiles with redundancy (copies, parity)
4466          */
4467         allowed = 0;
4468         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4469                 if (btrfs_raid_array[i].ncopies >= 2 ||
4470                     btrfs_raid_array[i].tolerated_failures >= 1)
4471                         allowed |= btrfs_raid_array[i].bg_flag;
4472         }
4473         do {
4474                 seq = read_seqbegin(&fs_info->profiles_lock);
4475 
4476                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4477                      (fs_info->avail_system_alloc_bits & allowed) &&
4478                      !(bctl->sys.target & allowed)) ||
4479                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4480                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4481                      !(bctl->meta.target & allowed)))
4482                         reducing_redundancy = true;
4483                 else
4484                         reducing_redundancy = false;
4485 
4486                 /* if we're not converting, the target field is uninitialized */
4487                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4488                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4489                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4490                         bctl->data.target : fs_info->avail_data_alloc_bits;
4491         } while (read_seqretry(&fs_info->profiles_lock, seq));
4492 
4493         if (reducing_redundancy) {
4494                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4495                         btrfs_info(fs_info,
4496                            "balance: force reducing metadata redundancy");
4497                 } else {
4498                         btrfs_err(fs_info,
4499         "balance: reduces metadata redundancy, use --force if you want this");
4500                         ret = -EINVAL;
4501                         goto out;
4502                 }
4503         }
4504 
4505         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4506                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4507                 btrfs_warn(fs_info,
4508         "balance: metadata profile %s has lower redundancy than data profile %s",
4509                                 btrfs_bg_type_to_raid_name(meta_target),
4510                                 btrfs_bg_type_to_raid_name(data_target));
4511         }
4512 
4513         ret = insert_balance_item(fs_info, bctl);
4514         if (ret && ret != -EEXIST)
4515                 goto out;
4516 
4517         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4518                 BUG_ON(ret == -EEXIST);
4519                 BUG_ON(fs_info->balance_ctl);
4520                 spin_lock(&fs_info->balance_lock);
4521                 fs_info->balance_ctl = bctl;
4522                 spin_unlock(&fs_info->balance_lock);
4523         } else {
4524                 BUG_ON(ret != -EEXIST);
4525                 spin_lock(&fs_info->balance_lock);
4526                 update_balance_args(bctl);
4527                 spin_unlock(&fs_info->balance_lock);
4528         }
4529 
4530         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4531         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4532         describe_balance_start_or_resume(fs_info);
4533         mutex_unlock(&fs_info->balance_mutex);
4534 
4535         ret = __btrfs_balance(fs_info);
4536 
4537         mutex_lock(&fs_info->balance_mutex);
4538         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4539                 btrfs_info(fs_info, "balance: paused");
4540                 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4541                 paused = true;
4542         }
4543         /*
4544          * Balance can be canceled by:
4545          *
4546          * - Regular cancel request
4547          *   Then ret == -ECANCELED and balance_cancel_req > 0
4548          *
4549          * - Fatal signal to "btrfs" process
4550          *   Either the signal caught by wait_reserve_ticket() and callers
4551          *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4552          *   got -ECANCELED.
4553          *   Either way, in this case balance_cancel_req = 0, and
4554          *   ret == -EINTR or ret == -ECANCELED.
4555          *
4556          * So here we only check the return value to catch canceled balance.
4557          */
4558         else if (ret == -ECANCELED || ret == -EINTR)
4559                 btrfs_info(fs_info, "balance: canceled");
4560         else
4561                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4562 
4563         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4564 
4565         if (bargs) {
4566                 memset(bargs, 0, sizeof(*bargs));
4567                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4568         }
4569 
4570         /* We didn't pause, we can clean everything up. */
4571         if (!paused) {
4572                 reset_balance_state(fs_info);
4573                 btrfs_exclop_finish(fs_info);
4574         }
4575 
4576         wake_up(&fs_info->balance_wait_q);
4577 
4578         return ret;
4579 out:
4580         if (bctl->flags & BTRFS_BALANCE_RESUME)
4581                 reset_balance_state(fs_info);
4582         else
4583                 kfree(bctl);
4584         btrfs_exclop_finish(fs_info);
4585 
4586         return ret;
4587 }
4588 
4589 static int balance_kthread(void *data)
4590 {
4591         struct btrfs_fs_info *fs_info = data;
4592         int ret = 0;
4593 
4594         sb_start_write(fs_info->sb);
4595         mutex_lock(&fs_info->balance_mutex);
4596         if (fs_info->balance_ctl)
4597                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4598         mutex_unlock(&fs_info->balance_mutex);
4599         sb_end_write(fs_info->sb);
4600 
4601         return ret;
4602 }
4603 
4604 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4605 {
4606         struct task_struct *tsk;
4607 
4608         mutex_lock(&fs_info->balance_mutex);
4609         if (!fs_info->balance_ctl) {
4610                 mutex_unlock(&fs_info->balance_mutex);
4611                 return 0;
4612         }
4613         mutex_unlock(&fs_info->balance_mutex);
4614 
4615         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4616                 btrfs_info(fs_info, "balance: resume skipped");
4617                 return 0;
4618         }
4619 
4620         spin_lock(&fs_info->super_lock);
4621         ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4622         fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4623         spin_unlock(&fs_info->super_lock);
4624         /*
4625          * A ro->rw remount sequence should continue with the paused balance
4626          * regardless of who pauses it, system or the user as of now, so set
4627          * the resume flag.
4628          */
4629         spin_lock(&fs_info->balance_lock);
4630         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4631         spin_unlock(&fs_info->balance_lock);
4632 
4633         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4634         return PTR_ERR_OR_ZERO(tsk);
4635 }
4636 
4637 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4638 {
4639         struct btrfs_balance_control *bctl;
4640         struct btrfs_balance_item *item;
4641         struct btrfs_disk_balance_args disk_bargs;
4642         struct btrfs_path *path;
4643         struct extent_buffer *leaf;
4644         struct btrfs_key key;
4645         int ret;
4646 
4647         path = btrfs_alloc_path();
4648         if (!path)
4649                 return -ENOMEM;
4650 
4651         key.objectid = BTRFS_BALANCE_OBJECTID;
4652         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4653         key.offset = 0;
4654 
4655         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4656         if (ret < 0)
4657                 goto out;
4658         if (ret > 0) { /* ret = -ENOENT; */
4659                 ret = 0;
4660                 goto out;
4661         }
4662 
4663         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4664         if (!bctl) {
4665                 ret = -ENOMEM;
4666                 goto out;
4667         }
4668 
4669         leaf = path->nodes[0];
4670         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4671 
4672         bctl->flags = btrfs_balance_flags(leaf, item);
4673         bctl->flags |= BTRFS_BALANCE_RESUME;
4674 
4675         btrfs_balance_data(leaf, item, &disk_bargs);
4676         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4677         btrfs_balance_meta(leaf, item, &disk_bargs);
4678         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4679         btrfs_balance_sys(leaf, item, &disk_bargs);
4680         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4681 
4682         /*
4683          * This should never happen, as the paused balance state is recovered
4684          * during mount without any chance of other exclusive ops to collide.
4685          *
4686          * This gives the exclusive op status to balance and keeps in paused
4687          * state until user intervention (cancel or umount). If the ownership
4688          * cannot be assigned, show a message but do not fail. The balance
4689          * is in a paused state and must have fs_info::balance_ctl properly
4690          * set up.
4691          */
4692         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4693                 btrfs_warn(fs_info,
4694         "balance: cannot set exclusive op status, resume manually");
4695 
4696         btrfs_release_path(path);
4697 
4698         mutex_lock(&fs_info->balance_mutex);
4699         BUG_ON(fs_info->balance_ctl);
4700         spin_lock(&fs_info->balance_lock);
4701         fs_info->balance_ctl = bctl;
4702         spin_unlock(&fs_info->balance_lock);
4703         mutex_unlock(&fs_info->balance_mutex);
4704 out:
4705         btrfs_free_path(path);
4706         return ret;
4707 }
4708 
4709 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4710 {
4711         int ret = 0;
4712 
4713         mutex_lock(&fs_info->balance_mutex);
4714         if (!fs_info->balance_ctl) {
4715                 mutex_unlock(&fs_info->balance_mutex);
4716                 return -ENOTCONN;
4717         }
4718 
4719         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4720                 atomic_inc(&fs_info->balance_pause_req);
4721                 mutex_unlock(&fs_info->balance_mutex);
4722 
4723                 wait_event(fs_info->balance_wait_q,
4724                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4725 
4726                 mutex_lock(&fs_info->balance_mutex);
4727                 /* we are good with balance_ctl ripped off from under us */
4728                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4729                 atomic_dec(&fs_info->balance_pause_req);
4730         } else {
4731                 ret = -ENOTCONN;
4732         }
4733 
4734         mutex_unlock(&fs_info->balance_mutex);
4735         return ret;
4736 }
4737 
4738 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4739 {
4740         mutex_lock(&fs_info->balance_mutex);
4741         if (!fs_info->balance_ctl) {
4742                 mutex_unlock(&fs_info->balance_mutex);
4743                 return -ENOTCONN;
4744         }
4745 
4746         /*
4747          * A paused balance with the item stored on disk can be resumed at
4748          * mount time if the mount is read-write. Otherwise it's still paused
4749          * and we must not allow cancelling as it deletes the item.
4750          */
4751         if (sb_rdonly(fs_info->sb)) {
4752                 mutex_unlock(&fs_info->balance_mutex);
4753                 return -EROFS;
4754         }
4755 
4756         atomic_inc(&fs_info->balance_cancel_req);
4757         /*
4758          * if we are running just wait and return, balance item is
4759          * deleted in btrfs_balance in this case
4760          */
4761         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4762                 mutex_unlock(&fs_info->balance_mutex);
4763                 wait_event(fs_info->balance_wait_q,
4764                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4765                 mutex_lock(&fs_info->balance_mutex);
4766         } else {
4767                 mutex_unlock(&fs_info->balance_mutex);
4768                 /*
4769                  * Lock released to allow other waiters to continue, we'll
4770                  * reexamine the status again.
4771                  */
4772                 mutex_lock(&fs_info->balance_mutex);
4773 
4774                 if (fs_info->balance_ctl) {
4775                         reset_balance_state(fs_info);
4776                         btrfs_exclop_finish(fs_info);
4777                         btrfs_info(fs_info, "balance: canceled");
4778                 }
4779         }
4780 
4781         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4782         atomic_dec(&fs_info->balance_cancel_req);
4783         mutex_unlock(&fs_info->balance_mutex);
4784         return 0;
4785 }
4786 
4787 int btrfs_uuid_scan_kthread(void *data)
4788 {
4789         struct btrfs_fs_info *fs_info = data;
4790         struct btrfs_root *root = fs_info->tree_root;
4791         struct btrfs_key key;
4792         struct btrfs_path *path = NULL;
4793         int ret = 0;
4794         struct extent_buffer *eb;
4795         int slot;
4796         struct btrfs_root_item root_item;
4797         u32 item_size;
4798         struct btrfs_trans_handle *trans = NULL;
4799         bool closing = false;
4800 
4801         path = btrfs_alloc_path();
4802         if (!path) {
4803                 ret = -ENOMEM;
4804                 goto out;
4805         }
4806 
4807         key.objectid = 0;
4808         key.type = BTRFS_ROOT_ITEM_KEY;
4809         key.offset = 0;
4810 
4811         while (1) {
4812                 if (btrfs_fs_closing(fs_info)) {
4813                         closing = true;
4814                         break;
4815                 }
4816                 ret = btrfs_search_forward(root, &key, path,
4817                                 BTRFS_OLDEST_GENERATION);
4818                 if (ret) {
4819                         if (ret > 0)
4820                                 ret = 0;
4821                         break;
4822                 }
4823 
4824                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4825                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4826                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4827                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4828                         goto skip;
4829 
4830                 eb = path->nodes[0];
4831                 slot = path->slots[0];
4832                 item_size = btrfs_item_size(eb, slot);
4833                 if (item_size < sizeof(root_item))
4834                         goto skip;
4835 
4836                 read_extent_buffer(eb, &root_item,
4837                                    btrfs_item_ptr_offset(eb, slot),
4838                                    (int)sizeof(root_item));
4839                 if (btrfs_root_refs(&root_item) == 0)
4840                         goto skip;
4841 
4842                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4843                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4844                         if (trans)
4845                                 goto update_tree;
4846 
4847                         btrfs_release_path(path);
4848                         /*
4849                          * 1 - subvol uuid item
4850                          * 1 - received_subvol uuid item
4851                          */
4852                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4853                         if (IS_ERR(trans)) {
4854                                 ret = PTR_ERR(trans);
4855                                 break;
4856                         }
4857                         continue;
4858                 } else {
4859                         goto skip;
4860                 }
4861 update_tree:
4862                 btrfs_release_path(path);
4863                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4864                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4865                                                   BTRFS_UUID_KEY_SUBVOL,
4866                                                   key.objectid);
4867                         if (ret < 0) {
4868                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4869                                         ret);
4870                                 break;
4871                         }
4872                 }
4873 
4874                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4875                         ret = btrfs_uuid_tree_add(trans,
4876                                                   root_item.received_uuid,
4877                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4878                                                   key.objectid);
4879                         if (ret < 0) {
4880                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4881                                         ret);
4882                                 break;
4883                         }
4884                 }
4885 
4886 skip:
4887                 btrfs_release_path(path);
4888                 if (trans) {
4889                         ret = btrfs_end_transaction(trans);
4890                         trans = NULL;
4891                         if (ret)
4892                                 break;
4893                 }
4894 
4895                 if (key.offset < (u64)-1) {
4896                         key.offset++;
4897                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4898                         key.offset = 0;
4899                         key.type = BTRFS_ROOT_ITEM_KEY;
4900                 } else if (key.objectid < (u64)-1) {
4901                         key.offset = 0;
4902                         key.type = BTRFS_ROOT_ITEM_KEY;
4903                         key.objectid++;
4904                 } else {
4905                         break;
4906                 }
4907                 cond_resched();
4908         }
4909 
4910 out:
4911         btrfs_free_path(path);
4912         if (trans && !IS_ERR(trans))
4913                 btrfs_end_transaction(trans);
4914         if (ret)
4915                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4916         else if (!closing)
4917                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4918         up(&fs_info->uuid_tree_rescan_sem);
4919         return 0;
4920 }
4921 
4922 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4923 {
4924         struct btrfs_trans_handle *trans;
4925         struct btrfs_root *tree_root = fs_info->tree_root;
4926         struct btrfs_root *uuid_root;
4927         struct task_struct *task;
4928         int ret;
4929 
4930         /*
4931          * 1 - root node
4932          * 1 - root item
4933          */
4934         trans = btrfs_start_transaction(tree_root, 2);
4935         if (IS_ERR(trans))
4936                 return PTR_ERR(trans);
4937 
4938         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4939         if (IS_ERR(uuid_root)) {
4940                 ret = PTR_ERR(uuid_root);
4941                 btrfs_abort_transaction(trans, ret);
4942                 btrfs_end_transaction(trans);
4943                 return ret;
4944         }
4945 
4946         fs_info->uuid_root = uuid_root;
4947 
4948         ret = btrfs_commit_transaction(trans);
4949         if (ret)
4950                 return ret;
4951 
4952         down(&fs_info->uuid_tree_rescan_sem);
4953         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4954         if (IS_ERR(task)) {
4955                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4956                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4957                 up(&fs_info->uuid_tree_rescan_sem);
4958                 return PTR_ERR(task);
4959         }
4960 
4961         return 0;
4962 }
4963 
4964 /*
4965  * shrinking a device means finding all of the device extents past
4966  * the new size, and then following the back refs to the chunks.
4967  * The chunk relocation code actually frees the device extent
4968  */
4969 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4970 {
4971         struct btrfs_fs_info *fs_info = device->fs_info;
4972         struct btrfs_root *root = fs_info->dev_root;
4973         struct btrfs_trans_handle *trans;
4974         struct btrfs_dev_extent *dev_extent = NULL;
4975         struct btrfs_path *path;
4976         u64 length;
4977         u64 chunk_offset;
4978         int ret;
4979         int slot;
4980         int failed = 0;
4981         bool retried = false;
4982         struct extent_buffer *l;
4983         struct btrfs_key key;
4984         struct btrfs_super_block *super_copy = fs_info->super_copy;
4985         u64 old_total = btrfs_super_total_bytes(super_copy);
4986         u64 old_size = btrfs_device_get_total_bytes(device);
4987         u64 diff;
4988         u64 start;
4989         u64 free_diff = 0;
4990 
4991         new_size = round_down(new_size, fs_info->sectorsize);
4992         start = new_size;
4993         diff = round_down(old_size - new_size, fs_info->sectorsize);
4994 
4995         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4996                 return -EINVAL;
4997 
4998         path = btrfs_alloc_path();
4999         if (!path)
5000                 return -ENOMEM;
5001 
5002         path->reada = READA_BACK;
5003 
5004         trans = btrfs_start_transaction(root, 0);
5005         if (IS_ERR(trans)) {
5006                 btrfs_free_path(path);
5007                 return PTR_ERR(trans);
5008         }
5009 
5010         mutex_lock(&fs_info->chunk_mutex);
5011 
5012         btrfs_device_set_total_bytes(device, new_size);
5013         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5014                 device->fs_devices->total_rw_bytes -= diff;
5015 
5016                 /*
5017                  * The new free_chunk_space is new_size - used, so we have to
5018                  * subtract the delta of the old free_chunk_space which included
5019                  * old_size - used.  If used > new_size then just subtract this
5020                  * entire device's free space.
5021                  */
5022                 if (device->bytes_used < new_size)
5023                         free_diff = (old_size - device->bytes_used) -
5024                                     (new_size - device->bytes_used);
5025                 else
5026                         free_diff = old_size - device->bytes_used;
5027                 atomic64_sub(free_diff, &fs_info->free_chunk_space);
5028         }
5029 
5030         /*
5031          * Once the device's size has been set to the new size, ensure all
5032          * in-memory chunks are synced to disk so that the loop below sees them
5033          * and relocates them accordingly.
5034          */
5035         if (contains_pending_extent(device, &start, diff)) {
5036                 mutex_unlock(&fs_info->chunk_mutex);
5037                 ret = btrfs_commit_transaction(trans);
5038                 if (ret)
5039                         goto done;
5040         } else {
5041                 mutex_unlock(&fs_info->chunk_mutex);
5042                 btrfs_end_transaction(trans);
5043         }
5044 
5045 again:
5046         key.objectid = device->devid;
5047         key.offset = (u64)-1;
5048         key.type = BTRFS_DEV_EXTENT_KEY;
5049 
5050         do {
5051                 mutex_lock(&fs_info->reclaim_bgs_lock);
5052                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5053                 if (ret < 0) {
5054                         mutex_unlock(&fs_info->reclaim_bgs_lock);
5055                         goto done;
5056                 }
5057 
5058                 ret = btrfs_previous_item(root, path, 0, key.type);
5059                 if (ret) {
5060                         mutex_unlock(&fs_info->reclaim_bgs_lock);
5061                         if (ret < 0)
5062                                 goto done;
5063                         ret = 0;
5064                         btrfs_release_path(path);
5065                         break;
5066                 }
5067 
5068                 l = path->nodes[0];
5069                 slot = path->slots[0];
5070                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5071 
5072                 if (key.objectid != device->devid) {
5073                         mutex_unlock(&fs_info->reclaim_bgs_lock);
5074                         btrfs_release_path(path);
5075                         break;
5076                 }
5077 
5078                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5079                 length = btrfs_dev_extent_length(l, dev_extent);
5080 
5081                 if (key.offset + length <= new_size) {
5082                         mutex_unlock(&fs_info->reclaim_bgs_lock);
5083                         btrfs_release_path(path);
5084                         break;
5085                 }
5086 
5087                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5088                 btrfs_release_path(path);
5089 
5090                 /*
5091                  * We may be relocating the only data chunk we have,
5092                  * which could potentially end up with losing data's
5093                  * raid profile, so lets allocate an empty one in
5094                  * advance.
5095                  */
5096                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5097                 if (ret < 0) {
5098                         mutex_unlock(&fs_info->reclaim_bgs_lock);
5099                         goto done;
5100                 }
5101 
5102                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5103                 mutex_unlock(&fs_info->reclaim_bgs_lock);
5104                 if (ret == -ENOSPC) {
5105                         failed++;
5106                 } else if (ret) {
5107                         if (ret == -ETXTBSY) {
5108                                 btrfs_warn(fs_info,
5109                    "could not shrink block group %llu due to active swapfile",
5110                                            chunk_offset);
5111                         }
5112                         goto done;
5113                 }
5114         } while (key.offset-- > 0);
5115 
5116         if (failed && !retried) {
5117                 failed = 0;
5118                 retried = true;
5119                 goto again;
5120         } else if (failed && retried) {
5121                 ret = -ENOSPC;
5122                 goto done;
5123         }
5124 
5125         /* Shrinking succeeded, else we would be at "done". */
5126         trans = btrfs_start_transaction(root, 0);
5127         if (IS_ERR(trans)) {
5128                 ret = PTR_ERR(trans);
5129                 goto done;
5130         }
5131 
5132         mutex_lock(&fs_info->chunk_mutex);
5133         /* Clear all state bits beyond the shrunk device size */
5134         clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5135                           CHUNK_STATE_MASK);
5136 
5137         btrfs_device_set_disk_total_bytes(device, new_size);
5138         if (list_empty(&device->post_commit_list))
5139                 list_add_tail(&device->post_commit_list,
5140                               &trans->transaction->dev_update_list);
5141 
5142         WARN_ON(diff > old_total);
5143         btrfs_set_super_total_bytes(super_copy,
5144                         round_down(old_total - diff, fs_info->sectorsize));
5145         mutex_unlock(&fs_info->chunk_mutex);
5146 
5147         btrfs_reserve_chunk_metadata(trans, false);
5148         /* Now btrfs_update_device() will change the on-disk size. */
5149         ret = btrfs_update_device(trans, device);
5150         btrfs_trans_release_chunk_metadata(trans);
5151         if (ret < 0) {
5152                 btrfs_abort_transaction(trans, ret);
5153                 btrfs_end_transaction(trans);
5154         } else {
5155                 ret = btrfs_commit_transaction(trans);
5156         }
5157 done:
5158         btrfs_free_path(path);
5159         if (ret) {
5160                 mutex_lock(&fs_info->chunk_mutex);
5161                 btrfs_device_set_total_bytes(device, old_size);
5162                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5163                         device->fs_devices->total_rw_bytes += diff;
5164                         atomic64_add(free_diff, &fs_info->free_chunk_space);
5165                 }
5166                 mutex_unlock(&fs_info->chunk_mutex);
5167         }
5168         return ret;
5169 }
5170 
5171 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5172                            struct btrfs_key *key,
5173                            struct btrfs_chunk *chunk, int item_size)
5174 {
5175         struct btrfs_super_block *super_copy = fs_info->super_copy;
5176         struct btrfs_disk_key disk_key;
5177         u32 array_size;
5178         u8 *ptr;
5179 
5180         lockdep_assert_held(&fs_info->chunk_mutex);
5181 
5182         array_size = btrfs_super_sys_array_size(super_copy);
5183         if (array_size + item_size + sizeof(disk_key)
5184                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5185                 return -EFBIG;
5186 
5187         ptr = super_copy->sys_chunk_array + array_size;
5188         btrfs_cpu_key_to_disk(&disk_key, key);
5189         memcpy(ptr, &disk_key, sizeof(disk_key));
5190         ptr += sizeof(disk_key);
5191         memcpy(ptr, chunk, item_size);
5192         item_size += sizeof(disk_key);
5193         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5194 
5195         return 0;
5196 }
5197 
5198 /*
5199  * sort the devices in descending order by max_avail, total_avail
5200  */
5201 static int btrfs_cmp_device_info(const void *a, const void *b)
5202 {
5203         const struct btrfs_device_info *di_a = a;
5204         const struct btrfs_device_info *di_b = b;
5205 
5206         if (di_a->max_avail > di_b->max_avail)
5207                 return -1;
5208         if (di_a->max_avail < di_b->max_avail)
5209                 return 1;
5210         if (di_a->total_avail > di_b->total_avail)
5211                 return -1;
5212         if (di_a->total_avail < di_b->total_avail)
5213                 return 1;
5214         return 0;
5215 }
5216 
5217 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5218 {
5219         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5220                 return;
5221 
5222         btrfs_set_fs_incompat(info, RAID56);
5223 }
5224 
5225 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5226 {
5227         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5228                 return;
5229 
5230         btrfs_set_fs_incompat(info, RAID1C34);
5231 }
5232 
5233 /*
5234  * Structure used internally for btrfs_create_chunk() function.
5235  * Wraps needed parameters.
5236  */
5237 struct alloc_chunk_ctl {
5238         u64 start;
5239         u64 type;
5240         /* Total number of stripes to allocate */
5241         int num_stripes;
5242         /* sub_stripes info for map */
5243         int sub_stripes;
5244         /* Stripes per device */
5245         int dev_stripes;
5246         /* Maximum number of devices to use */
5247         int devs_max;
5248         /* Minimum number of devices to use */
5249         int devs_min;
5250         /* ndevs has to be a multiple of this */
5251         int devs_increment;
5252         /* Number of copies */
5253         int ncopies;
5254         /* Number of stripes worth of bytes to store parity information */
5255         int nparity;
5256         u64 max_stripe_size;
5257         u64 max_chunk_size;
5258         u64 dev_extent_min;
5259         u64 stripe_size;
5260         u64 chunk_size;
5261         int ndevs;
5262 };
5263 
5264 static void init_alloc_chunk_ctl_policy_regular(
5265                                 struct btrfs_fs_devices *fs_devices,
5266                                 struct alloc_chunk_ctl *ctl)
5267 {
5268         struct btrfs_space_info *space_info;
5269 
5270         space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5271         ASSERT(space_info);
5272 
5273         ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5274         ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5275 
5276         if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5277                 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5278 
5279         /* We don't want a chunk larger than 10% of writable space */
5280         ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5281                                   ctl->max_chunk_size);
5282         ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5283 }
5284 
5285 static void init_alloc_chunk_ctl_policy_zoned(
5286                                       struct btrfs_fs_devices *fs_devices,
5287                                       struct alloc_chunk_ctl *ctl)
5288 {
5289         u64 zone_size = fs_devices->fs_info->zone_size;
5290         u64 limit;
5291         int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5292         int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5293         u64 min_chunk_size = min_data_stripes * zone_size;
5294         u64 type = ctl->type;
5295 
5296         ctl->max_stripe_size = zone_size;
5297         if (type & BTRFS_BLOCK_GROUP_DATA) {
5298                 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5299                                                  zone_size);
5300         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5301                 ctl->max_chunk_size = ctl->max_stripe_size;
5302         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5303                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5304                 ctl->devs_max = min_t(int, ctl->devs_max,
5305                                       BTRFS_MAX_DEVS_SYS_CHUNK);
5306         } else {
5307                 BUG();
5308         }
5309 
5310         /* We don't want a chunk larger than 10% of writable space */
5311         limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5312                                zone_size),
5313                     min_chunk_size);
5314         ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5315         ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5316 }
5317 
5318 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5319                                  struct alloc_chunk_ctl *ctl)
5320 {
5321         int index = btrfs_bg_flags_to_raid_index(ctl->type);
5322 
5323         ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5324         ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5325         ctl->devs_max = btrfs_raid_array[index].devs_max;
5326         if (!ctl->devs_max)
5327                 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5328         ctl->devs_min = btrfs_raid_array[index].devs_min;
5329         ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5330         ctl->ncopies = btrfs_raid_array[index].ncopies;
5331         ctl->nparity = btrfs_raid_array[index].nparity;
5332         ctl->ndevs = 0;
5333 
5334         switch (fs_devices->chunk_alloc_policy) {
5335         case BTRFS_CHUNK_ALLOC_REGULAR:
5336                 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5337                 break;
5338         case BTRFS_CHUNK_ALLOC_ZONED:
5339                 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5340                 break;
5341         default:
5342                 BUG();
5343         }
5344 }
5345 
5346 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5347                               struct alloc_chunk_ctl *ctl,
5348                               struct btrfs_device_info *devices_info)
5349 {
5350         struct btrfs_fs_info *info = fs_devices->fs_info;
5351         struct btrfs_device *device;
5352         u64 total_avail;
5353         u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5354         int ret;
5355         int ndevs = 0;
5356         u64 max_avail;
5357         u64 dev_offset;
5358 
5359         /*
5360          * in the first pass through the devices list, we gather information
5361          * about the available holes on each device.
5362          */
5363         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5364                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5365                         WARN(1, KERN_ERR
5366                                "BTRFS: read-only device in alloc_list\n");
5367                         continue;
5368                 }
5369 
5370                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5371                                         &device->dev_state) ||
5372                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5373                         continue;
5374 
5375                 if (device->total_bytes > device->bytes_used)
5376                         total_avail = device->total_bytes - device->bytes_used;
5377                 else
5378                         total_avail = 0;
5379 
5380                 /* If there is no space on this device, skip it. */
5381                 if (total_avail < ctl->dev_extent_min)
5382                         continue;
5383 
5384                 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5385                                            &max_avail);
5386                 if (ret && ret != -ENOSPC)
5387                         return ret;
5388 
5389                 if (ret == 0)
5390                         max_avail = dev_extent_want;
5391 
5392                 if (max_avail < ctl->dev_extent_min) {
5393                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5394                                 btrfs_debug(info,
5395                         "%s: devid %llu has no free space, have=%llu want=%llu",
5396                                             __func__, device->devid, max_avail,
5397                                             ctl->dev_extent_min);
5398                         continue;
5399                 }
5400 
5401                 if (ndevs == fs_devices->rw_devices) {
5402                         WARN(1, "%s: found more than %llu devices\n",
5403                              __func__, fs_devices->rw_devices);
5404                         break;
5405                 }
5406                 devices_info[ndevs].dev_offset = dev_offset;
5407                 devices_info[ndevs].max_avail = max_avail;
5408                 devices_info[ndevs].total_avail = total_avail;
5409                 devices_info[ndevs].dev = device;
5410                 ++ndevs;
5411         }
5412         ctl->ndevs = ndevs;
5413 
5414         /*
5415          * now sort the devices by hole size / available space
5416          */
5417         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5418              btrfs_cmp_device_info, NULL);
5419 
5420         return 0;
5421 }
5422 
5423 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5424                                       struct btrfs_device_info *devices_info)
5425 {
5426         /* Number of stripes that count for block group size */
5427         int data_stripes;
5428 
5429         /*
5430          * The primary goal is to maximize the number of stripes, so use as
5431          * many devices as possible, even if the stripes are not maximum sized.
5432          *
5433          * The DUP profile stores more than one stripe per device, the
5434          * max_avail is the total size so we have to adjust.
5435          */
5436         ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5437                                    ctl->dev_stripes);
5438         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5439 
5440         /* This will have to be fixed for RAID1 and RAID10 over more drives */
5441         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5442 
5443         /*
5444          * Use the number of data stripes to figure out how big this chunk is
5445          * really going to be in terms of logical address space, and compare
5446          * that answer with the max chunk size. If it's higher, we try to
5447          * reduce stripe_size.
5448          */
5449         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5450                 /*
5451                  * Reduce stripe_size, round it up to a 16MB boundary again and
5452                  * then use it, unless it ends up being even bigger than the
5453                  * previous value we had already.
5454                  */
5455                 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5456                                                         data_stripes), SZ_16M),
5457                                        ctl->stripe_size);
5458         }
5459 
5460         /* Stripe size should not go beyond 1G. */
5461         ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5462 
5463         /* Align to BTRFS_STRIPE_LEN */
5464         ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5465         ctl->chunk_size = ctl->stripe_size * data_stripes;
5466 
5467         return 0;
5468 }
5469 
5470 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5471                                     struct btrfs_device_info *devices_info)
5472 {
5473         u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5474         /* Number of stripes that count for block group size */
5475         int data_stripes;
5476 
5477         /*
5478          * It should hold because:
5479          *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5480          */
5481         ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5482 
5483         ctl->stripe_size = zone_size;
5484         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5485         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5486 
5487         /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5488         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5489                 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5490                                              ctl->stripe_size) + ctl->nparity,
5491                                      ctl->dev_stripes);
5492                 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5493                 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5494                 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5495         }
5496 
5497         ctl->chunk_size = ctl->stripe_size * data_stripes;
5498 
5499         return 0;
5500 }
5501 
5502 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5503                               struct alloc_chunk_ctl *ctl,
5504                               struct btrfs_device_info *devices_info)
5505 {
5506         struct btrfs_fs_info *info = fs_devices->fs_info;
5507 
5508         /*
5509          * Round down to number of usable stripes, devs_increment can be any
5510          * number so we can't use round_down() that requires power of 2, while
5511          * rounddown is safe.
5512          */
5513         ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5514 
5515         if (ctl->ndevs < ctl->devs_min) {
5516                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5517                         btrfs_debug(info,
5518         "%s: not enough devices with free space: have=%d minimum required=%d",
5519                                     __func__, ctl->ndevs, ctl->devs_min);
5520                 }
5521                 return -ENOSPC;
5522         }
5523 
5524         ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5525 
5526         switch (fs_devices->chunk_alloc_policy) {
5527         case BTRFS_CHUNK_ALLOC_REGULAR:
5528                 return decide_stripe_size_regular(ctl, devices_info);
5529         case BTRFS_CHUNK_ALLOC_ZONED:
5530                 return decide_stripe_size_zoned(ctl, devices_info);
5531         default:
5532                 BUG();
5533         }
5534 }
5535 
5536 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5537 {
5538         for (int i = 0; i < map->num_stripes; i++) {
5539                 struct btrfs_io_stripe *stripe = &map->stripes[i];
5540                 struct btrfs_device *device = stripe->dev;
5541 
5542                 set_extent_bit(&device->alloc_state, stripe->physical,
5543                                stripe->physical + map->stripe_size - 1,
5544                                bits | EXTENT_NOWAIT, NULL);
5545         }
5546 }
5547 
5548 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5549 {
5550         for (int i = 0; i < map->num_stripes; i++) {
5551                 struct btrfs_io_stripe *stripe = &map->stripes[i];
5552                 struct btrfs_device *device = stripe->dev;
5553 
5554                 __clear_extent_bit(&device->alloc_state, stripe->physical,
5555                                    stripe->physical + map->stripe_size - 1,
5556                                    bits | EXTENT_NOWAIT,
5557                                    NULL, NULL);
5558         }
5559 }
5560 
5561 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5562 {
5563         write_lock(&fs_info->mapping_tree_lock);
5564         rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5565         RB_CLEAR_NODE(&map->rb_node);
5566         chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5567         write_unlock(&fs_info->mapping_tree_lock);
5568 
5569         /* Once for the tree reference. */
5570         btrfs_free_chunk_map(map);
5571 }
5572 
5573 EXPORT_FOR_TESTS
5574 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5575 {
5576         struct rb_node **p;
5577         struct rb_node *parent = NULL;
5578         bool leftmost = true;
5579 
5580         write_lock(&fs_info->mapping_tree_lock);
5581         p = &fs_info->mapping_tree.rb_root.rb_node;
5582         while (*p) {
5583                 struct btrfs_chunk_map *entry;
5584 
5585                 parent = *p;
5586                 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5587 
5588                 if (map->start < entry->start) {
5589                         p = &(*p)->rb_left;
5590                 } else if (map->start > entry->start) {
5591                         p = &(*p)->rb_right;
5592                         leftmost = false;
5593                 } else {
5594                         write_unlock(&fs_info->mapping_tree_lock);
5595                         return -EEXIST;
5596                 }
5597         }
5598         rb_link_node(&map->rb_node, parent, p);
5599         rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5600         chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5601         chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5602         write_unlock(&fs_info->mapping_tree_lock);
5603 
5604         return 0;
5605 }
5606 
5607 EXPORT_FOR_TESTS
5608 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5609 {
5610         struct btrfs_chunk_map *map;
5611 
5612         map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5613         if (!map)
5614                 return NULL;
5615 
5616         refcount_set(&map->refs, 1);
5617         RB_CLEAR_NODE(&map->rb_node);
5618 
5619         return map;
5620 }
5621 
5622 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5623                         struct alloc_chunk_ctl *ctl,
5624                         struct btrfs_device_info *devices_info)
5625 {
5626         struct btrfs_fs_info *info = trans->fs_info;
5627         struct btrfs_chunk_map *map;
5628         struct btrfs_block_group *block_group;
5629         u64 start = ctl->start;
5630         u64 type = ctl->type;
5631         int ret;
5632 
5633         map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5634         if (!map)
5635                 return ERR_PTR(-ENOMEM);
5636 
5637         map->start = start;
5638         map->chunk_len = ctl->chunk_size;
5639         map->stripe_size = ctl->stripe_size;
5640         map->type = type;
5641         map->io_align = BTRFS_STRIPE_LEN;
5642         map->io_width = BTRFS_STRIPE_LEN;
5643         map->sub_stripes = ctl->sub_stripes;
5644         map->num_stripes = ctl->num_stripes;
5645 
5646         for (int i = 0; i < ctl->ndevs; i++) {
5647                 for (int j = 0; j < ctl->dev_stripes; j++) {
5648                         int s = i * ctl->dev_stripes + j;
5649                         map->stripes[s].dev = devices_info[i].dev;
5650                         map->stripes[s].physical = devices_info[i].dev_offset +
5651                                                    j * ctl->stripe_size;
5652                 }
5653         }
5654 
5655         trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5656 
5657         ret = btrfs_add_chunk_map(info, map);
5658         if (ret) {
5659                 btrfs_free_chunk_map(map);
5660                 return ERR_PTR(ret);
5661         }
5662 
5663         block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5664         if (IS_ERR(block_group)) {
5665                 btrfs_remove_chunk_map(info, map);
5666                 return block_group;
5667         }
5668 
5669         for (int i = 0; i < map->num_stripes; i++) {
5670                 struct btrfs_device *dev = map->stripes[i].dev;
5671 
5672                 btrfs_device_set_bytes_used(dev,
5673                                             dev->bytes_used + ctl->stripe_size);
5674                 if (list_empty(&dev->post_commit_list))
5675                         list_add_tail(&dev->post_commit_list,
5676                                       &trans->transaction->dev_update_list);
5677         }
5678 
5679         atomic64_sub(ctl->stripe_size * map->num_stripes,
5680                      &info->free_chunk_space);
5681 
5682         check_raid56_incompat_flag(info, type);
5683         check_raid1c34_incompat_flag(info, type);
5684 
5685         return block_group;
5686 }
5687 
5688 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5689                                             u64 type)
5690 {
5691         struct btrfs_fs_info *info = trans->fs_info;
5692         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5693         struct btrfs_device_info *devices_info = NULL;
5694         struct alloc_chunk_ctl ctl;
5695         struct btrfs_block_group *block_group;
5696         int ret;
5697 
5698         lockdep_assert_held(&info->chunk_mutex);
5699 
5700         if (!alloc_profile_is_valid(type, 0)) {
5701                 ASSERT(0);
5702                 return ERR_PTR(-EINVAL);
5703         }
5704 
5705         if (list_empty(&fs_devices->alloc_list)) {
5706                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5707                         btrfs_debug(info, "%s: no writable device", __func__);
5708                 return ERR_PTR(-ENOSPC);
5709         }
5710 
5711         if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5712                 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5713                 ASSERT(0);
5714                 return ERR_PTR(-EINVAL);
5715         }
5716 
5717         ctl.start = find_next_chunk(info);
5718         ctl.type = type;
5719         init_alloc_chunk_ctl(fs_devices, &ctl);
5720 
5721         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5722                                GFP_NOFS);
5723         if (!devices_info)
5724                 return ERR_PTR(-ENOMEM);
5725 
5726         ret = gather_device_info(fs_devices, &ctl, devices_info);
5727         if (ret < 0) {
5728                 block_group = ERR_PTR(ret);
5729                 goto out;
5730         }
5731 
5732         ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5733         if (ret < 0) {
5734                 block_group = ERR_PTR(ret);
5735                 goto out;
5736         }
5737 
5738         block_group = create_chunk(trans, &ctl, devices_info);
5739 
5740 out:
5741         kfree(devices_info);
5742         return block_group;
5743 }
5744 
5745 /*
5746  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5747  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5748  * chunks.
5749  *
5750  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5751  * phases.
5752  */
5753 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5754                                      struct btrfs_block_group *bg)
5755 {
5756         struct btrfs_fs_info *fs_info = trans->fs_info;
5757         struct btrfs_root *chunk_root = fs_info->chunk_root;
5758         struct btrfs_key key;
5759         struct btrfs_chunk *chunk;
5760         struct btrfs_stripe *stripe;
5761         struct btrfs_chunk_map *map;
5762         size_t item_size;
5763         int i;
5764         int ret;
5765 
5766         /*
5767          * We take the chunk_mutex for 2 reasons:
5768          *
5769          * 1) Updates and insertions in the chunk btree must be done while holding
5770          *    the chunk_mutex, as well as updating the system chunk array in the
5771          *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5772          *    details;
5773          *
5774          * 2) To prevent races with the final phase of a device replace operation
5775          *    that replaces the device object associated with the map's stripes,
5776          *    because the device object's id can change at any time during that
5777          *    final phase of the device replace operation
5778          *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5779          *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5780          *    which would cause a failure when updating the device item, which does
5781          *    not exists, or persisting a stripe of the chunk item with such ID.
5782          *    Here we can't use the device_list_mutex because our caller already
5783          *    has locked the chunk_mutex, and the final phase of device replace
5784          *    acquires both mutexes - first the device_list_mutex and then the
5785          *    chunk_mutex. Using any of those two mutexes protects us from a
5786          *    concurrent device replace.
5787          */
5788         lockdep_assert_held(&fs_info->chunk_mutex);
5789 
5790         map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5791         if (IS_ERR(map)) {
5792                 ret = PTR_ERR(map);
5793                 btrfs_abort_transaction(trans, ret);
5794                 return ret;
5795         }
5796 
5797         item_size = btrfs_chunk_item_size(map->num_stripes);
5798 
5799         chunk = kzalloc(item_size, GFP_NOFS);
5800         if (!chunk) {
5801                 ret = -ENOMEM;
5802                 btrfs_abort_transaction(trans, ret);
5803                 goto out;
5804         }
5805 
5806         for (i = 0; i < map->num_stripes; i++) {
5807                 struct btrfs_device *device = map->stripes[i].dev;
5808 
5809                 ret = btrfs_update_device(trans, device);
5810                 if (ret)
5811                         goto out;
5812         }
5813 
5814         stripe = &chunk->stripe;
5815         for (i = 0; i < map->num_stripes; i++) {
5816                 struct btrfs_device *device = map->stripes[i].dev;
5817                 const u64 dev_offset = map->stripes[i].physical;
5818 
5819                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5820                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5821                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5822                 stripe++;
5823         }
5824 
5825         btrfs_set_stack_chunk_length(chunk, bg->length);
5826         btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5827         btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5828         btrfs_set_stack_chunk_type(chunk, map->type);
5829         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5830         btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5831         btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5832         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5833         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5834 
5835         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5836         key.type = BTRFS_CHUNK_ITEM_KEY;
5837         key.offset = bg->start;
5838 
5839         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5840         if (ret)
5841                 goto out;
5842 
5843         set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5844 
5845         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5846                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5847                 if (ret)
5848                         goto out;
5849         }
5850 
5851 out:
5852         kfree(chunk);
5853         btrfs_free_chunk_map(map);
5854         return ret;
5855 }
5856 
5857 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5858 {
5859         struct btrfs_fs_info *fs_info = trans->fs_info;
5860         u64 alloc_profile;
5861         struct btrfs_block_group *meta_bg;
5862         struct btrfs_block_group *sys_bg;
5863 
5864         /*
5865          * When adding a new device for sprouting, the seed device is read-only
5866          * so we must first allocate a metadata and a system chunk. But before
5867          * adding the block group items to the extent, device and chunk btrees,
5868          * we must first:
5869          *
5870          * 1) Create both chunks without doing any changes to the btrees, as
5871          *    otherwise we would get -ENOSPC since the block groups from the
5872          *    seed device are read-only;
5873          *
5874          * 2) Add the device item for the new sprout device - finishing the setup
5875          *    of a new block group requires updating the device item in the chunk
5876          *    btree, so it must exist when we attempt to do it. The previous step
5877          *    ensures this does not fail with -ENOSPC.
5878          *
5879          * After that we can add the block group items to their btrees:
5880          * update existing device item in the chunk btree, add a new block group
5881          * item to the extent btree, add a new chunk item to the chunk btree and
5882          * finally add the new device extent items to the devices btree.
5883          */
5884 
5885         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5886         meta_bg = btrfs_create_chunk(trans, alloc_profile);
5887         if (IS_ERR(meta_bg))
5888                 return PTR_ERR(meta_bg);
5889 
5890         alloc_profile = btrfs_system_alloc_profile(fs_info);
5891         sys_bg = btrfs_create_chunk(trans, alloc_profile);
5892         if (IS_ERR(sys_bg))
5893                 return PTR_ERR(sys_bg);
5894 
5895         return 0;
5896 }
5897 
5898 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5899 {
5900         const int index = btrfs_bg_flags_to_raid_index(map->type);
5901 
5902         return btrfs_raid_array[index].tolerated_failures;
5903 }
5904 
5905 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5906 {
5907         struct btrfs_chunk_map *map;
5908         int miss_ndevs = 0;
5909         int i;
5910         bool ret = true;
5911 
5912         map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5913         if (IS_ERR(map))
5914                 return false;
5915 
5916         for (i = 0; i < map->num_stripes; i++) {
5917                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5918                                         &map->stripes[i].dev->dev_state)) {
5919                         miss_ndevs++;
5920                         continue;
5921                 }
5922                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5923                                         &map->stripes[i].dev->dev_state)) {
5924                         ret = false;
5925                         goto end;
5926                 }
5927         }
5928 
5929         /*
5930          * If the number of missing devices is larger than max errors, we can
5931          * not write the data into that chunk successfully.
5932          */
5933         if (miss_ndevs > btrfs_chunk_max_errors(map))
5934                 ret = false;
5935 end:
5936         btrfs_free_chunk_map(map);
5937         return ret;
5938 }
5939 
5940 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5941 {
5942         write_lock(&fs_info->mapping_tree_lock);
5943         while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5944                 struct btrfs_chunk_map *map;
5945                 struct rb_node *node;
5946 
5947                 node = rb_first_cached(&fs_info->mapping_tree);
5948                 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5949                 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5950                 RB_CLEAR_NODE(&map->rb_node);
5951                 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5952                 /* Once for the tree ref. */
5953                 btrfs_free_chunk_map(map);
5954                 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5955         }
5956         write_unlock(&fs_info->mapping_tree_lock);
5957 }
5958 
5959 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5960 {
5961         struct btrfs_chunk_map *map;
5962         enum btrfs_raid_types index;
5963         int ret = 1;
5964 
5965         map = btrfs_get_chunk_map(fs_info, logical, len);
5966         if (IS_ERR(map))
5967                 /*
5968                  * We could return errors for these cases, but that could get
5969                  * ugly and we'd probably do the same thing which is just not do
5970                  * anything else and exit, so return 1 so the callers don't try
5971                  * to use other copies.
5972                  */
5973                 return 1;
5974 
5975         index = btrfs_bg_flags_to_raid_index(map->type);
5976 
5977         /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5978         if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5979                 ret = btrfs_raid_array[index].ncopies;
5980         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5981                 ret = 2;
5982         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5983                 /*
5984                  * There could be two corrupted data stripes, we need
5985                  * to loop retry in order to rebuild the correct data.
5986                  *
5987                  * Fail a stripe at a time on every retry except the
5988                  * stripe under reconstruction.
5989                  */
5990                 ret = map->num_stripes;
5991         btrfs_free_chunk_map(map);
5992         return ret;
5993 }
5994 
5995 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5996                                     u64 logical)
5997 {
5998         struct btrfs_chunk_map *map;
5999         unsigned long len = fs_info->sectorsize;
6000 
6001         if (!btrfs_fs_incompat(fs_info, RAID56))
6002                 return len;
6003 
6004         map = btrfs_get_chunk_map(fs_info, logical, len);
6005 
6006         if (!WARN_ON(IS_ERR(map))) {
6007                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6008                         len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6009                 btrfs_free_chunk_map(map);
6010         }
6011         return len;
6012 }
6013 
6014 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
6015 {
6016         struct btrfs_chunk_map *map;
6017         int ret = 0;
6018 
6019         if (!btrfs_fs_incompat(fs_info, RAID56))
6020                 return 0;
6021 
6022         map = btrfs_get_chunk_map(fs_info, logical, len);
6023 
6024         if (!WARN_ON(IS_ERR(map))) {
6025                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6026                         ret = 1;
6027                 btrfs_free_chunk_map(map);
6028         }
6029         return ret;
6030 }
6031 
6032 static int find_live_mirror(struct btrfs_fs_info *fs_info,
6033                             struct btrfs_chunk_map *map, int first,
6034                             int dev_replace_is_ongoing)
6035 {
6036         const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
6037         int i;
6038         int num_stripes;
6039         int preferred_mirror;
6040         int tolerance;
6041         struct btrfs_device *srcdev;
6042 
6043         ASSERT((map->type &
6044                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
6045 
6046         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6047                 num_stripes = map->sub_stripes;
6048         else
6049                 num_stripes = map->num_stripes;
6050 
6051         switch (policy) {
6052         default:
6053                 /* Shouldn't happen, just warn and use pid instead of failing */
6054                 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6055                               policy);
6056                 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
6057                 fallthrough;
6058         case BTRFS_READ_POLICY_PID:
6059                 preferred_mirror = first + (current->pid % num_stripes);
6060                 break;
6061         }
6062 
6063         if (dev_replace_is_ongoing &&
6064             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6065              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6066                 srcdev = fs_info->dev_replace.srcdev;
6067         else
6068                 srcdev = NULL;
6069 
6070         /*
6071          * try to avoid the drive that is the source drive for a
6072          * dev-replace procedure, only choose it if no other non-missing
6073          * mirror is available
6074          */
6075         for (tolerance = 0; tolerance < 2; tolerance++) {
6076                 if (map->stripes[preferred_mirror].dev->bdev &&
6077                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6078                         return preferred_mirror;
6079                 for (i = first; i < first + num_stripes; i++) {
6080                         if (map->stripes[i].dev->bdev &&
6081                             (tolerance || map->stripes[i].dev != srcdev))
6082                                 return i;
6083                 }
6084         }
6085 
6086         /* we couldn't find one that doesn't fail.  Just return something
6087          * and the io error handling code will clean up eventually
6088          */
6089         return preferred_mirror;
6090 }
6091 
6092 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6093                                                        u64 logical,
6094                                                        u16 total_stripes)
6095 {
6096         struct btrfs_io_context *bioc;
6097 
6098         bioc = kzalloc(
6099                  /* The size of btrfs_io_context */
6100                 sizeof(struct btrfs_io_context) +
6101                 /* Plus the variable array for the stripes */
6102                 sizeof(struct btrfs_io_stripe) * (total_stripes),
6103                 GFP_NOFS);
6104 
6105         if (!bioc)
6106                 return NULL;
6107 
6108         refcount_set(&bioc->refs, 1);
6109 
6110         bioc->fs_info = fs_info;
6111         bioc->replace_stripe_src = -1;
6112         bioc->full_stripe_logical = (u64)-1;
6113         bioc->logical = logical;
6114 
6115         return bioc;
6116 }
6117 
6118 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6119 {
6120         WARN_ON(!refcount_read(&bioc->refs));
6121         refcount_inc(&bioc->refs);
6122 }
6123 
6124 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6125 {
6126         if (!bioc)
6127                 return;
6128         if (refcount_dec_and_test(&bioc->refs))
6129                 kfree(bioc);
6130 }
6131 
6132 /*
6133  * Please note that, discard won't be sent to target device of device
6134  * replace.
6135  */
6136 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6137                                                u64 logical, u64 *length_ret,
6138                                                u32 *num_stripes)
6139 {
6140         struct btrfs_chunk_map *map;
6141         struct btrfs_discard_stripe *stripes;
6142         u64 length = *length_ret;
6143         u64 offset;
6144         u32 stripe_nr;
6145         u32 stripe_nr_end;
6146         u32 stripe_cnt;
6147         u64 stripe_end_offset;
6148         u64 stripe_offset;
6149         u32 stripe_index;
6150         u32 factor = 0;
6151         u32 sub_stripes = 0;
6152         u32 stripes_per_dev = 0;
6153         u32 remaining_stripes = 0;
6154         u32 last_stripe = 0;
6155         int ret;
6156         int i;
6157 
6158         map = btrfs_get_chunk_map(fs_info, logical, length);
6159         if (IS_ERR(map))
6160                 return ERR_CAST(map);
6161 
6162         /* we don't discard raid56 yet */
6163         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6164                 ret = -EOPNOTSUPP;
6165                 goto out_free_map;
6166         }
6167 
6168         offset = logical - map->start;
6169         length = min_t(u64, map->start + map->chunk_len - logical, length);
6170         *length_ret = length;
6171 
6172         /*
6173          * stripe_nr counts the total number of stripes we have to stride
6174          * to get to this block
6175          */
6176         stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6177 
6178         /* stripe_offset is the offset of this block in its stripe */
6179         stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6180 
6181         stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6182                         BTRFS_STRIPE_LEN_SHIFT;
6183         stripe_cnt = stripe_nr_end - stripe_nr;
6184         stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6185                             (offset + length);
6186         /*
6187          * after this, stripe_nr is the number of stripes on this
6188          * device we have to walk to find the data, and stripe_index is
6189          * the number of our device in the stripe array
6190          */
6191         *num_stripes = 1;
6192         stripe_index = 0;
6193         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6194                          BTRFS_BLOCK_GROUP_RAID10)) {
6195                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6196                         sub_stripes = 1;
6197                 else
6198                         sub_stripes = map->sub_stripes;
6199 
6200                 factor = map->num_stripes / sub_stripes;
6201                 *num_stripes = min_t(u64, map->num_stripes,
6202                                     sub_stripes * stripe_cnt);
6203                 stripe_index = stripe_nr % factor;
6204                 stripe_nr /= factor;
6205                 stripe_index *= sub_stripes;
6206 
6207                 remaining_stripes = stripe_cnt % factor;
6208                 stripes_per_dev = stripe_cnt / factor;
6209                 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6210         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6211                                 BTRFS_BLOCK_GROUP_DUP)) {
6212                 *num_stripes = map->num_stripes;
6213         } else {
6214                 stripe_index = stripe_nr % map->num_stripes;
6215                 stripe_nr /= map->num_stripes;
6216         }
6217 
6218         stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6219         if (!stripes) {
6220                 ret = -ENOMEM;
6221                 goto out_free_map;
6222         }
6223 
6224         for (i = 0; i < *num_stripes; i++) {
6225                 stripes[i].physical =
6226                         map->stripes[stripe_index].physical +
6227                         stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6228                 stripes[i].dev = map->stripes[stripe_index].dev;
6229 
6230                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6231                                  BTRFS_BLOCK_GROUP_RAID10)) {
6232                         stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6233 
6234                         if (i / sub_stripes < remaining_stripes)
6235                                 stripes[i].length += BTRFS_STRIPE_LEN;
6236 
6237                         /*
6238                          * Special for the first stripe and
6239                          * the last stripe:
6240                          *
6241                          * |-------|...|-------|
6242                          *     |----------|
6243                          *    off     end_off
6244                          */
6245                         if (i < sub_stripes)
6246                                 stripes[i].length -= stripe_offset;
6247 
6248                         if (stripe_index >= last_stripe &&
6249                             stripe_index <= (last_stripe +
6250                                              sub_stripes - 1))
6251                                 stripes[i].length -= stripe_end_offset;
6252 
6253                         if (i == sub_stripes - 1)
6254                                 stripe_offset = 0;
6255                 } else {
6256                         stripes[i].length = length;
6257                 }
6258 
6259                 stripe_index++;
6260                 if (stripe_index == map->num_stripes) {
6261                         stripe_index = 0;
6262                         stripe_nr++;
6263                 }
6264         }
6265 
6266         btrfs_free_chunk_map(map);
6267         return stripes;
6268 out_free_map:
6269         btrfs_free_chunk_map(map);
6270         return ERR_PTR(ret);
6271 }
6272 
6273 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6274 {
6275         struct btrfs_block_group *cache;
6276         bool ret;
6277 
6278         /* Non zoned filesystem does not use "to_copy" flag */
6279         if (!btrfs_is_zoned(fs_info))
6280                 return false;
6281 
6282         cache = btrfs_lookup_block_group(fs_info, logical);
6283 
6284         ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6285 
6286         btrfs_put_block_group(cache);
6287         return ret;
6288 }
6289 
6290 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6291                                       struct btrfs_dev_replace *dev_replace,
6292                                       u64 logical,
6293                                       struct btrfs_io_geometry *io_geom)
6294 {
6295         u64 srcdev_devid = dev_replace->srcdev->devid;
6296         /*
6297          * At this stage, num_stripes is still the real number of stripes,
6298          * excluding the duplicated stripes.
6299          */
6300         int num_stripes = io_geom->num_stripes;
6301         int max_errors = io_geom->max_errors;
6302         int nr_extra_stripes = 0;
6303         int i;
6304 
6305         /*
6306          * A block group which has "to_copy" set will eventually be copied by
6307          * the dev-replace process. We can avoid cloning IO here.
6308          */
6309         if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6310                 return;
6311 
6312         /*
6313          * Duplicate the write operations while the dev-replace procedure is
6314          * running. Since the copying of the old disk to the new disk takes
6315          * place at run time while the filesystem is mounted writable, the
6316          * regular write operations to the old disk have to be duplicated to go
6317          * to the new disk as well.
6318          *
6319          * Note that device->missing is handled by the caller, and that the
6320          * write to the old disk is already set up in the stripes array.
6321          */
6322         for (i = 0; i < num_stripes; i++) {
6323                 struct btrfs_io_stripe *old = &bioc->stripes[i];
6324                 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6325 
6326                 if (old->dev->devid != srcdev_devid)
6327                         continue;
6328 
6329                 new->physical = old->physical;
6330                 new->dev = dev_replace->tgtdev;
6331                 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6332                         bioc->replace_stripe_src = i;
6333                 nr_extra_stripes++;
6334         }
6335 
6336         /* We can only have at most 2 extra nr_stripes (for DUP). */
6337         ASSERT(nr_extra_stripes <= 2);
6338         /*
6339          * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6340          * replace.
6341          * If we have 2 extra stripes, only choose the one with smaller physical.
6342          */
6343         if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6344                 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6345                 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6346 
6347                 /* Only DUP can have two extra stripes. */
6348                 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6349 
6350                 /*
6351                  * Swap the last stripe stripes and reduce @nr_extra_stripes.
6352                  * The extra stripe would still be there, but won't be accessed.
6353                  */
6354                 if (first->physical > second->physical) {
6355                         swap(second->physical, first->physical);
6356                         swap(second->dev, first->dev);
6357                         nr_extra_stripes--;
6358                 }
6359         }
6360 
6361         io_geom->num_stripes = num_stripes + nr_extra_stripes;
6362         io_geom->max_errors = max_errors + nr_extra_stripes;
6363         bioc->replace_nr_stripes = nr_extra_stripes;
6364 }
6365 
6366 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6367                             struct btrfs_io_geometry *io_geom)
6368 {
6369         /*
6370          * Stripe_nr is the stripe where this block falls.  stripe_offset is
6371          * the offset of this block in its stripe.
6372          */
6373         io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6374         io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6375         ASSERT(io_geom->stripe_offset < U32_MAX);
6376 
6377         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6378                 unsigned long full_stripe_len =
6379                         btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6380 
6381                 /*
6382                  * For full stripe start, we use previously calculated
6383                  * @stripe_nr. Align it to nr_data_stripes, then multiply with
6384                  * STRIPE_LEN.
6385                  *
6386                  * By this we can avoid u64 division completely.  And we have
6387                  * to go rounddown(), not round_down(), as nr_data_stripes is
6388                  * not ensured to be power of 2.
6389                  */
6390                 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6391                         rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6392 
6393                 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6394                 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6395                 /*
6396                  * For writes to RAID56, allow to write a full stripe set, but
6397                  * no straddling of stripe sets.
6398                  */
6399                 if (io_geom->op == BTRFS_MAP_WRITE)
6400                         return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6401         }
6402 
6403         /*
6404          * For other RAID types and for RAID56 reads, allow a single stripe (on
6405          * a single disk).
6406          */
6407         if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6408                 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6409         return U64_MAX;
6410 }
6411 
6412 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6413                          u64 *length, struct btrfs_io_stripe *dst,
6414                          struct btrfs_chunk_map *map,
6415                          struct btrfs_io_geometry *io_geom)
6416 {
6417         dst->dev = map->stripes[io_geom->stripe_index].dev;
6418 
6419         if (io_geom->op == BTRFS_MAP_READ &&
6420             btrfs_need_stripe_tree_update(fs_info, map->type))
6421                 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6422                                                     map->type,
6423                                                     io_geom->stripe_index, dst);
6424 
6425         dst->physical = map->stripes[io_geom->stripe_index].physical +
6426                         io_geom->stripe_offset +
6427                         btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6428         return 0;
6429 }
6430 
6431 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6432                                 const struct btrfs_io_stripe *smap,
6433                                 const struct btrfs_chunk_map *map,
6434                                 int num_alloc_stripes,
6435                                 enum btrfs_map_op op, int mirror_num)
6436 {
6437         if (!smap)
6438                 return false;
6439 
6440         if (num_alloc_stripes != 1)
6441                 return false;
6442 
6443         if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6444                 return false;
6445 
6446         if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6447                 return false;
6448 
6449         return true;
6450 }
6451 
6452 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6453                              struct btrfs_io_geometry *io_geom)
6454 {
6455         io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6456         io_geom->stripe_nr /= map->num_stripes;
6457         if (io_geom->op == BTRFS_MAP_READ)
6458                 io_geom->mirror_num = 1;
6459 }
6460 
6461 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6462                              struct btrfs_chunk_map *map,
6463                              struct btrfs_io_geometry *io_geom,
6464                              bool dev_replace_is_ongoing)
6465 {
6466         if (io_geom->op != BTRFS_MAP_READ) {
6467                 io_geom->num_stripes = map->num_stripes;
6468                 return;
6469         }
6470 
6471         if (io_geom->mirror_num) {
6472                 io_geom->stripe_index = io_geom->mirror_num - 1;
6473                 return;
6474         }
6475 
6476         io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6477                                                  dev_replace_is_ongoing);
6478         io_geom->mirror_num = io_geom->stripe_index + 1;
6479 }
6480 
6481 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6482                            struct btrfs_io_geometry *io_geom)
6483 {
6484         if (io_geom->op != BTRFS_MAP_READ) {
6485                 io_geom->num_stripes = map->num_stripes;
6486                 return;
6487         }
6488 
6489         if (io_geom->mirror_num) {
6490                 io_geom->stripe_index = io_geom->mirror_num - 1;
6491                 return;
6492         }
6493 
6494         io_geom->mirror_num = 1;
6495 }
6496 
6497 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6498                               struct btrfs_chunk_map *map,
6499                               struct btrfs_io_geometry *io_geom,
6500                               bool dev_replace_is_ongoing)
6501 {
6502         u32 factor = map->num_stripes / map->sub_stripes;
6503         int old_stripe_index;
6504 
6505         io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6506         io_geom->stripe_nr /= factor;
6507 
6508         if (io_geom->op != BTRFS_MAP_READ) {
6509                 io_geom->num_stripes = map->sub_stripes;
6510                 return;
6511         }
6512 
6513         if (io_geom->mirror_num) {
6514                 io_geom->stripe_index += io_geom->mirror_num - 1;
6515                 return;
6516         }
6517 
6518         old_stripe_index = io_geom->stripe_index;
6519         io_geom->stripe_index = find_live_mirror(fs_info, map,
6520                                                  io_geom->stripe_index,
6521                                                  dev_replace_is_ongoing);
6522         io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6523 }
6524 
6525 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6526                                     struct btrfs_io_geometry *io_geom,
6527                                     u64 logical, u64 *length)
6528 {
6529         int data_stripes = nr_data_stripes(map);
6530 
6531         /*
6532          * Needs full stripe mapping.
6533          *
6534          * Push stripe_nr back to the start of the full stripe For those cases
6535          * needing a full stripe, @stripe_nr is the full stripe number.
6536          *
6537          * Originally we go raid56_full_stripe_start / full_stripe_len, but
6538          * that can be expensive.  Here we just divide @stripe_nr with
6539          * @data_stripes.
6540          */
6541         io_geom->stripe_nr /= data_stripes;
6542 
6543         /* RAID[56] write or recovery. Return all stripes */
6544         io_geom->num_stripes = map->num_stripes;
6545         io_geom->max_errors = btrfs_chunk_max_errors(map);
6546 
6547         /* Return the length to the full stripe end. */
6548         *length = min(logical + *length,
6549                       io_geom->raid56_full_stripe_start + map->start +
6550                       btrfs_stripe_nr_to_offset(data_stripes)) -
6551                 logical;
6552         io_geom->stripe_index = 0;
6553         io_geom->stripe_offset = 0;
6554 }
6555 
6556 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6557                                    struct btrfs_io_geometry *io_geom)
6558 {
6559         int data_stripes = nr_data_stripes(map);
6560 
6561         ASSERT(io_geom->mirror_num <= 1);
6562         /* Just grab the data stripe directly. */
6563         io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6564         io_geom->stripe_nr /= data_stripes;
6565 
6566         /* We distribute the parity blocks across stripes. */
6567         io_geom->stripe_index =
6568                 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6569 
6570         if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6571                 io_geom->mirror_num = 1;
6572 }
6573 
6574 static void map_blocks_single(const struct btrfs_chunk_map *map,
6575                               struct btrfs_io_geometry *io_geom)
6576 {
6577         io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6578         io_geom->stripe_nr /= map->num_stripes;
6579         io_geom->mirror_num = io_geom->stripe_index + 1;
6580 }
6581 
6582 /*
6583  * Map one logical range to one or more physical ranges.
6584  *
6585  * @length:             (Mandatory) mapped length of this run.
6586  *                      One logical range can be split into different segments
6587  *                      due to factors like zones and RAID0/5/6/10 stripe
6588  *                      boundaries.
6589  *
6590  * @bioc_ret:           (Mandatory) returned btrfs_io_context structure.
6591  *                      which has one or more physical ranges (btrfs_io_stripe)
6592  *                      recorded inside.
6593  *                      Caller should call btrfs_put_bioc() to free it after use.
6594  *
6595  * @smap:               (Optional) single physical range optimization.
6596  *                      If the map request can be fulfilled by one single
6597  *                      physical range, and this is parameter is not NULL,
6598  *                      then @bioc_ret would be NULL, and @smap would be
6599  *                      updated.
6600  *
6601  * @mirror_num_ret:     (Mandatory) returned mirror number if the original
6602  *                      value is 0.
6603  *
6604  *                      Mirror number 0 means to choose any live mirrors.
6605  *
6606  *                      For non-RAID56 profiles, non-zero mirror_num means
6607  *                      the Nth mirror. (e.g. mirror_num 1 means the first
6608  *                      copy).
6609  *
6610  *                      For RAID56 profile, mirror 1 means rebuild from P and
6611  *                      the remaining data stripes.
6612  *
6613  *                      For RAID6 profile, mirror > 2 means mark another
6614  *                      data/P stripe error and rebuild from the remaining
6615  *                      stripes..
6616  */
6617 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6618                     u64 logical, u64 *length,
6619                     struct btrfs_io_context **bioc_ret,
6620                     struct btrfs_io_stripe *smap, int *mirror_num_ret)
6621 {
6622         struct btrfs_chunk_map *map;
6623         struct btrfs_io_geometry io_geom = { 0 };
6624         u64 map_offset;
6625         int ret = 0;
6626         int num_copies;
6627         struct btrfs_io_context *bioc = NULL;
6628         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6629         int dev_replace_is_ongoing = 0;
6630         u16 num_alloc_stripes;
6631         u64 max_len;
6632 
6633         ASSERT(bioc_ret);
6634 
6635         io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6636         io_geom.num_stripes = 1;
6637         io_geom.stripe_index = 0;
6638         io_geom.op = op;
6639 
6640         num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6641         if (io_geom.mirror_num > num_copies)
6642                 return -EINVAL;
6643 
6644         map = btrfs_get_chunk_map(fs_info, logical, *length);
6645         if (IS_ERR(map))
6646                 return PTR_ERR(map);
6647 
6648         map_offset = logical - map->start;
6649         io_geom.raid56_full_stripe_start = (u64)-1;
6650         max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6651         *length = min_t(u64, map->chunk_len - map_offset, max_len);
6652 
6653         down_read(&dev_replace->rwsem);
6654         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6655         /*
6656          * Hold the semaphore for read during the whole operation, write is
6657          * requested at commit time but must wait.
6658          */
6659         if (!dev_replace_is_ongoing)
6660                 up_read(&dev_replace->rwsem);
6661 
6662         switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6663         case BTRFS_BLOCK_GROUP_RAID0:
6664                 map_blocks_raid0(map, &io_geom);
6665                 break;
6666         case BTRFS_BLOCK_GROUP_RAID1:
6667         case BTRFS_BLOCK_GROUP_RAID1C3:
6668         case BTRFS_BLOCK_GROUP_RAID1C4:
6669                 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6670                 break;
6671         case BTRFS_BLOCK_GROUP_DUP:
6672                 map_blocks_dup(map, &io_geom);
6673                 break;
6674         case BTRFS_BLOCK_GROUP_RAID10:
6675                 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6676                 break;
6677         case BTRFS_BLOCK_GROUP_RAID5:
6678         case BTRFS_BLOCK_GROUP_RAID6:
6679                 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6680                         map_blocks_raid56_write(map, &io_geom, logical, length);
6681                 else
6682                         map_blocks_raid56_read(map, &io_geom);
6683                 break;
6684         default:
6685                 /*
6686                  * After this, stripe_nr is the number of stripes on this
6687                  * device we have to walk to find the data, and stripe_index is
6688                  * the number of our device in the stripe array
6689                  */
6690                 map_blocks_single(map, &io_geom);
6691                 break;
6692         }
6693         if (io_geom.stripe_index >= map->num_stripes) {
6694                 btrfs_crit(fs_info,
6695                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6696                            io_geom.stripe_index, map->num_stripes);
6697                 ret = -EINVAL;
6698                 goto out;
6699         }
6700 
6701         num_alloc_stripes = io_geom.num_stripes;
6702         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6703             op != BTRFS_MAP_READ)
6704                 /*
6705                  * For replace case, we need to add extra stripes for extra
6706                  * duplicated stripes.
6707                  *
6708                  * For both WRITE and GET_READ_MIRRORS, we may have at most
6709                  * 2 more stripes (DUP types, otherwise 1).
6710                  */
6711                 num_alloc_stripes += 2;
6712 
6713         /*
6714          * If this I/O maps to a single device, try to return the device and
6715          * physical block information on the stack instead of allocating an
6716          * I/O context structure.
6717          */
6718         if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6719                                 io_geom.mirror_num)) {
6720                 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6721                 if (mirror_num_ret)
6722                         *mirror_num_ret = io_geom.mirror_num;
6723                 *bioc_ret = NULL;
6724                 goto out;
6725         }
6726 
6727         bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6728         if (!bioc) {
6729                 ret = -ENOMEM;
6730                 goto out;
6731         }
6732         bioc->map_type = map->type;
6733 
6734         /*
6735          * For RAID56 full map, we need to make sure the stripes[] follows the
6736          * rule that data stripes are all ordered, then followed with P and Q
6737          * (if we have).
6738          *
6739          * It's still mostly the same as other profiles, just with extra rotation.
6740          */
6741         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6742             (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6743                 /*
6744                  * For RAID56 @stripe_nr is already the number of full stripes
6745                  * before us, which is also the rotation value (needs to modulo
6746                  * with num_stripes).
6747                  *
6748                  * In this case, we just add @stripe_nr with @i, then do the
6749                  * modulo, to reduce one modulo call.
6750                  */
6751                 bioc->full_stripe_logical = map->start +
6752                         btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6753                                                   nr_data_stripes(map));
6754                 for (int i = 0; i < io_geom.num_stripes; i++) {
6755                         struct btrfs_io_stripe *dst = &bioc->stripes[i];
6756                         u32 stripe_index;
6757 
6758                         stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6759                         dst->dev = map->stripes[stripe_index].dev;
6760                         dst->physical =
6761                                 map->stripes[stripe_index].physical +
6762                                 io_geom.stripe_offset +
6763                                 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6764                 }
6765         } else {
6766                 /*
6767                  * For all other non-RAID56 profiles, just copy the target
6768                  * stripe into the bioc.
6769                  */
6770                 for (int i = 0; i < io_geom.num_stripes; i++) {
6771                         ret = set_io_stripe(fs_info, logical, length,
6772                                             &bioc->stripes[i], map, &io_geom);
6773                         if (ret < 0)
6774                                 break;
6775                         io_geom.stripe_index++;
6776                 }
6777         }
6778 
6779         if (ret) {
6780                 *bioc_ret = NULL;
6781                 btrfs_put_bioc(bioc);
6782                 goto out;
6783         }
6784 
6785         if (op != BTRFS_MAP_READ)
6786                 io_geom.max_errors = btrfs_chunk_max_errors(map);
6787 
6788         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6789             op != BTRFS_MAP_READ) {
6790                 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6791         }
6792 
6793         *bioc_ret = bioc;
6794         bioc->num_stripes = io_geom.num_stripes;
6795         bioc->max_errors = io_geom.max_errors;
6796         bioc->mirror_num = io_geom.mirror_num;
6797 
6798 out:
6799         if (dev_replace_is_ongoing) {
6800                 lockdep_assert_held(&dev_replace->rwsem);
6801                 /* Unlock and let waiting writers proceed */
6802                 up_read(&dev_replace->rwsem);
6803         }
6804         btrfs_free_chunk_map(map);
6805         return ret;
6806 }
6807 
6808 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6809                                       const struct btrfs_fs_devices *fs_devices)
6810 {
6811         if (args->fsid == NULL)
6812                 return true;
6813         if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6814                 return true;
6815         return false;
6816 }
6817 
6818 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6819                                   const struct btrfs_device *device)
6820 {
6821         if (args->missing) {
6822                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6823                     !device->bdev)
6824                         return true;
6825                 return false;
6826         }
6827 
6828         if (device->devid != args->devid)
6829                 return false;
6830         if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6831                 return false;
6832         return true;
6833 }
6834 
6835 /*
6836  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6837  * return NULL.
6838  *
6839  * If devid and uuid are both specified, the match must be exact, otherwise
6840  * only devid is used.
6841  */
6842 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6843                                        const struct btrfs_dev_lookup_args *args)
6844 {
6845         struct btrfs_device *device;
6846         struct btrfs_fs_devices *seed_devs;
6847 
6848         if (dev_args_match_fs_devices(args, fs_devices)) {
6849                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6850                         if (dev_args_match_device(args, device))
6851                                 return device;
6852                 }
6853         }
6854 
6855         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6856                 if (!dev_args_match_fs_devices(args, seed_devs))
6857                         continue;
6858                 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6859                         if (dev_args_match_device(args, device))
6860                                 return device;
6861                 }
6862         }
6863 
6864         return NULL;
6865 }
6866 
6867 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6868                                             u64 devid, u8 *dev_uuid)
6869 {
6870         struct btrfs_device *device;
6871         unsigned int nofs_flag;
6872 
6873         /*
6874          * We call this under the chunk_mutex, so we want to use NOFS for this
6875          * allocation, however we don't want to change btrfs_alloc_device() to
6876          * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6877          * places.
6878          */
6879 
6880         nofs_flag = memalloc_nofs_save();
6881         device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6882         memalloc_nofs_restore(nofs_flag);
6883         if (IS_ERR(device))
6884                 return device;
6885 
6886         list_add(&device->dev_list, &fs_devices->devices);
6887         device->fs_devices = fs_devices;
6888         fs_devices->num_devices++;
6889 
6890         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6891         fs_devices->missing_devices++;
6892 
6893         return device;
6894 }
6895 
6896 /*
6897  * Allocate new device struct, set up devid and UUID.
6898  *
6899  * @fs_info:    used only for generating a new devid, can be NULL if
6900  *              devid is provided (i.e. @devid != NULL).
6901  * @devid:      a pointer to devid for this device.  If NULL a new devid
6902  *              is generated.
6903  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6904  *              is generated.
6905  * @path:       a pointer to device path if available, NULL otherwise.
6906  *
6907  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6908  * on error.  Returned struct is not linked onto any lists and must be
6909  * destroyed with btrfs_free_device.
6910  */
6911 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6912                                         const u64 *devid, const u8 *uuid,
6913                                         const char *path)
6914 {
6915         struct btrfs_device *dev;
6916         u64 tmp;
6917 
6918         if (WARN_ON(!devid && !fs_info))
6919                 return ERR_PTR(-EINVAL);
6920 
6921         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6922         if (!dev)
6923                 return ERR_PTR(-ENOMEM);
6924 
6925         INIT_LIST_HEAD(&dev->dev_list);
6926         INIT_LIST_HEAD(&dev->dev_alloc_list);
6927         INIT_LIST_HEAD(&dev->post_commit_list);
6928 
6929         atomic_set(&dev->dev_stats_ccnt, 0);
6930         btrfs_device_data_ordered_init(dev);
6931         extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6932 
6933         if (devid)
6934                 tmp = *devid;
6935         else {
6936                 int ret;
6937 
6938                 ret = find_next_devid(fs_info, &tmp);
6939                 if (ret) {
6940                         btrfs_free_device(dev);
6941                         return ERR_PTR(ret);
6942                 }
6943         }
6944         dev->devid = tmp;
6945 
6946         if (uuid)
6947                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6948         else
6949                 generate_random_uuid(dev->uuid);
6950 
6951         if (path) {
6952                 struct rcu_string *name;
6953 
6954                 name = rcu_string_strdup(path, GFP_KERNEL);
6955                 if (!name) {
6956                         btrfs_free_device(dev);
6957                         return ERR_PTR(-ENOMEM);
6958                 }
6959                 rcu_assign_pointer(dev->name, name);
6960         }
6961 
6962         return dev;
6963 }
6964 
6965 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6966                                         u64 devid, u8 *uuid, bool error)
6967 {
6968         if (error)
6969                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6970                               devid, uuid);
6971         else
6972                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6973                               devid, uuid);
6974 }
6975 
6976 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6977 {
6978         const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6979 
6980         return div_u64(map->chunk_len, data_stripes);
6981 }
6982 
6983 #if BITS_PER_LONG == 32
6984 /*
6985  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6986  * can't be accessed on 32bit systems.
6987  *
6988  * This function do mount time check to reject the fs if it already has
6989  * metadata chunk beyond that limit.
6990  */
6991 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6992                                   u64 logical, u64 length, u64 type)
6993 {
6994         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6995                 return 0;
6996 
6997         if (logical + length < MAX_LFS_FILESIZE)
6998                 return 0;
6999 
7000         btrfs_err_32bit_limit(fs_info);
7001         return -EOVERFLOW;
7002 }
7003 
7004 /*
7005  * This is to give early warning for any metadata chunk reaching
7006  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7007  * Although we can still access the metadata, it's not going to be possible
7008  * once the limit is reached.
7009  */
7010 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7011                                   u64 logical, u64 length, u64 type)
7012 {
7013         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7014                 return;
7015 
7016         if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7017                 return;
7018 
7019         btrfs_warn_32bit_limit(fs_info);
7020 }
7021 #endif
7022 
7023 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7024                                                   u64 devid, u8 *uuid)
7025 {
7026         struct btrfs_device *dev;
7027 
7028         if (!btrfs_test_opt(fs_info, DEGRADED)) {
7029                 btrfs_report_missing_device(fs_info, devid, uuid, true);
7030                 return ERR_PTR(-ENOENT);
7031         }
7032 
7033         dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7034         if (IS_ERR(dev)) {
7035                 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7036                           devid, PTR_ERR(dev));
7037                 return dev;
7038         }
7039         btrfs_report_missing_device(fs_info, devid, uuid, false);
7040 
7041         return dev;
7042 }
7043 
7044 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7045                           struct btrfs_chunk *chunk)
7046 {
7047         BTRFS_DEV_LOOKUP_ARGS(args);
7048         struct btrfs_fs_info *fs_info = leaf->fs_info;
7049         struct btrfs_chunk_map *map;
7050         u64 logical;
7051         u64 length;
7052         u64 devid;
7053         u64 type;
7054         u8 uuid[BTRFS_UUID_SIZE];
7055         int index;
7056         int num_stripes;
7057         int ret;
7058         int i;
7059 
7060         logical = key->offset;
7061         length = btrfs_chunk_length(leaf, chunk);
7062         type = btrfs_chunk_type(leaf, chunk);
7063         index = btrfs_bg_flags_to_raid_index(type);
7064         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7065 
7066 #if BITS_PER_LONG == 32
7067         ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7068         if (ret < 0)
7069                 return ret;
7070         warn_32bit_meta_chunk(fs_info, logical, length, type);
7071 #endif
7072 
7073         /*
7074          * Only need to verify chunk item if we're reading from sys chunk array,
7075          * as chunk item in tree block is already verified by tree-checker.
7076          */
7077         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7078                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7079                 if (ret)
7080                         return ret;
7081         }
7082 
7083         map = btrfs_find_chunk_map(fs_info, logical, 1);
7084 
7085         /* already mapped? */
7086         if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7087                 btrfs_free_chunk_map(map);
7088                 return 0;
7089         } else if (map) {
7090                 btrfs_free_chunk_map(map);
7091         }
7092 
7093         map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7094         if (!map)
7095                 return -ENOMEM;
7096 
7097         map->start = logical;
7098         map->chunk_len = length;
7099         map->num_stripes = num_stripes;
7100         map->io_width = btrfs_chunk_io_width(leaf, chunk);
7101         map->io_align = btrfs_chunk_io_align(leaf, chunk);
7102         map->type = type;
7103         /*
7104          * We can't use the sub_stripes value, as for profiles other than
7105          * RAID10, they may have 0 as sub_stripes for filesystems created by
7106          * older mkfs (<v5.4).
7107          * In that case, it can cause divide-by-zero errors later.
7108          * Since currently sub_stripes is fixed for each profile, let's
7109          * use the trusted value instead.
7110          */
7111         map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7112         map->verified_stripes = 0;
7113         map->stripe_size = btrfs_calc_stripe_length(map);
7114         for (i = 0; i < num_stripes; i++) {
7115                 map->stripes[i].physical =
7116                         btrfs_stripe_offset_nr(leaf, chunk, i);
7117                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7118                 args.devid = devid;
7119                 read_extent_buffer(leaf, uuid, (unsigned long)
7120                                    btrfs_stripe_dev_uuid_nr(chunk, i),
7121                                    BTRFS_UUID_SIZE);
7122                 args.uuid = uuid;
7123                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7124                 if (!map->stripes[i].dev) {
7125                         map->stripes[i].dev = handle_missing_device(fs_info,
7126                                                                     devid, uuid);
7127                         if (IS_ERR(map->stripes[i].dev)) {
7128                                 ret = PTR_ERR(map->stripes[i].dev);
7129                                 btrfs_free_chunk_map(map);
7130                                 return ret;
7131                         }
7132                 }
7133 
7134                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7135                                 &(map->stripes[i].dev->dev_state));
7136         }
7137 
7138         ret = btrfs_add_chunk_map(fs_info, map);
7139         if (ret < 0) {
7140                 btrfs_err(fs_info,
7141                           "failed to add chunk map, start=%llu len=%llu: %d",
7142                           map->start, map->chunk_len, ret);
7143         }
7144 
7145         return ret;
7146 }
7147 
7148 static void fill_device_from_item(struct extent_buffer *leaf,
7149                                  struct btrfs_dev_item *dev_item,
7150                                  struct btrfs_device *device)
7151 {
7152         unsigned long ptr;
7153 
7154         device->devid = btrfs_device_id(leaf, dev_item);
7155         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7156         device->total_bytes = device->disk_total_bytes;
7157         device->commit_total_bytes = device->disk_total_bytes;
7158         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7159         device->commit_bytes_used = device->bytes_used;
7160         device->type = btrfs_device_type(leaf, dev_item);
7161         device->io_align = btrfs_device_io_align(leaf, dev_item);
7162         device->io_width = btrfs_device_io_width(leaf, dev_item);
7163         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7164         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7165         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7166 
7167         ptr = btrfs_device_uuid(dev_item);
7168         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7169 }
7170 
7171 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7172                                                   u8 *fsid)
7173 {
7174         struct btrfs_fs_devices *fs_devices;
7175         int ret;
7176 
7177         lockdep_assert_held(&uuid_mutex);
7178         ASSERT(fsid);
7179 
7180         /* This will match only for multi-device seed fs */
7181         list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7182                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7183                         return fs_devices;
7184 
7185 
7186         fs_devices = find_fsid(fsid, NULL);
7187         if (!fs_devices) {
7188                 if (!btrfs_test_opt(fs_info, DEGRADED))
7189                         return ERR_PTR(-ENOENT);
7190 
7191                 fs_devices = alloc_fs_devices(fsid);
7192                 if (IS_ERR(fs_devices))
7193                         return fs_devices;
7194 
7195                 fs_devices->seeding = true;
7196                 fs_devices->opened = 1;
7197                 return fs_devices;
7198         }
7199 
7200         /*
7201          * Upon first call for a seed fs fsid, just create a private copy of the
7202          * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7203          */
7204         fs_devices = clone_fs_devices(fs_devices);
7205         if (IS_ERR(fs_devices))
7206                 return fs_devices;
7207 
7208         ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7209         if (ret) {
7210                 free_fs_devices(fs_devices);
7211                 return ERR_PTR(ret);
7212         }
7213 
7214         if (!fs_devices->seeding) {
7215                 close_fs_devices(fs_devices);
7216                 free_fs_devices(fs_devices);
7217                 return ERR_PTR(-EINVAL);
7218         }
7219 
7220         list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7221 
7222         return fs_devices;
7223 }
7224 
7225 static int read_one_dev(struct extent_buffer *leaf,
7226                         struct btrfs_dev_item *dev_item)
7227 {
7228         BTRFS_DEV_LOOKUP_ARGS(args);
7229         struct btrfs_fs_info *fs_info = leaf->fs_info;
7230         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7231         struct btrfs_device *device;
7232         u64 devid;
7233         int ret;
7234         u8 fs_uuid[BTRFS_FSID_SIZE];
7235         u8 dev_uuid[BTRFS_UUID_SIZE];
7236 
7237         devid = btrfs_device_id(leaf, dev_item);
7238         args.devid = devid;
7239         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7240                            BTRFS_UUID_SIZE);
7241         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7242                            BTRFS_FSID_SIZE);
7243         args.uuid = dev_uuid;
7244         args.fsid = fs_uuid;
7245 
7246         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7247                 fs_devices = open_seed_devices(fs_info, fs_uuid);
7248                 if (IS_ERR(fs_devices))
7249                         return PTR_ERR(fs_devices);
7250         }
7251 
7252         device = btrfs_find_device(fs_info->fs_devices, &args);
7253         if (!device) {
7254                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7255                         btrfs_report_missing_device(fs_info, devid,
7256                                                         dev_uuid, true);
7257                         return -ENOENT;
7258                 }
7259 
7260                 device = add_missing_dev(fs_devices, devid, dev_uuid);
7261                 if (IS_ERR(device)) {
7262                         btrfs_err(fs_info,
7263                                 "failed to add missing dev %llu: %ld",
7264                                 devid, PTR_ERR(device));
7265                         return PTR_ERR(device);
7266                 }
7267                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7268         } else {
7269                 if (!device->bdev) {
7270                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
7271                                 btrfs_report_missing_device(fs_info,
7272                                                 devid, dev_uuid, true);
7273                                 return -ENOENT;
7274                         }
7275                         btrfs_report_missing_device(fs_info, devid,
7276                                                         dev_uuid, false);
7277                 }
7278 
7279                 if (!device->bdev &&
7280                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7281                         /*
7282                          * this happens when a device that was properly setup
7283                          * in the device info lists suddenly goes bad.
7284                          * device->bdev is NULL, and so we have to set
7285                          * device->missing to one here
7286                          */
7287                         device->fs_devices->missing_devices++;
7288                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7289                 }
7290 
7291                 /* Move the device to its own fs_devices */
7292                 if (device->fs_devices != fs_devices) {
7293                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7294                                                         &device->dev_state));
7295 
7296                         list_move(&device->dev_list, &fs_devices->devices);
7297                         device->fs_devices->num_devices--;
7298                         fs_devices->num_devices++;
7299 
7300                         device->fs_devices->missing_devices--;
7301                         fs_devices->missing_devices++;
7302 
7303                         device->fs_devices = fs_devices;
7304                 }
7305         }
7306 
7307         if (device->fs_devices != fs_info->fs_devices) {
7308                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7309                 if (device->generation !=
7310                     btrfs_device_generation(leaf, dev_item))
7311                         return -EINVAL;
7312         }
7313 
7314         fill_device_from_item(leaf, dev_item, device);
7315         if (device->bdev) {
7316                 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7317 
7318                 if (device->total_bytes > max_total_bytes) {
7319                         btrfs_err(fs_info,
7320                         "device total_bytes should be at most %llu but found %llu",
7321                                   max_total_bytes, device->total_bytes);
7322                         return -EINVAL;
7323                 }
7324         }
7325         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7326         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7327            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7328                 device->fs_devices->total_rw_bytes += device->total_bytes;
7329                 atomic64_add(device->total_bytes - device->bytes_used,
7330                                 &fs_info->free_chunk_space);
7331         }
7332         ret = 0;
7333         return ret;
7334 }
7335 
7336 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7337 {
7338         struct btrfs_super_block *super_copy = fs_info->super_copy;
7339         struct extent_buffer *sb;
7340         struct btrfs_disk_key *disk_key;
7341         struct btrfs_chunk *chunk;
7342         u8 *array_ptr;
7343         unsigned long sb_array_offset;
7344         int ret = 0;
7345         u32 num_stripes;
7346         u32 array_size;
7347         u32 len = 0;
7348         u32 cur_offset;
7349         u64 type;
7350         struct btrfs_key key;
7351 
7352         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7353 
7354         /*
7355          * We allocated a dummy extent, just to use extent buffer accessors.
7356          * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7357          * that's fine, we will not go beyond system chunk array anyway.
7358          */
7359         sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7360         if (!sb)
7361                 return -ENOMEM;
7362         set_extent_buffer_uptodate(sb);
7363 
7364         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7365         array_size = btrfs_super_sys_array_size(super_copy);
7366 
7367         array_ptr = super_copy->sys_chunk_array;
7368         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7369         cur_offset = 0;
7370 
7371         while (cur_offset < array_size) {
7372                 disk_key = (struct btrfs_disk_key *)array_ptr;
7373                 len = sizeof(*disk_key);
7374                 if (cur_offset + len > array_size)
7375                         goto out_short_read;
7376 
7377                 btrfs_disk_key_to_cpu(&key, disk_key);
7378 
7379                 array_ptr += len;
7380                 sb_array_offset += len;
7381                 cur_offset += len;
7382 
7383                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7384                         btrfs_err(fs_info,
7385                             "unexpected item type %u in sys_array at offset %u",
7386                                   (u32)key.type, cur_offset);
7387                         ret = -EIO;
7388                         break;
7389                 }
7390 
7391                 chunk = (struct btrfs_chunk *)sb_array_offset;
7392                 /*
7393                  * At least one btrfs_chunk with one stripe must be present,
7394                  * exact stripe count check comes afterwards
7395                  */
7396                 len = btrfs_chunk_item_size(1);
7397                 if (cur_offset + len > array_size)
7398                         goto out_short_read;
7399 
7400                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7401                 if (!num_stripes) {
7402                         btrfs_err(fs_info,
7403                         "invalid number of stripes %u in sys_array at offset %u",
7404                                   num_stripes, cur_offset);
7405                         ret = -EIO;
7406                         break;
7407                 }
7408 
7409                 type = btrfs_chunk_type(sb, chunk);
7410                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7411                         btrfs_err(fs_info,
7412                         "invalid chunk type %llu in sys_array at offset %u",
7413                                   type, cur_offset);
7414                         ret = -EIO;
7415                         break;
7416                 }
7417 
7418                 len = btrfs_chunk_item_size(num_stripes);
7419                 if (cur_offset + len > array_size)
7420                         goto out_short_read;
7421 
7422                 ret = read_one_chunk(&key, sb, chunk);
7423                 if (ret)
7424                         break;
7425 
7426                 array_ptr += len;
7427                 sb_array_offset += len;
7428                 cur_offset += len;
7429         }
7430         clear_extent_buffer_uptodate(sb);
7431         free_extent_buffer_stale(sb);
7432         return ret;
7433 
7434 out_short_read:
7435         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7436                         len, cur_offset);
7437         clear_extent_buffer_uptodate(sb);
7438         free_extent_buffer_stale(sb);
7439         return -EIO;
7440 }
7441 
7442 /*
7443  * Check if all chunks in the fs are OK for read-write degraded mount
7444  *
7445  * If the @failing_dev is specified, it's accounted as missing.
7446  *
7447  * Return true if all chunks meet the minimal RW mount requirements.
7448  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7449  */
7450 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7451                                         struct btrfs_device *failing_dev)
7452 {
7453         struct btrfs_chunk_map *map;
7454         u64 next_start;
7455         bool ret = true;
7456 
7457         map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7458         /* No chunk at all? Return false anyway */
7459         if (!map) {
7460                 ret = false;
7461                 goto out;
7462         }
7463         while (map) {
7464                 int missing = 0;
7465                 int max_tolerated;
7466                 int i;
7467 
7468                 max_tolerated =
7469                         btrfs_get_num_tolerated_disk_barrier_failures(
7470                                         map->type);
7471                 for (i = 0; i < map->num_stripes; i++) {
7472                         struct btrfs_device *dev = map->stripes[i].dev;
7473 
7474                         if (!dev || !dev->bdev ||
7475                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7476                             dev->last_flush_error)
7477                                 missing++;
7478                         else if (failing_dev && failing_dev == dev)
7479                                 missing++;
7480                 }
7481                 if (missing > max_tolerated) {
7482                         if (!failing_dev)
7483                                 btrfs_warn(fs_info,
7484         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7485                                    map->start, missing, max_tolerated);
7486                         btrfs_free_chunk_map(map);
7487                         ret = false;
7488                         goto out;
7489                 }
7490                 next_start = map->start + map->chunk_len;
7491                 btrfs_free_chunk_map(map);
7492 
7493                 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7494         }
7495 out:
7496         return ret;
7497 }
7498 
7499 static void readahead_tree_node_children(struct extent_buffer *node)
7500 {
7501         int i;
7502         const int nr_items = btrfs_header_nritems(node);
7503 
7504         for (i = 0; i < nr_items; i++)
7505                 btrfs_readahead_node_child(node, i);
7506 }
7507 
7508 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7509 {
7510         struct btrfs_root *root = fs_info->chunk_root;
7511         struct btrfs_path *path;
7512         struct extent_buffer *leaf;
7513         struct btrfs_key key;
7514         struct btrfs_key found_key;
7515         int ret;
7516         int slot;
7517         int iter_ret = 0;
7518         u64 total_dev = 0;
7519         u64 last_ra_node = 0;
7520 
7521         path = btrfs_alloc_path();
7522         if (!path)
7523                 return -ENOMEM;
7524 
7525         /*
7526          * uuid_mutex is needed only if we are mounting a sprout FS
7527          * otherwise we don't need it.
7528          */
7529         mutex_lock(&uuid_mutex);
7530 
7531         /*
7532          * It is possible for mount and umount to race in such a way that
7533          * we execute this code path, but open_fs_devices failed to clear
7534          * total_rw_bytes. We certainly want it cleared before reading the
7535          * device items, so clear it here.
7536          */
7537         fs_info->fs_devices->total_rw_bytes = 0;
7538 
7539         /*
7540          * Lockdep complains about possible circular locking dependency between
7541          * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7542          * used for freeze procection of a fs (struct super_block.s_writers),
7543          * which we take when starting a transaction, and extent buffers of the
7544          * chunk tree if we call read_one_dev() while holding a lock on an
7545          * extent buffer of the chunk tree. Since we are mounting the filesystem
7546          * and at this point there can't be any concurrent task modifying the
7547          * chunk tree, to keep it simple, just skip locking on the chunk tree.
7548          */
7549         ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7550         path->skip_locking = 1;
7551 
7552         /*
7553          * Read all device items, and then all the chunk items. All
7554          * device items are found before any chunk item (their object id
7555          * is smaller than the lowest possible object id for a chunk
7556          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7557          */
7558         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7559         key.offset = 0;
7560         key.type = 0;
7561         btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7562                 struct extent_buffer *node = path->nodes[1];
7563 
7564                 leaf = path->nodes[0];
7565                 slot = path->slots[0];
7566 
7567                 if (node) {
7568                         if (last_ra_node != node->start) {
7569                                 readahead_tree_node_children(node);
7570                                 last_ra_node = node->start;
7571                         }
7572                 }
7573                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7574                         struct btrfs_dev_item *dev_item;
7575                         dev_item = btrfs_item_ptr(leaf, slot,
7576                                                   struct btrfs_dev_item);
7577                         ret = read_one_dev(leaf, dev_item);
7578                         if (ret)
7579                                 goto error;
7580                         total_dev++;
7581                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7582                         struct btrfs_chunk *chunk;
7583 
7584                         /*
7585                          * We are only called at mount time, so no need to take
7586                          * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7587                          * we always lock first fs_info->chunk_mutex before
7588                          * acquiring any locks on the chunk tree. This is a
7589                          * requirement for chunk allocation, see the comment on
7590                          * top of btrfs_chunk_alloc() for details.
7591                          */
7592                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7593                         ret = read_one_chunk(&found_key, leaf, chunk);
7594                         if (ret)
7595                                 goto error;
7596                 }
7597         }
7598         /* Catch error found during iteration */
7599         if (iter_ret < 0) {
7600                 ret = iter_ret;
7601                 goto error;
7602         }
7603 
7604         /*
7605          * After loading chunk tree, we've got all device information,
7606          * do another round of validation checks.
7607          */
7608         if (total_dev != fs_info->fs_devices->total_devices) {
7609                 btrfs_warn(fs_info,
7610 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7611                           btrfs_super_num_devices(fs_info->super_copy),
7612                           total_dev);
7613                 fs_info->fs_devices->total_devices = total_dev;
7614                 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7615         }
7616         if (btrfs_super_total_bytes(fs_info->super_copy) <
7617             fs_info->fs_devices->total_rw_bytes) {
7618                 btrfs_err(fs_info,
7619         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7620                           btrfs_super_total_bytes(fs_info->super_copy),
7621                           fs_info->fs_devices->total_rw_bytes);
7622                 ret = -EINVAL;
7623                 goto error;
7624         }
7625         ret = 0;
7626 error:
7627         mutex_unlock(&uuid_mutex);
7628 
7629         btrfs_free_path(path);
7630         return ret;
7631 }
7632 
7633 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7634 {
7635         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7636         struct btrfs_device *device;
7637         int ret = 0;
7638 
7639         fs_devices->fs_info = fs_info;
7640 
7641         mutex_lock(&fs_devices->device_list_mutex);
7642         list_for_each_entry(device, &fs_devices->devices, dev_list)
7643                 device->fs_info = fs_info;
7644 
7645         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7646                 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7647                         device->fs_info = fs_info;
7648                         ret = btrfs_get_dev_zone_info(device, false);
7649                         if (ret)
7650                                 break;
7651                 }
7652 
7653                 seed_devs->fs_info = fs_info;
7654         }
7655         mutex_unlock(&fs_devices->device_list_mutex);
7656 
7657         return ret;
7658 }
7659 
7660 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7661                                  const struct btrfs_dev_stats_item *ptr,
7662                                  int index)
7663 {
7664         u64 val;
7665 
7666         read_extent_buffer(eb, &val,
7667                            offsetof(struct btrfs_dev_stats_item, values) +
7668                             ((unsigned long)ptr) + (index * sizeof(u64)),
7669                            sizeof(val));
7670         return val;
7671 }
7672 
7673 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7674                                       struct btrfs_dev_stats_item *ptr,
7675                                       int index, u64 val)
7676 {
7677         write_extent_buffer(eb, &val,
7678                             offsetof(struct btrfs_dev_stats_item, values) +
7679                              ((unsigned long)ptr) + (index * sizeof(u64)),
7680                             sizeof(val));
7681 }
7682 
7683 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7684                                        struct btrfs_path *path)
7685 {
7686         struct btrfs_dev_stats_item *ptr;
7687         struct extent_buffer *eb;
7688         struct btrfs_key key;
7689         int item_size;
7690         int i, ret, slot;
7691 
7692         if (!device->fs_info->dev_root)
7693                 return 0;
7694 
7695         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7696         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7697         key.offset = device->devid;
7698         ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7699         if (ret) {
7700                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7701                         btrfs_dev_stat_set(device, i, 0);
7702                 device->dev_stats_valid = 1;
7703                 btrfs_release_path(path);
7704                 return ret < 0 ? ret : 0;
7705         }
7706         slot = path->slots[0];
7707         eb = path->nodes[0];
7708         item_size = btrfs_item_size(eb, slot);
7709 
7710         ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7711 
7712         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7713                 if (item_size >= (1 + i) * sizeof(__le64))
7714                         btrfs_dev_stat_set(device, i,
7715                                            btrfs_dev_stats_value(eb, ptr, i));
7716                 else
7717                         btrfs_dev_stat_set(device, i, 0);
7718         }
7719 
7720         device->dev_stats_valid = 1;
7721         btrfs_dev_stat_print_on_load(device);
7722         btrfs_release_path(path);
7723 
7724         return 0;
7725 }
7726 
7727 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7728 {
7729         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7730         struct btrfs_device *device;
7731         struct btrfs_path *path = NULL;
7732         int ret = 0;
7733 
7734         path = btrfs_alloc_path();
7735         if (!path)
7736                 return -ENOMEM;
7737 
7738         mutex_lock(&fs_devices->device_list_mutex);
7739         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7740                 ret = btrfs_device_init_dev_stats(device, path);
7741                 if (ret)
7742                         goto out;
7743         }
7744         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7745                 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7746                         ret = btrfs_device_init_dev_stats(device, path);
7747                         if (ret)
7748                                 goto out;
7749                 }
7750         }
7751 out:
7752         mutex_unlock(&fs_devices->device_list_mutex);
7753 
7754         btrfs_free_path(path);
7755         return ret;
7756 }
7757 
7758 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7759                                 struct btrfs_device *device)
7760 {
7761         struct btrfs_fs_info *fs_info = trans->fs_info;
7762         struct btrfs_root *dev_root = fs_info->dev_root;
7763         struct btrfs_path *path;
7764         struct btrfs_key key;
7765         struct extent_buffer *eb;
7766         struct btrfs_dev_stats_item *ptr;
7767         int ret;
7768         int i;
7769 
7770         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7771         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7772         key.offset = device->devid;
7773 
7774         path = btrfs_alloc_path();
7775         if (!path)
7776                 return -ENOMEM;
7777         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7778         if (ret < 0) {
7779                 btrfs_warn_in_rcu(fs_info,
7780                         "error %d while searching for dev_stats item for device %s",
7781                                   ret, btrfs_dev_name(device));
7782                 goto out;
7783         }
7784 
7785         if (ret == 0 &&
7786             btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7787                 /* need to delete old one and insert a new one */
7788                 ret = btrfs_del_item(trans, dev_root, path);
7789                 if (ret != 0) {
7790                         btrfs_warn_in_rcu(fs_info,
7791                                 "delete too small dev_stats item for device %s failed %d",
7792                                           btrfs_dev_name(device), ret);
7793                         goto out;
7794                 }
7795                 ret = 1;
7796         }
7797 
7798         if (ret == 1) {
7799                 /* need to insert a new item */
7800                 btrfs_release_path(path);
7801                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7802                                               &key, sizeof(*ptr));
7803                 if (ret < 0) {
7804                         btrfs_warn_in_rcu(fs_info,
7805                                 "insert dev_stats item for device %s failed %d",
7806                                 btrfs_dev_name(device), ret);
7807                         goto out;
7808                 }
7809         }
7810 
7811         eb = path->nodes[0];
7812         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7813         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7814                 btrfs_set_dev_stats_value(eb, ptr, i,
7815                                           btrfs_dev_stat_read(device, i));
7816         btrfs_mark_buffer_dirty(trans, eb);
7817 
7818 out:
7819         btrfs_free_path(path);
7820         return ret;
7821 }
7822 
7823 /*
7824  * called from commit_transaction. Writes all changed device stats to disk.
7825  */
7826 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7827 {
7828         struct btrfs_fs_info *fs_info = trans->fs_info;
7829         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7830         struct btrfs_device *device;
7831         int stats_cnt;
7832         int ret = 0;
7833 
7834         mutex_lock(&fs_devices->device_list_mutex);
7835         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7836                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7837                 if (!device->dev_stats_valid || stats_cnt == 0)
7838                         continue;
7839 
7840 
7841                 /*
7842                  * There is a LOAD-LOAD control dependency between the value of
7843                  * dev_stats_ccnt and updating the on-disk values which requires
7844                  * reading the in-memory counters. Such control dependencies
7845                  * require explicit read memory barriers.
7846                  *
7847                  * This memory barriers pairs with smp_mb__before_atomic in
7848                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7849                  * barrier implied by atomic_xchg in
7850                  * btrfs_dev_stats_read_and_reset
7851                  */
7852                 smp_rmb();
7853 
7854                 ret = update_dev_stat_item(trans, device);
7855                 if (!ret)
7856                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7857         }
7858         mutex_unlock(&fs_devices->device_list_mutex);
7859 
7860         return ret;
7861 }
7862 
7863 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7864 {
7865         btrfs_dev_stat_inc(dev, index);
7866 
7867         if (!dev->dev_stats_valid)
7868                 return;
7869         btrfs_err_rl_in_rcu(dev->fs_info,
7870                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7871                            btrfs_dev_name(dev),
7872                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7873                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7874                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7875                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7876                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7877 }
7878 
7879 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7880 {
7881         int i;
7882 
7883         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7884                 if (btrfs_dev_stat_read(dev, i) != 0)
7885                         break;
7886         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7887                 return; /* all values == 0, suppress message */
7888 
7889         btrfs_info_in_rcu(dev->fs_info,
7890                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7891                btrfs_dev_name(dev),
7892                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7893                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7894                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7895                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7896                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7897 }
7898 
7899 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7900                         struct btrfs_ioctl_get_dev_stats *stats)
7901 {
7902         BTRFS_DEV_LOOKUP_ARGS(args);
7903         struct btrfs_device *dev;
7904         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7905         int i;
7906 
7907         mutex_lock(&fs_devices->device_list_mutex);
7908         args.devid = stats->devid;
7909         dev = btrfs_find_device(fs_info->fs_devices, &args);
7910         mutex_unlock(&fs_devices->device_list_mutex);
7911 
7912         if (!dev) {
7913                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7914                 return -ENODEV;
7915         } else if (!dev->dev_stats_valid) {
7916                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7917                 return -ENODEV;
7918         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7919                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7920                         if (stats->nr_items > i)
7921                                 stats->values[i] =
7922                                         btrfs_dev_stat_read_and_reset(dev, i);
7923                         else
7924                                 btrfs_dev_stat_set(dev, i, 0);
7925                 }
7926                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7927                            current->comm, task_pid_nr(current));
7928         } else {
7929                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7930                         if (stats->nr_items > i)
7931                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7932         }
7933         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7934                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7935         return 0;
7936 }
7937 
7938 /*
7939  * Update the size and bytes used for each device where it changed.  This is
7940  * delayed since we would otherwise get errors while writing out the
7941  * superblocks.
7942  *
7943  * Must be invoked during transaction commit.
7944  */
7945 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7946 {
7947         struct btrfs_device *curr, *next;
7948 
7949         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7950 
7951         if (list_empty(&trans->dev_update_list))
7952                 return;
7953 
7954         /*
7955          * We don't need the device_list_mutex here.  This list is owned by the
7956          * transaction and the transaction must complete before the device is
7957          * released.
7958          */
7959         mutex_lock(&trans->fs_info->chunk_mutex);
7960         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7961                                  post_commit_list) {
7962                 list_del_init(&curr->post_commit_list);
7963                 curr->commit_total_bytes = curr->disk_total_bytes;
7964                 curr->commit_bytes_used = curr->bytes_used;
7965         }
7966         mutex_unlock(&trans->fs_info->chunk_mutex);
7967 }
7968 
7969 /*
7970  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7971  */
7972 int btrfs_bg_type_to_factor(u64 flags)
7973 {
7974         const int index = btrfs_bg_flags_to_raid_index(flags);
7975 
7976         return btrfs_raid_array[index].ncopies;
7977 }
7978 
7979 
7980 
7981 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7982                                  u64 chunk_offset, u64 devid,
7983                                  u64 physical_offset, u64 physical_len)
7984 {
7985         struct btrfs_dev_lookup_args args = { .devid = devid };
7986         struct btrfs_chunk_map *map;
7987         struct btrfs_device *dev;
7988         u64 stripe_len;
7989         bool found = false;
7990         int ret = 0;
7991         int i;
7992 
7993         map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7994         if (!map) {
7995                 btrfs_err(fs_info,
7996 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7997                           physical_offset, devid);
7998                 ret = -EUCLEAN;
7999                 goto out;
8000         }
8001 
8002         stripe_len = btrfs_calc_stripe_length(map);
8003         if (physical_len != stripe_len) {
8004                 btrfs_err(fs_info,
8005 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8006                           physical_offset, devid, map->start, physical_len,
8007                           stripe_len);
8008                 ret = -EUCLEAN;
8009                 goto out;
8010         }
8011 
8012         /*
8013          * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8014          * space. Although kernel can handle it without problem, better to warn
8015          * the users.
8016          */
8017         if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8018                 btrfs_warn(fs_info,
8019                 "devid %llu physical %llu len %llu inside the reserved space",
8020                            devid, physical_offset, physical_len);
8021 
8022         for (i = 0; i < map->num_stripes; i++) {
8023                 if (map->stripes[i].dev->devid == devid &&
8024                     map->stripes[i].physical == physical_offset) {
8025                         found = true;
8026                         if (map->verified_stripes >= map->num_stripes) {
8027                                 btrfs_err(fs_info,
8028                                 "too many dev extents for chunk %llu found",
8029                                           map->start);
8030                                 ret = -EUCLEAN;
8031                                 goto out;
8032                         }
8033                         map->verified_stripes++;
8034                         break;
8035                 }
8036         }
8037         if (!found) {
8038                 btrfs_err(fs_info,
8039         "dev extent physical offset %llu devid %llu has no corresponding chunk",
8040                         physical_offset, devid);
8041                 ret = -EUCLEAN;
8042         }
8043 
8044         /* Make sure no dev extent is beyond device boundary */
8045         dev = btrfs_find_device(fs_info->fs_devices, &args);
8046         if (!dev) {
8047                 btrfs_err(fs_info, "failed to find devid %llu", devid);
8048                 ret = -EUCLEAN;
8049                 goto out;
8050         }
8051 
8052         if (physical_offset + physical_len > dev->disk_total_bytes) {
8053                 btrfs_err(fs_info,
8054 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8055                           devid, physical_offset, physical_len,
8056                           dev->disk_total_bytes);
8057                 ret = -EUCLEAN;
8058                 goto out;
8059         }
8060 
8061         if (dev->zone_info) {
8062                 u64 zone_size = dev->zone_info->zone_size;
8063 
8064                 if (!IS_ALIGNED(physical_offset, zone_size) ||
8065                     !IS_ALIGNED(physical_len, zone_size)) {
8066                         btrfs_err(fs_info,
8067 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8068                                   devid, physical_offset, physical_len);
8069                         ret = -EUCLEAN;
8070                         goto out;
8071                 }
8072         }
8073 
8074 out:
8075         btrfs_free_chunk_map(map);
8076         return ret;
8077 }
8078 
8079 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8080 {
8081         struct rb_node *node;
8082         int ret = 0;
8083 
8084         read_lock(&fs_info->mapping_tree_lock);
8085         for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8086                 struct btrfs_chunk_map *map;
8087 
8088                 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8089                 if (map->num_stripes != map->verified_stripes) {
8090                         btrfs_err(fs_info,
8091                         "chunk %llu has missing dev extent, have %d expect %d",
8092                                   map->start, map->verified_stripes, map->num_stripes);
8093                         ret = -EUCLEAN;
8094                         goto out;
8095                 }
8096         }
8097 out:
8098         read_unlock(&fs_info->mapping_tree_lock);
8099         return ret;
8100 }
8101 
8102 /*
8103  * Ensure that all dev extents are mapped to correct chunk, otherwise
8104  * later chunk allocation/free would cause unexpected behavior.
8105  *
8106  * NOTE: This will iterate through the whole device tree, which should be of
8107  * the same size level as the chunk tree.  This slightly increases mount time.
8108  */
8109 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8110 {
8111         struct btrfs_path *path;
8112         struct btrfs_root *root = fs_info->dev_root;
8113         struct btrfs_key key;
8114         u64 prev_devid = 0;
8115         u64 prev_dev_ext_end = 0;
8116         int ret = 0;
8117 
8118         /*
8119          * We don't have a dev_root because we mounted with ignorebadroots and
8120          * failed to load the root, so we want to skip the verification in this
8121          * case for sure.
8122          *
8123          * However if the dev root is fine, but the tree itself is corrupted
8124          * we'd still fail to mount.  This verification is only to make sure
8125          * writes can happen safely, so instead just bypass this check
8126          * completely in the case of IGNOREBADROOTS.
8127          */
8128         if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8129                 return 0;
8130 
8131         key.objectid = 1;
8132         key.type = BTRFS_DEV_EXTENT_KEY;
8133         key.offset = 0;
8134 
8135         path = btrfs_alloc_path();
8136         if (!path)
8137                 return -ENOMEM;
8138 
8139         path->reada = READA_FORWARD;
8140         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8141         if (ret < 0)
8142                 goto out;
8143 
8144         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8145                 ret = btrfs_next_leaf(root, path);
8146                 if (ret < 0)
8147                         goto out;
8148                 /* No dev extents at all? Not good */
8149                 if (ret > 0) {
8150                         ret = -EUCLEAN;
8151                         goto out;
8152                 }
8153         }
8154         while (1) {
8155                 struct extent_buffer *leaf = path->nodes[0];
8156                 struct btrfs_dev_extent *dext;
8157                 int slot = path->slots[0];
8158                 u64 chunk_offset;
8159                 u64 physical_offset;
8160                 u64 physical_len;
8161                 u64 devid;
8162 
8163                 btrfs_item_key_to_cpu(leaf, &key, slot);
8164                 if (key.type != BTRFS_DEV_EXTENT_KEY)
8165                         break;
8166                 devid = key.objectid;
8167                 physical_offset = key.offset;
8168 
8169                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8170                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8171                 physical_len = btrfs_dev_extent_length(leaf, dext);
8172 
8173                 /* Check if this dev extent overlaps with the previous one */
8174                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8175                         btrfs_err(fs_info,
8176 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8177                                   devid, physical_offset, prev_dev_ext_end);
8178                         ret = -EUCLEAN;
8179                         goto out;
8180                 }
8181 
8182                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8183                                             physical_offset, physical_len);
8184                 if (ret < 0)
8185                         goto out;
8186                 prev_devid = devid;
8187                 prev_dev_ext_end = physical_offset + physical_len;
8188 
8189                 ret = btrfs_next_item(root, path);
8190                 if (ret < 0)
8191                         goto out;
8192                 if (ret > 0) {
8193                         ret = 0;
8194                         break;
8195                 }
8196         }
8197 
8198         /* Ensure all chunks have corresponding dev extents */
8199         ret = verify_chunk_dev_extent_mapping(fs_info);
8200 out:
8201         btrfs_free_path(path);
8202         return ret;
8203 }
8204 
8205 /*
8206  * Check whether the given block group or device is pinned by any inode being
8207  * used as a swapfile.
8208  */
8209 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8210 {
8211         struct btrfs_swapfile_pin *sp;
8212         struct rb_node *node;
8213 
8214         spin_lock(&fs_info->swapfile_pins_lock);
8215         node = fs_info->swapfile_pins.rb_node;
8216         while (node) {
8217                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8218                 if (ptr < sp->ptr)
8219                         node = node->rb_left;
8220                 else if (ptr > sp->ptr)
8221                         node = node->rb_right;
8222                 else
8223                         break;
8224         }
8225         spin_unlock(&fs_info->swapfile_pins_lock);
8226         return node != NULL;
8227 }
8228 
8229 static int relocating_repair_kthread(void *data)
8230 {
8231         struct btrfs_block_group *cache = data;
8232         struct btrfs_fs_info *fs_info = cache->fs_info;
8233         u64 target;
8234         int ret = 0;
8235 
8236         target = cache->start;
8237         btrfs_put_block_group(cache);
8238 
8239         sb_start_write(fs_info->sb);
8240         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8241                 btrfs_info(fs_info,
8242                            "zoned: skip relocating block group %llu to repair: EBUSY",
8243                            target);
8244                 sb_end_write(fs_info->sb);
8245                 return -EBUSY;
8246         }
8247 
8248         mutex_lock(&fs_info->reclaim_bgs_lock);
8249 
8250         /* Ensure block group still exists */
8251         cache = btrfs_lookup_block_group(fs_info, target);
8252         if (!cache)
8253                 goto out;
8254 
8255         if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8256                 goto out;
8257 
8258         ret = btrfs_may_alloc_data_chunk(fs_info, target);
8259         if (ret < 0)
8260                 goto out;
8261 
8262         btrfs_info(fs_info,
8263                    "zoned: relocating block group %llu to repair IO failure",
8264                    target);
8265         ret = btrfs_relocate_chunk(fs_info, target);
8266 
8267 out:
8268         if (cache)
8269                 btrfs_put_block_group(cache);
8270         mutex_unlock(&fs_info->reclaim_bgs_lock);
8271         btrfs_exclop_finish(fs_info);
8272         sb_end_write(fs_info->sb);
8273 
8274         return ret;
8275 }
8276 
8277 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8278 {
8279         struct btrfs_block_group *cache;
8280 
8281         if (!btrfs_is_zoned(fs_info))
8282                 return false;
8283 
8284         /* Do not attempt to repair in degraded state */
8285         if (btrfs_test_opt(fs_info, DEGRADED))
8286                 return true;
8287 
8288         cache = btrfs_lookup_block_group(fs_info, logical);
8289         if (!cache)
8290                 return true;
8291 
8292         if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8293                 btrfs_put_block_group(cache);
8294                 return true;
8295         }
8296 
8297         kthread_run(relocating_repair_kthread, cache,
8298                     "btrfs-relocating-repair");
8299 
8300         return true;
8301 }
8302 
8303 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8304                                     struct btrfs_io_stripe *smap,
8305                                     u64 logical)
8306 {
8307         int data_stripes = nr_bioc_data_stripes(bioc);
8308         int i;
8309 
8310         for (i = 0; i < data_stripes; i++) {
8311                 u64 stripe_start = bioc->full_stripe_logical +
8312                                    btrfs_stripe_nr_to_offset(i);
8313 
8314                 if (logical >= stripe_start &&
8315                     logical < stripe_start + BTRFS_STRIPE_LEN)
8316                         break;
8317         }
8318         ASSERT(i < data_stripes);
8319         smap->dev = bioc->stripes[i].dev;
8320         smap->physical = bioc->stripes[i].physical +
8321                         ((logical - bioc->full_stripe_logical) &
8322                          BTRFS_STRIPE_LEN_MASK);
8323 }
8324 
8325 /*
8326  * Map a repair write into a single device.
8327  *
8328  * A repair write is triggered by read time repair or scrub, which would only
8329  * update the contents of a single device.
8330  * Not update any other mirrors nor go through RMW path.
8331  *
8332  * Callers should ensure:
8333  *
8334  * - Call btrfs_bio_counter_inc_blocked() first
8335  * - The range does not cross stripe boundary
8336  * - Has a valid @mirror_num passed in.
8337  */
8338 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8339                            struct btrfs_io_stripe *smap, u64 logical,
8340                            u32 length, int mirror_num)
8341 {
8342         struct btrfs_io_context *bioc = NULL;
8343         u64 map_length = length;
8344         int mirror_ret = mirror_num;
8345         int ret;
8346 
8347         ASSERT(mirror_num > 0);
8348 
8349         ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8350                               &bioc, smap, &mirror_ret);
8351         if (ret < 0)
8352                 return ret;
8353 
8354         /* The map range should not cross stripe boundary. */
8355         ASSERT(map_length >= length);
8356 
8357         /* Already mapped to single stripe. */
8358         if (!bioc)
8359                 goto out;
8360 
8361         /* Map the RAID56 multi-stripe writes to a single one. */
8362         if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8363                 map_raid56_repair_block(bioc, smap, logical);
8364                 goto out;
8365         }
8366 
8367         ASSERT(mirror_num <= bioc->num_stripes);
8368         smap->dev = bioc->stripes[mirror_num - 1].dev;
8369         smap->physical = bioc->stripes[mirror_num - 1].physical;
8370 out:
8371         btrfs_put_bioc(bioc);
8372         ASSERT(smap->dev);
8373         return 0;
8374 }
8375 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php