1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 #include <asm/runtime-const.h> 39 40 /* 41 * Usage: 42 * dcache->d_inode->i_lock protects: 43 * - i_dentry, d_u.d_alias, d_inode of aliases 44 * dcache_hash_bucket lock protects: 45 * - the dcache hash table 46 * s_roots bl list spinlock protects: 47 * - the s_roots list (see __d_drop) 48 * dentry->d_sb->s_dentry_lru_lock protects: 49 * - the dcache lru lists and counters 50 * d_lock protects: 51 * - d_flags 52 * - d_name 53 * - d_lru 54 * - d_count 55 * - d_unhashed() 56 * - d_parent and d_chilren 57 * - childrens' d_sib and d_parent 58 * - d_u.d_alias, d_inode 59 * 60 * Ordering: 61 * dentry->d_inode->i_lock 62 * dentry->d_lock 63 * dentry->d_sb->s_dentry_lru_lock 64 * dcache_hash_bucket lock 65 * s_roots lock 66 * 67 * If there is an ancestor relationship: 68 * dentry->d_parent->...->d_parent->d_lock 69 * ... 70 * dentry->d_parent->d_lock 71 * dentry->d_lock 72 * 73 * If no ancestor relationship: 74 * arbitrary, since it's serialized on rename_lock 75 */ 76 int sysctl_vfs_cache_pressure __read_mostly = 100; 77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 78 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 80 81 EXPORT_SYMBOL(rename_lock); 82 83 static struct kmem_cache *dentry_cache __ro_after_init; 84 85 const struct qstr empty_name = QSTR_INIT("", 0); 86 EXPORT_SYMBOL(empty_name); 87 const struct qstr slash_name = QSTR_INIT("/", 1); 88 EXPORT_SYMBOL(slash_name); 89 const struct qstr dotdot_name = QSTR_INIT("..", 2); 90 EXPORT_SYMBOL(dotdot_name); 91 92 /* 93 * This is the single most critical data structure when it comes 94 * to the dcache: the hashtable for lookups. Somebody should try 95 * to make this good - I've just made it work. 96 * 97 * This hash-function tries to avoid losing too many bits of hash 98 * information, yet avoid using a prime hash-size or similar. 99 * 100 * Marking the variables "used" ensures that the compiler doesn't 101 * optimize them away completely on architectures with runtime 102 * constant infrastructure, this allows debuggers to see their 103 * values. But updating these values has no effect on those arches. 104 */ 105 106 static unsigned int d_hash_shift __ro_after_init __used; 107 108 static struct hlist_bl_head *dentry_hashtable __ro_after_init __used; 109 110 static inline struct hlist_bl_head *d_hash(unsigned long hashlen) 111 { 112 return runtime_const_ptr(dentry_hashtable) + 113 runtime_const_shift_right_32(hashlen, d_hash_shift); 114 } 115 116 #define IN_LOOKUP_SHIFT 10 117 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 118 119 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 120 unsigned int hash) 121 { 122 hash += (unsigned long) parent / L1_CACHE_BYTES; 123 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 124 } 125 126 struct dentry_stat_t { 127 long nr_dentry; 128 long nr_unused; 129 long age_limit; /* age in seconds */ 130 long want_pages; /* pages requested by system */ 131 long nr_negative; /* # of unused negative dentries */ 132 long dummy; /* Reserved for future use */ 133 }; 134 135 static DEFINE_PER_CPU(long, nr_dentry); 136 static DEFINE_PER_CPU(long, nr_dentry_unused); 137 static DEFINE_PER_CPU(long, nr_dentry_negative); 138 139 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 140 /* Statistics gathering. */ 141 static struct dentry_stat_t dentry_stat = { 142 .age_limit = 45, 143 }; 144 145 /* 146 * Here we resort to our own counters instead of using generic per-cpu counters 147 * for consistency with what the vfs inode code does. We are expected to harvest 148 * better code and performance by having our own specialized counters. 149 * 150 * Please note that the loop is done over all possible CPUs, not over all online 151 * CPUs. The reason for this is that we don't want to play games with CPUs going 152 * on and off. If one of them goes off, we will just keep their counters. 153 * 154 * glommer: See cffbc8a for details, and if you ever intend to change this, 155 * please update all vfs counters to match. 156 */ 157 static long get_nr_dentry(void) 158 { 159 int i; 160 long sum = 0; 161 for_each_possible_cpu(i) 162 sum += per_cpu(nr_dentry, i); 163 return sum < 0 ? 0 : sum; 164 } 165 166 static long get_nr_dentry_unused(void) 167 { 168 int i; 169 long sum = 0; 170 for_each_possible_cpu(i) 171 sum += per_cpu(nr_dentry_unused, i); 172 return sum < 0 ? 0 : sum; 173 } 174 175 static long get_nr_dentry_negative(void) 176 { 177 int i; 178 long sum = 0; 179 180 for_each_possible_cpu(i) 181 sum += per_cpu(nr_dentry_negative, i); 182 return sum < 0 ? 0 : sum; 183 } 184 185 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer, 186 size_t *lenp, loff_t *ppos) 187 { 188 dentry_stat.nr_dentry = get_nr_dentry(); 189 dentry_stat.nr_unused = get_nr_dentry_unused(); 190 dentry_stat.nr_negative = get_nr_dentry_negative(); 191 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 192 } 193 194 static struct ctl_table fs_dcache_sysctls[] = { 195 { 196 .procname = "dentry-state", 197 .data = &dentry_stat, 198 .maxlen = 6*sizeof(long), 199 .mode = 0444, 200 .proc_handler = proc_nr_dentry, 201 }, 202 }; 203 204 static int __init init_fs_dcache_sysctls(void) 205 { 206 register_sysctl_init("fs", fs_dcache_sysctls); 207 return 0; 208 } 209 fs_initcall(init_fs_dcache_sysctls); 210 #endif 211 212 /* 213 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 214 * The strings are both count bytes long, and count is non-zero. 215 */ 216 #ifdef CONFIG_DCACHE_WORD_ACCESS 217 218 #include <asm/word-at-a-time.h> 219 /* 220 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 221 * aligned allocation for this particular component. We don't 222 * strictly need the load_unaligned_zeropad() safety, but it 223 * doesn't hurt either. 224 * 225 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 226 * need the careful unaligned handling. 227 */ 228 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 229 { 230 unsigned long a,b,mask; 231 232 for (;;) { 233 a = read_word_at_a_time(cs); 234 b = load_unaligned_zeropad(ct); 235 if (tcount < sizeof(unsigned long)) 236 break; 237 if (unlikely(a != b)) 238 return 1; 239 cs += sizeof(unsigned long); 240 ct += sizeof(unsigned long); 241 tcount -= sizeof(unsigned long); 242 if (!tcount) 243 return 0; 244 } 245 mask = bytemask_from_count(tcount); 246 return unlikely(!!((a ^ b) & mask)); 247 } 248 249 #else 250 251 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 252 { 253 do { 254 if (*cs != *ct) 255 return 1; 256 cs++; 257 ct++; 258 tcount--; 259 } while (tcount); 260 return 0; 261 } 262 263 #endif 264 265 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 266 { 267 /* 268 * Be careful about RCU walk racing with rename: 269 * use 'READ_ONCE' to fetch the name pointer. 270 * 271 * NOTE! Even if a rename will mean that the length 272 * was not loaded atomically, we don't care. The 273 * RCU walk will check the sequence count eventually, 274 * and catch it. And we won't overrun the buffer, 275 * because we're reading the name pointer atomically, 276 * and a dentry name is guaranteed to be properly 277 * terminated with a NUL byte. 278 * 279 * End result: even if 'len' is wrong, we'll exit 280 * early because the data cannot match (there can 281 * be no NUL in the ct/tcount data) 282 */ 283 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 284 285 return dentry_string_cmp(cs, ct, tcount); 286 } 287 288 struct external_name { 289 union { 290 atomic_t count; 291 struct rcu_head head; 292 } u; 293 unsigned char name[]; 294 }; 295 296 static inline struct external_name *external_name(struct dentry *dentry) 297 { 298 return container_of(dentry->d_name.name, struct external_name, name[0]); 299 } 300 301 static void __d_free(struct rcu_head *head) 302 { 303 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 304 305 kmem_cache_free(dentry_cache, dentry); 306 } 307 308 static void __d_free_external(struct rcu_head *head) 309 { 310 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 311 kfree(external_name(dentry)); 312 kmem_cache_free(dentry_cache, dentry); 313 } 314 315 static inline int dname_external(const struct dentry *dentry) 316 { 317 return dentry->d_name.name != dentry->d_iname; 318 } 319 320 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 321 { 322 spin_lock(&dentry->d_lock); 323 name->name = dentry->d_name; 324 if (unlikely(dname_external(dentry))) { 325 atomic_inc(&external_name(dentry)->u.count); 326 } else { 327 memcpy(name->inline_name, dentry->d_iname, 328 dentry->d_name.len + 1); 329 name->name.name = name->inline_name; 330 } 331 spin_unlock(&dentry->d_lock); 332 } 333 EXPORT_SYMBOL(take_dentry_name_snapshot); 334 335 void release_dentry_name_snapshot(struct name_snapshot *name) 336 { 337 if (unlikely(name->name.name != name->inline_name)) { 338 struct external_name *p; 339 p = container_of(name->name.name, struct external_name, name[0]); 340 if (unlikely(atomic_dec_and_test(&p->u.count))) 341 kfree_rcu(p, u.head); 342 } 343 } 344 EXPORT_SYMBOL(release_dentry_name_snapshot); 345 346 static inline void __d_set_inode_and_type(struct dentry *dentry, 347 struct inode *inode, 348 unsigned type_flags) 349 { 350 unsigned flags; 351 352 dentry->d_inode = inode; 353 flags = READ_ONCE(dentry->d_flags); 354 flags &= ~DCACHE_ENTRY_TYPE; 355 flags |= type_flags; 356 smp_store_release(&dentry->d_flags, flags); 357 } 358 359 static inline void __d_clear_type_and_inode(struct dentry *dentry) 360 { 361 unsigned flags = READ_ONCE(dentry->d_flags); 362 363 flags &= ~DCACHE_ENTRY_TYPE; 364 WRITE_ONCE(dentry->d_flags, flags); 365 dentry->d_inode = NULL; 366 /* 367 * The negative counter only tracks dentries on the LRU. Don't inc if 368 * d_lru is on another list. 369 */ 370 if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) 371 this_cpu_inc(nr_dentry_negative); 372 } 373 374 static void dentry_free(struct dentry *dentry) 375 { 376 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 377 if (unlikely(dname_external(dentry))) { 378 struct external_name *p = external_name(dentry); 379 if (likely(atomic_dec_and_test(&p->u.count))) { 380 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 381 return; 382 } 383 } 384 /* if dentry was never visible to RCU, immediate free is OK */ 385 if (dentry->d_flags & DCACHE_NORCU) 386 __d_free(&dentry->d_u.d_rcu); 387 else 388 call_rcu(&dentry->d_u.d_rcu, __d_free); 389 } 390 391 /* 392 * Release the dentry's inode, using the filesystem 393 * d_iput() operation if defined. 394 */ 395 static void dentry_unlink_inode(struct dentry * dentry) 396 __releases(dentry->d_lock) 397 __releases(dentry->d_inode->i_lock) 398 { 399 struct inode *inode = dentry->d_inode; 400 401 raw_write_seqcount_begin(&dentry->d_seq); 402 __d_clear_type_and_inode(dentry); 403 hlist_del_init(&dentry->d_u.d_alias); 404 raw_write_seqcount_end(&dentry->d_seq); 405 spin_unlock(&dentry->d_lock); 406 spin_unlock(&inode->i_lock); 407 if (!inode->i_nlink) 408 fsnotify_inoderemove(inode); 409 if (dentry->d_op && dentry->d_op->d_iput) 410 dentry->d_op->d_iput(dentry, inode); 411 else 412 iput(inode); 413 } 414 415 /* 416 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 417 * is in use - which includes both the "real" per-superblock 418 * LRU list _and_ the DCACHE_SHRINK_LIST use. 419 * 420 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 421 * on the shrink list (ie not on the superblock LRU list). 422 * 423 * The per-cpu "nr_dentry_unused" counters are updated with 424 * the DCACHE_LRU_LIST bit. 425 * 426 * The per-cpu "nr_dentry_negative" counters are only updated 427 * when deleted from or added to the per-superblock LRU list, not 428 * from/to the shrink list. That is to avoid an unneeded dec/inc 429 * pair when moving from LRU to shrink list in select_collect(). 430 * 431 * These helper functions make sure we always follow the 432 * rules. d_lock must be held by the caller. 433 */ 434 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 435 static void d_lru_add(struct dentry *dentry) 436 { 437 D_FLAG_VERIFY(dentry, 0); 438 dentry->d_flags |= DCACHE_LRU_LIST; 439 this_cpu_inc(nr_dentry_unused); 440 if (d_is_negative(dentry)) 441 this_cpu_inc(nr_dentry_negative); 442 WARN_ON_ONCE(!list_lru_add_obj( 443 &dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 444 } 445 446 static void d_lru_del(struct dentry *dentry) 447 { 448 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 449 dentry->d_flags &= ~DCACHE_LRU_LIST; 450 this_cpu_dec(nr_dentry_unused); 451 if (d_is_negative(dentry)) 452 this_cpu_dec(nr_dentry_negative); 453 WARN_ON_ONCE(!list_lru_del_obj( 454 &dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 455 } 456 457 static void d_shrink_del(struct dentry *dentry) 458 { 459 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 460 list_del_init(&dentry->d_lru); 461 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 462 this_cpu_dec(nr_dentry_unused); 463 } 464 465 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 466 { 467 D_FLAG_VERIFY(dentry, 0); 468 list_add(&dentry->d_lru, list); 469 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 470 this_cpu_inc(nr_dentry_unused); 471 } 472 473 /* 474 * These can only be called under the global LRU lock, ie during the 475 * callback for freeing the LRU list. "isolate" removes it from the 476 * LRU lists entirely, while shrink_move moves it to the indicated 477 * private list. 478 */ 479 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 480 { 481 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 482 dentry->d_flags &= ~DCACHE_LRU_LIST; 483 this_cpu_dec(nr_dentry_unused); 484 if (d_is_negative(dentry)) 485 this_cpu_dec(nr_dentry_negative); 486 list_lru_isolate(lru, &dentry->d_lru); 487 } 488 489 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 490 struct list_head *list) 491 { 492 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 493 dentry->d_flags |= DCACHE_SHRINK_LIST; 494 if (d_is_negative(dentry)) 495 this_cpu_dec(nr_dentry_negative); 496 list_lru_isolate_move(lru, &dentry->d_lru, list); 497 } 498 499 static void ___d_drop(struct dentry *dentry) 500 { 501 struct hlist_bl_head *b; 502 /* 503 * Hashed dentries are normally on the dentry hashtable, 504 * with the exception of those newly allocated by 505 * d_obtain_root, which are always IS_ROOT: 506 */ 507 if (unlikely(IS_ROOT(dentry))) 508 b = &dentry->d_sb->s_roots; 509 else 510 b = d_hash(dentry->d_name.hash); 511 512 hlist_bl_lock(b); 513 __hlist_bl_del(&dentry->d_hash); 514 hlist_bl_unlock(b); 515 } 516 517 void __d_drop(struct dentry *dentry) 518 { 519 if (!d_unhashed(dentry)) { 520 ___d_drop(dentry); 521 dentry->d_hash.pprev = NULL; 522 write_seqcount_invalidate(&dentry->d_seq); 523 } 524 } 525 EXPORT_SYMBOL(__d_drop); 526 527 /** 528 * d_drop - drop a dentry 529 * @dentry: dentry to drop 530 * 531 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 532 * be found through a VFS lookup any more. Note that this is different from 533 * deleting the dentry - d_delete will try to mark the dentry negative if 534 * possible, giving a successful _negative_ lookup, while d_drop will 535 * just make the cache lookup fail. 536 * 537 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 538 * reason (NFS timeouts or autofs deletes). 539 * 540 * __d_drop requires dentry->d_lock 541 * 542 * ___d_drop doesn't mark dentry as "unhashed" 543 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 544 */ 545 void d_drop(struct dentry *dentry) 546 { 547 spin_lock(&dentry->d_lock); 548 __d_drop(dentry); 549 spin_unlock(&dentry->d_lock); 550 } 551 EXPORT_SYMBOL(d_drop); 552 553 static inline void dentry_unlist(struct dentry *dentry) 554 { 555 struct dentry *next; 556 /* 557 * Inform d_walk() and shrink_dentry_list() that we are no longer 558 * attached to the dentry tree 559 */ 560 dentry->d_flags |= DCACHE_DENTRY_KILLED; 561 if (unlikely(hlist_unhashed(&dentry->d_sib))) 562 return; 563 __hlist_del(&dentry->d_sib); 564 /* 565 * Cursors can move around the list of children. While we'd been 566 * a normal list member, it didn't matter - ->d_sib.next would've 567 * been updated. However, from now on it won't be and for the 568 * things like d_walk() it might end up with a nasty surprise. 569 * Normally d_walk() doesn't care about cursors moving around - 570 * ->d_lock on parent prevents that and since a cursor has no children 571 * of its own, we get through it without ever unlocking the parent. 572 * There is one exception, though - if we ascend from a child that 573 * gets killed as soon as we unlock it, the next sibling is found 574 * using the value left in its ->d_sib.next. And if _that_ 575 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 576 * before d_walk() regains parent->d_lock, we'll end up skipping 577 * everything the cursor had been moved past. 578 * 579 * Solution: make sure that the pointer left behind in ->d_sib.next 580 * points to something that won't be moving around. I.e. skip the 581 * cursors. 582 */ 583 while (dentry->d_sib.next) { 584 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib); 585 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 586 break; 587 dentry->d_sib.next = next->d_sib.next; 588 } 589 } 590 591 static struct dentry *__dentry_kill(struct dentry *dentry) 592 { 593 struct dentry *parent = NULL; 594 bool can_free = true; 595 596 /* 597 * The dentry is now unrecoverably dead to the world. 598 */ 599 lockref_mark_dead(&dentry->d_lockref); 600 601 /* 602 * inform the fs via d_prune that this dentry is about to be 603 * unhashed and destroyed. 604 */ 605 if (dentry->d_flags & DCACHE_OP_PRUNE) 606 dentry->d_op->d_prune(dentry); 607 608 if (dentry->d_flags & DCACHE_LRU_LIST) { 609 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 610 d_lru_del(dentry); 611 } 612 /* if it was on the hash then remove it */ 613 __d_drop(dentry); 614 if (dentry->d_inode) 615 dentry_unlink_inode(dentry); 616 else 617 spin_unlock(&dentry->d_lock); 618 this_cpu_dec(nr_dentry); 619 if (dentry->d_op && dentry->d_op->d_release) 620 dentry->d_op->d_release(dentry); 621 622 cond_resched(); 623 /* now that it's negative, ->d_parent is stable */ 624 if (!IS_ROOT(dentry)) { 625 parent = dentry->d_parent; 626 spin_lock(&parent->d_lock); 627 } 628 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 629 dentry_unlist(dentry); 630 if (dentry->d_flags & DCACHE_SHRINK_LIST) 631 can_free = false; 632 spin_unlock(&dentry->d_lock); 633 if (likely(can_free)) 634 dentry_free(dentry); 635 if (parent && --parent->d_lockref.count) { 636 spin_unlock(&parent->d_lock); 637 return NULL; 638 } 639 return parent; 640 } 641 642 /* 643 * Lock a dentry for feeding it to __dentry_kill(). 644 * Called under rcu_read_lock() and dentry->d_lock; the former 645 * guarantees that nothing we access will be freed under us. 646 * Note that dentry is *not* protected from concurrent dentry_kill(), 647 * d_delete(), etc. 648 * 649 * Return false if dentry is busy. Otherwise, return true and have 650 * that dentry's inode locked. 651 */ 652 653 static bool lock_for_kill(struct dentry *dentry) 654 { 655 struct inode *inode = dentry->d_inode; 656 657 if (unlikely(dentry->d_lockref.count)) 658 return false; 659 660 if (!inode || likely(spin_trylock(&inode->i_lock))) 661 return true; 662 663 do { 664 spin_unlock(&dentry->d_lock); 665 spin_lock(&inode->i_lock); 666 spin_lock(&dentry->d_lock); 667 if (likely(inode == dentry->d_inode)) 668 break; 669 spin_unlock(&inode->i_lock); 670 inode = dentry->d_inode; 671 } while (inode); 672 if (likely(!dentry->d_lockref.count)) 673 return true; 674 if (inode) 675 spin_unlock(&inode->i_lock); 676 return false; 677 } 678 679 /* 680 * Decide if dentry is worth retaining. Usually this is called with dentry 681 * locked; if not locked, we are more limited and might not be able to tell 682 * without a lock. False in this case means "punt to locked path and recheck". 683 * 684 * In case we aren't locked, these predicates are not "stable". However, it is 685 * sufficient that at some point after we dropped the reference the dentry was 686 * hashed and the flags had the proper value. Other dentry users may have 687 * re-gotten a reference to the dentry and change that, but our work is done - 688 * we can leave the dentry around with a zero refcount. 689 */ 690 static inline bool retain_dentry(struct dentry *dentry, bool locked) 691 { 692 unsigned int d_flags; 693 694 smp_rmb(); 695 d_flags = READ_ONCE(dentry->d_flags); 696 697 // Unreachable? Nobody would be able to look it up, no point retaining 698 if (unlikely(d_unhashed(dentry))) 699 return false; 700 701 // Same if it's disconnected 702 if (unlikely(d_flags & DCACHE_DISCONNECTED)) 703 return false; 704 705 // ->d_delete() might tell us not to bother, but that requires 706 // ->d_lock; can't decide without it 707 if (unlikely(d_flags & DCACHE_OP_DELETE)) { 708 if (!locked || dentry->d_op->d_delete(dentry)) 709 return false; 710 } 711 712 // Explicitly told not to bother 713 if (unlikely(d_flags & DCACHE_DONTCACHE)) 714 return false; 715 716 // At this point it looks like we ought to keep it. We also might 717 // need to do something - put it on LRU if it wasn't there already 718 // and mark it referenced if it was on LRU, but not marked yet. 719 // Unfortunately, both actions require ->d_lock, so in lockless 720 // case we'd have to punt rather than doing those. 721 if (unlikely(!(d_flags & DCACHE_LRU_LIST))) { 722 if (!locked) 723 return false; 724 d_lru_add(dentry); 725 } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) { 726 if (!locked) 727 return false; 728 dentry->d_flags |= DCACHE_REFERENCED; 729 } 730 return true; 731 } 732 733 void d_mark_dontcache(struct inode *inode) 734 { 735 struct dentry *de; 736 737 spin_lock(&inode->i_lock); 738 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 739 spin_lock(&de->d_lock); 740 de->d_flags |= DCACHE_DONTCACHE; 741 spin_unlock(&de->d_lock); 742 } 743 inode->i_state |= I_DONTCACHE; 744 spin_unlock(&inode->i_lock); 745 } 746 EXPORT_SYMBOL(d_mark_dontcache); 747 748 /* 749 * Try to do a lockless dput(), and return whether that was successful. 750 * 751 * If unsuccessful, we return false, having already taken the dentry lock. 752 * In that case refcount is guaranteed to be zero and we have already 753 * decided that it's not worth keeping around. 754 * 755 * The caller needs to hold the RCU read lock, so that the dentry is 756 * guaranteed to stay around even if the refcount goes down to zero! 757 */ 758 static inline bool fast_dput(struct dentry *dentry) 759 { 760 int ret; 761 762 /* 763 * try to decrement the lockref optimistically. 764 */ 765 ret = lockref_put_return(&dentry->d_lockref); 766 767 /* 768 * If the lockref_put_return() failed due to the lock being held 769 * by somebody else, the fast path has failed. We will need to 770 * get the lock, and then check the count again. 771 */ 772 if (unlikely(ret < 0)) { 773 spin_lock(&dentry->d_lock); 774 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) { 775 spin_unlock(&dentry->d_lock); 776 return true; 777 } 778 dentry->d_lockref.count--; 779 goto locked; 780 } 781 782 /* 783 * If we weren't the last ref, we're done. 784 */ 785 if (ret) 786 return true; 787 788 /* 789 * Can we decide that decrement of refcount is all we needed without 790 * taking the lock? There's a very common case when it's all we need - 791 * dentry looks like it ought to be retained and there's nothing else 792 * to do. 793 */ 794 if (retain_dentry(dentry, false)) 795 return true; 796 797 /* 798 * Either not worth retaining or we can't tell without the lock. 799 * Get the lock, then. We've already decremented the refcount to 0, 800 * but we'll need to re-check the situation after getting the lock. 801 */ 802 spin_lock(&dentry->d_lock); 803 804 /* 805 * Did somebody else grab a reference to it in the meantime, and 806 * we're no longer the last user after all? Alternatively, somebody 807 * else could have killed it and marked it dead. Either way, we 808 * don't need to do anything else. 809 */ 810 locked: 811 if (dentry->d_lockref.count || retain_dentry(dentry, true)) { 812 spin_unlock(&dentry->d_lock); 813 return true; 814 } 815 return false; 816 } 817 818 819 /* 820 * This is dput 821 * 822 * This is complicated by the fact that we do not want to put 823 * dentries that are no longer on any hash chain on the unused 824 * list: we'd much rather just get rid of them immediately. 825 * 826 * However, that implies that we have to traverse the dentry 827 * tree upwards to the parents which might _also_ now be 828 * scheduled for deletion (it may have been only waiting for 829 * its last child to go away). 830 * 831 * This tail recursion is done by hand as we don't want to depend 832 * on the compiler to always get this right (gcc generally doesn't). 833 * Real recursion would eat up our stack space. 834 */ 835 836 /* 837 * dput - release a dentry 838 * @dentry: dentry to release 839 * 840 * Release a dentry. This will drop the usage count and if appropriate 841 * call the dentry unlink method as well as removing it from the queues and 842 * releasing its resources. If the parent dentries were scheduled for release 843 * they too may now get deleted. 844 */ 845 void dput(struct dentry *dentry) 846 { 847 if (!dentry) 848 return; 849 might_sleep(); 850 rcu_read_lock(); 851 if (likely(fast_dput(dentry))) { 852 rcu_read_unlock(); 853 return; 854 } 855 while (lock_for_kill(dentry)) { 856 rcu_read_unlock(); 857 dentry = __dentry_kill(dentry); 858 if (!dentry) 859 return; 860 if (retain_dentry(dentry, true)) { 861 spin_unlock(&dentry->d_lock); 862 return; 863 } 864 rcu_read_lock(); 865 } 866 rcu_read_unlock(); 867 spin_unlock(&dentry->d_lock); 868 } 869 EXPORT_SYMBOL(dput); 870 871 static void to_shrink_list(struct dentry *dentry, struct list_head *list) 872 __must_hold(&dentry->d_lock) 873 { 874 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 875 if (dentry->d_flags & DCACHE_LRU_LIST) 876 d_lru_del(dentry); 877 d_shrink_add(dentry, list); 878 } 879 } 880 881 void dput_to_list(struct dentry *dentry, struct list_head *list) 882 { 883 rcu_read_lock(); 884 if (likely(fast_dput(dentry))) { 885 rcu_read_unlock(); 886 return; 887 } 888 rcu_read_unlock(); 889 to_shrink_list(dentry, list); 890 spin_unlock(&dentry->d_lock); 891 } 892 893 struct dentry *dget_parent(struct dentry *dentry) 894 { 895 int gotref; 896 struct dentry *ret; 897 unsigned seq; 898 899 /* 900 * Do optimistic parent lookup without any 901 * locking. 902 */ 903 rcu_read_lock(); 904 seq = raw_seqcount_begin(&dentry->d_seq); 905 ret = READ_ONCE(dentry->d_parent); 906 gotref = lockref_get_not_zero(&ret->d_lockref); 907 rcu_read_unlock(); 908 if (likely(gotref)) { 909 if (!read_seqcount_retry(&dentry->d_seq, seq)) 910 return ret; 911 dput(ret); 912 } 913 914 repeat: 915 /* 916 * Don't need rcu_dereference because we re-check it was correct under 917 * the lock. 918 */ 919 rcu_read_lock(); 920 ret = dentry->d_parent; 921 spin_lock(&ret->d_lock); 922 if (unlikely(ret != dentry->d_parent)) { 923 spin_unlock(&ret->d_lock); 924 rcu_read_unlock(); 925 goto repeat; 926 } 927 rcu_read_unlock(); 928 BUG_ON(!ret->d_lockref.count); 929 ret->d_lockref.count++; 930 spin_unlock(&ret->d_lock); 931 return ret; 932 } 933 EXPORT_SYMBOL(dget_parent); 934 935 static struct dentry * __d_find_any_alias(struct inode *inode) 936 { 937 struct dentry *alias; 938 939 if (hlist_empty(&inode->i_dentry)) 940 return NULL; 941 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 942 lockref_get(&alias->d_lockref); 943 return alias; 944 } 945 946 /** 947 * d_find_any_alias - find any alias for a given inode 948 * @inode: inode to find an alias for 949 * 950 * If any aliases exist for the given inode, take and return a 951 * reference for one of them. If no aliases exist, return %NULL. 952 */ 953 struct dentry *d_find_any_alias(struct inode *inode) 954 { 955 struct dentry *de; 956 957 spin_lock(&inode->i_lock); 958 de = __d_find_any_alias(inode); 959 spin_unlock(&inode->i_lock); 960 return de; 961 } 962 EXPORT_SYMBOL(d_find_any_alias); 963 964 static struct dentry *__d_find_alias(struct inode *inode) 965 { 966 struct dentry *alias; 967 968 if (S_ISDIR(inode->i_mode)) 969 return __d_find_any_alias(inode); 970 971 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 972 spin_lock(&alias->d_lock); 973 if (!d_unhashed(alias)) { 974 dget_dlock(alias); 975 spin_unlock(&alias->d_lock); 976 return alias; 977 } 978 spin_unlock(&alias->d_lock); 979 } 980 return NULL; 981 } 982 983 /** 984 * d_find_alias - grab a hashed alias of inode 985 * @inode: inode in question 986 * 987 * If inode has a hashed alias, or is a directory and has any alias, 988 * acquire the reference to alias and return it. Otherwise return NULL. 989 * Notice that if inode is a directory there can be only one alias and 990 * it can be unhashed only if it has no children, or if it is the root 991 * of a filesystem, or if the directory was renamed and d_revalidate 992 * was the first vfs operation to notice. 993 * 994 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 995 * any other hashed alias over that one. 996 */ 997 struct dentry *d_find_alias(struct inode *inode) 998 { 999 struct dentry *de = NULL; 1000 1001 if (!hlist_empty(&inode->i_dentry)) { 1002 spin_lock(&inode->i_lock); 1003 de = __d_find_alias(inode); 1004 spin_unlock(&inode->i_lock); 1005 } 1006 return de; 1007 } 1008 EXPORT_SYMBOL(d_find_alias); 1009 1010 /* 1011 * Caller MUST be holding rcu_read_lock() and be guaranteed 1012 * that inode won't get freed until rcu_read_unlock(). 1013 */ 1014 struct dentry *d_find_alias_rcu(struct inode *inode) 1015 { 1016 struct hlist_head *l = &inode->i_dentry; 1017 struct dentry *de = NULL; 1018 1019 spin_lock(&inode->i_lock); 1020 // ->i_dentry and ->i_rcu are colocated, but the latter won't be 1021 // used without having I_FREEING set, which means no aliases left 1022 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { 1023 if (S_ISDIR(inode->i_mode)) { 1024 de = hlist_entry(l->first, struct dentry, d_u.d_alias); 1025 } else { 1026 hlist_for_each_entry(de, l, d_u.d_alias) 1027 if (!d_unhashed(de)) 1028 break; 1029 } 1030 } 1031 spin_unlock(&inode->i_lock); 1032 return de; 1033 } 1034 1035 /* 1036 * Try to kill dentries associated with this inode. 1037 * WARNING: you must own a reference to inode. 1038 */ 1039 void d_prune_aliases(struct inode *inode) 1040 { 1041 LIST_HEAD(dispose); 1042 struct dentry *dentry; 1043 1044 spin_lock(&inode->i_lock); 1045 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1046 spin_lock(&dentry->d_lock); 1047 if (!dentry->d_lockref.count) 1048 to_shrink_list(dentry, &dispose); 1049 spin_unlock(&dentry->d_lock); 1050 } 1051 spin_unlock(&inode->i_lock); 1052 shrink_dentry_list(&dispose); 1053 } 1054 EXPORT_SYMBOL(d_prune_aliases); 1055 1056 static inline void shrink_kill(struct dentry *victim) 1057 { 1058 do { 1059 rcu_read_unlock(); 1060 victim = __dentry_kill(victim); 1061 rcu_read_lock(); 1062 } while (victim && lock_for_kill(victim)); 1063 rcu_read_unlock(); 1064 if (victim) 1065 spin_unlock(&victim->d_lock); 1066 } 1067 1068 void shrink_dentry_list(struct list_head *list) 1069 { 1070 while (!list_empty(list)) { 1071 struct dentry *dentry; 1072 1073 dentry = list_entry(list->prev, struct dentry, d_lru); 1074 spin_lock(&dentry->d_lock); 1075 rcu_read_lock(); 1076 if (!lock_for_kill(dentry)) { 1077 bool can_free; 1078 rcu_read_unlock(); 1079 d_shrink_del(dentry); 1080 can_free = dentry->d_flags & DCACHE_DENTRY_KILLED; 1081 spin_unlock(&dentry->d_lock); 1082 if (can_free) 1083 dentry_free(dentry); 1084 continue; 1085 } 1086 d_shrink_del(dentry); 1087 shrink_kill(dentry); 1088 } 1089 } 1090 1091 static enum lru_status dentry_lru_isolate(struct list_head *item, 1092 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1093 { 1094 struct list_head *freeable = arg; 1095 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1096 1097 1098 /* 1099 * we are inverting the lru lock/dentry->d_lock here, 1100 * so use a trylock. If we fail to get the lock, just skip 1101 * it 1102 */ 1103 if (!spin_trylock(&dentry->d_lock)) 1104 return LRU_SKIP; 1105 1106 /* 1107 * Referenced dentries are still in use. If they have active 1108 * counts, just remove them from the LRU. Otherwise give them 1109 * another pass through the LRU. 1110 */ 1111 if (dentry->d_lockref.count) { 1112 d_lru_isolate(lru, dentry); 1113 spin_unlock(&dentry->d_lock); 1114 return LRU_REMOVED; 1115 } 1116 1117 if (dentry->d_flags & DCACHE_REFERENCED) { 1118 dentry->d_flags &= ~DCACHE_REFERENCED; 1119 spin_unlock(&dentry->d_lock); 1120 1121 /* 1122 * The list move itself will be made by the common LRU code. At 1123 * this point, we've dropped the dentry->d_lock but keep the 1124 * lru lock. This is safe to do, since every list movement is 1125 * protected by the lru lock even if both locks are held. 1126 * 1127 * This is guaranteed by the fact that all LRU management 1128 * functions are intermediated by the LRU API calls like 1129 * list_lru_add_obj and list_lru_del_obj. List movement in this file 1130 * only ever occur through this functions or through callbacks 1131 * like this one, that are called from the LRU API. 1132 * 1133 * The only exceptions to this are functions like 1134 * shrink_dentry_list, and code that first checks for the 1135 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1136 * operating only with stack provided lists after they are 1137 * properly isolated from the main list. It is thus, always a 1138 * local access. 1139 */ 1140 return LRU_ROTATE; 1141 } 1142 1143 d_lru_shrink_move(lru, dentry, freeable); 1144 spin_unlock(&dentry->d_lock); 1145 1146 return LRU_REMOVED; 1147 } 1148 1149 /** 1150 * prune_dcache_sb - shrink the dcache 1151 * @sb: superblock 1152 * @sc: shrink control, passed to list_lru_shrink_walk() 1153 * 1154 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1155 * is done when we need more memory and called from the superblock shrinker 1156 * function. 1157 * 1158 * This function may fail to free any resources if all the dentries are in 1159 * use. 1160 */ 1161 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1162 { 1163 LIST_HEAD(dispose); 1164 long freed; 1165 1166 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1167 dentry_lru_isolate, &dispose); 1168 shrink_dentry_list(&dispose); 1169 return freed; 1170 } 1171 1172 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1173 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1174 { 1175 struct list_head *freeable = arg; 1176 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1177 1178 /* 1179 * we are inverting the lru lock/dentry->d_lock here, 1180 * so use a trylock. If we fail to get the lock, just skip 1181 * it 1182 */ 1183 if (!spin_trylock(&dentry->d_lock)) 1184 return LRU_SKIP; 1185 1186 d_lru_shrink_move(lru, dentry, freeable); 1187 spin_unlock(&dentry->d_lock); 1188 1189 return LRU_REMOVED; 1190 } 1191 1192 1193 /** 1194 * shrink_dcache_sb - shrink dcache for a superblock 1195 * @sb: superblock 1196 * 1197 * Shrink the dcache for the specified super block. This is used to free 1198 * the dcache before unmounting a file system. 1199 */ 1200 void shrink_dcache_sb(struct super_block *sb) 1201 { 1202 do { 1203 LIST_HEAD(dispose); 1204 1205 list_lru_walk(&sb->s_dentry_lru, 1206 dentry_lru_isolate_shrink, &dispose, 1024); 1207 shrink_dentry_list(&dispose); 1208 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1209 } 1210 EXPORT_SYMBOL(shrink_dcache_sb); 1211 1212 /** 1213 * enum d_walk_ret - action to talke during tree walk 1214 * @D_WALK_CONTINUE: contrinue walk 1215 * @D_WALK_QUIT: quit walk 1216 * @D_WALK_NORETRY: quit when retry is needed 1217 * @D_WALK_SKIP: skip this dentry and its children 1218 */ 1219 enum d_walk_ret { 1220 D_WALK_CONTINUE, 1221 D_WALK_QUIT, 1222 D_WALK_NORETRY, 1223 D_WALK_SKIP, 1224 }; 1225 1226 /** 1227 * d_walk - walk the dentry tree 1228 * @parent: start of walk 1229 * @data: data passed to @enter() and @finish() 1230 * @enter: callback when first entering the dentry 1231 * 1232 * The @enter() callbacks are called with d_lock held. 1233 */ 1234 static void d_walk(struct dentry *parent, void *data, 1235 enum d_walk_ret (*enter)(void *, struct dentry *)) 1236 { 1237 struct dentry *this_parent, *dentry; 1238 unsigned seq = 0; 1239 enum d_walk_ret ret; 1240 bool retry = true; 1241 1242 again: 1243 read_seqbegin_or_lock(&rename_lock, &seq); 1244 this_parent = parent; 1245 spin_lock(&this_parent->d_lock); 1246 1247 ret = enter(data, this_parent); 1248 switch (ret) { 1249 case D_WALK_CONTINUE: 1250 break; 1251 case D_WALK_QUIT: 1252 case D_WALK_SKIP: 1253 goto out_unlock; 1254 case D_WALK_NORETRY: 1255 retry = false; 1256 break; 1257 } 1258 repeat: 1259 dentry = d_first_child(this_parent); 1260 resume: 1261 hlist_for_each_entry_from(dentry, d_sib) { 1262 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1263 continue; 1264 1265 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1266 1267 ret = enter(data, dentry); 1268 switch (ret) { 1269 case D_WALK_CONTINUE: 1270 break; 1271 case D_WALK_QUIT: 1272 spin_unlock(&dentry->d_lock); 1273 goto out_unlock; 1274 case D_WALK_NORETRY: 1275 retry = false; 1276 break; 1277 case D_WALK_SKIP: 1278 spin_unlock(&dentry->d_lock); 1279 continue; 1280 } 1281 1282 if (!hlist_empty(&dentry->d_children)) { 1283 spin_unlock(&this_parent->d_lock); 1284 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1285 this_parent = dentry; 1286 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1287 goto repeat; 1288 } 1289 spin_unlock(&dentry->d_lock); 1290 } 1291 /* 1292 * All done at this level ... ascend and resume the search. 1293 */ 1294 rcu_read_lock(); 1295 ascend: 1296 if (this_parent != parent) { 1297 dentry = this_parent; 1298 this_parent = dentry->d_parent; 1299 1300 spin_unlock(&dentry->d_lock); 1301 spin_lock(&this_parent->d_lock); 1302 1303 /* might go back up the wrong parent if we have had a rename. */ 1304 if (need_seqretry(&rename_lock, seq)) 1305 goto rename_retry; 1306 /* go into the first sibling still alive */ 1307 hlist_for_each_entry_continue(dentry, d_sib) { 1308 if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) { 1309 rcu_read_unlock(); 1310 goto resume; 1311 } 1312 } 1313 goto ascend; 1314 } 1315 if (need_seqretry(&rename_lock, seq)) 1316 goto rename_retry; 1317 rcu_read_unlock(); 1318 1319 out_unlock: 1320 spin_unlock(&this_parent->d_lock); 1321 done_seqretry(&rename_lock, seq); 1322 return; 1323 1324 rename_retry: 1325 spin_unlock(&this_parent->d_lock); 1326 rcu_read_unlock(); 1327 BUG_ON(seq & 1); 1328 if (!retry) 1329 return; 1330 seq = 1; 1331 goto again; 1332 } 1333 1334 struct check_mount { 1335 struct vfsmount *mnt; 1336 unsigned int mounted; 1337 }; 1338 1339 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1340 { 1341 struct check_mount *info = data; 1342 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1343 1344 if (likely(!d_mountpoint(dentry))) 1345 return D_WALK_CONTINUE; 1346 if (__path_is_mountpoint(&path)) { 1347 info->mounted = 1; 1348 return D_WALK_QUIT; 1349 } 1350 return D_WALK_CONTINUE; 1351 } 1352 1353 /** 1354 * path_has_submounts - check for mounts over a dentry in the 1355 * current namespace. 1356 * @parent: path to check. 1357 * 1358 * Return true if the parent or its subdirectories contain 1359 * a mount point in the current namespace. 1360 */ 1361 int path_has_submounts(const struct path *parent) 1362 { 1363 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1364 1365 read_seqlock_excl(&mount_lock); 1366 d_walk(parent->dentry, &data, path_check_mount); 1367 read_sequnlock_excl(&mount_lock); 1368 1369 return data.mounted; 1370 } 1371 EXPORT_SYMBOL(path_has_submounts); 1372 1373 /* 1374 * Called by mount code to set a mountpoint and check if the mountpoint is 1375 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1376 * subtree can become unreachable). 1377 * 1378 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1379 * this reason take rename_lock and d_lock on dentry and ancestors. 1380 */ 1381 int d_set_mounted(struct dentry *dentry) 1382 { 1383 struct dentry *p; 1384 int ret = -ENOENT; 1385 write_seqlock(&rename_lock); 1386 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1387 /* Need exclusion wrt. d_invalidate() */ 1388 spin_lock(&p->d_lock); 1389 if (unlikely(d_unhashed(p))) { 1390 spin_unlock(&p->d_lock); 1391 goto out; 1392 } 1393 spin_unlock(&p->d_lock); 1394 } 1395 spin_lock(&dentry->d_lock); 1396 if (!d_unlinked(dentry)) { 1397 ret = -EBUSY; 1398 if (!d_mountpoint(dentry)) { 1399 dentry->d_flags |= DCACHE_MOUNTED; 1400 ret = 0; 1401 } 1402 } 1403 spin_unlock(&dentry->d_lock); 1404 out: 1405 write_sequnlock(&rename_lock); 1406 return ret; 1407 } 1408 1409 /* 1410 * Search the dentry child list of the specified parent, 1411 * and move any unused dentries to the end of the unused 1412 * list for prune_dcache(). We descend to the next level 1413 * whenever the d_children list is non-empty and continue 1414 * searching. 1415 * 1416 * It returns zero iff there are no unused children, 1417 * otherwise it returns the number of children moved to 1418 * the end of the unused list. This may not be the total 1419 * number of unused children, because select_parent can 1420 * drop the lock and return early due to latency 1421 * constraints. 1422 */ 1423 1424 struct select_data { 1425 struct dentry *start; 1426 union { 1427 long found; 1428 struct dentry *victim; 1429 }; 1430 struct list_head dispose; 1431 }; 1432 1433 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1434 { 1435 struct select_data *data = _data; 1436 enum d_walk_ret ret = D_WALK_CONTINUE; 1437 1438 if (data->start == dentry) 1439 goto out; 1440 1441 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1442 data->found++; 1443 } else if (!dentry->d_lockref.count) { 1444 to_shrink_list(dentry, &data->dispose); 1445 data->found++; 1446 } else if (dentry->d_lockref.count < 0) { 1447 data->found++; 1448 } 1449 /* 1450 * We can return to the caller if we have found some (this 1451 * ensures forward progress). We'll be coming back to find 1452 * the rest. 1453 */ 1454 if (!list_empty(&data->dispose)) 1455 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1456 out: 1457 return ret; 1458 } 1459 1460 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1461 { 1462 struct select_data *data = _data; 1463 enum d_walk_ret ret = D_WALK_CONTINUE; 1464 1465 if (data->start == dentry) 1466 goto out; 1467 1468 if (!dentry->d_lockref.count) { 1469 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1470 rcu_read_lock(); 1471 data->victim = dentry; 1472 return D_WALK_QUIT; 1473 } 1474 to_shrink_list(dentry, &data->dispose); 1475 } 1476 /* 1477 * We can return to the caller if we have found some (this 1478 * ensures forward progress). We'll be coming back to find 1479 * the rest. 1480 */ 1481 if (!list_empty(&data->dispose)) 1482 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1483 out: 1484 return ret; 1485 } 1486 1487 /** 1488 * shrink_dcache_parent - prune dcache 1489 * @parent: parent of entries to prune 1490 * 1491 * Prune the dcache to remove unused children of the parent dentry. 1492 */ 1493 void shrink_dcache_parent(struct dentry *parent) 1494 { 1495 for (;;) { 1496 struct select_data data = {.start = parent}; 1497 1498 INIT_LIST_HEAD(&data.dispose); 1499 d_walk(parent, &data, select_collect); 1500 1501 if (!list_empty(&data.dispose)) { 1502 shrink_dentry_list(&data.dispose); 1503 continue; 1504 } 1505 1506 cond_resched(); 1507 if (!data.found) 1508 break; 1509 data.victim = NULL; 1510 d_walk(parent, &data, select_collect2); 1511 if (data.victim) { 1512 spin_lock(&data.victim->d_lock); 1513 if (!lock_for_kill(data.victim)) { 1514 spin_unlock(&data.victim->d_lock); 1515 rcu_read_unlock(); 1516 } else { 1517 shrink_kill(data.victim); 1518 } 1519 } 1520 if (!list_empty(&data.dispose)) 1521 shrink_dentry_list(&data.dispose); 1522 } 1523 } 1524 EXPORT_SYMBOL(shrink_dcache_parent); 1525 1526 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1527 { 1528 /* it has busy descendents; complain about those instead */ 1529 if (!hlist_empty(&dentry->d_children)) 1530 return D_WALK_CONTINUE; 1531 1532 /* root with refcount 1 is fine */ 1533 if (dentry == _data && dentry->d_lockref.count == 1) 1534 return D_WALK_CONTINUE; 1535 1536 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} " 1537 " still in use (%d) [unmount of %s %s]\n", 1538 dentry, 1539 dentry->d_inode ? 1540 dentry->d_inode->i_ino : 0UL, 1541 dentry, 1542 dentry->d_lockref.count, 1543 dentry->d_sb->s_type->name, 1544 dentry->d_sb->s_id); 1545 return D_WALK_CONTINUE; 1546 } 1547 1548 static void do_one_tree(struct dentry *dentry) 1549 { 1550 shrink_dcache_parent(dentry); 1551 d_walk(dentry, dentry, umount_check); 1552 d_drop(dentry); 1553 dput(dentry); 1554 } 1555 1556 /* 1557 * destroy the dentries attached to a superblock on unmounting 1558 */ 1559 void shrink_dcache_for_umount(struct super_block *sb) 1560 { 1561 struct dentry *dentry; 1562 1563 rwsem_assert_held_write(&sb->s_umount); 1564 1565 dentry = sb->s_root; 1566 sb->s_root = NULL; 1567 do_one_tree(dentry); 1568 1569 while (!hlist_bl_empty(&sb->s_roots)) { 1570 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1571 do_one_tree(dentry); 1572 } 1573 } 1574 1575 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1576 { 1577 struct dentry **victim = _data; 1578 if (d_mountpoint(dentry)) { 1579 *victim = dget_dlock(dentry); 1580 return D_WALK_QUIT; 1581 } 1582 return D_WALK_CONTINUE; 1583 } 1584 1585 /** 1586 * d_invalidate - detach submounts, prune dcache, and drop 1587 * @dentry: dentry to invalidate (aka detach, prune and drop) 1588 */ 1589 void d_invalidate(struct dentry *dentry) 1590 { 1591 bool had_submounts = false; 1592 spin_lock(&dentry->d_lock); 1593 if (d_unhashed(dentry)) { 1594 spin_unlock(&dentry->d_lock); 1595 return; 1596 } 1597 __d_drop(dentry); 1598 spin_unlock(&dentry->d_lock); 1599 1600 /* Negative dentries can be dropped without further checks */ 1601 if (!dentry->d_inode) 1602 return; 1603 1604 shrink_dcache_parent(dentry); 1605 for (;;) { 1606 struct dentry *victim = NULL; 1607 d_walk(dentry, &victim, find_submount); 1608 if (!victim) { 1609 if (had_submounts) 1610 shrink_dcache_parent(dentry); 1611 return; 1612 } 1613 had_submounts = true; 1614 detach_mounts(victim); 1615 dput(victim); 1616 } 1617 } 1618 EXPORT_SYMBOL(d_invalidate); 1619 1620 /** 1621 * __d_alloc - allocate a dcache entry 1622 * @sb: filesystem it will belong to 1623 * @name: qstr of the name 1624 * 1625 * Allocates a dentry. It returns %NULL if there is insufficient memory 1626 * available. On a success the dentry is returned. The name passed in is 1627 * copied and the copy passed in may be reused after this call. 1628 */ 1629 1630 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1631 { 1632 struct dentry *dentry; 1633 char *dname; 1634 int err; 1635 1636 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru, 1637 GFP_KERNEL); 1638 if (!dentry) 1639 return NULL; 1640 1641 /* 1642 * We guarantee that the inline name is always NUL-terminated. 1643 * This way the memcpy() done by the name switching in rename 1644 * will still always have a NUL at the end, even if we might 1645 * be overwriting an internal NUL character 1646 */ 1647 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1648 if (unlikely(!name)) { 1649 name = &slash_name; 1650 dname = dentry->d_iname; 1651 } else if (name->len > DNAME_INLINE_LEN-1) { 1652 size_t size = offsetof(struct external_name, name[1]); 1653 struct external_name *p = kmalloc(size + name->len, 1654 GFP_KERNEL_ACCOUNT | 1655 __GFP_RECLAIMABLE); 1656 if (!p) { 1657 kmem_cache_free(dentry_cache, dentry); 1658 return NULL; 1659 } 1660 atomic_set(&p->u.count, 1); 1661 dname = p->name; 1662 } else { 1663 dname = dentry->d_iname; 1664 } 1665 1666 dentry->d_name.len = name->len; 1667 dentry->d_name.hash = name->hash; 1668 memcpy(dname, name->name, name->len); 1669 dname[name->len] = 0; 1670 1671 /* Make sure we always see the terminating NUL character */ 1672 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1673 1674 dentry->d_lockref.count = 1; 1675 dentry->d_flags = 0; 1676 spin_lock_init(&dentry->d_lock); 1677 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); 1678 dentry->d_inode = NULL; 1679 dentry->d_parent = dentry; 1680 dentry->d_sb = sb; 1681 dentry->d_op = NULL; 1682 dentry->d_fsdata = NULL; 1683 INIT_HLIST_BL_NODE(&dentry->d_hash); 1684 INIT_LIST_HEAD(&dentry->d_lru); 1685 INIT_HLIST_HEAD(&dentry->d_children); 1686 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1687 INIT_HLIST_NODE(&dentry->d_sib); 1688 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1689 1690 if (dentry->d_op && dentry->d_op->d_init) { 1691 err = dentry->d_op->d_init(dentry); 1692 if (err) { 1693 if (dname_external(dentry)) 1694 kfree(external_name(dentry)); 1695 kmem_cache_free(dentry_cache, dentry); 1696 return NULL; 1697 } 1698 } 1699 1700 this_cpu_inc(nr_dentry); 1701 1702 return dentry; 1703 } 1704 1705 /** 1706 * d_alloc - allocate a dcache entry 1707 * @parent: parent of entry to allocate 1708 * @name: qstr of the name 1709 * 1710 * Allocates a dentry. It returns %NULL if there is insufficient memory 1711 * available. On a success the dentry is returned. The name passed in is 1712 * copied and the copy passed in may be reused after this call. 1713 */ 1714 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1715 { 1716 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1717 if (!dentry) 1718 return NULL; 1719 spin_lock(&parent->d_lock); 1720 /* 1721 * don't need child lock because it is not subject 1722 * to concurrency here 1723 */ 1724 dentry->d_parent = dget_dlock(parent); 1725 hlist_add_head(&dentry->d_sib, &parent->d_children); 1726 spin_unlock(&parent->d_lock); 1727 1728 return dentry; 1729 } 1730 EXPORT_SYMBOL(d_alloc); 1731 1732 struct dentry *d_alloc_anon(struct super_block *sb) 1733 { 1734 return __d_alloc(sb, NULL); 1735 } 1736 EXPORT_SYMBOL(d_alloc_anon); 1737 1738 struct dentry *d_alloc_cursor(struct dentry * parent) 1739 { 1740 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1741 if (dentry) { 1742 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1743 dentry->d_parent = dget(parent); 1744 } 1745 return dentry; 1746 } 1747 1748 /** 1749 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1750 * @sb: the superblock 1751 * @name: qstr of the name 1752 * 1753 * For a filesystem that just pins its dentries in memory and never 1754 * performs lookups at all, return an unhashed IS_ROOT dentry. 1755 * This is used for pipes, sockets et.al. - the stuff that should 1756 * never be anyone's children or parents. Unlike all other 1757 * dentries, these will not have RCU delay between dropping the 1758 * last reference and freeing them. 1759 * 1760 * The only user is alloc_file_pseudo() and that's what should 1761 * be considered a public interface. Don't use directly. 1762 */ 1763 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1764 { 1765 static const struct dentry_operations anon_ops = { 1766 .d_dname = simple_dname 1767 }; 1768 struct dentry *dentry = __d_alloc(sb, name); 1769 if (likely(dentry)) { 1770 dentry->d_flags |= DCACHE_NORCU; 1771 if (!sb->s_d_op) 1772 d_set_d_op(dentry, &anon_ops); 1773 } 1774 return dentry; 1775 } 1776 1777 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1778 { 1779 struct qstr q; 1780 1781 q.name = name; 1782 q.hash_len = hashlen_string(parent, name); 1783 return d_alloc(parent, &q); 1784 } 1785 EXPORT_SYMBOL(d_alloc_name); 1786 1787 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1788 { 1789 WARN_ON_ONCE(dentry->d_op); 1790 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1791 DCACHE_OP_COMPARE | 1792 DCACHE_OP_REVALIDATE | 1793 DCACHE_OP_WEAK_REVALIDATE | 1794 DCACHE_OP_DELETE | 1795 DCACHE_OP_REAL)); 1796 dentry->d_op = op; 1797 if (!op) 1798 return; 1799 if (op->d_hash) 1800 dentry->d_flags |= DCACHE_OP_HASH; 1801 if (op->d_compare) 1802 dentry->d_flags |= DCACHE_OP_COMPARE; 1803 if (op->d_revalidate) 1804 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1805 if (op->d_weak_revalidate) 1806 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1807 if (op->d_delete) 1808 dentry->d_flags |= DCACHE_OP_DELETE; 1809 if (op->d_prune) 1810 dentry->d_flags |= DCACHE_OP_PRUNE; 1811 if (op->d_real) 1812 dentry->d_flags |= DCACHE_OP_REAL; 1813 1814 } 1815 EXPORT_SYMBOL(d_set_d_op); 1816 1817 static unsigned d_flags_for_inode(struct inode *inode) 1818 { 1819 unsigned add_flags = DCACHE_REGULAR_TYPE; 1820 1821 if (!inode) 1822 return DCACHE_MISS_TYPE; 1823 1824 if (S_ISDIR(inode->i_mode)) { 1825 add_flags = DCACHE_DIRECTORY_TYPE; 1826 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1827 if (unlikely(!inode->i_op->lookup)) 1828 add_flags = DCACHE_AUTODIR_TYPE; 1829 else 1830 inode->i_opflags |= IOP_LOOKUP; 1831 } 1832 goto type_determined; 1833 } 1834 1835 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1836 if (unlikely(inode->i_op->get_link)) { 1837 add_flags = DCACHE_SYMLINK_TYPE; 1838 goto type_determined; 1839 } 1840 inode->i_opflags |= IOP_NOFOLLOW; 1841 } 1842 1843 if (unlikely(!S_ISREG(inode->i_mode))) 1844 add_flags = DCACHE_SPECIAL_TYPE; 1845 1846 type_determined: 1847 if (unlikely(IS_AUTOMOUNT(inode))) 1848 add_flags |= DCACHE_NEED_AUTOMOUNT; 1849 return add_flags; 1850 } 1851 1852 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1853 { 1854 unsigned add_flags = d_flags_for_inode(inode); 1855 WARN_ON(d_in_lookup(dentry)); 1856 1857 spin_lock(&dentry->d_lock); 1858 /* 1859 * The negative counter only tracks dentries on the LRU. Don't dec if 1860 * d_lru is on another list. 1861 */ 1862 if ((dentry->d_flags & 1863 (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) 1864 this_cpu_dec(nr_dentry_negative); 1865 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1866 raw_write_seqcount_begin(&dentry->d_seq); 1867 __d_set_inode_and_type(dentry, inode, add_flags); 1868 raw_write_seqcount_end(&dentry->d_seq); 1869 fsnotify_update_flags(dentry); 1870 spin_unlock(&dentry->d_lock); 1871 } 1872 1873 /** 1874 * d_instantiate - fill in inode information for a dentry 1875 * @entry: dentry to complete 1876 * @inode: inode to attach to this dentry 1877 * 1878 * Fill in inode information in the entry. 1879 * 1880 * This turns negative dentries into productive full members 1881 * of society. 1882 * 1883 * NOTE! This assumes that the inode count has been incremented 1884 * (or otherwise set) by the caller to indicate that it is now 1885 * in use by the dcache. 1886 */ 1887 1888 void d_instantiate(struct dentry *entry, struct inode * inode) 1889 { 1890 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1891 if (inode) { 1892 security_d_instantiate(entry, inode); 1893 spin_lock(&inode->i_lock); 1894 __d_instantiate(entry, inode); 1895 spin_unlock(&inode->i_lock); 1896 } 1897 } 1898 EXPORT_SYMBOL(d_instantiate); 1899 1900 /* 1901 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1902 * with lockdep-related part of unlock_new_inode() done before 1903 * anything else. Use that instead of open-coding d_instantiate()/ 1904 * unlock_new_inode() combinations. 1905 */ 1906 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1907 { 1908 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1909 BUG_ON(!inode); 1910 lockdep_annotate_inode_mutex_key(inode); 1911 security_d_instantiate(entry, inode); 1912 spin_lock(&inode->i_lock); 1913 __d_instantiate(entry, inode); 1914 WARN_ON(!(inode->i_state & I_NEW)); 1915 inode->i_state &= ~I_NEW & ~I_CREATING; 1916 smp_mb(); 1917 wake_up_bit(&inode->i_state, __I_NEW); 1918 spin_unlock(&inode->i_lock); 1919 } 1920 EXPORT_SYMBOL(d_instantiate_new); 1921 1922 struct dentry *d_make_root(struct inode *root_inode) 1923 { 1924 struct dentry *res = NULL; 1925 1926 if (root_inode) { 1927 res = d_alloc_anon(root_inode->i_sb); 1928 if (res) 1929 d_instantiate(res, root_inode); 1930 else 1931 iput(root_inode); 1932 } 1933 return res; 1934 } 1935 EXPORT_SYMBOL(d_make_root); 1936 1937 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1938 { 1939 struct super_block *sb; 1940 struct dentry *new, *res; 1941 1942 if (!inode) 1943 return ERR_PTR(-ESTALE); 1944 if (IS_ERR(inode)) 1945 return ERR_CAST(inode); 1946 1947 sb = inode->i_sb; 1948 1949 res = d_find_any_alias(inode); /* existing alias? */ 1950 if (res) 1951 goto out; 1952 1953 new = d_alloc_anon(sb); 1954 if (!new) { 1955 res = ERR_PTR(-ENOMEM); 1956 goto out; 1957 } 1958 1959 security_d_instantiate(new, inode); 1960 spin_lock(&inode->i_lock); 1961 res = __d_find_any_alias(inode); /* recheck under lock */ 1962 if (likely(!res)) { /* still no alias, attach a disconnected dentry */ 1963 unsigned add_flags = d_flags_for_inode(inode); 1964 1965 if (disconnected) 1966 add_flags |= DCACHE_DISCONNECTED; 1967 1968 spin_lock(&new->d_lock); 1969 __d_set_inode_and_type(new, inode, add_flags); 1970 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry); 1971 if (!disconnected) { 1972 hlist_bl_lock(&sb->s_roots); 1973 hlist_bl_add_head(&new->d_hash, &sb->s_roots); 1974 hlist_bl_unlock(&sb->s_roots); 1975 } 1976 spin_unlock(&new->d_lock); 1977 spin_unlock(&inode->i_lock); 1978 inode = NULL; /* consumed by new->d_inode */ 1979 res = new; 1980 } else { 1981 spin_unlock(&inode->i_lock); 1982 dput(new); 1983 } 1984 1985 out: 1986 iput(inode); 1987 return res; 1988 } 1989 1990 /** 1991 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1992 * @inode: inode to allocate the dentry for 1993 * 1994 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1995 * similar open by handle operations. The returned dentry may be anonymous, 1996 * or may have a full name (if the inode was already in the cache). 1997 * 1998 * When called on a directory inode, we must ensure that the inode only ever 1999 * has one dentry. If a dentry is found, that is returned instead of 2000 * allocating a new one. 2001 * 2002 * On successful return, the reference to the inode has been transferred 2003 * to the dentry. In case of an error the reference on the inode is released. 2004 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2005 * be passed in and the error will be propagated to the return value, 2006 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2007 */ 2008 struct dentry *d_obtain_alias(struct inode *inode) 2009 { 2010 return __d_obtain_alias(inode, true); 2011 } 2012 EXPORT_SYMBOL(d_obtain_alias); 2013 2014 /** 2015 * d_obtain_root - find or allocate a dentry for a given inode 2016 * @inode: inode to allocate the dentry for 2017 * 2018 * Obtain an IS_ROOT dentry for the root of a filesystem. 2019 * 2020 * We must ensure that directory inodes only ever have one dentry. If a 2021 * dentry is found, that is returned instead of allocating a new one. 2022 * 2023 * On successful return, the reference to the inode has been transferred 2024 * to the dentry. In case of an error the reference on the inode is 2025 * released. A %NULL or IS_ERR inode may be passed in and will be the 2026 * error will be propagate to the return value, with a %NULL @inode 2027 * replaced by ERR_PTR(-ESTALE). 2028 */ 2029 struct dentry *d_obtain_root(struct inode *inode) 2030 { 2031 return __d_obtain_alias(inode, false); 2032 } 2033 EXPORT_SYMBOL(d_obtain_root); 2034 2035 /** 2036 * d_add_ci - lookup or allocate new dentry with case-exact name 2037 * @inode: the inode case-insensitive lookup has found 2038 * @dentry: the negative dentry that was passed to the parent's lookup func 2039 * @name: the case-exact name to be associated with the returned dentry 2040 * 2041 * This is to avoid filling the dcache with case-insensitive names to the 2042 * same inode, only the actual correct case is stored in the dcache for 2043 * case-insensitive filesystems. 2044 * 2045 * For a case-insensitive lookup match and if the case-exact dentry 2046 * already exists in the dcache, use it and return it. 2047 * 2048 * If no entry exists with the exact case name, allocate new dentry with 2049 * the exact case, and return the spliced entry. 2050 */ 2051 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2052 struct qstr *name) 2053 { 2054 struct dentry *found, *res; 2055 2056 /* 2057 * First check if a dentry matching the name already exists, 2058 * if not go ahead and create it now. 2059 */ 2060 found = d_hash_and_lookup(dentry->d_parent, name); 2061 if (found) { 2062 iput(inode); 2063 return found; 2064 } 2065 if (d_in_lookup(dentry)) { 2066 found = d_alloc_parallel(dentry->d_parent, name, 2067 dentry->d_wait); 2068 if (IS_ERR(found) || !d_in_lookup(found)) { 2069 iput(inode); 2070 return found; 2071 } 2072 } else { 2073 found = d_alloc(dentry->d_parent, name); 2074 if (!found) { 2075 iput(inode); 2076 return ERR_PTR(-ENOMEM); 2077 } 2078 } 2079 res = d_splice_alias(inode, found); 2080 if (res) { 2081 d_lookup_done(found); 2082 dput(found); 2083 return res; 2084 } 2085 return found; 2086 } 2087 EXPORT_SYMBOL(d_add_ci); 2088 2089 /** 2090 * d_same_name - compare dentry name with case-exact name 2091 * @parent: parent dentry 2092 * @dentry: the negative dentry that was passed to the parent's lookup func 2093 * @name: the case-exact name to be associated with the returned dentry 2094 * 2095 * Return: true if names are same, or false 2096 */ 2097 bool d_same_name(const struct dentry *dentry, const struct dentry *parent, 2098 const struct qstr *name) 2099 { 2100 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2101 if (dentry->d_name.len != name->len) 2102 return false; 2103 return dentry_cmp(dentry, name->name, name->len) == 0; 2104 } 2105 return parent->d_op->d_compare(dentry, 2106 dentry->d_name.len, dentry->d_name.name, 2107 name) == 0; 2108 } 2109 EXPORT_SYMBOL_GPL(d_same_name); 2110 2111 /* 2112 * This is __d_lookup_rcu() when the parent dentry has 2113 * DCACHE_OP_COMPARE, which makes things much nastier. 2114 */ 2115 static noinline struct dentry *__d_lookup_rcu_op_compare( 2116 const struct dentry *parent, 2117 const struct qstr *name, 2118 unsigned *seqp) 2119 { 2120 u64 hashlen = name->hash_len; 2121 struct hlist_bl_head *b = d_hash(hashlen); 2122 struct hlist_bl_node *node; 2123 struct dentry *dentry; 2124 2125 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2126 int tlen; 2127 const char *tname; 2128 unsigned seq; 2129 2130 seqretry: 2131 seq = raw_seqcount_begin(&dentry->d_seq); 2132 if (dentry->d_parent != parent) 2133 continue; 2134 if (d_unhashed(dentry)) 2135 continue; 2136 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2137 continue; 2138 tlen = dentry->d_name.len; 2139 tname = dentry->d_name.name; 2140 /* we want a consistent (name,len) pair */ 2141 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2142 cpu_relax(); 2143 goto seqretry; 2144 } 2145 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0) 2146 continue; 2147 *seqp = seq; 2148 return dentry; 2149 } 2150 return NULL; 2151 } 2152 2153 /** 2154 * __d_lookup_rcu - search for a dentry (racy, store-free) 2155 * @parent: parent dentry 2156 * @name: qstr of name we wish to find 2157 * @seqp: returns d_seq value at the point where the dentry was found 2158 * Returns: dentry, or NULL 2159 * 2160 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2161 * resolution (store-free path walking) design described in 2162 * Documentation/filesystems/path-lookup.txt. 2163 * 2164 * This is not to be used outside core vfs. 2165 * 2166 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2167 * held, and rcu_read_lock held. The returned dentry must not be stored into 2168 * without taking d_lock and checking d_seq sequence count against @seq 2169 * returned here. 2170 * 2171 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2172 * function. 2173 * 2174 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2175 * the returned dentry, so long as its parent's seqlock is checked after the 2176 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2177 * is formed, giving integrity down the path walk. 2178 * 2179 * NOTE! The caller *has* to check the resulting dentry against the sequence 2180 * number we've returned before using any of the resulting dentry state! 2181 */ 2182 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2183 const struct qstr *name, 2184 unsigned *seqp) 2185 { 2186 u64 hashlen = name->hash_len; 2187 const unsigned char *str = name->name; 2188 struct hlist_bl_head *b = d_hash(hashlen); 2189 struct hlist_bl_node *node; 2190 struct dentry *dentry; 2191 2192 /* 2193 * Note: There is significant duplication with __d_lookup_rcu which is 2194 * required to prevent single threaded performance regressions 2195 * especially on architectures where smp_rmb (in seqcounts) are costly. 2196 * Keep the two functions in sync. 2197 */ 2198 2199 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) 2200 return __d_lookup_rcu_op_compare(parent, name, seqp); 2201 2202 /* 2203 * The hash list is protected using RCU. 2204 * 2205 * Carefully use d_seq when comparing a candidate dentry, to avoid 2206 * races with d_move(). 2207 * 2208 * It is possible that concurrent renames can mess up our list 2209 * walk here and result in missing our dentry, resulting in the 2210 * false-negative result. d_lookup() protects against concurrent 2211 * renames using rename_lock seqlock. 2212 * 2213 * See Documentation/filesystems/path-lookup.txt for more details. 2214 */ 2215 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2216 unsigned seq; 2217 2218 /* 2219 * The dentry sequence count protects us from concurrent 2220 * renames, and thus protects parent and name fields. 2221 * 2222 * The caller must perform a seqcount check in order 2223 * to do anything useful with the returned dentry. 2224 * 2225 * NOTE! We do a "raw" seqcount_begin here. That means that 2226 * we don't wait for the sequence count to stabilize if it 2227 * is in the middle of a sequence change. If we do the slow 2228 * dentry compare, we will do seqretries until it is stable, 2229 * and if we end up with a successful lookup, we actually 2230 * want to exit RCU lookup anyway. 2231 * 2232 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2233 * we are still guaranteed NUL-termination of ->d_name.name. 2234 */ 2235 seq = raw_seqcount_begin(&dentry->d_seq); 2236 if (dentry->d_parent != parent) 2237 continue; 2238 if (d_unhashed(dentry)) 2239 continue; 2240 if (dentry->d_name.hash_len != hashlen) 2241 continue; 2242 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2243 continue; 2244 *seqp = seq; 2245 return dentry; 2246 } 2247 return NULL; 2248 } 2249 2250 /** 2251 * d_lookup - search for a dentry 2252 * @parent: parent dentry 2253 * @name: qstr of name we wish to find 2254 * Returns: dentry, or NULL 2255 * 2256 * d_lookup searches the children of the parent dentry for the name in 2257 * question. If the dentry is found its reference count is incremented and the 2258 * dentry is returned. The caller must use dput to free the entry when it has 2259 * finished using it. %NULL is returned if the dentry does not exist. 2260 */ 2261 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2262 { 2263 struct dentry *dentry; 2264 unsigned seq; 2265 2266 do { 2267 seq = read_seqbegin(&rename_lock); 2268 dentry = __d_lookup(parent, name); 2269 if (dentry) 2270 break; 2271 } while (read_seqretry(&rename_lock, seq)); 2272 return dentry; 2273 } 2274 EXPORT_SYMBOL(d_lookup); 2275 2276 /** 2277 * __d_lookup - search for a dentry (racy) 2278 * @parent: parent dentry 2279 * @name: qstr of name we wish to find 2280 * Returns: dentry, or NULL 2281 * 2282 * __d_lookup is like d_lookup, however it may (rarely) return a 2283 * false-negative result due to unrelated rename activity. 2284 * 2285 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2286 * however it must be used carefully, eg. with a following d_lookup in 2287 * the case of failure. 2288 * 2289 * __d_lookup callers must be commented. 2290 */ 2291 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2292 { 2293 unsigned int hash = name->hash; 2294 struct hlist_bl_head *b = d_hash(hash); 2295 struct hlist_bl_node *node; 2296 struct dentry *found = NULL; 2297 struct dentry *dentry; 2298 2299 /* 2300 * Note: There is significant duplication with __d_lookup_rcu which is 2301 * required to prevent single threaded performance regressions 2302 * especially on architectures where smp_rmb (in seqcounts) are costly. 2303 * Keep the two functions in sync. 2304 */ 2305 2306 /* 2307 * The hash list is protected using RCU. 2308 * 2309 * Take d_lock when comparing a candidate dentry, to avoid races 2310 * with d_move(). 2311 * 2312 * It is possible that concurrent renames can mess up our list 2313 * walk here and result in missing our dentry, resulting in the 2314 * false-negative result. d_lookup() protects against concurrent 2315 * renames using rename_lock seqlock. 2316 * 2317 * See Documentation/filesystems/path-lookup.txt for more details. 2318 */ 2319 rcu_read_lock(); 2320 2321 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2322 2323 if (dentry->d_name.hash != hash) 2324 continue; 2325 2326 spin_lock(&dentry->d_lock); 2327 if (dentry->d_parent != parent) 2328 goto next; 2329 if (d_unhashed(dentry)) 2330 goto next; 2331 2332 if (!d_same_name(dentry, parent, name)) 2333 goto next; 2334 2335 dentry->d_lockref.count++; 2336 found = dentry; 2337 spin_unlock(&dentry->d_lock); 2338 break; 2339 next: 2340 spin_unlock(&dentry->d_lock); 2341 } 2342 rcu_read_unlock(); 2343 2344 return found; 2345 } 2346 2347 /** 2348 * d_hash_and_lookup - hash the qstr then search for a dentry 2349 * @dir: Directory to search in 2350 * @name: qstr of name we wish to find 2351 * 2352 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2353 */ 2354 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2355 { 2356 /* 2357 * Check for a fs-specific hash function. Note that we must 2358 * calculate the standard hash first, as the d_op->d_hash() 2359 * routine may choose to leave the hash value unchanged. 2360 */ 2361 name->hash = full_name_hash(dir, name->name, name->len); 2362 if (dir->d_flags & DCACHE_OP_HASH) { 2363 int err = dir->d_op->d_hash(dir, name); 2364 if (unlikely(err < 0)) 2365 return ERR_PTR(err); 2366 } 2367 return d_lookup(dir, name); 2368 } 2369 EXPORT_SYMBOL(d_hash_and_lookup); 2370 2371 /* 2372 * When a file is deleted, we have two options: 2373 * - turn this dentry into a negative dentry 2374 * - unhash this dentry and free it. 2375 * 2376 * Usually, we want to just turn this into 2377 * a negative dentry, but if anybody else is 2378 * currently using the dentry or the inode 2379 * we can't do that and we fall back on removing 2380 * it from the hash queues and waiting for 2381 * it to be deleted later when it has no users 2382 */ 2383 2384 /** 2385 * d_delete - delete a dentry 2386 * @dentry: The dentry to delete 2387 * 2388 * Turn the dentry into a negative dentry if possible, otherwise 2389 * remove it from the hash queues so it can be deleted later 2390 */ 2391 2392 void d_delete(struct dentry * dentry) 2393 { 2394 struct inode *inode = dentry->d_inode; 2395 2396 spin_lock(&inode->i_lock); 2397 spin_lock(&dentry->d_lock); 2398 /* 2399 * Are we the only user? 2400 */ 2401 if (dentry->d_lockref.count == 1) { 2402 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2403 dentry_unlink_inode(dentry); 2404 } else { 2405 __d_drop(dentry); 2406 spin_unlock(&dentry->d_lock); 2407 spin_unlock(&inode->i_lock); 2408 } 2409 } 2410 EXPORT_SYMBOL(d_delete); 2411 2412 static void __d_rehash(struct dentry *entry) 2413 { 2414 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2415 2416 hlist_bl_lock(b); 2417 hlist_bl_add_head_rcu(&entry->d_hash, b); 2418 hlist_bl_unlock(b); 2419 } 2420 2421 /** 2422 * d_rehash - add an entry back to the hash 2423 * @entry: dentry to add to the hash 2424 * 2425 * Adds a dentry to the hash according to its name. 2426 */ 2427 2428 void d_rehash(struct dentry * entry) 2429 { 2430 spin_lock(&entry->d_lock); 2431 __d_rehash(entry); 2432 spin_unlock(&entry->d_lock); 2433 } 2434 EXPORT_SYMBOL(d_rehash); 2435 2436 static inline unsigned start_dir_add(struct inode *dir) 2437 { 2438 preempt_disable_nested(); 2439 for (;;) { 2440 unsigned n = dir->i_dir_seq; 2441 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2442 return n; 2443 cpu_relax(); 2444 } 2445 } 2446 2447 static inline void end_dir_add(struct inode *dir, unsigned int n, 2448 wait_queue_head_t *d_wait) 2449 { 2450 smp_store_release(&dir->i_dir_seq, n + 2); 2451 preempt_enable_nested(); 2452 wake_up_all(d_wait); 2453 } 2454 2455 static void d_wait_lookup(struct dentry *dentry) 2456 { 2457 if (d_in_lookup(dentry)) { 2458 DECLARE_WAITQUEUE(wait, current); 2459 add_wait_queue(dentry->d_wait, &wait); 2460 do { 2461 set_current_state(TASK_UNINTERRUPTIBLE); 2462 spin_unlock(&dentry->d_lock); 2463 schedule(); 2464 spin_lock(&dentry->d_lock); 2465 } while (d_in_lookup(dentry)); 2466 } 2467 } 2468 2469 struct dentry *d_alloc_parallel(struct dentry *parent, 2470 const struct qstr *name, 2471 wait_queue_head_t *wq) 2472 { 2473 unsigned int hash = name->hash; 2474 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2475 struct hlist_bl_node *node; 2476 struct dentry *new = d_alloc(parent, name); 2477 struct dentry *dentry; 2478 unsigned seq, r_seq, d_seq; 2479 2480 if (unlikely(!new)) 2481 return ERR_PTR(-ENOMEM); 2482 2483 retry: 2484 rcu_read_lock(); 2485 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2486 r_seq = read_seqbegin(&rename_lock); 2487 dentry = __d_lookup_rcu(parent, name, &d_seq); 2488 if (unlikely(dentry)) { 2489 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2490 rcu_read_unlock(); 2491 goto retry; 2492 } 2493 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2494 rcu_read_unlock(); 2495 dput(dentry); 2496 goto retry; 2497 } 2498 rcu_read_unlock(); 2499 dput(new); 2500 return dentry; 2501 } 2502 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2503 rcu_read_unlock(); 2504 goto retry; 2505 } 2506 2507 if (unlikely(seq & 1)) { 2508 rcu_read_unlock(); 2509 goto retry; 2510 } 2511 2512 hlist_bl_lock(b); 2513 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2514 hlist_bl_unlock(b); 2515 rcu_read_unlock(); 2516 goto retry; 2517 } 2518 /* 2519 * No changes for the parent since the beginning of d_lookup(). 2520 * Since all removals from the chain happen with hlist_bl_lock(), 2521 * any potential in-lookup matches are going to stay here until 2522 * we unlock the chain. All fields are stable in everything 2523 * we encounter. 2524 */ 2525 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2526 if (dentry->d_name.hash != hash) 2527 continue; 2528 if (dentry->d_parent != parent) 2529 continue; 2530 if (!d_same_name(dentry, parent, name)) 2531 continue; 2532 hlist_bl_unlock(b); 2533 /* now we can try to grab a reference */ 2534 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2535 rcu_read_unlock(); 2536 goto retry; 2537 } 2538 2539 rcu_read_unlock(); 2540 /* 2541 * somebody is likely to be still doing lookup for it; 2542 * wait for them to finish 2543 */ 2544 spin_lock(&dentry->d_lock); 2545 d_wait_lookup(dentry); 2546 /* 2547 * it's not in-lookup anymore; in principle we should repeat 2548 * everything from dcache lookup, but it's likely to be what 2549 * d_lookup() would've found anyway. If it is, just return it; 2550 * otherwise we really have to repeat the whole thing. 2551 */ 2552 if (unlikely(dentry->d_name.hash != hash)) 2553 goto mismatch; 2554 if (unlikely(dentry->d_parent != parent)) 2555 goto mismatch; 2556 if (unlikely(d_unhashed(dentry))) 2557 goto mismatch; 2558 if (unlikely(!d_same_name(dentry, parent, name))) 2559 goto mismatch; 2560 /* OK, it *is* a hashed match; return it */ 2561 spin_unlock(&dentry->d_lock); 2562 dput(new); 2563 return dentry; 2564 } 2565 rcu_read_unlock(); 2566 /* we can't take ->d_lock here; it's OK, though. */ 2567 new->d_flags |= DCACHE_PAR_LOOKUP; 2568 new->d_wait = wq; 2569 hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b); 2570 hlist_bl_unlock(b); 2571 return new; 2572 mismatch: 2573 spin_unlock(&dentry->d_lock); 2574 dput(dentry); 2575 goto retry; 2576 } 2577 EXPORT_SYMBOL(d_alloc_parallel); 2578 2579 /* 2580 * - Unhash the dentry 2581 * - Retrieve and clear the waitqueue head in dentry 2582 * - Return the waitqueue head 2583 */ 2584 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry) 2585 { 2586 wait_queue_head_t *d_wait; 2587 struct hlist_bl_head *b; 2588 2589 lockdep_assert_held(&dentry->d_lock); 2590 2591 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash); 2592 hlist_bl_lock(b); 2593 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2594 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2595 d_wait = dentry->d_wait; 2596 dentry->d_wait = NULL; 2597 hlist_bl_unlock(b); 2598 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2599 INIT_LIST_HEAD(&dentry->d_lru); 2600 return d_wait; 2601 } 2602 2603 void __d_lookup_unhash_wake(struct dentry *dentry) 2604 { 2605 spin_lock(&dentry->d_lock); 2606 wake_up_all(__d_lookup_unhash(dentry)); 2607 spin_unlock(&dentry->d_lock); 2608 } 2609 EXPORT_SYMBOL(__d_lookup_unhash_wake); 2610 2611 /* inode->i_lock held if inode is non-NULL */ 2612 2613 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2614 { 2615 wait_queue_head_t *d_wait; 2616 struct inode *dir = NULL; 2617 unsigned n; 2618 spin_lock(&dentry->d_lock); 2619 if (unlikely(d_in_lookup(dentry))) { 2620 dir = dentry->d_parent->d_inode; 2621 n = start_dir_add(dir); 2622 d_wait = __d_lookup_unhash(dentry); 2623 } 2624 if (inode) { 2625 unsigned add_flags = d_flags_for_inode(inode); 2626 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2627 raw_write_seqcount_begin(&dentry->d_seq); 2628 __d_set_inode_and_type(dentry, inode, add_flags); 2629 raw_write_seqcount_end(&dentry->d_seq); 2630 fsnotify_update_flags(dentry); 2631 } 2632 __d_rehash(dentry); 2633 if (dir) 2634 end_dir_add(dir, n, d_wait); 2635 spin_unlock(&dentry->d_lock); 2636 if (inode) 2637 spin_unlock(&inode->i_lock); 2638 } 2639 2640 /** 2641 * d_add - add dentry to hash queues 2642 * @entry: dentry to add 2643 * @inode: The inode to attach to this dentry 2644 * 2645 * This adds the entry to the hash queues and initializes @inode. 2646 * The entry was actually filled in earlier during d_alloc(). 2647 */ 2648 2649 void d_add(struct dentry *entry, struct inode *inode) 2650 { 2651 if (inode) { 2652 security_d_instantiate(entry, inode); 2653 spin_lock(&inode->i_lock); 2654 } 2655 __d_add(entry, inode); 2656 } 2657 EXPORT_SYMBOL(d_add); 2658 2659 /** 2660 * d_exact_alias - find and hash an exact unhashed alias 2661 * @entry: dentry to add 2662 * @inode: The inode to go with this dentry 2663 * 2664 * If an unhashed dentry with the same name/parent and desired 2665 * inode already exists, hash and return it. Otherwise, return 2666 * NULL. 2667 * 2668 * Parent directory should be locked. 2669 */ 2670 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2671 { 2672 struct dentry *alias; 2673 unsigned int hash = entry->d_name.hash; 2674 2675 spin_lock(&inode->i_lock); 2676 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2677 /* 2678 * Don't need alias->d_lock here, because aliases with 2679 * d_parent == entry->d_parent are not subject to name or 2680 * parent changes, because the parent inode i_mutex is held. 2681 */ 2682 if (alias->d_name.hash != hash) 2683 continue; 2684 if (alias->d_parent != entry->d_parent) 2685 continue; 2686 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2687 continue; 2688 spin_lock(&alias->d_lock); 2689 if (!d_unhashed(alias)) { 2690 spin_unlock(&alias->d_lock); 2691 alias = NULL; 2692 } else { 2693 dget_dlock(alias); 2694 __d_rehash(alias); 2695 spin_unlock(&alias->d_lock); 2696 } 2697 spin_unlock(&inode->i_lock); 2698 return alias; 2699 } 2700 spin_unlock(&inode->i_lock); 2701 return NULL; 2702 } 2703 EXPORT_SYMBOL(d_exact_alias); 2704 2705 static void swap_names(struct dentry *dentry, struct dentry *target) 2706 { 2707 if (unlikely(dname_external(target))) { 2708 if (unlikely(dname_external(dentry))) { 2709 /* 2710 * Both external: swap the pointers 2711 */ 2712 swap(target->d_name.name, dentry->d_name.name); 2713 } else { 2714 /* 2715 * dentry:internal, target:external. Steal target's 2716 * storage and make target internal. 2717 */ 2718 memcpy(target->d_iname, dentry->d_name.name, 2719 dentry->d_name.len + 1); 2720 dentry->d_name.name = target->d_name.name; 2721 target->d_name.name = target->d_iname; 2722 } 2723 } else { 2724 if (unlikely(dname_external(dentry))) { 2725 /* 2726 * dentry:external, target:internal. Give dentry's 2727 * storage to target and make dentry internal 2728 */ 2729 memcpy(dentry->d_iname, target->d_name.name, 2730 target->d_name.len + 1); 2731 target->d_name.name = dentry->d_name.name; 2732 dentry->d_name.name = dentry->d_iname; 2733 } else { 2734 /* 2735 * Both are internal. 2736 */ 2737 unsigned int i; 2738 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2739 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2740 swap(((long *) &dentry->d_iname)[i], 2741 ((long *) &target->d_iname)[i]); 2742 } 2743 } 2744 } 2745 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2746 } 2747 2748 static void copy_name(struct dentry *dentry, struct dentry *target) 2749 { 2750 struct external_name *old_name = NULL; 2751 if (unlikely(dname_external(dentry))) 2752 old_name = external_name(dentry); 2753 if (unlikely(dname_external(target))) { 2754 atomic_inc(&external_name(target)->u.count); 2755 dentry->d_name = target->d_name; 2756 } else { 2757 memcpy(dentry->d_iname, target->d_name.name, 2758 target->d_name.len + 1); 2759 dentry->d_name.name = dentry->d_iname; 2760 dentry->d_name.hash_len = target->d_name.hash_len; 2761 } 2762 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2763 kfree_rcu(old_name, u.head); 2764 } 2765 2766 /* 2767 * __d_move - move a dentry 2768 * @dentry: entry to move 2769 * @target: new dentry 2770 * @exchange: exchange the two dentries 2771 * 2772 * Update the dcache to reflect the move of a file name. Negative 2773 * dcache entries should not be moved in this way. Caller must hold 2774 * rename_lock, the i_mutex of the source and target directories, 2775 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2776 */ 2777 static void __d_move(struct dentry *dentry, struct dentry *target, 2778 bool exchange) 2779 { 2780 struct dentry *old_parent, *p; 2781 wait_queue_head_t *d_wait; 2782 struct inode *dir = NULL; 2783 unsigned n; 2784 2785 WARN_ON(!dentry->d_inode); 2786 if (WARN_ON(dentry == target)) 2787 return; 2788 2789 BUG_ON(d_ancestor(target, dentry)); 2790 old_parent = dentry->d_parent; 2791 p = d_ancestor(old_parent, target); 2792 if (IS_ROOT(dentry)) { 2793 BUG_ON(p); 2794 spin_lock(&target->d_parent->d_lock); 2795 } else if (!p) { 2796 /* target is not a descendent of dentry->d_parent */ 2797 spin_lock(&target->d_parent->d_lock); 2798 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2799 } else { 2800 BUG_ON(p == dentry); 2801 spin_lock(&old_parent->d_lock); 2802 if (p != target) 2803 spin_lock_nested(&target->d_parent->d_lock, 2804 DENTRY_D_LOCK_NESTED); 2805 } 2806 spin_lock_nested(&dentry->d_lock, 2); 2807 spin_lock_nested(&target->d_lock, 3); 2808 2809 if (unlikely(d_in_lookup(target))) { 2810 dir = target->d_parent->d_inode; 2811 n = start_dir_add(dir); 2812 d_wait = __d_lookup_unhash(target); 2813 } 2814 2815 write_seqcount_begin(&dentry->d_seq); 2816 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2817 2818 /* unhash both */ 2819 if (!d_unhashed(dentry)) 2820 ___d_drop(dentry); 2821 if (!d_unhashed(target)) 2822 ___d_drop(target); 2823 2824 /* ... and switch them in the tree */ 2825 dentry->d_parent = target->d_parent; 2826 if (!exchange) { 2827 copy_name(dentry, target); 2828 target->d_hash.pprev = NULL; 2829 dentry->d_parent->d_lockref.count++; 2830 if (dentry != old_parent) /* wasn't IS_ROOT */ 2831 WARN_ON(!--old_parent->d_lockref.count); 2832 } else { 2833 target->d_parent = old_parent; 2834 swap_names(dentry, target); 2835 if (!hlist_unhashed(&target->d_sib)) 2836 __hlist_del(&target->d_sib); 2837 hlist_add_head(&target->d_sib, &target->d_parent->d_children); 2838 __d_rehash(target); 2839 fsnotify_update_flags(target); 2840 } 2841 if (!hlist_unhashed(&dentry->d_sib)) 2842 __hlist_del(&dentry->d_sib); 2843 hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children); 2844 __d_rehash(dentry); 2845 fsnotify_update_flags(dentry); 2846 fscrypt_handle_d_move(dentry); 2847 2848 write_seqcount_end(&target->d_seq); 2849 write_seqcount_end(&dentry->d_seq); 2850 2851 if (dir) 2852 end_dir_add(dir, n, d_wait); 2853 2854 if (dentry->d_parent != old_parent) 2855 spin_unlock(&dentry->d_parent->d_lock); 2856 if (dentry != old_parent) 2857 spin_unlock(&old_parent->d_lock); 2858 spin_unlock(&target->d_lock); 2859 spin_unlock(&dentry->d_lock); 2860 } 2861 2862 /* 2863 * d_move - move a dentry 2864 * @dentry: entry to move 2865 * @target: new dentry 2866 * 2867 * Update the dcache to reflect the move of a file name. Negative 2868 * dcache entries should not be moved in this way. See the locking 2869 * requirements for __d_move. 2870 */ 2871 void d_move(struct dentry *dentry, struct dentry *target) 2872 { 2873 write_seqlock(&rename_lock); 2874 __d_move(dentry, target, false); 2875 write_sequnlock(&rename_lock); 2876 } 2877 EXPORT_SYMBOL(d_move); 2878 2879 /* 2880 * d_exchange - exchange two dentries 2881 * @dentry1: first dentry 2882 * @dentry2: second dentry 2883 */ 2884 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2885 { 2886 write_seqlock(&rename_lock); 2887 2888 WARN_ON(!dentry1->d_inode); 2889 WARN_ON(!dentry2->d_inode); 2890 WARN_ON(IS_ROOT(dentry1)); 2891 WARN_ON(IS_ROOT(dentry2)); 2892 2893 __d_move(dentry1, dentry2, true); 2894 2895 write_sequnlock(&rename_lock); 2896 } 2897 2898 /** 2899 * d_ancestor - search for an ancestor 2900 * @p1: ancestor dentry 2901 * @p2: child dentry 2902 * 2903 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2904 * an ancestor of p2, else NULL. 2905 */ 2906 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2907 { 2908 struct dentry *p; 2909 2910 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2911 if (p->d_parent == p1) 2912 return p; 2913 } 2914 return NULL; 2915 } 2916 2917 /* 2918 * This helper attempts to cope with remotely renamed directories 2919 * 2920 * It assumes that the caller is already holding 2921 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2922 * 2923 * Note: If ever the locking in lock_rename() changes, then please 2924 * remember to update this too... 2925 */ 2926 static int __d_unalias(struct dentry *dentry, struct dentry *alias) 2927 { 2928 struct mutex *m1 = NULL; 2929 struct rw_semaphore *m2 = NULL; 2930 int ret = -ESTALE; 2931 2932 /* If alias and dentry share a parent, then no extra locks required */ 2933 if (alias->d_parent == dentry->d_parent) 2934 goto out_unalias; 2935 2936 /* See lock_rename() */ 2937 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2938 goto out_err; 2939 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2940 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2941 goto out_err; 2942 m2 = &alias->d_parent->d_inode->i_rwsem; 2943 out_unalias: 2944 __d_move(alias, dentry, false); 2945 ret = 0; 2946 out_err: 2947 if (m2) 2948 up_read(m2); 2949 if (m1) 2950 mutex_unlock(m1); 2951 return ret; 2952 } 2953 2954 /** 2955 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2956 * @inode: the inode which may have a disconnected dentry 2957 * @dentry: a negative dentry which we want to point to the inode. 2958 * 2959 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2960 * place of the given dentry and return it, else simply d_add the inode 2961 * to the dentry and return NULL. 2962 * 2963 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2964 * we should error out: directories can't have multiple aliases. 2965 * 2966 * This is needed in the lookup routine of any filesystem that is exportable 2967 * (via knfsd) so that we can build dcache paths to directories effectively. 2968 * 2969 * If a dentry was found and moved, then it is returned. Otherwise NULL 2970 * is returned. This matches the expected return value of ->lookup. 2971 * 2972 * Cluster filesystems may call this function with a negative, hashed dentry. 2973 * In that case, we know that the inode will be a regular file, and also this 2974 * will only occur during atomic_open. So we need to check for the dentry 2975 * being already hashed only in the final case. 2976 */ 2977 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2978 { 2979 if (IS_ERR(inode)) 2980 return ERR_CAST(inode); 2981 2982 BUG_ON(!d_unhashed(dentry)); 2983 2984 if (!inode) 2985 goto out; 2986 2987 security_d_instantiate(dentry, inode); 2988 spin_lock(&inode->i_lock); 2989 if (S_ISDIR(inode->i_mode)) { 2990 struct dentry *new = __d_find_any_alias(inode); 2991 if (unlikely(new)) { 2992 /* The reference to new ensures it remains an alias */ 2993 spin_unlock(&inode->i_lock); 2994 write_seqlock(&rename_lock); 2995 if (unlikely(d_ancestor(new, dentry))) { 2996 write_sequnlock(&rename_lock); 2997 dput(new); 2998 new = ERR_PTR(-ELOOP); 2999 pr_warn_ratelimited( 3000 "VFS: Lookup of '%s' in %s %s" 3001 " would have caused loop\n", 3002 dentry->d_name.name, 3003 inode->i_sb->s_type->name, 3004 inode->i_sb->s_id); 3005 } else if (!IS_ROOT(new)) { 3006 struct dentry *old_parent = dget(new->d_parent); 3007 int err = __d_unalias(dentry, new); 3008 write_sequnlock(&rename_lock); 3009 if (err) { 3010 dput(new); 3011 new = ERR_PTR(err); 3012 } 3013 dput(old_parent); 3014 } else { 3015 __d_move(new, dentry, false); 3016 write_sequnlock(&rename_lock); 3017 } 3018 iput(inode); 3019 return new; 3020 } 3021 } 3022 out: 3023 __d_add(dentry, inode); 3024 return NULL; 3025 } 3026 EXPORT_SYMBOL(d_splice_alias); 3027 3028 /* 3029 * Test whether new_dentry is a subdirectory of old_dentry. 3030 * 3031 * Trivially implemented using the dcache structure 3032 */ 3033 3034 /** 3035 * is_subdir - is new dentry a subdirectory of old_dentry 3036 * @new_dentry: new dentry 3037 * @old_dentry: old dentry 3038 * 3039 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3040 * Returns false otherwise. 3041 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3042 */ 3043 3044 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3045 { 3046 bool subdir; 3047 unsigned seq; 3048 3049 if (new_dentry == old_dentry) 3050 return true; 3051 3052 /* Access d_parent under rcu as d_move() may change it. */ 3053 rcu_read_lock(); 3054 seq = read_seqbegin(&rename_lock); 3055 subdir = d_ancestor(old_dentry, new_dentry); 3056 /* Try lockless once... */ 3057 if (read_seqretry(&rename_lock, seq)) { 3058 /* ...else acquire lock for progress even on deep chains. */ 3059 read_seqlock_excl(&rename_lock); 3060 subdir = d_ancestor(old_dentry, new_dentry); 3061 read_sequnlock_excl(&rename_lock); 3062 } 3063 rcu_read_unlock(); 3064 return subdir; 3065 } 3066 EXPORT_SYMBOL(is_subdir); 3067 3068 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3069 { 3070 struct dentry *root = data; 3071 if (dentry != root) { 3072 if (d_unhashed(dentry) || !dentry->d_inode) 3073 return D_WALK_SKIP; 3074 3075 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3076 dentry->d_flags |= DCACHE_GENOCIDE; 3077 dentry->d_lockref.count--; 3078 } 3079 } 3080 return D_WALK_CONTINUE; 3081 } 3082 3083 void d_genocide(struct dentry *parent) 3084 { 3085 d_walk(parent, parent, d_genocide_kill); 3086 } 3087 3088 void d_mark_tmpfile(struct file *file, struct inode *inode) 3089 { 3090 struct dentry *dentry = file->f_path.dentry; 3091 3092 BUG_ON(dentry->d_name.name != dentry->d_iname || 3093 !hlist_unhashed(&dentry->d_u.d_alias) || 3094 !d_unlinked(dentry)); 3095 spin_lock(&dentry->d_parent->d_lock); 3096 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3097 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3098 (unsigned long long)inode->i_ino); 3099 spin_unlock(&dentry->d_lock); 3100 spin_unlock(&dentry->d_parent->d_lock); 3101 } 3102 EXPORT_SYMBOL(d_mark_tmpfile); 3103 3104 void d_tmpfile(struct file *file, struct inode *inode) 3105 { 3106 struct dentry *dentry = file->f_path.dentry; 3107 3108 inode_dec_link_count(inode); 3109 d_mark_tmpfile(file, inode); 3110 d_instantiate(dentry, inode); 3111 } 3112 EXPORT_SYMBOL(d_tmpfile); 3113 3114 /* 3115 * Obtain inode number of the parent dentry. 3116 */ 3117 ino_t d_parent_ino(struct dentry *dentry) 3118 { 3119 struct dentry *parent; 3120 struct inode *iparent; 3121 unsigned seq; 3122 ino_t ret; 3123 3124 scoped_guard(rcu) { 3125 seq = raw_seqcount_begin(&dentry->d_seq); 3126 parent = READ_ONCE(dentry->d_parent); 3127 iparent = d_inode_rcu(parent); 3128 if (likely(iparent)) { 3129 ret = iparent->i_ino; 3130 if (!read_seqcount_retry(&dentry->d_seq, seq)) 3131 return ret; 3132 } 3133 } 3134 3135 spin_lock(&dentry->d_lock); 3136 ret = dentry->d_parent->d_inode->i_ino; 3137 spin_unlock(&dentry->d_lock); 3138 return ret; 3139 } 3140 EXPORT_SYMBOL(d_parent_ino); 3141 3142 static __initdata unsigned long dhash_entries; 3143 static int __init set_dhash_entries(char *str) 3144 { 3145 if (!str) 3146 return 0; 3147 dhash_entries = simple_strtoul(str, &str, 0); 3148 return 1; 3149 } 3150 __setup("dhash_entries=", set_dhash_entries); 3151 3152 static void __init dcache_init_early(void) 3153 { 3154 /* If hashes are distributed across NUMA nodes, defer 3155 * hash allocation until vmalloc space is available. 3156 */ 3157 if (hashdist) 3158 return; 3159 3160 dentry_hashtable = 3161 alloc_large_system_hash("Dentry cache", 3162 sizeof(struct hlist_bl_head), 3163 dhash_entries, 3164 13, 3165 HASH_EARLY | HASH_ZERO, 3166 &d_hash_shift, 3167 NULL, 3168 0, 3169 0); 3170 d_hash_shift = 32 - d_hash_shift; 3171 3172 runtime_const_init(shift, d_hash_shift); 3173 runtime_const_init(ptr, dentry_hashtable); 3174 } 3175 3176 static void __init dcache_init(void) 3177 { 3178 /* 3179 * A constructor could be added for stable state like the lists, 3180 * but it is probably not worth it because of the cache nature 3181 * of the dcache. 3182 */ 3183 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3184 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT, 3185 d_iname); 3186 3187 /* Hash may have been set up in dcache_init_early */ 3188 if (!hashdist) 3189 return; 3190 3191 dentry_hashtable = 3192 alloc_large_system_hash("Dentry cache", 3193 sizeof(struct hlist_bl_head), 3194 dhash_entries, 3195 13, 3196 HASH_ZERO, 3197 &d_hash_shift, 3198 NULL, 3199 0, 3200 0); 3201 d_hash_shift = 32 - d_hash_shift; 3202 3203 runtime_const_init(shift, d_hash_shift); 3204 runtime_const_init(ptr, dentry_hashtable); 3205 } 3206 3207 /* SLAB cache for __getname() consumers */ 3208 struct kmem_cache *names_cachep __ro_after_init; 3209 EXPORT_SYMBOL(names_cachep); 3210 3211 void __init vfs_caches_init_early(void) 3212 { 3213 int i; 3214 3215 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3216 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3217 3218 dcache_init_early(); 3219 inode_init_early(); 3220 } 3221 3222 void __init vfs_caches_init(void) 3223 { 3224 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3225 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3226 3227 dcache_init(); 3228 inode_init(); 3229 files_init(); 3230 files_maxfiles_init(); 3231 mnt_init(); 3232 bdev_cache_init(); 3233 chrdev_init(); 3234 } 3235
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.