~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/coredump.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 #include <linux/slab.h>
  3 #include <linux/file.h>
  4 #include <linux/fdtable.h>
  5 #include <linux/freezer.h>
  6 #include <linux/mm.h>
  7 #include <linux/stat.h>
  8 #include <linux/fcntl.h>
  9 #include <linux/swap.h>
 10 #include <linux/ctype.h>
 11 #include <linux/string.h>
 12 #include <linux/init.h>
 13 #include <linux/pagemap.h>
 14 #include <linux/perf_event.h>
 15 #include <linux/highmem.h>
 16 #include <linux/spinlock.h>
 17 #include <linux/key.h>
 18 #include <linux/personality.h>
 19 #include <linux/binfmts.h>
 20 #include <linux/coredump.h>
 21 #include <linux/sched/coredump.h>
 22 #include <linux/sched/signal.h>
 23 #include <linux/sched/task_stack.h>
 24 #include <linux/utsname.h>
 25 #include <linux/pid_namespace.h>
 26 #include <linux/module.h>
 27 #include <linux/namei.h>
 28 #include <linux/mount.h>
 29 #include <linux/security.h>
 30 #include <linux/syscalls.h>
 31 #include <linux/tsacct_kern.h>
 32 #include <linux/cn_proc.h>
 33 #include <linux/audit.h>
 34 #include <linux/kmod.h>
 35 #include <linux/fsnotify.h>
 36 #include <linux/fs_struct.h>
 37 #include <linux/pipe_fs_i.h>
 38 #include <linux/oom.h>
 39 #include <linux/compat.h>
 40 #include <linux/fs.h>
 41 #include <linux/path.h>
 42 #include <linux/timekeeping.h>
 43 #include <linux/sysctl.h>
 44 #include <linux/elf.h>
 45 
 46 #include <linux/uaccess.h>
 47 #include <asm/mmu_context.h>
 48 #include <asm/tlb.h>
 49 #include <asm/exec.h>
 50 
 51 #include <trace/events/task.h>
 52 #include "internal.h"
 53 
 54 #include <trace/events/sched.h>
 55 
 56 static bool dump_vma_snapshot(struct coredump_params *cprm);
 57 static void free_vma_snapshot(struct coredump_params *cprm);
 58 
 59 #define CORE_FILE_NOTE_SIZE_DEFAULT (4*1024*1024)
 60 /* Define a reasonable max cap */
 61 #define CORE_FILE_NOTE_SIZE_MAX (16*1024*1024)
 62 
 63 static int core_uses_pid;
 64 static unsigned int core_pipe_limit;
 65 static char core_pattern[CORENAME_MAX_SIZE] = "core";
 66 static int core_name_size = CORENAME_MAX_SIZE;
 67 unsigned int core_file_note_size_limit = CORE_FILE_NOTE_SIZE_DEFAULT;
 68 
 69 struct core_name {
 70         char *corename;
 71         int used, size;
 72 };
 73 
 74 static int expand_corename(struct core_name *cn, int size)
 75 {
 76         char *corename;
 77 
 78         size = kmalloc_size_roundup(size);
 79         corename = krealloc(cn->corename, size, GFP_KERNEL);
 80 
 81         if (!corename)
 82                 return -ENOMEM;
 83 
 84         if (size > core_name_size) /* racy but harmless */
 85                 core_name_size = size;
 86 
 87         cn->size = size;
 88         cn->corename = corename;
 89         return 0;
 90 }
 91 
 92 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
 93                                      va_list arg)
 94 {
 95         int free, need;
 96         va_list arg_copy;
 97 
 98 again:
 99         free = cn->size - cn->used;
100 
101         va_copy(arg_copy, arg);
102         need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
103         va_end(arg_copy);
104 
105         if (need < free) {
106                 cn->used += need;
107                 return 0;
108         }
109 
110         if (!expand_corename(cn, cn->size + need - free + 1))
111                 goto again;
112 
113         return -ENOMEM;
114 }
115 
116 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
117 {
118         va_list arg;
119         int ret;
120 
121         va_start(arg, fmt);
122         ret = cn_vprintf(cn, fmt, arg);
123         va_end(arg);
124 
125         return ret;
126 }
127 
128 static __printf(2, 3)
129 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
130 {
131         int cur = cn->used;
132         va_list arg;
133         int ret;
134 
135         va_start(arg, fmt);
136         ret = cn_vprintf(cn, fmt, arg);
137         va_end(arg);
138 
139         if (ret == 0) {
140                 /*
141                  * Ensure that this coredump name component can't cause the
142                  * resulting corefile path to consist of a ".." or ".".
143                  */
144                 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
145                                 (cn->used - cur == 2 && cn->corename[cur] == '.'
146                                 && cn->corename[cur+1] == '.'))
147                         cn->corename[cur] = '!';
148 
149                 /*
150                  * Empty names are fishy and could be used to create a "//" in a
151                  * corefile name, causing the coredump to happen one directory
152                  * level too high. Enforce that all components of the core
153                  * pattern are at least one character long.
154                  */
155                 if (cn->used == cur)
156                         ret = cn_printf(cn, "!");
157         }
158 
159         for (; cur < cn->used; ++cur) {
160                 if (cn->corename[cur] == '/')
161                         cn->corename[cur] = '!';
162         }
163         return ret;
164 }
165 
166 static int cn_print_exe_file(struct core_name *cn, bool name_only)
167 {
168         struct file *exe_file;
169         char *pathbuf, *path, *ptr;
170         int ret;
171 
172         exe_file = get_mm_exe_file(current->mm);
173         if (!exe_file)
174                 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
175 
176         pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
177         if (!pathbuf) {
178                 ret = -ENOMEM;
179                 goto put_exe_file;
180         }
181 
182         path = file_path(exe_file, pathbuf, PATH_MAX);
183         if (IS_ERR(path)) {
184                 ret = PTR_ERR(path);
185                 goto free_buf;
186         }
187 
188         if (name_only) {
189                 ptr = strrchr(path, '/');
190                 if (ptr)
191                         path = ptr + 1;
192         }
193         ret = cn_esc_printf(cn, "%s", path);
194 
195 free_buf:
196         kfree(pathbuf);
197 put_exe_file:
198         fput(exe_file);
199         return ret;
200 }
201 
202 /* format_corename will inspect the pattern parameter, and output a
203  * name into corename, which must have space for at least
204  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
205  */
206 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
207                            size_t **argv, int *argc)
208 {
209         const struct cred *cred = current_cred();
210         const char *pat_ptr = core_pattern;
211         int ispipe = (*pat_ptr == '|');
212         bool was_space = false;
213         int pid_in_pattern = 0;
214         int err = 0;
215 
216         cn->used = 0;
217         cn->corename = NULL;
218         if (expand_corename(cn, core_name_size))
219                 return -ENOMEM;
220         cn->corename[0] = '\0';
221 
222         if (ispipe) {
223                 int argvs = sizeof(core_pattern) / 2;
224                 (*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
225                 if (!(*argv))
226                         return -ENOMEM;
227                 (*argv)[(*argc)++] = 0;
228                 ++pat_ptr;
229                 if (!(*pat_ptr))
230                         return -ENOMEM;
231         }
232 
233         /* Repeat as long as we have more pattern to process and more output
234            space */
235         while (*pat_ptr) {
236                 /*
237                  * Split on spaces before doing template expansion so that
238                  * %e and %E don't get split if they have spaces in them
239                  */
240                 if (ispipe) {
241                         if (isspace(*pat_ptr)) {
242                                 if (cn->used != 0)
243                                         was_space = true;
244                                 pat_ptr++;
245                                 continue;
246                         } else if (was_space) {
247                                 was_space = false;
248                                 err = cn_printf(cn, "%c", '\0');
249                                 if (err)
250                                         return err;
251                                 (*argv)[(*argc)++] = cn->used;
252                         }
253                 }
254                 if (*pat_ptr != '%') {
255                         err = cn_printf(cn, "%c", *pat_ptr++);
256                 } else {
257                         switch (*++pat_ptr) {
258                         /* single % at the end, drop that */
259                         case 0:
260                                 goto out;
261                         /* Double percent, output one percent */
262                         case '%':
263                                 err = cn_printf(cn, "%c", '%');
264                                 break;
265                         /* pid */
266                         case 'p':
267                                 pid_in_pattern = 1;
268                                 err = cn_printf(cn, "%d",
269                                               task_tgid_vnr(current));
270                                 break;
271                         /* global pid */
272                         case 'P':
273                                 err = cn_printf(cn, "%d",
274                                               task_tgid_nr(current));
275                                 break;
276                         case 'i':
277                                 err = cn_printf(cn, "%d",
278                                               task_pid_vnr(current));
279                                 break;
280                         case 'I':
281                                 err = cn_printf(cn, "%d",
282                                               task_pid_nr(current));
283                                 break;
284                         /* uid */
285                         case 'u':
286                                 err = cn_printf(cn, "%u",
287                                                 from_kuid(&init_user_ns,
288                                                           cred->uid));
289                                 break;
290                         /* gid */
291                         case 'g':
292                                 err = cn_printf(cn, "%u",
293                                                 from_kgid(&init_user_ns,
294                                                           cred->gid));
295                                 break;
296                         case 'd':
297                                 err = cn_printf(cn, "%d",
298                                         __get_dumpable(cprm->mm_flags));
299                                 break;
300                         /* signal that caused the coredump */
301                         case 's':
302                                 err = cn_printf(cn, "%d",
303                                                 cprm->siginfo->si_signo);
304                                 break;
305                         /* UNIX time of coredump */
306                         case 't': {
307                                 time64_t time;
308 
309                                 time = ktime_get_real_seconds();
310                                 err = cn_printf(cn, "%lld", time);
311                                 break;
312                         }
313                         /* hostname */
314                         case 'h':
315                                 down_read(&uts_sem);
316                                 err = cn_esc_printf(cn, "%s",
317                                               utsname()->nodename);
318                                 up_read(&uts_sem);
319                                 break;
320                         /* executable, could be changed by prctl PR_SET_NAME etc */
321                         case 'e':
322                                 err = cn_esc_printf(cn, "%s", current->comm);
323                                 break;
324                         /* file name of executable */
325                         case 'f':
326                                 err = cn_print_exe_file(cn, true);
327                                 break;
328                         case 'E':
329                                 err = cn_print_exe_file(cn, false);
330                                 break;
331                         /* core limit size */
332                         case 'c':
333                                 err = cn_printf(cn, "%lu",
334                                               rlimit(RLIMIT_CORE));
335                                 break;
336                         /* CPU the task ran on */
337                         case 'C':
338                                 err = cn_printf(cn, "%d", cprm->cpu);
339                                 break;
340                         default:
341                                 break;
342                         }
343                         ++pat_ptr;
344                 }
345 
346                 if (err)
347                         return err;
348         }
349 
350 out:
351         /* Backward compatibility with core_uses_pid:
352          *
353          * If core_pattern does not include a %p (as is the default)
354          * and core_uses_pid is set, then .%pid will be appended to
355          * the filename. Do not do this for piped commands. */
356         if (!ispipe && !pid_in_pattern && core_uses_pid) {
357                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
358                 if (err)
359                         return err;
360         }
361         return ispipe;
362 }
363 
364 static int zap_process(struct signal_struct *signal, int exit_code)
365 {
366         struct task_struct *t;
367         int nr = 0;
368 
369         signal->flags = SIGNAL_GROUP_EXIT;
370         signal->group_exit_code = exit_code;
371         signal->group_stop_count = 0;
372 
373         __for_each_thread(signal, t) {
374                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
375                 if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
376                         sigaddset(&t->pending.signal, SIGKILL);
377                         signal_wake_up(t, 1);
378                         nr++;
379                 }
380         }
381 
382         return nr;
383 }
384 
385 static int zap_threads(struct task_struct *tsk,
386                         struct core_state *core_state, int exit_code)
387 {
388         struct signal_struct *signal = tsk->signal;
389         int nr = -EAGAIN;
390 
391         spin_lock_irq(&tsk->sighand->siglock);
392         if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) {
393                 /* Allow SIGKILL, see prepare_signal() */
394                 signal->core_state = core_state;
395                 nr = zap_process(signal, exit_code);
396                 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
397                 tsk->flags |= PF_DUMPCORE;
398                 atomic_set(&core_state->nr_threads, nr);
399         }
400         spin_unlock_irq(&tsk->sighand->siglock);
401         return nr;
402 }
403 
404 static int coredump_wait(int exit_code, struct core_state *core_state)
405 {
406         struct task_struct *tsk = current;
407         int core_waiters = -EBUSY;
408 
409         init_completion(&core_state->startup);
410         core_state->dumper.task = tsk;
411         core_state->dumper.next = NULL;
412 
413         core_waiters = zap_threads(tsk, core_state, exit_code);
414         if (core_waiters > 0) {
415                 struct core_thread *ptr;
416 
417                 wait_for_completion_state(&core_state->startup,
418                                           TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
419                 /*
420                  * Wait for all the threads to become inactive, so that
421                  * all the thread context (extended register state, like
422                  * fpu etc) gets copied to the memory.
423                  */
424                 ptr = core_state->dumper.next;
425                 while (ptr != NULL) {
426                         wait_task_inactive(ptr->task, TASK_ANY);
427                         ptr = ptr->next;
428                 }
429         }
430 
431         return core_waiters;
432 }
433 
434 static void coredump_finish(bool core_dumped)
435 {
436         struct core_thread *curr, *next;
437         struct task_struct *task;
438 
439         spin_lock_irq(&current->sighand->siglock);
440         if (core_dumped && !__fatal_signal_pending(current))
441                 current->signal->group_exit_code |= 0x80;
442         next = current->signal->core_state->dumper.next;
443         current->signal->core_state = NULL;
444         spin_unlock_irq(&current->sighand->siglock);
445 
446         while ((curr = next) != NULL) {
447                 next = curr->next;
448                 task = curr->task;
449                 /*
450                  * see coredump_task_exit(), curr->task must not see
451                  * ->task == NULL before we read ->next.
452                  */
453                 smp_mb();
454                 curr->task = NULL;
455                 wake_up_process(task);
456         }
457 }
458 
459 static bool dump_interrupted(void)
460 {
461         /*
462          * SIGKILL or freezing() interrupt the coredumping. Perhaps we
463          * can do try_to_freeze() and check __fatal_signal_pending(),
464          * but then we need to teach dump_write() to restart and clear
465          * TIF_SIGPENDING.
466          */
467         return fatal_signal_pending(current) || freezing(current);
468 }
469 
470 static void wait_for_dump_helpers(struct file *file)
471 {
472         struct pipe_inode_info *pipe = file->private_data;
473 
474         pipe_lock(pipe);
475         pipe->readers++;
476         pipe->writers--;
477         wake_up_interruptible_sync(&pipe->rd_wait);
478         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
479         pipe_unlock(pipe);
480 
481         /*
482          * We actually want wait_event_freezable() but then we need
483          * to clear TIF_SIGPENDING and improve dump_interrupted().
484          */
485         wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
486 
487         pipe_lock(pipe);
488         pipe->readers--;
489         pipe->writers++;
490         pipe_unlock(pipe);
491 }
492 
493 /*
494  * umh_pipe_setup
495  * helper function to customize the process used
496  * to collect the core in userspace.  Specifically
497  * it sets up a pipe and installs it as fd 0 (stdin)
498  * for the process.  Returns 0 on success, or
499  * PTR_ERR on failure.
500  * Note that it also sets the core limit to 1.  This
501  * is a special value that we use to trap recursive
502  * core dumps
503  */
504 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
505 {
506         struct file *files[2];
507         struct coredump_params *cp = (struct coredump_params *)info->data;
508         int err = create_pipe_files(files, 0);
509         if (err)
510                 return err;
511 
512         cp->file = files[1];
513 
514         err = replace_fd(0, files[0], 0);
515         fput(files[0]);
516         /* and disallow core files too */
517         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
518 
519         return err;
520 }
521 
522 void do_coredump(const kernel_siginfo_t *siginfo)
523 {
524         struct core_state core_state;
525         struct core_name cn;
526         struct mm_struct *mm = current->mm;
527         struct linux_binfmt * binfmt;
528         const struct cred *old_cred;
529         struct cred *cred;
530         int retval = 0;
531         int ispipe;
532         size_t *argv = NULL;
533         int argc = 0;
534         /* require nonrelative corefile path and be extra careful */
535         bool need_suid_safe = false;
536         bool core_dumped = false;
537         static atomic_t core_dump_count = ATOMIC_INIT(0);
538         struct coredump_params cprm = {
539                 .siginfo = siginfo,
540                 .limit = rlimit(RLIMIT_CORE),
541                 /*
542                  * We must use the same mm->flags while dumping core to avoid
543                  * inconsistency of bit flags, since this flag is not protected
544                  * by any locks.
545                  */
546                 .mm_flags = mm->flags,
547                 .vma_meta = NULL,
548                 .cpu = raw_smp_processor_id(),
549         };
550 
551         audit_core_dumps(siginfo->si_signo);
552 
553         binfmt = mm->binfmt;
554         if (!binfmt || !binfmt->core_dump)
555                 goto fail;
556         if (!__get_dumpable(cprm.mm_flags))
557                 goto fail;
558 
559         cred = prepare_creds();
560         if (!cred)
561                 goto fail;
562         /*
563          * We cannot trust fsuid as being the "true" uid of the process
564          * nor do we know its entire history. We only know it was tainted
565          * so we dump it as root in mode 2, and only into a controlled
566          * environment (pipe handler or fully qualified path).
567          */
568         if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
569                 /* Setuid core dump mode */
570                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
571                 need_suid_safe = true;
572         }
573 
574         retval = coredump_wait(siginfo->si_signo, &core_state);
575         if (retval < 0)
576                 goto fail_creds;
577 
578         old_cred = override_creds(cred);
579 
580         ispipe = format_corename(&cn, &cprm, &argv, &argc);
581 
582         if (ispipe) {
583                 int argi;
584                 int dump_count;
585                 char **helper_argv;
586                 struct subprocess_info *sub_info;
587 
588                 if (ispipe < 0) {
589                         printk(KERN_WARNING "format_corename failed\n");
590                         printk(KERN_WARNING "Aborting core\n");
591                         goto fail_unlock;
592                 }
593 
594                 if (cprm.limit == 1) {
595                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
596                          *
597                          * Normally core limits are irrelevant to pipes, since
598                          * we're not writing to the file system, but we use
599                          * cprm.limit of 1 here as a special value, this is a
600                          * consistent way to catch recursive crashes.
601                          * We can still crash if the core_pattern binary sets
602                          * RLIM_CORE = !1, but it runs as root, and can do
603                          * lots of stupid things.
604                          *
605                          * Note that we use task_tgid_vnr here to grab the pid
606                          * of the process group leader.  That way we get the
607                          * right pid if a thread in a multi-threaded
608                          * core_pattern process dies.
609                          */
610                         printk(KERN_WARNING
611                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
612                                 task_tgid_vnr(current), current->comm);
613                         printk(KERN_WARNING "Aborting core\n");
614                         goto fail_unlock;
615                 }
616                 cprm.limit = RLIM_INFINITY;
617 
618                 dump_count = atomic_inc_return(&core_dump_count);
619                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
620                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
621                                task_tgid_vnr(current), current->comm);
622                         printk(KERN_WARNING "Skipping core dump\n");
623                         goto fail_dropcount;
624                 }
625 
626                 helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
627                                             GFP_KERNEL);
628                 if (!helper_argv) {
629                         printk(KERN_WARNING "%s failed to allocate memory\n",
630                                __func__);
631                         goto fail_dropcount;
632                 }
633                 for (argi = 0; argi < argc; argi++)
634                         helper_argv[argi] = cn.corename + argv[argi];
635                 helper_argv[argi] = NULL;
636 
637                 retval = -ENOMEM;
638                 sub_info = call_usermodehelper_setup(helper_argv[0],
639                                                 helper_argv, NULL, GFP_KERNEL,
640                                                 umh_pipe_setup, NULL, &cprm);
641                 if (sub_info)
642                         retval = call_usermodehelper_exec(sub_info,
643                                                           UMH_WAIT_EXEC);
644 
645                 kfree(helper_argv);
646                 if (retval) {
647                         printk(KERN_INFO "Core dump to |%s pipe failed\n",
648                                cn.corename);
649                         goto close_fail;
650                 }
651         } else {
652                 struct mnt_idmap *idmap;
653                 struct inode *inode;
654                 int open_flags = O_CREAT | O_WRONLY | O_NOFOLLOW |
655                                  O_LARGEFILE | O_EXCL;
656 
657                 if (cprm.limit < binfmt->min_coredump)
658                         goto fail_unlock;
659 
660                 if (need_suid_safe && cn.corename[0] != '/') {
661                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
662                                 "to fully qualified path!\n",
663                                 task_tgid_vnr(current), current->comm);
664                         printk(KERN_WARNING "Skipping core dump\n");
665                         goto fail_unlock;
666                 }
667 
668                 /*
669                  * Unlink the file if it exists unless this is a SUID
670                  * binary - in that case, we're running around with root
671                  * privs and don't want to unlink another user's coredump.
672                  */
673                 if (!need_suid_safe) {
674                         /*
675                          * If it doesn't exist, that's fine. If there's some
676                          * other problem, we'll catch it at the filp_open().
677                          */
678                         do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
679                 }
680 
681                 /*
682                  * There is a race between unlinking and creating the
683                  * file, but if that causes an EEXIST here, that's
684                  * fine - another process raced with us while creating
685                  * the corefile, and the other process won. To userspace,
686                  * what matters is that at least one of the two processes
687                  * writes its coredump successfully, not which one.
688                  */
689                 if (need_suid_safe) {
690                         /*
691                          * Using user namespaces, normal user tasks can change
692                          * their current->fs->root to point to arbitrary
693                          * directories. Since the intention of the "only dump
694                          * with a fully qualified path" rule is to control where
695                          * coredumps may be placed using root privileges,
696                          * current->fs->root must not be used. Instead, use the
697                          * root directory of init_task.
698                          */
699                         struct path root;
700 
701                         task_lock(&init_task);
702                         get_fs_root(init_task.fs, &root);
703                         task_unlock(&init_task);
704                         cprm.file = file_open_root(&root, cn.corename,
705                                                    open_flags, 0600);
706                         path_put(&root);
707                 } else {
708                         cprm.file = filp_open(cn.corename, open_flags, 0600);
709                 }
710                 if (IS_ERR(cprm.file))
711                         goto fail_unlock;
712 
713                 inode = file_inode(cprm.file);
714                 if (inode->i_nlink > 1)
715                         goto close_fail;
716                 if (d_unhashed(cprm.file->f_path.dentry))
717                         goto close_fail;
718                 /*
719                  * AK: actually i see no reason to not allow this for named
720                  * pipes etc, but keep the previous behaviour for now.
721                  */
722                 if (!S_ISREG(inode->i_mode))
723                         goto close_fail;
724                 /*
725                  * Don't dump core if the filesystem changed owner or mode
726                  * of the file during file creation. This is an issue when
727                  * a process dumps core while its cwd is e.g. on a vfat
728                  * filesystem.
729                  */
730                 idmap = file_mnt_idmap(cprm.file);
731                 if (!vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode),
732                                     current_fsuid())) {
733                         pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n",
734                                             cn.corename);
735                         goto close_fail;
736                 }
737                 if ((inode->i_mode & 0677) != 0600) {
738                         pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n",
739                                             cn.corename);
740                         goto close_fail;
741                 }
742                 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
743                         goto close_fail;
744                 if (do_truncate(idmap, cprm.file->f_path.dentry,
745                                 0, 0, cprm.file))
746                         goto close_fail;
747         }
748 
749         /* get us an unshared descriptor table; almost always a no-op */
750         /* The cell spufs coredump code reads the file descriptor tables */
751         retval = unshare_files();
752         if (retval)
753                 goto close_fail;
754         if (!dump_interrupted()) {
755                 /*
756                  * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
757                  * have this set to NULL.
758                  */
759                 if (!cprm.file) {
760                         pr_info("Core dump to |%s disabled\n", cn.corename);
761                         goto close_fail;
762                 }
763                 if (!dump_vma_snapshot(&cprm))
764                         goto close_fail;
765 
766                 file_start_write(cprm.file);
767                 core_dumped = binfmt->core_dump(&cprm);
768                 /*
769                  * Ensures that file size is big enough to contain the current
770                  * file postion. This prevents gdb from complaining about
771                  * a truncated file if the last "write" to the file was
772                  * dump_skip.
773                  */
774                 if (cprm.to_skip) {
775                         cprm.to_skip--;
776                         dump_emit(&cprm, "", 1);
777                 }
778                 file_end_write(cprm.file);
779                 free_vma_snapshot(&cprm);
780         }
781         if (ispipe && core_pipe_limit)
782                 wait_for_dump_helpers(cprm.file);
783 close_fail:
784         if (cprm.file)
785                 filp_close(cprm.file, NULL);
786 fail_dropcount:
787         if (ispipe)
788                 atomic_dec(&core_dump_count);
789 fail_unlock:
790         kfree(argv);
791         kfree(cn.corename);
792         coredump_finish(core_dumped);
793         revert_creds(old_cred);
794 fail_creds:
795         put_cred(cred);
796 fail:
797         return;
798 }
799 
800 /*
801  * Core dumping helper functions.  These are the only things you should
802  * do on a core-file: use only these functions to write out all the
803  * necessary info.
804  */
805 static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
806 {
807         struct file *file = cprm->file;
808         loff_t pos = file->f_pos;
809         ssize_t n;
810         if (cprm->written + nr > cprm->limit)
811                 return 0;
812 
813 
814         if (dump_interrupted())
815                 return 0;
816         n = __kernel_write(file, addr, nr, &pos);
817         if (n != nr)
818                 return 0;
819         file->f_pos = pos;
820         cprm->written += n;
821         cprm->pos += n;
822 
823         return 1;
824 }
825 
826 static int __dump_skip(struct coredump_params *cprm, size_t nr)
827 {
828         static char zeroes[PAGE_SIZE];
829         struct file *file = cprm->file;
830         if (file->f_mode & FMODE_LSEEK) {
831                 if (dump_interrupted() ||
832                     vfs_llseek(file, nr, SEEK_CUR) < 0)
833                         return 0;
834                 cprm->pos += nr;
835                 return 1;
836         } else {
837                 while (nr > PAGE_SIZE) {
838                         if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
839                                 return 0;
840                         nr -= PAGE_SIZE;
841                 }
842                 return __dump_emit(cprm, zeroes, nr);
843         }
844 }
845 
846 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
847 {
848         if (cprm->to_skip) {
849                 if (!__dump_skip(cprm, cprm->to_skip))
850                         return 0;
851                 cprm->to_skip = 0;
852         }
853         return __dump_emit(cprm, addr, nr);
854 }
855 EXPORT_SYMBOL(dump_emit);
856 
857 void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
858 {
859         cprm->to_skip = pos - cprm->pos;
860 }
861 EXPORT_SYMBOL(dump_skip_to);
862 
863 void dump_skip(struct coredump_params *cprm, size_t nr)
864 {
865         cprm->to_skip += nr;
866 }
867 EXPORT_SYMBOL(dump_skip);
868 
869 #ifdef CONFIG_ELF_CORE
870 static int dump_emit_page(struct coredump_params *cprm, struct page *page)
871 {
872         struct bio_vec bvec;
873         struct iov_iter iter;
874         struct file *file = cprm->file;
875         loff_t pos;
876         ssize_t n;
877 
878         if (!page)
879                 return 0;
880 
881         if (cprm->to_skip) {
882                 if (!__dump_skip(cprm, cprm->to_skip))
883                         return 0;
884                 cprm->to_skip = 0;
885         }
886         if (cprm->written + PAGE_SIZE > cprm->limit)
887                 return 0;
888         if (dump_interrupted())
889                 return 0;
890         pos = file->f_pos;
891         bvec_set_page(&bvec, page, PAGE_SIZE, 0);
892         iov_iter_bvec(&iter, ITER_SOURCE, &bvec, 1, PAGE_SIZE);
893         n = __kernel_write_iter(cprm->file, &iter, &pos);
894         if (n != PAGE_SIZE)
895                 return 0;
896         file->f_pos = pos;
897         cprm->written += PAGE_SIZE;
898         cprm->pos += PAGE_SIZE;
899 
900         return 1;
901 }
902 
903 /*
904  * If we might get machine checks from kernel accesses during the
905  * core dump, let's get those errors early rather than during the
906  * IO. This is not performance-critical enough to warrant having
907  * all the machine check logic in the iovec paths.
908  */
909 #ifdef copy_mc_to_kernel
910 
911 #define dump_page_alloc() alloc_page(GFP_KERNEL)
912 #define dump_page_free(x) __free_page(x)
913 static struct page *dump_page_copy(struct page *src, struct page *dst)
914 {
915         void *buf = kmap_local_page(src);
916         size_t left = copy_mc_to_kernel(page_address(dst), buf, PAGE_SIZE);
917         kunmap_local(buf);
918         return left ? NULL : dst;
919 }
920 
921 #else
922 
923 /* We just want to return non-NULL; it's never used. */
924 #define dump_page_alloc() ERR_PTR(-EINVAL)
925 #define dump_page_free(x) ((void)(x))
926 static inline struct page *dump_page_copy(struct page *src, struct page *dst)
927 {
928         return src;
929 }
930 #endif
931 
932 int dump_user_range(struct coredump_params *cprm, unsigned long start,
933                     unsigned long len)
934 {
935         unsigned long addr;
936         struct page *dump_page;
937 
938         dump_page = dump_page_alloc();
939         if (!dump_page)
940                 return 0;
941 
942         for (addr = start; addr < start + len; addr += PAGE_SIZE) {
943                 struct page *page;
944 
945                 /*
946                  * To avoid having to allocate page tables for virtual address
947                  * ranges that have never been used yet, and also to make it
948                  * easy to generate sparse core files, use a helper that returns
949                  * NULL when encountering an empty page table entry that would
950                  * otherwise have been filled with the zero page.
951                  */
952                 page = get_dump_page(addr);
953                 if (page) {
954                         int stop = !dump_emit_page(cprm, dump_page_copy(page, dump_page));
955                         put_page(page);
956                         if (stop) {
957                                 dump_page_free(dump_page);
958                                 return 0;
959                         }
960                 } else {
961                         dump_skip(cprm, PAGE_SIZE);
962                 }
963         }
964         dump_page_free(dump_page);
965         return 1;
966 }
967 #endif
968 
969 int dump_align(struct coredump_params *cprm, int align)
970 {
971         unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
972         if (align & (align - 1))
973                 return 0;
974         if (mod)
975                 cprm->to_skip += align - mod;
976         return 1;
977 }
978 EXPORT_SYMBOL(dump_align);
979 
980 #ifdef CONFIG_SYSCTL
981 
982 void validate_coredump_safety(void)
983 {
984         if (suid_dumpable == SUID_DUMP_ROOT &&
985             core_pattern[0] != '/' && core_pattern[0] != '|') {
986                 pr_warn(
987 "Unsafe core_pattern used with fs.suid_dumpable=2.\n"
988 "Pipe handler or fully qualified core dump path required.\n"
989 "Set kernel.core_pattern before fs.suid_dumpable.\n"
990                 );
991         }
992 }
993 
994 static int proc_dostring_coredump(const struct ctl_table *table, int write,
995                   void *buffer, size_t *lenp, loff_t *ppos)
996 {
997         int error = proc_dostring(table, write, buffer, lenp, ppos);
998 
999         if (!error)
1000                 validate_coredump_safety();
1001         return error;
1002 }
1003 
1004 static const unsigned int core_file_note_size_min = CORE_FILE_NOTE_SIZE_DEFAULT;
1005 static const unsigned int core_file_note_size_max = CORE_FILE_NOTE_SIZE_MAX;
1006 
1007 static struct ctl_table coredump_sysctls[] = {
1008         {
1009                 .procname       = "core_uses_pid",
1010                 .data           = &core_uses_pid,
1011                 .maxlen         = sizeof(int),
1012                 .mode           = 0644,
1013                 .proc_handler   = proc_dointvec,
1014         },
1015         {
1016                 .procname       = "core_pattern",
1017                 .data           = core_pattern,
1018                 .maxlen         = CORENAME_MAX_SIZE,
1019                 .mode           = 0644,
1020                 .proc_handler   = proc_dostring_coredump,
1021         },
1022         {
1023                 .procname       = "core_pipe_limit",
1024                 .data           = &core_pipe_limit,
1025                 .maxlen         = sizeof(unsigned int),
1026                 .mode           = 0644,
1027                 .proc_handler   = proc_dointvec,
1028         },
1029         {
1030                 .procname       = "core_file_note_size_limit",
1031                 .data           = &core_file_note_size_limit,
1032                 .maxlen         = sizeof(unsigned int),
1033                 .mode           = 0644,
1034                 .proc_handler   = proc_douintvec_minmax,
1035                 .extra1         = (unsigned int *)&core_file_note_size_min,
1036                 .extra2         = (unsigned int *)&core_file_note_size_max,
1037         },
1038 };
1039 
1040 static int __init init_fs_coredump_sysctls(void)
1041 {
1042         register_sysctl_init("kernel", coredump_sysctls);
1043         return 0;
1044 }
1045 fs_initcall(init_fs_coredump_sysctls);
1046 #endif /* CONFIG_SYSCTL */
1047 
1048 /*
1049  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1050  * that are useful for post-mortem analysis are included in every core dump.
1051  * In that way we ensure that the core dump is fully interpretable later
1052  * without matching up the same kernel and hardware config to see what PC values
1053  * meant. These special mappings include - vDSO, vsyscall, and other
1054  * architecture specific mappings
1055  */
1056 static bool always_dump_vma(struct vm_area_struct *vma)
1057 {
1058         /* Any vsyscall mappings? */
1059         if (vma == get_gate_vma(vma->vm_mm))
1060                 return true;
1061 
1062         /*
1063          * Assume that all vmas with a .name op should always be dumped.
1064          * If this changes, a new vm_ops field can easily be added.
1065          */
1066         if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1067                 return true;
1068 
1069         /*
1070          * arch_vma_name() returns non-NULL for special architecture mappings,
1071          * such as vDSO sections.
1072          */
1073         if (arch_vma_name(vma))
1074                 return true;
1075 
1076         return false;
1077 }
1078 
1079 #define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1
1080 
1081 /*
1082  * Decide how much of @vma's contents should be included in a core dump.
1083  */
1084 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1085                                    unsigned long mm_flags)
1086 {
1087 #define FILTER(type)    (mm_flags & (1UL << MMF_DUMP_##type))
1088 
1089         /* always dump the vdso and vsyscall sections */
1090         if (always_dump_vma(vma))
1091                 goto whole;
1092 
1093         if (vma->vm_flags & VM_DONTDUMP)
1094                 return 0;
1095 
1096         /* support for DAX */
1097         if (vma_is_dax(vma)) {
1098                 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1099                         goto whole;
1100                 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1101                         goto whole;
1102                 return 0;
1103         }
1104 
1105         /* Hugetlb memory check */
1106         if (is_vm_hugetlb_page(vma)) {
1107                 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1108                         goto whole;
1109                 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1110                         goto whole;
1111                 return 0;
1112         }
1113 
1114         /* Do not dump I/O mapped devices or special mappings */
1115         if (vma->vm_flags & VM_IO)
1116                 return 0;
1117 
1118         /* By default, dump shared memory if mapped from an anonymous file. */
1119         if (vma->vm_flags & VM_SHARED) {
1120                 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1121                     FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1122                         goto whole;
1123                 return 0;
1124         }
1125 
1126         /* Dump segments that have been written to.  */
1127         if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
1128                 goto whole;
1129         if (vma->vm_file == NULL)
1130                 return 0;
1131 
1132         if (FILTER(MAPPED_PRIVATE))
1133                 goto whole;
1134 
1135         /*
1136          * If this is the beginning of an executable file mapping,
1137          * dump the first page to aid in determining what was mapped here.
1138          */
1139         if (FILTER(ELF_HEADERS) &&
1140             vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1141                 if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
1142                         return PAGE_SIZE;
1143 
1144                 /*
1145                  * ELF libraries aren't always executable.
1146                  * We'll want to check whether the mapping starts with the ELF
1147                  * magic, but not now - we're holding the mmap lock,
1148                  * so copy_from_user() doesn't work here.
1149                  * Use a placeholder instead, and fix it up later in
1150                  * dump_vma_snapshot().
1151                  */
1152                 return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER;
1153         }
1154 
1155 #undef  FILTER
1156 
1157         return 0;
1158 
1159 whole:
1160         return vma->vm_end - vma->vm_start;
1161 }
1162 
1163 /*
1164  * Helper function for iterating across a vma list.  It ensures that the caller
1165  * will visit `gate_vma' prior to terminating the search.
1166  */
1167 static struct vm_area_struct *coredump_next_vma(struct vma_iterator *vmi,
1168                                        struct vm_area_struct *vma,
1169                                        struct vm_area_struct *gate_vma)
1170 {
1171         if (gate_vma && (vma == gate_vma))
1172                 return NULL;
1173 
1174         vma = vma_next(vmi);
1175         if (vma)
1176                 return vma;
1177         return gate_vma;
1178 }
1179 
1180 static void free_vma_snapshot(struct coredump_params *cprm)
1181 {
1182         if (cprm->vma_meta) {
1183                 int i;
1184                 for (i = 0; i < cprm->vma_count; i++) {
1185                         struct file *file = cprm->vma_meta[i].file;
1186                         if (file)
1187                                 fput(file);
1188                 }
1189                 kvfree(cprm->vma_meta);
1190                 cprm->vma_meta = NULL;
1191         }
1192 }
1193 
1194 /*
1195  * Under the mmap_lock, take a snapshot of relevant information about the task's
1196  * VMAs.
1197  */
1198 static bool dump_vma_snapshot(struct coredump_params *cprm)
1199 {
1200         struct vm_area_struct *gate_vma, *vma = NULL;
1201         struct mm_struct *mm = current->mm;
1202         VMA_ITERATOR(vmi, mm, 0);
1203         int i = 0;
1204 
1205         /*
1206          * Once the stack expansion code is fixed to not change VMA bounds
1207          * under mmap_lock in read mode, this can be changed to take the
1208          * mmap_lock in read mode.
1209          */
1210         if (mmap_write_lock_killable(mm))
1211                 return false;
1212 
1213         cprm->vma_data_size = 0;
1214         gate_vma = get_gate_vma(mm);
1215         cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0);
1216 
1217         cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL);
1218         if (!cprm->vma_meta) {
1219                 mmap_write_unlock(mm);
1220                 return false;
1221         }
1222 
1223         while ((vma = coredump_next_vma(&vmi, vma, gate_vma)) != NULL) {
1224                 struct core_vma_metadata *m = cprm->vma_meta + i;
1225 
1226                 m->start = vma->vm_start;
1227                 m->end = vma->vm_end;
1228                 m->flags = vma->vm_flags;
1229                 m->dump_size = vma_dump_size(vma, cprm->mm_flags);
1230                 m->pgoff = vma->vm_pgoff;
1231                 m->file = vma->vm_file;
1232                 if (m->file)
1233                         get_file(m->file);
1234                 i++;
1235         }
1236 
1237         mmap_write_unlock(mm);
1238 
1239         for (i = 0; i < cprm->vma_count; i++) {
1240                 struct core_vma_metadata *m = cprm->vma_meta + i;
1241 
1242                 if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) {
1243                         char elfmag[SELFMAG];
1244 
1245                         if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) ||
1246                                         memcmp(elfmag, ELFMAG, SELFMAG) != 0) {
1247                                 m->dump_size = 0;
1248                         } else {
1249                                 m->dump_size = PAGE_SIZE;
1250                         }
1251                 }
1252 
1253                 cprm->vma_data_size += m->dump_size;
1254         }
1255 
1256         return true;
1257 }
1258 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php