1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dax.c - Direct Access filesystem code 4 * Copyright (c) 2013-2014 Intel Corporation 5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 7 */ 8 9 #include <linux/atomic.h> 10 #include <linux/blkdev.h> 11 #include <linux/buffer_head.h> 12 #include <linux/dax.h> 13 #include <linux/fs.h> 14 #include <linux/highmem.h> 15 #include <linux/memcontrol.h> 16 #include <linux/mm.h> 17 #include <linux/mutex.h> 18 #include <linux/pagevec.h> 19 #include <linux/sched.h> 20 #include <linux/sched/signal.h> 21 #include <linux/uio.h> 22 #include <linux/vmstat.h> 23 #include <linux/pfn_t.h> 24 #include <linux/sizes.h> 25 #include <linux/mmu_notifier.h> 26 #include <linux/iomap.h> 27 #include <linux/rmap.h> 28 #include <asm/pgalloc.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/fs_dax.h> 32 33 /* We choose 4096 entries - same as per-zone page wait tables */ 34 #define DAX_WAIT_TABLE_BITS 12 35 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 36 37 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 38 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 39 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 40 41 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 42 43 static int __init init_dax_wait_table(void) 44 { 45 int i; 46 47 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 48 init_waitqueue_head(wait_table + i); 49 return 0; 50 } 51 fs_initcall(init_dax_wait_table); 52 53 /* 54 * DAX pagecache entries use XArray value entries so they can't be mistaken 55 * for pages. We use one bit for locking, one bit for the entry size (PMD) 56 * and two more to tell us if the entry is a zero page or an empty entry that 57 * is just used for locking. In total four special bits. 58 * 59 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 60 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 61 * block allocation. 62 */ 63 #define DAX_SHIFT (4) 64 #define DAX_LOCKED (1UL << 0) 65 #define DAX_PMD (1UL << 1) 66 #define DAX_ZERO_PAGE (1UL << 2) 67 #define DAX_EMPTY (1UL << 3) 68 69 static unsigned long dax_to_pfn(void *entry) 70 { 71 return xa_to_value(entry) >> DAX_SHIFT; 72 } 73 74 static void *dax_make_entry(pfn_t pfn, unsigned long flags) 75 { 76 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); 77 } 78 79 static bool dax_is_locked(void *entry) 80 { 81 return xa_to_value(entry) & DAX_LOCKED; 82 } 83 84 static unsigned int dax_entry_order(void *entry) 85 { 86 if (xa_to_value(entry) & DAX_PMD) 87 return PMD_ORDER; 88 return 0; 89 } 90 91 static unsigned long dax_is_pmd_entry(void *entry) 92 { 93 return xa_to_value(entry) & DAX_PMD; 94 } 95 96 static bool dax_is_pte_entry(void *entry) 97 { 98 return !(xa_to_value(entry) & DAX_PMD); 99 } 100 101 static int dax_is_zero_entry(void *entry) 102 { 103 return xa_to_value(entry) & DAX_ZERO_PAGE; 104 } 105 106 static int dax_is_empty_entry(void *entry) 107 { 108 return xa_to_value(entry) & DAX_EMPTY; 109 } 110 111 /* 112 * true if the entry that was found is of a smaller order than the entry 113 * we were looking for 114 */ 115 static bool dax_is_conflict(void *entry) 116 { 117 return entry == XA_RETRY_ENTRY; 118 } 119 120 /* 121 * DAX page cache entry locking 122 */ 123 struct exceptional_entry_key { 124 struct xarray *xa; 125 pgoff_t entry_start; 126 }; 127 128 struct wait_exceptional_entry_queue { 129 wait_queue_entry_t wait; 130 struct exceptional_entry_key key; 131 }; 132 133 /** 134 * enum dax_wake_mode: waitqueue wakeup behaviour 135 * @WAKE_ALL: wake all waiters in the waitqueue 136 * @WAKE_NEXT: wake only the first waiter in the waitqueue 137 */ 138 enum dax_wake_mode { 139 WAKE_ALL, 140 WAKE_NEXT, 141 }; 142 143 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 144 void *entry, struct exceptional_entry_key *key) 145 { 146 unsigned long hash; 147 unsigned long index = xas->xa_index; 148 149 /* 150 * If 'entry' is a PMD, align the 'index' that we use for the wait 151 * queue to the start of that PMD. This ensures that all offsets in 152 * the range covered by the PMD map to the same bit lock. 153 */ 154 if (dax_is_pmd_entry(entry)) 155 index &= ~PG_PMD_COLOUR; 156 key->xa = xas->xa; 157 key->entry_start = index; 158 159 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 160 return wait_table + hash; 161 } 162 163 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 164 unsigned int mode, int sync, void *keyp) 165 { 166 struct exceptional_entry_key *key = keyp; 167 struct wait_exceptional_entry_queue *ewait = 168 container_of(wait, struct wait_exceptional_entry_queue, wait); 169 170 if (key->xa != ewait->key.xa || 171 key->entry_start != ewait->key.entry_start) 172 return 0; 173 return autoremove_wake_function(wait, mode, sync, NULL); 174 } 175 176 /* 177 * @entry may no longer be the entry at the index in the mapping. 178 * The important information it's conveying is whether the entry at 179 * this index used to be a PMD entry. 180 */ 181 static void dax_wake_entry(struct xa_state *xas, void *entry, 182 enum dax_wake_mode mode) 183 { 184 struct exceptional_entry_key key; 185 wait_queue_head_t *wq; 186 187 wq = dax_entry_waitqueue(xas, entry, &key); 188 189 /* 190 * Checking for locked entry and prepare_to_wait_exclusive() happens 191 * under the i_pages lock, ditto for entry handling in our callers. 192 * So at this point all tasks that could have seen our entry locked 193 * must be in the waitqueue and the following check will see them. 194 */ 195 if (waitqueue_active(wq)) 196 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key); 197 } 198 199 /* 200 * Look up entry in page cache, wait for it to become unlocked if it 201 * is a DAX entry and return it. The caller must subsequently call 202 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 203 * if it did. The entry returned may have a larger order than @order. 204 * If @order is larger than the order of the entry found in i_pages, this 205 * function returns a dax_is_conflict entry. 206 * 207 * Must be called with the i_pages lock held. 208 */ 209 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order) 210 { 211 void *entry; 212 struct wait_exceptional_entry_queue ewait; 213 wait_queue_head_t *wq; 214 215 init_wait(&ewait.wait); 216 ewait.wait.func = wake_exceptional_entry_func; 217 218 for (;;) { 219 entry = xas_find_conflict(xas); 220 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 221 return entry; 222 if (dax_entry_order(entry) < order) 223 return XA_RETRY_ENTRY; 224 if (!dax_is_locked(entry)) 225 return entry; 226 227 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 228 prepare_to_wait_exclusive(wq, &ewait.wait, 229 TASK_UNINTERRUPTIBLE); 230 xas_unlock_irq(xas); 231 xas_reset(xas); 232 schedule(); 233 finish_wait(wq, &ewait.wait); 234 xas_lock_irq(xas); 235 } 236 } 237 238 /* 239 * The only thing keeping the address space around is the i_pages lock 240 * (it's cycled in clear_inode() after removing the entries from i_pages) 241 * After we call xas_unlock_irq(), we cannot touch xas->xa. 242 */ 243 static void wait_entry_unlocked(struct xa_state *xas, void *entry) 244 { 245 struct wait_exceptional_entry_queue ewait; 246 wait_queue_head_t *wq; 247 248 init_wait(&ewait.wait); 249 ewait.wait.func = wake_exceptional_entry_func; 250 251 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 252 /* 253 * Unlike get_unlocked_entry() there is no guarantee that this 254 * path ever successfully retrieves an unlocked entry before an 255 * inode dies. Perform a non-exclusive wait in case this path 256 * never successfully performs its own wake up. 257 */ 258 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); 259 xas_unlock_irq(xas); 260 schedule(); 261 finish_wait(wq, &ewait.wait); 262 } 263 264 static void put_unlocked_entry(struct xa_state *xas, void *entry, 265 enum dax_wake_mode mode) 266 { 267 if (entry && !dax_is_conflict(entry)) 268 dax_wake_entry(xas, entry, mode); 269 } 270 271 /* 272 * We used the xa_state to get the entry, but then we locked the entry and 273 * dropped the xa_lock, so we know the xa_state is stale and must be reset 274 * before use. 275 */ 276 static void dax_unlock_entry(struct xa_state *xas, void *entry) 277 { 278 void *old; 279 280 BUG_ON(dax_is_locked(entry)); 281 xas_reset(xas); 282 xas_lock_irq(xas); 283 old = xas_store(xas, entry); 284 xas_unlock_irq(xas); 285 BUG_ON(!dax_is_locked(old)); 286 dax_wake_entry(xas, entry, WAKE_NEXT); 287 } 288 289 /* 290 * Return: The entry stored at this location before it was locked. 291 */ 292 static void *dax_lock_entry(struct xa_state *xas, void *entry) 293 { 294 unsigned long v = xa_to_value(entry); 295 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 296 } 297 298 static unsigned long dax_entry_size(void *entry) 299 { 300 if (dax_is_zero_entry(entry)) 301 return 0; 302 else if (dax_is_empty_entry(entry)) 303 return 0; 304 else if (dax_is_pmd_entry(entry)) 305 return PMD_SIZE; 306 else 307 return PAGE_SIZE; 308 } 309 310 static unsigned long dax_end_pfn(void *entry) 311 { 312 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 313 } 314 315 /* 316 * Iterate through all mapped pfns represented by an entry, i.e. skip 317 * 'empty' and 'zero' entries. 318 */ 319 #define for_each_mapped_pfn(entry, pfn) \ 320 for (pfn = dax_to_pfn(entry); \ 321 pfn < dax_end_pfn(entry); pfn++) 322 323 static inline bool dax_page_is_shared(struct page *page) 324 { 325 return page->mapping == PAGE_MAPPING_DAX_SHARED; 326 } 327 328 /* 329 * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the 330 * refcount. 331 */ 332 static inline void dax_page_share_get(struct page *page) 333 { 334 if (page->mapping != PAGE_MAPPING_DAX_SHARED) { 335 /* 336 * Reset the index if the page was already mapped 337 * regularly before. 338 */ 339 if (page->mapping) 340 page->share = 1; 341 page->mapping = PAGE_MAPPING_DAX_SHARED; 342 } 343 page->share++; 344 } 345 346 static inline unsigned long dax_page_share_put(struct page *page) 347 { 348 return --page->share; 349 } 350 351 /* 352 * When it is called in dax_insert_entry(), the shared flag will indicate that 353 * whether this entry is shared by multiple files. If so, set the page->mapping 354 * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount. 355 */ 356 static void dax_associate_entry(void *entry, struct address_space *mapping, 357 struct vm_area_struct *vma, unsigned long address, bool shared) 358 { 359 unsigned long size = dax_entry_size(entry), pfn, index; 360 int i = 0; 361 362 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 363 return; 364 365 index = linear_page_index(vma, address & ~(size - 1)); 366 for_each_mapped_pfn(entry, pfn) { 367 struct page *page = pfn_to_page(pfn); 368 369 if (shared) { 370 dax_page_share_get(page); 371 } else { 372 WARN_ON_ONCE(page->mapping); 373 page->mapping = mapping; 374 page->index = index + i++; 375 } 376 } 377 } 378 379 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 380 bool trunc) 381 { 382 unsigned long pfn; 383 384 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 385 return; 386 387 for_each_mapped_pfn(entry, pfn) { 388 struct page *page = pfn_to_page(pfn); 389 390 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 391 if (dax_page_is_shared(page)) { 392 /* keep the shared flag if this page is still shared */ 393 if (dax_page_share_put(page) > 0) 394 continue; 395 } else 396 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 397 page->mapping = NULL; 398 page->index = 0; 399 } 400 } 401 402 static struct page *dax_busy_page(void *entry) 403 { 404 unsigned long pfn; 405 406 for_each_mapped_pfn(entry, pfn) { 407 struct page *page = pfn_to_page(pfn); 408 409 if (page_ref_count(page) > 1) 410 return page; 411 } 412 return NULL; 413 } 414 415 /** 416 * dax_lock_folio - Lock the DAX entry corresponding to a folio 417 * @folio: The folio whose entry we want to lock 418 * 419 * Context: Process context. 420 * Return: A cookie to pass to dax_unlock_folio() or 0 if the entry could 421 * not be locked. 422 */ 423 dax_entry_t dax_lock_folio(struct folio *folio) 424 { 425 XA_STATE(xas, NULL, 0); 426 void *entry; 427 428 /* Ensure folio->mapping isn't freed while we look at it */ 429 rcu_read_lock(); 430 for (;;) { 431 struct address_space *mapping = READ_ONCE(folio->mapping); 432 433 entry = NULL; 434 if (!mapping || !dax_mapping(mapping)) 435 break; 436 437 /* 438 * In the device-dax case there's no need to lock, a 439 * struct dev_pagemap pin is sufficient to keep the 440 * inode alive, and we assume we have dev_pagemap pin 441 * otherwise we would not have a valid pfn_to_page() 442 * translation. 443 */ 444 entry = (void *)~0UL; 445 if (S_ISCHR(mapping->host->i_mode)) 446 break; 447 448 xas.xa = &mapping->i_pages; 449 xas_lock_irq(&xas); 450 if (mapping != folio->mapping) { 451 xas_unlock_irq(&xas); 452 continue; 453 } 454 xas_set(&xas, folio->index); 455 entry = xas_load(&xas); 456 if (dax_is_locked(entry)) { 457 rcu_read_unlock(); 458 wait_entry_unlocked(&xas, entry); 459 rcu_read_lock(); 460 continue; 461 } 462 dax_lock_entry(&xas, entry); 463 xas_unlock_irq(&xas); 464 break; 465 } 466 rcu_read_unlock(); 467 return (dax_entry_t)entry; 468 } 469 470 void dax_unlock_folio(struct folio *folio, dax_entry_t cookie) 471 { 472 struct address_space *mapping = folio->mapping; 473 XA_STATE(xas, &mapping->i_pages, folio->index); 474 475 if (S_ISCHR(mapping->host->i_mode)) 476 return; 477 478 dax_unlock_entry(&xas, (void *)cookie); 479 } 480 481 /* 482 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping 483 * @mapping: the file's mapping whose entry we want to lock 484 * @index: the offset within this file 485 * @page: output the dax page corresponding to this dax entry 486 * 487 * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry 488 * could not be locked. 489 */ 490 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index, 491 struct page **page) 492 { 493 XA_STATE(xas, NULL, 0); 494 void *entry; 495 496 rcu_read_lock(); 497 for (;;) { 498 entry = NULL; 499 if (!dax_mapping(mapping)) 500 break; 501 502 xas.xa = &mapping->i_pages; 503 xas_lock_irq(&xas); 504 xas_set(&xas, index); 505 entry = xas_load(&xas); 506 if (dax_is_locked(entry)) { 507 rcu_read_unlock(); 508 wait_entry_unlocked(&xas, entry); 509 rcu_read_lock(); 510 continue; 511 } 512 if (!entry || 513 dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 514 /* 515 * Because we are looking for entry from file's mapping 516 * and index, so the entry may not be inserted for now, 517 * or even a zero/empty entry. We don't think this is 518 * an error case. So, return a special value and do 519 * not output @page. 520 */ 521 entry = (void *)~0UL; 522 } else { 523 *page = pfn_to_page(dax_to_pfn(entry)); 524 dax_lock_entry(&xas, entry); 525 } 526 xas_unlock_irq(&xas); 527 break; 528 } 529 rcu_read_unlock(); 530 return (dax_entry_t)entry; 531 } 532 533 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index, 534 dax_entry_t cookie) 535 { 536 XA_STATE(xas, &mapping->i_pages, index); 537 538 if (cookie == ~0UL) 539 return; 540 541 dax_unlock_entry(&xas, (void *)cookie); 542 } 543 544 /* 545 * Find page cache entry at given index. If it is a DAX entry, return it 546 * with the entry locked. If the page cache doesn't contain an entry at 547 * that index, add a locked empty entry. 548 * 549 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 550 * either return that locked entry or will return VM_FAULT_FALLBACK. 551 * This will happen if there are any PTE entries within the PMD range 552 * that we are requesting. 553 * 554 * We always favor PTE entries over PMD entries. There isn't a flow where we 555 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 556 * insertion will fail if it finds any PTE entries already in the tree, and a 557 * PTE insertion will cause an existing PMD entry to be unmapped and 558 * downgraded to PTE entries. This happens for both PMD zero pages as 559 * well as PMD empty entries. 560 * 561 * The exception to this downgrade path is for PMD entries that have 562 * real storage backing them. We will leave these real PMD entries in 563 * the tree, and PTE writes will simply dirty the entire PMD entry. 564 * 565 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 566 * persistent memory the benefit is doubtful. We can add that later if we can 567 * show it helps. 568 * 569 * On error, this function does not return an ERR_PTR. Instead it returns 570 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 571 * overlap with xarray value entries. 572 */ 573 static void *grab_mapping_entry(struct xa_state *xas, 574 struct address_space *mapping, unsigned int order) 575 { 576 unsigned long index = xas->xa_index; 577 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */ 578 void *entry; 579 580 retry: 581 pmd_downgrade = false; 582 xas_lock_irq(xas); 583 entry = get_unlocked_entry(xas, order); 584 585 if (entry) { 586 if (dax_is_conflict(entry)) 587 goto fallback; 588 if (!xa_is_value(entry)) { 589 xas_set_err(xas, -EIO); 590 goto out_unlock; 591 } 592 593 if (order == 0) { 594 if (dax_is_pmd_entry(entry) && 595 (dax_is_zero_entry(entry) || 596 dax_is_empty_entry(entry))) { 597 pmd_downgrade = true; 598 } 599 } 600 } 601 602 if (pmd_downgrade) { 603 /* 604 * Make sure 'entry' remains valid while we drop 605 * the i_pages lock. 606 */ 607 dax_lock_entry(xas, entry); 608 609 /* 610 * Besides huge zero pages the only other thing that gets 611 * downgraded are empty entries which don't need to be 612 * unmapped. 613 */ 614 if (dax_is_zero_entry(entry)) { 615 xas_unlock_irq(xas); 616 unmap_mapping_pages(mapping, 617 xas->xa_index & ~PG_PMD_COLOUR, 618 PG_PMD_NR, false); 619 xas_reset(xas); 620 xas_lock_irq(xas); 621 } 622 623 dax_disassociate_entry(entry, mapping, false); 624 xas_store(xas, NULL); /* undo the PMD join */ 625 dax_wake_entry(xas, entry, WAKE_ALL); 626 mapping->nrpages -= PG_PMD_NR; 627 entry = NULL; 628 xas_set(xas, index); 629 } 630 631 if (entry) { 632 dax_lock_entry(xas, entry); 633 } else { 634 unsigned long flags = DAX_EMPTY; 635 636 if (order > 0) 637 flags |= DAX_PMD; 638 entry = dax_make_entry(pfn_to_pfn_t(0), flags); 639 dax_lock_entry(xas, entry); 640 if (xas_error(xas)) 641 goto out_unlock; 642 mapping->nrpages += 1UL << order; 643 } 644 645 out_unlock: 646 xas_unlock_irq(xas); 647 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 648 goto retry; 649 if (xas->xa_node == XA_ERROR(-ENOMEM)) 650 return xa_mk_internal(VM_FAULT_OOM); 651 if (xas_error(xas)) 652 return xa_mk_internal(VM_FAULT_SIGBUS); 653 return entry; 654 fallback: 655 xas_unlock_irq(xas); 656 return xa_mk_internal(VM_FAULT_FALLBACK); 657 } 658 659 /** 660 * dax_layout_busy_page_range - find first pinned page in @mapping 661 * @mapping: address space to scan for a page with ref count > 1 662 * @start: Starting offset. Page containing 'start' is included. 663 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX, 664 * pages from 'start' till the end of file are included. 665 * 666 * DAX requires ZONE_DEVICE mapped pages. These pages are never 667 * 'onlined' to the page allocator so they are considered idle when 668 * page->count == 1. A filesystem uses this interface to determine if 669 * any page in the mapping is busy, i.e. for DMA, or other 670 * get_user_pages() usages. 671 * 672 * It is expected that the filesystem is holding locks to block the 673 * establishment of new mappings in this address_space. I.e. it expects 674 * to be able to run unmap_mapping_range() and subsequently not race 675 * mapping_mapped() becoming true. 676 */ 677 struct page *dax_layout_busy_page_range(struct address_space *mapping, 678 loff_t start, loff_t end) 679 { 680 void *entry; 681 unsigned int scanned = 0; 682 struct page *page = NULL; 683 pgoff_t start_idx = start >> PAGE_SHIFT; 684 pgoff_t end_idx; 685 XA_STATE(xas, &mapping->i_pages, start_idx); 686 687 /* 688 * In the 'limited' case get_user_pages() for dax is disabled. 689 */ 690 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 691 return NULL; 692 693 if (!dax_mapping(mapping) || !mapping_mapped(mapping)) 694 return NULL; 695 696 /* If end == LLONG_MAX, all pages from start to till end of file */ 697 if (end == LLONG_MAX) 698 end_idx = ULONG_MAX; 699 else 700 end_idx = end >> PAGE_SHIFT; 701 /* 702 * If we race get_user_pages_fast() here either we'll see the 703 * elevated page count in the iteration and wait, or 704 * get_user_pages_fast() will see that the page it took a reference 705 * against is no longer mapped in the page tables and bail to the 706 * get_user_pages() slow path. The slow path is protected by 707 * pte_lock() and pmd_lock(). New references are not taken without 708 * holding those locks, and unmap_mapping_pages() will not zero the 709 * pte or pmd without holding the respective lock, so we are 710 * guaranteed to either see new references or prevent new 711 * references from being established. 712 */ 713 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0); 714 715 xas_lock_irq(&xas); 716 xas_for_each(&xas, entry, end_idx) { 717 if (WARN_ON_ONCE(!xa_is_value(entry))) 718 continue; 719 if (unlikely(dax_is_locked(entry))) 720 entry = get_unlocked_entry(&xas, 0); 721 if (entry) 722 page = dax_busy_page(entry); 723 put_unlocked_entry(&xas, entry, WAKE_NEXT); 724 if (page) 725 break; 726 if (++scanned % XA_CHECK_SCHED) 727 continue; 728 729 xas_pause(&xas); 730 xas_unlock_irq(&xas); 731 cond_resched(); 732 xas_lock_irq(&xas); 733 } 734 xas_unlock_irq(&xas); 735 return page; 736 } 737 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range); 738 739 struct page *dax_layout_busy_page(struct address_space *mapping) 740 { 741 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX); 742 } 743 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 744 745 static int __dax_invalidate_entry(struct address_space *mapping, 746 pgoff_t index, bool trunc) 747 { 748 XA_STATE(xas, &mapping->i_pages, index); 749 int ret = 0; 750 void *entry; 751 752 xas_lock_irq(&xas); 753 entry = get_unlocked_entry(&xas, 0); 754 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 755 goto out; 756 if (!trunc && 757 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 758 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 759 goto out; 760 dax_disassociate_entry(entry, mapping, trunc); 761 xas_store(&xas, NULL); 762 mapping->nrpages -= 1UL << dax_entry_order(entry); 763 ret = 1; 764 out: 765 put_unlocked_entry(&xas, entry, WAKE_ALL); 766 xas_unlock_irq(&xas); 767 return ret; 768 } 769 770 static int __dax_clear_dirty_range(struct address_space *mapping, 771 pgoff_t start, pgoff_t end) 772 { 773 XA_STATE(xas, &mapping->i_pages, start); 774 unsigned int scanned = 0; 775 void *entry; 776 777 xas_lock_irq(&xas); 778 xas_for_each(&xas, entry, end) { 779 entry = get_unlocked_entry(&xas, 0); 780 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 781 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 782 put_unlocked_entry(&xas, entry, WAKE_NEXT); 783 784 if (++scanned % XA_CHECK_SCHED) 785 continue; 786 787 xas_pause(&xas); 788 xas_unlock_irq(&xas); 789 cond_resched(); 790 xas_lock_irq(&xas); 791 } 792 xas_unlock_irq(&xas); 793 794 return 0; 795 } 796 797 /* 798 * Delete DAX entry at @index from @mapping. Wait for it 799 * to be unlocked before deleting it. 800 */ 801 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 802 { 803 int ret = __dax_invalidate_entry(mapping, index, true); 804 805 /* 806 * This gets called from truncate / punch_hole path. As such, the caller 807 * must hold locks protecting against concurrent modifications of the 808 * page cache (usually fs-private i_mmap_sem for writing). Since the 809 * caller has seen a DAX entry for this index, we better find it 810 * at that index as well... 811 */ 812 WARN_ON_ONCE(!ret); 813 return ret; 814 } 815 816 /* 817 * Invalidate DAX entry if it is clean. 818 */ 819 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 820 pgoff_t index) 821 { 822 return __dax_invalidate_entry(mapping, index, false); 823 } 824 825 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos) 826 { 827 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset); 828 } 829 830 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter) 831 { 832 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos); 833 void *vto, *kaddr; 834 long rc; 835 int id; 836 837 id = dax_read_lock(); 838 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS, 839 &kaddr, NULL); 840 if (rc < 0) { 841 dax_read_unlock(id); 842 return rc; 843 } 844 vto = kmap_atomic(vmf->cow_page); 845 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page); 846 kunmap_atomic(vto); 847 dax_read_unlock(id); 848 return 0; 849 } 850 851 /* 852 * MAP_SYNC on a dax mapping guarantees dirty metadata is 853 * flushed on write-faults (non-cow), but not read-faults. 854 */ 855 static bool dax_fault_is_synchronous(const struct iomap_iter *iter, 856 struct vm_area_struct *vma) 857 { 858 return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) && 859 (iter->iomap.flags & IOMAP_F_DIRTY); 860 } 861 862 /* 863 * By this point grab_mapping_entry() has ensured that we have a locked entry 864 * of the appropriate size so we don't have to worry about downgrading PMDs to 865 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 866 * already in the tree, we will skip the insertion and just dirty the PMD as 867 * appropriate. 868 */ 869 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf, 870 const struct iomap_iter *iter, void *entry, pfn_t pfn, 871 unsigned long flags) 872 { 873 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 874 void *new_entry = dax_make_entry(pfn, flags); 875 bool write = iter->flags & IOMAP_WRITE; 876 bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma); 877 bool shared = iter->iomap.flags & IOMAP_F_SHARED; 878 879 if (dirty) 880 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 881 882 if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) { 883 unsigned long index = xas->xa_index; 884 /* we are replacing a zero page with block mapping */ 885 if (dax_is_pmd_entry(entry)) 886 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 887 PG_PMD_NR, false); 888 else /* pte entry */ 889 unmap_mapping_pages(mapping, index, 1, false); 890 } 891 892 xas_reset(xas); 893 xas_lock_irq(xas); 894 if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 895 void *old; 896 897 dax_disassociate_entry(entry, mapping, false); 898 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address, 899 shared); 900 /* 901 * Only swap our new entry into the page cache if the current 902 * entry is a zero page or an empty entry. If a normal PTE or 903 * PMD entry is already in the cache, we leave it alone. This 904 * means that if we are trying to insert a PTE and the 905 * existing entry is a PMD, we will just leave the PMD in the 906 * tree and dirty it if necessary. 907 */ 908 old = dax_lock_entry(xas, new_entry); 909 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 910 DAX_LOCKED)); 911 entry = new_entry; 912 } else { 913 xas_load(xas); /* Walk the xa_state */ 914 } 915 916 if (dirty) 917 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 918 919 if (write && shared) 920 xas_set_mark(xas, PAGECACHE_TAG_TOWRITE); 921 922 xas_unlock_irq(xas); 923 return entry; 924 } 925 926 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 927 struct address_space *mapping, void *entry) 928 { 929 unsigned long pfn, index, count, end; 930 long ret = 0; 931 struct vm_area_struct *vma; 932 933 /* 934 * A page got tagged dirty in DAX mapping? Something is seriously 935 * wrong. 936 */ 937 if (WARN_ON(!xa_is_value(entry))) 938 return -EIO; 939 940 if (unlikely(dax_is_locked(entry))) { 941 void *old_entry = entry; 942 943 entry = get_unlocked_entry(xas, 0); 944 945 /* Entry got punched out / reallocated? */ 946 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 947 goto put_unlocked; 948 /* 949 * Entry got reallocated elsewhere? No need to writeback. 950 * We have to compare pfns as we must not bail out due to 951 * difference in lockbit or entry type. 952 */ 953 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 954 goto put_unlocked; 955 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 956 dax_is_zero_entry(entry))) { 957 ret = -EIO; 958 goto put_unlocked; 959 } 960 961 /* Another fsync thread may have already done this entry */ 962 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 963 goto put_unlocked; 964 } 965 966 /* Lock the entry to serialize with page faults */ 967 dax_lock_entry(xas, entry); 968 969 /* 970 * We can clear the tag now but we have to be careful so that concurrent 971 * dax_writeback_one() calls for the same index cannot finish before we 972 * actually flush the caches. This is achieved as the calls will look 973 * at the entry only under the i_pages lock and once they do that 974 * they will see the entry locked and wait for it to unlock. 975 */ 976 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 977 xas_unlock_irq(xas); 978 979 /* 980 * If dax_writeback_mapping_range() was given a wbc->range_start 981 * in the middle of a PMD, the 'index' we use needs to be 982 * aligned to the start of the PMD. 983 * This allows us to flush for PMD_SIZE and not have to worry about 984 * partial PMD writebacks. 985 */ 986 pfn = dax_to_pfn(entry); 987 count = 1UL << dax_entry_order(entry); 988 index = xas->xa_index & ~(count - 1); 989 end = index + count - 1; 990 991 /* Walk all mappings of a given index of a file and writeprotect them */ 992 i_mmap_lock_read(mapping); 993 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) { 994 pfn_mkclean_range(pfn, count, index, vma); 995 cond_resched(); 996 } 997 i_mmap_unlock_read(mapping); 998 999 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); 1000 /* 1001 * After we have flushed the cache, we can clear the dirty tag. There 1002 * cannot be new dirty data in the pfn after the flush has completed as 1003 * the pfn mappings are writeprotected and fault waits for mapping 1004 * entry lock. 1005 */ 1006 xas_reset(xas); 1007 xas_lock_irq(xas); 1008 xas_store(xas, entry); 1009 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 1010 dax_wake_entry(xas, entry, WAKE_NEXT); 1011 1012 trace_dax_writeback_one(mapping->host, index, count); 1013 return ret; 1014 1015 put_unlocked: 1016 put_unlocked_entry(xas, entry, WAKE_NEXT); 1017 return ret; 1018 } 1019 1020 /* 1021 * Flush the mapping to the persistent domain within the byte range of [start, 1022 * end]. This is required by data integrity operations to ensure file data is 1023 * on persistent storage prior to completion of the operation. 1024 */ 1025 int dax_writeback_mapping_range(struct address_space *mapping, 1026 struct dax_device *dax_dev, struct writeback_control *wbc) 1027 { 1028 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 1029 struct inode *inode = mapping->host; 1030 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 1031 void *entry; 1032 int ret = 0; 1033 unsigned int scanned = 0; 1034 1035 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 1036 return -EIO; 1037 1038 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL) 1039 return 0; 1040 1041 trace_dax_writeback_range(inode, xas.xa_index, end_index); 1042 1043 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 1044 1045 xas_lock_irq(&xas); 1046 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 1047 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 1048 if (ret < 0) { 1049 mapping_set_error(mapping, ret); 1050 break; 1051 } 1052 if (++scanned % XA_CHECK_SCHED) 1053 continue; 1054 1055 xas_pause(&xas); 1056 xas_unlock_irq(&xas); 1057 cond_resched(); 1058 xas_lock_irq(&xas); 1059 } 1060 xas_unlock_irq(&xas); 1061 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 1062 return ret; 1063 } 1064 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 1065 1066 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos, 1067 size_t size, void **kaddr, pfn_t *pfnp) 1068 { 1069 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1070 int id, rc = 0; 1071 long length; 1072 1073 id = dax_read_lock(); 1074 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 1075 DAX_ACCESS, kaddr, pfnp); 1076 if (length < 0) { 1077 rc = length; 1078 goto out; 1079 } 1080 if (!pfnp) 1081 goto out_check_addr; 1082 rc = -EINVAL; 1083 if (PFN_PHYS(length) < size) 1084 goto out; 1085 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 1086 goto out; 1087 /* For larger pages we need devmap */ 1088 if (length > 1 && !pfn_t_devmap(*pfnp)) 1089 goto out; 1090 rc = 0; 1091 1092 out_check_addr: 1093 if (!kaddr) 1094 goto out; 1095 if (!*kaddr) 1096 rc = -EFAULT; 1097 out: 1098 dax_read_unlock(id); 1099 return rc; 1100 } 1101 1102 /** 1103 * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page 1104 * by copying the data before and after the range to be written. 1105 * @pos: address to do copy from. 1106 * @length: size of copy operation. 1107 * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE) 1108 * @srcmap: iomap srcmap 1109 * @daddr: destination address to copy to. 1110 * 1111 * This can be called from two places. Either during DAX write fault (page 1112 * aligned), to copy the length size data to daddr. Or, while doing normal DAX 1113 * write operation, dax_iomap_iter() might call this to do the copy of either 1114 * start or end unaligned address. In the latter case the rest of the copy of 1115 * aligned ranges is taken care by dax_iomap_iter() itself. 1116 * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the 1117 * area to make sure no old data remains. 1118 */ 1119 static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size, 1120 const struct iomap *srcmap, void *daddr) 1121 { 1122 loff_t head_off = pos & (align_size - 1); 1123 size_t size = ALIGN(head_off + length, align_size); 1124 loff_t end = pos + length; 1125 loff_t pg_end = round_up(end, align_size); 1126 /* copy_all is usually in page fault case */ 1127 bool copy_all = head_off == 0 && end == pg_end; 1128 /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */ 1129 bool zero_edge = srcmap->flags & IOMAP_F_SHARED || 1130 srcmap->type == IOMAP_UNWRITTEN; 1131 void *saddr = NULL; 1132 int ret = 0; 1133 1134 if (!zero_edge) { 1135 ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL); 1136 if (ret) 1137 return dax_mem2blk_err(ret); 1138 } 1139 1140 if (copy_all) { 1141 if (zero_edge) 1142 memset(daddr, 0, size); 1143 else 1144 ret = copy_mc_to_kernel(daddr, saddr, length); 1145 goto out; 1146 } 1147 1148 /* Copy the head part of the range */ 1149 if (head_off) { 1150 if (zero_edge) 1151 memset(daddr, 0, head_off); 1152 else { 1153 ret = copy_mc_to_kernel(daddr, saddr, head_off); 1154 if (ret) 1155 return -EIO; 1156 } 1157 } 1158 1159 /* Copy the tail part of the range */ 1160 if (end < pg_end) { 1161 loff_t tail_off = head_off + length; 1162 loff_t tail_len = pg_end - end; 1163 1164 if (zero_edge) 1165 memset(daddr + tail_off, 0, tail_len); 1166 else { 1167 ret = copy_mc_to_kernel(daddr + tail_off, 1168 saddr + tail_off, tail_len); 1169 if (ret) 1170 return -EIO; 1171 } 1172 } 1173 out: 1174 if (zero_edge) 1175 dax_flush(srcmap->dax_dev, daddr, size); 1176 return ret ? -EIO : 0; 1177 } 1178 1179 /* 1180 * The user has performed a load from a hole in the file. Allocating a new 1181 * page in the file would cause excessive storage usage for workloads with 1182 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 1183 * If this page is ever written to we will re-fault and change the mapping to 1184 * point to real DAX storage instead. 1185 */ 1186 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1187 const struct iomap_iter *iter, void **entry) 1188 { 1189 struct inode *inode = iter->inode; 1190 unsigned long vaddr = vmf->address; 1191 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); 1192 vm_fault_t ret; 1193 1194 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE); 1195 1196 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); 1197 trace_dax_load_hole(inode, vmf, ret); 1198 return ret; 1199 } 1200 1201 #ifdef CONFIG_FS_DAX_PMD 1202 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1203 const struct iomap_iter *iter, void **entry) 1204 { 1205 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1206 unsigned long pmd_addr = vmf->address & PMD_MASK; 1207 struct vm_area_struct *vma = vmf->vma; 1208 struct inode *inode = mapping->host; 1209 pgtable_t pgtable = NULL; 1210 struct folio *zero_folio; 1211 spinlock_t *ptl; 1212 pmd_t pmd_entry; 1213 pfn_t pfn; 1214 1215 zero_folio = mm_get_huge_zero_folio(vmf->vma->vm_mm); 1216 1217 if (unlikely(!zero_folio)) 1218 goto fallback; 1219 1220 pfn = page_to_pfn_t(&zero_folio->page); 1221 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, 1222 DAX_PMD | DAX_ZERO_PAGE); 1223 1224 if (arch_needs_pgtable_deposit()) { 1225 pgtable = pte_alloc_one(vma->vm_mm); 1226 if (!pgtable) 1227 return VM_FAULT_OOM; 1228 } 1229 1230 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1231 if (!pmd_none(*(vmf->pmd))) { 1232 spin_unlock(ptl); 1233 goto fallback; 1234 } 1235 1236 if (pgtable) { 1237 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1238 mm_inc_nr_ptes(vma->vm_mm); 1239 } 1240 pmd_entry = mk_pmd(&zero_folio->page, vmf->vma->vm_page_prot); 1241 pmd_entry = pmd_mkhuge(pmd_entry); 1242 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1243 spin_unlock(ptl); 1244 trace_dax_pmd_load_hole(inode, vmf, zero_folio, *entry); 1245 return VM_FAULT_NOPAGE; 1246 1247 fallback: 1248 if (pgtable) 1249 pte_free(vma->vm_mm, pgtable); 1250 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_folio, *entry); 1251 return VM_FAULT_FALLBACK; 1252 } 1253 #else 1254 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1255 const struct iomap_iter *iter, void **entry) 1256 { 1257 return VM_FAULT_FALLBACK; 1258 } 1259 #endif /* CONFIG_FS_DAX_PMD */ 1260 1261 static s64 dax_unshare_iter(struct iomap_iter *iter) 1262 { 1263 struct iomap *iomap = &iter->iomap; 1264 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1265 loff_t pos = iter->pos; 1266 loff_t length = iomap_length(iter); 1267 int id = 0; 1268 s64 ret = 0; 1269 void *daddr = NULL, *saddr = NULL; 1270 1271 /* don't bother with blocks that are not shared to start with */ 1272 if (!(iomap->flags & IOMAP_F_SHARED)) 1273 return length; 1274 1275 id = dax_read_lock(); 1276 ret = dax_iomap_direct_access(iomap, pos, length, &daddr, NULL); 1277 if (ret < 0) 1278 goto out_unlock; 1279 1280 /* zero the distance if srcmap is HOLE or UNWRITTEN */ 1281 if (srcmap->flags & IOMAP_F_SHARED || srcmap->type == IOMAP_UNWRITTEN) { 1282 memset(daddr, 0, length); 1283 dax_flush(iomap->dax_dev, daddr, length); 1284 ret = length; 1285 goto out_unlock; 1286 } 1287 1288 ret = dax_iomap_direct_access(srcmap, pos, length, &saddr, NULL); 1289 if (ret < 0) 1290 goto out_unlock; 1291 1292 if (copy_mc_to_kernel(daddr, saddr, length) == 0) 1293 ret = length; 1294 else 1295 ret = -EIO; 1296 1297 out_unlock: 1298 dax_read_unlock(id); 1299 return dax_mem2blk_err(ret); 1300 } 1301 1302 int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1303 const struct iomap_ops *ops) 1304 { 1305 struct iomap_iter iter = { 1306 .inode = inode, 1307 .pos = pos, 1308 .flags = IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX, 1309 }; 1310 loff_t size = i_size_read(inode); 1311 int ret; 1312 1313 if (pos < 0 || pos >= size) 1314 return 0; 1315 1316 iter.len = min(len, size - pos); 1317 while ((ret = iomap_iter(&iter, ops)) > 0) 1318 iter.processed = dax_unshare_iter(&iter); 1319 return ret; 1320 } 1321 EXPORT_SYMBOL_GPL(dax_file_unshare); 1322 1323 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size) 1324 { 1325 const struct iomap *iomap = &iter->iomap; 1326 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1327 unsigned offset = offset_in_page(pos); 1328 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1329 void *kaddr; 1330 long ret; 1331 1332 ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr, 1333 NULL); 1334 if (ret < 0) 1335 return dax_mem2blk_err(ret); 1336 1337 memset(kaddr + offset, 0, size); 1338 if (iomap->flags & IOMAP_F_SHARED) 1339 ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap, 1340 kaddr); 1341 else 1342 dax_flush(iomap->dax_dev, kaddr + offset, size); 1343 return ret; 1344 } 1345 1346 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero) 1347 { 1348 const struct iomap *iomap = &iter->iomap; 1349 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1350 loff_t pos = iter->pos; 1351 u64 length = iomap_length(iter); 1352 s64 written = 0; 1353 1354 /* already zeroed? we're done. */ 1355 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1356 return length; 1357 1358 /* 1359 * invalidate the pages whose sharing state is to be changed 1360 * because of CoW. 1361 */ 1362 if (iomap->flags & IOMAP_F_SHARED) 1363 invalidate_inode_pages2_range(iter->inode->i_mapping, 1364 pos >> PAGE_SHIFT, 1365 (pos + length - 1) >> PAGE_SHIFT); 1366 1367 do { 1368 unsigned offset = offset_in_page(pos); 1369 unsigned size = min_t(u64, PAGE_SIZE - offset, length); 1370 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1371 long rc; 1372 int id; 1373 1374 id = dax_read_lock(); 1375 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE) 1376 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1); 1377 else 1378 rc = dax_memzero(iter, pos, size); 1379 dax_read_unlock(id); 1380 1381 if (rc < 0) 1382 return rc; 1383 pos += size; 1384 length -= size; 1385 written += size; 1386 } while (length > 0); 1387 1388 if (did_zero) 1389 *did_zero = true; 1390 return written; 1391 } 1392 1393 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1394 const struct iomap_ops *ops) 1395 { 1396 struct iomap_iter iter = { 1397 .inode = inode, 1398 .pos = pos, 1399 .len = len, 1400 .flags = IOMAP_DAX | IOMAP_ZERO, 1401 }; 1402 int ret; 1403 1404 while ((ret = iomap_iter(&iter, ops)) > 0) 1405 iter.processed = dax_zero_iter(&iter, did_zero); 1406 return ret; 1407 } 1408 EXPORT_SYMBOL_GPL(dax_zero_range); 1409 1410 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1411 const struct iomap_ops *ops) 1412 { 1413 unsigned int blocksize = i_blocksize(inode); 1414 unsigned int off = pos & (blocksize - 1); 1415 1416 /* Block boundary? Nothing to do */ 1417 if (!off) 1418 return 0; 1419 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops); 1420 } 1421 EXPORT_SYMBOL_GPL(dax_truncate_page); 1422 1423 static loff_t dax_iomap_iter(const struct iomap_iter *iomi, 1424 struct iov_iter *iter) 1425 { 1426 const struct iomap *iomap = &iomi->iomap; 1427 const struct iomap *srcmap = iomap_iter_srcmap(iomi); 1428 loff_t length = iomap_length(iomi); 1429 loff_t pos = iomi->pos; 1430 struct dax_device *dax_dev = iomap->dax_dev; 1431 loff_t end = pos + length, done = 0; 1432 bool write = iov_iter_rw(iter) == WRITE; 1433 bool cow = write && iomap->flags & IOMAP_F_SHARED; 1434 ssize_t ret = 0; 1435 size_t xfer; 1436 int id; 1437 1438 if (!write) { 1439 end = min(end, i_size_read(iomi->inode)); 1440 if (pos >= end) 1441 return 0; 1442 1443 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1444 return iov_iter_zero(min(length, end - pos), iter); 1445 } 1446 1447 /* 1448 * In DAX mode, enforce either pure overwrites of written extents, or 1449 * writes to unwritten extents as part of a copy-on-write operation. 1450 */ 1451 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED && 1452 !(iomap->flags & IOMAP_F_SHARED))) 1453 return -EIO; 1454 1455 /* 1456 * Write can allocate block for an area which has a hole page mapped 1457 * into page tables. We have to tear down these mappings so that data 1458 * written by write(2) is visible in mmap. 1459 */ 1460 if (iomap->flags & IOMAP_F_NEW || cow) { 1461 /* 1462 * Filesystem allows CoW on non-shared extents. The src extents 1463 * may have been mmapped with dirty mark before. To be able to 1464 * invalidate its dax entries, we need to clear the dirty mark 1465 * in advance. 1466 */ 1467 if (cow) 1468 __dax_clear_dirty_range(iomi->inode->i_mapping, 1469 pos >> PAGE_SHIFT, 1470 (end - 1) >> PAGE_SHIFT); 1471 invalidate_inode_pages2_range(iomi->inode->i_mapping, 1472 pos >> PAGE_SHIFT, 1473 (end - 1) >> PAGE_SHIFT); 1474 } 1475 1476 id = dax_read_lock(); 1477 while (pos < end) { 1478 unsigned offset = pos & (PAGE_SIZE - 1); 1479 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1480 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1481 ssize_t map_len; 1482 bool recovery = false; 1483 void *kaddr; 1484 1485 if (fatal_signal_pending(current)) { 1486 ret = -EINTR; 1487 break; 1488 } 1489 1490 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1491 DAX_ACCESS, &kaddr, NULL); 1492 if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) { 1493 map_len = dax_direct_access(dax_dev, pgoff, 1494 PHYS_PFN(size), DAX_RECOVERY_WRITE, 1495 &kaddr, NULL); 1496 if (map_len > 0) 1497 recovery = true; 1498 } 1499 if (map_len < 0) { 1500 ret = dax_mem2blk_err(map_len); 1501 break; 1502 } 1503 1504 if (cow) { 1505 ret = dax_iomap_copy_around(pos, length, PAGE_SIZE, 1506 srcmap, kaddr); 1507 if (ret) 1508 break; 1509 } 1510 1511 map_len = PFN_PHYS(map_len); 1512 kaddr += offset; 1513 map_len -= offset; 1514 if (map_len > end - pos) 1515 map_len = end - pos; 1516 1517 if (recovery) 1518 xfer = dax_recovery_write(dax_dev, pgoff, kaddr, 1519 map_len, iter); 1520 else if (write) 1521 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1522 map_len, iter); 1523 else 1524 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1525 map_len, iter); 1526 1527 pos += xfer; 1528 length -= xfer; 1529 done += xfer; 1530 1531 if (xfer == 0) 1532 ret = -EFAULT; 1533 if (xfer < map_len) 1534 break; 1535 } 1536 dax_read_unlock(id); 1537 1538 return done ? done : ret; 1539 } 1540 1541 /** 1542 * dax_iomap_rw - Perform I/O to a DAX file 1543 * @iocb: The control block for this I/O 1544 * @iter: The addresses to do I/O from or to 1545 * @ops: iomap ops passed from the file system 1546 * 1547 * This function performs read and write operations to directly mapped 1548 * persistent memory. The callers needs to take care of read/write exclusion 1549 * and evicting any page cache pages in the region under I/O. 1550 */ 1551 ssize_t 1552 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1553 const struct iomap_ops *ops) 1554 { 1555 struct iomap_iter iomi = { 1556 .inode = iocb->ki_filp->f_mapping->host, 1557 .pos = iocb->ki_pos, 1558 .len = iov_iter_count(iter), 1559 .flags = IOMAP_DAX, 1560 }; 1561 loff_t done = 0; 1562 int ret; 1563 1564 if (!iomi.len) 1565 return 0; 1566 1567 if (iov_iter_rw(iter) == WRITE) { 1568 lockdep_assert_held_write(&iomi.inode->i_rwsem); 1569 iomi.flags |= IOMAP_WRITE; 1570 } else { 1571 lockdep_assert_held(&iomi.inode->i_rwsem); 1572 } 1573 1574 if (iocb->ki_flags & IOCB_NOWAIT) 1575 iomi.flags |= IOMAP_NOWAIT; 1576 1577 while ((ret = iomap_iter(&iomi, ops)) > 0) 1578 iomi.processed = dax_iomap_iter(&iomi, iter); 1579 1580 done = iomi.pos - iocb->ki_pos; 1581 iocb->ki_pos = iomi.pos; 1582 return done ? done : ret; 1583 } 1584 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1585 1586 static vm_fault_t dax_fault_return(int error) 1587 { 1588 if (error == 0) 1589 return VM_FAULT_NOPAGE; 1590 return vmf_error(error); 1591 } 1592 1593 /* 1594 * When handling a synchronous page fault and the inode need a fsync, we can 1595 * insert the PTE/PMD into page tables only after that fsync happened. Skip 1596 * insertion for now and return the pfn so that caller can insert it after the 1597 * fsync is done. 1598 */ 1599 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn) 1600 { 1601 if (WARN_ON_ONCE(!pfnp)) 1602 return VM_FAULT_SIGBUS; 1603 *pfnp = pfn; 1604 return VM_FAULT_NEEDDSYNC; 1605 } 1606 1607 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf, 1608 const struct iomap_iter *iter) 1609 { 1610 vm_fault_t ret; 1611 int error = 0; 1612 1613 switch (iter->iomap.type) { 1614 case IOMAP_HOLE: 1615 case IOMAP_UNWRITTEN: 1616 clear_user_highpage(vmf->cow_page, vmf->address); 1617 break; 1618 case IOMAP_MAPPED: 1619 error = copy_cow_page_dax(vmf, iter); 1620 break; 1621 default: 1622 WARN_ON_ONCE(1); 1623 error = -EIO; 1624 break; 1625 } 1626 1627 if (error) 1628 return dax_fault_return(error); 1629 1630 __SetPageUptodate(vmf->cow_page); 1631 ret = finish_fault(vmf); 1632 if (!ret) 1633 return VM_FAULT_DONE_COW; 1634 return ret; 1635 } 1636 1637 /** 1638 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault. 1639 * @vmf: vm fault instance 1640 * @iter: iomap iter 1641 * @pfnp: pfn to be returned 1642 * @xas: the dax mapping tree of a file 1643 * @entry: an unlocked dax entry to be inserted 1644 * @pmd: distinguish whether it is a pmd fault 1645 */ 1646 static vm_fault_t dax_fault_iter(struct vm_fault *vmf, 1647 const struct iomap_iter *iter, pfn_t *pfnp, 1648 struct xa_state *xas, void **entry, bool pmd) 1649 { 1650 const struct iomap *iomap = &iter->iomap; 1651 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1652 size_t size = pmd ? PMD_SIZE : PAGE_SIZE; 1653 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT; 1654 bool write = iter->flags & IOMAP_WRITE; 1655 unsigned long entry_flags = pmd ? DAX_PMD : 0; 1656 int err = 0; 1657 pfn_t pfn; 1658 void *kaddr; 1659 1660 if (!pmd && vmf->cow_page) 1661 return dax_fault_cow_page(vmf, iter); 1662 1663 /* if we are reading UNWRITTEN and HOLE, return a hole. */ 1664 if (!write && 1665 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) { 1666 if (!pmd) 1667 return dax_load_hole(xas, vmf, iter, entry); 1668 return dax_pmd_load_hole(xas, vmf, iter, entry); 1669 } 1670 1671 if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) { 1672 WARN_ON_ONCE(1); 1673 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS; 1674 } 1675 1676 err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn); 1677 if (err) 1678 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err); 1679 1680 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags); 1681 1682 if (write && iomap->flags & IOMAP_F_SHARED) { 1683 err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr); 1684 if (err) 1685 return dax_fault_return(err); 1686 } 1687 1688 if (dax_fault_is_synchronous(iter, vmf->vma)) 1689 return dax_fault_synchronous_pfnp(pfnp, pfn); 1690 1691 /* insert PMD pfn */ 1692 if (pmd) 1693 return vmf_insert_pfn_pmd(vmf, pfn, write); 1694 1695 /* insert PTE pfn */ 1696 if (write) 1697 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1698 return vmf_insert_mixed(vmf->vma, vmf->address, pfn); 1699 } 1700 1701 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1702 int *iomap_errp, const struct iomap_ops *ops) 1703 { 1704 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1705 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1706 struct iomap_iter iter = { 1707 .inode = mapping->host, 1708 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT, 1709 .len = PAGE_SIZE, 1710 .flags = IOMAP_DAX | IOMAP_FAULT, 1711 }; 1712 vm_fault_t ret = 0; 1713 void *entry; 1714 int error; 1715 1716 trace_dax_pte_fault(iter.inode, vmf, ret); 1717 /* 1718 * Check whether offset isn't beyond end of file now. Caller is supposed 1719 * to hold locks serializing us with truncate / punch hole so this is 1720 * a reliable test. 1721 */ 1722 if (iter.pos >= i_size_read(iter.inode)) { 1723 ret = VM_FAULT_SIGBUS; 1724 goto out; 1725 } 1726 1727 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) 1728 iter.flags |= IOMAP_WRITE; 1729 1730 entry = grab_mapping_entry(&xas, mapping, 0); 1731 if (xa_is_internal(entry)) { 1732 ret = xa_to_internal(entry); 1733 goto out; 1734 } 1735 1736 /* 1737 * It is possible, particularly with mixed reads & writes to private 1738 * mappings, that we have raced with a PMD fault that overlaps with 1739 * the PTE we need to set up. If so just return and the fault will be 1740 * retried. 1741 */ 1742 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1743 ret = VM_FAULT_NOPAGE; 1744 goto unlock_entry; 1745 } 1746 1747 while ((error = iomap_iter(&iter, ops)) > 0) { 1748 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) { 1749 iter.processed = -EIO; /* fs corruption? */ 1750 continue; 1751 } 1752 1753 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false); 1754 if (ret != VM_FAULT_SIGBUS && 1755 (iter.iomap.flags & IOMAP_F_NEW)) { 1756 count_vm_event(PGMAJFAULT); 1757 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 1758 ret |= VM_FAULT_MAJOR; 1759 } 1760 1761 if (!(ret & VM_FAULT_ERROR)) 1762 iter.processed = PAGE_SIZE; 1763 } 1764 1765 if (iomap_errp) 1766 *iomap_errp = error; 1767 if (!ret && error) 1768 ret = dax_fault_return(error); 1769 1770 unlock_entry: 1771 dax_unlock_entry(&xas, entry); 1772 out: 1773 trace_dax_pte_fault_done(iter.inode, vmf, ret); 1774 return ret; 1775 } 1776 1777 #ifdef CONFIG_FS_DAX_PMD 1778 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas, 1779 pgoff_t max_pgoff) 1780 { 1781 unsigned long pmd_addr = vmf->address & PMD_MASK; 1782 bool write = vmf->flags & FAULT_FLAG_WRITE; 1783 1784 /* 1785 * Make sure that the faulting address's PMD offset (color) matches 1786 * the PMD offset from the start of the file. This is necessary so 1787 * that a PMD range in the page table overlaps exactly with a PMD 1788 * range in the page cache. 1789 */ 1790 if ((vmf->pgoff & PG_PMD_COLOUR) != 1791 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1792 return true; 1793 1794 /* Fall back to PTEs if we're going to COW */ 1795 if (write && !(vmf->vma->vm_flags & VM_SHARED)) 1796 return true; 1797 1798 /* If the PMD would extend outside the VMA */ 1799 if (pmd_addr < vmf->vma->vm_start) 1800 return true; 1801 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end) 1802 return true; 1803 1804 /* If the PMD would extend beyond the file size */ 1805 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff) 1806 return true; 1807 1808 return false; 1809 } 1810 1811 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1812 const struct iomap_ops *ops) 1813 { 1814 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1815 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1816 struct iomap_iter iter = { 1817 .inode = mapping->host, 1818 .len = PMD_SIZE, 1819 .flags = IOMAP_DAX | IOMAP_FAULT, 1820 }; 1821 vm_fault_t ret = VM_FAULT_FALLBACK; 1822 pgoff_t max_pgoff; 1823 void *entry; 1824 1825 if (vmf->flags & FAULT_FLAG_WRITE) 1826 iter.flags |= IOMAP_WRITE; 1827 1828 /* 1829 * Check whether offset isn't beyond end of file now. Caller is 1830 * supposed to hold locks serializing us with truncate / punch hole so 1831 * this is a reliable test. 1832 */ 1833 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE); 1834 1835 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0); 1836 1837 if (xas.xa_index >= max_pgoff) { 1838 ret = VM_FAULT_SIGBUS; 1839 goto out; 1840 } 1841 1842 if (dax_fault_check_fallback(vmf, &xas, max_pgoff)) 1843 goto fallback; 1844 1845 /* 1846 * grab_mapping_entry() will make sure we get an empty PMD entry, 1847 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 1848 * entry is already in the array, for instance), it will return 1849 * VM_FAULT_FALLBACK. 1850 */ 1851 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); 1852 if (xa_is_internal(entry)) { 1853 ret = xa_to_internal(entry); 1854 goto fallback; 1855 } 1856 1857 /* 1858 * It is possible, particularly with mixed reads & writes to private 1859 * mappings, that we have raced with a PTE fault that overlaps with 1860 * the PMD we need to set up. If so just return and the fault will be 1861 * retried. 1862 */ 1863 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1864 !pmd_devmap(*vmf->pmd)) { 1865 ret = 0; 1866 goto unlock_entry; 1867 } 1868 1869 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT; 1870 while (iomap_iter(&iter, ops) > 0) { 1871 if (iomap_length(&iter) < PMD_SIZE) 1872 continue; /* actually breaks out of the loop */ 1873 1874 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true); 1875 if (ret != VM_FAULT_FALLBACK) 1876 iter.processed = PMD_SIZE; 1877 } 1878 1879 unlock_entry: 1880 dax_unlock_entry(&xas, entry); 1881 fallback: 1882 if (ret == VM_FAULT_FALLBACK) { 1883 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address); 1884 count_vm_event(THP_FAULT_FALLBACK); 1885 } 1886 out: 1887 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret); 1888 return ret; 1889 } 1890 #else 1891 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1892 const struct iomap_ops *ops) 1893 { 1894 return VM_FAULT_FALLBACK; 1895 } 1896 #endif /* CONFIG_FS_DAX_PMD */ 1897 1898 /** 1899 * dax_iomap_fault - handle a page fault on a DAX file 1900 * @vmf: The description of the fault 1901 * @order: Order of the page to fault in 1902 * @pfnp: PFN to insert for synchronous faults if fsync is required 1903 * @iomap_errp: Storage for detailed error code in case of error 1904 * @ops: Iomap ops passed from the file system 1905 * 1906 * When a page fault occurs, filesystems may call this helper in 1907 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1908 * has done all the necessary locking for page fault to proceed 1909 * successfully. 1910 */ 1911 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, unsigned int order, 1912 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1913 { 1914 if (order == 0) 1915 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1916 else if (order == PMD_ORDER) 1917 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1918 else 1919 return VM_FAULT_FALLBACK; 1920 } 1921 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1922 1923 /* 1924 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1925 * @vmf: The description of the fault 1926 * @pfn: PFN to insert 1927 * @order: Order of entry to insert. 1928 * 1929 * This function inserts a writeable PTE or PMD entry into the page tables 1930 * for an mmaped DAX file. It also marks the page cache entry as dirty. 1931 */ 1932 static vm_fault_t 1933 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) 1934 { 1935 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1936 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 1937 void *entry; 1938 vm_fault_t ret; 1939 1940 xas_lock_irq(&xas); 1941 entry = get_unlocked_entry(&xas, order); 1942 /* Did we race with someone splitting entry or so? */ 1943 if (!entry || dax_is_conflict(entry) || 1944 (order == 0 && !dax_is_pte_entry(entry))) { 1945 put_unlocked_entry(&xas, entry, WAKE_NEXT); 1946 xas_unlock_irq(&xas); 1947 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1948 VM_FAULT_NOPAGE); 1949 return VM_FAULT_NOPAGE; 1950 } 1951 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 1952 dax_lock_entry(&xas, entry); 1953 xas_unlock_irq(&xas); 1954 if (order == 0) 1955 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1956 #ifdef CONFIG_FS_DAX_PMD 1957 else if (order == PMD_ORDER) 1958 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE); 1959 #endif 1960 else 1961 ret = VM_FAULT_FALLBACK; 1962 dax_unlock_entry(&xas, entry); 1963 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 1964 return ret; 1965 } 1966 1967 /** 1968 * dax_finish_sync_fault - finish synchronous page fault 1969 * @vmf: The description of the fault 1970 * @order: Order of entry to be inserted 1971 * @pfn: PFN to insert 1972 * 1973 * This function ensures that the file range touched by the page fault is 1974 * stored persistently on the media and handles inserting of appropriate page 1975 * table entry. 1976 */ 1977 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, unsigned int order, 1978 pfn_t pfn) 1979 { 1980 int err; 1981 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1982 size_t len = PAGE_SIZE << order; 1983 1984 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1985 if (err) 1986 return VM_FAULT_SIGBUS; 1987 return dax_insert_pfn_mkwrite(vmf, pfn, order); 1988 } 1989 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 1990 1991 static loff_t dax_range_compare_iter(struct iomap_iter *it_src, 1992 struct iomap_iter *it_dest, u64 len, bool *same) 1993 { 1994 const struct iomap *smap = &it_src->iomap; 1995 const struct iomap *dmap = &it_dest->iomap; 1996 loff_t pos1 = it_src->pos, pos2 = it_dest->pos; 1997 void *saddr, *daddr; 1998 int id, ret; 1999 2000 len = min(len, min(smap->length, dmap->length)); 2001 2002 if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) { 2003 *same = true; 2004 return len; 2005 } 2006 2007 if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) { 2008 *same = false; 2009 return 0; 2010 } 2011 2012 id = dax_read_lock(); 2013 ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE), 2014 &saddr, NULL); 2015 if (ret < 0) 2016 goto out_unlock; 2017 2018 ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE), 2019 &daddr, NULL); 2020 if (ret < 0) 2021 goto out_unlock; 2022 2023 *same = !memcmp(saddr, daddr, len); 2024 if (!*same) 2025 len = 0; 2026 dax_read_unlock(id); 2027 return len; 2028 2029 out_unlock: 2030 dax_read_unlock(id); 2031 return -EIO; 2032 } 2033 2034 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff, 2035 struct inode *dst, loff_t dstoff, loff_t len, bool *same, 2036 const struct iomap_ops *ops) 2037 { 2038 struct iomap_iter src_iter = { 2039 .inode = src, 2040 .pos = srcoff, 2041 .len = len, 2042 .flags = IOMAP_DAX, 2043 }; 2044 struct iomap_iter dst_iter = { 2045 .inode = dst, 2046 .pos = dstoff, 2047 .len = len, 2048 .flags = IOMAP_DAX, 2049 }; 2050 int ret, compared = 0; 2051 2052 while ((ret = iomap_iter(&src_iter, ops)) > 0 && 2053 (ret = iomap_iter(&dst_iter, ops)) > 0) { 2054 compared = dax_range_compare_iter(&src_iter, &dst_iter, 2055 min(src_iter.len, dst_iter.len), same); 2056 if (compared < 0) 2057 return ret; 2058 src_iter.processed = dst_iter.processed = compared; 2059 } 2060 return ret; 2061 } 2062 2063 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2064 struct file *file_out, loff_t pos_out, 2065 loff_t *len, unsigned int remap_flags, 2066 const struct iomap_ops *ops) 2067 { 2068 return __generic_remap_file_range_prep(file_in, pos_in, file_out, 2069 pos_out, len, remap_flags, ops); 2070 } 2071 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep); 2072
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.