1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/crypto/hooks.c 4 * 5 * Encryption hooks for higher-level filesystem operations. 6 */ 7 8 #include "fscrypt_private.h" 9 10 /** 11 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file 12 * @inode: the inode being opened 13 * @filp: the struct file being set up 14 * 15 * Currently, an encrypted regular file can only be opened if its encryption key 16 * is available; access to the raw encrypted contents is not supported. 17 * Therefore, we first set up the inode's encryption key (if not already done) 18 * and return an error if it's unavailable. 19 * 20 * We also verify that if the parent directory (from the path via which the file 21 * is being opened) is encrypted, then the inode being opened uses the same 22 * encryption policy. This is needed as part of the enforcement that all files 23 * in an encrypted directory tree use the same encryption policy, as a 24 * protection against certain types of offline attacks. Note that this check is 25 * needed even when opening an *unencrypted* file, since it's forbidden to have 26 * an unencrypted file in an encrypted directory. 27 * 28 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 29 */ 30 int fscrypt_file_open(struct inode *inode, struct file *filp) 31 { 32 int err; 33 struct dentry *dentry, *dentry_parent; 34 struct inode *inode_parent; 35 36 err = fscrypt_require_key(inode); 37 if (err) 38 return err; 39 40 dentry = file_dentry(filp); 41 42 /* 43 * Getting a reference to the parent dentry is needed for the actual 44 * encryption policy comparison, but it's expensive on multi-core 45 * systems. Since this function runs on unencrypted files too, start 46 * with a lightweight RCU-mode check for the parent directory being 47 * unencrypted (in which case it's fine for the child to be either 48 * unencrypted, or encrypted with any policy). Only continue on to the 49 * full policy check if the parent directory is actually encrypted. 50 */ 51 rcu_read_lock(); 52 dentry_parent = READ_ONCE(dentry->d_parent); 53 inode_parent = d_inode_rcu(dentry_parent); 54 if (inode_parent != NULL && !IS_ENCRYPTED(inode_parent)) { 55 rcu_read_unlock(); 56 return 0; 57 } 58 rcu_read_unlock(); 59 60 dentry_parent = dget_parent(dentry); 61 if (!fscrypt_has_permitted_context(d_inode(dentry_parent), inode)) { 62 fscrypt_warn(inode, 63 "Inconsistent encryption context (parent directory: %lu)", 64 d_inode(dentry_parent)->i_ino); 65 err = -EPERM; 66 } 67 dput(dentry_parent); 68 return err; 69 } 70 EXPORT_SYMBOL_GPL(fscrypt_file_open); 71 72 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 73 struct dentry *dentry) 74 { 75 if (fscrypt_is_nokey_name(dentry)) 76 return -ENOKEY; 77 /* 78 * We don't need to separately check that the directory inode's key is 79 * available, as it's implied by the dentry not being a no-key name. 80 */ 81 82 if (!fscrypt_has_permitted_context(dir, inode)) 83 return -EXDEV; 84 85 return 0; 86 } 87 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link); 88 89 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, 90 struct inode *new_dir, struct dentry *new_dentry, 91 unsigned int flags) 92 { 93 if (fscrypt_is_nokey_name(old_dentry) || 94 fscrypt_is_nokey_name(new_dentry)) 95 return -ENOKEY; 96 /* 97 * We don't need to separately check that the directory inodes' keys are 98 * available, as it's implied by the dentries not being no-key names. 99 */ 100 101 if (old_dir != new_dir) { 102 if (IS_ENCRYPTED(new_dir) && 103 !fscrypt_has_permitted_context(new_dir, 104 d_inode(old_dentry))) 105 return -EXDEV; 106 107 if ((flags & RENAME_EXCHANGE) && 108 IS_ENCRYPTED(old_dir) && 109 !fscrypt_has_permitted_context(old_dir, 110 d_inode(new_dentry))) 111 return -EXDEV; 112 } 113 return 0; 114 } 115 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename); 116 117 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 118 struct fscrypt_name *fname) 119 { 120 int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname); 121 122 if (err && err != -ENOENT) 123 return err; 124 125 fscrypt_prepare_dentry(dentry, fname->is_nokey_name); 126 127 return err; 128 } 129 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup); 130 131 /** 132 * fscrypt_prepare_lookup_partial() - prepare lookup without filename setup 133 * @dir: the encrypted directory being searched 134 * @dentry: the dentry being looked up in @dir 135 * 136 * This function should be used by the ->lookup and ->atomic_open methods of 137 * filesystems that handle filename encryption and no-key name encoding 138 * themselves and thus can't use fscrypt_prepare_lookup(). Like 139 * fscrypt_prepare_lookup(), this will try to set up the directory's encryption 140 * key and will set DCACHE_NOKEY_NAME on the dentry if the key is unavailable. 141 * However, this function doesn't set up a struct fscrypt_name for the filename. 142 * 143 * Return: 0 on success; -errno on error. Note that the encryption key being 144 * unavailable is not considered an error. It is also not an error if 145 * the encryption policy is unsupported by this kernel; that is treated 146 * like the key being unavailable, so that files can still be deleted. 147 */ 148 int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry) 149 { 150 int err = fscrypt_get_encryption_info(dir, true); 151 bool is_nokey_name = (!err && !fscrypt_has_encryption_key(dir)); 152 153 fscrypt_prepare_dentry(dentry, is_nokey_name); 154 155 return err; 156 } 157 EXPORT_SYMBOL_GPL(fscrypt_prepare_lookup_partial); 158 159 int __fscrypt_prepare_readdir(struct inode *dir) 160 { 161 return fscrypt_get_encryption_info(dir, true); 162 } 163 EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir); 164 165 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr) 166 { 167 if (attr->ia_valid & ATTR_SIZE) 168 return fscrypt_require_key(d_inode(dentry)); 169 return 0; 170 } 171 EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr); 172 173 /** 174 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS 175 * @inode: the inode on which flags are being changed 176 * @oldflags: the old flags 177 * @flags: the new flags 178 * 179 * The caller should be holding i_rwsem for write. 180 * 181 * Return: 0 on success; -errno if the flags change isn't allowed or if 182 * another error occurs. 183 */ 184 int fscrypt_prepare_setflags(struct inode *inode, 185 unsigned int oldflags, unsigned int flags) 186 { 187 struct fscrypt_inode_info *ci; 188 struct fscrypt_master_key *mk; 189 int err; 190 191 /* 192 * When the CASEFOLD flag is set on an encrypted directory, we must 193 * derive the secret key needed for the dirhash. This is only possible 194 * if the directory uses a v2 encryption policy. 195 */ 196 if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) { 197 err = fscrypt_require_key(inode); 198 if (err) 199 return err; 200 ci = inode->i_crypt_info; 201 if (ci->ci_policy.version != FSCRYPT_POLICY_V2) 202 return -EINVAL; 203 mk = ci->ci_master_key; 204 down_read(&mk->mk_sem); 205 if (mk->mk_present) 206 err = fscrypt_derive_dirhash_key(ci, mk); 207 else 208 err = -ENOKEY; 209 up_read(&mk->mk_sem); 210 return err; 211 } 212 return 0; 213 } 214 215 /** 216 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink 217 * @dir: directory in which the symlink is being created 218 * @target: plaintext symlink target 219 * @len: length of @target excluding null terminator 220 * @max_len: space the filesystem has available to store the symlink target 221 * @disk_link: (out) the on-disk symlink target being prepared 222 * 223 * This function computes the size the symlink target will require on-disk, 224 * stores it in @disk_link->len, and validates it against @max_len. An 225 * encrypted symlink may be longer than the original. 226 * 227 * Additionally, @disk_link->name is set to @target if the symlink will be 228 * unencrypted, but left NULL if the symlink will be encrypted. For encrypted 229 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the 230 * on-disk target later. (The reason for the two-step process is that some 231 * filesystems need to know the size of the symlink target before creating the 232 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.) 233 * 234 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long, 235 * -ENOKEY if the encryption key is missing, or another -errno code if a problem 236 * occurred while setting up the encryption key. 237 */ 238 int fscrypt_prepare_symlink(struct inode *dir, const char *target, 239 unsigned int len, unsigned int max_len, 240 struct fscrypt_str *disk_link) 241 { 242 const union fscrypt_policy *policy; 243 244 /* 245 * To calculate the size of the encrypted symlink target we need to know 246 * the amount of NUL padding, which is determined by the flags set in 247 * the encryption policy which will be inherited from the directory. 248 */ 249 policy = fscrypt_policy_to_inherit(dir); 250 if (policy == NULL) { 251 /* Not encrypted */ 252 disk_link->name = (unsigned char *)target; 253 disk_link->len = len + 1; 254 if (disk_link->len > max_len) 255 return -ENAMETOOLONG; 256 return 0; 257 } 258 if (IS_ERR(policy)) 259 return PTR_ERR(policy); 260 261 /* 262 * Calculate the size of the encrypted symlink and verify it won't 263 * exceed max_len. Note that for historical reasons, encrypted symlink 264 * targets are prefixed with the ciphertext length, despite this 265 * actually being redundant with i_size. This decreases by 2 bytes the 266 * longest symlink target we can accept. 267 * 268 * We could recover 1 byte by not counting a null terminator, but 269 * counting it (even though it is meaningless for ciphertext) is simpler 270 * for now since filesystems will assume it is there and subtract it. 271 */ 272 if (!__fscrypt_fname_encrypted_size(policy, len, 273 max_len - sizeof(struct fscrypt_symlink_data) - 1, 274 &disk_link->len)) 275 return -ENAMETOOLONG; 276 disk_link->len += sizeof(struct fscrypt_symlink_data) + 1; 277 278 disk_link->name = NULL; 279 return 0; 280 } 281 EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink); 282 283 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 284 unsigned int len, struct fscrypt_str *disk_link) 285 { 286 int err; 287 struct qstr iname = QSTR_INIT(target, len); 288 struct fscrypt_symlink_data *sd; 289 unsigned int ciphertext_len; 290 291 /* 292 * fscrypt_prepare_new_inode() should have already set up the new 293 * symlink inode's encryption key. We don't wait until now to do it, 294 * since we may be in a filesystem transaction now. 295 */ 296 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode))) 297 return -ENOKEY; 298 299 if (disk_link->name) { 300 /* filesystem-provided buffer */ 301 sd = (struct fscrypt_symlink_data *)disk_link->name; 302 } else { 303 sd = kmalloc(disk_link->len, GFP_NOFS); 304 if (!sd) 305 return -ENOMEM; 306 } 307 ciphertext_len = disk_link->len - sizeof(*sd) - 1; 308 sd->len = cpu_to_le16(ciphertext_len); 309 310 err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path, 311 ciphertext_len); 312 if (err) 313 goto err_free_sd; 314 315 /* 316 * Null-terminating the ciphertext doesn't make sense, but we still 317 * count the null terminator in the length, so we might as well 318 * initialize it just in case the filesystem writes it out. 319 */ 320 sd->encrypted_path[ciphertext_len] = '\0'; 321 322 /* Cache the plaintext symlink target for later use by get_link() */ 323 err = -ENOMEM; 324 inode->i_link = kmemdup(target, len + 1, GFP_NOFS); 325 if (!inode->i_link) 326 goto err_free_sd; 327 328 if (!disk_link->name) 329 disk_link->name = (unsigned char *)sd; 330 return 0; 331 332 err_free_sd: 333 if (!disk_link->name) 334 kfree(sd); 335 return err; 336 } 337 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink); 338 339 /** 340 * fscrypt_get_symlink() - get the target of an encrypted symlink 341 * @inode: the symlink inode 342 * @caddr: the on-disk contents of the symlink 343 * @max_size: size of @caddr buffer 344 * @done: if successful, will be set up to free the returned target if needed 345 * 346 * If the symlink's encryption key is available, we decrypt its target. 347 * Otherwise, we encode its target for presentation. 348 * 349 * This may sleep, so the filesystem must have dropped out of RCU mode already. 350 * 351 * Return: the presentable symlink target or an ERR_PTR() 352 */ 353 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 354 unsigned int max_size, 355 struct delayed_call *done) 356 { 357 const struct fscrypt_symlink_data *sd; 358 struct fscrypt_str cstr, pstr; 359 bool has_key; 360 int err; 361 362 /* This is for encrypted symlinks only */ 363 if (WARN_ON_ONCE(!IS_ENCRYPTED(inode))) 364 return ERR_PTR(-EINVAL); 365 366 /* If the decrypted target is already cached, just return it. */ 367 pstr.name = READ_ONCE(inode->i_link); 368 if (pstr.name) 369 return pstr.name; 370 371 /* 372 * Try to set up the symlink's encryption key, but we can continue 373 * regardless of whether the key is available or not. 374 */ 375 err = fscrypt_get_encryption_info(inode, false); 376 if (err) 377 return ERR_PTR(err); 378 has_key = fscrypt_has_encryption_key(inode); 379 380 /* 381 * For historical reasons, encrypted symlink targets are prefixed with 382 * the ciphertext length, even though this is redundant with i_size. 383 */ 384 385 if (max_size < sizeof(*sd) + 1) 386 return ERR_PTR(-EUCLEAN); 387 sd = caddr; 388 cstr.name = (unsigned char *)sd->encrypted_path; 389 cstr.len = le16_to_cpu(sd->len); 390 391 if (cstr.len == 0) 392 return ERR_PTR(-EUCLEAN); 393 394 if (cstr.len + sizeof(*sd) > max_size) 395 return ERR_PTR(-EUCLEAN); 396 397 err = fscrypt_fname_alloc_buffer(cstr.len, &pstr); 398 if (err) 399 return ERR_PTR(err); 400 401 err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr); 402 if (err) 403 goto err_kfree; 404 405 err = -EUCLEAN; 406 if (pstr.name[0] == '\0') 407 goto err_kfree; 408 409 pstr.name[pstr.len] = '\0'; 410 411 /* 412 * Cache decrypted symlink targets in i_link for later use. Don't cache 413 * symlink targets encoded without the key, since those become outdated 414 * once the key is added. This pairs with the READ_ONCE() above and in 415 * the VFS path lookup code. 416 */ 417 if (!has_key || 418 cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL) 419 set_delayed_call(done, kfree_link, pstr.name); 420 421 return pstr.name; 422 423 err_kfree: 424 kfree(pstr.name); 425 return ERR_PTR(err); 426 } 427 EXPORT_SYMBOL_GPL(fscrypt_get_symlink); 428 429 /** 430 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks 431 * @path: the path for the encrypted symlink being queried 432 * @stat: the struct being filled with the symlink's attributes 433 * 434 * Override st_size of encrypted symlinks to be the length of the decrypted 435 * symlink target (or the no-key encoded symlink target, if the key is 436 * unavailable) rather than the length of the encrypted symlink target. This is 437 * necessary for st_size to match the symlink target that userspace actually 438 * sees. POSIX requires this, and some userspace programs depend on it. 439 * 440 * This requires reading the symlink target from disk if needed, setting up the 441 * inode's encryption key if possible, and then decrypting or encoding the 442 * symlink target. This makes lstat() more heavyweight than is normally the 443 * case. However, decrypted symlink targets will be cached in ->i_link, so 444 * usually the symlink won't have to be read and decrypted again later if/when 445 * it is actually followed, readlink() is called, or lstat() is called again. 446 * 447 * Return: 0 on success, -errno on failure 448 */ 449 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat) 450 { 451 struct dentry *dentry = path->dentry; 452 struct inode *inode = d_inode(dentry); 453 const char *link; 454 DEFINE_DELAYED_CALL(done); 455 456 /* 457 * To get the symlink target that userspace will see (whether it's the 458 * decrypted target or the no-key encoded target), we can just get it in 459 * the same way the VFS does during path resolution and readlink(). 460 */ 461 link = READ_ONCE(inode->i_link); 462 if (!link) { 463 link = inode->i_op->get_link(dentry, inode, &done); 464 if (IS_ERR(link)) 465 return PTR_ERR(link); 466 } 467 stat->size = strlen(link); 468 do_delayed_call(&done); 469 return 0; 470 } 471 EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr); 472
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.