~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/btrfs/zoned.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 
  3 #include <linux/bitops.h>
  4 #include <linux/slab.h>
  5 #include <linux/blkdev.h>
  6 #include <linux/sched/mm.h>
  7 #include <linux/atomic.h>
  8 #include <linux/vmalloc.h>
  9 #include "ctree.h"
 10 #include "volumes.h"
 11 #include "zoned.h"
 12 #include "rcu-string.h"
 13 #include "disk-io.h"
 14 #include "block-group.h"
 15 #include "dev-replace.h"
 16 #include "space-info.h"
 17 #include "fs.h"
 18 #include "accessors.h"
 19 #include "bio.h"
 20 
 21 /* Maximum number of zones to report per blkdev_report_zones() call */
 22 #define BTRFS_REPORT_NR_ZONES   4096
 23 /* Invalid allocation pointer value for missing devices */
 24 #define WP_MISSING_DEV ((u64)-1)
 25 /* Pseudo write pointer value for conventional zone */
 26 #define WP_CONVENTIONAL ((u64)-2)
 27 
 28 /*
 29  * Location of the first zone of superblock logging zone pairs.
 30  *
 31  * - primary superblock:    0B (zone 0)
 32  * - first copy:          512G (zone starting at that offset)
 33  * - second copy:           4T (zone starting at that offset)
 34  */
 35 #define BTRFS_SB_LOG_PRIMARY_OFFSET     (0ULL)
 36 #define BTRFS_SB_LOG_FIRST_OFFSET       (512ULL * SZ_1G)
 37 #define BTRFS_SB_LOG_SECOND_OFFSET      (4096ULL * SZ_1G)
 38 
 39 #define BTRFS_SB_LOG_FIRST_SHIFT        const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
 40 #define BTRFS_SB_LOG_SECOND_SHIFT       const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
 41 
 42 /* Number of superblock log zones */
 43 #define BTRFS_NR_SB_LOG_ZONES 2
 44 
 45 /*
 46  * Minimum of active zones we need:
 47  *
 48  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
 49  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
 50  * - 1 zone for tree-log dedicated block group
 51  * - 1 zone for relocation
 52  */
 53 #define BTRFS_MIN_ACTIVE_ZONES          (BTRFS_SUPER_MIRROR_MAX + 5)
 54 
 55 /*
 56  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
 57  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
 58  * We do not expect the zone size to become larger than 8GiB or smaller than
 59  * 4MiB in the near future.
 60  */
 61 #define BTRFS_MAX_ZONE_SIZE             SZ_8G
 62 #define BTRFS_MIN_ZONE_SIZE             SZ_4M
 63 
 64 #define SUPER_INFO_SECTORS      ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
 65 
 66 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
 67 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
 68 
 69 static inline bool sb_zone_is_full(const struct blk_zone *zone)
 70 {
 71         return (zone->cond == BLK_ZONE_COND_FULL) ||
 72                 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
 73 }
 74 
 75 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
 76 {
 77         struct blk_zone *zones = data;
 78 
 79         memcpy(&zones[idx], zone, sizeof(*zone));
 80 
 81         return 0;
 82 }
 83 
 84 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
 85                             u64 *wp_ret)
 86 {
 87         bool empty[BTRFS_NR_SB_LOG_ZONES];
 88         bool full[BTRFS_NR_SB_LOG_ZONES];
 89         sector_t sector;
 90 
 91         for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
 92                 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
 93                 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
 94                 full[i] = sb_zone_is_full(&zones[i]);
 95         }
 96 
 97         /*
 98          * Possible states of log buffer zones
 99          *
100          *           Empty[0]  In use[0]  Full[0]
101          * Empty[1]         *          0        1
102          * In use[1]        x          x        1
103          * Full[1]          0          0        C
104          *
105          * Log position:
106          *   *: Special case, no superblock is written
107          *   0: Use write pointer of zones[0]
108          *   1: Use write pointer of zones[1]
109          *   C: Compare super blocks from zones[0] and zones[1], use the latest
110          *      one determined by generation
111          *   x: Invalid state
112          */
113 
114         if (empty[0] && empty[1]) {
115                 /* Special case to distinguish no superblock to read */
116                 *wp_ret = zones[0].start << SECTOR_SHIFT;
117                 return -ENOENT;
118         } else if (full[0] && full[1]) {
119                 /* Compare two super blocks */
120                 struct address_space *mapping = bdev->bd_mapping;
121                 struct page *page[BTRFS_NR_SB_LOG_ZONES];
122                 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
123 
124                 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
125                         u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
126                         u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
127                                                 BTRFS_SUPER_INFO_SIZE;
128 
129                         page[i] = read_cache_page_gfp(mapping,
130                                         bytenr >> PAGE_SHIFT, GFP_NOFS);
131                         if (IS_ERR(page[i])) {
132                                 if (i == 1)
133                                         btrfs_release_disk_super(super[0]);
134                                 return PTR_ERR(page[i]);
135                         }
136                         super[i] = page_address(page[i]);
137                 }
138 
139                 if (btrfs_super_generation(super[0]) >
140                     btrfs_super_generation(super[1]))
141                         sector = zones[1].start;
142                 else
143                         sector = zones[0].start;
144 
145                 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
146                         btrfs_release_disk_super(super[i]);
147         } else if (!full[0] && (empty[1] || full[1])) {
148                 sector = zones[0].wp;
149         } else if (full[0]) {
150                 sector = zones[1].wp;
151         } else {
152                 return -EUCLEAN;
153         }
154         *wp_ret = sector << SECTOR_SHIFT;
155         return 0;
156 }
157 
158 /*
159  * Get the first zone number of the superblock mirror
160  */
161 static inline u32 sb_zone_number(int shift, int mirror)
162 {
163         u64 zone = U64_MAX;
164 
165         ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
166         switch (mirror) {
167         case 0: zone = 0; break;
168         case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
169         case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
170         }
171 
172         ASSERT(zone <= U32_MAX);
173 
174         return (u32)zone;
175 }
176 
177 static inline sector_t zone_start_sector(u32 zone_number,
178                                          struct block_device *bdev)
179 {
180         return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
181 }
182 
183 static inline u64 zone_start_physical(u32 zone_number,
184                                       struct btrfs_zoned_device_info *zone_info)
185 {
186         return (u64)zone_number << zone_info->zone_size_shift;
187 }
188 
189 /*
190  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
191  * device into static sized chunks and fake a conventional zone on each of
192  * them.
193  */
194 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
195                                 struct blk_zone *zones, unsigned int nr_zones)
196 {
197         const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
198         sector_t bdev_size = bdev_nr_sectors(device->bdev);
199         unsigned int i;
200 
201         pos >>= SECTOR_SHIFT;
202         for (i = 0; i < nr_zones; i++) {
203                 zones[i].start = i * zone_sectors + pos;
204                 zones[i].len = zone_sectors;
205                 zones[i].capacity = zone_sectors;
206                 zones[i].wp = zones[i].start + zone_sectors;
207                 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
208                 zones[i].cond = BLK_ZONE_COND_NOT_WP;
209 
210                 if (zones[i].wp >= bdev_size) {
211                         i++;
212                         break;
213                 }
214         }
215 
216         return i;
217 }
218 
219 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
220                                struct blk_zone *zones, unsigned int *nr_zones)
221 {
222         struct btrfs_zoned_device_info *zinfo = device->zone_info;
223         int ret;
224 
225         if (!*nr_zones)
226                 return 0;
227 
228         if (!bdev_is_zoned(device->bdev)) {
229                 ret = emulate_report_zones(device, pos, zones, *nr_zones);
230                 *nr_zones = ret;
231                 return 0;
232         }
233 
234         /* Check cache */
235         if (zinfo->zone_cache) {
236                 unsigned int i;
237                 u32 zno;
238 
239                 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
240                 zno = pos >> zinfo->zone_size_shift;
241                 /*
242                  * We cannot report zones beyond the zone end. So, it is OK to
243                  * cap *nr_zones to at the end.
244                  */
245                 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
246 
247                 for (i = 0; i < *nr_zones; i++) {
248                         struct blk_zone *zone_info;
249 
250                         zone_info = &zinfo->zone_cache[zno + i];
251                         if (!zone_info->len)
252                                 break;
253                 }
254 
255                 if (i == *nr_zones) {
256                         /* Cache hit on all the zones */
257                         memcpy(zones, zinfo->zone_cache + zno,
258                                sizeof(*zinfo->zone_cache) * *nr_zones);
259                         return 0;
260                 }
261         }
262 
263         ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
264                                   copy_zone_info_cb, zones);
265         if (ret < 0) {
266                 btrfs_err_in_rcu(device->fs_info,
267                                  "zoned: failed to read zone %llu on %s (devid %llu)",
268                                  pos, rcu_str_deref(device->name),
269                                  device->devid);
270                 return ret;
271         }
272         *nr_zones = ret;
273         if (!ret)
274                 return -EIO;
275 
276         /* Populate cache */
277         if (zinfo->zone_cache) {
278                 u32 zno = pos >> zinfo->zone_size_shift;
279 
280                 memcpy(zinfo->zone_cache + zno, zones,
281                        sizeof(*zinfo->zone_cache) * *nr_zones);
282         }
283 
284         return 0;
285 }
286 
287 /* The emulated zone size is determined from the size of device extent */
288 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
289 {
290         struct btrfs_path *path;
291         struct btrfs_root *root = fs_info->dev_root;
292         struct btrfs_key key;
293         struct extent_buffer *leaf;
294         struct btrfs_dev_extent *dext;
295         int ret = 0;
296 
297         key.objectid = 1;
298         key.type = BTRFS_DEV_EXTENT_KEY;
299         key.offset = 0;
300 
301         path = btrfs_alloc_path();
302         if (!path)
303                 return -ENOMEM;
304 
305         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
306         if (ret < 0)
307                 goto out;
308 
309         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
310                 ret = btrfs_next_leaf(root, path);
311                 if (ret < 0)
312                         goto out;
313                 /* No dev extents at all? Not good */
314                 if (ret > 0) {
315                         ret = -EUCLEAN;
316                         goto out;
317                 }
318         }
319 
320         leaf = path->nodes[0];
321         dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
322         fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
323         ret = 0;
324 
325 out:
326         btrfs_free_path(path);
327 
328         return ret;
329 }
330 
331 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
332 {
333         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
334         struct btrfs_device *device;
335         int ret = 0;
336 
337         /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
338         if (!btrfs_fs_incompat(fs_info, ZONED))
339                 return 0;
340 
341         mutex_lock(&fs_devices->device_list_mutex);
342         list_for_each_entry(device, &fs_devices->devices, dev_list) {
343                 /* We can skip reading of zone info for missing devices */
344                 if (!device->bdev)
345                         continue;
346 
347                 ret = btrfs_get_dev_zone_info(device, true);
348                 if (ret)
349                         break;
350         }
351         mutex_unlock(&fs_devices->device_list_mutex);
352 
353         return ret;
354 }
355 
356 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
357 {
358         struct btrfs_fs_info *fs_info = device->fs_info;
359         struct btrfs_zoned_device_info *zone_info = NULL;
360         struct block_device *bdev = device->bdev;
361         unsigned int max_active_zones;
362         unsigned int nactive;
363         sector_t nr_sectors;
364         sector_t sector = 0;
365         struct blk_zone *zones = NULL;
366         unsigned int i, nreported = 0, nr_zones;
367         sector_t zone_sectors;
368         char *model, *emulated;
369         int ret;
370 
371         /*
372          * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
373          * yet be set.
374          */
375         if (!btrfs_fs_incompat(fs_info, ZONED))
376                 return 0;
377 
378         if (device->zone_info)
379                 return 0;
380 
381         zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
382         if (!zone_info)
383                 return -ENOMEM;
384 
385         device->zone_info = zone_info;
386 
387         if (!bdev_is_zoned(bdev)) {
388                 if (!fs_info->zone_size) {
389                         ret = calculate_emulated_zone_size(fs_info);
390                         if (ret)
391                                 goto out;
392                 }
393 
394                 ASSERT(fs_info->zone_size);
395                 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
396         } else {
397                 zone_sectors = bdev_zone_sectors(bdev);
398         }
399 
400         ASSERT(is_power_of_two_u64(zone_sectors));
401         zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
402 
403         /* We reject devices with a zone size larger than 8GB */
404         if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
405                 btrfs_err_in_rcu(fs_info,
406                 "zoned: %s: zone size %llu larger than supported maximum %llu",
407                                  rcu_str_deref(device->name),
408                                  zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
409                 ret = -EINVAL;
410                 goto out;
411         } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
412                 btrfs_err_in_rcu(fs_info,
413                 "zoned: %s: zone size %llu smaller than supported minimum %u",
414                                  rcu_str_deref(device->name),
415                                  zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
416                 ret = -EINVAL;
417                 goto out;
418         }
419 
420         nr_sectors = bdev_nr_sectors(bdev);
421         zone_info->zone_size_shift = ilog2(zone_info->zone_size);
422         zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
423         if (!IS_ALIGNED(nr_sectors, zone_sectors))
424                 zone_info->nr_zones++;
425 
426         max_active_zones = bdev_max_active_zones(bdev);
427         if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
428                 btrfs_err_in_rcu(fs_info,
429 "zoned: %s: max active zones %u is too small, need at least %u active zones",
430                                  rcu_str_deref(device->name), max_active_zones,
431                                  BTRFS_MIN_ACTIVE_ZONES);
432                 ret = -EINVAL;
433                 goto out;
434         }
435         zone_info->max_active_zones = max_active_zones;
436 
437         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
438         if (!zone_info->seq_zones) {
439                 ret = -ENOMEM;
440                 goto out;
441         }
442 
443         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
444         if (!zone_info->empty_zones) {
445                 ret = -ENOMEM;
446                 goto out;
447         }
448 
449         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
450         if (!zone_info->active_zones) {
451                 ret = -ENOMEM;
452                 goto out;
453         }
454 
455         zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
456         if (!zones) {
457                 ret = -ENOMEM;
458                 goto out;
459         }
460 
461         /*
462          * Enable zone cache only for a zoned device. On a non-zoned device, we
463          * fill the zone info with emulated CONVENTIONAL zones, so no need to
464          * use the cache.
465          */
466         if (populate_cache && bdev_is_zoned(device->bdev)) {
467                 zone_info->zone_cache = vcalloc(zone_info->nr_zones,
468                                                 sizeof(struct blk_zone));
469                 if (!zone_info->zone_cache) {
470                         btrfs_err_in_rcu(device->fs_info,
471                                 "zoned: failed to allocate zone cache for %s",
472                                 rcu_str_deref(device->name));
473                         ret = -ENOMEM;
474                         goto out;
475                 }
476         }
477 
478         /* Get zones type */
479         nactive = 0;
480         while (sector < nr_sectors) {
481                 nr_zones = BTRFS_REPORT_NR_ZONES;
482                 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
483                                           &nr_zones);
484                 if (ret)
485                         goto out;
486 
487                 for (i = 0; i < nr_zones; i++) {
488                         if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
489                                 __set_bit(nreported, zone_info->seq_zones);
490                         switch (zones[i].cond) {
491                         case BLK_ZONE_COND_EMPTY:
492                                 __set_bit(nreported, zone_info->empty_zones);
493                                 break;
494                         case BLK_ZONE_COND_IMP_OPEN:
495                         case BLK_ZONE_COND_EXP_OPEN:
496                         case BLK_ZONE_COND_CLOSED:
497                                 __set_bit(nreported, zone_info->active_zones);
498                                 nactive++;
499                                 break;
500                         }
501                         nreported++;
502                 }
503                 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
504         }
505 
506         if (nreported != zone_info->nr_zones) {
507                 btrfs_err_in_rcu(device->fs_info,
508                                  "inconsistent number of zones on %s (%u/%u)",
509                                  rcu_str_deref(device->name), nreported,
510                                  zone_info->nr_zones);
511                 ret = -EIO;
512                 goto out;
513         }
514 
515         if (max_active_zones) {
516                 if (nactive > max_active_zones) {
517                         btrfs_err_in_rcu(device->fs_info,
518                         "zoned: %u active zones on %s exceeds max_active_zones %u",
519                                          nactive, rcu_str_deref(device->name),
520                                          max_active_zones);
521                         ret = -EIO;
522                         goto out;
523                 }
524                 atomic_set(&zone_info->active_zones_left,
525                            max_active_zones - nactive);
526                 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
527         }
528 
529         /* Validate superblock log */
530         nr_zones = BTRFS_NR_SB_LOG_ZONES;
531         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
532                 u32 sb_zone;
533                 u64 sb_wp;
534                 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
535 
536                 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
537                 if (sb_zone + 1 >= zone_info->nr_zones)
538                         continue;
539 
540                 ret = btrfs_get_dev_zones(device,
541                                           zone_start_physical(sb_zone, zone_info),
542                                           &zone_info->sb_zones[sb_pos],
543                                           &nr_zones);
544                 if (ret)
545                         goto out;
546 
547                 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
548                         btrfs_err_in_rcu(device->fs_info,
549         "zoned: failed to read super block log zone info at devid %llu zone %u",
550                                          device->devid, sb_zone);
551                         ret = -EUCLEAN;
552                         goto out;
553                 }
554 
555                 /*
556                  * If zones[0] is conventional, always use the beginning of the
557                  * zone to record superblock. No need to validate in that case.
558                  */
559                 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
560                     BLK_ZONE_TYPE_CONVENTIONAL)
561                         continue;
562 
563                 ret = sb_write_pointer(device->bdev,
564                                        &zone_info->sb_zones[sb_pos], &sb_wp);
565                 if (ret != -ENOENT && ret) {
566                         btrfs_err_in_rcu(device->fs_info,
567                         "zoned: super block log zone corrupted devid %llu zone %u",
568                                          device->devid, sb_zone);
569                         ret = -EUCLEAN;
570                         goto out;
571                 }
572         }
573 
574 
575         kvfree(zones);
576 
577         if (bdev_is_zoned(bdev)) {
578                 model = "host-managed zoned";
579                 emulated = "";
580         } else {
581                 model = "regular";
582                 emulated = "emulated ";
583         }
584 
585         btrfs_info_in_rcu(fs_info,
586                 "%s block device %s, %u %szones of %llu bytes",
587                 model, rcu_str_deref(device->name), zone_info->nr_zones,
588                 emulated, zone_info->zone_size);
589 
590         return 0;
591 
592 out:
593         kvfree(zones);
594         btrfs_destroy_dev_zone_info(device);
595         return ret;
596 }
597 
598 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
599 {
600         struct btrfs_zoned_device_info *zone_info = device->zone_info;
601 
602         if (!zone_info)
603                 return;
604 
605         bitmap_free(zone_info->active_zones);
606         bitmap_free(zone_info->seq_zones);
607         bitmap_free(zone_info->empty_zones);
608         vfree(zone_info->zone_cache);
609         kfree(zone_info);
610         device->zone_info = NULL;
611 }
612 
613 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
614 {
615         struct btrfs_zoned_device_info *zone_info;
616 
617         zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
618         if (!zone_info)
619                 return NULL;
620 
621         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
622         if (!zone_info->seq_zones)
623                 goto out;
624 
625         bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
626                     zone_info->nr_zones);
627 
628         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
629         if (!zone_info->empty_zones)
630                 goto out;
631 
632         bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
633                     zone_info->nr_zones);
634 
635         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
636         if (!zone_info->active_zones)
637                 goto out;
638 
639         bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
640                     zone_info->nr_zones);
641         zone_info->zone_cache = NULL;
642 
643         return zone_info;
644 
645 out:
646         bitmap_free(zone_info->seq_zones);
647         bitmap_free(zone_info->empty_zones);
648         bitmap_free(zone_info->active_zones);
649         kfree(zone_info);
650         return NULL;
651 }
652 
653 static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone)
654 {
655         unsigned int nr_zones = 1;
656         int ret;
657 
658         ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
659         if (ret != 0 || !nr_zones)
660                 return ret ? ret : -EIO;
661 
662         return 0;
663 }
664 
665 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
666 {
667         struct btrfs_device *device;
668 
669         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
670                 if (device->bdev && bdev_is_zoned(device->bdev)) {
671                         btrfs_err(fs_info,
672                                 "zoned: mode not enabled but zoned device found: %pg",
673                                 device->bdev);
674                         return -EINVAL;
675                 }
676         }
677 
678         return 0;
679 }
680 
681 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
682 {
683         struct queue_limits *lim = &fs_info->limits;
684         struct btrfs_device *device;
685         u64 zone_size = 0;
686         int ret;
687 
688         /*
689          * Host-Managed devices can't be used without the ZONED flag.  With the
690          * ZONED all devices can be used, using zone emulation if required.
691          */
692         if (!btrfs_fs_incompat(fs_info, ZONED))
693                 return btrfs_check_for_zoned_device(fs_info);
694 
695         blk_set_stacking_limits(lim);
696 
697         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
698                 struct btrfs_zoned_device_info *zone_info = device->zone_info;
699 
700                 if (!device->bdev)
701                         continue;
702 
703                 if (!zone_size) {
704                         zone_size = zone_info->zone_size;
705                 } else if (zone_info->zone_size != zone_size) {
706                         btrfs_err(fs_info,
707                 "zoned: unequal block device zone sizes: have %llu found %llu",
708                                   zone_info->zone_size, zone_size);
709                         return -EINVAL;
710                 }
711 
712                 /*
713                  * With the zoned emulation, we can have non-zoned device on the
714                  * zoned mode. In this case, we don't have a valid max zone
715                  * append size.
716                  */
717                 if (bdev_is_zoned(device->bdev)) {
718                         blk_stack_limits(lim,
719                                          &bdev_get_queue(device->bdev)->limits,
720                                          0);
721                 }
722         }
723 
724         /*
725          * stripe_size is always aligned to BTRFS_STRIPE_LEN in
726          * btrfs_create_chunk(). Since we want stripe_len == zone_size,
727          * check the alignment here.
728          */
729         if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
730                 btrfs_err(fs_info,
731                           "zoned: zone size %llu not aligned to stripe %u",
732                           zone_size, BTRFS_STRIPE_LEN);
733                 return -EINVAL;
734         }
735 
736         if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
737                 btrfs_err(fs_info, "zoned: mixed block groups not supported");
738                 return -EINVAL;
739         }
740 
741         fs_info->zone_size = zone_size;
742         /*
743          * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
744          * Technically, we can have multiple pages per segment. But, since
745          * we add the pages one by one to a bio, and cannot increase the
746          * metadata reservation even if it increases the number of extents, it
747          * is safe to stick with the limit.
748          */
749         fs_info->max_zone_append_size = ALIGN_DOWN(
750                 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
751                      (u64)lim->max_sectors << SECTOR_SHIFT,
752                      (u64)lim->max_segments << PAGE_SHIFT),
753                 fs_info->sectorsize);
754         fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
755         if (fs_info->max_zone_append_size < fs_info->max_extent_size)
756                 fs_info->max_extent_size = fs_info->max_zone_append_size;
757 
758         /*
759          * Check mount options here, because we might change fs_info->zoned
760          * from fs_info->zone_size.
761          */
762         ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
763         if (ret)
764                 return ret;
765 
766         btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
767         return 0;
768 }
769 
770 int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info,
771                                 unsigned long long *mount_opt)
772 {
773         if (!btrfs_is_zoned(info))
774                 return 0;
775 
776         /*
777          * Space cache writing is not COWed. Disable that to avoid write errors
778          * in sequential zones.
779          */
780         if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
781                 btrfs_err(info, "zoned: space cache v1 is not supported");
782                 return -EINVAL;
783         }
784 
785         if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
786                 btrfs_err(info, "zoned: NODATACOW not supported");
787                 return -EINVAL;
788         }
789 
790         if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
791                 btrfs_info(info,
792                            "zoned: async discard ignored and disabled for zoned mode");
793                 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
794         }
795 
796         return 0;
797 }
798 
799 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
800                            int rw, u64 *bytenr_ret)
801 {
802         u64 wp;
803         int ret;
804 
805         if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
806                 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
807                 return 0;
808         }
809 
810         ret = sb_write_pointer(bdev, zones, &wp);
811         if (ret != -ENOENT && ret < 0)
812                 return ret;
813 
814         if (rw == WRITE) {
815                 struct blk_zone *reset = NULL;
816 
817                 if (wp == zones[0].start << SECTOR_SHIFT)
818                         reset = &zones[0];
819                 else if (wp == zones[1].start << SECTOR_SHIFT)
820                         reset = &zones[1];
821 
822                 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
823                         unsigned int nofs_flags;
824 
825                         ASSERT(sb_zone_is_full(reset));
826 
827                         nofs_flags = memalloc_nofs_save();
828                         ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
829                                                reset->start, reset->len);
830                         memalloc_nofs_restore(nofs_flags);
831                         if (ret)
832                                 return ret;
833 
834                         reset->cond = BLK_ZONE_COND_EMPTY;
835                         reset->wp = reset->start;
836                 }
837         } else if (ret != -ENOENT) {
838                 /*
839                  * For READ, we want the previous one. Move write pointer to
840                  * the end of a zone, if it is at the head of a zone.
841                  */
842                 u64 zone_end = 0;
843 
844                 if (wp == zones[0].start << SECTOR_SHIFT)
845                         zone_end = zones[1].start + zones[1].capacity;
846                 else if (wp == zones[1].start << SECTOR_SHIFT)
847                         zone_end = zones[0].start + zones[0].capacity;
848                 if (zone_end)
849                         wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
850                                         BTRFS_SUPER_INFO_SIZE);
851 
852                 wp -= BTRFS_SUPER_INFO_SIZE;
853         }
854 
855         *bytenr_ret = wp;
856         return 0;
857 
858 }
859 
860 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
861                                u64 *bytenr_ret)
862 {
863         struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
864         sector_t zone_sectors;
865         u32 sb_zone;
866         int ret;
867         u8 zone_sectors_shift;
868         sector_t nr_sectors;
869         u32 nr_zones;
870 
871         if (!bdev_is_zoned(bdev)) {
872                 *bytenr_ret = btrfs_sb_offset(mirror);
873                 return 0;
874         }
875 
876         ASSERT(rw == READ || rw == WRITE);
877 
878         zone_sectors = bdev_zone_sectors(bdev);
879         if (!is_power_of_2(zone_sectors))
880                 return -EINVAL;
881         zone_sectors_shift = ilog2(zone_sectors);
882         nr_sectors = bdev_nr_sectors(bdev);
883         nr_zones = nr_sectors >> zone_sectors_shift;
884 
885         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
886         if (sb_zone + 1 >= nr_zones)
887                 return -ENOENT;
888 
889         ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
890                                   BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
891                                   zones);
892         if (ret < 0)
893                 return ret;
894         if (ret != BTRFS_NR_SB_LOG_ZONES)
895                 return -EIO;
896 
897         return sb_log_location(bdev, zones, rw, bytenr_ret);
898 }
899 
900 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
901                           u64 *bytenr_ret)
902 {
903         struct btrfs_zoned_device_info *zinfo = device->zone_info;
904         u32 zone_num;
905 
906         /*
907          * For a zoned filesystem on a non-zoned block device, use the same
908          * super block locations as regular filesystem. Doing so, the super
909          * block can always be retrieved and the zoned flag of the volume
910          * detected from the super block information.
911          */
912         if (!bdev_is_zoned(device->bdev)) {
913                 *bytenr_ret = btrfs_sb_offset(mirror);
914                 return 0;
915         }
916 
917         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
918         if (zone_num + 1 >= zinfo->nr_zones)
919                 return -ENOENT;
920 
921         return sb_log_location(device->bdev,
922                                &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
923                                rw, bytenr_ret);
924 }
925 
926 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
927                                   int mirror)
928 {
929         u32 zone_num;
930 
931         if (!zinfo)
932                 return false;
933 
934         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
935         if (zone_num + 1 >= zinfo->nr_zones)
936                 return false;
937 
938         if (!test_bit(zone_num, zinfo->seq_zones))
939                 return false;
940 
941         return true;
942 }
943 
944 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
945 {
946         struct btrfs_zoned_device_info *zinfo = device->zone_info;
947         struct blk_zone *zone;
948         int i;
949 
950         if (!is_sb_log_zone(zinfo, mirror))
951                 return 0;
952 
953         zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
954         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
955                 /* Advance the next zone */
956                 if (zone->cond == BLK_ZONE_COND_FULL) {
957                         zone++;
958                         continue;
959                 }
960 
961                 if (zone->cond == BLK_ZONE_COND_EMPTY)
962                         zone->cond = BLK_ZONE_COND_IMP_OPEN;
963 
964                 zone->wp += SUPER_INFO_SECTORS;
965 
966                 if (sb_zone_is_full(zone)) {
967                         /*
968                          * No room left to write new superblock. Since
969                          * superblock is written with REQ_SYNC, it is safe to
970                          * finish the zone now.
971                          *
972                          * If the write pointer is exactly at the capacity,
973                          * explicit ZONE_FINISH is not necessary.
974                          */
975                         if (zone->wp != zone->start + zone->capacity) {
976                                 unsigned int nofs_flags;
977                                 int ret;
978 
979                                 nofs_flags = memalloc_nofs_save();
980                                 ret = blkdev_zone_mgmt(device->bdev,
981                                                 REQ_OP_ZONE_FINISH, zone->start,
982                                                 zone->len);
983                                 memalloc_nofs_restore(nofs_flags);
984                                 if (ret)
985                                         return ret;
986                         }
987 
988                         zone->wp = zone->start + zone->len;
989                         zone->cond = BLK_ZONE_COND_FULL;
990                 }
991                 return 0;
992         }
993 
994         /* All the zones are FULL. Should not reach here. */
995         ASSERT(0);
996         return -EIO;
997 }
998 
999 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1000 {
1001         unsigned int nofs_flags;
1002         sector_t zone_sectors;
1003         sector_t nr_sectors;
1004         u8 zone_sectors_shift;
1005         u32 sb_zone;
1006         u32 nr_zones;
1007         int ret;
1008 
1009         zone_sectors = bdev_zone_sectors(bdev);
1010         zone_sectors_shift = ilog2(zone_sectors);
1011         nr_sectors = bdev_nr_sectors(bdev);
1012         nr_zones = nr_sectors >> zone_sectors_shift;
1013 
1014         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1015         if (sb_zone + 1 >= nr_zones)
1016                 return -ENOENT;
1017 
1018         nofs_flags = memalloc_nofs_save();
1019         ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1020                                zone_start_sector(sb_zone, bdev),
1021                                zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1022         memalloc_nofs_restore(nofs_flags);
1023         return ret;
1024 }
1025 
1026 /*
1027  * Find allocatable zones within a given region.
1028  *
1029  * @device:     the device to allocate a region on
1030  * @hole_start: the position of the hole to allocate the region
1031  * @num_bytes:  size of wanted region
1032  * @hole_end:   the end of the hole
1033  * @return:     position of allocatable zones
1034  *
1035  * Allocatable region should not contain any superblock locations.
1036  */
1037 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1038                                  u64 hole_end, u64 num_bytes)
1039 {
1040         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1041         const u8 shift = zinfo->zone_size_shift;
1042         u64 nzones = num_bytes >> shift;
1043         u64 pos = hole_start;
1044         u64 begin, end;
1045         bool have_sb;
1046         int i;
1047 
1048         ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1049         ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1050 
1051         while (pos < hole_end) {
1052                 begin = pos >> shift;
1053                 end = begin + nzones;
1054 
1055                 if (end > zinfo->nr_zones)
1056                         return hole_end;
1057 
1058                 /* Check if zones in the region are all empty */
1059                 if (btrfs_dev_is_sequential(device, pos) &&
1060                     !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1061                         pos += zinfo->zone_size;
1062                         continue;
1063                 }
1064 
1065                 have_sb = false;
1066                 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1067                         u32 sb_zone;
1068                         u64 sb_pos;
1069 
1070                         sb_zone = sb_zone_number(shift, i);
1071                         if (!(end <= sb_zone ||
1072                               sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1073                                 have_sb = true;
1074                                 pos = zone_start_physical(
1075                                         sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1076                                 break;
1077                         }
1078 
1079                         /* We also need to exclude regular superblock positions */
1080                         sb_pos = btrfs_sb_offset(i);
1081                         if (!(pos + num_bytes <= sb_pos ||
1082                               sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1083                                 have_sb = true;
1084                                 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1085                                             zinfo->zone_size);
1086                                 break;
1087                         }
1088                 }
1089                 if (!have_sb)
1090                         break;
1091         }
1092 
1093         return pos;
1094 }
1095 
1096 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1097 {
1098         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1099         unsigned int zno = (pos >> zone_info->zone_size_shift);
1100 
1101         /* We can use any number of zones */
1102         if (zone_info->max_active_zones == 0)
1103                 return true;
1104 
1105         if (!test_bit(zno, zone_info->active_zones)) {
1106                 /* Active zone left? */
1107                 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1108                         return false;
1109                 if (test_and_set_bit(zno, zone_info->active_zones)) {
1110                         /* Someone already set the bit */
1111                         atomic_inc(&zone_info->active_zones_left);
1112                 }
1113         }
1114 
1115         return true;
1116 }
1117 
1118 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1119 {
1120         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1121         unsigned int zno = (pos >> zone_info->zone_size_shift);
1122 
1123         /* We can use any number of zones */
1124         if (zone_info->max_active_zones == 0)
1125                 return;
1126 
1127         if (test_and_clear_bit(zno, zone_info->active_zones))
1128                 atomic_inc(&zone_info->active_zones_left);
1129 }
1130 
1131 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1132                             u64 length, u64 *bytes)
1133 {
1134         unsigned int nofs_flags;
1135         int ret;
1136 
1137         *bytes = 0;
1138         nofs_flags = memalloc_nofs_save();
1139         ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1140                                physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
1141         memalloc_nofs_restore(nofs_flags);
1142         if (ret)
1143                 return ret;
1144 
1145         *bytes = length;
1146         while (length) {
1147                 btrfs_dev_set_zone_empty(device, physical);
1148                 btrfs_dev_clear_active_zone(device, physical);
1149                 physical += device->zone_info->zone_size;
1150                 length -= device->zone_info->zone_size;
1151         }
1152 
1153         return 0;
1154 }
1155 
1156 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1157 {
1158         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1159         const u8 shift = zinfo->zone_size_shift;
1160         unsigned long begin = start >> shift;
1161         unsigned long nbits = size >> shift;
1162         u64 pos;
1163         int ret;
1164 
1165         ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1166         ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1167 
1168         if (begin + nbits > zinfo->nr_zones)
1169                 return -ERANGE;
1170 
1171         /* All the zones are conventional */
1172         if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1173                 return 0;
1174 
1175         /* All the zones are sequential and empty */
1176         if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1177             bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1178                 return 0;
1179 
1180         for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1181                 u64 reset_bytes;
1182 
1183                 if (!btrfs_dev_is_sequential(device, pos) ||
1184                     btrfs_dev_is_empty_zone(device, pos))
1185                         continue;
1186 
1187                 /* Free regions should be empty */
1188                 btrfs_warn_in_rcu(
1189                         device->fs_info,
1190                 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1191                         rcu_str_deref(device->name), device->devid, pos >> shift);
1192                 WARN_ON_ONCE(1);
1193 
1194                 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1195                                               &reset_bytes);
1196                 if (ret)
1197                         return ret;
1198         }
1199 
1200         return 0;
1201 }
1202 
1203 /*
1204  * Calculate an allocation pointer from the extent allocation information
1205  * for a block group consist of conventional zones. It is pointed to the
1206  * end of the highest addressed extent in the block group as an allocation
1207  * offset.
1208  */
1209 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1210                                    u64 *offset_ret, bool new)
1211 {
1212         struct btrfs_fs_info *fs_info = cache->fs_info;
1213         struct btrfs_root *root;
1214         struct btrfs_path *path;
1215         struct btrfs_key key;
1216         struct btrfs_key found_key;
1217         int ret;
1218         u64 length;
1219 
1220         /*
1221          * Avoid  tree lookups for a new block group, there's no use for it.
1222          * It must always be 0.
1223          *
1224          * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1225          * For new a block group, this function is called from
1226          * btrfs_make_block_group() which is already taking the chunk mutex.
1227          * Thus, we cannot call calculate_alloc_pointer() which takes extent
1228          * buffer locks to avoid deadlock.
1229          */
1230         if (new) {
1231                 *offset_ret = 0;
1232                 return 0;
1233         }
1234 
1235         path = btrfs_alloc_path();
1236         if (!path)
1237                 return -ENOMEM;
1238 
1239         key.objectid = cache->start + cache->length;
1240         key.type = 0;
1241         key.offset = 0;
1242 
1243         root = btrfs_extent_root(fs_info, key.objectid);
1244         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1245         /* We should not find the exact match */
1246         if (!ret)
1247                 ret = -EUCLEAN;
1248         if (ret < 0)
1249                 goto out;
1250 
1251         ret = btrfs_previous_extent_item(root, path, cache->start);
1252         if (ret) {
1253                 if (ret == 1) {
1254                         ret = 0;
1255                         *offset_ret = 0;
1256                 }
1257                 goto out;
1258         }
1259 
1260         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1261 
1262         if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1263                 length = found_key.offset;
1264         else
1265                 length = fs_info->nodesize;
1266 
1267         if (!(found_key.objectid >= cache->start &&
1268                found_key.objectid + length <= cache->start + cache->length)) {
1269                 ret = -EUCLEAN;
1270                 goto out;
1271         }
1272         *offset_ret = found_key.objectid + length - cache->start;
1273         ret = 0;
1274 
1275 out:
1276         btrfs_free_path(path);
1277         return ret;
1278 }
1279 
1280 struct zone_info {
1281         u64 physical;
1282         u64 capacity;
1283         u64 alloc_offset;
1284 };
1285 
1286 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1287                                 struct zone_info *info, unsigned long *active,
1288                                 struct btrfs_chunk_map *map)
1289 {
1290         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1291         struct btrfs_device *device;
1292         int dev_replace_is_ongoing = 0;
1293         unsigned int nofs_flag;
1294         struct blk_zone zone;
1295         int ret;
1296 
1297         info->physical = map->stripes[zone_idx].physical;
1298 
1299         down_read(&dev_replace->rwsem);
1300         device = map->stripes[zone_idx].dev;
1301 
1302         if (!device->bdev) {
1303                 up_read(&dev_replace->rwsem);
1304                 info->alloc_offset = WP_MISSING_DEV;
1305                 return 0;
1306         }
1307 
1308         /* Consider a zone as active if we can allow any number of active zones. */
1309         if (!device->zone_info->max_active_zones)
1310                 __set_bit(zone_idx, active);
1311 
1312         if (!btrfs_dev_is_sequential(device, info->physical)) {
1313                 up_read(&dev_replace->rwsem);
1314                 info->alloc_offset = WP_CONVENTIONAL;
1315                 return 0;
1316         }
1317 
1318         /* This zone will be used for allocation, so mark this zone non-empty. */
1319         btrfs_dev_clear_zone_empty(device, info->physical);
1320 
1321         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1322         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1323                 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1324 
1325         /*
1326          * The group is mapped to a sequential zone. Get the zone write pointer
1327          * to determine the allocation offset within the zone.
1328          */
1329         WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1330         nofs_flag = memalloc_nofs_save();
1331         ret = btrfs_get_dev_zone(device, info->physical, &zone);
1332         memalloc_nofs_restore(nofs_flag);
1333         if (ret) {
1334                 up_read(&dev_replace->rwsem);
1335                 if (ret != -EIO && ret != -EOPNOTSUPP)
1336                         return ret;
1337                 info->alloc_offset = WP_MISSING_DEV;
1338                 return 0;
1339         }
1340 
1341         if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1342                 btrfs_err_in_rcu(fs_info,
1343                 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1344                         zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1345                         device->devid);
1346                 up_read(&dev_replace->rwsem);
1347                 return -EIO;
1348         }
1349 
1350         info->capacity = (zone.capacity << SECTOR_SHIFT);
1351 
1352         switch (zone.cond) {
1353         case BLK_ZONE_COND_OFFLINE:
1354         case BLK_ZONE_COND_READONLY:
1355                 btrfs_err_in_rcu(fs_info,
1356                 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1357                           (info->physical >> device->zone_info->zone_size_shift),
1358                           rcu_str_deref(device->name), device->devid);
1359                 info->alloc_offset = WP_MISSING_DEV;
1360                 break;
1361         case BLK_ZONE_COND_EMPTY:
1362                 info->alloc_offset = 0;
1363                 break;
1364         case BLK_ZONE_COND_FULL:
1365                 info->alloc_offset = info->capacity;
1366                 break;
1367         default:
1368                 /* Partially used zone. */
1369                 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1370                 __set_bit(zone_idx, active);
1371                 break;
1372         }
1373 
1374         up_read(&dev_replace->rwsem);
1375 
1376         return 0;
1377 }
1378 
1379 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1380                                          struct zone_info *info,
1381                                          unsigned long *active)
1382 {
1383         if (info->alloc_offset == WP_MISSING_DEV) {
1384                 btrfs_err(bg->fs_info,
1385                         "zoned: cannot recover write pointer for zone %llu",
1386                         info->physical);
1387                 return -EIO;
1388         }
1389 
1390         bg->alloc_offset = info->alloc_offset;
1391         bg->zone_capacity = info->capacity;
1392         if (test_bit(0, active))
1393                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1394         return 0;
1395 }
1396 
1397 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1398                                       struct btrfs_chunk_map *map,
1399                                       struct zone_info *zone_info,
1400                                       unsigned long *active)
1401 {
1402         struct btrfs_fs_info *fs_info = bg->fs_info;
1403 
1404         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1405                 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1406                 return -EINVAL;
1407         }
1408 
1409         bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1410 
1411         if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1412                 btrfs_err(bg->fs_info,
1413                           "zoned: cannot recover write pointer for zone %llu",
1414                           zone_info[0].physical);
1415                 return -EIO;
1416         }
1417         if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1418                 btrfs_err(bg->fs_info,
1419                           "zoned: cannot recover write pointer for zone %llu",
1420                           zone_info[1].physical);
1421                 return -EIO;
1422         }
1423         if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1424                 btrfs_err(bg->fs_info,
1425                           "zoned: write pointer offset mismatch of zones in DUP profile");
1426                 return -EIO;
1427         }
1428 
1429         if (test_bit(0, active) != test_bit(1, active)) {
1430                 if (!btrfs_zone_activate(bg))
1431                         return -EIO;
1432         } else if (test_bit(0, active)) {
1433                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1434         }
1435 
1436         bg->alloc_offset = zone_info[0].alloc_offset;
1437         return 0;
1438 }
1439 
1440 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1441                                         struct btrfs_chunk_map *map,
1442                                         struct zone_info *zone_info,
1443                                         unsigned long *active)
1444 {
1445         struct btrfs_fs_info *fs_info = bg->fs_info;
1446         int i;
1447 
1448         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1449                 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1450                           btrfs_bg_type_to_raid_name(map->type));
1451                 return -EINVAL;
1452         }
1453 
1454         /* In case a device is missing we have a cap of 0, so don't use it. */
1455         bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1456 
1457         for (i = 0; i < map->num_stripes; i++) {
1458                 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1459                     zone_info[i].alloc_offset == WP_CONVENTIONAL)
1460                         continue;
1461 
1462                 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1463                     !btrfs_test_opt(fs_info, DEGRADED)) {
1464                         btrfs_err(fs_info,
1465                         "zoned: write pointer offset mismatch of zones in %s profile",
1466                                   btrfs_bg_type_to_raid_name(map->type));
1467                         return -EIO;
1468                 }
1469                 if (test_bit(0, active) != test_bit(i, active)) {
1470                         if (!btrfs_test_opt(fs_info, DEGRADED) &&
1471                             !btrfs_zone_activate(bg)) {
1472                                 return -EIO;
1473                         }
1474                 } else {
1475                         if (test_bit(0, active))
1476                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1477                 }
1478         }
1479 
1480         if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1481                 bg->alloc_offset = zone_info[0].alloc_offset;
1482         else
1483                 bg->alloc_offset = zone_info[i - 1].alloc_offset;
1484 
1485         return 0;
1486 }
1487 
1488 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1489                                         struct btrfs_chunk_map *map,
1490                                         struct zone_info *zone_info,
1491                                         unsigned long *active)
1492 {
1493         struct btrfs_fs_info *fs_info = bg->fs_info;
1494 
1495         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1496                 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1497                           btrfs_bg_type_to_raid_name(map->type));
1498                 return -EINVAL;
1499         }
1500 
1501         for (int i = 0; i < map->num_stripes; i++) {
1502                 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1503                     zone_info[i].alloc_offset == WP_CONVENTIONAL)
1504                         continue;
1505 
1506                 if (test_bit(0, active) != test_bit(i, active)) {
1507                         if (!btrfs_zone_activate(bg))
1508                                 return -EIO;
1509                 } else {
1510                         if (test_bit(0, active))
1511                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1512                 }
1513                 bg->zone_capacity += zone_info[i].capacity;
1514                 bg->alloc_offset += zone_info[i].alloc_offset;
1515         }
1516 
1517         return 0;
1518 }
1519 
1520 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1521                                          struct btrfs_chunk_map *map,
1522                                          struct zone_info *zone_info,
1523                                          unsigned long *active)
1524 {
1525         struct btrfs_fs_info *fs_info = bg->fs_info;
1526 
1527         if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1528                 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1529                           btrfs_bg_type_to_raid_name(map->type));
1530                 return -EINVAL;
1531         }
1532 
1533         for (int i = 0; i < map->num_stripes; i++) {
1534                 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1535                     zone_info[i].alloc_offset == WP_CONVENTIONAL)
1536                         continue;
1537 
1538                 if (test_bit(0, active) != test_bit(i, active)) {
1539                         if (!btrfs_zone_activate(bg))
1540                                 return -EIO;
1541                 } else {
1542                         if (test_bit(0, active))
1543                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1544                 }
1545 
1546                 if ((i % map->sub_stripes) == 0) {
1547                         bg->zone_capacity += zone_info[i].capacity;
1548                         bg->alloc_offset += zone_info[i].alloc_offset;
1549                 }
1550         }
1551 
1552         return 0;
1553 }
1554 
1555 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1556 {
1557         struct btrfs_fs_info *fs_info = cache->fs_info;
1558         struct btrfs_chunk_map *map;
1559         u64 logical = cache->start;
1560         u64 length = cache->length;
1561         struct zone_info *zone_info = NULL;
1562         int ret;
1563         int i;
1564         unsigned long *active = NULL;
1565         u64 last_alloc = 0;
1566         u32 num_sequential = 0, num_conventional = 0;
1567         u64 profile;
1568 
1569         if (!btrfs_is_zoned(fs_info))
1570                 return 0;
1571 
1572         /* Sanity check */
1573         if (!IS_ALIGNED(length, fs_info->zone_size)) {
1574                 btrfs_err(fs_info,
1575                 "zoned: block group %llu len %llu unaligned to zone size %llu",
1576                           logical, length, fs_info->zone_size);
1577                 return -EIO;
1578         }
1579 
1580         map = btrfs_find_chunk_map(fs_info, logical, length);
1581         if (!map)
1582                 return -EINVAL;
1583 
1584         cache->physical_map = map;
1585 
1586         zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1587         if (!zone_info) {
1588                 ret = -ENOMEM;
1589                 goto out;
1590         }
1591 
1592         active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1593         if (!active) {
1594                 ret = -ENOMEM;
1595                 goto out;
1596         }
1597 
1598         for (i = 0; i < map->num_stripes; i++) {
1599                 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1600                 if (ret)
1601                         goto out;
1602 
1603                 if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1604                         num_conventional++;
1605                 else
1606                         num_sequential++;
1607         }
1608 
1609         if (num_sequential > 0)
1610                 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1611 
1612         if (num_conventional > 0) {
1613                 /* Zone capacity is always zone size in emulation */
1614                 cache->zone_capacity = cache->length;
1615                 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1616                 if (ret) {
1617                         btrfs_err(fs_info,
1618                         "zoned: failed to determine allocation offset of bg %llu",
1619                                   cache->start);
1620                         goto out;
1621                 } else if (map->num_stripes == num_conventional) {
1622                         cache->alloc_offset = last_alloc;
1623                         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1624                         goto out;
1625                 }
1626         }
1627 
1628         profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
1629         switch (profile) {
1630         case 0: /* single */
1631                 ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1632                 break;
1633         case BTRFS_BLOCK_GROUP_DUP:
1634                 ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1635                 break;
1636         case BTRFS_BLOCK_GROUP_RAID1:
1637         case BTRFS_BLOCK_GROUP_RAID1C3:
1638         case BTRFS_BLOCK_GROUP_RAID1C4:
1639                 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1640                 break;
1641         case BTRFS_BLOCK_GROUP_RAID0:
1642                 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1643                 break;
1644         case BTRFS_BLOCK_GROUP_RAID10:
1645                 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1646                 break;
1647         case BTRFS_BLOCK_GROUP_RAID5:
1648         case BTRFS_BLOCK_GROUP_RAID6:
1649         default:
1650                 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1651                           btrfs_bg_type_to_raid_name(map->type));
1652                 ret = -EINVAL;
1653                 goto out;
1654         }
1655 
1656         if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 &&
1657             profile != BTRFS_BLOCK_GROUP_RAID10) {
1658                 /*
1659                  * Detected broken write pointer.  Make this block group
1660                  * unallocatable by setting the allocation pointer at the end of
1661                  * allocatable region. Relocating this block group will fix the
1662                  * mismatch.
1663                  *
1664                  * Currently, we cannot handle RAID0 or RAID10 case like this
1665                  * because we don't have a proper zone_capacity value. But,
1666                  * reading from this block group won't work anyway by a missing
1667                  * stripe.
1668                  */
1669                 cache->alloc_offset = cache->zone_capacity;
1670                 ret = 0;
1671         }
1672 
1673 out:
1674         /* Reject non SINGLE data profiles without RST */
1675         if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1676             (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1677             !fs_info->stripe_root) {
1678                 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1679                           btrfs_bg_type_to_raid_name(map->type));
1680                 return -EINVAL;
1681         }
1682 
1683         if (cache->alloc_offset > cache->zone_capacity) {
1684                 btrfs_err(fs_info,
1685 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1686                           cache->alloc_offset, cache->zone_capacity,
1687                           cache->start);
1688                 ret = -EIO;
1689         }
1690 
1691         /* An extent is allocated after the write pointer */
1692         if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1693                 btrfs_err(fs_info,
1694                           "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1695                           logical, last_alloc, cache->alloc_offset);
1696                 ret = -EIO;
1697         }
1698 
1699         if (!ret) {
1700                 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1701                 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1702                         btrfs_get_block_group(cache);
1703                         spin_lock(&fs_info->zone_active_bgs_lock);
1704                         list_add_tail(&cache->active_bg_list,
1705                                       &fs_info->zone_active_bgs);
1706                         spin_unlock(&fs_info->zone_active_bgs_lock);
1707                 }
1708         } else {
1709                 btrfs_free_chunk_map(cache->physical_map);
1710                 cache->physical_map = NULL;
1711         }
1712         bitmap_free(active);
1713         kfree(zone_info);
1714 
1715         return ret;
1716 }
1717 
1718 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1719 {
1720         u64 unusable, free;
1721 
1722         if (!btrfs_is_zoned(cache->fs_info))
1723                 return;
1724 
1725         WARN_ON(cache->bytes_super != 0);
1726         unusable = (cache->alloc_offset - cache->used) +
1727                    (cache->length - cache->zone_capacity);
1728         free = cache->zone_capacity - cache->alloc_offset;
1729 
1730         /* We only need ->free_space in ALLOC_SEQ block groups */
1731         cache->cached = BTRFS_CACHE_FINISHED;
1732         cache->free_space_ctl->free_space = free;
1733         cache->zone_unusable = unusable;
1734 }
1735 
1736 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1737 {
1738         u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1739         struct btrfs_inode *inode = bbio->inode;
1740         struct btrfs_fs_info *fs_info = bbio->fs_info;
1741         struct btrfs_block_group *cache;
1742         bool ret = false;
1743 
1744         if (!btrfs_is_zoned(fs_info))
1745                 return false;
1746 
1747         if (!inode || !is_data_inode(inode))
1748                 return false;
1749 
1750         if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1751                 return false;
1752 
1753         /*
1754          * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1755          * extent layout the relocation code has.
1756          * Furthermore we have set aside own block-group from which only the
1757          * relocation "process" can allocate and make sure only one process at a
1758          * time can add pages to an extent that gets relocated, so it's safe to
1759          * use regular REQ_OP_WRITE for this special case.
1760          */
1761         if (btrfs_is_data_reloc_root(inode->root))
1762                 return false;
1763 
1764         cache = btrfs_lookup_block_group(fs_info, start);
1765         ASSERT(cache);
1766         if (!cache)
1767                 return false;
1768 
1769         ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1770         btrfs_put_block_group(cache);
1771 
1772         return ret;
1773 }
1774 
1775 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1776 {
1777         const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1778         struct btrfs_ordered_sum *sum = bbio->sums;
1779 
1780         if (physical < bbio->orig_physical)
1781                 sum->logical -= bbio->orig_physical - physical;
1782         else
1783                 sum->logical += physical - bbio->orig_physical;
1784 }
1785 
1786 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1787                                         u64 logical)
1788 {
1789         struct extent_map_tree *em_tree = &ordered->inode->extent_tree;
1790         struct extent_map *em;
1791 
1792         ordered->disk_bytenr = logical;
1793 
1794         write_lock(&em_tree->lock);
1795         em = search_extent_mapping(em_tree, ordered->file_offset,
1796                                    ordered->num_bytes);
1797         /* The em should be a new COW extent, thus it should not have an offset. */
1798         ASSERT(em->offset == 0);
1799         em->disk_bytenr = logical;
1800         free_extent_map(em);
1801         write_unlock(&em_tree->lock);
1802 }
1803 
1804 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1805                                       u64 logical, u64 len)
1806 {
1807         struct btrfs_ordered_extent *new;
1808 
1809         if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1810             split_extent_map(ordered->inode, ordered->file_offset,
1811                              ordered->num_bytes, len, logical))
1812                 return false;
1813 
1814         new = btrfs_split_ordered_extent(ordered, len);
1815         if (IS_ERR(new))
1816                 return false;
1817         new->disk_bytenr = logical;
1818         btrfs_finish_one_ordered(new);
1819         return true;
1820 }
1821 
1822 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1823 {
1824         struct btrfs_inode *inode = ordered->inode;
1825         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1826         struct btrfs_ordered_sum *sum;
1827         u64 logical, len;
1828 
1829         /*
1830          * Write to pre-allocated region is for the data relocation, and so
1831          * it should use WRITE operation. No split/rewrite are necessary.
1832          */
1833         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1834                 return;
1835 
1836         ASSERT(!list_empty(&ordered->list));
1837         /* The ordered->list can be empty in the above pre-alloc case. */
1838         sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1839         logical = sum->logical;
1840         len = sum->len;
1841 
1842         while (len < ordered->disk_num_bytes) {
1843                 sum = list_next_entry(sum, list);
1844                 if (sum->logical == logical + len) {
1845                         len += sum->len;
1846                         continue;
1847                 }
1848                 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1849                         set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1850                         btrfs_err(fs_info, "failed to split ordered extent");
1851                         goto out;
1852                 }
1853                 logical = sum->logical;
1854                 len = sum->len;
1855         }
1856 
1857         if (ordered->disk_bytenr != logical)
1858                 btrfs_rewrite_logical_zoned(ordered, logical);
1859 
1860 out:
1861         /*
1862          * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1863          * were allocated by btrfs_alloc_dummy_sum only to record the logical
1864          * addresses and don't contain actual checksums.  We thus must free them
1865          * here so that we don't attempt to log the csums later.
1866          */
1867         if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1868             test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) {
1869                 while ((sum = list_first_entry_or_null(&ordered->list,
1870                                                        typeof(*sum), list))) {
1871                         list_del(&sum->list);
1872                         kfree(sum);
1873                 }
1874         }
1875 }
1876 
1877 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1878                                struct btrfs_block_group **active_bg)
1879 {
1880         const struct writeback_control *wbc = ctx->wbc;
1881         struct btrfs_block_group *block_group = ctx->zoned_bg;
1882         struct btrfs_fs_info *fs_info = block_group->fs_info;
1883 
1884         if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1885                 return true;
1886 
1887         if (fs_info->treelog_bg == block_group->start) {
1888                 if (!btrfs_zone_activate(block_group)) {
1889                         int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1890 
1891                         if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1892                                 return false;
1893                 }
1894         } else if (*active_bg != block_group) {
1895                 struct btrfs_block_group *tgt = *active_bg;
1896 
1897                 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1898                 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1899 
1900                 if (tgt) {
1901                         /*
1902                          * If there is an unsent IO left in the allocated area,
1903                          * we cannot wait for them as it may cause a deadlock.
1904                          */
1905                         if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1906                                 if (wbc->sync_mode == WB_SYNC_NONE ||
1907                                     (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1908                                         return false;
1909                         }
1910 
1911                         /* Pivot active metadata/system block group. */
1912                         btrfs_zoned_meta_io_unlock(fs_info);
1913                         wait_eb_writebacks(tgt);
1914                         do_zone_finish(tgt, true);
1915                         btrfs_zoned_meta_io_lock(fs_info);
1916                         if (*active_bg == tgt) {
1917                                 btrfs_put_block_group(tgt);
1918                                 *active_bg = NULL;
1919                         }
1920                 }
1921                 if (!btrfs_zone_activate(block_group))
1922                         return false;
1923                 if (*active_bg != block_group) {
1924                         ASSERT(*active_bg == NULL);
1925                         *active_bg = block_group;
1926                         btrfs_get_block_group(block_group);
1927                 }
1928         }
1929 
1930         return true;
1931 }
1932 
1933 /*
1934  * Check if @ctx->eb is aligned to the write pointer.
1935  *
1936  * Return:
1937  *   0:        @ctx->eb is at the write pointer. You can write it.
1938  *   -EAGAIN:  There is a hole. The caller should handle the case.
1939  *   -EBUSY:   There is a hole, but the caller can just bail out.
1940  */
1941 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1942                                    struct btrfs_eb_write_context *ctx)
1943 {
1944         const struct writeback_control *wbc = ctx->wbc;
1945         const struct extent_buffer *eb = ctx->eb;
1946         struct btrfs_block_group *block_group = ctx->zoned_bg;
1947 
1948         if (!btrfs_is_zoned(fs_info))
1949                 return 0;
1950 
1951         if (block_group) {
1952                 if (block_group->start > eb->start ||
1953                     block_group->start + block_group->length <= eb->start) {
1954                         btrfs_put_block_group(block_group);
1955                         block_group = NULL;
1956                         ctx->zoned_bg = NULL;
1957                 }
1958         }
1959 
1960         if (!block_group) {
1961                 block_group = btrfs_lookup_block_group(fs_info, eb->start);
1962                 if (!block_group)
1963                         return 0;
1964                 ctx->zoned_bg = block_group;
1965         }
1966 
1967         if (block_group->meta_write_pointer == eb->start) {
1968                 struct btrfs_block_group **tgt;
1969 
1970                 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1971                         return 0;
1972 
1973                 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1974                         tgt = &fs_info->active_system_bg;
1975                 else
1976                         tgt = &fs_info->active_meta_bg;
1977                 if (check_bg_is_active(ctx, tgt))
1978                         return 0;
1979         }
1980 
1981         /*
1982          * Since we may release fs_info->zoned_meta_io_lock, someone can already
1983          * start writing this eb. In that case, we can just bail out.
1984          */
1985         if (block_group->meta_write_pointer > eb->start)
1986                 return -EBUSY;
1987 
1988         /* If for_sync, this hole will be filled with trasnsaction commit. */
1989         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1990                 return -EAGAIN;
1991         return -EBUSY;
1992 }
1993 
1994 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1995 {
1996         if (!btrfs_dev_is_sequential(device, physical))
1997                 return -EOPNOTSUPP;
1998 
1999         return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
2000                                     length >> SECTOR_SHIFT, GFP_NOFS, 0);
2001 }
2002 
2003 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
2004                           struct blk_zone *zone)
2005 {
2006         struct btrfs_io_context *bioc = NULL;
2007         u64 mapped_length = PAGE_SIZE;
2008         unsigned int nofs_flag;
2009         int nmirrors;
2010         int i, ret;
2011 
2012         ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2013                               &mapped_length, &bioc, NULL, NULL);
2014         if (ret || !bioc || mapped_length < PAGE_SIZE) {
2015                 ret = -EIO;
2016                 goto out_put_bioc;
2017         }
2018 
2019         if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2020                 ret = -EINVAL;
2021                 goto out_put_bioc;
2022         }
2023 
2024         nofs_flag = memalloc_nofs_save();
2025         nmirrors = (int)bioc->num_stripes;
2026         for (i = 0; i < nmirrors; i++) {
2027                 u64 physical = bioc->stripes[i].physical;
2028                 struct btrfs_device *dev = bioc->stripes[i].dev;
2029 
2030                 /* Missing device */
2031                 if (!dev->bdev)
2032                         continue;
2033 
2034                 ret = btrfs_get_dev_zone(dev, physical, zone);
2035                 /* Failing device */
2036                 if (ret == -EIO || ret == -EOPNOTSUPP)
2037                         continue;
2038                 break;
2039         }
2040         memalloc_nofs_restore(nofs_flag);
2041 out_put_bioc:
2042         btrfs_put_bioc(bioc);
2043         return ret;
2044 }
2045 
2046 /*
2047  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2048  * filling zeros between @physical_pos to a write pointer of dev-replace
2049  * source device.
2050  */
2051 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2052                                     u64 physical_start, u64 physical_pos)
2053 {
2054         struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2055         struct blk_zone zone;
2056         u64 length;
2057         u64 wp;
2058         int ret;
2059 
2060         if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2061                 return 0;
2062 
2063         ret = read_zone_info(fs_info, logical, &zone);
2064         if (ret)
2065                 return ret;
2066 
2067         wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2068 
2069         if (physical_pos == wp)
2070                 return 0;
2071 
2072         if (physical_pos > wp)
2073                 return -EUCLEAN;
2074 
2075         length = wp - physical_pos;
2076         return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2077 }
2078 
2079 /*
2080  * Activate block group and underlying device zones
2081  *
2082  * @block_group: the block group to activate
2083  *
2084  * Return: true on success, false otherwise
2085  */
2086 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2087 {
2088         struct btrfs_fs_info *fs_info = block_group->fs_info;
2089         struct btrfs_chunk_map *map;
2090         struct btrfs_device *device;
2091         u64 physical;
2092         const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2093         bool ret;
2094         int i;
2095 
2096         if (!btrfs_is_zoned(block_group->fs_info))
2097                 return true;
2098 
2099         map = block_group->physical_map;
2100 
2101         spin_lock(&fs_info->zone_active_bgs_lock);
2102         spin_lock(&block_group->lock);
2103         if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2104                 ret = true;
2105                 goto out_unlock;
2106         }
2107 
2108         /* No space left */
2109         if (btrfs_zoned_bg_is_full(block_group)) {
2110                 ret = false;
2111                 goto out_unlock;
2112         }
2113 
2114         for (i = 0; i < map->num_stripes; i++) {
2115                 struct btrfs_zoned_device_info *zinfo;
2116                 int reserved = 0;
2117 
2118                 device = map->stripes[i].dev;
2119                 physical = map->stripes[i].physical;
2120                 zinfo = device->zone_info;
2121 
2122                 if (zinfo->max_active_zones == 0)
2123                         continue;
2124 
2125                 if (is_data)
2126                         reserved = zinfo->reserved_active_zones;
2127                 /*
2128                  * For the data block group, leave active zones for one
2129                  * metadata block group and one system block group.
2130                  */
2131                 if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2132                         ret = false;
2133                         goto out_unlock;
2134                 }
2135 
2136                 if (!btrfs_dev_set_active_zone(device, physical)) {
2137                         /* Cannot activate the zone */
2138                         ret = false;
2139                         goto out_unlock;
2140                 }
2141                 if (!is_data)
2142                         zinfo->reserved_active_zones--;
2143         }
2144 
2145         /* Successfully activated all the zones */
2146         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2147         spin_unlock(&block_group->lock);
2148 
2149         /* For the active block group list */
2150         btrfs_get_block_group(block_group);
2151         list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2152         spin_unlock(&fs_info->zone_active_bgs_lock);
2153 
2154         return true;
2155 
2156 out_unlock:
2157         spin_unlock(&block_group->lock);
2158         spin_unlock(&fs_info->zone_active_bgs_lock);
2159         return ret;
2160 }
2161 
2162 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2163 {
2164         struct btrfs_fs_info *fs_info = block_group->fs_info;
2165         const u64 end = block_group->start + block_group->length;
2166         struct radix_tree_iter iter;
2167         struct extent_buffer *eb;
2168         void __rcu **slot;
2169 
2170         rcu_read_lock();
2171         radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2172                                  block_group->start >> fs_info->sectorsize_bits) {
2173                 eb = radix_tree_deref_slot(slot);
2174                 if (!eb)
2175                         continue;
2176                 if (radix_tree_deref_retry(eb)) {
2177                         slot = radix_tree_iter_retry(&iter);
2178                         continue;
2179                 }
2180 
2181                 if (eb->start < block_group->start)
2182                         continue;
2183                 if (eb->start >= end)
2184                         break;
2185 
2186                 slot = radix_tree_iter_resume(slot, &iter);
2187                 rcu_read_unlock();
2188                 wait_on_extent_buffer_writeback(eb);
2189                 rcu_read_lock();
2190         }
2191         rcu_read_unlock();
2192 }
2193 
2194 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2195 {
2196         struct btrfs_fs_info *fs_info = block_group->fs_info;
2197         struct btrfs_chunk_map *map;
2198         const bool is_metadata = (block_group->flags &
2199                         (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2200         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2201         int ret = 0;
2202         int i;
2203 
2204         spin_lock(&block_group->lock);
2205         if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2206                 spin_unlock(&block_group->lock);
2207                 return 0;
2208         }
2209 
2210         /* Check if we have unwritten allocated space */
2211         if (is_metadata &&
2212             block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2213                 spin_unlock(&block_group->lock);
2214                 return -EAGAIN;
2215         }
2216 
2217         /*
2218          * If we are sure that the block group is full (= no more room left for
2219          * new allocation) and the IO for the last usable block is completed, we
2220          * don't need to wait for the other IOs. This holds because we ensure
2221          * the sequential IO submissions using the ZONE_APPEND command for data
2222          * and block_group->meta_write_pointer for metadata.
2223          */
2224         if (!fully_written) {
2225                 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2226                         spin_unlock(&block_group->lock);
2227                         return -EAGAIN;
2228                 }
2229                 spin_unlock(&block_group->lock);
2230 
2231                 ret = btrfs_inc_block_group_ro(block_group, false);
2232                 if (ret)
2233                         return ret;
2234 
2235                 /* Ensure all writes in this block group finish */
2236                 btrfs_wait_block_group_reservations(block_group);
2237                 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2238                 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group);
2239                 /* Wait for extent buffers to be written. */
2240                 if (is_metadata)
2241                         wait_eb_writebacks(block_group);
2242 
2243                 spin_lock(&block_group->lock);
2244 
2245                 /*
2246                  * Bail out if someone already deactivated the block group, or
2247                  * allocated space is left in the block group.
2248                  */
2249                 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2250                               &block_group->runtime_flags)) {
2251                         spin_unlock(&block_group->lock);
2252                         btrfs_dec_block_group_ro(block_group);
2253                         return 0;
2254                 }
2255 
2256                 if (block_group->reserved ||
2257                     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2258                              &block_group->runtime_flags)) {
2259                         spin_unlock(&block_group->lock);
2260                         btrfs_dec_block_group_ro(block_group);
2261                         return -EAGAIN;
2262                 }
2263         }
2264 
2265         clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2266         block_group->alloc_offset = block_group->zone_capacity;
2267         if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2268                 block_group->meta_write_pointer = block_group->start +
2269                                                   block_group->zone_capacity;
2270         block_group->free_space_ctl->free_space = 0;
2271         btrfs_clear_treelog_bg(block_group);
2272         btrfs_clear_data_reloc_bg(block_group);
2273         spin_unlock(&block_group->lock);
2274 
2275         down_read(&dev_replace->rwsem);
2276         map = block_group->physical_map;
2277         for (i = 0; i < map->num_stripes; i++) {
2278                 struct btrfs_device *device = map->stripes[i].dev;
2279                 const u64 physical = map->stripes[i].physical;
2280                 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2281                 unsigned int nofs_flags;
2282 
2283                 if (zinfo->max_active_zones == 0)
2284                         continue;
2285 
2286                 nofs_flags = memalloc_nofs_save();
2287                 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2288                                        physical >> SECTOR_SHIFT,
2289                                        zinfo->zone_size >> SECTOR_SHIFT);
2290                 memalloc_nofs_restore(nofs_flags);
2291 
2292                 if (ret) {
2293                         up_read(&dev_replace->rwsem);
2294                         return ret;
2295                 }
2296 
2297                 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2298                         zinfo->reserved_active_zones++;
2299                 btrfs_dev_clear_active_zone(device, physical);
2300         }
2301         up_read(&dev_replace->rwsem);
2302 
2303         if (!fully_written)
2304                 btrfs_dec_block_group_ro(block_group);
2305 
2306         spin_lock(&fs_info->zone_active_bgs_lock);
2307         ASSERT(!list_empty(&block_group->active_bg_list));
2308         list_del_init(&block_group->active_bg_list);
2309         spin_unlock(&fs_info->zone_active_bgs_lock);
2310 
2311         /* For active_bg_list */
2312         btrfs_put_block_group(block_group);
2313 
2314         clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2315 
2316         return 0;
2317 }
2318 
2319 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2320 {
2321         if (!btrfs_is_zoned(block_group->fs_info))
2322                 return 0;
2323 
2324         return do_zone_finish(block_group, false);
2325 }
2326 
2327 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2328 {
2329         struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2330         struct btrfs_device *device;
2331         bool ret = false;
2332 
2333         if (!btrfs_is_zoned(fs_info))
2334                 return true;
2335 
2336         /* Check if there is a device with active zones left */
2337         mutex_lock(&fs_info->chunk_mutex);
2338         spin_lock(&fs_info->zone_active_bgs_lock);
2339         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2340                 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2341                 int reserved = 0;
2342 
2343                 if (!device->bdev)
2344                         continue;
2345 
2346                 if (!zinfo->max_active_zones) {
2347                         ret = true;
2348                         break;
2349                 }
2350 
2351                 if (flags & BTRFS_BLOCK_GROUP_DATA)
2352                         reserved = zinfo->reserved_active_zones;
2353 
2354                 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2355                 case 0: /* single */
2356                         ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2357                         break;
2358                 case BTRFS_BLOCK_GROUP_DUP:
2359                         ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2360                         break;
2361                 }
2362                 if (ret)
2363                         break;
2364         }
2365         spin_unlock(&fs_info->zone_active_bgs_lock);
2366         mutex_unlock(&fs_info->chunk_mutex);
2367 
2368         if (!ret)
2369                 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2370 
2371         return ret;
2372 }
2373 
2374 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2375 {
2376         struct btrfs_block_group *block_group;
2377         u64 min_alloc_bytes;
2378 
2379         if (!btrfs_is_zoned(fs_info))
2380                 return;
2381 
2382         block_group = btrfs_lookup_block_group(fs_info, logical);
2383         ASSERT(block_group);
2384 
2385         /* No MIXED_BG on zoned btrfs. */
2386         if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2387                 min_alloc_bytes = fs_info->sectorsize;
2388         else
2389                 min_alloc_bytes = fs_info->nodesize;
2390 
2391         /* Bail out if we can allocate more data from this block group. */
2392         if (logical + length + min_alloc_bytes <=
2393             block_group->start + block_group->zone_capacity)
2394                 goto out;
2395 
2396         do_zone_finish(block_group, true);
2397 
2398 out:
2399         btrfs_put_block_group(block_group);
2400 }
2401 
2402 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2403 {
2404         struct btrfs_block_group *bg =
2405                 container_of(work, struct btrfs_block_group, zone_finish_work);
2406 
2407         wait_on_extent_buffer_writeback(bg->last_eb);
2408         free_extent_buffer(bg->last_eb);
2409         btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2410         btrfs_put_block_group(bg);
2411 }
2412 
2413 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2414                                    struct extent_buffer *eb)
2415 {
2416         if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2417             eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2418                 return;
2419 
2420         if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2421                 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2422                           bg->start);
2423                 return;
2424         }
2425 
2426         /* For the work */
2427         btrfs_get_block_group(bg);
2428         atomic_inc(&eb->refs);
2429         bg->last_eb = eb;
2430         INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2431         queue_work(system_unbound_wq, &bg->zone_finish_work);
2432 }
2433 
2434 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2435 {
2436         struct btrfs_fs_info *fs_info = bg->fs_info;
2437 
2438         spin_lock(&fs_info->relocation_bg_lock);
2439         if (fs_info->data_reloc_bg == bg->start)
2440                 fs_info->data_reloc_bg = 0;
2441         spin_unlock(&fs_info->relocation_bg_lock);
2442 }
2443 
2444 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2445 {
2446         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2447         struct btrfs_device *device;
2448 
2449         if (!btrfs_is_zoned(fs_info))
2450                 return;
2451 
2452         mutex_lock(&fs_devices->device_list_mutex);
2453         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2454                 if (device->zone_info) {
2455                         vfree(device->zone_info->zone_cache);
2456                         device->zone_info->zone_cache = NULL;
2457                 }
2458         }
2459         mutex_unlock(&fs_devices->device_list_mutex);
2460 }
2461 
2462 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2463 {
2464         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2465         struct btrfs_device *device;
2466         u64 used = 0;
2467         u64 total = 0;
2468         u64 factor;
2469 
2470         ASSERT(btrfs_is_zoned(fs_info));
2471 
2472         if (fs_info->bg_reclaim_threshold == 0)
2473                 return false;
2474 
2475         mutex_lock(&fs_devices->device_list_mutex);
2476         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2477                 if (!device->bdev)
2478                         continue;
2479 
2480                 total += device->disk_total_bytes;
2481                 used += device->bytes_used;
2482         }
2483         mutex_unlock(&fs_devices->device_list_mutex);
2484 
2485         factor = div64_u64(used * 100, total);
2486         return factor >= fs_info->bg_reclaim_threshold;
2487 }
2488 
2489 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2490                                        u64 length)
2491 {
2492         struct btrfs_block_group *block_group;
2493 
2494         if (!btrfs_is_zoned(fs_info))
2495                 return;
2496 
2497         block_group = btrfs_lookup_block_group(fs_info, logical);
2498         /* It should be called on a previous data relocation block group. */
2499         ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2500 
2501         spin_lock(&block_group->lock);
2502         if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2503                 goto out;
2504 
2505         /* All relocation extents are written. */
2506         if (block_group->start + block_group->alloc_offset == logical + length) {
2507                 /*
2508                  * Now, release this block group for further allocations and
2509                  * zone finish.
2510                  */
2511                 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2512                           &block_group->runtime_flags);
2513         }
2514 
2515 out:
2516         spin_unlock(&block_group->lock);
2517         btrfs_put_block_group(block_group);
2518 }
2519 
2520 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2521 {
2522         struct btrfs_block_group *block_group;
2523         struct btrfs_block_group *min_bg = NULL;
2524         u64 min_avail = U64_MAX;
2525         int ret;
2526 
2527         spin_lock(&fs_info->zone_active_bgs_lock);
2528         list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2529                             active_bg_list) {
2530                 u64 avail;
2531 
2532                 spin_lock(&block_group->lock);
2533                 if (block_group->reserved || block_group->alloc_offset == 0 ||
2534                     (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2535                     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2536                         spin_unlock(&block_group->lock);
2537                         continue;
2538                 }
2539 
2540                 avail = block_group->zone_capacity - block_group->alloc_offset;
2541                 if (min_avail > avail) {
2542                         if (min_bg)
2543                                 btrfs_put_block_group(min_bg);
2544                         min_bg = block_group;
2545                         min_avail = avail;
2546                         btrfs_get_block_group(min_bg);
2547                 }
2548                 spin_unlock(&block_group->lock);
2549         }
2550         spin_unlock(&fs_info->zone_active_bgs_lock);
2551 
2552         if (!min_bg)
2553                 return 0;
2554 
2555         ret = btrfs_zone_finish(min_bg);
2556         btrfs_put_block_group(min_bg);
2557 
2558         return ret < 0 ? ret : 1;
2559 }
2560 
2561 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2562                                 struct btrfs_space_info *space_info,
2563                                 bool do_finish)
2564 {
2565         struct btrfs_block_group *bg;
2566         int index;
2567 
2568         if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2569                 return 0;
2570 
2571         for (;;) {
2572                 int ret;
2573                 bool need_finish = false;
2574 
2575                 down_read(&space_info->groups_sem);
2576                 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2577                         list_for_each_entry(bg, &space_info->block_groups[index],
2578                                             list) {
2579                                 if (!spin_trylock(&bg->lock))
2580                                         continue;
2581                                 if (btrfs_zoned_bg_is_full(bg) ||
2582                                     test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2583                                              &bg->runtime_flags)) {
2584                                         spin_unlock(&bg->lock);
2585                                         continue;
2586                                 }
2587                                 spin_unlock(&bg->lock);
2588 
2589                                 if (btrfs_zone_activate(bg)) {
2590                                         up_read(&space_info->groups_sem);
2591                                         return 1;
2592                                 }
2593 
2594                                 need_finish = true;
2595                         }
2596                 }
2597                 up_read(&space_info->groups_sem);
2598 
2599                 if (!do_finish || !need_finish)
2600                         break;
2601 
2602                 ret = btrfs_zone_finish_one_bg(fs_info);
2603                 if (ret == 0)
2604                         break;
2605                 if (ret < 0)
2606                         return ret;
2607         }
2608 
2609         return 0;
2610 }
2611 
2612 /*
2613  * Reserve zones for one metadata block group, one tree-log block group, and one
2614  * system block group.
2615  */
2616 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2617 {
2618         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2619         struct btrfs_block_group *block_group;
2620         struct btrfs_device *device;
2621         /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2622         unsigned int metadata_reserve = 2;
2623         /* Reserve a zone for SINGLE system block group. */
2624         unsigned int system_reserve = 1;
2625 
2626         if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2627                 return;
2628 
2629         /*
2630          * This function is called from the mount context. So, there is no
2631          * parallel process touching the bits. No need for read_seqretry().
2632          */
2633         if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2634                 metadata_reserve = 4;
2635         if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2636                 system_reserve = 2;
2637 
2638         /* Apply the reservation on all the devices. */
2639         mutex_lock(&fs_devices->device_list_mutex);
2640         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2641                 if (!device->bdev)
2642                         continue;
2643 
2644                 device->zone_info->reserved_active_zones =
2645                         metadata_reserve + system_reserve;
2646         }
2647         mutex_unlock(&fs_devices->device_list_mutex);
2648 
2649         /* Release reservation for currently active block groups. */
2650         spin_lock(&fs_info->zone_active_bgs_lock);
2651         list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2652                 struct btrfs_chunk_map *map = block_group->physical_map;
2653 
2654                 if (!(block_group->flags &
2655                       (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2656                         continue;
2657 
2658                 for (int i = 0; i < map->num_stripes; i++)
2659                         map->stripes[i].dev->zone_info->reserved_active_zones--;
2660         }
2661         spin_unlock(&fs_info->zone_active_bgs_lock);
2662 }
2663 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php