1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_VOLUMES_H 7 #define BTRFS_VOLUMES_H 8 9 #include <linux/blk_types.h> 10 #include <linux/sizes.h> 11 #include <linux/atomic.h> 12 #include <linux/sort.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/log2.h> 16 #include <linux/kobject.h> 17 #include <linux/refcount.h> 18 #include <linux/completion.h> 19 #include <linux/rbtree.h> 20 #include <uapi/linux/btrfs.h> 21 #include "messages.h" 22 #include "rcu-string.h" 23 24 struct block_device; 25 struct bdev_handle; 26 struct btrfs_fs_info; 27 struct btrfs_block_group; 28 struct btrfs_trans_handle; 29 struct btrfs_zoned_device_info; 30 31 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G) 32 33 /* 34 * Arbitratry maximum size of one discard request to limit potentially long time 35 * spent in blkdev_issue_discard(). 36 */ 37 #define BTRFS_MAX_DISCARD_CHUNK_SIZE (SZ_1G) 38 39 extern struct mutex uuid_mutex; 40 41 #define BTRFS_STRIPE_LEN SZ_64K 42 #define BTRFS_STRIPE_LEN_SHIFT (16) 43 #define BTRFS_STRIPE_LEN_MASK (BTRFS_STRIPE_LEN - 1) 44 45 static_assert(const_ilog2(BTRFS_STRIPE_LEN) == BTRFS_STRIPE_LEN_SHIFT); 46 47 /* Used by sanity check for btrfs_raid_types. */ 48 #define const_ffs(n) (__builtin_ctzll(n) + 1) 49 50 /* 51 * The conversion from BTRFS_BLOCK_GROUP_* bits to btrfs_raid_type requires 52 * RAID0 always to be the lowest profile bit. 53 * Although it's part of on-disk format and should never change, do extra 54 * compile-time sanity checks. 55 */ 56 static_assert(const_ffs(BTRFS_BLOCK_GROUP_RAID0) < 57 const_ffs(BTRFS_BLOCK_GROUP_PROFILE_MASK & ~BTRFS_BLOCK_GROUP_RAID0)); 58 static_assert(const_ilog2(BTRFS_BLOCK_GROUP_RAID0) > 59 ilog2(BTRFS_BLOCK_GROUP_TYPE_MASK)); 60 61 /* ilog2() can handle both constants and variables */ 62 #define BTRFS_BG_FLAG_TO_INDEX(profile) \ 63 ilog2((profile) >> (ilog2(BTRFS_BLOCK_GROUP_RAID0) - 1)) 64 65 enum btrfs_raid_types { 66 /* SINGLE is the special one as it doesn't have on-disk bit. */ 67 BTRFS_RAID_SINGLE = 0, 68 69 BTRFS_RAID_RAID0 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID0), 70 BTRFS_RAID_RAID1 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1), 71 BTRFS_RAID_DUP = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_DUP), 72 BTRFS_RAID_RAID10 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID10), 73 BTRFS_RAID_RAID5 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID5), 74 BTRFS_RAID_RAID6 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID6), 75 BTRFS_RAID_RAID1C3 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C3), 76 BTRFS_RAID_RAID1C4 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C4), 77 78 BTRFS_NR_RAID_TYPES 79 }; 80 81 /* 82 * Use sequence counter to get consistent device stat data on 83 * 32-bit processors. 84 */ 85 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 86 #include <linux/seqlock.h> 87 #define __BTRFS_NEED_DEVICE_DATA_ORDERED 88 #define btrfs_device_data_ordered_init(device) \ 89 seqcount_init(&device->data_seqcount) 90 #else 91 #define btrfs_device_data_ordered_init(device) do { } while (0) 92 #endif 93 94 #define BTRFS_DEV_STATE_WRITEABLE (0) 95 #define BTRFS_DEV_STATE_IN_FS_METADATA (1) 96 #define BTRFS_DEV_STATE_MISSING (2) 97 #define BTRFS_DEV_STATE_REPLACE_TGT (3) 98 #define BTRFS_DEV_STATE_FLUSH_SENT (4) 99 #define BTRFS_DEV_STATE_NO_READA (5) 100 101 /* Special value encoding failure to write primary super block. */ 102 #define BTRFS_SUPER_PRIMARY_WRITE_ERROR (INT_MAX / 2) 103 104 struct btrfs_fs_devices; 105 106 struct btrfs_device { 107 struct list_head dev_list; /* device_list_mutex */ 108 struct list_head dev_alloc_list; /* chunk mutex */ 109 struct list_head post_commit_list; /* chunk mutex */ 110 struct btrfs_fs_devices *fs_devices; 111 struct btrfs_fs_info *fs_info; 112 113 struct rcu_string __rcu *name; 114 115 u64 generation; 116 117 struct file *bdev_file; 118 struct block_device *bdev; 119 120 struct btrfs_zoned_device_info *zone_info; 121 122 /* 123 * Device's major-minor number. Must be set even if the device is not 124 * opened (bdev == NULL), unless the device is missing. 125 */ 126 dev_t devt; 127 unsigned long dev_state; 128 blk_status_t last_flush_error; 129 130 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED 131 seqcount_t data_seqcount; 132 #endif 133 134 /* the internal btrfs device id */ 135 u64 devid; 136 137 /* size of the device in memory */ 138 u64 total_bytes; 139 140 /* size of the device on disk */ 141 u64 disk_total_bytes; 142 143 /* bytes used */ 144 u64 bytes_used; 145 146 /* optimal io alignment for this device */ 147 u32 io_align; 148 149 /* optimal io width for this device */ 150 u32 io_width; 151 /* type and info about this device */ 152 u64 type; 153 154 /* 155 * Counter of super block write errors, values larger than 156 * BTRFS_SUPER_PRIMARY_WRITE_ERROR encode primary super block write failure. 157 */ 158 atomic_t sb_write_errors; 159 160 /* minimal io size for this device */ 161 u32 sector_size; 162 163 /* physical drive uuid (or lvm uuid) */ 164 u8 uuid[BTRFS_UUID_SIZE]; 165 166 /* 167 * size of the device on the current transaction 168 * 169 * This variant is update when committing the transaction, 170 * and protected by chunk mutex 171 */ 172 u64 commit_total_bytes; 173 174 /* bytes used on the current transaction */ 175 u64 commit_bytes_used; 176 177 /* Bio used for flushing device barriers */ 178 struct bio flush_bio; 179 struct completion flush_wait; 180 181 /* per-device scrub information */ 182 struct scrub_ctx *scrub_ctx; 183 184 /* disk I/O failure stats. For detailed description refer to 185 * enum btrfs_dev_stat_values in ioctl.h */ 186 int dev_stats_valid; 187 188 /* Counter to record the change of device stats */ 189 atomic_t dev_stats_ccnt; 190 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX]; 191 192 struct extent_io_tree alloc_state; 193 194 struct completion kobj_unregister; 195 /* For sysfs/FSID/devinfo/devid/ */ 196 struct kobject devid_kobj; 197 198 /* Bandwidth limit for scrub, in bytes */ 199 u64 scrub_speed_max; 200 }; 201 202 /* 203 * Block group or device which contains an active swapfile. Used for preventing 204 * unsafe operations while a swapfile is active. 205 * 206 * These are sorted on (ptr, inode) (note that a block group or device can 207 * contain more than one swapfile). We compare the pointer values because we 208 * don't actually care what the object is, we just need a quick check whether 209 * the object exists in the rbtree. 210 */ 211 struct btrfs_swapfile_pin { 212 struct rb_node node; 213 void *ptr; 214 struct inode *inode; 215 /* 216 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 217 * points to a struct btrfs_device. 218 */ 219 bool is_block_group; 220 /* 221 * Only used when 'is_block_group' is true and it is the number of 222 * extents used by a swapfile for this block group ('ptr' field). 223 */ 224 int bg_extent_count; 225 }; 226 227 /* 228 * If we read those variants at the context of their own lock, we needn't 229 * use the following helpers, reading them directly is safe. 230 */ 231 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 232 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 233 static inline u64 \ 234 btrfs_device_get_##name(const struct btrfs_device *dev) \ 235 { \ 236 u64 size; \ 237 unsigned int seq; \ 238 \ 239 do { \ 240 seq = read_seqcount_begin(&dev->data_seqcount); \ 241 size = dev->name; \ 242 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \ 243 return size; \ 244 } \ 245 \ 246 static inline void \ 247 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 248 { \ 249 preempt_disable(); \ 250 write_seqcount_begin(&dev->data_seqcount); \ 251 dev->name = size; \ 252 write_seqcount_end(&dev->data_seqcount); \ 253 preempt_enable(); \ 254 } 255 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 256 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 257 static inline u64 \ 258 btrfs_device_get_##name(const struct btrfs_device *dev) \ 259 { \ 260 u64 size; \ 261 \ 262 preempt_disable(); \ 263 size = dev->name; \ 264 preempt_enable(); \ 265 return size; \ 266 } \ 267 \ 268 static inline void \ 269 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 270 { \ 271 preempt_disable(); \ 272 dev->name = size; \ 273 preempt_enable(); \ 274 } 275 #else 276 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 277 static inline u64 \ 278 btrfs_device_get_##name(const struct btrfs_device *dev) \ 279 { \ 280 return dev->name; \ 281 } \ 282 \ 283 static inline void \ 284 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 285 { \ 286 dev->name = size; \ 287 } 288 #endif 289 290 BTRFS_DEVICE_GETSET_FUNCS(total_bytes); 291 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes); 292 BTRFS_DEVICE_GETSET_FUNCS(bytes_used); 293 294 enum btrfs_chunk_allocation_policy { 295 BTRFS_CHUNK_ALLOC_REGULAR, 296 BTRFS_CHUNK_ALLOC_ZONED, 297 }; 298 299 /* 300 * Read policies for mirrored block group profiles, read picks the stripe based 301 * on these policies. 302 */ 303 enum btrfs_read_policy { 304 /* Use process PID to choose the stripe */ 305 BTRFS_READ_POLICY_PID, 306 BTRFS_NR_READ_POLICY, 307 }; 308 309 #ifdef CONFIG_BTRFS_DEBUG 310 /* 311 * Checksum mode - offload it to workqueues or do it synchronously in 312 * btrfs_submit_chunk(). 313 */ 314 enum btrfs_offload_csum_mode { 315 /* 316 * Choose offloading checksum or do it synchronously automatically. 317 * Do it synchronously if the checksum is fast, or offload to workqueues 318 * otherwise. 319 */ 320 BTRFS_OFFLOAD_CSUM_AUTO, 321 /* Always offload checksum to workqueues. */ 322 BTRFS_OFFLOAD_CSUM_FORCE_ON, 323 /* Never offload checksum to workqueues. */ 324 BTRFS_OFFLOAD_CSUM_FORCE_OFF, 325 }; 326 #endif 327 328 struct btrfs_fs_devices { 329 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 330 331 /* 332 * UUID written into the btree blocks: 333 * 334 * - If metadata_uuid != fsid then super block must have 335 * BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag set. 336 * 337 * - Following shall be true at all times: 338 * - metadata_uuid == btrfs_header::fsid 339 * - metadata_uuid == btrfs_dev_item::fsid 340 * 341 * - Relations between fsid and metadata_uuid in sb and fs_devices: 342 * - Normal: 343 * fs_devices->fsid == fs_devices->metadata_uuid == sb->fsid 344 * sb->metadata_uuid == 0 345 * 346 * - When the BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag is set: 347 * fs_devices->fsid == sb->fsid 348 * fs_devices->metadata_uuid == sb->metadata_uuid 349 * 350 * - When in-memory fs_devices->temp_fsid is true 351 * fs_devices->fsid = random 352 * fs_devices->metadata_uuid == sb->fsid 353 */ 354 u8 metadata_uuid[BTRFS_FSID_SIZE]; 355 356 struct list_head fs_list; 357 358 /* 359 * Number of devices under this fsid including missing and 360 * replace-target device and excludes seed devices. 361 */ 362 u64 num_devices; 363 364 /* 365 * The number of devices that successfully opened, including 366 * replace-target, excludes seed devices. 367 */ 368 u64 open_devices; 369 370 /* The number of devices that are under the chunk allocation list. */ 371 u64 rw_devices; 372 373 /* Count of missing devices under this fsid excluding seed device. */ 374 u64 missing_devices; 375 u64 total_rw_bytes; 376 377 /* 378 * Count of devices from btrfs_super_block::num_devices for this fsid, 379 * which includes the seed device, excludes the transient replace-target 380 * device. 381 */ 382 u64 total_devices; 383 384 /* Highest generation number of seen devices */ 385 u64 latest_generation; 386 387 /* 388 * The mount device or a device with highest generation after removal 389 * or replace. 390 */ 391 struct btrfs_device *latest_dev; 392 393 /* 394 * All of the devices in the filesystem, protected by a mutex so we can 395 * safely walk it to write out the super blocks without worrying about 396 * adding/removing by the multi-device code. Scrubbing super block can 397 * kick off supers writing by holding this mutex lock. 398 */ 399 struct mutex device_list_mutex; 400 401 /* List of all devices, protected by device_list_mutex */ 402 struct list_head devices; 403 404 /* Devices which can satisfy space allocation. Protected by * chunk_mutex. */ 405 struct list_head alloc_list; 406 407 struct list_head seed_list; 408 409 /* Count fs-devices opened. */ 410 int opened; 411 412 /* Set when we find or add a device that doesn't have the nonrot flag set. */ 413 bool rotating; 414 /* Devices support TRIM/discard commands. */ 415 bool discardable; 416 /* The filesystem is a seed filesystem. */ 417 bool seeding; 418 /* The mount needs to use a randomly generated fsid. */ 419 bool temp_fsid; 420 421 struct btrfs_fs_info *fs_info; 422 /* sysfs kobjects */ 423 struct kobject fsid_kobj; 424 struct kobject *devices_kobj; 425 struct kobject *devinfo_kobj; 426 struct completion kobj_unregister; 427 428 enum btrfs_chunk_allocation_policy chunk_alloc_policy; 429 430 /* Policy used to read the mirrored stripes. */ 431 enum btrfs_read_policy read_policy; 432 433 #ifdef CONFIG_BTRFS_DEBUG 434 /* Checksum mode - offload it or do it synchronously. */ 435 enum btrfs_offload_csum_mode offload_csum_mode; 436 #endif 437 }; 438 439 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \ 440 - sizeof(struct btrfs_chunk)) \ 441 / sizeof(struct btrfs_stripe) + 1) 442 443 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 444 - 2 * sizeof(struct btrfs_disk_key) \ 445 - 2 * sizeof(struct btrfs_chunk)) \ 446 / sizeof(struct btrfs_stripe) + 1) 447 448 struct btrfs_io_stripe { 449 struct btrfs_device *dev; 450 /* Block mapping. */ 451 u64 physical; 452 u64 length; 453 bool is_scrub; 454 /* For the endio handler. */ 455 struct btrfs_io_context *bioc; 456 }; 457 458 struct btrfs_discard_stripe { 459 struct btrfs_device *dev; 460 u64 physical; 461 u64 length; 462 }; 463 464 /* 465 * Context for IO subsmission for device stripe. 466 * 467 * - Track the unfinished mirrors for mirror based profiles 468 * Mirror based profiles are SINGLE/DUP/RAID1/RAID10. 469 * 470 * - Contain the logical -> physical mapping info 471 * Used by submit_stripe_bio() for mapping logical bio 472 * into physical device address. 473 * 474 * - Contain device replace info 475 * Used by handle_ops_on_dev_replace() to copy logical bios 476 * into the new device. 477 * 478 * - Contain RAID56 full stripe logical bytenrs 479 */ 480 struct btrfs_io_context { 481 refcount_t refs; 482 struct btrfs_fs_info *fs_info; 483 /* Taken from struct btrfs_chunk_map::type. */ 484 u64 map_type; 485 struct bio *orig_bio; 486 atomic_t error; 487 u16 max_errors; 488 489 u64 logical; 490 u64 size; 491 /* Raid stripe tree ordered entry. */ 492 struct list_head rst_ordered_entry; 493 494 /* 495 * The total number of stripes, including the extra duplicated 496 * stripe for replace. 497 */ 498 u16 num_stripes; 499 500 /* 501 * The mirror_num of this bioc. 502 * 503 * This is for reads which use 0 as mirror_num, thus we should return a 504 * valid mirror_num (>0) for the reader. 505 */ 506 u16 mirror_num; 507 508 /* 509 * The following two members are for dev-replace case only. 510 * 511 * @replace_nr_stripes: Number of duplicated stripes which need to be 512 * written to replace target. 513 * Should be <= 2 (2 for DUP, otherwise <= 1). 514 * @replace_stripe_src: The array indicates where the duplicated stripes 515 * are from. 516 * 517 * The @replace_stripe_src[] array is mostly for RAID56 cases. 518 * As non-RAID56 stripes share the same contents of the mapped range, 519 * thus no need to bother where the duplicated ones are from. 520 * 521 * But for RAID56 case, all stripes contain different contents, thus 522 * we need a way to know the mapping. 523 * 524 * There is an example for the two members, using a RAID5 write: 525 * 526 * num_stripes: 4 (3 + 1 duplicated write) 527 * stripes[0]: dev = devid 1, physical = X 528 * stripes[1]: dev = devid 2, physical = Y 529 * stripes[2]: dev = devid 3, physical = Z 530 * stripes[3]: dev = devid 0, physical = Y 531 * 532 * replace_nr_stripes = 1 533 * replace_stripe_src = 1 <- Means stripes[1] is involved in replace. 534 * The duplicated stripe index would be 535 * (@num_stripes - 1). 536 * 537 * Note, that we can still have cases replace_nr_stripes = 2 for DUP. 538 * In that case, all stripes share the same content, thus we don't 539 * need to bother @replace_stripe_src value at all. 540 */ 541 u16 replace_nr_stripes; 542 s16 replace_stripe_src; 543 /* 544 * Logical bytenr of the full stripe start, only for RAID56 cases. 545 * 546 * When this value is set to other than (u64)-1, the stripes[] should 547 * follow this pattern: 548 * 549 * (real_stripes = num_stripes - replace_nr_stripes) 550 * (data_stripes = (is_raid6) ? (real_stripes - 2) : (real_stripes - 1)) 551 * 552 * stripes[0]: The first data stripe 553 * stripes[1]: The second data stripe 554 * ... 555 * stripes[data_stripes - 1]: The last data stripe 556 * stripes[data_stripes]: The P stripe 557 * stripes[data_stripes + 1]: The Q stripe (only for RAID6). 558 */ 559 u64 full_stripe_logical; 560 struct btrfs_io_stripe stripes[]; 561 }; 562 563 struct btrfs_device_info { 564 struct btrfs_device *dev; 565 u64 dev_offset; 566 u64 max_avail; 567 u64 total_avail; 568 }; 569 570 struct btrfs_raid_attr { 571 u8 sub_stripes; /* sub_stripes info for map */ 572 u8 dev_stripes; /* stripes per dev */ 573 u8 devs_max; /* max devs to use */ 574 u8 devs_min; /* min devs needed */ 575 u8 tolerated_failures; /* max tolerated fail devs */ 576 u8 devs_increment; /* ndevs has to be a multiple of this */ 577 u8 ncopies; /* how many copies to data has */ 578 u8 nparity; /* number of stripes worth of bytes to store 579 * parity information */ 580 u8 mindev_error; /* error code if min devs requisite is unmet */ 581 const char raid_name[8]; /* name of the raid */ 582 u64 bg_flag; /* block group flag of the raid */ 583 }; 584 585 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; 586 587 struct btrfs_chunk_map { 588 struct rb_node rb_node; 589 /* For mount time dev extent verification. */ 590 int verified_stripes; 591 refcount_t refs; 592 u64 start; 593 u64 chunk_len; 594 u64 stripe_size; 595 u64 type; 596 int io_align; 597 int io_width; 598 int num_stripes; 599 int sub_stripes; 600 struct btrfs_io_stripe stripes[]; 601 }; 602 603 #define btrfs_chunk_map_size(n) (sizeof(struct btrfs_chunk_map) + \ 604 (sizeof(struct btrfs_io_stripe) * (n))) 605 606 static inline void btrfs_free_chunk_map(struct btrfs_chunk_map *map) 607 { 608 if (map && refcount_dec_and_test(&map->refs)) { 609 ASSERT(RB_EMPTY_NODE(&map->rb_node)); 610 kfree(map); 611 } 612 } 613 614 struct btrfs_balance_control { 615 struct btrfs_balance_args data; 616 struct btrfs_balance_args meta; 617 struct btrfs_balance_args sys; 618 619 u64 flags; 620 621 struct btrfs_balance_progress stat; 622 }; 623 624 /* 625 * Search for a given device by the set parameters 626 */ 627 struct btrfs_dev_lookup_args { 628 u64 devid; 629 u8 *uuid; 630 u8 *fsid; 631 bool missing; 632 }; 633 634 /* We have to initialize to -1 because BTRFS_DEV_REPLACE_DEVID is 0 */ 635 #define BTRFS_DEV_LOOKUP_ARGS_INIT { .devid = (u64)-1 } 636 637 #define BTRFS_DEV_LOOKUP_ARGS(name) \ 638 struct btrfs_dev_lookup_args name = BTRFS_DEV_LOOKUP_ARGS_INIT 639 640 enum btrfs_map_op { 641 BTRFS_MAP_READ, 642 BTRFS_MAP_WRITE, 643 BTRFS_MAP_GET_READ_MIRRORS, 644 }; 645 646 static inline enum btrfs_map_op btrfs_op(struct bio *bio) 647 { 648 switch (bio_op(bio)) { 649 case REQ_OP_WRITE: 650 case REQ_OP_ZONE_APPEND: 651 return BTRFS_MAP_WRITE; 652 default: 653 WARN_ON_ONCE(1); 654 fallthrough; 655 case REQ_OP_READ: 656 return BTRFS_MAP_READ; 657 } 658 } 659 660 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 661 { 662 ASSERT(num_stripes); 663 return sizeof(struct btrfs_chunk) + 664 sizeof(struct btrfs_stripe) * (num_stripes - 1); 665 } 666 667 /* 668 * Do the type safe conversion from stripe_nr to offset inside the chunk. 669 * 670 * @stripe_nr is u32, with left shift it can overflow u32 for chunks larger 671 * than 4G. This does the proper type cast to avoid overflow. 672 */ 673 static inline u64 btrfs_stripe_nr_to_offset(u32 stripe_nr) 674 { 675 return (u64)stripe_nr << BTRFS_STRIPE_LEN_SHIFT; 676 } 677 678 void btrfs_get_bioc(struct btrfs_io_context *bioc); 679 void btrfs_put_bioc(struct btrfs_io_context *bioc); 680 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 681 u64 logical, u64 *length, 682 struct btrfs_io_context **bioc_ret, 683 struct btrfs_io_stripe *smap, int *mirror_num_ret); 684 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 685 struct btrfs_io_stripe *smap, u64 logical, 686 u32 length, int mirror_num); 687 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 688 u64 logical, u64 *length_ret, 689 u32 *num_stripes); 690 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); 691 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); 692 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 693 u64 type); 694 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info); 695 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 696 blk_mode_t flags, void *holder); 697 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 698 bool mount_arg_dev); 699 int btrfs_forget_devices(dev_t devt); 700 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices); 701 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices); 702 void btrfs_assign_next_active_device(struct btrfs_device *device, 703 struct btrfs_device *this_dev); 704 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, 705 u64 devid, 706 const char *devpath); 707 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 708 struct btrfs_dev_lookup_args *args, 709 const char *path); 710 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 711 const u64 *devid, const u8 *uuid, 712 const char *path); 713 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args); 714 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 715 struct btrfs_dev_lookup_args *args, 716 struct file **bdev_file); 717 void __exit btrfs_cleanup_fs_uuids(void); 718 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); 719 int btrfs_grow_device(struct btrfs_trans_handle *trans, 720 struct btrfs_device *device, u64 new_size); 721 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 722 const struct btrfs_dev_lookup_args *args); 723 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); 724 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path); 725 int btrfs_balance(struct btrfs_fs_info *fs_info, 726 struct btrfs_balance_control *bctl, 727 struct btrfs_ioctl_balance_args *bargs); 728 void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf); 729 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info); 730 int btrfs_recover_balance(struct btrfs_fs_info *fs_info); 731 int btrfs_pause_balance(struct btrfs_fs_info *fs_info); 732 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset); 733 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info); 734 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info); 735 int btrfs_uuid_scan_kthread(void *data); 736 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset); 737 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index); 738 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 739 struct btrfs_ioctl_get_dev_stats *stats); 740 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info); 741 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info); 742 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans); 743 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev); 744 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev); 745 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev); 746 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, 747 u64 logical, u64 len); 748 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 749 u64 logical); 750 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map); 751 int btrfs_nr_parity_stripes(u64 type); 752 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 753 struct btrfs_block_group *bg); 754 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset); 755 756 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 757 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp); 758 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); 759 #endif 760 761 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 762 u64 logical, u64 length); 763 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 764 u64 logical, u64 length); 765 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 766 u64 logical, u64 length); 767 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); 768 void btrfs_release_disk_super(struct btrfs_super_block *super); 769 770 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev, 771 int index) 772 { 773 atomic_inc(dev->dev_stat_values + index); 774 /* 775 * This memory barrier orders stores updating statistics before stores 776 * updating dev_stats_ccnt. 777 * 778 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 779 */ 780 smp_mb__before_atomic(); 781 atomic_inc(&dev->dev_stats_ccnt); 782 } 783 784 static inline int btrfs_dev_stat_read(struct btrfs_device *dev, 785 int index) 786 { 787 return atomic_read(dev->dev_stat_values + index); 788 } 789 790 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev, 791 int index) 792 { 793 int ret; 794 795 ret = atomic_xchg(dev->dev_stat_values + index, 0); 796 /* 797 * atomic_xchg implies a full memory barriers as per atomic_t.txt: 798 * - RMW operations that have a return value are fully ordered; 799 * 800 * This implicit memory barriers is paired with the smp_rmb in 801 * btrfs_run_dev_stats 802 */ 803 atomic_inc(&dev->dev_stats_ccnt); 804 return ret; 805 } 806 807 static inline void btrfs_dev_stat_set(struct btrfs_device *dev, 808 int index, unsigned long val) 809 { 810 atomic_set(dev->dev_stat_values + index, val); 811 /* 812 * This memory barrier orders stores updating statistics before stores 813 * updating dev_stats_ccnt. 814 * 815 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 816 */ 817 smp_mb__before_atomic(); 818 atomic_inc(&dev->dev_stats_ccnt); 819 } 820 821 static inline const char *btrfs_dev_name(const struct btrfs_device *device) 822 { 823 if (!device || test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 824 return "<missing disk>"; 825 else 826 return rcu_str_deref(device->name); 827 } 828 829 void btrfs_commit_device_sizes(struct btrfs_transaction *trans); 830 831 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void); 832 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 833 struct btrfs_device *failing_dev); 834 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device); 835 836 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags); 837 int btrfs_bg_type_to_factor(u64 flags); 838 const char *btrfs_bg_type_to_raid_name(u64 flags); 839 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info); 840 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical); 841 842 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 843 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb); 844 845 #endif 846
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.