~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/dcache.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * fs/dcache.c
  4  *
  5  * Complete reimplementation
  6  * (C) 1997 Thomas Schoebel-Theuer,
  7  * with heavy changes by Linus Torvalds
  8  */
  9 
 10 /*
 11  * Notes on the allocation strategy:
 12  *
 13  * The dcache is a master of the icache - whenever a dcache entry
 14  * exists, the inode will always exist. "iput()" is done either when
 15  * the dcache entry is deleted or garbage collected.
 16  */
 17 
 18 #include <linux/ratelimit.h>
 19 #include <linux/string.h>
 20 #include <linux/mm.h>
 21 #include <linux/fs.h>
 22 #include <linux/fscrypt.h>
 23 #include <linux/fsnotify.h>
 24 #include <linux/slab.h>
 25 #include <linux/init.h>
 26 #include <linux/hash.h>
 27 #include <linux/cache.h>
 28 #include <linux/export.h>
 29 #include <linux/security.h>
 30 #include <linux/seqlock.h>
 31 #include <linux/memblock.h>
 32 #include <linux/bit_spinlock.h>
 33 #include <linux/rculist_bl.h>
 34 #include <linux/list_lru.h>
 35 #include "internal.h"
 36 #include "mount.h"
 37 
 38 #include <asm/runtime-const.h>
 39 
 40 /*
 41  * Usage:
 42  * dcache->d_inode->i_lock protects:
 43  *   - i_dentry, d_u.d_alias, d_inode of aliases
 44  * dcache_hash_bucket lock protects:
 45  *   - the dcache hash table
 46  * s_roots bl list spinlock protects:
 47  *   - the s_roots list (see __d_drop)
 48  * dentry->d_sb->s_dentry_lru_lock protects:
 49  *   - the dcache lru lists and counters
 50  * d_lock protects:
 51  *   - d_flags
 52  *   - d_name
 53  *   - d_lru
 54  *   - d_count
 55  *   - d_unhashed()
 56  *   - d_parent and d_chilren
 57  *   - childrens' d_sib and d_parent
 58  *   - d_u.d_alias, d_inode
 59  *
 60  * Ordering:
 61  * dentry->d_inode->i_lock
 62  *   dentry->d_lock
 63  *     dentry->d_sb->s_dentry_lru_lock
 64  *     dcache_hash_bucket lock
 65  *     s_roots lock
 66  *
 67  * If there is an ancestor relationship:
 68  * dentry->d_parent->...->d_parent->d_lock
 69  *   ...
 70  *     dentry->d_parent->d_lock
 71  *       dentry->d_lock
 72  *
 73  * If no ancestor relationship:
 74  * arbitrary, since it's serialized on rename_lock
 75  */
 76 int sysctl_vfs_cache_pressure __read_mostly = 100;
 77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
 78 
 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
 80 
 81 EXPORT_SYMBOL(rename_lock);
 82 
 83 static struct kmem_cache *dentry_cache __ro_after_init;
 84 
 85 const struct qstr empty_name = QSTR_INIT("", 0);
 86 EXPORT_SYMBOL(empty_name);
 87 const struct qstr slash_name = QSTR_INIT("/", 1);
 88 EXPORT_SYMBOL(slash_name);
 89 const struct qstr dotdot_name = QSTR_INIT("..", 2);
 90 EXPORT_SYMBOL(dotdot_name);
 91 
 92 /*
 93  * This is the single most critical data structure when it comes
 94  * to the dcache: the hashtable for lookups. Somebody should try
 95  * to make this good - I've just made it work.
 96  *
 97  * This hash-function tries to avoid losing too many bits of hash
 98  * information, yet avoid using a prime hash-size or similar.
 99  */
100 
101 static unsigned int d_hash_shift __ro_after_init;
102 
103 static struct hlist_bl_head *dentry_hashtable __ro_after_init;
104 
105 static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
106 {
107         return runtime_const_ptr(dentry_hashtable) +
108                 runtime_const_shift_right_32(hashlen, d_hash_shift);
109 }
110 
111 #define IN_LOOKUP_SHIFT 10
112 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
113 
114 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
115                                         unsigned int hash)
116 {
117         hash += (unsigned long) parent / L1_CACHE_BYTES;
118         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
119 }
120 
121 struct dentry_stat_t {
122         long nr_dentry;
123         long nr_unused;
124         long age_limit;         /* age in seconds */
125         long want_pages;        /* pages requested by system */
126         long nr_negative;       /* # of unused negative dentries */
127         long dummy;             /* Reserved for future use */
128 };
129 
130 static DEFINE_PER_CPU(long, nr_dentry);
131 static DEFINE_PER_CPU(long, nr_dentry_unused);
132 static DEFINE_PER_CPU(long, nr_dentry_negative);
133 
134 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
135 /* Statistics gathering. */
136 static struct dentry_stat_t dentry_stat = {
137         .age_limit = 45,
138 };
139 
140 /*
141  * Here we resort to our own counters instead of using generic per-cpu counters
142  * for consistency with what the vfs inode code does. We are expected to harvest
143  * better code and performance by having our own specialized counters.
144  *
145  * Please note that the loop is done over all possible CPUs, not over all online
146  * CPUs. The reason for this is that we don't want to play games with CPUs going
147  * on and off. If one of them goes off, we will just keep their counters.
148  *
149  * glommer: See cffbc8a for details, and if you ever intend to change this,
150  * please update all vfs counters to match.
151  */
152 static long get_nr_dentry(void)
153 {
154         int i;
155         long sum = 0;
156         for_each_possible_cpu(i)
157                 sum += per_cpu(nr_dentry, i);
158         return sum < 0 ? 0 : sum;
159 }
160 
161 static long get_nr_dentry_unused(void)
162 {
163         int i;
164         long sum = 0;
165         for_each_possible_cpu(i)
166                 sum += per_cpu(nr_dentry_unused, i);
167         return sum < 0 ? 0 : sum;
168 }
169 
170 static long get_nr_dentry_negative(void)
171 {
172         int i;
173         long sum = 0;
174 
175         for_each_possible_cpu(i)
176                 sum += per_cpu(nr_dentry_negative, i);
177         return sum < 0 ? 0 : sum;
178 }
179 
180 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
181                           size_t *lenp, loff_t *ppos)
182 {
183         dentry_stat.nr_dentry = get_nr_dentry();
184         dentry_stat.nr_unused = get_nr_dentry_unused();
185         dentry_stat.nr_negative = get_nr_dentry_negative();
186         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
187 }
188 
189 static struct ctl_table fs_dcache_sysctls[] = {
190         {
191                 .procname       = "dentry-state",
192                 .data           = &dentry_stat,
193                 .maxlen         = 6*sizeof(long),
194                 .mode           = 0444,
195                 .proc_handler   = proc_nr_dentry,
196         },
197 };
198 
199 static int __init init_fs_dcache_sysctls(void)
200 {
201         register_sysctl_init("fs", fs_dcache_sysctls);
202         return 0;
203 }
204 fs_initcall(init_fs_dcache_sysctls);
205 #endif
206 
207 /*
208  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
209  * The strings are both count bytes long, and count is non-zero.
210  */
211 #ifdef CONFIG_DCACHE_WORD_ACCESS
212 
213 #include <asm/word-at-a-time.h>
214 /*
215  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
216  * aligned allocation for this particular component. We don't
217  * strictly need the load_unaligned_zeropad() safety, but it
218  * doesn't hurt either.
219  *
220  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
221  * need the careful unaligned handling.
222  */
223 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
224 {
225         unsigned long a,b,mask;
226 
227         for (;;) {
228                 a = read_word_at_a_time(cs);
229                 b = load_unaligned_zeropad(ct);
230                 if (tcount < sizeof(unsigned long))
231                         break;
232                 if (unlikely(a != b))
233                         return 1;
234                 cs += sizeof(unsigned long);
235                 ct += sizeof(unsigned long);
236                 tcount -= sizeof(unsigned long);
237                 if (!tcount)
238                         return 0;
239         }
240         mask = bytemask_from_count(tcount);
241         return unlikely(!!((a ^ b) & mask));
242 }
243 
244 #else
245 
246 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
247 {
248         do {
249                 if (*cs != *ct)
250                         return 1;
251                 cs++;
252                 ct++;
253                 tcount--;
254         } while (tcount);
255         return 0;
256 }
257 
258 #endif
259 
260 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
261 {
262         /*
263          * Be careful about RCU walk racing with rename:
264          * use 'READ_ONCE' to fetch the name pointer.
265          *
266          * NOTE! Even if a rename will mean that the length
267          * was not loaded atomically, we don't care. The
268          * RCU walk will check the sequence count eventually,
269          * and catch it. And we won't overrun the buffer,
270          * because we're reading the name pointer atomically,
271          * and a dentry name is guaranteed to be properly
272          * terminated with a NUL byte.
273          *
274          * End result: even if 'len' is wrong, we'll exit
275          * early because the data cannot match (there can
276          * be no NUL in the ct/tcount data)
277          */
278         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
279 
280         return dentry_string_cmp(cs, ct, tcount);
281 }
282 
283 struct external_name {
284         union {
285                 atomic_t count;
286                 struct rcu_head head;
287         } u;
288         unsigned char name[];
289 };
290 
291 static inline struct external_name *external_name(struct dentry *dentry)
292 {
293         return container_of(dentry->d_name.name, struct external_name, name[0]);
294 }
295 
296 static void __d_free(struct rcu_head *head)
297 {
298         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
299 
300         kmem_cache_free(dentry_cache, dentry); 
301 }
302 
303 static void __d_free_external(struct rcu_head *head)
304 {
305         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
306         kfree(external_name(dentry));
307         kmem_cache_free(dentry_cache, dentry);
308 }
309 
310 static inline int dname_external(const struct dentry *dentry)
311 {
312         return dentry->d_name.name != dentry->d_iname;
313 }
314 
315 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
316 {
317         spin_lock(&dentry->d_lock);
318         name->name = dentry->d_name;
319         if (unlikely(dname_external(dentry))) {
320                 atomic_inc(&external_name(dentry)->u.count);
321         } else {
322                 memcpy(name->inline_name, dentry->d_iname,
323                        dentry->d_name.len + 1);
324                 name->name.name = name->inline_name;
325         }
326         spin_unlock(&dentry->d_lock);
327 }
328 EXPORT_SYMBOL(take_dentry_name_snapshot);
329 
330 void release_dentry_name_snapshot(struct name_snapshot *name)
331 {
332         if (unlikely(name->name.name != name->inline_name)) {
333                 struct external_name *p;
334                 p = container_of(name->name.name, struct external_name, name[0]);
335                 if (unlikely(atomic_dec_and_test(&p->u.count)))
336                         kfree_rcu(p, u.head);
337         }
338 }
339 EXPORT_SYMBOL(release_dentry_name_snapshot);
340 
341 static inline void __d_set_inode_and_type(struct dentry *dentry,
342                                           struct inode *inode,
343                                           unsigned type_flags)
344 {
345         unsigned flags;
346 
347         dentry->d_inode = inode;
348         flags = READ_ONCE(dentry->d_flags);
349         flags &= ~DCACHE_ENTRY_TYPE;
350         flags |= type_flags;
351         smp_store_release(&dentry->d_flags, flags);
352 }
353 
354 static inline void __d_clear_type_and_inode(struct dentry *dentry)
355 {
356         unsigned flags = READ_ONCE(dentry->d_flags);
357 
358         flags &= ~DCACHE_ENTRY_TYPE;
359         WRITE_ONCE(dentry->d_flags, flags);
360         dentry->d_inode = NULL;
361         /*
362          * The negative counter only tracks dentries on the LRU. Don't inc if
363          * d_lru is on another list.
364          */
365         if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
366                 this_cpu_inc(nr_dentry_negative);
367 }
368 
369 static void dentry_free(struct dentry *dentry)
370 {
371         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
372         if (unlikely(dname_external(dentry))) {
373                 struct external_name *p = external_name(dentry);
374                 if (likely(atomic_dec_and_test(&p->u.count))) {
375                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
376                         return;
377                 }
378         }
379         /* if dentry was never visible to RCU, immediate free is OK */
380         if (dentry->d_flags & DCACHE_NORCU)
381                 __d_free(&dentry->d_u.d_rcu);
382         else
383                 call_rcu(&dentry->d_u.d_rcu, __d_free);
384 }
385 
386 /*
387  * Release the dentry's inode, using the filesystem
388  * d_iput() operation if defined.
389  */
390 static void dentry_unlink_inode(struct dentry * dentry)
391         __releases(dentry->d_lock)
392         __releases(dentry->d_inode->i_lock)
393 {
394         struct inode *inode = dentry->d_inode;
395 
396         raw_write_seqcount_begin(&dentry->d_seq);
397         __d_clear_type_and_inode(dentry);
398         hlist_del_init(&dentry->d_u.d_alias);
399         raw_write_seqcount_end(&dentry->d_seq);
400         spin_unlock(&dentry->d_lock);
401         spin_unlock(&inode->i_lock);
402         if (!inode->i_nlink)
403                 fsnotify_inoderemove(inode);
404         if (dentry->d_op && dentry->d_op->d_iput)
405                 dentry->d_op->d_iput(dentry, inode);
406         else
407                 iput(inode);
408 }
409 
410 /*
411  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
412  * is in use - which includes both the "real" per-superblock
413  * LRU list _and_ the DCACHE_SHRINK_LIST use.
414  *
415  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
416  * on the shrink list (ie not on the superblock LRU list).
417  *
418  * The per-cpu "nr_dentry_unused" counters are updated with
419  * the DCACHE_LRU_LIST bit.
420  *
421  * The per-cpu "nr_dentry_negative" counters are only updated
422  * when deleted from or added to the per-superblock LRU list, not
423  * from/to the shrink list. That is to avoid an unneeded dec/inc
424  * pair when moving from LRU to shrink list in select_collect().
425  *
426  * These helper functions make sure we always follow the
427  * rules. d_lock must be held by the caller.
428  */
429 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
430 static void d_lru_add(struct dentry *dentry)
431 {
432         D_FLAG_VERIFY(dentry, 0);
433         dentry->d_flags |= DCACHE_LRU_LIST;
434         this_cpu_inc(nr_dentry_unused);
435         if (d_is_negative(dentry))
436                 this_cpu_inc(nr_dentry_negative);
437         WARN_ON_ONCE(!list_lru_add_obj(
438                         &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
439 }
440 
441 static void d_lru_del(struct dentry *dentry)
442 {
443         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
444         dentry->d_flags &= ~DCACHE_LRU_LIST;
445         this_cpu_dec(nr_dentry_unused);
446         if (d_is_negative(dentry))
447                 this_cpu_dec(nr_dentry_negative);
448         WARN_ON_ONCE(!list_lru_del_obj(
449                         &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
450 }
451 
452 static void d_shrink_del(struct dentry *dentry)
453 {
454         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
455         list_del_init(&dentry->d_lru);
456         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
457         this_cpu_dec(nr_dentry_unused);
458 }
459 
460 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
461 {
462         D_FLAG_VERIFY(dentry, 0);
463         list_add(&dentry->d_lru, list);
464         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
465         this_cpu_inc(nr_dentry_unused);
466 }
467 
468 /*
469  * These can only be called under the global LRU lock, ie during the
470  * callback for freeing the LRU list. "isolate" removes it from the
471  * LRU lists entirely, while shrink_move moves it to the indicated
472  * private list.
473  */
474 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
475 {
476         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
477         dentry->d_flags &= ~DCACHE_LRU_LIST;
478         this_cpu_dec(nr_dentry_unused);
479         if (d_is_negative(dentry))
480                 this_cpu_dec(nr_dentry_negative);
481         list_lru_isolate(lru, &dentry->d_lru);
482 }
483 
484 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
485                               struct list_head *list)
486 {
487         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
488         dentry->d_flags |= DCACHE_SHRINK_LIST;
489         if (d_is_negative(dentry))
490                 this_cpu_dec(nr_dentry_negative);
491         list_lru_isolate_move(lru, &dentry->d_lru, list);
492 }
493 
494 static void ___d_drop(struct dentry *dentry)
495 {
496         struct hlist_bl_head *b;
497         /*
498          * Hashed dentries are normally on the dentry hashtable,
499          * with the exception of those newly allocated by
500          * d_obtain_root, which are always IS_ROOT:
501          */
502         if (unlikely(IS_ROOT(dentry)))
503                 b = &dentry->d_sb->s_roots;
504         else
505                 b = d_hash(dentry->d_name.hash);
506 
507         hlist_bl_lock(b);
508         __hlist_bl_del(&dentry->d_hash);
509         hlist_bl_unlock(b);
510 }
511 
512 void __d_drop(struct dentry *dentry)
513 {
514         if (!d_unhashed(dentry)) {
515                 ___d_drop(dentry);
516                 dentry->d_hash.pprev = NULL;
517                 write_seqcount_invalidate(&dentry->d_seq);
518         }
519 }
520 EXPORT_SYMBOL(__d_drop);
521 
522 /**
523  * d_drop - drop a dentry
524  * @dentry: dentry to drop
525  *
526  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
527  * be found through a VFS lookup any more. Note that this is different from
528  * deleting the dentry - d_delete will try to mark the dentry negative if
529  * possible, giving a successful _negative_ lookup, while d_drop will
530  * just make the cache lookup fail.
531  *
532  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
533  * reason (NFS timeouts or autofs deletes).
534  *
535  * __d_drop requires dentry->d_lock
536  *
537  * ___d_drop doesn't mark dentry as "unhashed"
538  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
539  */
540 void d_drop(struct dentry *dentry)
541 {
542         spin_lock(&dentry->d_lock);
543         __d_drop(dentry);
544         spin_unlock(&dentry->d_lock);
545 }
546 EXPORT_SYMBOL(d_drop);
547 
548 static inline void dentry_unlist(struct dentry *dentry)
549 {
550         struct dentry *next;
551         /*
552          * Inform d_walk() and shrink_dentry_list() that we are no longer
553          * attached to the dentry tree
554          */
555         dentry->d_flags |= DCACHE_DENTRY_KILLED;
556         if (unlikely(hlist_unhashed(&dentry->d_sib)))
557                 return;
558         __hlist_del(&dentry->d_sib);
559         /*
560          * Cursors can move around the list of children.  While we'd been
561          * a normal list member, it didn't matter - ->d_sib.next would've
562          * been updated.  However, from now on it won't be and for the
563          * things like d_walk() it might end up with a nasty surprise.
564          * Normally d_walk() doesn't care about cursors moving around -
565          * ->d_lock on parent prevents that and since a cursor has no children
566          * of its own, we get through it without ever unlocking the parent.
567          * There is one exception, though - if we ascend from a child that
568          * gets killed as soon as we unlock it, the next sibling is found
569          * using the value left in its ->d_sib.next.  And if _that_
570          * pointed to a cursor, and cursor got moved (e.g. by lseek())
571          * before d_walk() regains parent->d_lock, we'll end up skipping
572          * everything the cursor had been moved past.
573          *
574          * Solution: make sure that the pointer left behind in ->d_sib.next
575          * points to something that won't be moving around.  I.e. skip the
576          * cursors.
577          */
578         while (dentry->d_sib.next) {
579                 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
580                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
581                         break;
582                 dentry->d_sib.next = next->d_sib.next;
583         }
584 }
585 
586 static struct dentry *__dentry_kill(struct dentry *dentry)
587 {
588         struct dentry *parent = NULL;
589         bool can_free = true;
590 
591         /*
592          * The dentry is now unrecoverably dead to the world.
593          */
594         lockref_mark_dead(&dentry->d_lockref);
595 
596         /*
597          * inform the fs via d_prune that this dentry is about to be
598          * unhashed and destroyed.
599          */
600         if (dentry->d_flags & DCACHE_OP_PRUNE)
601                 dentry->d_op->d_prune(dentry);
602 
603         if (dentry->d_flags & DCACHE_LRU_LIST) {
604                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
605                         d_lru_del(dentry);
606         }
607         /* if it was on the hash then remove it */
608         __d_drop(dentry);
609         if (dentry->d_inode)
610                 dentry_unlink_inode(dentry);
611         else
612                 spin_unlock(&dentry->d_lock);
613         this_cpu_dec(nr_dentry);
614         if (dentry->d_op && dentry->d_op->d_release)
615                 dentry->d_op->d_release(dentry);
616 
617         cond_resched();
618         /* now that it's negative, ->d_parent is stable */
619         if (!IS_ROOT(dentry)) {
620                 parent = dentry->d_parent;
621                 spin_lock(&parent->d_lock);
622         }
623         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
624         dentry_unlist(dentry);
625         if (dentry->d_flags & DCACHE_SHRINK_LIST)
626                 can_free = false;
627         spin_unlock(&dentry->d_lock);
628         if (likely(can_free))
629                 dentry_free(dentry);
630         if (parent && --parent->d_lockref.count) {
631                 spin_unlock(&parent->d_lock);
632                 return NULL;
633         }
634         return parent;
635 }
636 
637 /*
638  * Lock a dentry for feeding it to __dentry_kill().
639  * Called under rcu_read_lock() and dentry->d_lock; the former
640  * guarantees that nothing we access will be freed under us.
641  * Note that dentry is *not* protected from concurrent dentry_kill(),
642  * d_delete(), etc.
643  *
644  * Return false if dentry is busy.  Otherwise, return true and have
645  * that dentry's inode locked.
646  */
647 
648 static bool lock_for_kill(struct dentry *dentry)
649 {
650         struct inode *inode = dentry->d_inode;
651 
652         if (unlikely(dentry->d_lockref.count))
653                 return false;
654 
655         if (!inode || likely(spin_trylock(&inode->i_lock)))
656                 return true;
657 
658         do {
659                 spin_unlock(&dentry->d_lock);
660                 spin_lock(&inode->i_lock);
661                 spin_lock(&dentry->d_lock);
662                 if (likely(inode == dentry->d_inode))
663                         break;
664                 spin_unlock(&inode->i_lock);
665                 inode = dentry->d_inode;
666         } while (inode);
667         if (likely(!dentry->d_lockref.count))
668                 return true;
669         if (inode)
670                 spin_unlock(&inode->i_lock);
671         return false;
672 }
673 
674 /*
675  * Decide if dentry is worth retaining.  Usually this is called with dentry
676  * locked; if not locked, we are more limited and might not be able to tell
677  * without a lock.  False in this case means "punt to locked path and recheck".
678  *
679  * In case we aren't locked, these predicates are not "stable". However, it is
680  * sufficient that at some point after we dropped the reference the dentry was
681  * hashed and the flags had the proper value. Other dentry users may have
682  * re-gotten a reference to the dentry and change that, but our work is done -
683  * we can leave the dentry around with a zero refcount.
684  */
685 static inline bool retain_dentry(struct dentry *dentry, bool locked)
686 {
687         unsigned int d_flags;
688 
689         smp_rmb();
690         d_flags = READ_ONCE(dentry->d_flags);
691 
692         // Unreachable? Nobody would be able to look it up, no point retaining
693         if (unlikely(d_unhashed(dentry)))
694                 return false;
695 
696         // Same if it's disconnected
697         if (unlikely(d_flags & DCACHE_DISCONNECTED))
698                 return false;
699 
700         // ->d_delete() might tell us not to bother, but that requires
701         // ->d_lock; can't decide without it
702         if (unlikely(d_flags & DCACHE_OP_DELETE)) {
703                 if (!locked || dentry->d_op->d_delete(dentry))
704                         return false;
705         }
706 
707         // Explicitly told not to bother
708         if (unlikely(d_flags & DCACHE_DONTCACHE))
709                 return false;
710 
711         // At this point it looks like we ought to keep it.  We also might
712         // need to do something - put it on LRU if it wasn't there already
713         // and mark it referenced if it was on LRU, but not marked yet.
714         // Unfortunately, both actions require ->d_lock, so in lockless
715         // case we'd have to punt rather than doing those.
716         if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
717                 if (!locked)
718                         return false;
719                 d_lru_add(dentry);
720         } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
721                 if (!locked)
722                         return false;
723                 dentry->d_flags |= DCACHE_REFERENCED;
724         }
725         return true;
726 }
727 
728 void d_mark_dontcache(struct inode *inode)
729 {
730         struct dentry *de;
731 
732         spin_lock(&inode->i_lock);
733         hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
734                 spin_lock(&de->d_lock);
735                 de->d_flags |= DCACHE_DONTCACHE;
736                 spin_unlock(&de->d_lock);
737         }
738         inode->i_state |= I_DONTCACHE;
739         spin_unlock(&inode->i_lock);
740 }
741 EXPORT_SYMBOL(d_mark_dontcache);
742 
743 /*
744  * Try to do a lockless dput(), and return whether that was successful.
745  *
746  * If unsuccessful, we return false, having already taken the dentry lock.
747  * In that case refcount is guaranteed to be zero and we have already
748  * decided that it's not worth keeping around.
749  *
750  * The caller needs to hold the RCU read lock, so that the dentry is
751  * guaranteed to stay around even if the refcount goes down to zero!
752  */
753 static inline bool fast_dput(struct dentry *dentry)
754 {
755         int ret;
756 
757         /*
758          * try to decrement the lockref optimistically.
759          */
760         ret = lockref_put_return(&dentry->d_lockref);
761 
762         /*
763          * If the lockref_put_return() failed due to the lock being held
764          * by somebody else, the fast path has failed. We will need to
765          * get the lock, and then check the count again.
766          */
767         if (unlikely(ret < 0)) {
768                 spin_lock(&dentry->d_lock);
769                 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
770                         spin_unlock(&dentry->d_lock);
771                         return true;
772                 }
773                 dentry->d_lockref.count--;
774                 goto locked;
775         }
776 
777         /*
778          * If we weren't the last ref, we're done.
779          */
780         if (ret)
781                 return true;
782 
783         /*
784          * Can we decide that decrement of refcount is all we needed without
785          * taking the lock?  There's a very common case when it's all we need -
786          * dentry looks like it ought to be retained and there's nothing else
787          * to do.
788          */
789         if (retain_dentry(dentry, false))
790                 return true;
791 
792         /*
793          * Either not worth retaining or we can't tell without the lock.
794          * Get the lock, then.  We've already decremented the refcount to 0,
795          * but we'll need to re-check the situation after getting the lock.
796          */
797         spin_lock(&dentry->d_lock);
798 
799         /*
800          * Did somebody else grab a reference to it in the meantime, and
801          * we're no longer the last user after all? Alternatively, somebody
802          * else could have killed it and marked it dead. Either way, we
803          * don't need to do anything else.
804          */
805 locked:
806         if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
807                 spin_unlock(&dentry->d_lock);
808                 return true;
809         }
810         return false;
811 }
812 
813 
814 /* 
815  * This is dput
816  *
817  * This is complicated by the fact that we do not want to put
818  * dentries that are no longer on any hash chain on the unused
819  * list: we'd much rather just get rid of them immediately.
820  *
821  * However, that implies that we have to traverse the dentry
822  * tree upwards to the parents which might _also_ now be
823  * scheduled for deletion (it may have been only waiting for
824  * its last child to go away).
825  *
826  * This tail recursion is done by hand as we don't want to depend
827  * on the compiler to always get this right (gcc generally doesn't).
828  * Real recursion would eat up our stack space.
829  */
830 
831 /*
832  * dput - release a dentry
833  * @dentry: dentry to release 
834  *
835  * Release a dentry. This will drop the usage count and if appropriate
836  * call the dentry unlink method as well as removing it from the queues and
837  * releasing its resources. If the parent dentries were scheduled for release
838  * they too may now get deleted.
839  */
840 void dput(struct dentry *dentry)
841 {
842         if (!dentry)
843                 return;
844         might_sleep();
845         rcu_read_lock();
846         if (likely(fast_dput(dentry))) {
847                 rcu_read_unlock();
848                 return;
849         }
850         while (lock_for_kill(dentry)) {
851                 rcu_read_unlock();
852                 dentry = __dentry_kill(dentry);
853                 if (!dentry)
854                         return;
855                 if (retain_dentry(dentry, true)) {
856                         spin_unlock(&dentry->d_lock);
857                         return;
858                 }
859                 rcu_read_lock();
860         }
861         rcu_read_unlock();
862         spin_unlock(&dentry->d_lock);
863 }
864 EXPORT_SYMBOL(dput);
865 
866 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
867 __must_hold(&dentry->d_lock)
868 {
869         if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
870                 if (dentry->d_flags & DCACHE_LRU_LIST)
871                         d_lru_del(dentry);
872                 d_shrink_add(dentry, list);
873         }
874 }
875 
876 void dput_to_list(struct dentry *dentry, struct list_head *list)
877 {
878         rcu_read_lock();
879         if (likely(fast_dput(dentry))) {
880                 rcu_read_unlock();
881                 return;
882         }
883         rcu_read_unlock();
884         to_shrink_list(dentry, list);
885         spin_unlock(&dentry->d_lock);
886 }
887 
888 struct dentry *dget_parent(struct dentry *dentry)
889 {
890         int gotref;
891         struct dentry *ret;
892         unsigned seq;
893 
894         /*
895          * Do optimistic parent lookup without any
896          * locking.
897          */
898         rcu_read_lock();
899         seq = raw_seqcount_begin(&dentry->d_seq);
900         ret = READ_ONCE(dentry->d_parent);
901         gotref = lockref_get_not_zero(&ret->d_lockref);
902         rcu_read_unlock();
903         if (likely(gotref)) {
904                 if (!read_seqcount_retry(&dentry->d_seq, seq))
905                         return ret;
906                 dput(ret);
907         }
908 
909 repeat:
910         /*
911          * Don't need rcu_dereference because we re-check it was correct under
912          * the lock.
913          */
914         rcu_read_lock();
915         ret = dentry->d_parent;
916         spin_lock(&ret->d_lock);
917         if (unlikely(ret != dentry->d_parent)) {
918                 spin_unlock(&ret->d_lock);
919                 rcu_read_unlock();
920                 goto repeat;
921         }
922         rcu_read_unlock();
923         BUG_ON(!ret->d_lockref.count);
924         ret->d_lockref.count++;
925         spin_unlock(&ret->d_lock);
926         return ret;
927 }
928 EXPORT_SYMBOL(dget_parent);
929 
930 static struct dentry * __d_find_any_alias(struct inode *inode)
931 {
932         struct dentry *alias;
933 
934         if (hlist_empty(&inode->i_dentry))
935                 return NULL;
936         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
937         lockref_get(&alias->d_lockref);
938         return alias;
939 }
940 
941 /**
942  * d_find_any_alias - find any alias for a given inode
943  * @inode: inode to find an alias for
944  *
945  * If any aliases exist for the given inode, take and return a
946  * reference for one of them.  If no aliases exist, return %NULL.
947  */
948 struct dentry *d_find_any_alias(struct inode *inode)
949 {
950         struct dentry *de;
951 
952         spin_lock(&inode->i_lock);
953         de = __d_find_any_alias(inode);
954         spin_unlock(&inode->i_lock);
955         return de;
956 }
957 EXPORT_SYMBOL(d_find_any_alias);
958 
959 static struct dentry *__d_find_alias(struct inode *inode)
960 {
961         struct dentry *alias;
962 
963         if (S_ISDIR(inode->i_mode))
964                 return __d_find_any_alias(inode);
965 
966         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
967                 spin_lock(&alias->d_lock);
968                 if (!d_unhashed(alias)) {
969                         dget_dlock(alias);
970                         spin_unlock(&alias->d_lock);
971                         return alias;
972                 }
973                 spin_unlock(&alias->d_lock);
974         }
975         return NULL;
976 }
977 
978 /**
979  * d_find_alias - grab a hashed alias of inode
980  * @inode: inode in question
981  *
982  * If inode has a hashed alias, or is a directory and has any alias,
983  * acquire the reference to alias and return it. Otherwise return NULL.
984  * Notice that if inode is a directory there can be only one alias and
985  * it can be unhashed only if it has no children, or if it is the root
986  * of a filesystem, or if the directory was renamed and d_revalidate
987  * was the first vfs operation to notice.
988  *
989  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
990  * any other hashed alias over that one.
991  */
992 struct dentry *d_find_alias(struct inode *inode)
993 {
994         struct dentry *de = NULL;
995 
996         if (!hlist_empty(&inode->i_dentry)) {
997                 spin_lock(&inode->i_lock);
998                 de = __d_find_alias(inode);
999                 spin_unlock(&inode->i_lock);
1000         }
1001         return de;
1002 }
1003 EXPORT_SYMBOL(d_find_alias);
1004 
1005 /*
1006  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1007  *  that inode won't get freed until rcu_read_unlock().
1008  */
1009 struct dentry *d_find_alias_rcu(struct inode *inode)
1010 {
1011         struct hlist_head *l = &inode->i_dentry;
1012         struct dentry *de = NULL;
1013 
1014         spin_lock(&inode->i_lock);
1015         // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1016         // used without having I_FREEING set, which means no aliases left
1017         if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1018                 if (S_ISDIR(inode->i_mode)) {
1019                         de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1020                 } else {
1021                         hlist_for_each_entry(de, l, d_u.d_alias)
1022                                 if (!d_unhashed(de))
1023                                         break;
1024                 }
1025         }
1026         spin_unlock(&inode->i_lock);
1027         return de;
1028 }
1029 
1030 /*
1031  *      Try to kill dentries associated with this inode.
1032  * WARNING: you must own a reference to inode.
1033  */
1034 void d_prune_aliases(struct inode *inode)
1035 {
1036         LIST_HEAD(dispose);
1037         struct dentry *dentry;
1038 
1039         spin_lock(&inode->i_lock);
1040         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1041                 spin_lock(&dentry->d_lock);
1042                 if (!dentry->d_lockref.count)
1043                         to_shrink_list(dentry, &dispose);
1044                 spin_unlock(&dentry->d_lock);
1045         }
1046         spin_unlock(&inode->i_lock);
1047         shrink_dentry_list(&dispose);
1048 }
1049 EXPORT_SYMBOL(d_prune_aliases);
1050 
1051 static inline void shrink_kill(struct dentry *victim)
1052 {
1053         do {
1054                 rcu_read_unlock();
1055                 victim = __dentry_kill(victim);
1056                 rcu_read_lock();
1057         } while (victim && lock_for_kill(victim));
1058         rcu_read_unlock();
1059         if (victim)
1060                 spin_unlock(&victim->d_lock);
1061 }
1062 
1063 void shrink_dentry_list(struct list_head *list)
1064 {
1065         while (!list_empty(list)) {
1066                 struct dentry *dentry;
1067 
1068                 dentry = list_entry(list->prev, struct dentry, d_lru);
1069                 spin_lock(&dentry->d_lock);
1070                 rcu_read_lock();
1071                 if (!lock_for_kill(dentry)) {
1072                         bool can_free;
1073                         rcu_read_unlock();
1074                         d_shrink_del(dentry);
1075                         can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1076                         spin_unlock(&dentry->d_lock);
1077                         if (can_free)
1078                                 dentry_free(dentry);
1079                         continue;
1080                 }
1081                 d_shrink_del(dentry);
1082                 shrink_kill(dentry);
1083         }
1084 }
1085 
1086 static enum lru_status dentry_lru_isolate(struct list_head *item,
1087                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1088 {
1089         struct list_head *freeable = arg;
1090         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1091 
1092 
1093         /*
1094          * we are inverting the lru lock/dentry->d_lock here,
1095          * so use a trylock. If we fail to get the lock, just skip
1096          * it
1097          */
1098         if (!spin_trylock(&dentry->d_lock))
1099                 return LRU_SKIP;
1100 
1101         /*
1102          * Referenced dentries are still in use. If they have active
1103          * counts, just remove them from the LRU. Otherwise give them
1104          * another pass through the LRU.
1105          */
1106         if (dentry->d_lockref.count) {
1107                 d_lru_isolate(lru, dentry);
1108                 spin_unlock(&dentry->d_lock);
1109                 return LRU_REMOVED;
1110         }
1111 
1112         if (dentry->d_flags & DCACHE_REFERENCED) {
1113                 dentry->d_flags &= ~DCACHE_REFERENCED;
1114                 spin_unlock(&dentry->d_lock);
1115 
1116                 /*
1117                  * The list move itself will be made by the common LRU code. At
1118                  * this point, we've dropped the dentry->d_lock but keep the
1119                  * lru lock. This is safe to do, since every list movement is
1120                  * protected by the lru lock even if both locks are held.
1121                  *
1122                  * This is guaranteed by the fact that all LRU management
1123                  * functions are intermediated by the LRU API calls like
1124                  * list_lru_add_obj and list_lru_del_obj. List movement in this file
1125                  * only ever occur through this functions or through callbacks
1126                  * like this one, that are called from the LRU API.
1127                  *
1128                  * The only exceptions to this are functions like
1129                  * shrink_dentry_list, and code that first checks for the
1130                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1131                  * operating only with stack provided lists after they are
1132                  * properly isolated from the main list.  It is thus, always a
1133                  * local access.
1134                  */
1135                 return LRU_ROTATE;
1136         }
1137 
1138         d_lru_shrink_move(lru, dentry, freeable);
1139         spin_unlock(&dentry->d_lock);
1140 
1141         return LRU_REMOVED;
1142 }
1143 
1144 /**
1145  * prune_dcache_sb - shrink the dcache
1146  * @sb: superblock
1147  * @sc: shrink control, passed to list_lru_shrink_walk()
1148  *
1149  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1150  * is done when we need more memory and called from the superblock shrinker
1151  * function.
1152  *
1153  * This function may fail to free any resources if all the dentries are in
1154  * use.
1155  */
1156 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1157 {
1158         LIST_HEAD(dispose);
1159         long freed;
1160 
1161         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1162                                      dentry_lru_isolate, &dispose);
1163         shrink_dentry_list(&dispose);
1164         return freed;
1165 }
1166 
1167 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1168                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1169 {
1170         struct list_head *freeable = arg;
1171         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1172 
1173         /*
1174          * we are inverting the lru lock/dentry->d_lock here,
1175          * so use a trylock. If we fail to get the lock, just skip
1176          * it
1177          */
1178         if (!spin_trylock(&dentry->d_lock))
1179                 return LRU_SKIP;
1180 
1181         d_lru_shrink_move(lru, dentry, freeable);
1182         spin_unlock(&dentry->d_lock);
1183 
1184         return LRU_REMOVED;
1185 }
1186 
1187 
1188 /**
1189  * shrink_dcache_sb - shrink dcache for a superblock
1190  * @sb: superblock
1191  *
1192  * Shrink the dcache for the specified super block. This is used to free
1193  * the dcache before unmounting a file system.
1194  */
1195 void shrink_dcache_sb(struct super_block *sb)
1196 {
1197         do {
1198                 LIST_HEAD(dispose);
1199 
1200                 list_lru_walk(&sb->s_dentry_lru,
1201                         dentry_lru_isolate_shrink, &dispose, 1024);
1202                 shrink_dentry_list(&dispose);
1203         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1204 }
1205 EXPORT_SYMBOL(shrink_dcache_sb);
1206 
1207 /**
1208  * enum d_walk_ret - action to talke during tree walk
1209  * @D_WALK_CONTINUE:    contrinue walk
1210  * @D_WALK_QUIT:        quit walk
1211  * @D_WALK_NORETRY:     quit when retry is needed
1212  * @D_WALK_SKIP:        skip this dentry and its children
1213  */
1214 enum d_walk_ret {
1215         D_WALK_CONTINUE,
1216         D_WALK_QUIT,
1217         D_WALK_NORETRY,
1218         D_WALK_SKIP,
1219 };
1220 
1221 /**
1222  * d_walk - walk the dentry tree
1223  * @parent:     start of walk
1224  * @data:       data passed to @enter() and @finish()
1225  * @enter:      callback when first entering the dentry
1226  *
1227  * The @enter() callbacks are called with d_lock held.
1228  */
1229 static void d_walk(struct dentry *parent, void *data,
1230                    enum d_walk_ret (*enter)(void *, struct dentry *))
1231 {
1232         struct dentry *this_parent, *dentry;
1233         unsigned seq = 0;
1234         enum d_walk_ret ret;
1235         bool retry = true;
1236 
1237 again:
1238         read_seqbegin_or_lock(&rename_lock, &seq);
1239         this_parent = parent;
1240         spin_lock(&this_parent->d_lock);
1241 
1242         ret = enter(data, this_parent);
1243         switch (ret) {
1244         case D_WALK_CONTINUE:
1245                 break;
1246         case D_WALK_QUIT:
1247         case D_WALK_SKIP:
1248                 goto out_unlock;
1249         case D_WALK_NORETRY:
1250                 retry = false;
1251                 break;
1252         }
1253 repeat:
1254         dentry = d_first_child(this_parent);
1255 resume:
1256         hlist_for_each_entry_from(dentry, d_sib) {
1257                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1258                         continue;
1259 
1260                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1261 
1262                 ret = enter(data, dentry);
1263                 switch (ret) {
1264                 case D_WALK_CONTINUE:
1265                         break;
1266                 case D_WALK_QUIT:
1267                         spin_unlock(&dentry->d_lock);
1268                         goto out_unlock;
1269                 case D_WALK_NORETRY:
1270                         retry = false;
1271                         break;
1272                 case D_WALK_SKIP:
1273                         spin_unlock(&dentry->d_lock);
1274                         continue;
1275                 }
1276 
1277                 if (!hlist_empty(&dentry->d_children)) {
1278                         spin_unlock(&this_parent->d_lock);
1279                         spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1280                         this_parent = dentry;
1281                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1282                         goto repeat;
1283                 }
1284                 spin_unlock(&dentry->d_lock);
1285         }
1286         /*
1287          * All done at this level ... ascend and resume the search.
1288          */
1289         rcu_read_lock();
1290 ascend:
1291         if (this_parent != parent) {
1292                 dentry = this_parent;
1293                 this_parent = dentry->d_parent;
1294 
1295                 spin_unlock(&dentry->d_lock);
1296                 spin_lock(&this_parent->d_lock);
1297 
1298                 /* might go back up the wrong parent if we have had a rename. */
1299                 if (need_seqretry(&rename_lock, seq))
1300                         goto rename_retry;
1301                 /* go into the first sibling still alive */
1302                 hlist_for_each_entry_continue(dentry, d_sib) {
1303                         if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1304                                 rcu_read_unlock();
1305                                 goto resume;
1306                         }
1307                 }
1308                 goto ascend;
1309         }
1310         if (need_seqretry(&rename_lock, seq))
1311                 goto rename_retry;
1312         rcu_read_unlock();
1313 
1314 out_unlock:
1315         spin_unlock(&this_parent->d_lock);
1316         done_seqretry(&rename_lock, seq);
1317         return;
1318 
1319 rename_retry:
1320         spin_unlock(&this_parent->d_lock);
1321         rcu_read_unlock();
1322         BUG_ON(seq & 1);
1323         if (!retry)
1324                 return;
1325         seq = 1;
1326         goto again;
1327 }
1328 
1329 struct check_mount {
1330         struct vfsmount *mnt;
1331         unsigned int mounted;
1332 };
1333 
1334 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1335 {
1336         struct check_mount *info = data;
1337         struct path path = { .mnt = info->mnt, .dentry = dentry };
1338 
1339         if (likely(!d_mountpoint(dentry)))
1340                 return D_WALK_CONTINUE;
1341         if (__path_is_mountpoint(&path)) {
1342                 info->mounted = 1;
1343                 return D_WALK_QUIT;
1344         }
1345         return D_WALK_CONTINUE;
1346 }
1347 
1348 /**
1349  * path_has_submounts - check for mounts over a dentry in the
1350  *                      current namespace.
1351  * @parent: path to check.
1352  *
1353  * Return true if the parent or its subdirectories contain
1354  * a mount point in the current namespace.
1355  */
1356 int path_has_submounts(const struct path *parent)
1357 {
1358         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1359 
1360         read_seqlock_excl(&mount_lock);
1361         d_walk(parent->dentry, &data, path_check_mount);
1362         read_sequnlock_excl(&mount_lock);
1363 
1364         return data.mounted;
1365 }
1366 EXPORT_SYMBOL(path_has_submounts);
1367 
1368 /*
1369  * Called by mount code to set a mountpoint and check if the mountpoint is
1370  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1371  * subtree can become unreachable).
1372  *
1373  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1374  * this reason take rename_lock and d_lock on dentry and ancestors.
1375  */
1376 int d_set_mounted(struct dentry *dentry)
1377 {
1378         struct dentry *p;
1379         int ret = -ENOENT;
1380         write_seqlock(&rename_lock);
1381         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1382                 /* Need exclusion wrt. d_invalidate() */
1383                 spin_lock(&p->d_lock);
1384                 if (unlikely(d_unhashed(p))) {
1385                         spin_unlock(&p->d_lock);
1386                         goto out;
1387                 }
1388                 spin_unlock(&p->d_lock);
1389         }
1390         spin_lock(&dentry->d_lock);
1391         if (!d_unlinked(dentry)) {
1392                 ret = -EBUSY;
1393                 if (!d_mountpoint(dentry)) {
1394                         dentry->d_flags |= DCACHE_MOUNTED;
1395                         ret = 0;
1396                 }
1397         }
1398         spin_unlock(&dentry->d_lock);
1399 out:
1400         write_sequnlock(&rename_lock);
1401         return ret;
1402 }
1403 
1404 /*
1405  * Search the dentry child list of the specified parent,
1406  * and move any unused dentries to the end of the unused
1407  * list for prune_dcache(). We descend to the next level
1408  * whenever the d_children list is non-empty and continue
1409  * searching.
1410  *
1411  * It returns zero iff there are no unused children,
1412  * otherwise  it returns the number of children moved to
1413  * the end of the unused list. This may not be the total
1414  * number of unused children, because select_parent can
1415  * drop the lock and return early due to latency
1416  * constraints.
1417  */
1418 
1419 struct select_data {
1420         struct dentry *start;
1421         union {
1422                 long found;
1423                 struct dentry *victim;
1424         };
1425         struct list_head dispose;
1426 };
1427 
1428 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1429 {
1430         struct select_data *data = _data;
1431         enum d_walk_ret ret = D_WALK_CONTINUE;
1432 
1433         if (data->start == dentry)
1434                 goto out;
1435 
1436         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1437                 data->found++;
1438         } else if (!dentry->d_lockref.count) {
1439                 to_shrink_list(dentry, &data->dispose);
1440                 data->found++;
1441         } else if (dentry->d_lockref.count < 0) {
1442                 data->found++;
1443         }
1444         /*
1445          * We can return to the caller if we have found some (this
1446          * ensures forward progress). We'll be coming back to find
1447          * the rest.
1448          */
1449         if (!list_empty(&data->dispose))
1450                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1451 out:
1452         return ret;
1453 }
1454 
1455 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1456 {
1457         struct select_data *data = _data;
1458         enum d_walk_ret ret = D_WALK_CONTINUE;
1459 
1460         if (data->start == dentry)
1461                 goto out;
1462 
1463         if (!dentry->d_lockref.count) {
1464                 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1465                         rcu_read_lock();
1466                         data->victim = dentry;
1467                         return D_WALK_QUIT;
1468                 }
1469                 to_shrink_list(dentry, &data->dispose);
1470         }
1471         /*
1472          * We can return to the caller if we have found some (this
1473          * ensures forward progress). We'll be coming back to find
1474          * the rest.
1475          */
1476         if (!list_empty(&data->dispose))
1477                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1478 out:
1479         return ret;
1480 }
1481 
1482 /**
1483  * shrink_dcache_parent - prune dcache
1484  * @parent: parent of entries to prune
1485  *
1486  * Prune the dcache to remove unused children of the parent dentry.
1487  */
1488 void shrink_dcache_parent(struct dentry *parent)
1489 {
1490         for (;;) {
1491                 struct select_data data = {.start = parent};
1492 
1493                 INIT_LIST_HEAD(&data.dispose);
1494                 d_walk(parent, &data, select_collect);
1495 
1496                 if (!list_empty(&data.dispose)) {
1497                         shrink_dentry_list(&data.dispose);
1498                         continue;
1499                 }
1500 
1501                 cond_resched();
1502                 if (!data.found)
1503                         break;
1504                 data.victim = NULL;
1505                 d_walk(parent, &data, select_collect2);
1506                 if (data.victim) {
1507                         spin_lock(&data.victim->d_lock);
1508                         if (!lock_for_kill(data.victim)) {
1509                                 spin_unlock(&data.victim->d_lock);
1510                                 rcu_read_unlock();
1511                         } else {
1512                                 shrink_kill(data.victim);
1513                         }
1514                 }
1515                 if (!list_empty(&data.dispose))
1516                         shrink_dentry_list(&data.dispose);
1517         }
1518 }
1519 EXPORT_SYMBOL(shrink_dcache_parent);
1520 
1521 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1522 {
1523         /* it has busy descendents; complain about those instead */
1524         if (!hlist_empty(&dentry->d_children))
1525                 return D_WALK_CONTINUE;
1526 
1527         /* root with refcount 1 is fine */
1528         if (dentry == _data && dentry->d_lockref.count == 1)
1529                 return D_WALK_CONTINUE;
1530 
1531         WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1532                         " still in use (%d) [unmount of %s %s]\n",
1533                        dentry,
1534                        dentry->d_inode ?
1535                        dentry->d_inode->i_ino : 0UL,
1536                        dentry,
1537                        dentry->d_lockref.count,
1538                        dentry->d_sb->s_type->name,
1539                        dentry->d_sb->s_id);
1540         return D_WALK_CONTINUE;
1541 }
1542 
1543 static void do_one_tree(struct dentry *dentry)
1544 {
1545         shrink_dcache_parent(dentry);
1546         d_walk(dentry, dentry, umount_check);
1547         d_drop(dentry);
1548         dput(dentry);
1549 }
1550 
1551 /*
1552  * destroy the dentries attached to a superblock on unmounting
1553  */
1554 void shrink_dcache_for_umount(struct super_block *sb)
1555 {
1556         struct dentry *dentry;
1557 
1558         rwsem_assert_held_write(&sb->s_umount);
1559 
1560         dentry = sb->s_root;
1561         sb->s_root = NULL;
1562         do_one_tree(dentry);
1563 
1564         while (!hlist_bl_empty(&sb->s_roots)) {
1565                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1566                 do_one_tree(dentry);
1567         }
1568 }
1569 
1570 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1571 {
1572         struct dentry **victim = _data;
1573         if (d_mountpoint(dentry)) {
1574                 *victim = dget_dlock(dentry);
1575                 return D_WALK_QUIT;
1576         }
1577         return D_WALK_CONTINUE;
1578 }
1579 
1580 /**
1581  * d_invalidate - detach submounts, prune dcache, and drop
1582  * @dentry: dentry to invalidate (aka detach, prune and drop)
1583  */
1584 void d_invalidate(struct dentry *dentry)
1585 {
1586         bool had_submounts = false;
1587         spin_lock(&dentry->d_lock);
1588         if (d_unhashed(dentry)) {
1589                 spin_unlock(&dentry->d_lock);
1590                 return;
1591         }
1592         __d_drop(dentry);
1593         spin_unlock(&dentry->d_lock);
1594 
1595         /* Negative dentries can be dropped without further checks */
1596         if (!dentry->d_inode)
1597                 return;
1598 
1599         shrink_dcache_parent(dentry);
1600         for (;;) {
1601                 struct dentry *victim = NULL;
1602                 d_walk(dentry, &victim, find_submount);
1603                 if (!victim) {
1604                         if (had_submounts)
1605                                 shrink_dcache_parent(dentry);
1606                         return;
1607                 }
1608                 had_submounts = true;
1609                 detach_mounts(victim);
1610                 dput(victim);
1611         }
1612 }
1613 EXPORT_SYMBOL(d_invalidate);
1614 
1615 /**
1616  * __d_alloc    -       allocate a dcache entry
1617  * @sb: filesystem it will belong to
1618  * @name: qstr of the name
1619  *
1620  * Allocates a dentry. It returns %NULL if there is insufficient memory
1621  * available. On a success the dentry is returned. The name passed in is
1622  * copied and the copy passed in may be reused after this call.
1623  */
1624  
1625 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1626 {
1627         struct dentry *dentry;
1628         char *dname;
1629         int err;
1630 
1631         dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1632                                       GFP_KERNEL);
1633         if (!dentry)
1634                 return NULL;
1635 
1636         /*
1637          * We guarantee that the inline name is always NUL-terminated.
1638          * This way the memcpy() done by the name switching in rename
1639          * will still always have a NUL at the end, even if we might
1640          * be overwriting an internal NUL character
1641          */
1642         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1643         if (unlikely(!name)) {
1644                 name = &slash_name;
1645                 dname = dentry->d_iname;
1646         } else if (name->len > DNAME_INLINE_LEN-1) {
1647                 size_t size = offsetof(struct external_name, name[1]);
1648                 struct external_name *p = kmalloc(size + name->len,
1649                                                   GFP_KERNEL_ACCOUNT |
1650                                                   __GFP_RECLAIMABLE);
1651                 if (!p) {
1652                         kmem_cache_free(dentry_cache, dentry); 
1653                         return NULL;
1654                 }
1655                 atomic_set(&p->u.count, 1);
1656                 dname = p->name;
1657         } else  {
1658                 dname = dentry->d_iname;
1659         }       
1660 
1661         dentry->d_name.len = name->len;
1662         dentry->d_name.hash = name->hash;
1663         memcpy(dname, name->name, name->len);
1664         dname[name->len] = 0;
1665 
1666         /* Make sure we always see the terminating NUL character */
1667         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1668 
1669         dentry->d_lockref.count = 1;
1670         dentry->d_flags = 0;
1671         spin_lock_init(&dentry->d_lock);
1672         seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1673         dentry->d_inode = NULL;
1674         dentry->d_parent = dentry;
1675         dentry->d_sb = sb;
1676         dentry->d_op = NULL;
1677         dentry->d_fsdata = NULL;
1678         INIT_HLIST_BL_NODE(&dentry->d_hash);
1679         INIT_LIST_HEAD(&dentry->d_lru);
1680         INIT_HLIST_HEAD(&dentry->d_children);
1681         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1682         INIT_HLIST_NODE(&dentry->d_sib);
1683         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1684 
1685         if (dentry->d_op && dentry->d_op->d_init) {
1686                 err = dentry->d_op->d_init(dentry);
1687                 if (err) {
1688                         if (dname_external(dentry))
1689                                 kfree(external_name(dentry));
1690                         kmem_cache_free(dentry_cache, dentry);
1691                         return NULL;
1692                 }
1693         }
1694 
1695         this_cpu_inc(nr_dentry);
1696 
1697         return dentry;
1698 }
1699 
1700 /**
1701  * d_alloc      -       allocate a dcache entry
1702  * @parent: parent of entry to allocate
1703  * @name: qstr of the name
1704  *
1705  * Allocates a dentry. It returns %NULL if there is insufficient memory
1706  * available. On a success the dentry is returned. The name passed in is
1707  * copied and the copy passed in may be reused after this call.
1708  */
1709 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1710 {
1711         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1712         if (!dentry)
1713                 return NULL;
1714         spin_lock(&parent->d_lock);
1715         /*
1716          * don't need child lock because it is not subject
1717          * to concurrency here
1718          */
1719         dentry->d_parent = dget_dlock(parent);
1720         hlist_add_head(&dentry->d_sib, &parent->d_children);
1721         spin_unlock(&parent->d_lock);
1722 
1723         return dentry;
1724 }
1725 EXPORT_SYMBOL(d_alloc);
1726 
1727 struct dentry *d_alloc_anon(struct super_block *sb)
1728 {
1729         return __d_alloc(sb, NULL);
1730 }
1731 EXPORT_SYMBOL(d_alloc_anon);
1732 
1733 struct dentry *d_alloc_cursor(struct dentry * parent)
1734 {
1735         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1736         if (dentry) {
1737                 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1738                 dentry->d_parent = dget(parent);
1739         }
1740         return dentry;
1741 }
1742 
1743 /**
1744  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1745  * @sb: the superblock
1746  * @name: qstr of the name
1747  *
1748  * For a filesystem that just pins its dentries in memory and never
1749  * performs lookups at all, return an unhashed IS_ROOT dentry.
1750  * This is used for pipes, sockets et.al. - the stuff that should
1751  * never be anyone's children or parents.  Unlike all other
1752  * dentries, these will not have RCU delay between dropping the
1753  * last reference and freeing them.
1754  *
1755  * The only user is alloc_file_pseudo() and that's what should
1756  * be considered a public interface.  Don't use directly.
1757  */
1758 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1759 {
1760         static const struct dentry_operations anon_ops = {
1761                 .d_dname = simple_dname
1762         };
1763         struct dentry *dentry = __d_alloc(sb, name);
1764         if (likely(dentry)) {
1765                 dentry->d_flags |= DCACHE_NORCU;
1766                 if (!sb->s_d_op)
1767                         d_set_d_op(dentry, &anon_ops);
1768         }
1769         return dentry;
1770 }
1771 
1772 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1773 {
1774         struct qstr q;
1775 
1776         q.name = name;
1777         q.hash_len = hashlen_string(parent, name);
1778         return d_alloc(parent, &q);
1779 }
1780 EXPORT_SYMBOL(d_alloc_name);
1781 
1782 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1783 {
1784         WARN_ON_ONCE(dentry->d_op);
1785         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1786                                 DCACHE_OP_COMPARE       |
1787                                 DCACHE_OP_REVALIDATE    |
1788                                 DCACHE_OP_WEAK_REVALIDATE       |
1789                                 DCACHE_OP_DELETE        |
1790                                 DCACHE_OP_REAL));
1791         dentry->d_op = op;
1792         if (!op)
1793                 return;
1794         if (op->d_hash)
1795                 dentry->d_flags |= DCACHE_OP_HASH;
1796         if (op->d_compare)
1797                 dentry->d_flags |= DCACHE_OP_COMPARE;
1798         if (op->d_revalidate)
1799                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1800         if (op->d_weak_revalidate)
1801                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1802         if (op->d_delete)
1803                 dentry->d_flags |= DCACHE_OP_DELETE;
1804         if (op->d_prune)
1805                 dentry->d_flags |= DCACHE_OP_PRUNE;
1806         if (op->d_real)
1807                 dentry->d_flags |= DCACHE_OP_REAL;
1808 
1809 }
1810 EXPORT_SYMBOL(d_set_d_op);
1811 
1812 static unsigned d_flags_for_inode(struct inode *inode)
1813 {
1814         unsigned add_flags = DCACHE_REGULAR_TYPE;
1815 
1816         if (!inode)
1817                 return DCACHE_MISS_TYPE;
1818 
1819         if (S_ISDIR(inode->i_mode)) {
1820                 add_flags = DCACHE_DIRECTORY_TYPE;
1821                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1822                         if (unlikely(!inode->i_op->lookup))
1823                                 add_flags = DCACHE_AUTODIR_TYPE;
1824                         else
1825                                 inode->i_opflags |= IOP_LOOKUP;
1826                 }
1827                 goto type_determined;
1828         }
1829 
1830         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1831                 if (unlikely(inode->i_op->get_link)) {
1832                         add_flags = DCACHE_SYMLINK_TYPE;
1833                         goto type_determined;
1834                 }
1835                 inode->i_opflags |= IOP_NOFOLLOW;
1836         }
1837 
1838         if (unlikely(!S_ISREG(inode->i_mode)))
1839                 add_flags = DCACHE_SPECIAL_TYPE;
1840 
1841 type_determined:
1842         if (unlikely(IS_AUTOMOUNT(inode)))
1843                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1844         return add_flags;
1845 }
1846 
1847 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1848 {
1849         unsigned add_flags = d_flags_for_inode(inode);
1850         WARN_ON(d_in_lookup(dentry));
1851 
1852         spin_lock(&dentry->d_lock);
1853         /*
1854          * The negative counter only tracks dentries on the LRU. Don't dec if
1855          * d_lru is on another list.
1856          */
1857         if ((dentry->d_flags &
1858              (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1859                 this_cpu_dec(nr_dentry_negative);
1860         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1861         raw_write_seqcount_begin(&dentry->d_seq);
1862         __d_set_inode_and_type(dentry, inode, add_flags);
1863         raw_write_seqcount_end(&dentry->d_seq);
1864         fsnotify_update_flags(dentry);
1865         spin_unlock(&dentry->d_lock);
1866 }
1867 
1868 /**
1869  * d_instantiate - fill in inode information for a dentry
1870  * @entry: dentry to complete
1871  * @inode: inode to attach to this dentry
1872  *
1873  * Fill in inode information in the entry.
1874  *
1875  * This turns negative dentries into productive full members
1876  * of society.
1877  *
1878  * NOTE! This assumes that the inode count has been incremented
1879  * (or otherwise set) by the caller to indicate that it is now
1880  * in use by the dcache.
1881  */
1882  
1883 void d_instantiate(struct dentry *entry, struct inode * inode)
1884 {
1885         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1886         if (inode) {
1887                 security_d_instantiate(entry, inode);
1888                 spin_lock(&inode->i_lock);
1889                 __d_instantiate(entry, inode);
1890                 spin_unlock(&inode->i_lock);
1891         }
1892 }
1893 EXPORT_SYMBOL(d_instantiate);
1894 
1895 /*
1896  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1897  * with lockdep-related part of unlock_new_inode() done before
1898  * anything else.  Use that instead of open-coding d_instantiate()/
1899  * unlock_new_inode() combinations.
1900  */
1901 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1902 {
1903         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1904         BUG_ON(!inode);
1905         lockdep_annotate_inode_mutex_key(inode);
1906         security_d_instantiate(entry, inode);
1907         spin_lock(&inode->i_lock);
1908         __d_instantiate(entry, inode);
1909         WARN_ON(!(inode->i_state & I_NEW));
1910         inode->i_state &= ~I_NEW & ~I_CREATING;
1911         smp_mb();
1912         wake_up_bit(&inode->i_state, __I_NEW);
1913         spin_unlock(&inode->i_lock);
1914 }
1915 EXPORT_SYMBOL(d_instantiate_new);
1916 
1917 struct dentry *d_make_root(struct inode *root_inode)
1918 {
1919         struct dentry *res = NULL;
1920 
1921         if (root_inode) {
1922                 res = d_alloc_anon(root_inode->i_sb);
1923                 if (res)
1924                         d_instantiate(res, root_inode);
1925                 else
1926                         iput(root_inode);
1927         }
1928         return res;
1929 }
1930 EXPORT_SYMBOL(d_make_root);
1931 
1932 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1933 {
1934         struct super_block *sb;
1935         struct dentry *new, *res;
1936 
1937         if (!inode)
1938                 return ERR_PTR(-ESTALE);
1939         if (IS_ERR(inode))
1940                 return ERR_CAST(inode);
1941 
1942         sb = inode->i_sb;
1943 
1944         res = d_find_any_alias(inode); /* existing alias? */
1945         if (res)
1946                 goto out;
1947 
1948         new = d_alloc_anon(sb);
1949         if (!new) {
1950                 res = ERR_PTR(-ENOMEM);
1951                 goto out;
1952         }
1953 
1954         security_d_instantiate(new, inode);
1955         spin_lock(&inode->i_lock);
1956         res = __d_find_any_alias(inode); /* recheck under lock */
1957         if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1958                 unsigned add_flags = d_flags_for_inode(inode);
1959 
1960                 if (disconnected)
1961                         add_flags |= DCACHE_DISCONNECTED;
1962 
1963                 spin_lock(&new->d_lock);
1964                 __d_set_inode_and_type(new, inode, add_flags);
1965                 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1966                 if (!disconnected) {
1967                         hlist_bl_lock(&sb->s_roots);
1968                         hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1969                         hlist_bl_unlock(&sb->s_roots);
1970                 }
1971                 spin_unlock(&new->d_lock);
1972                 spin_unlock(&inode->i_lock);
1973                 inode = NULL; /* consumed by new->d_inode */
1974                 res = new;
1975         } else {
1976                 spin_unlock(&inode->i_lock);
1977                 dput(new);
1978         }
1979 
1980  out:
1981         iput(inode);
1982         return res;
1983 }
1984 
1985 /**
1986  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1987  * @inode: inode to allocate the dentry for
1988  *
1989  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1990  * similar open by handle operations.  The returned dentry may be anonymous,
1991  * or may have a full name (if the inode was already in the cache).
1992  *
1993  * When called on a directory inode, we must ensure that the inode only ever
1994  * has one dentry.  If a dentry is found, that is returned instead of
1995  * allocating a new one.
1996  *
1997  * On successful return, the reference to the inode has been transferred
1998  * to the dentry.  In case of an error the reference on the inode is released.
1999  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2000  * be passed in and the error will be propagated to the return value,
2001  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2002  */
2003 struct dentry *d_obtain_alias(struct inode *inode)
2004 {
2005         return __d_obtain_alias(inode, true);
2006 }
2007 EXPORT_SYMBOL(d_obtain_alias);
2008 
2009 /**
2010  * d_obtain_root - find or allocate a dentry for a given inode
2011  * @inode: inode to allocate the dentry for
2012  *
2013  * Obtain an IS_ROOT dentry for the root of a filesystem.
2014  *
2015  * We must ensure that directory inodes only ever have one dentry.  If a
2016  * dentry is found, that is returned instead of allocating a new one.
2017  *
2018  * On successful return, the reference to the inode has been transferred
2019  * to the dentry.  In case of an error the reference on the inode is
2020  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2021  * error will be propagate to the return value, with a %NULL @inode
2022  * replaced by ERR_PTR(-ESTALE).
2023  */
2024 struct dentry *d_obtain_root(struct inode *inode)
2025 {
2026         return __d_obtain_alias(inode, false);
2027 }
2028 EXPORT_SYMBOL(d_obtain_root);
2029 
2030 /**
2031  * d_add_ci - lookup or allocate new dentry with case-exact name
2032  * @inode:  the inode case-insensitive lookup has found
2033  * @dentry: the negative dentry that was passed to the parent's lookup func
2034  * @name:   the case-exact name to be associated with the returned dentry
2035  *
2036  * This is to avoid filling the dcache with case-insensitive names to the
2037  * same inode, only the actual correct case is stored in the dcache for
2038  * case-insensitive filesystems.
2039  *
2040  * For a case-insensitive lookup match and if the case-exact dentry
2041  * already exists in the dcache, use it and return it.
2042  *
2043  * If no entry exists with the exact case name, allocate new dentry with
2044  * the exact case, and return the spliced entry.
2045  */
2046 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2047                         struct qstr *name)
2048 {
2049         struct dentry *found, *res;
2050 
2051         /*
2052          * First check if a dentry matching the name already exists,
2053          * if not go ahead and create it now.
2054          */
2055         found = d_hash_and_lookup(dentry->d_parent, name);
2056         if (found) {
2057                 iput(inode);
2058                 return found;
2059         }
2060         if (d_in_lookup(dentry)) {
2061                 found = d_alloc_parallel(dentry->d_parent, name,
2062                                         dentry->d_wait);
2063                 if (IS_ERR(found) || !d_in_lookup(found)) {
2064                         iput(inode);
2065                         return found;
2066                 }
2067         } else {
2068                 found = d_alloc(dentry->d_parent, name);
2069                 if (!found) {
2070                         iput(inode);
2071                         return ERR_PTR(-ENOMEM);
2072                 } 
2073         }
2074         res = d_splice_alias(inode, found);
2075         if (res) {
2076                 d_lookup_done(found);
2077                 dput(found);
2078                 return res;
2079         }
2080         return found;
2081 }
2082 EXPORT_SYMBOL(d_add_ci);
2083 
2084 /**
2085  * d_same_name - compare dentry name with case-exact name
2086  * @parent: parent dentry
2087  * @dentry: the negative dentry that was passed to the parent's lookup func
2088  * @name:   the case-exact name to be associated with the returned dentry
2089  *
2090  * Return: true if names are same, or false
2091  */
2092 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2093                  const struct qstr *name)
2094 {
2095         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2096                 if (dentry->d_name.len != name->len)
2097                         return false;
2098                 return dentry_cmp(dentry, name->name, name->len) == 0;
2099         }
2100         return parent->d_op->d_compare(dentry,
2101                                        dentry->d_name.len, dentry->d_name.name,
2102                                        name) == 0;
2103 }
2104 EXPORT_SYMBOL_GPL(d_same_name);
2105 
2106 /*
2107  * This is __d_lookup_rcu() when the parent dentry has
2108  * DCACHE_OP_COMPARE, which makes things much nastier.
2109  */
2110 static noinline struct dentry *__d_lookup_rcu_op_compare(
2111         const struct dentry *parent,
2112         const struct qstr *name,
2113         unsigned *seqp)
2114 {
2115         u64 hashlen = name->hash_len;
2116         struct hlist_bl_head *b = d_hash(hashlen);
2117         struct hlist_bl_node *node;
2118         struct dentry *dentry;
2119 
2120         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2121                 int tlen;
2122                 const char *tname;
2123                 unsigned seq;
2124 
2125 seqretry:
2126                 seq = raw_seqcount_begin(&dentry->d_seq);
2127                 if (dentry->d_parent != parent)
2128                         continue;
2129                 if (d_unhashed(dentry))
2130                         continue;
2131                 if (dentry->d_name.hash != hashlen_hash(hashlen))
2132                         continue;
2133                 tlen = dentry->d_name.len;
2134                 tname = dentry->d_name.name;
2135                 /* we want a consistent (name,len) pair */
2136                 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2137                         cpu_relax();
2138                         goto seqretry;
2139                 }
2140                 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2141                         continue;
2142                 *seqp = seq;
2143                 return dentry;
2144         }
2145         return NULL;
2146 }
2147 
2148 /**
2149  * __d_lookup_rcu - search for a dentry (racy, store-free)
2150  * @parent: parent dentry
2151  * @name: qstr of name we wish to find
2152  * @seqp: returns d_seq value at the point where the dentry was found
2153  * Returns: dentry, or NULL
2154  *
2155  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2156  * resolution (store-free path walking) design described in
2157  * Documentation/filesystems/path-lookup.txt.
2158  *
2159  * This is not to be used outside core vfs.
2160  *
2161  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2162  * held, and rcu_read_lock held. The returned dentry must not be stored into
2163  * without taking d_lock and checking d_seq sequence count against @seq
2164  * returned here.
2165  *
2166  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2167  * function.
2168  *
2169  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2170  * the returned dentry, so long as its parent's seqlock is checked after the
2171  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2172  * is formed, giving integrity down the path walk.
2173  *
2174  * NOTE! The caller *has* to check the resulting dentry against the sequence
2175  * number we've returned before using any of the resulting dentry state!
2176  */
2177 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2178                                 const struct qstr *name,
2179                                 unsigned *seqp)
2180 {
2181         u64 hashlen = name->hash_len;
2182         const unsigned char *str = name->name;
2183         struct hlist_bl_head *b = d_hash(hashlen);
2184         struct hlist_bl_node *node;
2185         struct dentry *dentry;
2186 
2187         /*
2188          * Note: There is significant duplication with __d_lookup_rcu which is
2189          * required to prevent single threaded performance regressions
2190          * especially on architectures where smp_rmb (in seqcounts) are costly.
2191          * Keep the two functions in sync.
2192          */
2193 
2194         if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2195                 return __d_lookup_rcu_op_compare(parent, name, seqp);
2196 
2197         /*
2198          * The hash list is protected using RCU.
2199          *
2200          * Carefully use d_seq when comparing a candidate dentry, to avoid
2201          * races with d_move().
2202          *
2203          * It is possible that concurrent renames can mess up our list
2204          * walk here and result in missing our dentry, resulting in the
2205          * false-negative result. d_lookup() protects against concurrent
2206          * renames using rename_lock seqlock.
2207          *
2208          * See Documentation/filesystems/path-lookup.txt for more details.
2209          */
2210         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2211                 unsigned seq;
2212 
2213                 /*
2214                  * The dentry sequence count protects us from concurrent
2215                  * renames, and thus protects parent and name fields.
2216                  *
2217                  * The caller must perform a seqcount check in order
2218                  * to do anything useful with the returned dentry.
2219                  *
2220                  * NOTE! We do a "raw" seqcount_begin here. That means that
2221                  * we don't wait for the sequence count to stabilize if it
2222                  * is in the middle of a sequence change. If we do the slow
2223                  * dentry compare, we will do seqretries until it is stable,
2224                  * and if we end up with a successful lookup, we actually
2225                  * want to exit RCU lookup anyway.
2226                  *
2227                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2228                  * we are still guaranteed NUL-termination of ->d_name.name.
2229                  */
2230                 seq = raw_seqcount_begin(&dentry->d_seq);
2231                 if (dentry->d_parent != parent)
2232                         continue;
2233                 if (d_unhashed(dentry))
2234                         continue;
2235                 if (dentry->d_name.hash_len != hashlen)
2236                         continue;
2237                 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2238                         continue;
2239                 *seqp = seq;
2240                 return dentry;
2241         }
2242         return NULL;
2243 }
2244 
2245 /**
2246  * d_lookup - search for a dentry
2247  * @parent: parent dentry
2248  * @name: qstr of name we wish to find
2249  * Returns: dentry, or NULL
2250  *
2251  * d_lookup searches the children of the parent dentry for the name in
2252  * question. If the dentry is found its reference count is incremented and the
2253  * dentry is returned. The caller must use dput to free the entry when it has
2254  * finished using it. %NULL is returned if the dentry does not exist.
2255  */
2256 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2257 {
2258         struct dentry *dentry;
2259         unsigned seq;
2260 
2261         do {
2262                 seq = read_seqbegin(&rename_lock);
2263                 dentry = __d_lookup(parent, name);
2264                 if (dentry)
2265                         break;
2266         } while (read_seqretry(&rename_lock, seq));
2267         return dentry;
2268 }
2269 EXPORT_SYMBOL(d_lookup);
2270 
2271 /**
2272  * __d_lookup - search for a dentry (racy)
2273  * @parent: parent dentry
2274  * @name: qstr of name we wish to find
2275  * Returns: dentry, or NULL
2276  *
2277  * __d_lookup is like d_lookup, however it may (rarely) return a
2278  * false-negative result due to unrelated rename activity.
2279  *
2280  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2281  * however it must be used carefully, eg. with a following d_lookup in
2282  * the case of failure.
2283  *
2284  * __d_lookup callers must be commented.
2285  */
2286 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2287 {
2288         unsigned int hash = name->hash;
2289         struct hlist_bl_head *b = d_hash(hash);
2290         struct hlist_bl_node *node;
2291         struct dentry *found = NULL;
2292         struct dentry *dentry;
2293 
2294         /*
2295          * Note: There is significant duplication with __d_lookup_rcu which is
2296          * required to prevent single threaded performance regressions
2297          * especially on architectures where smp_rmb (in seqcounts) are costly.
2298          * Keep the two functions in sync.
2299          */
2300 
2301         /*
2302          * The hash list is protected using RCU.
2303          *
2304          * Take d_lock when comparing a candidate dentry, to avoid races
2305          * with d_move().
2306          *
2307          * It is possible that concurrent renames can mess up our list
2308          * walk here and result in missing our dentry, resulting in the
2309          * false-negative result. d_lookup() protects against concurrent
2310          * renames using rename_lock seqlock.
2311          *
2312          * See Documentation/filesystems/path-lookup.txt for more details.
2313          */
2314         rcu_read_lock();
2315         
2316         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2317 
2318                 if (dentry->d_name.hash != hash)
2319                         continue;
2320 
2321                 spin_lock(&dentry->d_lock);
2322                 if (dentry->d_parent != parent)
2323                         goto next;
2324                 if (d_unhashed(dentry))
2325                         goto next;
2326 
2327                 if (!d_same_name(dentry, parent, name))
2328                         goto next;
2329 
2330                 dentry->d_lockref.count++;
2331                 found = dentry;
2332                 spin_unlock(&dentry->d_lock);
2333                 break;
2334 next:
2335                 spin_unlock(&dentry->d_lock);
2336         }
2337         rcu_read_unlock();
2338 
2339         return found;
2340 }
2341 
2342 /**
2343  * d_hash_and_lookup - hash the qstr then search for a dentry
2344  * @dir: Directory to search in
2345  * @name: qstr of name we wish to find
2346  *
2347  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2348  */
2349 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2350 {
2351         /*
2352          * Check for a fs-specific hash function. Note that we must
2353          * calculate the standard hash first, as the d_op->d_hash()
2354          * routine may choose to leave the hash value unchanged.
2355          */
2356         name->hash = full_name_hash(dir, name->name, name->len);
2357         if (dir->d_flags & DCACHE_OP_HASH) {
2358                 int err = dir->d_op->d_hash(dir, name);
2359                 if (unlikely(err < 0))
2360                         return ERR_PTR(err);
2361         }
2362         return d_lookup(dir, name);
2363 }
2364 EXPORT_SYMBOL(d_hash_and_lookup);
2365 
2366 /*
2367  * When a file is deleted, we have two options:
2368  * - turn this dentry into a negative dentry
2369  * - unhash this dentry and free it.
2370  *
2371  * Usually, we want to just turn this into
2372  * a negative dentry, but if anybody else is
2373  * currently using the dentry or the inode
2374  * we can't do that and we fall back on removing
2375  * it from the hash queues and waiting for
2376  * it to be deleted later when it has no users
2377  */
2378  
2379 /**
2380  * d_delete - delete a dentry
2381  * @dentry: The dentry to delete
2382  *
2383  * Turn the dentry into a negative dentry if possible, otherwise
2384  * remove it from the hash queues so it can be deleted later
2385  */
2386  
2387 void d_delete(struct dentry * dentry)
2388 {
2389         struct inode *inode = dentry->d_inode;
2390 
2391         spin_lock(&inode->i_lock);
2392         spin_lock(&dentry->d_lock);
2393         /*
2394          * Are we the only user?
2395          */
2396         if (dentry->d_lockref.count == 1) {
2397                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2398                 dentry_unlink_inode(dentry);
2399         } else {
2400                 __d_drop(dentry);
2401                 spin_unlock(&dentry->d_lock);
2402                 spin_unlock(&inode->i_lock);
2403         }
2404 }
2405 EXPORT_SYMBOL(d_delete);
2406 
2407 static void __d_rehash(struct dentry *entry)
2408 {
2409         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2410 
2411         hlist_bl_lock(b);
2412         hlist_bl_add_head_rcu(&entry->d_hash, b);
2413         hlist_bl_unlock(b);
2414 }
2415 
2416 /**
2417  * d_rehash     - add an entry back to the hash
2418  * @entry: dentry to add to the hash
2419  *
2420  * Adds a dentry to the hash according to its name.
2421  */
2422  
2423 void d_rehash(struct dentry * entry)
2424 {
2425         spin_lock(&entry->d_lock);
2426         __d_rehash(entry);
2427         spin_unlock(&entry->d_lock);
2428 }
2429 EXPORT_SYMBOL(d_rehash);
2430 
2431 static inline unsigned start_dir_add(struct inode *dir)
2432 {
2433         preempt_disable_nested();
2434         for (;;) {
2435                 unsigned n = dir->i_dir_seq;
2436                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2437                         return n;
2438                 cpu_relax();
2439         }
2440 }
2441 
2442 static inline void end_dir_add(struct inode *dir, unsigned int n,
2443                                wait_queue_head_t *d_wait)
2444 {
2445         smp_store_release(&dir->i_dir_seq, n + 2);
2446         preempt_enable_nested();
2447         wake_up_all(d_wait);
2448 }
2449 
2450 static void d_wait_lookup(struct dentry *dentry)
2451 {
2452         if (d_in_lookup(dentry)) {
2453                 DECLARE_WAITQUEUE(wait, current);
2454                 add_wait_queue(dentry->d_wait, &wait);
2455                 do {
2456                         set_current_state(TASK_UNINTERRUPTIBLE);
2457                         spin_unlock(&dentry->d_lock);
2458                         schedule();
2459                         spin_lock(&dentry->d_lock);
2460                 } while (d_in_lookup(dentry));
2461         }
2462 }
2463 
2464 struct dentry *d_alloc_parallel(struct dentry *parent,
2465                                 const struct qstr *name,
2466                                 wait_queue_head_t *wq)
2467 {
2468         unsigned int hash = name->hash;
2469         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2470         struct hlist_bl_node *node;
2471         struct dentry *new = d_alloc(parent, name);
2472         struct dentry *dentry;
2473         unsigned seq, r_seq, d_seq;
2474 
2475         if (unlikely(!new))
2476                 return ERR_PTR(-ENOMEM);
2477 
2478 retry:
2479         rcu_read_lock();
2480         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2481         r_seq = read_seqbegin(&rename_lock);
2482         dentry = __d_lookup_rcu(parent, name, &d_seq);
2483         if (unlikely(dentry)) {
2484                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2485                         rcu_read_unlock();
2486                         goto retry;
2487                 }
2488                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2489                         rcu_read_unlock();
2490                         dput(dentry);
2491                         goto retry;
2492                 }
2493                 rcu_read_unlock();
2494                 dput(new);
2495                 return dentry;
2496         }
2497         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2498                 rcu_read_unlock();
2499                 goto retry;
2500         }
2501 
2502         if (unlikely(seq & 1)) {
2503                 rcu_read_unlock();
2504                 goto retry;
2505         }
2506 
2507         hlist_bl_lock(b);
2508         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2509                 hlist_bl_unlock(b);
2510                 rcu_read_unlock();
2511                 goto retry;
2512         }
2513         /*
2514          * No changes for the parent since the beginning of d_lookup().
2515          * Since all removals from the chain happen with hlist_bl_lock(),
2516          * any potential in-lookup matches are going to stay here until
2517          * we unlock the chain.  All fields are stable in everything
2518          * we encounter.
2519          */
2520         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2521                 if (dentry->d_name.hash != hash)
2522                         continue;
2523                 if (dentry->d_parent != parent)
2524                         continue;
2525                 if (!d_same_name(dentry, parent, name))
2526                         continue;
2527                 hlist_bl_unlock(b);
2528                 /* now we can try to grab a reference */
2529                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2530                         rcu_read_unlock();
2531                         goto retry;
2532                 }
2533 
2534                 rcu_read_unlock();
2535                 /*
2536                  * somebody is likely to be still doing lookup for it;
2537                  * wait for them to finish
2538                  */
2539                 spin_lock(&dentry->d_lock);
2540                 d_wait_lookup(dentry);
2541                 /*
2542                  * it's not in-lookup anymore; in principle we should repeat
2543                  * everything from dcache lookup, but it's likely to be what
2544                  * d_lookup() would've found anyway.  If it is, just return it;
2545                  * otherwise we really have to repeat the whole thing.
2546                  */
2547                 if (unlikely(dentry->d_name.hash != hash))
2548                         goto mismatch;
2549                 if (unlikely(dentry->d_parent != parent))
2550                         goto mismatch;
2551                 if (unlikely(d_unhashed(dentry)))
2552                         goto mismatch;
2553                 if (unlikely(!d_same_name(dentry, parent, name)))
2554                         goto mismatch;
2555                 /* OK, it *is* a hashed match; return it */
2556                 spin_unlock(&dentry->d_lock);
2557                 dput(new);
2558                 return dentry;
2559         }
2560         rcu_read_unlock();
2561         /* we can't take ->d_lock here; it's OK, though. */
2562         new->d_flags |= DCACHE_PAR_LOOKUP;
2563         new->d_wait = wq;
2564         hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2565         hlist_bl_unlock(b);
2566         return new;
2567 mismatch:
2568         spin_unlock(&dentry->d_lock);
2569         dput(dentry);
2570         goto retry;
2571 }
2572 EXPORT_SYMBOL(d_alloc_parallel);
2573 
2574 /*
2575  * - Unhash the dentry
2576  * - Retrieve and clear the waitqueue head in dentry
2577  * - Return the waitqueue head
2578  */
2579 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2580 {
2581         wait_queue_head_t *d_wait;
2582         struct hlist_bl_head *b;
2583 
2584         lockdep_assert_held(&dentry->d_lock);
2585 
2586         b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2587         hlist_bl_lock(b);
2588         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2589         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2590         d_wait = dentry->d_wait;
2591         dentry->d_wait = NULL;
2592         hlist_bl_unlock(b);
2593         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2594         INIT_LIST_HEAD(&dentry->d_lru);
2595         return d_wait;
2596 }
2597 
2598 void __d_lookup_unhash_wake(struct dentry *dentry)
2599 {
2600         spin_lock(&dentry->d_lock);
2601         wake_up_all(__d_lookup_unhash(dentry));
2602         spin_unlock(&dentry->d_lock);
2603 }
2604 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2605 
2606 /* inode->i_lock held if inode is non-NULL */
2607 
2608 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2609 {
2610         wait_queue_head_t *d_wait;
2611         struct inode *dir = NULL;
2612         unsigned n;
2613         spin_lock(&dentry->d_lock);
2614         if (unlikely(d_in_lookup(dentry))) {
2615                 dir = dentry->d_parent->d_inode;
2616                 n = start_dir_add(dir);
2617                 d_wait = __d_lookup_unhash(dentry);
2618         }
2619         if (inode) {
2620                 unsigned add_flags = d_flags_for_inode(inode);
2621                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2622                 raw_write_seqcount_begin(&dentry->d_seq);
2623                 __d_set_inode_and_type(dentry, inode, add_flags);
2624                 raw_write_seqcount_end(&dentry->d_seq);
2625                 fsnotify_update_flags(dentry);
2626         }
2627         __d_rehash(dentry);
2628         if (dir)
2629                 end_dir_add(dir, n, d_wait);
2630         spin_unlock(&dentry->d_lock);
2631         if (inode)
2632                 spin_unlock(&inode->i_lock);
2633 }
2634 
2635 /**
2636  * d_add - add dentry to hash queues
2637  * @entry: dentry to add
2638  * @inode: The inode to attach to this dentry
2639  *
2640  * This adds the entry to the hash queues and initializes @inode.
2641  * The entry was actually filled in earlier during d_alloc().
2642  */
2643 
2644 void d_add(struct dentry *entry, struct inode *inode)
2645 {
2646         if (inode) {
2647                 security_d_instantiate(entry, inode);
2648                 spin_lock(&inode->i_lock);
2649         }
2650         __d_add(entry, inode);
2651 }
2652 EXPORT_SYMBOL(d_add);
2653 
2654 /**
2655  * d_exact_alias - find and hash an exact unhashed alias
2656  * @entry: dentry to add
2657  * @inode: The inode to go with this dentry
2658  *
2659  * If an unhashed dentry with the same name/parent and desired
2660  * inode already exists, hash and return it.  Otherwise, return
2661  * NULL.
2662  *
2663  * Parent directory should be locked.
2664  */
2665 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2666 {
2667         struct dentry *alias;
2668         unsigned int hash = entry->d_name.hash;
2669 
2670         spin_lock(&inode->i_lock);
2671         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2672                 /*
2673                  * Don't need alias->d_lock here, because aliases with
2674                  * d_parent == entry->d_parent are not subject to name or
2675                  * parent changes, because the parent inode i_mutex is held.
2676                  */
2677                 if (alias->d_name.hash != hash)
2678                         continue;
2679                 if (alias->d_parent != entry->d_parent)
2680                         continue;
2681                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2682                         continue;
2683                 spin_lock(&alias->d_lock);
2684                 if (!d_unhashed(alias)) {
2685                         spin_unlock(&alias->d_lock);
2686                         alias = NULL;
2687                 } else {
2688                         dget_dlock(alias);
2689                         __d_rehash(alias);
2690                         spin_unlock(&alias->d_lock);
2691                 }
2692                 spin_unlock(&inode->i_lock);
2693                 return alias;
2694         }
2695         spin_unlock(&inode->i_lock);
2696         return NULL;
2697 }
2698 EXPORT_SYMBOL(d_exact_alias);
2699 
2700 static void swap_names(struct dentry *dentry, struct dentry *target)
2701 {
2702         if (unlikely(dname_external(target))) {
2703                 if (unlikely(dname_external(dentry))) {
2704                         /*
2705                          * Both external: swap the pointers
2706                          */
2707                         swap(target->d_name.name, dentry->d_name.name);
2708                 } else {
2709                         /*
2710                          * dentry:internal, target:external.  Steal target's
2711                          * storage and make target internal.
2712                          */
2713                         memcpy(target->d_iname, dentry->d_name.name,
2714                                         dentry->d_name.len + 1);
2715                         dentry->d_name.name = target->d_name.name;
2716                         target->d_name.name = target->d_iname;
2717                 }
2718         } else {
2719                 if (unlikely(dname_external(dentry))) {
2720                         /*
2721                          * dentry:external, target:internal.  Give dentry's
2722                          * storage to target and make dentry internal
2723                          */
2724                         memcpy(dentry->d_iname, target->d_name.name,
2725                                         target->d_name.len + 1);
2726                         target->d_name.name = dentry->d_name.name;
2727                         dentry->d_name.name = dentry->d_iname;
2728                 } else {
2729                         /*
2730                          * Both are internal.
2731                          */
2732                         unsigned int i;
2733                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2734                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2735                                 swap(((long *) &dentry->d_iname)[i],
2736                                      ((long *) &target->d_iname)[i]);
2737                         }
2738                 }
2739         }
2740         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2741 }
2742 
2743 static void copy_name(struct dentry *dentry, struct dentry *target)
2744 {
2745         struct external_name *old_name = NULL;
2746         if (unlikely(dname_external(dentry)))
2747                 old_name = external_name(dentry);
2748         if (unlikely(dname_external(target))) {
2749                 atomic_inc(&external_name(target)->u.count);
2750                 dentry->d_name = target->d_name;
2751         } else {
2752                 memcpy(dentry->d_iname, target->d_name.name,
2753                                 target->d_name.len + 1);
2754                 dentry->d_name.name = dentry->d_iname;
2755                 dentry->d_name.hash_len = target->d_name.hash_len;
2756         }
2757         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2758                 kfree_rcu(old_name, u.head);
2759 }
2760 
2761 /*
2762  * __d_move - move a dentry
2763  * @dentry: entry to move
2764  * @target: new dentry
2765  * @exchange: exchange the two dentries
2766  *
2767  * Update the dcache to reflect the move of a file name. Negative
2768  * dcache entries should not be moved in this way. Caller must hold
2769  * rename_lock, the i_mutex of the source and target directories,
2770  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2771  */
2772 static void __d_move(struct dentry *dentry, struct dentry *target,
2773                      bool exchange)
2774 {
2775         struct dentry *old_parent, *p;
2776         wait_queue_head_t *d_wait;
2777         struct inode *dir = NULL;
2778         unsigned n;
2779 
2780         WARN_ON(!dentry->d_inode);
2781         if (WARN_ON(dentry == target))
2782                 return;
2783 
2784         BUG_ON(d_ancestor(target, dentry));
2785         old_parent = dentry->d_parent;
2786         p = d_ancestor(old_parent, target);
2787         if (IS_ROOT(dentry)) {
2788                 BUG_ON(p);
2789                 spin_lock(&target->d_parent->d_lock);
2790         } else if (!p) {
2791                 /* target is not a descendent of dentry->d_parent */
2792                 spin_lock(&target->d_parent->d_lock);
2793                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2794         } else {
2795                 BUG_ON(p == dentry);
2796                 spin_lock(&old_parent->d_lock);
2797                 if (p != target)
2798                         spin_lock_nested(&target->d_parent->d_lock,
2799                                         DENTRY_D_LOCK_NESTED);
2800         }
2801         spin_lock_nested(&dentry->d_lock, 2);
2802         spin_lock_nested(&target->d_lock, 3);
2803 
2804         if (unlikely(d_in_lookup(target))) {
2805                 dir = target->d_parent->d_inode;
2806                 n = start_dir_add(dir);
2807                 d_wait = __d_lookup_unhash(target);
2808         }
2809 
2810         write_seqcount_begin(&dentry->d_seq);
2811         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2812 
2813         /* unhash both */
2814         if (!d_unhashed(dentry))
2815                 ___d_drop(dentry);
2816         if (!d_unhashed(target))
2817                 ___d_drop(target);
2818 
2819         /* ... and switch them in the tree */
2820         dentry->d_parent = target->d_parent;
2821         if (!exchange) {
2822                 copy_name(dentry, target);
2823                 target->d_hash.pprev = NULL;
2824                 dentry->d_parent->d_lockref.count++;
2825                 if (dentry != old_parent) /* wasn't IS_ROOT */
2826                         WARN_ON(!--old_parent->d_lockref.count);
2827         } else {
2828                 target->d_parent = old_parent;
2829                 swap_names(dentry, target);
2830                 if (!hlist_unhashed(&target->d_sib))
2831                         __hlist_del(&target->d_sib);
2832                 hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2833                 __d_rehash(target);
2834                 fsnotify_update_flags(target);
2835         }
2836         if (!hlist_unhashed(&dentry->d_sib))
2837                 __hlist_del(&dentry->d_sib);
2838         hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2839         __d_rehash(dentry);
2840         fsnotify_update_flags(dentry);
2841         fscrypt_handle_d_move(dentry);
2842 
2843         write_seqcount_end(&target->d_seq);
2844         write_seqcount_end(&dentry->d_seq);
2845 
2846         if (dir)
2847                 end_dir_add(dir, n, d_wait);
2848 
2849         if (dentry->d_parent != old_parent)
2850                 spin_unlock(&dentry->d_parent->d_lock);
2851         if (dentry != old_parent)
2852                 spin_unlock(&old_parent->d_lock);
2853         spin_unlock(&target->d_lock);
2854         spin_unlock(&dentry->d_lock);
2855 }
2856 
2857 /*
2858  * d_move - move a dentry
2859  * @dentry: entry to move
2860  * @target: new dentry
2861  *
2862  * Update the dcache to reflect the move of a file name. Negative
2863  * dcache entries should not be moved in this way. See the locking
2864  * requirements for __d_move.
2865  */
2866 void d_move(struct dentry *dentry, struct dentry *target)
2867 {
2868         write_seqlock(&rename_lock);
2869         __d_move(dentry, target, false);
2870         write_sequnlock(&rename_lock);
2871 }
2872 EXPORT_SYMBOL(d_move);
2873 
2874 /*
2875  * d_exchange - exchange two dentries
2876  * @dentry1: first dentry
2877  * @dentry2: second dentry
2878  */
2879 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2880 {
2881         write_seqlock(&rename_lock);
2882 
2883         WARN_ON(!dentry1->d_inode);
2884         WARN_ON(!dentry2->d_inode);
2885         WARN_ON(IS_ROOT(dentry1));
2886         WARN_ON(IS_ROOT(dentry2));
2887 
2888         __d_move(dentry1, dentry2, true);
2889 
2890         write_sequnlock(&rename_lock);
2891 }
2892 
2893 /**
2894  * d_ancestor - search for an ancestor
2895  * @p1: ancestor dentry
2896  * @p2: child dentry
2897  *
2898  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2899  * an ancestor of p2, else NULL.
2900  */
2901 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2902 {
2903         struct dentry *p;
2904 
2905         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2906                 if (p->d_parent == p1)
2907                         return p;
2908         }
2909         return NULL;
2910 }
2911 
2912 /*
2913  * This helper attempts to cope with remotely renamed directories
2914  *
2915  * It assumes that the caller is already holding
2916  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2917  *
2918  * Note: If ever the locking in lock_rename() changes, then please
2919  * remember to update this too...
2920  */
2921 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2922 {
2923         struct mutex *m1 = NULL;
2924         struct rw_semaphore *m2 = NULL;
2925         int ret = -ESTALE;
2926 
2927         /* If alias and dentry share a parent, then no extra locks required */
2928         if (alias->d_parent == dentry->d_parent)
2929                 goto out_unalias;
2930 
2931         /* See lock_rename() */
2932         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2933                 goto out_err;
2934         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2935         if (!inode_trylock_shared(alias->d_parent->d_inode))
2936                 goto out_err;
2937         m2 = &alias->d_parent->d_inode->i_rwsem;
2938 out_unalias:
2939         __d_move(alias, dentry, false);
2940         ret = 0;
2941 out_err:
2942         if (m2)
2943                 up_read(m2);
2944         if (m1)
2945                 mutex_unlock(m1);
2946         return ret;
2947 }
2948 
2949 /**
2950  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2951  * @inode:  the inode which may have a disconnected dentry
2952  * @dentry: a negative dentry which we want to point to the inode.
2953  *
2954  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2955  * place of the given dentry and return it, else simply d_add the inode
2956  * to the dentry and return NULL.
2957  *
2958  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2959  * we should error out: directories can't have multiple aliases.
2960  *
2961  * This is needed in the lookup routine of any filesystem that is exportable
2962  * (via knfsd) so that we can build dcache paths to directories effectively.
2963  *
2964  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2965  * is returned.  This matches the expected return value of ->lookup.
2966  *
2967  * Cluster filesystems may call this function with a negative, hashed dentry.
2968  * In that case, we know that the inode will be a regular file, and also this
2969  * will only occur during atomic_open. So we need to check for the dentry
2970  * being already hashed only in the final case.
2971  */
2972 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2973 {
2974         if (IS_ERR(inode))
2975                 return ERR_CAST(inode);
2976 
2977         BUG_ON(!d_unhashed(dentry));
2978 
2979         if (!inode)
2980                 goto out;
2981 
2982         security_d_instantiate(dentry, inode);
2983         spin_lock(&inode->i_lock);
2984         if (S_ISDIR(inode->i_mode)) {
2985                 struct dentry *new = __d_find_any_alias(inode);
2986                 if (unlikely(new)) {
2987                         /* The reference to new ensures it remains an alias */
2988                         spin_unlock(&inode->i_lock);
2989                         write_seqlock(&rename_lock);
2990                         if (unlikely(d_ancestor(new, dentry))) {
2991                                 write_sequnlock(&rename_lock);
2992                                 dput(new);
2993                                 new = ERR_PTR(-ELOOP);
2994                                 pr_warn_ratelimited(
2995                                         "VFS: Lookup of '%s' in %s %s"
2996                                         " would have caused loop\n",
2997                                         dentry->d_name.name,
2998                                         inode->i_sb->s_type->name,
2999                                         inode->i_sb->s_id);
3000                         } else if (!IS_ROOT(new)) {
3001                                 struct dentry *old_parent = dget(new->d_parent);
3002                                 int err = __d_unalias(dentry, new);
3003                                 write_sequnlock(&rename_lock);
3004                                 if (err) {
3005                                         dput(new);
3006                                         new = ERR_PTR(err);
3007                                 }
3008                                 dput(old_parent);
3009                         } else {
3010                                 __d_move(new, dentry, false);
3011                                 write_sequnlock(&rename_lock);
3012                         }
3013                         iput(inode);
3014                         return new;
3015                 }
3016         }
3017 out:
3018         __d_add(dentry, inode);
3019         return NULL;
3020 }
3021 EXPORT_SYMBOL(d_splice_alias);
3022 
3023 /*
3024  * Test whether new_dentry is a subdirectory of old_dentry.
3025  *
3026  * Trivially implemented using the dcache structure
3027  */
3028 
3029 /**
3030  * is_subdir - is new dentry a subdirectory of old_dentry
3031  * @new_dentry: new dentry
3032  * @old_dentry: old dentry
3033  *
3034  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3035  * Returns false otherwise.
3036  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3037  */
3038   
3039 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3040 {
3041         bool subdir;
3042         unsigned seq;
3043 
3044         if (new_dentry == old_dentry)
3045                 return true;
3046 
3047         /* Access d_parent under rcu as d_move() may change it. */
3048         rcu_read_lock();
3049         seq = read_seqbegin(&rename_lock);
3050         subdir = d_ancestor(old_dentry, new_dentry);
3051          /* Try lockless once... */
3052         if (read_seqretry(&rename_lock, seq)) {
3053                 /* ...else acquire lock for progress even on deep chains. */
3054                 read_seqlock_excl(&rename_lock);
3055                 subdir = d_ancestor(old_dentry, new_dentry);
3056                 read_sequnlock_excl(&rename_lock);
3057         }
3058         rcu_read_unlock();
3059         return subdir;
3060 }
3061 EXPORT_SYMBOL(is_subdir);
3062 
3063 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3064 {
3065         struct dentry *root = data;
3066         if (dentry != root) {
3067                 if (d_unhashed(dentry) || !dentry->d_inode)
3068                         return D_WALK_SKIP;
3069 
3070                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3071                         dentry->d_flags |= DCACHE_GENOCIDE;
3072                         dentry->d_lockref.count--;
3073                 }
3074         }
3075         return D_WALK_CONTINUE;
3076 }
3077 
3078 void d_genocide(struct dentry *parent)
3079 {
3080         d_walk(parent, parent, d_genocide_kill);
3081 }
3082 
3083 void d_mark_tmpfile(struct file *file, struct inode *inode)
3084 {
3085         struct dentry *dentry = file->f_path.dentry;
3086 
3087         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3088                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3089                 !d_unlinked(dentry));
3090         spin_lock(&dentry->d_parent->d_lock);
3091         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3092         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3093                                 (unsigned long long)inode->i_ino);
3094         spin_unlock(&dentry->d_lock);
3095         spin_unlock(&dentry->d_parent->d_lock);
3096 }
3097 EXPORT_SYMBOL(d_mark_tmpfile);
3098 
3099 void d_tmpfile(struct file *file, struct inode *inode)
3100 {
3101         struct dentry *dentry = file->f_path.dentry;
3102 
3103         inode_dec_link_count(inode);
3104         d_mark_tmpfile(file, inode);
3105         d_instantiate(dentry, inode);
3106 }
3107 EXPORT_SYMBOL(d_tmpfile);
3108 
3109 /*
3110  * Obtain inode number of the parent dentry.
3111  */
3112 ino_t d_parent_ino(struct dentry *dentry)
3113 {
3114         struct dentry *parent;
3115         struct inode *iparent;
3116         unsigned seq;
3117         ino_t ret;
3118 
3119         scoped_guard(rcu) {
3120                 seq = raw_seqcount_begin(&dentry->d_seq);
3121                 parent = READ_ONCE(dentry->d_parent);
3122                 iparent = d_inode_rcu(parent);
3123                 if (likely(iparent)) {
3124                         ret = iparent->i_ino;
3125                         if (!read_seqcount_retry(&dentry->d_seq, seq))
3126                                 return ret;
3127                 }
3128         }
3129 
3130         spin_lock(&dentry->d_lock);
3131         ret = dentry->d_parent->d_inode->i_ino;
3132         spin_unlock(&dentry->d_lock);
3133         return ret;
3134 }
3135 EXPORT_SYMBOL(d_parent_ino);
3136 
3137 static __initdata unsigned long dhash_entries;
3138 static int __init set_dhash_entries(char *str)
3139 {
3140         if (!str)
3141                 return 0;
3142         dhash_entries = simple_strtoul(str, &str, 0);
3143         return 1;
3144 }
3145 __setup("dhash_entries=", set_dhash_entries);
3146 
3147 static void __init dcache_init_early(void)
3148 {
3149         /* If hashes are distributed across NUMA nodes, defer
3150          * hash allocation until vmalloc space is available.
3151          */
3152         if (hashdist)
3153                 return;
3154 
3155         dentry_hashtable =
3156                 alloc_large_system_hash("Dentry cache",
3157                                         sizeof(struct hlist_bl_head),
3158                                         dhash_entries,
3159                                         13,
3160                                         HASH_EARLY | HASH_ZERO,
3161                                         &d_hash_shift,
3162                                         NULL,
3163                                         0,
3164                                         0);
3165         d_hash_shift = 32 - d_hash_shift;
3166 
3167         runtime_const_init(shift, d_hash_shift);
3168         runtime_const_init(ptr, dentry_hashtable);
3169 }
3170 
3171 static void __init dcache_init(void)
3172 {
3173         /*
3174          * A constructor could be added for stable state like the lists,
3175          * but it is probably not worth it because of the cache nature
3176          * of the dcache.
3177          */
3178         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3179                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3180                 d_iname);
3181 
3182         /* Hash may have been set up in dcache_init_early */
3183         if (!hashdist)
3184                 return;
3185 
3186         dentry_hashtable =
3187                 alloc_large_system_hash("Dentry cache",
3188                                         sizeof(struct hlist_bl_head),
3189                                         dhash_entries,
3190                                         13,
3191                                         HASH_ZERO,
3192                                         &d_hash_shift,
3193                                         NULL,
3194                                         0,
3195                                         0);
3196         d_hash_shift = 32 - d_hash_shift;
3197 
3198         runtime_const_init(shift, d_hash_shift);
3199         runtime_const_init(ptr, dentry_hashtable);
3200 }
3201 
3202 /* SLAB cache for __getname() consumers */
3203 struct kmem_cache *names_cachep __ro_after_init;
3204 EXPORT_SYMBOL(names_cachep);
3205 
3206 void __init vfs_caches_init_early(void)
3207 {
3208         int i;
3209 
3210         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3211                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3212 
3213         dcache_init_early();
3214         inode_init_early();
3215 }
3216 
3217 void __init vfs_caches_init(void)
3218 {
3219         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3220                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3221 
3222         dcache_init();
3223         inode_init();
3224         files_init();
3225         files_maxfiles_init();
3226         mnt_init();
3227         bdev_cache_init();
3228         chrdev_init();
3229 }
3230 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php