~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/buffer.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/fs/buffer.c
  4  *
  5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
  6  */
  7 
  8 /*
  9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
 10  *
 11  * Removed a lot of unnecessary code and simplified things now that
 12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
 13  *
 14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
 15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
 16  *
 17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
 18  *
 19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
 20  */
 21 
 22 #include <linux/kernel.h>
 23 #include <linux/sched/signal.h>
 24 #include <linux/syscalls.h>
 25 #include <linux/fs.h>
 26 #include <linux/iomap.h>
 27 #include <linux/mm.h>
 28 #include <linux/percpu.h>
 29 #include <linux/slab.h>
 30 #include <linux/capability.h>
 31 #include <linux/blkdev.h>
 32 #include <linux/file.h>
 33 #include <linux/quotaops.h>
 34 #include <linux/highmem.h>
 35 #include <linux/export.h>
 36 #include <linux/backing-dev.h>
 37 #include <linux/writeback.h>
 38 #include <linux/hash.h>
 39 #include <linux/suspend.h>
 40 #include <linux/buffer_head.h>
 41 #include <linux/task_io_accounting_ops.h>
 42 #include <linux/bio.h>
 43 #include <linux/cpu.h>
 44 #include <linux/bitops.h>
 45 #include <linux/mpage.h>
 46 #include <linux/bit_spinlock.h>
 47 #include <linux/pagevec.h>
 48 #include <linux/sched/mm.h>
 49 #include <trace/events/block.h>
 50 #include <linux/fscrypt.h>
 51 #include <linux/fsverity.h>
 52 #include <linux/sched/isolation.h>
 53 
 54 #include "internal.h"
 55 
 56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
 57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
 58                           enum rw_hint hint, struct writeback_control *wbc);
 59 
 60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
 61 
 62 inline void touch_buffer(struct buffer_head *bh)
 63 {
 64         trace_block_touch_buffer(bh);
 65         folio_mark_accessed(bh->b_folio);
 66 }
 67 EXPORT_SYMBOL(touch_buffer);
 68 
 69 void __lock_buffer(struct buffer_head *bh)
 70 {
 71         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 72 }
 73 EXPORT_SYMBOL(__lock_buffer);
 74 
 75 void unlock_buffer(struct buffer_head *bh)
 76 {
 77         clear_bit_unlock(BH_Lock, &bh->b_state);
 78         smp_mb__after_atomic();
 79         wake_up_bit(&bh->b_state, BH_Lock);
 80 }
 81 EXPORT_SYMBOL(unlock_buffer);
 82 
 83 /*
 84  * Returns if the folio has dirty or writeback buffers. If all the buffers
 85  * are unlocked and clean then the folio_test_dirty information is stale. If
 86  * any of the buffers are locked, it is assumed they are locked for IO.
 87  */
 88 void buffer_check_dirty_writeback(struct folio *folio,
 89                                      bool *dirty, bool *writeback)
 90 {
 91         struct buffer_head *head, *bh;
 92         *dirty = false;
 93         *writeback = false;
 94 
 95         BUG_ON(!folio_test_locked(folio));
 96 
 97         head = folio_buffers(folio);
 98         if (!head)
 99                 return;
100 
101         if (folio_test_writeback(folio))
102                 *writeback = true;
103 
104         bh = head;
105         do {
106                 if (buffer_locked(bh))
107                         *writeback = true;
108 
109                 if (buffer_dirty(bh))
110                         *dirty = true;
111 
112                 bh = bh->b_this_page;
113         } while (bh != head);
114 }
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129         if (!test_bit(BH_Quiet, &bh->b_state))
130                 printk_ratelimited(KERN_ERR
131                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
132                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134 
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145         if (uptodate) {
146                 set_buffer_uptodate(bh);
147         } else {
148                 /* This happens, due to failed read-ahead attempts. */
149                 clear_buffer_uptodate(bh);
150         }
151         unlock_buffer(bh);
152 }
153 
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160         __end_buffer_read_notouch(bh, uptodate);
161         put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164 
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167         if (uptodate) {
168                 set_buffer_uptodate(bh);
169         } else {
170                 buffer_io_error(bh, ", lost sync page write");
171                 mark_buffer_write_io_error(bh);
172                 clear_buffer_uptodate(bh);
173         }
174         unlock_buffer(bh);
175         put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178 
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * i_private_lock.
184  *
185  * Hack idea: for the blockdev mapping, i_private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take i_private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192         struct address_space *bd_mapping = bdev->bd_mapping;
193         const int blkbits = bd_mapping->host->i_blkbits;
194         struct buffer_head *ret = NULL;
195         pgoff_t index;
196         struct buffer_head *bh;
197         struct buffer_head *head;
198         struct folio *folio;
199         int all_mapped = 1;
200         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201 
202         index = ((loff_t)block << blkbits) / PAGE_SIZE;
203         folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204         if (IS_ERR(folio))
205                 goto out;
206 
207         spin_lock(&bd_mapping->i_private_lock);
208         head = folio_buffers(folio);
209         if (!head)
210                 goto out_unlock;
211         bh = head;
212         do {
213                 if (!buffer_mapped(bh))
214                         all_mapped = 0;
215                 else if (bh->b_blocknr == block) {
216                         ret = bh;
217                         get_bh(bh);
218                         goto out_unlock;
219                 }
220                 bh = bh->b_this_page;
221         } while (bh != head);
222 
223         /* we might be here because some of the buffers on this page are
224          * not mapped.  This is due to various races between
225          * file io on the block device and getblk.  It gets dealt with
226          * elsewhere, don't buffer_error if we had some unmapped buffers
227          */
228         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229         if (all_mapped && __ratelimit(&last_warned)) {
230                 printk("__find_get_block_slow() failed. block=%llu, "
231                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232                        "device %pg blocksize: %d\n",
233                        (unsigned long long)block,
234                        (unsigned long long)bh->b_blocknr,
235                        bh->b_state, bh->b_size, bdev,
236                        1 << blkbits);
237         }
238 out_unlock:
239         spin_unlock(&bd_mapping->i_private_lock);
240         folio_put(folio);
241 out:
242         return ret;
243 }
244 
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247         unsigned long flags;
248         struct buffer_head *first;
249         struct buffer_head *tmp;
250         struct folio *folio;
251         int folio_uptodate = 1;
252 
253         BUG_ON(!buffer_async_read(bh));
254 
255         folio = bh->b_folio;
256         if (uptodate) {
257                 set_buffer_uptodate(bh);
258         } else {
259                 clear_buffer_uptodate(bh);
260                 buffer_io_error(bh, ", async page read");
261         }
262 
263         /*
264          * Be _very_ careful from here on. Bad things can happen if
265          * two buffer heads end IO at almost the same time and both
266          * decide that the page is now completely done.
267          */
268         first = folio_buffers(folio);
269         spin_lock_irqsave(&first->b_uptodate_lock, flags);
270         clear_buffer_async_read(bh);
271         unlock_buffer(bh);
272         tmp = bh;
273         do {
274                 if (!buffer_uptodate(tmp))
275                         folio_uptodate = 0;
276                 if (buffer_async_read(tmp)) {
277                         BUG_ON(!buffer_locked(tmp));
278                         goto still_busy;
279                 }
280                 tmp = tmp->b_this_page;
281         } while (tmp != bh);
282         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283 
284         folio_end_read(folio, folio_uptodate);
285         return;
286 
287 still_busy:
288         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
289         return;
290 }
291 
292 struct postprocess_bh_ctx {
293         struct work_struct work;
294         struct buffer_head *bh;
295 };
296 
297 static void verify_bh(struct work_struct *work)
298 {
299         struct postprocess_bh_ctx *ctx =
300                 container_of(work, struct postprocess_bh_ctx, work);
301         struct buffer_head *bh = ctx->bh;
302         bool valid;
303 
304         valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
305         end_buffer_async_read(bh, valid);
306         kfree(ctx);
307 }
308 
309 static bool need_fsverity(struct buffer_head *bh)
310 {
311         struct folio *folio = bh->b_folio;
312         struct inode *inode = folio->mapping->host;
313 
314         return fsverity_active(inode) &&
315                 /* needed by ext4 */
316                 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
317 }
318 
319 static void decrypt_bh(struct work_struct *work)
320 {
321         struct postprocess_bh_ctx *ctx =
322                 container_of(work, struct postprocess_bh_ctx, work);
323         struct buffer_head *bh = ctx->bh;
324         int err;
325 
326         err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
327                                                bh_offset(bh));
328         if (err == 0 && need_fsverity(bh)) {
329                 /*
330                  * We use different work queues for decryption and for verity
331                  * because verity may require reading metadata pages that need
332                  * decryption, and we shouldn't recurse to the same workqueue.
333                  */
334                 INIT_WORK(&ctx->work, verify_bh);
335                 fsverity_enqueue_verify_work(&ctx->work);
336                 return;
337         }
338         end_buffer_async_read(bh, err == 0);
339         kfree(ctx);
340 }
341 
342 /*
343  * I/O completion handler for block_read_full_folio() - pages
344  * which come unlocked at the end of I/O.
345  */
346 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
347 {
348         struct inode *inode = bh->b_folio->mapping->host;
349         bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
350         bool verify = need_fsverity(bh);
351 
352         /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
353         if (uptodate && (decrypt || verify)) {
354                 struct postprocess_bh_ctx *ctx =
355                         kmalloc(sizeof(*ctx), GFP_ATOMIC);
356 
357                 if (ctx) {
358                         ctx->bh = bh;
359                         if (decrypt) {
360                                 INIT_WORK(&ctx->work, decrypt_bh);
361                                 fscrypt_enqueue_decrypt_work(&ctx->work);
362                         } else {
363                                 INIT_WORK(&ctx->work, verify_bh);
364                                 fsverity_enqueue_verify_work(&ctx->work);
365                         }
366                         return;
367                 }
368                 uptodate = 0;
369         }
370         end_buffer_async_read(bh, uptodate);
371 }
372 
373 /*
374  * Completion handler for block_write_full_folio() - folios which are unlocked
375  * during I/O, and which have the writeback flag cleared upon I/O completion.
376  */
377 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
378 {
379         unsigned long flags;
380         struct buffer_head *first;
381         struct buffer_head *tmp;
382         struct folio *folio;
383 
384         BUG_ON(!buffer_async_write(bh));
385 
386         folio = bh->b_folio;
387         if (uptodate) {
388                 set_buffer_uptodate(bh);
389         } else {
390                 buffer_io_error(bh, ", lost async page write");
391                 mark_buffer_write_io_error(bh);
392                 clear_buffer_uptodate(bh);
393         }
394 
395         first = folio_buffers(folio);
396         spin_lock_irqsave(&first->b_uptodate_lock, flags);
397 
398         clear_buffer_async_write(bh);
399         unlock_buffer(bh);
400         tmp = bh->b_this_page;
401         while (tmp != bh) {
402                 if (buffer_async_write(tmp)) {
403                         BUG_ON(!buffer_locked(tmp));
404                         goto still_busy;
405                 }
406                 tmp = tmp->b_this_page;
407         }
408         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
409         folio_end_writeback(folio);
410         return;
411 
412 still_busy:
413         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
414         return;
415 }
416 
417 /*
418  * If a page's buffers are under async readin (end_buffer_async_read
419  * completion) then there is a possibility that another thread of
420  * control could lock one of the buffers after it has completed
421  * but while some of the other buffers have not completed.  This
422  * locked buffer would confuse end_buffer_async_read() into not unlocking
423  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
424  * that this buffer is not under async I/O.
425  *
426  * The page comes unlocked when it has no locked buffer_async buffers
427  * left.
428  *
429  * PageLocked prevents anyone starting new async I/O reads any of
430  * the buffers.
431  *
432  * PageWriteback is used to prevent simultaneous writeout of the same
433  * page.
434  *
435  * PageLocked prevents anyone from starting writeback of a page which is
436  * under read I/O (PageWriteback is only ever set against a locked page).
437  */
438 static void mark_buffer_async_read(struct buffer_head *bh)
439 {
440         bh->b_end_io = end_buffer_async_read_io;
441         set_buffer_async_read(bh);
442 }
443 
444 static void mark_buffer_async_write_endio(struct buffer_head *bh,
445                                           bh_end_io_t *handler)
446 {
447         bh->b_end_io = handler;
448         set_buffer_async_write(bh);
449 }
450 
451 void mark_buffer_async_write(struct buffer_head *bh)
452 {
453         mark_buffer_async_write_endio(bh, end_buffer_async_write);
454 }
455 EXPORT_SYMBOL(mark_buffer_async_write);
456 
457 
458 /*
459  * fs/buffer.c contains helper functions for buffer-backed address space's
460  * fsync functions.  A common requirement for buffer-based filesystems is
461  * that certain data from the backing blockdev needs to be written out for
462  * a successful fsync().  For example, ext2 indirect blocks need to be
463  * written back and waited upon before fsync() returns.
464  *
465  * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
466  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
467  * management of a list of dependent buffers at ->i_mapping->i_private_list.
468  *
469  * Locking is a little subtle: try_to_free_buffers() will remove buffers
470  * from their controlling inode's queue when they are being freed.  But
471  * try_to_free_buffers() will be operating against the *blockdev* mapping
472  * at the time, not against the S_ISREG file which depends on those buffers.
473  * So the locking for i_private_list is via the i_private_lock in the address_space
474  * which backs the buffers.  Which is different from the address_space 
475  * against which the buffers are listed.  So for a particular address_space,
476  * mapping->i_private_lock does *not* protect mapping->i_private_list!  In fact,
477  * mapping->i_private_list will always be protected by the backing blockdev's
478  * ->i_private_lock.
479  *
480  * Which introduces a requirement: all buffers on an address_space's
481  * ->i_private_list must be from the same address_space: the blockdev's.
482  *
483  * address_spaces which do not place buffers at ->i_private_list via these
484  * utility functions are free to use i_private_lock and i_private_list for
485  * whatever they want.  The only requirement is that list_empty(i_private_list)
486  * be true at clear_inode() time.
487  *
488  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
489  * filesystems should do that.  invalidate_inode_buffers() should just go
490  * BUG_ON(!list_empty).
491  *
492  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
493  * take an address_space, not an inode.  And it should be called
494  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
495  * queued up.
496  *
497  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
498  * list if it is already on a list.  Because if the buffer is on a list,
499  * it *must* already be on the right one.  If not, the filesystem is being
500  * silly.  This will save a ton of locking.  But first we have to ensure
501  * that buffers are taken *off* the old inode's list when they are freed
502  * (presumably in truncate).  That requires careful auditing of all
503  * filesystems (do it inside bforget()).  It could also be done by bringing
504  * b_inode back.
505  */
506 
507 /*
508  * The buffer's backing address_space's i_private_lock must be held
509  */
510 static void __remove_assoc_queue(struct buffer_head *bh)
511 {
512         list_del_init(&bh->b_assoc_buffers);
513         WARN_ON(!bh->b_assoc_map);
514         bh->b_assoc_map = NULL;
515 }
516 
517 int inode_has_buffers(struct inode *inode)
518 {
519         return !list_empty(&inode->i_data.i_private_list);
520 }
521 
522 /*
523  * osync is designed to support O_SYNC io.  It waits synchronously for
524  * all already-submitted IO to complete, but does not queue any new
525  * writes to the disk.
526  *
527  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
528  * as you dirty the buffers, and then use osync_inode_buffers to wait for
529  * completion.  Any other dirty buffers which are not yet queued for
530  * write will not be flushed to disk by the osync.
531  */
532 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
533 {
534         struct buffer_head *bh;
535         struct list_head *p;
536         int err = 0;
537 
538         spin_lock(lock);
539 repeat:
540         list_for_each_prev(p, list) {
541                 bh = BH_ENTRY(p);
542                 if (buffer_locked(bh)) {
543                         get_bh(bh);
544                         spin_unlock(lock);
545                         wait_on_buffer(bh);
546                         if (!buffer_uptodate(bh))
547                                 err = -EIO;
548                         brelse(bh);
549                         spin_lock(lock);
550                         goto repeat;
551                 }
552         }
553         spin_unlock(lock);
554         return err;
555 }
556 
557 /**
558  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
559  * @mapping: the mapping which wants those buffers written
560  *
561  * Starts I/O against the buffers at mapping->i_private_list, and waits upon
562  * that I/O.
563  *
564  * Basically, this is a convenience function for fsync().
565  * @mapping is a file or directory which needs those buffers to be written for
566  * a successful fsync().
567  */
568 int sync_mapping_buffers(struct address_space *mapping)
569 {
570         struct address_space *buffer_mapping = mapping->i_private_data;
571 
572         if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
573                 return 0;
574 
575         return fsync_buffers_list(&buffer_mapping->i_private_lock,
576                                         &mapping->i_private_list);
577 }
578 EXPORT_SYMBOL(sync_mapping_buffers);
579 
580 /**
581  * generic_buffers_fsync_noflush - generic buffer fsync implementation
582  * for simple filesystems with no inode lock
583  *
584  * @file:       file to synchronize
585  * @start:      start offset in bytes
586  * @end:        end offset in bytes (inclusive)
587  * @datasync:   only synchronize essential metadata if true
588  *
589  * This is a generic implementation of the fsync method for simple
590  * filesystems which track all non-inode metadata in the buffers list
591  * hanging off the address_space structure.
592  */
593 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
594                                   bool datasync)
595 {
596         struct inode *inode = file->f_mapping->host;
597         int err;
598         int ret;
599 
600         err = file_write_and_wait_range(file, start, end);
601         if (err)
602                 return err;
603 
604         ret = sync_mapping_buffers(inode->i_mapping);
605         if (!(inode->i_state & I_DIRTY_ALL))
606                 goto out;
607         if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
608                 goto out;
609 
610         err = sync_inode_metadata(inode, 1);
611         if (ret == 0)
612                 ret = err;
613 
614 out:
615         /* check and advance again to catch errors after syncing out buffers */
616         err = file_check_and_advance_wb_err(file);
617         if (ret == 0)
618                 ret = err;
619         return ret;
620 }
621 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
622 
623 /**
624  * generic_buffers_fsync - generic buffer fsync implementation
625  * for simple filesystems with no inode lock
626  *
627  * @file:       file to synchronize
628  * @start:      start offset in bytes
629  * @end:        end offset in bytes (inclusive)
630  * @datasync:   only synchronize essential metadata if true
631  *
632  * This is a generic implementation of the fsync method for simple
633  * filesystems which track all non-inode metadata in the buffers list
634  * hanging off the address_space structure. This also makes sure that
635  * a device cache flush operation is called at the end.
636  */
637 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
638                           bool datasync)
639 {
640         struct inode *inode = file->f_mapping->host;
641         int ret;
642 
643         ret = generic_buffers_fsync_noflush(file, start, end, datasync);
644         if (!ret)
645                 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
646         return ret;
647 }
648 EXPORT_SYMBOL(generic_buffers_fsync);
649 
650 /*
651  * Called when we've recently written block `bblock', and it is known that
652  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
653  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
654  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
655  */
656 void write_boundary_block(struct block_device *bdev,
657                         sector_t bblock, unsigned blocksize)
658 {
659         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
660         if (bh) {
661                 if (buffer_dirty(bh))
662                         write_dirty_buffer(bh, 0);
663                 put_bh(bh);
664         }
665 }
666 
667 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
668 {
669         struct address_space *mapping = inode->i_mapping;
670         struct address_space *buffer_mapping = bh->b_folio->mapping;
671 
672         mark_buffer_dirty(bh);
673         if (!mapping->i_private_data) {
674                 mapping->i_private_data = buffer_mapping;
675         } else {
676                 BUG_ON(mapping->i_private_data != buffer_mapping);
677         }
678         if (!bh->b_assoc_map) {
679                 spin_lock(&buffer_mapping->i_private_lock);
680                 list_move_tail(&bh->b_assoc_buffers,
681                                 &mapping->i_private_list);
682                 bh->b_assoc_map = mapping;
683                 spin_unlock(&buffer_mapping->i_private_lock);
684         }
685 }
686 EXPORT_SYMBOL(mark_buffer_dirty_inode);
687 
688 /**
689  * block_dirty_folio - Mark a folio as dirty.
690  * @mapping: The address space containing this folio.
691  * @folio: The folio to mark dirty.
692  *
693  * Filesystems which use buffer_heads can use this function as their
694  * ->dirty_folio implementation.  Some filesystems need to do a little
695  * work before calling this function.  Filesystems which do not use
696  * buffer_heads should call filemap_dirty_folio() instead.
697  *
698  * If the folio has buffers, the uptodate buffers are set dirty, to
699  * preserve dirty-state coherency between the folio and the buffers.
700  * Buffers added to a dirty folio are created dirty.
701  *
702  * The buffers are dirtied before the folio is dirtied.  There's a small
703  * race window in which writeback may see the folio cleanness but not the
704  * buffer dirtiness.  That's fine.  If this code were to set the folio
705  * dirty before the buffers, writeback could clear the folio dirty flag,
706  * see a bunch of clean buffers and we'd end up with dirty buffers/clean
707  * folio on the dirty folio list.
708  *
709  * We use i_private_lock to lock against try_to_free_buffers() while
710  * using the folio's buffer list.  This also prevents clean buffers
711  * being added to the folio after it was set dirty.
712  *
713  * Context: May only be called from process context.  Does not sleep.
714  * Caller must ensure that @folio cannot be truncated during this call,
715  * typically by holding the folio lock or having a page in the folio
716  * mapped and holding the page table lock.
717  *
718  * Return: True if the folio was dirtied; false if it was already dirtied.
719  */
720 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
721 {
722         struct buffer_head *head;
723         bool newly_dirty;
724 
725         spin_lock(&mapping->i_private_lock);
726         head = folio_buffers(folio);
727         if (head) {
728                 struct buffer_head *bh = head;
729 
730                 do {
731                         set_buffer_dirty(bh);
732                         bh = bh->b_this_page;
733                 } while (bh != head);
734         }
735         /*
736          * Lock out page's memcg migration to keep PageDirty
737          * synchronized with per-memcg dirty page counters.
738          */
739         folio_memcg_lock(folio);
740         newly_dirty = !folio_test_set_dirty(folio);
741         spin_unlock(&mapping->i_private_lock);
742 
743         if (newly_dirty)
744                 __folio_mark_dirty(folio, mapping, 1);
745 
746         folio_memcg_unlock(folio);
747 
748         if (newly_dirty)
749                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
750 
751         return newly_dirty;
752 }
753 EXPORT_SYMBOL(block_dirty_folio);
754 
755 /*
756  * Write out and wait upon a list of buffers.
757  *
758  * We have conflicting pressures: we want to make sure that all
759  * initially dirty buffers get waited on, but that any subsequently
760  * dirtied buffers don't.  After all, we don't want fsync to last
761  * forever if somebody is actively writing to the file.
762  *
763  * Do this in two main stages: first we copy dirty buffers to a
764  * temporary inode list, queueing the writes as we go.  Then we clean
765  * up, waiting for those writes to complete.
766  * 
767  * During this second stage, any subsequent updates to the file may end
768  * up refiling the buffer on the original inode's dirty list again, so
769  * there is a chance we will end up with a buffer queued for write but
770  * not yet completed on that list.  So, as a final cleanup we go through
771  * the osync code to catch these locked, dirty buffers without requeuing
772  * any newly dirty buffers for write.
773  */
774 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
775 {
776         struct buffer_head *bh;
777         struct list_head tmp;
778         struct address_space *mapping;
779         int err = 0, err2;
780         struct blk_plug plug;
781 
782         INIT_LIST_HEAD(&tmp);
783         blk_start_plug(&plug);
784 
785         spin_lock(lock);
786         while (!list_empty(list)) {
787                 bh = BH_ENTRY(list->next);
788                 mapping = bh->b_assoc_map;
789                 __remove_assoc_queue(bh);
790                 /* Avoid race with mark_buffer_dirty_inode() which does
791                  * a lockless check and we rely on seeing the dirty bit */
792                 smp_mb();
793                 if (buffer_dirty(bh) || buffer_locked(bh)) {
794                         list_add(&bh->b_assoc_buffers, &tmp);
795                         bh->b_assoc_map = mapping;
796                         if (buffer_dirty(bh)) {
797                                 get_bh(bh);
798                                 spin_unlock(lock);
799                                 /*
800                                  * Ensure any pending I/O completes so that
801                                  * write_dirty_buffer() actually writes the
802                                  * current contents - it is a noop if I/O is
803                                  * still in flight on potentially older
804                                  * contents.
805                                  */
806                                 write_dirty_buffer(bh, REQ_SYNC);
807 
808                                 /*
809                                  * Kick off IO for the previous mapping. Note
810                                  * that we will not run the very last mapping,
811                                  * wait_on_buffer() will do that for us
812                                  * through sync_buffer().
813                                  */
814                                 brelse(bh);
815                                 spin_lock(lock);
816                         }
817                 }
818         }
819 
820         spin_unlock(lock);
821         blk_finish_plug(&plug);
822         spin_lock(lock);
823 
824         while (!list_empty(&tmp)) {
825                 bh = BH_ENTRY(tmp.prev);
826                 get_bh(bh);
827                 mapping = bh->b_assoc_map;
828                 __remove_assoc_queue(bh);
829                 /* Avoid race with mark_buffer_dirty_inode() which does
830                  * a lockless check and we rely on seeing the dirty bit */
831                 smp_mb();
832                 if (buffer_dirty(bh)) {
833                         list_add(&bh->b_assoc_buffers,
834                                  &mapping->i_private_list);
835                         bh->b_assoc_map = mapping;
836                 }
837                 spin_unlock(lock);
838                 wait_on_buffer(bh);
839                 if (!buffer_uptodate(bh))
840                         err = -EIO;
841                 brelse(bh);
842                 spin_lock(lock);
843         }
844         
845         spin_unlock(lock);
846         err2 = osync_buffers_list(lock, list);
847         if (err)
848                 return err;
849         else
850                 return err2;
851 }
852 
853 /*
854  * Invalidate any and all dirty buffers on a given inode.  We are
855  * probably unmounting the fs, but that doesn't mean we have already
856  * done a sync().  Just drop the buffers from the inode list.
857  *
858  * NOTE: we take the inode's blockdev's mapping's i_private_lock.  Which
859  * assumes that all the buffers are against the blockdev.  Not true
860  * for reiserfs.
861  */
862 void invalidate_inode_buffers(struct inode *inode)
863 {
864         if (inode_has_buffers(inode)) {
865                 struct address_space *mapping = &inode->i_data;
866                 struct list_head *list = &mapping->i_private_list;
867                 struct address_space *buffer_mapping = mapping->i_private_data;
868 
869                 spin_lock(&buffer_mapping->i_private_lock);
870                 while (!list_empty(list))
871                         __remove_assoc_queue(BH_ENTRY(list->next));
872                 spin_unlock(&buffer_mapping->i_private_lock);
873         }
874 }
875 EXPORT_SYMBOL(invalidate_inode_buffers);
876 
877 /*
878  * Remove any clean buffers from the inode's buffer list.  This is called
879  * when we're trying to free the inode itself.  Those buffers can pin it.
880  *
881  * Returns true if all buffers were removed.
882  */
883 int remove_inode_buffers(struct inode *inode)
884 {
885         int ret = 1;
886 
887         if (inode_has_buffers(inode)) {
888                 struct address_space *mapping = &inode->i_data;
889                 struct list_head *list = &mapping->i_private_list;
890                 struct address_space *buffer_mapping = mapping->i_private_data;
891 
892                 spin_lock(&buffer_mapping->i_private_lock);
893                 while (!list_empty(list)) {
894                         struct buffer_head *bh = BH_ENTRY(list->next);
895                         if (buffer_dirty(bh)) {
896                                 ret = 0;
897                                 break;
898                         }
899                         __remove_assoc_queue(bh);
900                 }
901                 spin_unlock(&buffer_mapping->i_private_lock);
902         }
903         return ret;
904 }
905 
906 /*
907  * Create the appropriate buffers when given a folio for data area and
908  * the size of each buffer.. Use the bh->b_this_page linked list to
909  * follow the buffers created.  Return NULL if unable to create more
910  * buffers.
911  *
912  * The retry flag is used to differentiate async IO (paging, swapping)
913  * which may not fail from ordinary buffer allocations.
914  */
915 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
916                                         gfp_t gfp)
917 {
918         struct buffer_head *bh, *head;
919         long offset;
920         struct mem_cgroup *memcg, *old_memcg;
921 
922         /* The folio lock pins the memcg */
923         memcg = folio_memcg(folio);
924         old_memcg = set_active_memcg(memcg);
925 
926         head = NULL;
927         offset = folio_size(folio);
928         while ((offset -= size) >= 0) {
929                 bh = alloc_buffer_head(gfp);
930                 if (!bh)
931                         goto no_grow;
932 
933                 bh->b_this_page = head;
934                 bh->b_blocknr = -1;
935                 head = bh;
936 
937                 bh->b_size = size;
938 
939                 /* Link the buffer to its folio */
940                 folio_set_bh(bh, folio, offset);
941         }
942 out:
943         set_active_memcg(old_memcg);
944         return head;
945 /*
946  * In case anything failed, we just free everything we got.
947  */
948 no_grow:
949         if (head) {
950                 do {
951                         bh = head;
952                         head = head->b_this_page;
953                         free_buffer_head(bh);
954                 } while (head);
955         }
956 
957         goto out;
958 }
959 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
960 
961 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
962                                        bool retry)
963 {
964         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
965         if (retry)
966                 gfp |= __GFP_NOFAIL;
967 
968         return folio_alloc_buffers(page_folio(page), size, gfp);
969 }
970 EXPORT_SYMBOL_GPL(alloc_page_buffers);
971 
972 static inline void link_dev_buffers(struct folio *folio,
973                 struct buffer_head *head)
974 {
975         struct buffer_head *bh, *tail;
976 
977         bh = head;
978         do {
979                 tail = bh;
980                 bh = bh->b_this_page;
981         } while (bh);
982         tail->b_this_page = head;
983         folio_attach_private(folio, head);
984 }
985 
986 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
987 {
988         sector_t retval = ~((sector_t)0);
989         loff_t sz = bdev_nr_bytes(bdev);
990 
991         if (sz) {
992                 unsigned int sizebits = blksize_bits(size);
993                 retval = (sz >> sizebits);
994         }
995         return retval;
996 }
997 
998 /*
999  * Initialise the state of a blockdev folio's buffers.
1000  */ 
1001 static sector_t folio_init_buffers(struct folio *folio,
1002                 struct block_device *bdev, unsigned size)
1003 {
1004         struct buffer_head *head = folio_buffers(folio);
1005         struct buffer_head *bh = head;
1006         bool uptodate = folio_test_uptodate(folio);
1007         sector_t block = div_u64(folio_pos(folio), size);
1008         sector_t end_block = blkdev_max_block(bdev, size);
1009 
1010         do {
1011                 if (!buffer_mapped(bh)) {
1012                         bh->b_end_io = NULL;
1013                         bh->b_private = NULL;
1014                         bh->b_bdev = bdev;
1015                         bh->b_blocknr = block;
1016                         if (uptodate)
1017                                 set_buffer_uptodate(bh);
1018                         if (block < end_block)
1019                                 set_buffer_mapped(bh);
1020                 }
1021                 block++;
1022                 bh = bh->b_this_page;
1023         } while (bh != head);
1024 
1025         /*
1026          * Caller needs to validate requested block against end of device.
1027          */
1028         return end_block;
1029 }
1030 
1031 /*
1032  * Create the page-cache folio that contains the requested block.
1033  *
1034  * This is used purely for blockdev mappings.
1035  *
1036  * Returns false if we have a failure which cannot be cured by retrying
1037  * without sleeping.  Returns true if we succeeded, or the caller should retry.
1038  */
1039 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1040                 pgoff_t index, unsigned size, gfp_t gfp)
1041 {
1042         struct address_space *mapping = bdev->bd_mapping;
1043         struct folio *folio;
1044         struct buffer_head *bh;
1045         sector_t end_block = 0;
1046 
1047         folio = __filemap_get_folio(mapping, index,
1048                         FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1049         if (IS_ERR(folio))
1050                 return false;
1051 
1052         bh = folio_buffers(folio);
1053         if (bh) {
1054                 if (bh->b_size == size) {
1055                         end_block = folio_init_buffers(folio, bdev, size);
1056                         goto unlock;
1057                 }
1058 
1059                 /*
1060                  * Retrying may succeed; for example the folio may finish
1061                  * writeback, or buffers may be cleaned.  This should not
1062                  * happen very often; maybe we have old buffers attached to
1063                  * this blockdev's page cache and we're trying to change
1064                  * the block size?
1065                  */
1066                 if (!try_to_free_buffers(folio)) {
1067                         end_block = ~0ULL;
1068                         goto unlock;
1069                 }
1070         }
1071 
1072         bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1073         if (!bh)
1074                 goto unlock;
1075 
1076         /*
1077          * Link the folio to the buffers and initialise them.  Take the
1078          * lock to be atomic wrt __find_get_block(), which does not
1079          * run under the folio lock.
1080          */
1081         spin_lock(&mapping->i_private_lock);
1082         link_dev_buffers(folio, bh);
1083         end_block = folio_init_buffers(folio, bdev, size);
1084         spin_unlock(&mapping->i_private_lock);
1085 unlock:
1086         folio_unlock(folio);
1087         folio_put(folio);
1088         return block < end_block;
1089 }
1090 
1091 /*
1092  * Create buffers for the specified block device block's folio.  If
1093  * that folio was dirty, the buffers are set dirty also.  Returns false
1094  * if we've hit a permanent error.
1095  */
1096 static bool grow_buffers(struct block_device *bdev, sector_t block,
1097                 unsigned size, gfp_t gfp)
1098 {
1099         loff_t pos;
1100 
1101         /*
1102          * Check for a block which lies outside our maximum possible
1103          * pagecache index.
1104          */
1105         if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1106                 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1107                         __func__, (unsigned long long)block,
1108                         bdev);
1109                 return false;
1110         }
1111 
1112         /* Create a folio with the proper size buffers */
1113         return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1114 }
1115 
1116 static struct buffer_head *
1117 __getblk_slow(struct block_device *bdev, sector_t block,
1118              unsigned size, gfp_t gfp)
1119 {
1120         /* Size must be multiple of hard sectorsize */
1121         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1122                         (size < 512 || size > PAGE_SIZE))) {
1123                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1124                                         size);
1125                 printk(KERN_ERR "logical block size: %d\n",
1126                                         bdev_logical_block_size(bdev));
1127 
1128                 dump_stack();
1129                 return NULL;
1130         }
1131 
1132         for (;;) {
1133                 struct buffer_head *bh;
1134 
1135                 bh = __find_get_block(bdev, block, size);
1136                 if (bh)
1137                         return bh;
1138 
1139                 if (!grow_buffers(bdev, block, size, gfp))
1140                         return NULL;
1141         }
1142 }
1143 
1144 /*
1145  * The relationship between dirty buffers and dirty pages:
1146  *
1147  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1148  * the page is tagged dirty in the page cache.
1149  *
1150  * At all times, the dirtiness of the buffers represents the dirtiness of
1151  * subsections of the page.  If the page has buffers, the page dirty bit is
1152  * merely a hint about the true dirty state.
1153  *
1154  * When a page is set dirty in its entirety, all its buffers are marked dirty
1155  * (if the page has buffers).
1156  *
1157  * When a buffer is marked dirty, its page is dirtied, but the page's other
1158  * buffers are not.
1159  *
1160  * Also.  When blockdev buffers are explicitly read with bread(), they
1161  * individually become uptodate.  But their backing page remains not
1162  * uptodate - even if all of its buffers are uptodate.  A subsequent
1163  * block_read_full_folio() against that folio will discover all the uptodate
1164  * buffers, will set the folio uptodate and will perform no I/O.
1165  */
1166 
1167 /**
1168  * mark_buffer_dirty - mark a buffer_head as needing writeout
1169  * @bh: the buffer_head to mark dirty
1170  *
1171  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1172  * its backing page dirty, then tag the page as dirty in the page cache
1173  * and then attach the address_space's inode to its superblock's dirty
1174  * inode list.
1175  *
1176  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->i_private_lock,
1177  * i_pages lock and mapping->host->i_lock.
1178  */
1179 void mark_buffer_dirty(struct buffer_head *bh)
1180 {
1181         WARN_ON_ONCE(!buffer_uptodate(bh));
1182 
1183         trace_block_dirty_buffer(bh);
1184 
1185         /*
1186          * Very *carefully* optimize the it-is-already-dirty case.
1187          *
1188          * Don't let the final "is it dirty" escape to before we
1189          * perhaps modified the buffer.
1190          */
1191         if (buffer_dirty(bh)) {
1192                 smp_mb();
1193                 if (buffer_dirty(bh))
1194                         return;
1195         }
1196 
1197         if (!test_set_buffer_dirty(bh)) {
1198                 struct folio *folio = bh->b_folio;
1199                 struct address_space *mapping = NULL;
1200 
1201                 folio_memcg_lock(folio);
1202                 if (!folio_test_set_dirty(folio)) {
1203                         mapping = folio->mapping;
1204                         if (mapping)
1205                                 __folio_mark_dirty(folio, mapping, 0);
1206                 }
1207                 folio_memcg_unlock(folio);
1208                 if (mapping)
1209                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1210         }
1211 }
1212 EXPORT_SYMBOL(mark_buffer_dirty);
1213 
1214 void mark_buffer_write_io_error(struct buffer_head *bh)
1215 {
1216         set_buffer_write_io_error(bh);
1217         /* FIXME: do we need to set this in both places? */
1218         if (bh->b_folio && bh->b_folio->mapping)
1219                 mapping_set_error(bh->b_folio->mapping, -EIO);
1220         if (bh->b_assoc_map) {
1221                 mapping_set_error(bh->b_assoc_map, -EIO);
1222                 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1223         }
1224 }
1225 EXPORT_SYMBOL(mark_buffer_write_io_error);
1226 
1227 /**
1228  * __brelse - Release a buffer.
1229  * @bh: The buffer to release.
1230  *
1231  * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1232  */
1233 void __brelse(struct buffer_head *bh)
1234 {
1235         if (atomic_read(&bh->b_count)) {
1236                 put_bh(bh);
1237                 return;
1238         }
1239         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1240 }
1241 EXPORT_SYMBOL(__brelse);
1242 
1243 /**
1244  * __bforget - Discard any dirty data in a buffer.
1245  * @bh: The buffer to forget.
1246  *
1247  * This variant of bforget() can be called if @bh is guaranteed to not
1248  * be NULL.
1249  */
1250 void __bforget(struct buffer_head *bh)
1251 {
1252         clear_buffer_dirty(bh);
1253         if (bh->b_assoc_map) {
1254                 struct address_space *buffer_mapping = bh->b_folio->mapping;
1255 
1256                 spin_lock(&buffer_mapping->i_private_lock);
1257                 list_del_init(&bh->b_assoc_buffers);
1258                 bh->b_assoc_map = NULL;
1259                 spin_unlock(&buffer_mapping->i_private_lock);
1260         }
1261         __brelse(bh);
1262 }
1263 EXPORT_SYMBOL(__bforget);
1264 
1265 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1266 {
1267         lock_buffer(bh);
1268         if (buffer_uptodate(bh)) {
1269                 unlock_buffer(bh);
1270                 return bh;
1271         } else {
1272                 get_bh(bh);
1273                 bh->b_end_io = end_buffer_read_sync;
1274                 submit_bh(REQ_OP_READ, bh);
1275                 wait_on_buffer(bh);
1276                 if (buffer_uptodate(bh))
1277                         return bh;
1278         }
1279         brelse(bh);
1280         return NULL;
1281 }
1282 
1283 /*
1284  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1285  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1286  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1287  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1288  * CPU's LRUs at the same time.
1289  *
1290  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1291  * sb_find_get_block().
1292  *
1293  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1294  * a local interrupt disable for that.
1295  */
1296 
1297 #define BH_LRU_SIZE     16
1298 
1299 struct bh_lru {
1300         struct buffer_head *bhs[BH_LRU_SIZE];
1301 };
1302 
1303 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1304 
1305 #ifdef CONFIG_SMP
1306 #define bh_lru_lock()   local_irq_disable()
1307 #define bh_lru_unlock() local_irq_enable()
1308 #else
1309 #define bh_lru_lock()   preempt_disable()
1310 #define bh_lru_unlock() preempt_enable()
1311 #endif
1312 
1313 static inline void check_irqs_on(void)
1314 {
1315 #ifdef irqs_disabled
1316         BUG_ON(irqs_disabled());
1317 #endif
1318 }
1319 
1320 /*
1321  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1322  * inserted at the front, and the buffer_head at the back if any is evicted.
1323  * Or, if already in the LRU it is moved to the front.
1324  */
1325 static void bh_lru_install(struct buffer_head *bh)
1326 {
1327         struct buffer_head *evictee = bh;
1328         struct bh_lru *b;
1329         int i;
1330 
1331         check_irqs_on();
1332         bh_lru_lock();
1333 
1334         /*
1335          * the refcount of buffer_head in bh_lru prevents dropping the
1336          * attached page(i.e., try_to_free_buffers) so it could cause
1337          * failing page migration.
1338          * Skip putting upcoming bh into bh_lru until migration is done.
1339          */
1340         if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1341                 bh_lru_unlock();
1342                 return;
1343         }
1344 
1345         b = this_cpu_ptr(&bh_lrus);
1346         for (i = 0; i < BH_LRU_SIZE; i++) {
1347                 swap(evictee, b->bhs[i]);
1348                 if (evictee == bh) {
1349                         bh_lru_unlock();
1350                         return;
1351                 }
1352         }
1353 
1354         get_bh(bh);
1355         bh_lru_unlock();
1356         brelse(evictee);
1357 }
1358 
1359 /*
1360  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1361  */
1362 static struct buffer_head *
1363 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1364 {
1365         struct buffer_head *ret = NULL;
1366         unsigned int i;
1367 
1368         check_irqs_on();
1369         bh_lru_lock();
1370         if (cpu_is_isolated(smp_processor_id())) {
1371                 bh_lru_unlock();
1372                 return NULL;
1373         }
1374         for (i = 0; i < BH_LRU_SIZE; i++) {
1375                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1376 
1377                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1378                     bh->b_size == size) {
1379                         if (i) {
1380                                 while (i) {
1381                                         __this_cpu_write(bh_lrus.bhs[i],
1382                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1383                                         i--;
1384                                 }
1385                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1386                         }
1387                         get_bh(bh);
1388                         ret = bh;
1389                         break;
1390                 }
1391         }
1392         bh_lru_unlock();
1393         return ret;
1394 }
1395 
1396 /*
1397  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1398  * it in the LRU and mark it as accessed.  If it is not present then return
1399  * NULL
1400  */
1401 struct buffer_head *
1402 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1403 {
1404         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1405 
1406         if (bh == NULL) {
1407                 /* __find_get_block_slow will mark the page accessed */
1408                 bh = __find_get_block_slow(bdev, block);
1409                 if (bh)
1410                         bh_lru_install(bh);
1411         } else
1412                 touch_buffer(bh);
1413 
1414         return bh;
1415 }
1416 EXPORT_SYMBOL(__find_get_block);
1417 
1418 /**
1419  * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1420  * @bdev: The block device.
1421  * @block: The block number.
1422  * @size: The size of buffer_heads for this @bdev.
1423  * @gfp: The memory allocation flags to use.
1424  *
1425  * The returned buffer head has its reference count incremented, but is
1426  * not locked.  The caller should call brelse() when it has finished
1427  * with the buffer.  The buffer may not be uptodate.  If needed, the
1428  * caller can bring it uptodate either by reading it or overwriting it.
1429  *
1430  * Return: The buffer head, or NULL if memory could not be allocated.
1431  */
1432 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1433                 unsigned size, gfp_t gfp)
1434 {
1435         struct buffer_head *bh = __find_get_block(bdev, block, size);
1436 
1437         might_alloc(gfp);
1438         if (bh)
1439                 return bh;
1440 
1441         return __getblk_slow(bdev, block, size, gfp);
1442 }
1443 EXPORT_SYMBOL(bdev_getblk);
1444 
1445 /*
1446  * Do async read-ahead on a buffer..
1447  */
1448 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1449 {
1450         struct buffer_head *bh = bdev_getblk(bdev, block, size,
1451                         GFP_NOWAIT | __GFP_MOVABLE);
1452 
1453         if (likely(bh)) {
1454                 bh_readahead(bh, REQ_RAHEAD);
1455                 brelse(bh);
1456         }
1457 }
1458 EXPORT_SYMBOL(__breadahead);
1459 
1460 /**
1461  * __bread_gfp() - Read a block.
1462  * @bdev: The block device to read from.
1463  * @block: Block number in units of block size.
1464  * @size: The block size of this device in bytes.
1465  * @gfp: Not page allocation flags; see below.
1466  *
1467  * You are not expected to call this function.  You should use one of
1468  * sb_bread(), sb_bread_unmovable() or __bread().
1469  *
1470  * Read a specified block, and return the buffer head that refers to it.
1471  * If @gfp is 0, the memory will be allocated using the block device's
1472  * default GFP flags.  If @gfp is __GFP_MOVABLE, the memory may be
1473  * allocated from a movable area.  Do not pass in a complete set of
1474  * GFP flags.
1475  *
1476  * The returned buffer head has its refcount increased.  The caller should
1477  * call brelse() when it has finished with the buffer.
1478  *
1479  * Context: May sleep waiting for I/O.
1480  * Return: NULL if the block was unreadable.
1481  */
1482 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1483                 unsigned size, gfp_t gfp)
1484 {
1485         struct buffer_head *bh;
1486 
1487         gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1488 
1489         /*
1490          * Prefer looping in the allocator rather than here, at least that
1491          * code knows what it's doing.
1492          */
1493         gfp |= __GFP_NOFAIL;
1494 
1495         bh = bdev_getblk(bdev, block, size, gfp);
1496 
1497         if (likely(bh) && !buffer_uptodate(bh))
1498                 bh = __bread_slow(bh);
1499         return bh;
1500 }
1501 EXPORT_SYMBOL(__bread_gfp);
1502 
1503 static void __invalidate_bh_lrus(struct bh_lru *b)
1504 {
1505         int i;
1506 
1507         for (i = 0; i < BH_LRU_SIZE; i++) {
1508                 brelse(b->bhs[i]);
1509                 b->bhs[i] = NULL;
1510         }
1511 }
1512 /*
1513  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1514  * This doesn't race because it runs in each cpu either in irq
1515  * or with preempt disabled.
1516  */
1517 static void invalidate_bh_lru(void *arg)
1518 {
1519         struct bh_lru *b = &get_cpu_var(bh_lrus);
1520 
1521         __invalidate_bh_lrus(b);
1522         put_cpu_var(bh_lrus);
1523 }
1524 
1525 bool has_bh_in_lru(int cpu, void *dummy)
1526 {
1527         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1528         int i;
1529         
1530         for (i = 0; i < BH_LRU_SIZE; i++) {
1531                 if (b->bhs[i])
1532                         return true;
1533         }
1534 
1535         return false;
1536 }
1537 
1538 void invalidate_bh_lrus(void)
1539 {
1540         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1541 }
1542 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1543 
1544 /*
1545  * It's called from workqueue context so we need a bh_lru_lock to close
1546  * the race with preemption/irq.
1547  */
1548 void invalidate_bh_lrus_cpu(void)
1549 {
1550         struct bh_lru *b;
1551 
1552         bh_lru_lock();
1553         b = this_cpu_ptr(&bh_lrus);
1554         __invalidate_bh_lrus(b);
1555         bh_lru_unlock();
1556 }
1557 
1558 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1559                   unsigned long offset)
1560 {
1561         bh->b_folio = folio;
1562         BUG_ON(offset >= folio_size(folio));
1563         if (folio_test_highmem(folio))
1564                 /*
1565                  * This catches illegal uses and preserves the offset:
1566                  */
1567                 bh->b_data = (char *)(0 + offset);
1568         else
1569                 bh->b_data = folio_address(folio) + offset;
1570 }
1571 EXPORT_SYMBOL(folio_set_bh);
1572 
1573 /*
1574  * Called when truncating a buffer on a page completely.
1575  */
1576 
1577 /* Bits that are cleared during an invalidate */
1578 #define BUFFER_FLAGS_DISCARD \
1579         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1580          1 << BH_Delay | 1 << BH_Unwritten)
1581 
1582 static void discard_buffer(struct buffer_head * bh)
1583 {
1584         unsigned long b_state;
1585 
1586         lock_buffer(bh);
1587         clear_buffer_dirty(bh);
1588         bh->b_bdev = NULL;
1589         b_state = READ_ONCE(bh->b_state);
1590         do {
1591         } while (!try_cmpxchg(&bh->b_state, &b_state,
1592                               b_state & ~BUFFER_FLAGS_DISCARD));
1593         unlock_buffer(bh);
1594 }
1595 
1596 /**
1597  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1598  * @folio: The folio which is affected.
1599  * @offset: start of the range to invalidate
1600  * @length: length of the range to invalidate
1601  *
1602  * block_invalidate_folio() is called when all or part of the folio has been
1603  * invalidated by a truncate operation.
1604  *
1605  * block_invalidate_folio() does not have to release all buffers, but it must
1606  * ensure that no dirty buffer is left outside @offset and that no I/O
1607  * is underway against any of the blocks which are outside the truncation
1608  * point.  Because the caller is about to free (and possibly reuse) those
1609  * blocks on-disk.
1610  */
1611 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1612 {
1613         struct buffer_head *head, *bh, *next;
1614         size_t curr_off = 0;
1615         size_t stop = length + offset;
1616 
1617         BUG_ON(!folio_test_locked(folio));
1618 
1619         /*
1620          * Check for overflow
1621          */
1622         BUG_ON(stop > folio_size(folio) || stop < length);
1623 
1624         head = folio_buffers(folio);
1625         if (!head)
1626                 return;
1627 
1628         bh = head;
1629         do {
1630                 size_t next_off = curr_off + bh->b_size;
1631                 next = bh->b_this_page;
1632 
1633                 /*
1634                  * Are we still fully in range ?
1635                  */
1636                 if (next_off > stop)
1637                         goto out;
1638 
1639                 /*
1640                  * is this block fully invalidated?
1641                  */
1642                 if (offset <= curr_off)
1643                         discard_buffer(bh);
1644                 curr_off = next_off;
1645                 bh = next;
1646         } while (bh != head);
1647 
1648         /*
1649          * We release buffers only if the entire folio is being invalidated.
1650          * The get_block cached value has been unconditionally invalidated,
1651          * so real IO is not possible anymore.
1652          */
1653         if (length == folio_size(folio))
1654                 filemap_release_folio(folio, 0);
1655 out:
1656         return;
1657 }
1658 EXPORT_SYMBOL(block_invalidate_folio);
1659 
1660 /*
1661  * We attach and possibly dirty the buffers atomically wrt
1662  * block_dirty_folio() via i_private_lock.  try_to_free_buffers
1663  * is already excluded via the folio lock.
1664  */
1665 struct buffer_head *create_empty_buffers(struct folio *folio,
1666                 unsigned long blocksize, unsigned long b_state)
1667 {
1668         struct buffer_head *bh, *head, *tail;
1669         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1670 
1671         head = folio_alloc_buffers(folio, blocksize, gfp);
1672         bh = head;
1673         do {
1674                 bh->b_state |= b_state;
1675                 tail = bh;
1676                 bh = bh->b_this_page;
1677         } while (bh);
1678         tail->b_this_page = head;
1679 
1680         spin_lock(&folio->mapping->i_private_lock);
1681         if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1682                 bh = head;
1683                 do {
1684                         if (folio_test_dirty(folio))
1685                                 set_buffer_dirty(bh);
1686                         if (folio_test_uptodate(folio))
1687                                 set_buffer_uptodate(bh);
1688                         bh = bh->b_this_page;
1689                 } while (bh != head);
1690         }
1691         folio_attach_private(folio, head);
1692         spin_unlock(&folio->mapping->i_private_lock);
1693 
1694         return head;
1695 }
1696 EXPORT_SYMBOL(create_empty_buffers);
1697 
1698 /**
1699  * clean_bdev_aliases: clean a range of buffers in block device
1700  * @bdev: Block device to clean buffers in
1701  * @block: Start of a range of blocks to clean
1702  * @len: Number of blocks to clean
1703  *
1704  * We are taking a range of blocks for data and we don't want writeback of any
1705  * buffer-cache aliases starting from return from this function and until the
1706  * moment when something will explicitly mark the buffer dirty (hopefully that
1707  * will not happen until we will free that block ;-) We don't even need to mark
1708  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1709  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1710  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1711  * would confuse anyone who might pick it with bread() afterwards...
1712  *
1713  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1714  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1715  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1716  * need to.  That happens here.
1717  */
1718 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1719 {
1720         struct address_space *bd_mapping = bdev->bd_mapping;
1721         const int blkbits = bd_mapping->host->i_blkbits;
1722         struct folio_batch fbatch;
1723         pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1724         pgoff_t end;
1725         int i, count;
1726         struct buffer_head *bh;
1727         struct buffer_head *head;
1728 
1729         end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1730         folio_batch_init(&fbatch);
1731         while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1732                 count = folio_batch_count(&fbatch);
1733                 for (i = 0; i < count; i++) {
1734                         struct folio *folio = fbatch.folios[i];
1735 
1736                         if (!folio_buffers(folio))
1737                                 continue;
1738                         /*
1739                          * We use folio lock instead of bd_mapping->i_private_lock
1740                          * to pin buffers here since we can afford to sleep and
1741                          * it scales better than a global spinlock lock.
1742                          */
1743                         folio_lock(folio);
1744                         /* Recheck when the folio is locked which pins bhs */
1745                         head = folio_buffers(folio);
1746                         if (!head)
1747                                 goto unlock_page;
1748                         bh = head;
1749                         do {
1750                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1751                                         goto next;
1752                                 if (bh->b_blocknr >= block + len)
1753                                         break;
1754                                 clear_buffer_dirty(bh);
1755                                 wait_on_buffer(bh);
1756                                 clear_buffer_req(bh);
1757 next:
1758                                 bh = bh->b_this_page;
1759                         } while (bh != head);
1760 unlock_page:
1761                         folio_unlock(folio);
1762                 }
1763                 folio_batch_release(&fbatch);
1764                 cond_resched();
1765                 /* End of range already reached? */
1766                 if (index > end || !index)
1767                         break;
1768         }
1769 }
1770 EXPORT_SYMBOL(clean_bdev_aliases);
1771 
1772 static struct buffer_head *folio_create_buffers(struct folio *folio,
1773                                                 struct inode *inode,
1774                                                 unsigned int b_state)
1775 {
1776         struct buffer_head *bh;
1777 
1778         BUG_ON(!folio_test_locked(folio));
1779 
1780         bh = folio_buffers(folio);
1781         if (!bh)
1782                 bh = create_empty_buffers(folio,
1783                                 1 << READ_ONCE(inode->i_blkbits), b_state);
1784         return bh;
1785 }
1786 
1787 /*
1788  * NOTE! All mapped/uptodate combinations are valid:
1789  *
1790  *      Mapped  Uptodate        Meaning
1791  *
1792  *      No      No              "unknown" - must do get_block()
1793  *      No      Yes             "hole" - zero-filled
1794  *      Yes     No              "allocated" - allocated on disk, not read in
1795  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1796  *
1797  * "Dirty" is valid only with the last case (mapped+uptodate).
1798  */
1799 
1800 /*
1801  * While block_write_full_folio is writing back the dirty buffers under
1802  * the page lock, whoever dirtied the buffers may decide to clean them
1803  * again at any time.  We handle that by only looking at the buffer
1804  * state inside lock_buffer().
1805  *
1806  * If block_write_full_folio() is called for regular writeback
1807  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1808  * locked buffer.   This only can happen if someone has written the buffer
1809  * directly, with submit_bh().  At the address_space level PageWriteback
1810  * prevents this contention from occurring.
1811  *
1812  * If block_write_full_folio() is called with wbc->sync_mode ==
1813  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1814  * causes the writes to be flagged as synchronous writes.
1815  */
1816 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1817                         get_block_t *get_block, struct writeback_control *wbc)
1818 {
1819         int err;
1820         sector_t block;
1821         sector_t last_block;
1822         struct buffer_head *bh, *head;
1823         size_t blocksize;
1824         int nr_underway = 0;
1825         blk_opf_t write_flags = wbc_to_write_flags(wbc);
1826 
1827         head = folio_create_buffers(folio, inode,
1828                                     (1 << BH_Dirty) | (1 << BH_Uptodate));
1829 
1830         /*
1831          * Be very careful.  We have no exclusion from block_dirty_folio
1832          * here, and the (potentially unmapped) buffers may become dirty at
1833          * any time.  If a buffer becomes dirty here after we've inspected it
1834          * then we just miss that fact, and the folio stays dirty.
1835          *
1836          * Buffers outside i_size may be dirtied by block_dirty_folio;
1837          * handle that here by just cleaning them.
1838          */
1839 
1840         bh = head;
1841         blocksize = bh->b_size;
1842 
1843         block = div_u64(folio_pos(folio), blocksize);
1844         last_block = div_u64(i_size_read(inode) - 1, blocksize);
1845 
1846         /*
1847          * Get all the dirty buffers mapped to disk addresses and
1848          * handle any aliases from the underlying blockdev's mapping.
1849          */
1850         do {
1851                 if (block > last_block) {
1852                         /*
1853                          * mapped buffers outside i_size will occur, because
1854                          * this folio can be outside i_size when there is a
1855                          * truncate in progress.
1856                          */
1857                         /*
1858                          * The buffer was zeroed by block_write_full_folio()
1859                          */
1860                         clear_buffer_dirty(bh);
1861                         set_buffer_uptodate(bh);
1862                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1863                            buffer_dirty(bh)) {
1864                         WARN_ON(bh->b_size != blocksize);
1865                         err = get_block(inode, block, bh, 1);
1866                         if (err)
1867                                 goto recover;
1868                         clear_buffer_delay(bh);
1869                         if (buffer_new(bh)) {
1870                                 /* blockdev mappings never come here */
1871                                 clear_buffer_new(bh);
1872                                 clean_bdev_bh_alias(bh);
1873                         }
1874                 }
1875                 bh = bh->b_this_page;
1876                 block++;
1877         } while (bh != head);
1878 
1879         do {
1880                 if (!buffer_mapped(bh))
1881                         continue;
1882                 /*
1883                  * If it's a fully non-blocking write attempt and we cannot
1884                  * lock the buffer then redirty the folio.  Note that this can
1885                  * potentially cause a busy-wait loop from writeback threads
1886                  * and kswapd activity, but those code paths have their own
1887                  * higher-level throttling.
1888                  */
1889                 if (wbc->sync_mode != WB_SYNC_NONE) {
1890                         lock_buffer(bh);
1891                 } else if (!trylock_buffer(bh)) {
1892                         folio_redirty_for_writepage(wbc, folio);
1893                         continue;
1894                 }
1895                 if (test_clear_buffer_dirty(bh)) {
1896                         mark_buffer_async_write_endio(bh,
1897                                 end_buffer_async_write);
1898                 } else {
1899                         unlock_buffer(bh);
1900                 }
1901         } while ((bh = bh->b_this_page) != head);
1902 
1903         /*
1904          * The folio and its buffers are protected by the writeback flag,
1905          * so we can drop the bh refcounts early.
1906          */
1907         BUG_ON(folio_test_writeback(folio));
1908         folio_start_writeback(folio);
1909 
1910         do {
1911                 struct buffer_head *next = bh->b_this_page;
1912                 if (buffer_async_write(bh)) {
1913                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1914                                       inode->i_write_hint, wbc);
1915                         nr_underway++;
1916                 }
1917                 bh = next;
1918         } while (bh != head);
1919         folio_unlock(folio);
1920 
1921         err = 0;
1922 done:
1923         if (nr_underway == 0) {
1924                 /*
1925                  * The folio was marked dirty, but the buffers were
1926                  * clean.  Someone wrote them back by hand with
1927                  * write_dirty_buffer/submit_bh.  A rare case.
1928                  */
1929                 folio_end_writeback(folio);
1930 
1931                 /*
1932                  * The folio and buffer_heads can be released at any time from
1933                  * here on.
1934                  */
1935         }
1936         return err;
1937 
1938 recover:
1939         /*
1940          * ENOSPC, or some other error.  We may already have added some
1941          * blocks to the file, so we need to write these out to avoid
1942          * exposing stale data.
1943          * The folio is currently locked and not marked for writeback
1944          */
1945         bh = head;
1946         /* Recovery: lock and submit the mapped buffers */
1947         do {
1948                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1949                     !buffer_delay(bh)) {
1950                         lock_buffer(bh);
1951                         mark_buffer_async_write_endio(bh,
1952                                 end_buffer_async_write);
1953                 } else {
1954                         /*
1955                          * The buffer may have been set dirty during
1956                          * attachment to a dirty folio.
1957                          */
1958                         clear_buffer_dirty(bh);
1959                 }
1960         } while ((bh = bh->b_this_page) != head);
1961         BUG_ON(folio_test_writeback(folio));
1962         mapping_set_error(folio->mapping, err);
1963         folio_start_writeback(folio);
1964         do {
1965                 struct buffer_head *next = bh->b_this_page;
1966                 if (buffer_async_write(bh)) {
1967                         clear_buffer_dirty(bh);
1968                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1969                                       inode->i_write_hint, wbc);
1970                         nr_underway++;
1971                 }
1972                 bh = next;
1973         } while (bh != head);
1974         folio_unlock(folio);
1975         goto done;
1976 }
1977 EXPORT_SYMBOL(__block_write_full_folio);
1978 
1979 /*
1980  * If a folio has any new buffers, zero them out here, and mark them uptodate
1981  * and dirty so they'll be written out (in order to prevent uninitialised
1982  * block data from leaking). And clear the new bit.
1983  */
1984 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1985 {
1986         size_t block_start, block_end;
1987         struct buffer_head *head, *bh;
1988 
1989         BUG_ON(!folio_test_locked(folio));
1990         head = folio_buffers(folio);
1991         if (!head)
1992                 return;
1993 
1994         bh = head;
1995         block_start = 0;
1996         do {
1997                 block_end = block_start + bh->b_size;
1998 
1999                 if (buffer_new(bh)) {
2000                         if (block_end > from && block_start < to) {
2001                                 if (!folio_test_uptodate(folio)) {
2002                                         size_t start, xend;
2003 
2004                                         start = max(from, block_start);
2005                                         xend = min(to, block_end);
2006 
2007                                         folio_zero_segment(folio, start, xend);
2008                                         set_buffer_uptodate(bh);
2009                                 }
2010 
2011                                 clear_buffer_new(bh);
2012                                 mark_buffer_dirty(bh);
2013                         }
2014                 }
2015 
2016                 block_start = block_end;
2017                 bh = bh->b_this_page;
2018         } while (bh != head);
2019 }
2020 EXPORT_SYMBOL(folio_zero_new_buffers);
2021 
2022 static int
2023 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2024                 const struct iomap *iomap)
2025 {
2026         loff_t offset = (loff_t)block << inode->i_blkbits;
2027 
2028         bh->b_bdev = iomap->bdev;
2029 
2030         /*
2031          * Block points to offset in file we need to map, iomap contains
2032          * the offset at which the map starts. If the map ends before the
2033          * current block, then do not map the buffer and let the caller
2034          * handle it.
2035          */
2036         if (offset >= iomap->offset + iomap->length)
2037                 return -EIO;
2038 
2039         switch (iomap->type) {
2040         case IOMAP_HOLE:
2041                 /*
2042                  * If the buffer is not up to date or beyond the current EOF,
2043                  * we need to mark it as new to ensure sub-block zeroing is
2044                  * executed if necessary.
2045                  */
2046                 if (!buffer_uptodate(bh) ||
2047                     (offset >= i_size_read(inode)))
2048                         set_buffer_new(bh);
2049                 return 0;
2050         case IOMAP_DELALLOC:
2051                 if (!buffer_uptodate(bh) ||
2052                     (offset >= i_size_read(inode)))
2053                         set_buffer_new(bh);
2054                 set_buffer_uptodate(bh);
2055                 set_buffer_mapped(bh);
2056                 set_buffer_delay(bh);
2057                 return 0;
2058         case IOMAP_UNWRITTEN:
2059                 /*
2060                  * For unwritten regions, we always need to ensure that regions
2061                  * in the block we are not writing to are zeroed. Mark the
2062                  * buffer as new to ensure this.
2063                  */
2064                 set_buffer_new(bh);
2065                 set_buffer_unwritten(bh);
2066                 fallthrough;
2067         case IOMAP_MAPPED:
2068                 if ((iomap->flags & IOMAP_F_NEW) ||
2069                     offset >= i_size_read(inode)) {
2070                         /*
2071                          * This can happen if truncating the block device races
2072                          * with the check in the caller as i_size updates on
2073                          * block devices aren't synchronized by i_rwsem for
2074                          * block devices.
2075                          */
2076                         if (S_ISBLK(inode->i_mode))
2077                                 return -EIO;
2078                         set_buffer_new(bh);
2079                 }
2080                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2081                                 inode->i_blkbits;
2082                 set_buffer_mapped(bh);
2083                 return 0;
2084         default:
2085                 WARN_ON_ONCE(1);
2086                 return -EIO;
2087         }
2088 }
2089 
2090 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2091                 get_block_t *get_block, const struct iomap *iomap)
2092 {
2093         size_t from = offset_in_folio(folio, pos);
2094         size_t to = from + len;
2095         struct inode *inode = folio->mapping->host;
2096         size_t block_start, block_end;
2097         sector_t block;
2098         int err = 0;
2099         size_t blocksize;
2100         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2101 
2102         BUG_ON(!folio_test_locked(folio));
2103         BUG_ON(to > folio_size(folio));
2104         BUG_ON(from > to);
2105 
2106         head = folio_create_buffers(folio, inode, 0);
2107         blocksize = head->b_size;
2108         block = div_u64(folio_pos(folio), blocksize);
2109 
2110         for (bh = head, block_start = 0; bh != head || !block_start;
2111             block++, block_start=block_end, bh = bh->b_this_page) {
2112                 block_end = block_start + blocksize;
2113                 if (block_end <= from || block_start >= to) {
2114                         if (folio_test_uptodate(folio)) {
2115                                 if (!buffer_uptodate(bh))
2116                                         set_buffer_uptodate(bh);
2117                         }
2118                         continue;
2119                 }
2120                 if (buffer_new(bh))
2121                         clear_buffer_new(bh);
2122                 if (!buffer_mapped(bh)) {
2123                         WARN_ON(bh->b_size != blocksize);
2124                         if (get_block)
2125                                 err = get_block(inode, block, bh, 1);
2126                         else
2127                                 err = iomap_to_bh(inode, block, bh, iomap);
2128                         if (err)
2129                                 break;
2130 
2131                         if (buffer_new(bh)) {
2132                                 clean_bdev_bh_alias(bh);
2133                                 if (folio_test_uptodate(folio)) {
2134                                         clear_buffer_new(bh);
2135                                         set_buffer_uptodate(bh);
2136                                         mark_buffer_dirty(bh);
2137                                         continue;
2138                                 }
2139                                 if (block_end > to || block_start < from)
2140                                         folio_zero_segments(folio,
2141                                                 to, block_end,
2142                                                 block_start, from);
2143                                 continue;
2144                         }
2145                 }
2146                 if (folio_test_uptodate(folio)) {
2147                         if (!buffer_uptodate(bh))
2148                                 set_buffer_uptodate(bh);
2149                         continue; 
2150                 }
2151                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2152                     !buffer_unwritten(bh) &&
2153                      (block_start < from || block_end > to)) {
2154                         bh_read_nowait(bh, 0);
2155                         *wait_bh++=bh;
2156                 }
2157         }
2158         /*
2159          * If we issued read requests - let them complete.
2160          */
2161         while(wait_bh > wait) {
2162                 wait_on_buffer(*--wait_bh);
2163                 if (!buffer_uptodate(*wait_bh))
2164                         err = -EIO;
2165         }
2166         if (unlikely(err))
2167                 folio_zero_new_buffers(folio, from, to);
2168         return err;
2169 }
2170 
2171 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2172                 get_block_t *get_block)
2173 {
2174         return __block_write_begin_int(page_folio(page), pos, len, get_block,
2175                                        NULL);
2176 }
2177 EXPORT_SYMBOL(__block_write_begin);
2178 
2179 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2180 {
2181         size_t block_start, block_end;
2182         bool partial = false;
2183         unsigned blocksize;
2184         struct buffer_head *bh, *head;
2185 
2186         bh = head = folio_buffers(folio);
2187         if (!bh)
2188                 return;
2189         blocksize = bh->b_size;
2190 
2191         block_start = 0;
2192         do {
2193                 block_end = block_start + blocksize;
2194                 if (block_end <= from || block_start >= to) {
2195                         if (!buffer_uptodate(bh))
2196                                 partial = true;
2197                 } else {
2198                         set_buffer_uptodate(bh);
2199                         mark_buffer_dirty(bh);
2200                 }
2201                 if (buffer_new(bh))
2202                         clear_buffer_new(bh);
2203 
2204                 block_start = block_end;
2205                 bh = bh->b_this_page;
2206         } while (bh != head);
2207 
2208         /*
2209          * If this is a partial write which happened to make all buffers
2210          * uptodate then we can optimize away a bogus read_folio() for
2211          * the next read(). Here we 'discover' whether the folio went
2212          * uptodate as a result of this (potentially partial) write.
2213          */
2214         if (!partial)
2215                 folio_mark_uptodate(folio);
2216 }
2217 
2218 /*
2219  * block_write_begin takes care of the basic task of block allocation and
2220  * bringing partial write blocks uptodate first.
2221  *
2222  * The filesystem needs to handle block truncation upon failure.
2223  */
2224 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2225                 struct page **pagep, get_block_t *get_block)
2226 {
2227         pgoff_t index = pos >> PAGE_SHIFT;
2228         struct page *page;
2229         int status;
2230 
2231         page = grab_cache_page_write_begin(mapping, index);
2232         if (!page)
2233                 return -ENOMEM;
2234 
2235         status = __block_write_begin(page, pos, len, get_block);
2236         if (unlikely(status)) {
2237                 unlock_page(page);
2238                 put_page(page);
2239                 page = NULL;
2240         }
2241 
2242         *pagep = page;
2243         return status;
2244 }
2245 EXPORT_SYMBOL(block_write_begin);
2246 
2247 int block_write_end(struct file *file, struct address_space *mapping,
2248                         loff_t pos, unsigned len, unsigned copied,
2249                         struct page *page, void *fsdata)
2250 {
2251         struct folio *folio = page_folio(page);
2252         size_t start = pos - folio_pos(folio);
2253 
2254         if (unlikely(copied < len)) {
2255                 /*
2256                  * The buffers that were written will now be uptodate, so
2257                  * we don't have to worry about a read_folio reading them
2258                  * and overwriting a partial write. However if we have
2259                  * encountered a short write and only partially written
2260                  * into a buffer, it will not be marked uptodate, so a
2261                  * read_folio might come in and destroy our partial write.
2262                  *
2263                  * Do the simplest thing, and just treat any short write to a
2264                  * non uptodate folio as a zero-length write, and force the
2265                  * caller to redo the whole thing.
2266                  */
2267                 if (!folio_test_uptodate(folio))
2268                         copied = 0;
2269 
2270                 folio_zero_new_buffers(folio, start+copied, start+len);
2271         }
2272         flush_dcache_folio(folio);
2273 
2274         /* This could be a short (even 0-length) commit */
2275         __block_commit_write(folio, start, start + copied);
2276 
2277         return copied;
2278 }
2279 EXPORT_SYMBOL(block_write_end);
2280 
2281 int generic_write_end(struct file *file, struct address_space *mapping,
2282                         loff_t pos, unsigned len, unsigned copied,
2283                         struct page *page, void *fsdata)
2284 {
2285         struct inode *inode = mapping->host;
2286         loff_t old_size = inode->i_size;
2287         bool i_size_changed = false;
2288 
2289         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2290 
2291         /*
2292          * No need to use i_size_read() here, the i_size cannot change under us
2293          * because we hold i_rwsem.
2294          *
2295          * But it's important to update i_size while still holding page lock:
2296          * page writeout could otherwise come in and zero beyond i_size.
2297          */
2298         if (pos + copied > inode->i_size) {
2299                 i_size_write(inode, pos + copied);
2300                 i_size_changed = true;
2301         }
2302 
2303         unlock_page(page);
2304         put_page(page);
2305 
2306         if (old_size < pos)
2307                 pagecache_isize_extended(inode, old_size, pos);
2308         /*
2309          * Don't mark the inode dirty under page lock. First, it unnecessarily
2310          * makes the holding time of page lock longer. Second, it forces lock
2311          * ordering of page lock and transaction start for journaling
2312          * filesystems.
2313          */
2314         if (i_size_changed)
2315                 mark_inode_dirty(inode);
2316         return copied;
2317 }
2318 EXPORT_SYMBOL(generic_write_end);
2319 
2320 /*
2321  * block_is_partially_uptodate checks whether buffers within a folio are
2322  * uptodate or not.
2323  *
2324  * Returns true if all buffers which correspond to the specified part
2325  * of the folio are uptodate.
2326  */
2327 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2328 {
2329         unsigned block_start, block_end, blocksize;
2330         unsigned to;
2331         struct buffer_head *bh, *head;
2332         bool ret = true;
2333 
2334         head = folio_buffers(folio);
2335         if (!head)
2336                 return false;
2337         blocksize = head->b_size;
2338         to = min_t(unsigned, folio_size(folio) - from, count);
2339         to = from + to;
2340         if (from < blocksize && to > folio_size(folio) - blocksize)
2341                 return false;
2342 
2343         bh = head;
2344         block_start = 0;
2345         do {
2346                 block_end = block_start + blocksize;
2347                 if (block_end > from && block_start < to) {
2348                         if (!buffer_uptodate(bh)) {
2349                                 ret = false;
2350                                 break;
2351                         }
2352                         if (block_end >= to)
2353                                 break;
2354                 }
2355                 block_start = block_end;
2356                 bh = bh->b_this_page;
2357         } while (bh != head);
2358 
2359         return ret;
2360 }
2361 EXPORT_SYMBOL(block_is_partially_uptodate);
2362 
2363 /*
2364  * Generic "read_folio" function for block devices that have the normal
2365  * get_block functionality. This is most of the block device filesystems.
2366  * Reads the folio asynchronously --- the unlock_buffer() and
2367  * set/clear_buffer_uptodate() functions propagate buffer state into the
2368  * folio once IO has completed.
2369  */
2370 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2371 {
2372         struct inode *inode = folio->mapping->host;
2373         sector_t iblock, lblock;
2374         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2375         size_t blocksize;
2376         int nr, i;
2377         int fully_mapped = 1;
2378         bool page_error = false;
2379         loff_t limit = i_size_read(inode);
2380 
2381         /* This is needed for ext4. */
2382         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2383                 limit = inode->i_sb->s_maxbytes;
2384 
2385         VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2386 
2387         head = folio_create_buffers(folio, inode, 0);
2388         blocksize = head->b_size;
2389 
2390         iblock = div_u64(folio_pos(folio), blocksize);
2391         lblock = div_u64(limit + blocksize - 1, blocksize);
2392         bh = head;
2393         nr = 0;
2394         i = 0;
2395 
2396         do {
2397                 if (buffer_uptodate(bh))
2398                         continue;
2399 
2400                 if (!buffer_mapped(bh)) {
2401                         int err = 0;
2402 
2403                         fully_mapped = 0;
2404                         if (iblock < lblock) {
2405                                 WARN_ON(bh->b_size != blocksize);
2406                                 err = get_block(inode, iblock, bh, 0);
2407                                 if (err)
2408                                         page_error = true;
2409                         }
2410                         if (!buffer_mapped(bh)) {
2411                                 folio_zero_range(folio, i * blocksize,
2412                                                 blocksize);
2413                                 if (!err)
2414                                         set_buffer_uptodate(bh);
2415                                 continue;
2416                         }
2417                         /*
2418                          * get_block() might have updated the buffer
2419                          * synchronously
2420                          */
2421                         if (buffer_uptodate(bh))
2422                                 continue;
2423                 }
2424                 arr[nr++] = bh;
2425         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2426 
2427         if (fully_mapped)
2428                 folio_set_mappedtodisk(folio);
2429 
2430         if (!nr) {
2431                 /*
2432                  * All buffers are uptodate or get_block() returned an
2433                  * error when trying to map them - we can finish the read.
2434                  */
2435                 folio_end_read(folio, !page_error);
2436                 return 0;
2437         }
2438 
2439         /* Stage two: lock the buffers */
2440         for (i = 0; i < nr; i++) {
2441                 bh = arr[i];
2442                 lock_buffer(bh);
2443                 mark_buffer_async_read(bh);
2444         }
2445 
2446         /*
2447          * Stage 3: start the IO.  Check for uptodateness
2448          * inside the buffer lock in case another process reading
2449          * the underlying blockdev brought it uptodate (the sct fix).
2450          */
2451         for (i = 0; i < nr; i++) {
2452                 bh = arr[i];
2453                 if (buffer_uptodate(bh))
2454                         end_buffer_async_read(bh, 1);
2455                 else
2456                         submit_bh(REQ_OP_READ, bh);
2457         }
2458         return 0;
2459 }
2460 EXPORT_SYMBOL(block_read_full_folio);
2461 
2462 /* utility function for filesystems that need to do work on expanding
2463  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2464  * deal with the hole.  
2465  */
2466 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2467 {
2468         struct address_space *mapping = inode->i_mapping;
2469         const struct address_space_operations *aops = mapping->a_ops;
2470         struct page *page;
2471         void *fsdata = NULL;
2472         int err;
2473 
2474         err = inode_newsize_ok(inode, size);
2475         if (err)
2476                 goto out;
2477 
2478         err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2479         if (err)
2480                 goto out;
2481 
2482         err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2483         BUG_ON(err > 0);
2484 
2485 out:
2486         return err;
2487 }
2488 EXPORT_SYMBOL(generic_cont_expand_simple);
2489 
2490 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2491                             loff_t pos, loff_t *bytes)
2492 {
2493         struct inode *inode = mapping->host;
2494         const struct address_space_operations *aops = mapping->a_ops;
2495         unsigned int blocksize = i_blocksize(inode);
2496         struct page *page;
2497         void *fsdata = NULL;
2498         pgoff_t index, curidx;
2499         loff_t curpos;
2500         unsigned zerofrom, offset, len;
2501         int err = 0;
2502 
2503         index = pos >> PAGE_SHIFT;
2504         offset = pos & ~PAGE_MASK;
2505 
2506         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2507                 zerofrom = curpos & ~PAGE_MASK;
2508                 if (zerofrom & (blocksize-1)) {
2509                         *bytes |= (blocksize-1);
2510                         (*bytes)++;
2511                 }
2512                 len = PAGE_SIZE - zerofrom;
2513 
2514                 err = aops->write_begin(file, mapping, curpos, len,
2515                                             &page, &fsdata);
2516                 if (err)
2517                         goto out;
2518                 zero_user(page, zerofrom, len);
2519                 err = aops->write_end(file, mapping, curpos, len, len,
2520                                                 page, fsdata);
2521                 if (err < 0)
2522                         goto out;
2523                 BUG_ON(err != len);
2524                 err = 0;
2525 
2526                 balance_dirty_pages_ratelimited(mapping);
2527 
2528                 if (fatal_signal_pending(current)) {
2529                         err = -EINTR;
2530                         goto out;
2531                 }
2532         }
2533 
2534         /* page covers the boundary, find the boundary offset */
2535         if (index == curidx) {
2536                 zerofrom = curpos & ~PAGE_MASK;
2537                 /* if we will expand the thing last block will be filled */
2538                 if (offset <= zerofrom) {
2539                         goto out;
2540                 }
2541                 if (zerofrom & (blocksize-1)) {
2542                         *bytes |= (blocksize-1);
2543                         (*bytes)++;
2544                 }
2545                 len = offset - zerofrom;
2546 
2547                 err = aops->write_begin(file, mapping, curpos, len,
2548                                             &page, &fsdata);
2549                 if (err)
2550                         goto out;
2551                 zero_user(page, zerofrom, len);
2552                 err = aops->write_end(file, mapping, curpos, len, len,
2553                                                 page, fsdata);
2554                 if (err < 0)
2555                         goto out;
2556                 BUG_ON(err != len);
2557                 err = 0;
2558         }
2559 out:
2560         return err;
2561 }
2562 
2563 /*
2564  * For moronic filesystems that do not allow holes in file.
2565  * We may have to extend the file.
2566  */
2567 int cont_write_begin(struct file *file, struct address_space *mapping,
2568                         loff_t pos, unsigned len,
2569                         struct page **pagep, void **fsdata,
2570                         get_block_t *get_block, loff_t *bytes)
2571 {
2572         struct inode *inode = mapping->host;
2573         unsigned int blocksize = i_blocksize(inode);
2574         unsigned int zerofrom;
2575         int err;
2576 
2577         err = cont_expand_zero(file, mapping, pos, bytes);
2578         if (err)
2579                 return err;
2580 
2581         zerofrom = *bytes & ~PAGE_MASK;
2582         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2583                 *bytes |= (blocksize-1);
2584                 (*bytes)++;
2585         }
2586 
2587         return block_write_begin(mapping, pos, len, pagep, get_block);
2588 }
2589 EXPORT_SYMBOL(cont_write_begin);
2590 
2591 void block_commit_write(struct page *page, unsigned from, unsigned to)
2592 {
2593         struct folio *folio = page_folio(page);
2594         __block_commit_write(folio, from, to);
2595 }
2596 EXPORT_SYMBOL(block_commit_write);
2597 
2598 /*
2599  * block_page_mkwrite() is not allowed to change the file size as it gets
2600  * called from a page fault handler when a page is first dirtied. Hence we must
2601  * be careful to check for EOF conditions here. We set the page up correctly
2602  * for a written page which means we get ENOSPC checking when writing into
2603  * holes and correct delalloc and unwritten extent mapping on filesystems that
2604  * support these features.
2605  *
2606  * We are not allowed to take the i_mutex here so we have to play games to
2607  * protect against truncate races as the page could now be beyond EOF.  Because
2608  * truncate writes the inode size before removing pages, once we have the
2609  * page lock we can determine safely if the page is beyond EOF. If it is not
2610  * beyond EOF, then the page is guaranteed safe against truncation until we
2611  * unlock the page.
2612  *
2613  * Direct callers of this function should protect against filesystem freezing
2614  * using sb_start_pagefault() - sb_end_pagefault() functions.
2615  */
2616 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2617                          get_block_t get_block)
2618 {
2619         struct folio *folio = page_folio(vmf->page);
2620         struct inode *inode = file_inode(vma->vm_file);
2621         unsigned long end;
2622         loff_t size;
2623         int ret;
2624 
2625         folio_lock(folio);
2626         size = i_size_read(inode);
2627         if ((folio->mapping != inode->i_mapping) ||
2628             (folio_pos(folio) >= size)) {
2629                 /* We overload EFAULT to mean page got truncated */
2630                 ret = -EFAULT;
2631                 goto out_unlock;
2632         }
2633 
2634         end = folio_size(folio);
2635         /* folio is wholly or partially inside EOF */
2636         if (folio_pos(folio) + end > size)
2637                 end = size - folio_pos(folio);
2638 
2639         ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2640         if (unlikely(ret))
2641                 goto out_unlock;
2642 
2643         __block_commit_write(folio, 0, end);
2644 
2645         folio_mark_dirty(folio);
2646         folio_wait_stable(folio);
2647         return 0;
2648 out_unlock:
2649         folio_unlock(folio);
2650         return ret;
2651 }
2652 EXPORT_SYMBOL(block_page_mkwrite);
2653 
2654 int block_truncate_page(struct address_space *mapping,
2655                         loff_t from, get_block_t *get_block)
2656 {
2657         pgoff_t index = from >> PAGE_SHIFT;
2658         unsigned blocksize;
2659         sector_t iblock;
2660         size_t offset, length, pos;
2661         struct inode *inode = mapping->host;
2662         struct folio *folio;
2663         struct buffer_head *bh;
2664         int err = 0;
2665 
2666         blocksize = i_blocksize(inode);
2667         length = from & (blocksize - 1);
2668 
2669         /* Block boundary? Nothing to do */
2670         if (!length)
2671                 return 0;
2672 
2673         length = blocksize - length;
2674         iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2675 
2676         folio = filemap_grab_folio(mapping, index);
2677         if (IS_ERR(folio))
2678                 return PTR_ERR(folio);
2679 
2680         bh = folio_buffers(folio);
2681         if (!bh)
2682                 bh = create_empty_buffers(folio, blocksize, 0);
2683 
2684         /* Find the buffer that contains "offset" */
2685         offset = offset_in_folio(folio, from);
2686         pos = blocksize;
2687         while (offset >= pos) {
2688                 bh = bh->b_this_page;
2689                 iblock++;
2690                 pos += blocksize;
2691         }
2692 
2693         if (!buffer_mapped(bh)) {
2694                 WARN_ON(bh->b_size != blocksize);
2695                 err = get_block(inode, iblock, bh, 0);
2696                 if (err)
2697                         goto unlock;
2698                 /* unmapped? It's a hole - nothing to do */
2699                 if (!buffer_mapped(bh))
2700                         goto unlock;
2701         }
2702 
2703         /* Ok, it's mapped. Make sure it's up-to-date */
2704         if (folio_test_uptodate(folio))
2705                 set_buffer_uptodate(bh);
2706 
2707         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2708                 err = bh_read(bh, 0);
2709                 /* Uhhuh. Read error. Complain and punt. */
2710                 if (err < 0)
2711                         goto unlock;
2712         }
2713 
2714         folio_zero_range(folio, offset, length);
2715         mark_buffer_dirty(bh);
2716 
2717 unlock:
2718         folio_unlock(folio);
2719         folio_put(folio);
2720 
2721         return err;
2722 }
2723 EXPORT_SYMBOL(block_truncate_page);
2724 
2725 /*
2726  * The generic ->writepage function for buffer-backed address_spaces
2727  */
2728 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2729                 void *get_block)
2730 {
2731         struct inode * const inode = folio->mapping->host;
2732         loff_t i_size = i_size_read(inode);
2733 
2734         /* Is the folio fully inside i_size? */
2735         if (folio_pos(folio) + folio_size(folio) <= i_size)
2736                 return __block_write_full_folio(inode, folio, get_block, wbc);
2737 
2738         /* Is the folio fully outside i_size? (truncate in progress) */
2739         if (folio_pos(folio) >= i_size) {
2740                 folio_unlock(folio);
2741                 return 0; /* don't care */
2742         }
2743 
2744         /*
2745          * The folio straddles i_size.  It must be zeroed out on each and every
2746          * writepage invocation because it may be mmapped.  "A file is mapped
2747          * in multiples of the page size.  For a file that is not a multiple of
2748          * the page size, the remaining memory is zeroed when mapped, and
2749          * writes to that region are not written out to the file."
2750          */
2751         folio_zero_segment(folio, offset_in_folio(folio, i_size),
2752                         folio_size(folio));
2753         return __block_write_full_folio(inode, folio, get_block, wbc);
2754 }
2755 
2756 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2757                             get_block_t *get_block)
2758 {
2759         struct inode *inode = mapping->host;
2760         struct buffer_head tmp = {
2761                 .b_size = i_blocksize(inode),
2762         };
2763 
2764         get_block(inode, block, &tmp, 0);
2765         return tmp.b_blocknr;
2766 }
2767 EXPORT_SYMBOL(generic_block_bmap);
2768 
2769 static void end_bio_bh_io_sync(struct bio *bio)
2770 {
2771         struct buffer_head *bh = bio->bi_private;
2772 
2773         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2774                 set_bit(BH_Quiet, &bh->b_state);
2775 
2776         bh->b_end_io(bh, !bio->bi_status);
2777         bio_put(bio);
2778 }
2779 
2780 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2781                           enum rw_hint write_hint,
2782                           struct writeback_control *wbc)
2783 {
2784         const enum req_op op = opf & REQ_OP_MASK;
2785         struct bio *bio;
2786 
2787         BUG_ON(!buffer_locked(bh));
2788         BUG_ON(!buffer_mapped(bh));
2789         BUG_ON(!bh->b_end_io);
2790         BUG_ON(buffer_delay(bh));
2791         BUG_ON(buffer_unwritten(bh));
2792 
2793         /*
2794          * Only clear out a write error when rewriting
2795          */
2796         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2797                 clear_buffer_write_io_error(bh);
2798 
2799         if (buffer_meta(bh))
2800                 opf |= REQ_META;
2801         if (buffer_prio(bh))
2802                 opf |= REQ_PRIO;
2803 
2804         bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2805 
2806         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2807 
2808         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2809         bio->bi_write_hint = write_hint;
2810 
2811         __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2812 
2813         bio->bi_end_io = end_bio_bh_io_sync;
2814         bio->bi_private = bh;
2815 
2816         /* Take care of bh's that straddle the end of the device */
2817         guard_bio_eod(bio);
2818 
2819         if (wbc) {
2820                 wbc_init_bio(wbc, bio);
2821                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2822         }
2823 
2824         submit_bio(bio);
2825 }
2826 
2827 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2828 {
2829         submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2830 }
2831 EXPORT_SYMBOL(submit_bh);
2832 
2833 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2834 {
2835         lock_buffer(bh);
2836         if (!test_clear_buffer_dirty(bh)) {
2837                 unlock_buffer(bh);
2838                 return;
2839         }
2840         bh->b_end_io = end_buffer_write_sync;
2841         get_bh(bh);
2842         submit_bh(REQ_OP_WRITE | op_flags, bh);
2843 }
2844 EXPORT_SYMBOL(write_dirty_buffer);
2845 
2846 /*
2847  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2848  * and then start new I/O and then wait upon it.  The caller must have a ref on
2849  * the buffer_head.
2850  */
2851 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2852 {
2853         WARN_ON(atomic_read(&bh->b_count) < 1);
2854         lock_buffer(bh);
2855         if (test_clear_buffer_dirty(bh)) {
2856                 /*
2857                  * The bh should be mapped, but it might not be if the
2858                  * device was hot-removed. Not much we can do but fail the I/O.
2859                  */
2860                 if (!buffer_mapped(bh)) {
2861                         unlock_buffer(bh);
2862                         return -EIO;
2863                 }
2864 
2865                 get_bh(bh);
2866                 bh->b_end_io = end_buffer_write_sync;
2867                 submit_bh(REQ_OP_WRITE | op_flags, bh);
2868                 wait_on_buffer(bh);
2869                 if (!buffer_uptodate(bh))
2870                         return -EIO;
2871         } else {
2872                 unlock_buffer(bh);
2873         }
2874         return 0;
2875 }
2876 EXPORT_SYMBOL(__sync_dirty_buffer);
2877 
2878 int sync_dirty_buffer(struct buffer_head *bh)
2879 {
2880         return __sync_dirty_buffer(bh, REQ_SYNC);
2881 }
2882 EXPORT_SYMBOL(sync_dirty_buffer);
2883 
2884 static inline int buffer_busy(struct buffer_head *bh)
2885 {
2886         return atomic_read(&bh->b_count) |
2887                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2888 }
2889 
2890 static bool
2891 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2892 {
2893         struct buffer_head *head = folio_buffers(folio);
2894         struct buffer_head *bh;
2895 
2896         bh = head;
2897         do {
2898                 if (buffer_busy(bh))
2899                         goto failed;
2900                 bh = bh->b_this_page;
2901         } while (bh != head);
2902 
2903         do {
2904                 struct buffer_head *next = bh->b_this_page;
2905 
2906                 if (bh->b_assoc_map)
2907                         __remove_assoc_queue(bh);
2908                 bh = next;
2909         } while (bh != head);
2910         *buffers_to_free = head;
2911         folio_detach_private(folio);
2912         return true;
2913 failed:
2914         return false;
2915 }
2916 
2917 /**
2918  * try_to_free_buffers - Release buffers attached to this folio.
2919  * @folio: The folio.
2920  *
2921  * If any buffers are in use (dirty, under writeback, elevated refcount),
2922  * no buffers will be freed.
2923  *
2924  * If the folio is dirty but all the buffers are clean then we need to
2925  * be sure to mark the folio clean as well.  This is because the folio
2926  * may be against a block device, and a later reattachment of buffers
2927  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2928  * filesystem data on the same device.
2929  *
2930  * The same applies to regular filesystem folios: if all the buffers are
2931  * clean then we set the folio clean and proceed.  To do that, we require
2932  * total exclusion from block_dirty_folio().  That is obtained with
2933  * i_private_lock.
2934  *
2935  * Exclusion against try_to_free_buffers may be obtained by either
2936  * locking the folio or by holding its mapping's i_private_lock.
2937  *
2938  * Context: Process context.  @folio must be locked.  Will not sleep.
2939  * Return: true if all buffers attached to this folio were freed.
2940  */
2941 bool try_to_free_buffers(struct folio *folio)
2942 {
2943         struct address_space * const mapping = folio->mapping;
2944         struct buffer_head *buffers_to_free = NULL;
2945         bool ret = 0;
2946 
2947         BUG_ON(!folio_test_locked(folio));
2948         if (folio_test_writeback(folio))
2949                 return false;
2950 
2951         if (mapping == NULL) {          /* can this still happen? */
2952                 ret = drop_buffers(folio, &buffers_to_free);
2953                 goto out;
2954         }
2955 
2956         spin_lock(&mapping->i_private_lock);
2957         ret = drop_buffers(folio, &buffers_to_free);
2958 
2959         /*
2960          * If the filesystem writes its buffers by hand (eg ext3)
2961          * then we can have clean buffers against a dirty folio.  We
2962          * clean the folio here; otherwise the VM will never notice
2963          * that the filesystem did any IO at all.
2964          *
2965          * Also, during truncate, discard_buffer will have marked all
2966          * the folio's buffers clean.  We discover that here and clean
2967          * the folio also.
2968          *
2969          * i_private_lock must be held over this entire operation in order
2970          * to synchronise against block_dirty_folio and prevent the
2971          * dirty bit from being lost.
2972          */
2973         if (ret)
2974                 folio_cancel_dirty(folio);
2975         spin_unlock(&mapping->i_private_lock);
2976 out:
2977         if (buffers_to_free) {
2978                 struct buffer_head *bh = buffers_to_free;
2979 
2980                 do {
2981                         struct buffer_head *next = bh->b_this_page;
2982                         free_buffer_head(bh);
2983                         bh = next;
2984                 } while (bh != buffers_to_free);
2985         }
2986         return ret;
2987 }
2988 EXPORT_SYMBOL(try_to_free_buffers);
2989 
2990 /*
2991  * Buffer-head allocation
2992  */
2993 static struct kmem_cache *bh_cachep __ro_after_init;
2994 
2995 /*
2996  * Once the number of bh's in the machine exceeds this level, we start
2997  * stripping them in writeback.
2998  */
2999 static unsigned long max_buffer_heads __ro_after_init;
3000 
3001 int buffer_heads_over_limit;
3002 
3003 struct bh_accounting {
3004         int nr;                 /* Number of live bh's */
3005         int ratelimit;          /* Limit cacheline bouncing */
3006 };
3007 
3008 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3009 
3010 static void recalc_bh_state(void)
3011 {
3012         int i;
3013         int tot = 0;
3014 
3015         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3016                 return;
3017         __this_cpu_write(bh_accounting.ratelimit, 0);
3018         for_each_online_cpu(i)
3019                 tot += per_cpu(bh_accounting, i).nr;
3020         buffer_heads_over_limit = (tot > max_buffer_heads);
3021 }
3022 
3023 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3024 {
3025         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3026         if (ret) {
3027                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3028                 spin_lock_init(&ret->b_uptodate_lock);
3029                 preempt_disable();
3030                 __this_cpu_inc(bh_accounting.nr);
3031                 recalc_bh_state();
3032                 preempt_enable();
3033         }
3034         return ret;
3035 }
3036 EXPORT_SYMBOL(alloc_buffer_head);
3037 
3038 void free_buffer_head(struct buffer_head *bh)
3039 {
3040         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3041         kmem_cache_free(bh_cachep, bh);
3042         preempt_disable();
3043         __this_cpu_dec(bh_accounting.nr);
3044         recalc_bh_state();
3045         preempt_enable();
3046 }
3047 EXPORT_SYMBOL(free_buffer_head);
3048 
3049 static int buffer_exit_cpu_dead(unsigned int cpu)
3050 {
3051         int i;
3052         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3053 
3054         for (i = 0; i < BH_LRU_SIZE; i++) {
3055                 brelse(b->bhs[i]);
3056                 b->bhs[i] = NULL;
3057         }
3058         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3059         per_cpu(bh_accounting, cpu).nr = 0;
3060         return 0;
3061 }
3062 
3063 /**
3064  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3065  * @bh: struct buffer_head
3066  *
3067  * Return true if the buffer is up-to-date and false,
3068  * with the buffer locked, if not.
3069  */
3070 int bh_uptodate_or_lock(struct buffer_head *bh)
3071 {
3072         if (!buffer_uptodate(bh)) {
3073                 lock_buffer(bh);
3074                 if (!buffer_uptodate(bh))
3075                         return 0;
3076                 unlock_buffer(bh);
3077         }
3078         return 1;
3079 }
3080 EXPORT_SYMBOL(bh_uptodate_or_lock);
3081 
3082 /**
3083  * __bh_read - Submit read for a locked buffer
3084  * @bh: struct buffer_head
3085  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3086  * @wait: wait until reading finish
3087  *
3088  * Returns zero on success or don't wait, and -EIO on error.
3089  */
3090 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3091 {
3092         int ret = 0;
3093 
3094         BUG_ON(!buffer_locked(bh));
3095 
3096         get_bh(bh);
3097         bh->b_end_io = end_buffer_read_sync;
3098         submit_bh(REQ_OP_READ | op_flags, bh);
3099         if (wait) {
3100                 wait_on_buffer(bh);
3101                 if (!buffer_uptodate(bh))
3102                         ret = -EIO;
3103         }
3104         return ret;
3105 }
3106 EXPORT_SYMBOL(__bh_read);
3107 
3108 /**
3109  * __bh_read_batch - Submit read for a batch of unlocked buffers
3110  * @nr: entry number of the buffer batch
3111  * @bhs: a batch of struct buffer_head
3112  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3113  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3114  *              buffer that cannot lock.
3115  *
3116  * Returns zero on success or don't wait, and -EIO on error.
3117  */
3118 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3119                      blk_opf_t op_flags, bool force_lock)
3120 {
3121         int i;
3122 
3123         for (i = 0; i < nr; i++) {
3124                 struct buffer_head *bh = bhs[i];
3125 
3126                 if (buffer_uptodate(bh))
3127                         continue;
3128 
3129                 if (force_lock)
3130                         lock_buffer(bh);
3131                 else
3132                         if (!trylock_buffer(bh))
3133                                 continue;
3134 
3135                 if (buffer_uptodate(bh)) {
3136                         unlock_buffer(bh);
3137                         continue;
3138                 }
3139 
3140                 bh->b_end_io = end_buffer_read_sync;
3141                 get_bh(bh);
3142                 submit_bh(REQ_OP_READ | op_flags, bh);
3143         }
3144 }
3145 EXPORT_SYMBOL(__bh_read_batch);
3146 
3147 void __init buffer_init(void)
3148 {
3149         unsigned long nrpages;
3150         int ret;
3151 
3152         bh_cachep = KMEM_CACHE(buffer_head,
3153                                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3154         /*
3155          * Limit the bh occupancy to 10% of ZONE_NORMAL
3156          */
3157         nrpages = (nr_free_buffer_pages() * 10) / 100;
3158         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3159         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3160                                         NULL, buffer_exit_cpu_dead);
3161         WARN_ON(ret < 0);
3162 }
3163 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php