~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/crypto/hooks.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * fs/crypto/hooks.c
  4  *
  5  * Encryption hooks for higher-level filesystem operations.
  6  */
  7 
  8 #include "fscrypt_private.h"
  9 
 10 /**
 11  * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
 12  * @inode: the inode being opened
 13  * @filp: the struct file being set up
 14  *
 15  * Currently, an encrypted regular file can only be opened if its encryption key
 16  * is available; access to the raw encrypted contents is not supported.
 17  * Therefore, we first set up the inode's encryption key (if not already done)
 18  * and return an error if it's unavailable.
 19  *
 20  * We also verify that if the parent directory (from the path via which the file
 21  * is being opened) is encrypted, then the inode being opened uses the same
 22  * encryption policy.  This is needed as part of the enforcement that all files
 23  * in an encrypted directory tree use the same encryption policy, as a
 24  * protection against certain types of offline attacks.  Note that this check is
 25  * needed even when opening an *unencrypted* file, since it's forbidden to have
 26  * an unencrypted file in an encrypted directory.
 27  *
 28  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
 29  */
 30 int fscrypt_file_open(struct inode *inode, struct file *filp)
 31 {
 32         int err;
 33         struct dentry *dentry, *dentry_parent;
 34         struct inode *inode_parent;
 35 
 36         err = fscrypt_require_key(inode);
 37         if (err)
 38                 return err;
 39 
 40         dentry = file_dentry(filp);
 41 
 42         /*
 43          * Getting a reference to the parent dentry is needed for the actual
 44          * encryption policy comparison, but it's expensive on multi-core
 45          * systems.  Since this function runs on unencrypted files too, start
 46          * with a lightweight RCU-mode check for the parent directory being
 47          * unencrypted (in which case it's fine for the child to be either
 48          * unencrypted, or encrypted with any policy).  Only continue on to the
 49          * full policy check if the parent directory is actually encrypted.
 50          */
 51         rcu_read_lock();
 52         dentry_parent = READ_ONCE(dentry->d_parent);
 53         inode_parent = d_inode_rcu(dentry_parent);
 54         if (inode_parent != NULL && !IS_ENCRYPTED(inode_parent)) {
 55                 rcu_read_unlock();
 56                 return 0;
 57         }
 58         rcu_read_unlock();
 59 
 60         dentry_parent = dget_parent(dentry);
 61         if (!fscrypt_has_permitted_context(d_inode(dentry_parent), inode)) {
 62                 fscrypt_warn(inode,
 63                              "Inconsistent encryption context (parent directory: %lu)",
 64                              d_inode(dentry_parent)->i_ino);
 65                 err = -EPERM;
 66         }
 67         dput(dentry_parent);
 68         return err;
 69 }
 70 EXPORT_SYMBOL_GPL(fscrypt_file_open);
 71 
 72 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
 73                            struct dentry *dentry)
 74 {
 75         if (fscrypt_is_nokey_name(dentry))
 76                 return -ENOKEY;
 77         /*
 78          * We don't need to separately check that the directory inode's key is
 79          * available, as it's implied by the dentry not being a no-key name.
 80          */
 81 
 82         if (!fscrypt_has_permitted_context(dir, inode))
 83                 return -EXDEV;
 84 
 85         return 0;
 86 }
 87 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
 88 
 89 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
 90                              struct inode *new_dir, struct dentry *new_dentry,
 91                              unsigned int flags)
 92 {
 93         if (fscrypt_is_nokey_name(old_dentry) ||
 94             fscrypt_is_nokey_name(new_dentry))
 95                 return -ENOKEY;
 96         /*
 97          * We don't need to separately check that the directory inodes' keys are
 98          * available, as it's implied by the dentries not being no-key names.
 99          */
100 
101         if (old_dir != new_dir) {
102                 if (IS_ENCRYPTED(new_dir) &&
103                     !fscrypt_has_permitted_context(new_dir,
104                                                    d_inode(old_dentry)))
105                         return -EXDEV;
106 
107                 if ((flags & RENAME_EXCHANGE) &&
108                     IS_ENCRYPTED(old_dir) &&
109                     !fscrypt_has_permitted_context(old_dir,
110                                                    d_inode(new_dentry)))
111                         return -EXDEV;
112         }
113         return 0;
114 }
115 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
116 
117 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
118                              struct fscrypt_name *fname)
119 {
120         int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
121 
122         if (err && err != -ENOENT)
123                 return err;
124 
125         fscrypt_prepare_dentry(dentry, fname->is_nokey_name);
126 
127         return err;
128 }
129 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
130 
131 /**
132  * fscrypt_prepare_lookup_partial() - prepare lookup without filename setup
133  * @dir: the encrypted directory being searched
134  * @dentry: the dentry being looked up in @dir
135  *
136  * This function should be used by the ->lookup and ->atomic_open methods of
137  * filesystems that handle filename encryption and no-key name encoding
138  * themselves and thus can't use fscrypt_prepare_lookup().  Like
139  * fscrypt_prepare_lookup(), this will try to set up the directory's encryption
140  * key and will set DCACHE_NOKEY_NAME on the dentry if the key is unavailable.
141  * However, this function doesn't set up a struct fscrypt_name for the filename.
142  *
143  * Return: 0 on success; -errno on error.  Note that the encryption key being
144  *         unavailable is not considered an error.  It is also not an error if
145  *         the encryption policy is unsupported by this kernel; that is treated
146  *         like the key being unavailable, so that files can still be deleted.
147  */
148 int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry)
149 {
150         int err = fscrypt_get_encryption_info(dir, true);
151         bool is_nokey_name = (!err && !fscrypt_has_encryption_key(dir));
152 
153         fscrypt_prepare_dentry(dentry, is_nokey_name);
154 
155         return err;
156 }
157 EXPORT_SYMBOL_GPL(fscrypt_prepare_lookup_partial);
158 
159 int __fscrypt_prepare_readdir(struct inode *dir)
160 {
161         return fscrypt_get_encryption_info(dir, true);
162 }
163 EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir);
164 
165 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr)
166 {
167         if (attr->ia_valid & ATTR_SIZE)
168                 return fscrypt_require_key(d_inode(dentry));
169         return 0;
170 }
171 EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);
172 
173 /**
174  * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
175  * @inode: the inode on which flags are being changed
176  * @oldflags: the old flags
177  * @flags: the new flags
178  *
179  * The caller should be holding i_rwsem for write.
180  *
181  * Return: 0 on success; -errno if the flags change isn't allowed or if
182  *         another error occurs.
183  */
184 int fscrypt_prepare_setflags(struct inode *inode,
185                              unsigned int oldflags, unsigned int flags)
186 {
187         struct fscrypt_inode_info *ci;
188         struct fscrypt_master_key *mk;
189         int err;
190 
191         /*
192          * When the CASEFOLD flag is set on an encrypted directory, we must
193          * derive the secret key needed for the dirhash.  This is only possible
194          * if the directory uses a v2 encryption policy.
195          */
196         if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
197                 err = fscrypt_require_key(inode);
198                 if (err)
199                         return err;
200                 ci = inode->i_crypt_info;
201                 if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
202                         return -EINVAL;
203                 mk = ci->ci_master_key;
204                 down_read(&mk->mk_sem);
205                 if (mk->mk_present)
206                         err = fscrypt_derive_dirhash_key(ci, mk);
207                 else
208                         err = -ENOKEY;
209                 up_read(&mk->mk_sem);
210                 return err;
211         }
212         return 0;
213 }
214 
215 /**
216  * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
217  * @dir: directory in which the symlink is being created
218  * @target: plaintext symlink target
219  * @len: length of @target excluding null terminator
220  * @max_len: space the filesystem has available to store the symlink target
221  * @disk_link: (out) the on-disk symlink target being prepared
222  *
223  * This function computes the size the symlink target will require on-disk,
224  * stores it in @disk_link->len, and validates it against @max_len.  An
225  * encrypted symlink may be longer than the original.
226  *
227  * Additionally, @disk_link->name is set to @target if the symlink will be
228  * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
229  * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
230  * on-disk target later.  (The reason for the two-step process is that some
231  * filesystems need to know the size of the symlink target before creating the
232  * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
233  *
234  * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
235  * -ENOKEY if the encryption key is missing, or another -errno code if a problem
236  * occurred while setting up the encryption key.
237  */
238 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
239                             unsigned int len, unsigned int max_len,
240                             struct fscrypt_str *disk_link)
241 {
242         const union fscrypt_policy *policy;
243 
244         /*
245          * To calculate the size of the encrypted symlink target we need to know
246          * the amount of NUL padding, which is determined by the flags set in
247          * the encryption policy which will be inherited from the directory.
248          */
249         policy = fscrypt_policy_to_inherit(dir);
250         if (policy == NULL) {
251                 /* Not encrypted */
252                 disk_link->name = (unsigned char *)target;
253                 disk_link->len = len + 1;
254                 if (disk_link->len > max_len)
255                         return -ENAMETOOLONG;
256                 return 0;
257         }
258         if (IS_ERR(policy))
259                 return PTR_ERR(policy);
260 
261         /*
262          * Calculate the size of the encrypted symlink and verify it won't
263          * exceed max_len.  Note that for historical reasons, encrypted symlink
264          * targets are prefixed with the ciphertext length, despite this
265          * actually being redundant with i_size.  This decreases by 2 bytes the
266          * longest symlink target we can accept.
267          *
268          * We could recover 1 byte by not counting a null terminator, but
269          * counting it (even though it is meaningless for ciphertext) is simpler
270          * for now since filesystems will assume it is there and subtract it.
271          */
272         if (!__fscrypt_fname_encrypted_size(policy, len,
273                                             max_len - sizeof(struct fscrypt_symlink_data) - 1,
274                                             &disk_link->len))
275                 return -ENAMETOOLONG;
276         disk_link->len += sizeof(struct fscrypt_symlink_data) + 1;
277 
278         disk_link->name = NULL;
279         return 0;
280 }
281 EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
282 
283 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
284                               unsigned int len, struct fscrypt_str *disk_link)
285 {
286         int err;
287         struct qstr iname = QSTR_INIT(target, len);
288         struct fscrypt_symlink_data *sd;
289         unsigned int ciphertext_len;
290 
291         /*
292          * fscrypt_prepare_new_inode() should have already set up the new
293          * symlink inode's encryption key.  We don't wait until now to do it,
294          * since we may be in a filesystem transaction now.
295          */
296         if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
297                 return -ENOKEY;
298 
299         if (disk_link->name) {
300                 /* filesystem-provided buffer */
301                 sd = (struct fscrypt_symlink_data *)disk_link->name;
302         } else {
303                 sd = kmalloc(disk_link->len, GFP_NOFS);
304                 if (!sd)
305                         return -ENOMEM;
306         }
307         ciphertext_len = disk_link->len - sizeof(*sd) - 1;
308         sd->len = cpu_to_le16(ciphertext_len);
309 
310         err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
311                                     ciphertext_len);
312         if (err)
313                 goto err_free_sd;
314 
315         /*
316          * Null-terminating the ciphertext doesn't make sense, but we still
317          * count the null terminator in the length, so we might as well
318          * initialize it just in case the filesystem writes it out.
319          */
320         sd->encrypted_path[ciphertext_len] = '\0';
321 
322         /* Cache the plaintext symlink target for later use by get_link() */
323         err = -ENOMEM;
324         inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
325         if (!inode->i_link)
326                 goto err_free_sd;
327 
328         if (!disk_link->name)
329                 disk_link->name = (unsigned char *)sd;
330         return 0;
331 
332 err_free_sd:
333         if (!disk_link->name)
334                 kfree(sd);
335         return err;
336 }
337 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
338 
339 /**
340  * fscrypt_get_symlink() - get the target of an encrypted symlink
341  * @inode: the symlink inode
342  * @caddr: the on-disk contents of the symlink
343  * @max_size: size of @caddr buffer
344  * @done: if successful, will be set up to free the returned target if needed
345  *
346  * If the symlink's encryption key is available, we decrypt its target.
347  * Otherwise, we encode its target for presentation.
348  *
349  * This may sleep, so the filesystem must have dropped out of RCU mode already.
350  *
351  * Return: the presentable symlink target or an ERR_PTR()
352  */
353 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
354                                 unsigned int max_size,
355                                 struct delayed_call *done)
356 {
357         const struct fscrypt_symlink_data *sd;
358         struct fscrypt_str cstr, pstr;
359         bool has_key;
360         int err;
361 
362         /* This is for encrypted symlinks only */
363         if (WARN_ON_ONCE(!IS_ENCRYPTED(inode)))
364                 return ERR_PTR(-EINVAL);
365 
366         /* If the decrypted target is already cached, just return it. */
367         pstr.name = READ_ONCE(inode->i_link);
368         if (pstr.name)
369                 return pstr.name;
370 
371         /*
372          * Try to set up the symlink's encryption key, but we can continue
373          * regardless of whether the key is available or not.
374          */
375         err = fscrypt_get_encryption_info(inode, false);
376         if (err)
377                 return ERR_PTR(err);
378         has_key = fscrypt_has_encryption_key(inode);
379 
380         /*
381          * For historical reasons, encrypted symlink targets are prefixed with
382          * the ciphertext length, even though this is redundant with i_size.
383          */
384 
385         if (max_size < sizeof(*sd) + 1)
386                 return ERR_PTR(-EUCLEAN);
387         sd = caddr;
388         cstr.name = (unsigned char *)sd->encrypted_path;
389         cstr.len = le16_to_cpu(sd->len);
390 
391         if (cstr.len == 0)
392                 return ERR_PTR(-EUCLEAN);
393 
394         if (cstr.len + sizeof(*sd) > max_size)
395                 return ERR_PTR(-EUCLEAN);
396 
397         err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
398         if (err)
399                 return ERR_PTR(err);
400 
401         err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
402         if (err)
403                 goto err_kfree;
404 
405         err = -EUCLEAN;
406         if (pstr.name[0] == '\0')
407                 goto err_kfree;
408 
409         pstr.name[pstr.len] = '\0';
410 
411         /*
412          * Cache decrypted symlink targets in i_link for later use.  Don't cache
413          * symlink targets encoded without the key, since those become outdated
414          * once the key is added.  This pairs with the READ_ONCE() above and in
415          * the VFS path lookup code.
416          */
417         if (!has_key ||
418             cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
419                 set_delayed_call(done, kfree_link, pstr.name);
420 
421         return pstr.name;
422 
423 err_kfree:
424         kfree(pstr.name);
425         return ERR_PTR(err);
426 }
427 EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
428 
429 /**
430  * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
431  * @path: the path for the encrypted symlink being queried
432  * @stat: the struct being filled with the symlink's attributes
433  *
434  * Override st_size of encrypted symlinks to be the length of the decrypted
435  * symlink target (or the no-key encoded symlink target, if the key is
436  * unavailable) rather than the length of the encrypted symlink target.  This is
437  * necessary for st_size to match the symlink target that userspace actually
438  * sees.  POSIX requires this, and some userspace programs depend on it.
439  *
440  * This requires reading the symlink target from disk if needed, setting up the
441  * inode's encryption key if possible, and then decrypting or encoding the
442  * symlink target.  This makes lstat() more heavyweight than is normally the
443  * case.  However, decrypted symlink targets will be cached in ->i_link, so
444  * usually the symlink won't have to be read and decrypted again later if/when
445  * it is actually followed, readlink() is called, or lstat() is called again.
446  *
447  * Return: 0 on success, -errno on failure
448  */
449 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
450 {
451         struct dentry *dentry = path->dentry;
452         struct inode *inode = d_inode(dentry);
453         const char *link;
454         DEFINE_DELAYED_CALL(done);
455 
456         /*
457          * To get the symlink target that userspace will see (whether it's the
458          * decrypted target or the no-key encoded target), we can just get it in
459          * the same way the VFS does during path resolution and readlink().
460          */
461         link = READ_ONCE(inode->i_link);
462         if (!link) {
463                 link = inode->i_op->get_link(dentry, inode, &done);
464                 if (IS_ERR(link))
465                         return PTR_ERR(link);
466         }
467         stat->size = strlen(link);
468         do_delayed_call(&done);
469         return 0;
470 }
471 EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);
472 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php