~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/crypto/fname.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * This contains functions for filename crypto management
  4  *
  5  * Copyright (C) 2015, Google, Inc.
  6  * Copyright (C) 2015, Motorola Mobility
  7  *
  8  * Written by Uday Savagaonkar, 2014.
  9  * Modified by Jaegeuk Kim, 2015.
 10  *
 11  * This has not yet undergone a rigorous security audit.
 12  */
 13 
 14 #include <linux/namei.h>
 15 #include <linux/scatterlist.h>
 16 #include <crypto/hash.h>
 17 #include <crypto/sha2.h>
 18 #include <crypto/skcipher.h>
 19 #include "fscrypt_private.h"
 20 
 21 /*
 22  * The minimum message length (input and output length), in bytes, for all
 23  * filenames encryption modes.  Filenames shorter than this will be zero-padded
 24  * before being encrypted.
 25  */
 26 #define FSCRYPT_FNAME_MIN_MSG_LEN 16
 27 
 28 /*
 29  * struct fscrypt_nokey_name - identifier for directory entry when key is absent
 30  *
 31  * When userspace lists an encrypted directory without access to the key, the
 32  * filesystem must present a unique "no-key name" for each filename that allows
 33  * it to find the directory entry again if requested.  Naively, that would just
 34  * mean using the ciphertext filenames.  However, since the ciphertext filenames
 35  * can contain illegal characters ('\0' and '/'), they must be encoded in some
 36  * way.  We use base64url.  But that can cause names to exceed NAME_MAX (255
 37  * bytes), so we also need to use a strong hash to abbreviate long names.
 38  *
 39  * The filesystem may also need another kind of hash, the "dirhash", to quickly
 40  * find the directory entry.  Since filesystems normally compute the dirhash
 41  * over the on-disk filename (i.e. the ciphertext), it's not computable from
 42  * no-key names that abbreviate the ciphertext using the strong hash to fit in
 43  * NAME_MAX.  It's also not computable if it's a keyed hash taken over the
 44  * plaintext (but it may still be available in the on-disk directory entry);
 45  * casefolded directories use this type of dirhash.  At least in these cases,
 46  * each no-key name must include the name's dirhash too.
 47  *
 48  * To meet all these requirements, we base64url-encode the following
 49  * variable-length structure.  It contains the dirhash, or 0's if the filesystem
 50  * didn't provide one; up to 149 bytes of the ciphertext name; and for
 51  * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
 52  *
 53  * This ensures that each no-key name contains everything needed to find the
 54  * directory entry again, contains only legal characters, doesn't exceed
 55  * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
 56  * take the performance hit of SHA-256 on very long filenames (which are rare).
 57  */
 58 struct fscrypt_nokey_name {
 59         u32 dirhash[2];
 60         u8 bytes[149];
 61         u8 sha256[SHA256_DIGEST_SIZE];
 62 }; /* 189 bytes => 252 bytes base64url-encoded, which is <= NAME_MAX (255) */
 63 
 64 /*
 65  * Decoded size of max-size no-key name, i.e. a name that was abbreviated using
 66  * the strong hash and thus includes the 'sha256' field.  This isn't simply
 67  * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
 68  */
 69 #define FSCRYPT_NOKEY_NAME_MAX  offsetofend(struct fscrypt_nokey_name, sha256)
 70 
 71 /* Encoded size of max-size no-key name */
 72 #define FSCRYPT_NOKEY_NAME_MAX_ENCODED \
 73                 FSCRYPT_BASE64URL_CHARS(FSCRYPT_NOKEY_NAME_MAX)
 74 
 75 static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
 76 {
 77         return is_dot_dotdot(str->name, str->len);
 78 }
 79 
 80 /**
 81  * fscrypt_fname_encrypt() - encrypt a filename
 82  * @inode: inode of the parent directory (for regular filenames)
 83  *         or of the symlink (for symlink targets). Key must already be
 84  *         set up.
 85  * @iname: the filename to encrypt
 86  * @out: (output) the encrypted filename
 87  * @olen: size of the encrypted filename.  It must be at least @iname->len.
 88  *        Any extra space is filled with NUL padding before encryption.
 89  *
 90  * Return: 0 on success, -errno on failure
 91  */
 92 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
 93                           u8 *out, unsigned int olen)
 94 {
 95         struct skcipher_request *req = NULL;
 96         DECLARE_CRYPTO_WAIT(wait);
 97         const struct fscrypt_inode_info *ci = inode->i_crypt_info;
 98         struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
 99         union fscrypt_iv iv;
100         struct scatterlist sg;
101         int res;
102 
103         /*
104          * Copy the filename to the output buffer for encrypting in-place and
105          * pad it with the needed number of NUL bytes.
106          */
107         if (WARN_ON_ONCE(olen < iname->len))
108                 return -ENOBUFS;
109         memcpy(out, iname->name, iname->len);
110         memset(out + iname->len, 0, olen - iname->len);
111 
112         /* Initialize the IV */
113         fscrypt_generate_iv(&iv, 0, ci);
114 
115         /* Set up the encryption request */
116         req = skcipher_request_alloc(tfm, GFP_NOFS);
117         if (!req)
118                 return -ENOMEM;
119         skcipher_request_set_callback(req,
120                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
121                         crypto_req_done, &wait);
122         sg_init_one(&sg, out, olen);
123         skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
124 
125         /* Do the encryption */
126         res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
127         skcipher_request_free(req);
128         if (res < 0) {
129                 fscrypt_err(inode, "Filename encryption failed: %d", res);
130                 return res;
131         }
132 
133         return 0;
134 }
135 EXPORT_SYMBOL_GPL(fscrypt_fname_encrypt);
136 
137 /**
138  * fname_decrypt() - decrypt a filename
139  * @inode: inode of the parent directory (for regular filenames)
140  *         or of the symlink (for symlink targets)
141  * @iname: the encrypted filename to decrypt
142  * @oname: (output) the decrypted filename.  The caller must have allocated
143  *         enough space for this, e.g. using fscrypt_fname_alloc_buffer().
144  *
145  * Return: 0 on success, -errno on failure
146  */
147 static int fname_decrypt(const struct inode *inode,
148                          const struct fscrypt_str *iname,
149                          struct fscrypt_str *oname)
150 {
151         struct skcipher_request *req = NULL;
152         DECLARE_CRYPTO_WAIT(wait);
153         struct scatterlist src_sg, dst_sg;
154         const struct fscrypt_inode_info *ci = inode->i_crypt_info;
155         struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
156         union fscrypt_iv iv;
157         int res;
158 
159         /* Allocate request */
160         req = skcipher_request_alloc(tfm, GFP_NOFS);
161         if (!req)
162                 return -ENOMEM;
163         skcipher_request_set_callback(req,
164                 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
165                 crypto_req_done, &wait);
166 
167         /* Initialize IV */
168         fscrypt_generate_iv(&iv, 0, ci);
169 
170         /* Create decryption request */
171         sg_init_one(&src_sg, iname->name, iname->len);
172         sg_init_one(&dst_sg, oname->name, oname->len);
173         skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
174         res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
175         skcipher_request_free(req);
176         if (res < 0) {
177                 fscrypt_err(inode, "Filename decryption failed: %d", res);
178                 return res;
179         }
180 
181         oname->len = strnlen(oname->name, iname->len);
182         return 0;
183 }
184 
185 static const char base64url_table[65] =
186         "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
187 
188 #define FSCRYPT_BASE64URL_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3)
189 
190 /**
191  * fscrypt_base64url_encode() - base64url-encode some binary data
192  * @src: the binary data to encode
193  * @srclen: the length of @src in bytes
194  * @dst: (output) the base64url-encoded string.  Not NUL-terminated.
195  *
196  * Encodes data using base64url encoding, i.e. the "Base 64 Encoding with URL
197  * and Filename Safe Alphabet" specified by RFC 4648.  '='-padding isn't used,
198  * as it's unneeded and not required by the RFC.  base64url is used instead of
199  * base64 to avoid the '/' character, which isn't allowed in filenames.
200  *
201  * Return: the length of the resulting base64url-encoded string in bytes.
202  *         This will be equal to FSCRYPT_BASE64URL_CHARS(srclen).
203  */
204 static int fscrypt_base64url_encode(const u8 *src, int srclen, char *dst)
205 {
206         u32 ac = 0;
207         int bits = 0;
208         int i;
209         char *cp = dst;
210 
211         for (i = 0; i < srclen; i++) {
212                 ac = (ac << 8) | src[i];
213                 bits += 8;
214                 do {
215                         bits -= 6;
216                         *cp++ = base64url_table[(ac >> bits) & 0x3f];
217                 } while (bits >= 6);
218         }
219         if (bits)
220                 *cp++ = base64url_table[(ac << (6 - bits)) & 0x3f];
221         return cp - dst;
222 }
223 
224 /**
225  * fscrypt_base64url_decode() - base64url-decode a string
226  * @src: the string to decode.  Doesn't need to be NUL-terminated.
227  * @srclen: the length of @src in bytes
228  * @dst: (output) the decoded binary data
229  *
230  * Decodes a string using base64url encoding, i.e. the "Base 64 Encoding with
231  * URL and Filename Safe Alphabet" specified by RFC 4648.  '='-padding isn't
232  * accepted, nor are non-encoding characters such as whitespace.
233  *
234  * This implementation hasn't been optimized for performance.
235  *
236  * Return: the length of the resulting decoded binary data in bytes,
237  *         or -1 if the string isn't a valid base64url string.
238  */
239 static int fscrypt_base64url_decode(const char *src, int srclen, u8 *dst)
240 {
241         u32 ac = 0;
242         int bits = 0;
243         int i;
244         u8 *bp = dst;
245 
246         for (i = 0; i < srclen; i++) {
247                 const char *p = strchr(base64url_table, src[i]);
248 
249                 if (p == NULL || src[i] == 0)
250                         return -1;
251                 ac = (ac << 6) | (p - base64url_table);
252                 bits += 6;
253                 if (bits >= 8) {
254                         bits -= 8;
255                         *bp++ = (u8)(ac >> bits);
256                 }
257         }
258         if (ac & ((1 << bits) - 1))
259                 return -1;
260         return bp - dst;
261 }
262 
263 bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
264                                     u32 orig_len, u32 max_len,
265                                     u32 *encrypted_len_ret)
266 {
267         int padding = 4 << (fscrypt_policy_flags(policy) &
268                             FSCRYPT_POLICY_FLAGS_PAD_MASK);
269         u32 encrypted_len;
270 
271         if (orig_len > max_len)
272                 return false;
273         encrypted_len = max_t(u32, orig_len, FSCRYPT_FNAME_MIN_MSG_LEN);
274         encrypted_len = round_up(encrypted_len, padding);
275         *encrypted_len_ret = min(encrypted_len, max_len);
276         return true;
277 }
278 
279 /**
280  * fscrypt_fname_encrypted_size() - calculate length of encrypted filename
281  * @inode:              parent inode of dentry name being encrypted. Key must
282  *                      already be set up.
283  * @orig_len:           length of the original filename
284  * @max_len:            maximum length to return
285  * @encrypted_len_ret:  where calculated length should be returned (on success)
286  *
287  * Filenames that are shorter than the maximum length may have their lengths
288  * increased slightly by encryption, due to padding that is applied.
289  *
290  * Return: false if the orig_len is greater than max_len. Otherwise, true and
291  *         fill out encrypted_len_ret with the length (up to max_len).
292  */
293 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
294                                   u32 max_len, u32 *encrypted_len_ret)
295 {
296         return __fscrypt_fname_encrypted_size(&inode->i_crypt_info->ci_policy,
297                                               orig_len, max_len,
298                                               encrypted_len_ret);
299 }
300 EXPORT_SYMBOL_GPL(fscrypt_fname_encrypted_size);
301 
302 /**
303  * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
304  * @max_encrypted_len: maximum length of encrypted filenames the buffer will be
305  *                     used to present
306  * @crypto_str: (output) buffer to allocate
307  *
308  * Allocate a buffer that is large enough to hold any decrypted or encoded
309  * filename (null-terminated), for the given maximum encrypted filename length.
310  *
311  * Return: 0 on success, -errno on failure
312  */
313 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
314                                struct fscrypt_str *crypto_str)
315 {
316         u32 max_presented_len = max_t(u32, FSCRYPT_NOKEY_NAME_MAX_ENCODED,
317                                       max_encrypted_len);
318 
319         crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
320         if (!crypto_str->name)
321                 return -ENOMEM;
322         crypto_str->len = max_presented_len;
323         return 0;
324 }
325 EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
326 
327 /**
328  * fscrypt_fname_free_buffer() - free a buffer for presented filenames
329  * @crypto_str: the buffer to free
330  *
331  * Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
332  */
333 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
334 {
335         if (!crypto_str)
336                 return;
337         kfree(crypto_str->name);
338         crypto_str->name = NULL;
339 }
340 EXPORT_SYMBOL(fscrypt_fname_free_buffer);
341 
342 /**
343  * fscrypt_fname_disk_to_usr() - convert an encrypted filename to
344  *                               user-presentable form
345  * @inode: inode of the parent directory (for regular filenames)
346  *         or of the symlink (for symlink targets)
347  * @hash: first part of the name's dirhash, if applicable.  This only needs to
348  *        be provided if the filename is located in an indexed directory whose
349  *        encryption key may be unavailable.  Not needed for symlink targets.
350  * @minor_hash: second part of the name's dirhash, if applicable
351  * @iname: encrypted filename to convert.  May also be "." or "..", which
352  *         aren't actually encrypted.
353  * @oname: output buffer for the user-presentable filename.  The caller must
354  *         have allocated enough space for this, e.g. using
355  *         fscrypt_fname_alloc_buffer().
356  *
357  * If the key is available, we'll decrypt the disk name.  Otherwise, we'll
358  * encode it for presentation in fscrypt_nokey_name format.
359  * See struct fscrypt_nokey_name for details.
360  *
361  * Return: 0 on success, -errno on failure
362  */
363 int fscrypt_fname_disk_to_usr(const struct inode *inode,
364                               u32 hash, u32 minor_hash,
365                               const struct fscrypt_str *iname,
366                               struct fscrypt_str *oname)
367 {
368         const struct qstr qname = FSTR_TO_QSTR(iname);
369         struct fscrypt_nokey_name nokey_name;
370         u32 size; /* size of the unencoded no-key name */
371 
372         if (fscrypt_is_dot_dotdot(&qname)) {
373                 oname->name[0] = '.';
374                 oname->name[iname->len - 1] = '.';
375                 oname->len = iname->len;
376                 return 0;
377         }
378 
379         if (iname->len < FSCRYPT_FNAME_MIN_MSG_LEN)
380                 return -EUCLEAN;
381 
382         if (fscrypt_has_encryption_key(inode))
383                 return fname_decrypt(inode, iname, oname);
384 
385         /*
386          * Sanity check that struct fscrypt_nokey_name doesn't have padding
387          * between fields and that its encoded size never exceeds NAME_MAX.
388          */
389         BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
390                      offsetof(struct fscrypt_nokey_name, bytes));
391         BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
392                      offsetof(struct fscrypt_nokey_name, sha256));
393         BUILD_BUG_ON(FSCRYPT_NOKEY_NAME_MAX_ENCODED > NAME_MAX);
394 
395         nokey_name.dirhash[0] = hash;
396         nokey_name.dirhash[1] = minor_hash;
397 
398         if (iname->len <= sizeof(nokey_name.bytes)) {
399                 memcpy(nokey_name.bytes, iname->name, iname->len);
400                 size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
401         } else {
402                 memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
403                 /* Compute strong hash of remaining part of name. */
404                 sha256(&iname->name[sizeof(nokey_name.bytes)],
405                        iname->len - sizeof(nokey_name.bytes),
406                        nokey_name.sha256);
407                 size = FSCRYPT_NOKEY_NAME_MAX;
408         }
409         oname->len = fscrypt_base64url_encode((const u8 *)&nokey_name, size,
410                                               oname->name);
411         return 0;
412 }
413 EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
414 
415 /**
416  * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
417  * @dir: the directory that will be searched
418  * @iname: the user-provided filename being searched for
419  * @lookup: 1 if we're allowed to proceed without the key because it's
420  *      ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
421  *      proceed without the key because we're going to create the dir_entry.
422  * @fname: the filename information to be filled in
423  *
424  * Given a user-provided filename @iname, this function sets @fname->disk_name
425  * to the name that would be stored in the on-disk directory entry, if possible.
426  * If the directory is unencrypted this is simply @iname.  Else, if we have the
427  * directory's encryption key, then @iname is the plaintext, so we encrypt it to
428  * get the disk_name.
429  *
430  * Else, for keyless @lookup operations, @iname should be a no-key name, so we
431  * decode it to get the struct fscrypt_nokey_name.  Non-@lookup operations will
432  * be impossible in this case, so we fail them with ENOKEY.
433  *
434  * If successful, fscrypt_free_filename() must be called later to clean up.
435  *
436  * Return: 0 on success, -errno on failure
437  */
438 int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
439                               int lookup, struct fscrypt_name *fname)
440 {
441         struct fscrypt_nokey_name *nokey_name;
442         int ret;
443 
444         memset(fname, 0, sizeof(struct fscrypt_name));
445         fname->usr_fname = iname;
446 
447         if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
448                 fname->disk_name.name = (unsigned char *)iname->name;
449                 fname->disk_name.len = iname->len;
450                 return 0;
451         }
452         ret = fscrypt_get_encryption_info(dir, lookup);
453         if (ret)
454                 return ret;
455 
456         if (fscrypt_has_encryption_key(dir)) {
457                 if (!fscrypt_fname_encrypted_size(dir, iname->len, NAME_MAX,
458                                                   &fname->crypto_buf.len))
459                         return -ENAMETOOLONG;
460                 fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
461                                                  GFP_NOFS);
462                 if (!fname->crypto_buf.name)
463                         return -ENOMEM;
464 
465                 ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
466                                             fname->crypto_buf.len);
467                 if (ret)
468                         goto errout;
469                 fname->disk_name.name = fname->crypto_buf.name;
470                 fname->disk_name.len = fname->crypto_buf.len;
471                 return 0;
472         }
473         if (!lookup)
474                 return -ENOKEY;
475         fname->is_nokey_name = true;
476 
477         /*
478          * We don't have the key and we are doing a lookup; decode the
479          * user-supplied name
480          */
481 
482         if (iname->len > FSCRYPT_NOKEY_NAME_MAX_ENCODED)
483                 return -ENOENT;
484 
485         fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
486         if (fname->crypto_buf.name == NULL)
487                 return -ENOMEM;
488 
489         ret = fscrypt_base64url_decode(iname->name, iname->len,
490                                        fname->crypto_buf.name);
491         if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
492             (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
493              ret != FSCRYPT_NOKEY_NAME_MAX)) {
494                 ret = -ENOENT;
495                 goto errout;
496         }
497         fname->crypto_buf.len = ret;
498 
499         nokey_name = (void *)fname->crypto_buf.name;
500         fname->hash = nokey_name->dirhash[0];
501         fname->minor_hash = nokey_name->dirhash[1];
502         if (ret != FSCRYPT_NOKEY_NAME_MAX) {
503                 /* The full ciphertext filename is available. */
504                 fname->disk_name.name = nokey_name->bytes;
505                 fname->disk_name.len =
506                         ret - offsetof(struct fscrypt_nokey_name, bytes);
507         }
508         return 0;
509 
510 errout:
511         kfree(fname->crypto_buf.name);
512         return ret;
513 }
514 EXPORT_SYMBOL(fscrypt_setup_filename);
515 
516 /**
517  * fscrypt_match_name() - test whether the given name matches a directory entry
518  * @fname: the name being searched for
519  * @de_name: the name from the directory entry
520  * @de_name_len: the length of @de_name in bytes
521  *
522  * Normally @fname->disk_name will be set, and in that case we simply compare
523  * that to the name stored in the directory entry.  The only exception is that
524  * if we don't have the key for an encrypted directory and the name we're
525  * looking for is very long, then we won't have the full disk_name and instead
526  * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
527  *
528  * Return: %true if the name matches, otherwise %false.
529  */
530 bool fscrypt_match_name(const struct fscrypt_name *fname,
531                         const u8 *de_name, u32 de_name_len)
532 {
533         const struct fscrypt_nokey_name *nokey_name =
534                 (const void *)fname->crypto_buf.name;
535         u8 digest[SHA256_DIGEST_SIZE];
536 
537         if (likely(fname->disk_name.name)) {
538                 if (de_name_len != fname->disk_name.len)
539                         return false;
540                 return !memcmp(de_name, fname->disk_name.name, de_name_len);
541         }
542         if (de_name_len <= sizeof(nokey_name->bytes))
543                 return false;
544         if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
545                 return false;
546         sha256(&de_name[sizeof(nokey_name->bytes)],
547                de_name_len - sizeof(nokey_name->bytes), digest);
548         return !memcmp(digest, nokey_name->sha256, sizeof(digest));
549 }
550 EXPORT_SYMBOL_GPL(fscrypt_match_name);
551 
552 /**
553  * fscrypt_fname_siphash() - calculate the SipHash of a filename
554  * @dir: the parent directory
555  * @name: the filename to calculate the SipHash of
556  *
557  * Given a plaintext filename @name and a directory @dir which uses SipHash as
558  * its dirhash method and has had its fscrypt key set up, this function
559  * calculates the SipHash of that name using the directory's secret dirhash key.
560  *
561  * Return: the SipHash of @name using the hash key of @dir
562  */
563 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
564 {
565         const struct fscrypt_inode_info *ci = dir->i_crypt_info;
566 
567         WARN_ON_ONCE(!ci->ci_dirhash_key_initialized);
568 
569         return siphash(name->name, name->len, &ci->ci_dirhash_key);
570 }
571 EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
572 
573 /*
574  * Validate dentries in encrypted directories to make sure we aren't potentially
575  * caching stale dentries after a key has been added.
576  */
577 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
578 {
579         struct dentry *dir;
580         int err;
581         int valid;
582 
583         /*
584          * Plaintext names are always valid, since fscrypt doesn't support
585          * reverting to no-key names without evicting the directory's inode
586          * -- which implies eviction of the dentries in the directory.
587          */
588         if (!(dentry->d_flags & DCACHE_NOKEY_NAME))
589                 return 1;
590 
591         /*
592          * No-key name; valid if the directory's key is still unavailable.
593          *
594          * Although fscrypt forbids rename() on no-key names, we still must use
595          * dget_parent() here rather than use ->d_parent directly.  That's
596          * because a corrupted fs image may contain directory hard links, which
597          * the VFS handles by moving the directory's dentry tree in the dcache
598          * each time ->lookup() finds the directory and it already has a dentry
599          * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
600          * a reference to some ->d_parent to prevent it from being freed.
601          */
602 
603         if (flags & LOOKUP_RCU)
604                 return -ECHILD;
605 
606         dir = dget_parent(dentry);
607         /*
608          * Pass allow_unsupported=true, so that files with an unsupported
609          * encryption policy can be deleted.
610          */
611         err = fscrypt_get_encryption_info(d_inode(dir), true);
612         valid = !fscrypt_has_encryption_key(d_inode(dir));
613         dput(dir);
614 
615         if (err < 0)
616                 return err;
617 
618         return valid;
619 }
620 EXPORT_SYMBOL_GPL(fscrypt_d_revalidate);
621 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php