~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/dcache.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * fs/dcache.c
  4  *
  5  * Complete reimplementation
  6  * (C) 1997 Thomas Schoebel-Theuer,
  7  * with heavy changes by Linus Torvalds
  8  */
  9 
 10 /*
 11  * Notes on the allocation strategy:
 12  *
 13  * The dcache is a master of the icache - whenever a dcache entry
 14  * exists, the inode will always exist. "iput()" is done either when
 15  * the dcache entry is deleted or garbage collected.
 16  */
 17 
 18 #include <linux/ratelimit.h>
 19 #include <linux/string.h>
 20 #include <linux/mm.h>
 21 #include <linux/fs.h>
 22 #include <linux/fscrypt.h>
 23 #include <linux/fsnotify.h>
 24 #include <linux/slab.h>
 25 #include <linux/init.h>
 26 #include <linux/hash.h>
 27 #include <linux/cache.h>
 28 #include <linux/export.h>
 29 #include <linux/security.h>
 30 #include <linux/seqlock.h>
 31 #include <linux/memblock.h>
 32 #include <linux/bit_spinlock.h>
 33 #include <linux/rculist_bl.h>
 34 #include <linux/list_lru.h>
 35 #include "internal.h"
 36 #include "mount.h"
 37 
 38 #include <asm/runtime-const.h>
 39 
 40 /*
 41  * Usage:
 42  * dcache->d_inode->i_lock protects:
 43  *   - i_dentry, d_u.d_alias, d_inode of aliases
 44  * dcache_hash_bucket lock protects:
 45  *   - the dcache hash table
 46  * s_roots bl list spinlock protects:
 47  *   - the s_roots list (see __d_drop)
 48  * dentry->d_sb->s_dentry_lru_lock protects:
 49  *   - the dcache lru lists and counters
 50  * d_lock protects:
 51  *   - d_flags
 52  *   - d_name
 53  *   - d_lru
 54  *   - d_count
 55  *   - d_unhashed()
 56  *   - d_parent and d_chilren
 57  *   - childrens' d_sib and d_parent
 58  *   - d_u.d_alias, d_inode
 59  *
 60  * Ordering:
 61  * dentry->d_inode->i_lock
 62  *   dentry->d_lock
 63  *     dentry->d_sb->s_dentry_lru_lock
 64  *     dcache_hash_bucket lock
 65  *     s_roots lock
 66  *
 67  * If there is an ancestor relationship:
 68  * dentry->d_parent->...->d_parent->d_lock
 69  *   ...
 70  *     dentry->d_parent->d_lock
 71  *       dentry->d_lock
 72  *
 73  * If no ancestor relationship:
 74  * arbitrary, since it's serialized on rename_lock
 75  */
 76 int sysctl_vfs_cache_pressure __read_mostly = 100;
 77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
 78 
 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
 80 
 81 EXPORT_SYMBOL(rename_lock);
 82 
 83 static struct kmem_cache *dentry_cache __ro_after_init;
 84 
 85 const struct qstr empty_name = QSTR_INIT("", 0);
 86 EXPORT_SYMBOL(empty_name);
 87 const struct qstr slash_name = QSTR_INIT("/", 1);
 88 EXPORT_SYMBOL(slash_name);
 89 const struct qstr dotdot_name = QSTR_INIT("..", 2);
 90 EXPORT_SYMBOL(dotdot_name);
 91 
 92 /*
 93  * This is the single most critical data structure when it comes
 94  * to the dcache: the hashtable for lookups. Somebody should try
 95  * to make this good - I've just made it work.
 96  *
 97  * This hash-function tries to avoid losing too many bits of hash
 98  * information, yet avoid using a prime hash-size or similar.
 99  *
100  * Marking the variables "used" ensures that the compiler doesn't
101  * optimize them away completely on architectures with runtime
102  * constant infrastructure, this allows debuggers to see their
103  * values. But updating these values has no effect on those arches.
104  */
105 
106 static unsigned int d_hash_shift __ro_after_init __used;
107 
108 static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
109 
110 static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
111 {
112         return runtime_const_ptr(dentry_hashtable) +
113                 runtime_const_shift_right_32(hashlen, d_hash_shift);
114 }
115 
116 #define IN_LOOKUP_SHIFT 10
117 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
118 
119 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
120                                         unsigned int hash)
121 {
122         hash += (unsigned long) parent / L1_CACHE_BYTES;
123         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
124 }
125 
126 struct dentry_stat_t {
127         long nr_dentry;
128         long nr_unused;
129         long age_limit;         /* age in seconds */
130         long want_pages;        /* pages requested by system */
131         long nr_negative;       /* # of unused negative dentries */
132         long dummy;             /* Reserved for future use */
133 };
134 
135 static DEFINE_PER_CPU(long, nr_dentry);
136 static DEFINE_PER_CPU(long, nr_dentry_unused);
137 static DEFINE_PER_CPU(long, nr_dentry_negative);
138 
139 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
140 /* Statistics gathering. */
141 static struct dentry_stat_t dentry_stat = {
142         .age_limit = 45,
143 };
144 
145 /*
146  * Here we resort to our own counters instead of using generic per-cpu counters
147  * for consistency with what the vfs inode code does. We are expected to harvest
148  * better code and performance by having our own specialized counters.
149  *
150  * Please note that the loop is done over all possible CPUs, not over all online
151  * CPUs. The reason for this is that we don't want to play games with CPUs going
152  * on and off. If one of them goes off, we will just keep their counters.
153  *
154  * glommer: See cffbc8a for details, and if you ever intend to change this,
155  * please update all vfs counters to match.
156  */
157 static long get_nr_dentry(void)
158 {
159         int i;
160         long sum = 0;
161         for_each_possible_cpu(i)
162                 sum += per_cpu(nr_dentry, i);
163         return sum < 0 ? 0 : sum;
164 }
165 
166 static long get_nr_dentry_unused(void)
167 {
168         int i;
169         long sum = 0;
170         for_each_possible_cpu(i)
171                 sum += per_cpu(nr_dentry_unused, i);
172         return sum < 0 ? 0 : sum;
173 }
174 
175 static long get_nr_dentry_negative(void)
176 {
177         int i;
178         long sum = 0;
179 
180         for_each_possible_cpu(i)
181                 sum += per_cpu(nr_dentry_negative, i);
182         return sum < 0 ? 0 : sum;
183 }
184 
185 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
186                           size_t *lenp, loff_t *ppos)
187 {
188         dentry_stat.nr_dentry = get_nr_dentry();
189         dentry_stat.nr_unused = get_nr_dentry_unused();
190         dentry_stat.nr_negative = get_nr_dentry_negative();
191         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
192 }
193 
194 static struct ctl_table fs_dcache_sysctls[] = {
195         {
196                 .procname       = "dentry-state",
197                 .data           = &dentry_stat,
198                 .maxlen         = 6*sizeof(long),
199                 .mode           = 0444,
200                 .proc_handler   = proc_nr_dentry,
201         },
202 };
203 
204 static int __init init_fs_dcache_sysctls(void)
205 {
206         register_sysctl_init("fs", fs_dcache_sysctls);
207         return 0;
208 }
209 fs_initcall(init_fs_dcache_sysctls);
210 #endif
211 
212 /*
213  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
214  * The strings are both count bytes long, and count is non-zero.
215  */
216 #ifdef CONFIG_DCACHE_WORD_ACCESS
217 
218 #include <asm/word-at-a-time.h>
219 /*
220  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
221  * aligned allocation for this particular component. We don't
222  * strictly need the load_unaligned_zeropad() safety, but it
223  * doesn't hurt either.
224  *
225  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
226  * need the careful unaligned handling.
227  */
228 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
229 {
230         unsigned long a,b,mask;
231 
232         for (;;) {
233                 a = read_word_at_a_time(cs);
234                 b = load_unaligned_zeropad(ct);
235                 if (tcount < sizeof(unsigned long))
236                         break;
237                 if (unlikely(a != b))
238                         return 1;
239                 cs += sizeof(unsigned long);
240                 ct += sizeof(unsigned long);
241                 tcount -= sizeof(unsigned long);
242                 if (!tcount)
243                         return 0;
244         }
245         mask = bytemask_from_count(tcount);
246         return unlikely(!!((a ^ b) & mask));
247 }
248 
249 #else
250 
251 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
252 {
253         do {
254                 if (*cs != *ct)
255                         return 1;
256                 cs++;
257                 ct++;
258                 tcount--;
259         } while (tcount);
260         return 0;
261 }
262 
263 #endif
264 
265 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
266 {
267         /*
268          * Be careful about RCU walk racing with rename:
269          * use 'READ_ONCE' to fetch the name pointer.
270          *
271          * NOTE! Even if a rename will mean that the length
272          * was not loaded atomically, we don't care. The
273          * RCU walk will check the sequence count eventually,
274          * and catch it. And we won't overrun the buffer,
275          * because we're reading the name pointer atomically,
276          * and a dentry name is guaranteed to be properly
277          * terminated with a NUL byte.
278          *
279          * End result: even if 'len' is wrong, we'll exit
280          * early because the data cannot match (there can
281          * be no NUL in the ct/tcount data)
282          */
283         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
284 
285         return dentry_string_cmp(cs, ct, tcount);
286 }
287 
288 struct external_name {
289         union {
290                 atomic_t count;
291                 struct rcu_head head;
292         } u;
293         unsigned char name[];
294 };
295 
296 static inline struct external_name *external_name(struct dentry *dentry)
297 {
298         return container_of(dentry->d_name.name, struct external_name, name[0]);
299 }
300 
301 static void __d_free(struct rcu_head *head)
302 {
303         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304 
305         kmem_cache_free(dentry_cache, dentry); 
306 }
307 
308 static void __d_free_external(struct rcu_head *head)
309 {
310         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
311         kfree(external_name(dentry));
312         kmem_cache_free(dentry_cache, dentry);
313 }
314 
315 static inline int dname_external(const struct dentry *dentry)
316 {
317         return dentry->d_name.name != dentry->d_iname;
318 }
319 
320 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
321 {
322         spin_lock(&dentry->d_lock);
323         name->name = dentry->d_name;
324         if (unlikely(dname_external(dentry))) {
325                 atomic_inc(&external_name(dentry)->u.count);
326         } else {
327                 memcpy(name->inline_name, dentry->d_iname,
328                        dentry->d_name.len + 1);
329                 name->name.name = name->inline_name;
330         }
331         spin_unlock(&dentry->d_lock);
332 }
333 EXPORT_SYMBOL(take_dentry_name_snapshot);
334 
335 void release_dentry_name_snapshot(struct name_snapshot *name)
336 {
337         if (unlikely(name->name.name != name->inline_name)) {
338                 struct external_name *p;
339                 p = container_of(name->name.name, struct external_name, name[0]);
340                 if (unlikely(atomic_dec_and_test(&p->u.count)))
341                         kfree_rcu(p, u.head);
342         }
343 }
344 EXPORT_SYMBOL(release_dentry_name_snapshot);
345 
346 static inline void __d_set_inode_and_type(struct dentry *dentry,
347                                           struct inode *inode,
348                                           unsigned type_flags)
349 {
350         unsigned flags;
351 
352         dentry->d_inode = inode;
353         flags = READ_ONCE(dentry->d_flags);
354         flags &= ~DCACHE_ENTRY_TYPE;
355         flags |= type_flags;
356         smp_store_release(&dentry->d_flags, flags);
357 }
358 
359 static inline void __d_clear_type_and_inode(struct dentry *dentry)
360 {
361         unsigned flags = READ_ONCE(dentry->d_flags);
362 
363         flags &= ~DCACHE_ENTRY_TYPE;
364         WRITE_ONCE(dentry->d_flags, flags);
365         dentry->d_inode = NULL;
366         /*
367          * The negative counter only tracks dentries on the LRU. Don't inc if
368          * d_lru is on another list.
369          */
370         if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
371                 this_cpu_inc(nr_dentry_negative);
372 }
373 
374 static void dentry_free(struct dentry *dentry)
375 {
376         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
377         if (unlikely(dname_external(dentry))) {
378                 struct external_name *p = external_name(dentry);
379                 if (likely(atomic_dec_and_test(&p->u.count))) {
380                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
381                         return;
382                 }
383         }
384         /* if dentry was never visible to RCU, immediate free is OK */
385         if (dentry->d_flags & DCACHE_NORCU)
386                 __d_free(&dentry->d_u.d_rcu);
387         else
388                 call_rcu(&dentry->d_u.d_rcu, __d_free);
389 }
390 
391 /*
392  * Release the dentry's inode, using the filesystem
393  * d_iput() operation if defined.
394  */
395 static void dentry_unlink_inode(struct dentry * dentry)
396         __releases(dentry->d_lock)
397         __releases(dentry->d_inode->i_lock)
398 {
399         struct inode *inode = dentry->d_inode;
400 
401         raw_write_seqcount_begin(&dentry->d_seq);
402         __d_clear_type_and_inode(dentry);
403         hlist_del_init(&dentry->d_u.d_alias);
404         raw_write_seqcount_end(&dentry->d_seq);
405         spin_unlock(&dentry->d_lock);
406         spin_unlock(&inode->i_lock);
407         if (!inode->i_nlink)
408                 fsnotify_inoderemove(inode);
409         if (dentry->d_op && dentry->d_op->d_iput)
410                 dentry->d_op->d_iput(dentry, inode);
411         else
412                 iput(inode);
413 }
414 
415 /*
416  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
417  * is in use - which includes both the "real" per-superblock
418  * LRU list _and_ the DCACHE_SHRINK_LIST use.
419  *
420  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
421  * on the shrink list (ie not on the superblock LRU list).
422  *
423  * The per-cpu "nr_dentry_unused" counters are updated with
424  * the DCACHE_LRU_LIST bit.
425  *
426  * The per-cpu "nr_dentry_negative" counters are only updated
427  * when deleted from or added to the per-superblock LRU list, not
428  * from/to the shrink list. That is to avoid an unneeded dec/inc
429  * pair when moving from LRU to shrink list in select_collect().
430  *
431  * These helper functions make sure we always follow the
432  * rules. d_lock must be held by the caller.
433  */
434 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
435 static void d_lru_add(struct dentry *dentry)
436 {
437         D_FLAG_VERIFY(dentry, 0);
438         dentry->d_flags |= DCACHE_LRU_LIST;
439         this_cpu_inc(nr_dentry_unused);
440         if (d_is_negative(dentry))
441                 this_cpu_inc(nr_dentry_negative);
442         WARN_ON_ONCE(!list_lru_add_obj(
443                         &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
444 }
445 
446 static void d_lru_del(struct dentry *dentry)
447 {
448         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
449         dentry->d_flags &= ~DCACHE_LRU_LIST;
450         this_cpu_dec(nr_dentry_unused);
451         if (d_is_negative(dentry))
452                 this_cpu_dec(nr_dentry_negative);
453         WARN_ON_ONCE(!list_lru_del_obj(
454                         &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
455 }
456 
457 static void d_shrink_del(struct dentry *dentry)
458 {
459         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
460         list_del_init(&dentry->d_lru);
461         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
462         this_cpu_dec(nr_dentry_unused);
463 }
464 
465 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
466 {
467         D_FLAG_VERIFY(dentry, 0);
468         list_add(&dentry->d_lru, list);
469         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
470         this_cpu_inc(nr_dentry_unused);
471 }
472 
473 /*
474  * These can only be called under the global LRU lock, ie during the
475  * callback for freeing the LRU list. "isolate" removes it from the
476  * LRU lists entirely, while shrink_move moves it to the indicated
477  * private list.
478  */
479 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
480 {
481         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
482         dentry->d_flags &= ~DCACHE_LRU_LIST;
483         this_cpu_dec(nr_dentry_unused);
484         if (d_is_negative(dentry))
485                 this_cpu_dec(nr_dentry_negative);
486         list_lru_isolate(lru, &dentry->d_lru);
487 }
488 
489 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
490                               struct list_head *list)
491 {
492         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
493         dentry->d_flags |= DCACHE_SHRINK_LIST;
494         if (d_is_negative(dentry))
495                 this_cpu_dec(nr_dentry_negative);
496         list_lru_isolate_move(lru, &dentry->d_lru, list);
497 }
498 
499 static void ___d_drop(struct dentry *dentry)
500 {
501         struct hlist_bl_head *b;
502         /*
503          * Hashed dentries are normally on the dentry hashtable,
504          * with the exception of those newly allocated by
505          * d_obtain_root, which are always IS_ROOT:
506          */
507         if (unlikely(IS_ROOT(dentry)))
508                 b = &dentry->d_sb->s_roots;
509         else
510                 b = d_hash(dentry->d_name.hash);
511 
512         hlist_bl_lock(b);
513         __hlist_bl_del(&dentry->d_hash);
514         hlist_bl_unlock(b);
515 }
516 
517 void __d_drop(struct dentry *dentry)
518 {
519         if (!d_unhashed(dentry)) {
520                 ___d_drop(dentry);
521                 dentry->d_hash.pprev = NULL;
522                 write_seqcount_invalidate(&dentry->d_seq);
523         }
524 }
525 EXPORT_SYMBOL(__d_drop);
526 
527 /**
528  * d_drop - drop a dentry
529  * @dentry: dentry to drop
530  *
531  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
532  * be found through a VFS lookup any more. Note that this is different from
533  * deleting the dentry - d_delete will try to mark the dentry negative if
534  * possible, giving a successful _negative_ lookup, while d_drop will
535  * just make the cache lookup fail.
536  *
537  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
538  * reason (NFS timeouts or autofs deletes).
539  *
540  * __d_drop requires dentry->d_lock
541  *
542  * ___d_drop doesn't mark dentry as "unhashed"
543  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
544  */
545 void d_drop(struct dentry *dentry)
546 {
547         spin_lock(&dentry->d_lock);
548         __d_drop(dentry);
549         spin_unlock(&dentry->d_lock);
550 }
551 EXPORT_SYMBOL(d_drop);
552 
553 static inline void dentry_unlist(struct dentry *dentry)
554 {
555         struct dentry *next;
556         /*
557          * Inform d_walk() and shrink_dentry_list() that we are no longer
558          * attached to the dentry tree
559          */
560         dentry->d_flags |= DCACHE_DENTRY_KILLED;
561         if (unlikely(hlist_unhashed(&dentry->d_sib)))
562                 return;
563         __hlist_del(&dentry->d_sib);
564         /*
565          * Cursors can move around the list of children.  While we'd been
566          * a normal list member, it didn't matter - ->d_sib.next would've
567          * been updated.  However, from now on it won't be and for the
568          * things like d_walk() it might end up with a nasty surprise.
569          * Normally d_walk() doesn't care about cursors moving around -
570          * ->d_lock on parent prevents that and since a cursor has no children
571          * of its own, we get through it without ever unlocking the parent.
572          * There is one exception, though - if we ascend from a child that
573          * gets killed as soon as we unlock it, the next sibling is found
574          * using the value left in its ->d_sib.next.  And if _that_
575          * pointed to a cursor, and cursor got moved (e.g. by lseek())
576          * before d_walk() regains parent->d_lock, we'll end up skipping
577          * everything the cursor had been moved past.
578          *
579          * Solution: make sure that the pointer left behind in ->d_sib.next
580          * points to something that won't be moving around.  I.e. skip the
581          * cursors.
582          */
583         while (dentry->d_sib.next) {
584                 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
585                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
586                         break;
587                 dentry->d_sib.next = next->d_sib.next;
588         }
589 }
590 
591 static struct dentry *__dentry_kill(struct dentry *dentry)
592 {
593         struct dentry *parent = NULL;
594         bool can_free = true;
595 
596         /*
597          * The dentry is now unrecoverably dead to the world.
598          */
599         lockref_mark_dead(&dentry->d_lockref);
600 
601         /*
602          * inform the fs via d_prune that this dentry is about to be
603          * unhashed and destroyed.
604          */
605         if (dentry->d_flags & DCACHE_OP_PRUNE)
606                 dentry->d_op->d_prune(dentry);
607 
608         if (dentry->d_flags & DCACHE_LRU_LIST) {
609                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
610                         d_lru_del(dentry);
611         }
612         /* if it was on the hash then remove it */
613         __d_drop(dentry);
614         if (dentry->d_inode)
615                 dentry_unlink_inode(dentry);
616         else
617                 spin_unlock(&dentry->d_lock);
618         this_cpu_dec(nr_dentry);
619         if (dentry->d_op && dentry->d_op->d_release)
620                 dentry->d_op->d_release(dentry);
621 
622         cond_resched();
623         /* now that it's negative, ->d_parent is stable */
624         if (!IS_ROOT(dentry)) {
625                 parent = dentry->d_parent;
626                 spin_lock(&parent->d_lock);
627         }
628         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
629         dentry_unlist(dentry);
630         if (dentry->d_flags & DCACHE_SHRINK_LIST)
631                 can_free = false;
632         spin_unlock(&dentry->d_lock);
633         if (likely(can_free))
634                 dentry_free(dentry);
635         if (parent && --parent->d_lockref.count) {
636                 spin_unlock(&parent->d_lock);
637                 return NULL;
638         }
639         return parent;
640 }
641 
642 /*
643  * Lock a dentry for feeding it to __dentry_kill().
644  * Called under rcu_read_lock() and dentry->d_lock; the former
645  * guarantees that nothing we access will be freed under us.
646  * Note that dentry is *not* protected from concurrent dentry_kill(),
647  * d_delete(), etc.
648  *
649  * Return false if dentry is busy.  Otherwise, return true and have
650  * that dentry's inode locked.
651  */
652 
653 static bool lock_for_kill(struct dentry *dentry)
654 {
655         struct inode *inode = dentry->d_inode;
656 
657         if (unlikely(dentry->d_lockref.count))
658                 return false;
659 
660         if (!inode || likely(spin_trylock(&inode->i_lock)))
661                 return true;
662 
663         do {
664                 spin_unlock(&dentry->d_lock);
665                 spin_lock(&inode->i_lock);
666                 spin_lock(&dentry->d_lock);
667                 if (likely(inode == dentry->d_inode))
668                         break;
669                 spin_unlock(&inode->i_lock);
670                 inode = dentry->d_inode;
671         } while (inode);
672         if (likely(!dentry->d_lockref.count))
673                 return true;
674         if (inode)
675                 spin_unlock(&inode->i_lock);
676         return false;
677 }
678 
679 /*
680  * Decide if dentry is worth retaining.  Usually this is called with dentry
681  * locked; if not locked, we are more limited and might not be able to tell
682  * without a lock.  False in this case means "punt to locked path and recheck".
683  *
684  * In case we aren't locked, these predicates are not "stable". However, it is
685  * sufficient that at some point after we dropped the reference the dentry was
686  * hashed and the flags had the proper value. Other dentry users may have
687  * re-gotten a reference to the dentry and change that, but our work is done -
688  * we can leave the dentry around with a zero refcount.
689  */
690 static inline bool retain_dentry(struct dentry *dentry, bool locked)
691 {
692         unsigned int d_flags;
693 
694         smp_rmb();
695         d_flags = READ_ONCE(dentry->d_flags);
696 
697         // Unreachable? Nobody would be able to look it up, no point retaining
698         if (unlikely(d_unhashed(dentry)))
699                 return false;
700 
701         // Same if it's disconnected
702         if (unlikely(d_flags & DCACHE_DISCONNECTED))
703                 return false;
704 
705         // ->d_delete() might tell us not to bother, but that requires
706         // ->d_lock; can't decide without it
707         if (unlikely(d_flags & DCACHE_OP_DELETE)) {
708                 if (!locked || dentry->d_op->d_delete(dentry))
709                         return false;
710         }
711 
712         // Explicitly told not to bother
713         if (unlikely(d_flags & DCACHE_DONTCACHE))
714                 return false;
715 
716         // At this point it looks like we ought to keep it.  We also might
717         // need to do something - put it on LRU if it wasn't there already
718         // and mark it referenced if it was on LRU, but not marked yet.
719         // Unfortunately, both actions require ->d_lock, so in lockless
720         // case we'd have to punt rather than doing those.
721         if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
722                 if (!locked)
723                         return false;
724                 d_lru_add(dentry);
725         } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
726                 if (!locked)
727                         return false;
728                 dentry->d_flags |= DCACHE_REFERENCED;
729         }
730         return true;
731 }
732 
733 void d_mark_dontcache(struct inode *inode)
734 {
735         struct dentry *de;
736 
737         spin_lock(&inode->i_lock);
738         hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
739                 spin_lock(&de->d_lock);
740                 de->d_flags |= DCACHE_DONTCACHE;
741                 spin_unlock(&de->d_lock);
742         }
743         inode->i_state |= I_DONTCACHE;
744         spin_unlock(&inode->i_lock);
745 }
746 EXPORT_SYMBOL(d_mark_dontcache);
747 
748 /*
749  * Try to do a lockless dput(), and return whether that was successful.
750  *
751  * If unsuccessful, we return false, having already taken the dentry lock.
752  * In that case refcount is guaranteed to be zero and we have already
753  * decided that it's not worth keeping around.
754  *
755  * The caller needs to hold the RCU read lock, so that the dentry is
756  * guaranteed to stay around even if the refcount goes down to zero!
757  */
758 static inline bool fast_dput(struct dentry *dentry)
759 {
760         int ret;
761 
762         /*
763          * try to decrement the lockref optimistically.
764          */
765         ret = lockref_put_return(&dentry->d_lockref);
766 
767         /*
768          * If the lockref_put_return() failed due to the lock being held
769          * by somebody else, the fast path has failed. We will need to
770          * get the lock, and then check the count again.
771          */
772         if (unlikely(ret < 0)) {
773                 spin_lock(&dentry->d_lock);
774                 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
775                         spin_unlock(&dentry->d_lock);
776                         return true;
777                 }
778                 dentry->d_lockref.count--;
779                 goto locked;
780         }
781 
782         /*
783          * If we weren't the last ref, we're done.
784          */
785         if (ret)
786                 return true;
787 
788         /*
789          * Can we decide that decrement of refcount is all we needed without
790          * taking the lock?  There's a very common case when it's all we need -
791          * dentry looks like it ought to be retained and there's nothing else
792          * to do.
793          */
794         if (retain_dentry(dentry, false))
795                 return true;
796 
797         /*
798          * Either not worth retaining or we can't tell without the lock.
799          * Get the lock, then.  We've already decremented the refcount to 0,
800          * but we'll need to re-check the situation after getting the lock.
801          */
802         spin_lock(&dentry->d_lock);
803 
804         /*
805          * Did somebody else grab a reference to it in the meantime, and
806          * we're no longer the last user after all? Alternatively, somebody
807          * else could have killed it and marked it dead. Either way, we
808          * don't need to do anything else.
809          */
810 locked:
811         if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
812                 spin_unlock(&dentry->d_lock);
813                 return true;
814         }
815         return false;
816 }
817 
818 
819 /* 
820  * This is dput
821  *
822  * This is complicated by the fact that we do not want to put
823  * dentries that are no longer on any hash chain on the unused
824  * list: we'd much rather just get rid of them immediately.
825  *
826  * However, that implies that we have to traverse the dentry
827  * tree upwards to the parents which might _also_ now be
828  * scheduled for deletion (it may have been only waiting for
829  * its last child to go away).
830  *
831  * This tail recursion is done by hand as we don't want to depend
832  * on the compiler to always get this right (gcc generally doesn't).
833  * Real recursion would eat up our stack space.
834  */
835 
836 /*
837  * dput - release a dentry
838  * @dentry: dentry to release 
839  *
840  * Release a dentry. This will drop the usage count and if appropriate
841  * call the dentry unlink method as well as removing it from the queues and
842  * releasing its resources. If the parent dentries were scheduled for release
843  * they too may now get deleted.
844  */
845 void dput(struct dentry *dentry)
846 {
847         if (!dentry)
848                 return;
849         might_sleep();
850         rcu_read_lock();
851         if (likely(fast_dput(dentry))) {
852                 rcu_read_unlock();
853                 return;
854         }
855         while (lock_for_kill(dentry)) {
856                 rcu_read_unlock();
857                 dentry = __dentry_kill(dentry);
858                 if (!dentry)
859                         return;
860                 if (retain_dentry(dentry, true)) {
861                         spin_unlock(&dentry->d_lock);
862                         return;
863                 }
864                 rcu_read_lock();
865         }
866         rcu_read_unlock();
867         spin_unlock(&dentry->d_lock);
868 }
869 EXPORT_SYMBOL(dput);
870 
871 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
872 __must_hold(&dentry->d_lock)
873 {
874         if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
875                 if (dentry->d_flags & DCACHE_LRU_LIST)
876                         d_lru_del(dentry);
877                 d_shrink_add(dentry, list);
878         }
879 }
880 
881 void dput_to_list(struct dentry *dentry, struct list_head *list)
882 {
883         rcu_read_lock();
884         if (likely(fast_dput(dentry))) {
885                 rcu_read_unlock();
886                 return;
887         }
888         rcu_read_unlock();
889         to_shrink_list(dentry, list);
890         spin_unlock(&dentry->d_lock);
891 }
892 
893 struct dentry *dget_parent(struct dentry *dentry)
894 {
895         int gotref;
896         struct dentry *ret;
897         unsigned seq;
898 
899         /*
900          * Do optimistic parent lookup without any
901          * locking.
902          */
903         rcu_read_lock();
904         seq = raw_seqcount_begin(&dentry->d_seq);
905         ret = READ_ONCE(dentry->d_parent);
906         gotref = lockref_get_not_zero(&ret->d_lockref);
907         rcu_read_unlock();
908         if (likely(gotref)) {
909                 if (!read_seqcount_retry(&dentry->d_seq, seq))
910                         return ret;
911                 dput(ret);
912         }
913 
914 repeat:
915         /*
916          * Don't need rcu_dereference because we re-check it was correct under
917          * the lock.
918          */
919         rcu_read_lock();
920         ret = dentry->d_parent;
921         spin_lock(&ret->d_lock);
922         if (unlikely(ret != dentry->d_parent)) {
923                 spin_unlock(&ret->d_lock);
924                 rcu_read_unlock();
925                 goto repeat;
926         }
927         rcu_read_unlock();
928         BUG_ON(!ret->d_lockref.count);
929         ret->d_lockref.count++;
930         spin_unlock(&ret->d_lock);
931         return ret;
932 }
933 EXPORT_SYMBOL(dget_parent);
934 
935 static struct dentry * __d_find_any_alias(struct inode *inode)
936 {
937         struct dentry *alias;
938 
939         if (hlist_empty(&inode->i_dentry))
940                 return NULL;
941         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
942         lockref_get(&alias->d_lockref);
943         return alias;
944 }
945 
946 /**
947  * d_find_any_alias - find any alias for a given inode
948  * @inode: inode to find an alias for
949  *
950  * If any aliases exist for the given inode, take and return a
951  * reference for one of them.  If no aliases exist, return %NULL.
952  */
953 struct dentry *d_find_any_alias(struct inode *inode)
954 {
955         struct dentry *de;
956 
957         spin_lock(&inode->i_lock);
958         de = __d_find_any_alias(inode);
959         spin_unlock(&inode->i_lock);
960         return de;
961 }
962 EXPORT_SYMBOL(d_find_any_alias);
963 
964 static struct dentry *__d_find_alias(struct inode *inode)
965 {
966         struct dentry *alias;
967 
968         if (S_ISDIR(inode->i_mode))
969                 return __d_find_any_alias(inode);
970 
971         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
972                 spin_lock(&alias->d_lock);
973                 if (!d_unhashed(alias)) {
974                         dget_dlock(alias);
975                         spin_unlock(&alias->d_lock);
976                         return alias;
977                 }
978                 spin_unlock(&alias->d_lock);
979         }
980         return NULL;
981 }
982 
983 /**
984  * d_find_alias - grab a hashed alias of inode
985  * @inode: inode in question
986  *
987  * If inode has a hashed alias, or is a directory and has any alias,
988  * acquire the reference to alias and return it. Otherwise return NULL.
989  * Notice that if inode is a directory there can be only one alias and
990  * it can be unhashed only if it has no children, or if it is the root
991  * of a filesystem, or if the directory was renamed and d_revalidate
992  * was the first vfs operation to notice.
993  *
994  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
995  * any other hashed alias over that one.
996  */
997 struct dentry *d_find_alias(struct inode *inode)
998 {
999         struct dentry *de = NULL;
1000 
1001         if (!hlist_empty(&inode->i_dentry)) {
1002                 spin_lock(&inode->i_lock);
1003                 de = __d_find_alias(inode);
1004                 spin_unlock(&inode->i_lock);
1005         }
1006         return de;
1007 }
1008 EXPORT_SYMBOL(d_find_alias);
1009 
1010 /*
1011  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1012  *  that inode won't get freed until rcu_read_unlock().
1013  */
1014 struct dentry *d_find_alias_rcu(struct inode *inode)
1015 {
1016         struct hlist_head *l = &inode->i_dentry;
1017         struct dentry *de = NULL;
1018 
1019         spin_lock(&inode->i_lock);
1020         // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1021         // used without having I_FREEING set, which means no aliases left
1022         if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1023                 if (S_ISDIR(inode->i_mode)) {
1024                         de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1025                 } else {
1026                         hlist_for_each_entry(de, l, d_u.d_alias)
1027                                 if (!d_unhashed(de))
1028                                         break;
1029                 }
1030         }
1031         spin_unlock(&inode->i_lock);
1032         return de;
1033 }
1034 
1035 /*
1036  *      Try to kill dentries associated with this inode.
1037  * WARNING: you must own a reference to inode.
1038  */
1039 void d_prune_aliases(struct inode *inode)
1040 {
1041         LIST_HEAD(dispose);
1042         struct dentry *dentry;
1043 
1044         spin_lock(&inode->i_lock);
1045         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1046                 spin_lock(&dentry->d_lock);
1047                 if (!dentry->d_lockref.count)
1048                         to_shrink_list(dentry, &dispose);
1049                 spin_unlock(&dentry->d_lock);
1050         }
1051         spin_unlock(&inode->i_lock);
1052         shrink_dentry_list(&dispose);
1053 }
1054 EXPORT_SYMBOL(d_prune_aliases);
1055 
1056 static inline void shrink_kill(struct dentry *victim)
1057 {
1058         do {
1059                 rcu_read_unlock();
1060                 victim = __dentry_kill(victim);
1061                 rcu_read_lock();
1062         } while (victim && lock_for_kill(victim));
1063         rcu_read_unlock();
1064         if (victim)
1065                 spin_unlock(&victim->d_lock);
1066 }
1067 
1068 void shrink_dentry_list(struct list_head *list)
1069 {
1070         while (!list_empty(list)) {
1071                 struct dentry *dentry;
1072 
1073                 dentry = list_entry(list->prev, struct dentry, d_lru);
1074                 spin_lock(&dentry->d_lock);
1075                 rcu_read_lock();
1076                 if (!lock_for_kill(dentry)) {
1077                         bool can_free;
1078                         rcu_read_unlock();
1079                         d_shrink_del(dentry);
1080                         can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1081                         spin_unlock(&dentry->d_lock);
1082                         if (can_free)
1083                                 dentry_free(dentry);
1084                         continue;
1085                 }
1086                 d_shrink_del(dentry);
1087                 shrink_kill(dentry);
1088         }
1089 }
1090 
1091 static enum lru_status dentry_lru_isolate(struct list_head *item,
1092                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1093 {
1094         struct list_head *freeable = arg;
1095         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1096 
1097 
1098         /*
1099          * we are inverting the lru lock/dentry->d_lock here,
1100          * so use a trylock. If we fail to get the lock, just skip
1101          * it
1102          */
1103         if (!spin_trylock(&dentry->d_lock))
1104                 return LRU_SKIP;
1105 
1106         /*
1107          * Referenced dentries are still in use. If they have active
1108          * counts, just remove them from the LRU. Otherwise give them
1109          * another pass through the LRU.
1110          */
1111         if (dentry->d_lockref.count) {
1112                 d_lru_isolate(lru, dentry);
1113                 spin_unlock(&dentry->d_lock);
1114                 return LRU_REMOVED;
1115         }
1116 
1117         if (dentry->d_flags & DCACHE_REFERENCED) {
1118                 dentry->d_flags &= ~DCACHE_REFERENCED;
1119                 spin_unlock(&dentry->d_lock);
1120 
1121                 /*
1122                  * The list move itself will be made by the common LRU code. At
1123                  * this point, we've dropped the dentry->d_lock but keep the
1124                  * lru lock. This is safe to do, since every list movement is
1125                  * protected by the lru lock even if both locks are held.
1126                  *
1127                  * This is guaranteed by the fact that all LRU management
1128                  * functions are intermediated by the LRU API calls like
1129                  * list_lru_add_obj and list_lru_del_obj. List movement in this file
1130                  * only ever occur through this functions or through callbacks
1131                  * like this one, that are called from the LRU API.
1132                  *
1133                  * The only exceptions to this are functions like
1134                  * shrink_dentry_list, and code that first checks for the
1135                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1136                  * operating only with stack provided lists after they are
1137                  * properly isolated from the main list.  It is thus, always a
1138                  * local access.
1139                  */
1140                 return LRU_ROTATE;
1141         }
1142 
1143         d_lru_shrink_move(lru, dentry, freeable);
1144         spin_unlock(&dentry->d_lock);
1145 
1146         return LRU_REMOVED;
1147 }
1148 
1149 /**
1150  * prune_dcache_sb - shrink the dcache
1151  * @sb: superblock
1152  * @sc: shrink control, passed to list_lru_shrink_walk()
1153  *
1154  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1155  * is done when we need more memory and called from the superblock shrinker
1156  * function.
1157  *
1158  * This function may fail to free any resources if all the dentries are in
1159  * use.
1160  */
1161 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1162 {
1163         LIST_HEAD(dispose);
1164         long freed;
1165 
1166         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1167                                      dentry_lru_isolate, &dispose);
1168         shrink_dentry_list(&dispose);
1169         return freed;
1170 }
1171 
1172 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1173                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1174 {
1175         struct list_head *freeable = arg;
1176         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1177 
1178         /*
1179          * we are inverting the lru lock/dentry->d_lock here,
1180          * so use a trylock. If we fail to get the lock, just skip
1181          * it
1182          */
1183         if (!spin_trylock(&dentry->d_lock))
1184                 return LRU_SKIP;
1185 
1186         d_lru_shrink_move(lru, dentry, freeable);
1187         spin_unlock(&dentry->d_lock);
1188 
1189         return LRU_REMOVED;
1190 }
1191 
1192 
1193 /**
1194  * shrink_dcache_sb - shrink dcache for a superblock
1195  * @sb: superblock
1196  *
1197  * Shrink the dcache for the specified super block. This is used to free
1198  * the dcache before unmounting a file system.
1199  */
1200 void shrink_dcache_sb(struct super_block *sb)
1201 {
1202         do {
1203                 LIST_HEAD(dispose);
1204 
1205                 list_lru_walk(&sb->s_dentry_lru,
1206                         dentry_lru_isolate_shrink, &dispose, 1024);
1207                 shrink_dentry_list(&dispose);
1208         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1209 }
1210 EXPORT_SYMBOL(shrink_dcache_sb);
1211 
1212 /**
1213  * enum d_walk_ret - action to talke during tree walk
1214  * @D_WALK_CONTINUE:    contrinue walk
1215  * @D_WALK_QUIT:        quit walk
1216  * @D_WALK_NORETRY:     quit when retry is needed
1217  * @D_WALK_SKIP:        skip this dentry and its children
1218  */
1219 enum d_walk_ret {
1220         D_WALK_CONTINUE,
1221         D_WALK_QUIT,
1222         D_WALK_NORETRY,
1223         D_WALK_SKIP,
1224 };
1225 
1226 /**
1227  * d_walk - walk the dentry tree
1228  * @parent:     start of walk
1229  * @data:       data passed to @enter() and @finish()
1230  * @enter:      callback when first entering the dentry
1231  *
1232  * The @enter() callbacks are called with d_lock held.
1233  */
1234 static void d_walk(struct dentry *parent, void *data,
1235                    enum d_walk_ret (*enter)(void *, struct dentry *))
1236 {
1237         struct dentry *this_parent, *dentry;
1238         unsigned seq = 0;
1239         enum d_walk_ret ret;
1240         bool retry = true;
1241 
1242 again:
1243         read_seqbegin_or_lock(&rename_lock, &seq);
1244         this_parent = parent;
1245         spin_lock(&this_parent->d_lock);
1246 
1247         ret = enter(data, this_parent);
1248         switch (ret) {
1249         case D_WALK_CONTINUE:
1250                 break;
1251         case D_WALK_QUIT:
1252         case D_WALK_SKIP:
1253                 goto out_unlock;
1254         case D_WALK_NORETRY:
1255                 retry = false;
1256                 break;
1257         }
1258 repeat:
1259         dentry = d_first_child(this_parent);
1260 resume:
1261         hlist_for_each_entry_from(dentry, d_sib) {
1262                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1263                         continue;
1264 
1265                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1266 
1267                 ret = enter(data, dentry);
1268                 switch (ret) {
1269                 case D_WALK_CONTINUE:
1270                         break;
1271                 case D_WALK_QUIT:
1272                         spin_unlock(&dentry->d_lock);
1273                         goto out_unlock;
1274                 case D_WALK_NORETRY:
1275                         retry = false;
1276                         break;
1277                 case D_WALK_SKIP:
1278                         spin_unlock(&dentry->d_lock);
1279                         continue;
1280                 }
1281 
1282                 if (!hlist_empty(&dentry->d_children)) {
1283                         spin_unlock(&this_parent->d_lock);
1284                         spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1285                         this_parent = dentry;
1286                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1287                         goto repeat;
1288                 }
1289                 spin_unlock(&dentry->d_lock);
1290         }
1291         /*
1292          * All done at this level ... ascend and resume the search.
1293          */
1294         rcu_read_lock();
1295 ascend:
1296         if (this_parent != parent) {
1297                 dentry = this_parent;
1298                 this_parent = dentry->d_parent;
1299 
1300                 spin_unlock(&dentry->d_lock);
1301                 spin_lock(&this_parent->d_lock);
1302 
1303                 /* might go back up the wrong parent if we have had a rename. */
1304                 if (need_seqretry(&rename_lock, seq))
1305                         goto rename_retry;
1306                 /* go into the first sibling still alive */
1307                 hlist_for_each_entry_continue(dentry, d_sib) {
1308                         if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1309                                 rcu_read_unlock();
1310                                 goto resume;
1311                         }
1312                 }
1313                 goto ascend;
1314         }
1315         if (need_seqretry(&rename_lock, seq))
1316                 goto rename_retry;
1317         rcu_read_unlock();
1318 
1319 out_unlock:
1320         spin_unlock(&this_parent->d_lock);
1321         done_seqretry(&rename_lock, seq);
1322         return;
1323 
1324 rename_retry:
1325         spin_unlock(&this_parent->d_lock);
1326         rcu_read_unlock();
1327         BUG_ON(seq & 1);
1328         if (!retry)
1329                 return;
1330         seq = 1;
1331         goto again;
1332 }
1333 
1334 struct check_mount {
1335         struct vfsmount *mnt;
1336         unsigned int mounted;
1337 };
1338 
1339 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1340 {
1341         struct check_mount *info = data;
1342         struct path path = { .mnt = info->mnt, .dentry = dentry };
1343 
1344         if (likely(!d_mountpoint(dentry)))
1345                 return D_WALK_CONTINUE;
1346         if (__path_is_mountpoint(&path)) {
1347                 info->mounted = 1;
1348                 return D_WALK_QUIT;
1349         }
1350         return D_WALK_CONTINUE;
1351 }
1352 
1353 /**
1354  * path_has_submounts - check for mounts over a dentry in the
1355  *                      current namespace.
1356  * @parent: path to check.
1357  *
1358  * Return true if the parent or its subdirectories contain
1359  * a mount point in the current namespace.
1360  */
1361 int path_has_submounts(const struct path *parent)
1362 {
1363         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1364 
1365         read_seqlock_excl(&mount_lock);
1366         d_walk(parent->dentry, &data, path_check_mount);
1367         read_sequnlock_excl(&mount_lock);
1368 
1369         return data.mounted;
1370 }
1371 EXPORT_SYMBOL(path_has_submounts);
1372 
1373 /*
1374  * Called by mount code to set a mountpoint and check if the mountpoint is
1375  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1376  * subtree can become unreachable).
1377  *
1378  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1379  * this reason take rename_lock and d_lock on dentry and ancestors.
1380  */
1381 int d_set_mounted(struct dentry *dentry)
1382 {
1383         struct dentry *p;
1384         int ret = -ENOENT;
1385         write_seqlock(&rename_lock);
1386         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1387                 /* Need exclusion wrt. d_invalidate() */
1388                 spin_lock(&p->d_lock);
1389                 if (unlikely(d_unhashed(p))) {
1390                         spin_unlock(&p->d_lock);
1391                         goto out;
1392                 }
1393                 spin_unlock(&p->d_lock);
1394         }
1395         spin_lock(&dentry->d_lock);
1396         if (!d_unlinked(dentry)) {
1397                 ret = -EBUSY;
1398                 if (!d_mountpoint(dentry)) {
1399                         dentry->d_flags |= DCACHE_MOUNTED;
1400                         ret = 0;
1401                 }
1402         }
1403         spin_unlock(&dentry->d_lock);
1404 out:
1405         write_sequnlock(&rename_lock);
1406         return ret;
1407 }
1408 
1409 /*
1410  * Search the dentry child list of the specified parent,
1411  * and move any unused dentries to the end of the unused
1412  * list for prune_dcache(). We descend to the next level
1413  * whenever the d_children list is non-empty and continue
1414  * searching.
1415  *
1416  * It returns zero iff there are no unused children,
1417  * otherwise  it returns the number of children moved to
1418  * the end of the unused list. This may not be the total
1419  * number of unused children, because select_parent can
1420  * drop the lock and return early due to latency
1421  * constraints.
1422  */
1423 
1424 struct select_data {
1425         struct dentry *start;
1426         union {
1427                 long found;
1428                 struct dentry *victim;
1429         };
1430         struct list_head dispose;
1431 };
1432 
1433 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1434 {
1435         struct select_data *data = _data;
1436         enum d_walk_ret ret = D_WALK_CONTINUE;
1437 
1438         if (data->start == dentry)
1439                 goto out;
1440 
1441         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1442                 data->found++;
1443         } else if (!dentry->d_lockref.count) {
1444                 to_shrink_list(dentry, &data->dispose);
1445                 data->found++;
1446         } else if (dentry->d_lockref.count < 0) {
1447                 data->found++;
1448         }
1449         /*
1450          * We can return to the caller if we have found some (this
1451          * ensures forward progress). We'll be coming back to find
1452          * the rest.
1453          */
1454         if (!list_empty(&data->dispose))
1455                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1456 out:
1457         return ret;
1458 }
1459 
1460 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1461 {
1462         struct select_data *data = _data;
1463         enum d_walk_ret ret = D_WALK_CONTINUE;
1464 
1465         if (data->start == dentry)
1466                 goto out;
1467 
1468         if (!dentry->d_lockref.count) {
1469                 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1470                         rcu_read_lock();
1471                         data->victim = dentry;
1472                         return D_WALK_QUIT;
1473                 }
1474                 to_shrink_list(dentry, &data->dispose);
1475         }
1476         /*
1477          * We can return to the caller if we have found some (this
1478          * ensures forward progress). We'll be coming back to find
1479          * the rest.
1480          */
1481         if (!list_empty(&data->dispose))
1482                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1483 out:
1484         return ret;
1485 }
1486 
1487 /**
1488  * shrink_dcache_parent - prune dcache
1489  * @parent: parent of entries to prune
1490  *
1491  * Prune the dcache to remove unused children of the parent dentry.
1492  */
1493 void shrink_dcache_parent(struct dentry *parent)
1494 {
1495         for (;;) {
1496                 struct select_data data = {.start = parent};
1497 
1498                 INIT_LIST_HEAD(&data.dispose);
1499                 d_walk(parent, &data, select_collect);
1500 
1501                 if (!list_empty(&data.dispose)) {
1502                         shrink_dentry_list(&data.dispose);
1503                         continue;
1504                 }
1505 
1506                 cond_resched();
1507                 if (!data.found)
1508                         break;
1509                 data.victim = NULL;
1510                 d_walk(parent, &data, select_collect2);
1511                 if (data.victim) {
1512                         spin_lock(&data.victim->d_lock);
1513                         if (!lock_for_kill(data.victim)) {
1514                                 spin_unlock(&data.victim->d_lock);
1515                                 rcu_read_unlock();
1516                         } else {
1517                                 shrink_kill(data.victim);
1518                         }
1519                 }
1520                 if (!list_empty(&data.dispose))
1521                         shrink_dentry_list(&data.dispose);
1522         }
1523 }
1524 EXPORT_SYMBOL(shrink_dcache_parent);
1525 
1526 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1527 {
1528         /* it has busy descendents; complain about those instead */
1529         if (!hlist_empty(&dentry->d_children))
1530                 return D_WALK_CONTINUE;
1531 
1532         /* root with refcount 1 is fine */
1533         if (dentry == _data && dentry->d_lockref.count == 1)
1534                 return D_WALK_CONTINUE;
1535 
1536         WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1537                         " still in use (%d) [unmount of %s %s]\n",
1538                        dentry,
1539                        dentry->d_inode ?
1540                        dentry->d_inode->i_ino : 0UL,
1541                        dentry,
1542                        dentry->d_lockref.count,
1543                        dentry->d_sb->s_type->name,
1544                        dentry->d_sb->s_id);
1545         return D_WALK_CONTINUE;
1546 }
1547 
1548 static void do_one_tree(struct dentry *dentry)
1549 {
1550         shrink_dcache_parent(dentry);
1551         d_walk(dentry, dentry, umount_check);
1552         d_drop(dentry);
1553         dput(dentry);
1554 }
1555 
1556 /*
1557  * destroy the dentries attached to a superblock on unmounting
1558  */
1559 void shrink_dcache_for_umount(struct super_block *sb)
1560 {
1561         struct dentry *dentry;
1562 
1563         rwsem_assert_held_write(&sb->s_umount);
1564 
1565         dentry = sb->s_root;
1566         sb->s_root = NULL;
1567         do_one_tree(dentry);
1568 
1569         while (!hlist_bl_empty(&sb->s_roots)) {
1570                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1571                 do_one_tree(dentry);
1572         }
1573 }
1574 
1575 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1576 {
1577         struct dentry **victim = _data;
1578         if (d_mountpoint(dentry)) {
1579                 *victim = dget_dlock(dentry);
1580                 return D_WALK_QUIT;
1581         }
1582         return D_WALK_CONTINUE;
1583 }
1584 
1585 /**
1586  * d_invalidate - detach submounts, prune dcache, and drop
1587  * @dentry: dentry to invalidate (aka detach, prune and drop)
1588  */
1589 void d_invalidate(struct dentry *dentry)
1590 {
1591         bool had_submounts = false;
1592         spin_lock(&dentry->d_lock);
1593         if (d_unhashed(dentry)) {
1594                 spin_unlock(&dentry->d_lock);
1595                 return;
1596         }
1597         __d_drop(dentry);
1598         spin_unlock(&dentry->d_lock);
1599 
1600         /* Negative dentries can be dropped without further checks */
1601         if (!dentry->d_inode)
1602                 return;
1603 
1604         shrink_dcache_parent(dentry);
1605         for (;;) {
1606                 struct dentry *victim = NULL;
1607                 d_walk(dentry, &victim, find_submount);
1608                 if (!victim) {
1609                         if (had_submounts)
1610                                 shrink_dcache_parent(dentry);
1611                         return;
1612                 }
1613                 had_submounts = true;
1614                 detach_mounts(victim);
1615                 dput(victim);
1616         }
1617 }
1618 EXPORT_SYMBOL(d_invalidate);
1619 
1620 /**
1621  * __d_alloc    -       allocate a dcache entry
1622  * @sb: filesystem it will belong to
1623  * @name: qstr of the name
1624  *
1625  * Allocates a dentry. It returns %NULL if there is insufficient memory
1626  * available. On a success the dentry is returned. The name passed in is
1627  * copied and the copy passed in may be reused after this call.
1628  */
1629  
1630 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1631 {
1632         struct dentry *dentry;
1633         char *dname;
1634         int err;
1635 
1636         dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1637                                       GFP_KERNEL);
1638         if (!dentry)
1639                 return NULL;
1640 
1641         /*
1642          * We guarantee that the inline name is always NUL-terminated.
1643          * This way the memcpy() done by the name switching in rename
1644          * will still always have a NUL at the end, even if we might
1645          * be overwriting an internal NUL character
1646          */
1647         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1648         if (unlikely(!name)) {
1649                 name = &slash_name;
1650                 dname = dentry->d_iname;
1651         } else if (name->len > DNAME_INLINE_LEN-1) {
1652                 size_t size = offsetof(struct external_name, name[1]);
1653                 struct external_name *p = kmalloc(size + name->len,
1654                                                   GFP_KERNEL_ACCOUNT |
1655                                                   __GFP_RECLAIMABLE);
1656                 if (!p) {
1657                         kmem_cache_free(dentry_cache, dentry); 
1658                         return NULL;
1659                 }
1660                 atomic_set(&p->u.count, 1);
1661                 dname = p->name;
1662         } else  {
1663                 dname = dentry->d_iname;
1664         }       
1665 
1666         dentry->d_name.len = name->len;
1667         dentry->d_name.hash = name->hash;
1668         memcpy(dname, name->name, name->len);
1669         dname[name->len] = 0;
1670 
1671         /* Make sure we always see the terminating NUL character */
1672         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1673 
1674         dentry->d_lockref.count = 1;
1675         dentry->d_flags = 0;
1676         spin_lock_init(&dentry->d_lock);
1677         seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1678         dentry->d_inode = NULL;
1679         dentry->d_parent = dentry;
1680         dentry->d_sb = sb;
1681         dentry->d_op = NULL;
1682         dentry->d_fsdata = NULL;
1683         INIT_HLIST_BL_NODE(&dentry->d_hash);
1684         INIT_LIST_HEAD(&dentry->d_lru);
1685         INIT_HLIST_HEAD(&dentry->d_children);
1686         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1687         INIT_HLIST_NODE(&dentry->d_sib);
1688         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1689 
1690         if (dentry->d_op && dentry->d_op->d_init) {
1691                 err = dentry->d_op->d_init(dentry);
1692                 if (err) {
1693                         if (dname_external(dentry))
1694                                 kfree(external_name(dentry));
1695                         kmem_cache_free(dentry_cache, dentry);
1696                         return NULL;
1697                 }
1698         }
1699 
1700         this_cpu_inc(nr_dentry);
1701 
1702         return dentry;
1703 }
1704 
1705 /**
1706  * d_alloc      -       allocate a dcache entry
1707  * @parent: parent of entry to allocate
1708  * @name: qstr of the name
1709  *
1710  * Allocates a dentry. It returns %NULL if there is insufficient memory
1711  * available. On a success the dentry is returned. The name passed in is
1712  * copied and the copy passed in may be reused after this call.
1713  */
1714 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1715 {
1716         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1717         if (!dentry)
1718                 return NULL;
1719         spin_lock(&parent->d_lock);
1720         /*
1721          * don't need child lock because it is not subject
1722          * to concurrency here
1723          */
1724         dentry->d_parent = dget_dlock(parent);
1725         hlist_add_head(&dentry->d_sib, &parent->d_children);
1726         spin_unlock(&parent->d_lock);
1727 
1728         return dentry;
1729 }
1730 EXPORT_SYMBOL(d_alloc);
1731 
1732 struct dentry *d_alloc_anon(struct super_block *sb)
1733 {
1734         return __d_alloc(sb, NULL);
1735 }
1736 EXPORT_SYMBOL(d_alloc_anon);
1737 
1738 struct dentry *d_alloc_cursor(struct dentry * parent)
1739 {
1740         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1741         if (dentry) {
1742                 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1743                 dentry->d_parent = dget(parent);
1744         }
1745         return dentry;
1746 }
1747 
1748 /**
1749  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1750  * @sb: the superblock
1751  * @name: qstr of the name
1752  *
1753  * For a filesystem that just pins its dentries in memory and never
1754  * performs lookups at all, return an unhashed IS_ROOT dentry.
1755  * This is used for pipes, sockets et.al. - the stuff that should
1756  * never be anyone's children or parents.  Unlike all other
1757  * dentries, these will not have RCU delay between dropping the
1758  * last reference and freeing them.
1759  *
1760  * The only user is alloc_file_pseudo() and that's what should
1761  * be considered a public interface.  Don't use directly.
1762  */
1763 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1764 {
1765         static const struct dentry_operations anon_ops = {
1766                 .d_dname = simple_dname
1767         };
1768         struct dentry *dentry = __d_alloc(sb, name);
1769         if (likely(dentry)) {
1770                 dentry->d_flags |= DCACHE_NORCU;
1771                 if (!sb->s_d_op)
1772                         d_set_d_op(dentry, &anon_ops);
1773         }
1774         return dentry;
1775 }
1776 
1777 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1778 {
1779         struct qstr q;
1780 
1781         q.name = name;
1782         q.hash_len = hashlen_string(parent, name);
1783         return d_alloc(parent, &q);
1784 }
1785 EXPORT_SYMBOL(d_alloc_name);
1786 
1787 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1788 {
1789         WARN_ON_ONCE(dentry->d_op);
1790         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1791                                 DCACHE_OP_COMPARE       |
1792                                 DCACHE_OP_REVALIDATE    |
1793                                 DCACHE_OP_WEAK_REVALIDATE       |
1794                                 DCACHE_OP_DELETE        |
1795                                 DCACHE_OP_REAL));
1796         dentry->d_op = op;
1797         if (!op)
1798                 return;
1799         if (op->d_hash)
1800                 dentry->d_flags |= DCACHE_OP_HASH;
1801         if (op->d_compare)
1802                 dentry->d_flags |= DCACHE_OP_COMPARE;
1803         if (op->d_revalidate)
1804                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1805         if (op->d_weak_revalidate)
1806                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1807         if (op->d_delete)
1808                 dentry->d_flags |= DCACHE_OP_DELETE;
1809         if (op->d_prune)
1810                 dentry->d_flags |= DCACHE_OP_PRUNE;
1811         if (op->d_real)
1812                 dentry->d_flags |= DCACHE_OP_REAL;
1813 
1814 }
1815 EXPORT_SYMBOL(d_set_d_op);
1816 
1817 static unsigned d_flags_for_inode(struct inode *inode)
1818 {
1819         unsigned add_flags = DCACHE_REGULAR_TYPE;
1820 
1821         if (!inode)
1822                 return DCACHE_MISS_TYPE;
1823 
1824         if (S_ISDIR(inode->i_mode)) {
1825                 add_flags = DCACHE_DIRECTORY_TYPE;
1826                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1827                         if (unlikely(!inode->i_op->lookup))
1828                                 add_flags = DCACHE_AUTODIR_TYPE;
1829                         else
1830                                 inode->i_opflags |= IOP_LOOKUP;
1831                 }
1832                 goto type_determined;
1833         }
1834 
1835         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1836                 if (unlikely(inode->i_op->get_link)) {
1837                         add_flags = DCACHE_SYMLINK_TYPE;
1838                         goto type_determined;
1839                 }
1840                 inode->i_opflags |= IOP_NOFOLLOW;
1841         }
1842 
1843         if (unlikely(!S_ISREG(inode->i_mode)))
1844                 add_flags = DCACHE_SPECIAL_TYPE;
1845 
1846 type_determined:
1847         if (unlikely(IS_AUTOMOUNT(inode)))
1848                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1849         return add_flags;
1850 }
1851 
1852 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1853 {
1854         unsigned add_flags = d_flags_for_inode(inode);
1855         WARN_ON(d_in_lookup(dentry));
1856 
1857         spin_lock(&dentry->d_lock);
1858         /*
1859          * The negative counter only tracks dentries on the LRU. Don't dec if
1860          * d_lru is on another list.
1861          */
1862         if ((dentry->d_flags &
1863              (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1864                 this_cpu_dec(nr_dentry_negative);
1865         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1866         raw_write_seqcount_begin(&dentry->d_seq);
1867         __d_set_inode_and_type(dentry, inode, add_flags);
1868         raw_write_seqcount_end(&dentry->d_seq);
1869         fsnotify_update_flags(dentry);
1870         spin_unlock(&dentry->d_lock);
1871 }
1872 
1873 /**
1874  * d_instantiate - fill in inode information for a dentry
1875  * @entry: dentry to complete
1876  * @inode: inode to attach to this dentry
1877  *
1878  * Fill in inode information in the entry.
1879  *
1880  * This turns negative dentries into productive full members
1881  * of society.
1882  *
1883  * NOTE! This assumes that the inode count has been incremented
1884  * (or otherwise set) by the caller to indicate that it is now
1885  * in use by the dcache.
1886  */
1887  
1888 void d_instantiate(struct dentry *entry, struct inode * inode)
1889 {
1890         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1891         if (inode) {
1892                 security_d_instantiate(entry, inode);
1893                 spin_lock(&inode->i_lock);
1894                 __d_instantiate(entry, inode);
1895                 spin_unlock(&inode->i_lock);
1896         }
1897 }
1898 EXPORT_SYMBOL(d_instantiate);
1899 
1900 /*
1901  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1902  * with lockdep-related part of unlock_new_inode() done before
1903  * anything else.  Use that instead of open-coding d_instantiate()/
1904  * unlock_new_inode() combinations.
1905  */
1906 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1907 {
1908         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1909         BUG_ON(!inode);
1910         lockdep_annotate_inode_mutex_key(inode);
1911         security_d_instantiate(entry, inode);
1912         spin_lock(&inode->i_lock);
1913         __d_instantiate(entry, inode);
1914         WARN_ON(!(inode->i_state & I_NEW));
1915         inode->i_state &= ~I_NEW & ~I_CREATING;
1916         smp_mb();
1917         wake_up_bit(&inode->i_state, __I_NEW);
1918         spin_unlock(&inode->i_lock);
1919 }
1920 EXPORT_SYMBOL(d_instantiate_new);
1921 
1922 struct dentry *d_make_root(struct inode *root_inode)
1923 {
1924         struct dentry *res = NULL;
1925 
1926         if (root_inode) {
1927                 res = d_alloc_anon(root_inode->i_sb);
1928                 if (res)
1929                         d_instantiate(res, root_inode);
1930                 else
1931                         iput(root_inode);
1932         }
1933         return res;
1934 }
1935 EXPORT_SYMBOL(d_make_root);
1936 
1937 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1938 {
1939         struct super_block *sb;
1940         struct dentry *new, *res;
1941 
1942         if (!inode)
1943                 return ERR_PTR(-ESTALE);
1944         if (IS_ERR(inode))
1945                 return ERR_CAST(inode);
1946 
1947         sb = inode->i_sb;
1948 
1949         res = d_find_any_alias(inode); /* existing alias? */
1950         if (res)
1951                 goto out;
1952 
1953         new = d_alloc_anon(sb);
1954         if (!new) {
1955                 res = ERR_PTR(-ENOMEM);
1956                 goto out;
1957         }
1958 
1959         security_d_instantiate(new, inode);
1960         spin_lock(&inode->i_lock);
1961         res = __d_find_any_alias(inode); /* recheck under lock */
1962         if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1963                 unsigned add_flags = d_flags_for_inode(inode);
1964 
1965                 if (disconnected)
1966                         add_flags |= DCACHE_DISCONNECTED;
1967 
1968                 spin_lock(&new->d_lock);
1969                 __d_set_inode_and_type(new, inode, add_flags);
1970                 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1971                 if (!disconnected) {
1972                         hlist_bl_lock(&sb->s_roots);
1973                         hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1974                         hlist_bl_unlock(&sb->s_roots);
1975                 }
1976                 spin_unlock(&new->d_lock);
1977                 spin_unlock(&inode->i_lock);
1978                 inode = NULL; /* consumed by new->d_inode */
1979                 res = new;
1980         } else {
1981                 spin_unlock(&inode->i_lock);
1982                 dput(new);
1983         }
1984 
1985  out:
1986         iput(inode);
1987         return res;
1988 }
1989 
1990 /**
1991  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1992  * @inode: inode to allocate the dentry for
1993  *
1994  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1995  * similar open by handle operations.  The returned dentry may be anonymous,
1996  * or may have a full name (if the inode was already in the cache).
1997  *
1998  * When called on a directory inode, we must ensure that the inode only ever
1999  * has one dentry.  If a dentry is found, that is returned instead of
2000  * allocating a new one.
2001  *
2002  * On successful return, the reference to the inode has been transferred
2003  * to the dentry.  In case of an error the reference on the inode is released.
2004  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2005  * be passed in and the error will be propagated to the return value,
2006  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2007  */
2008 struct dentry *d_obtain_alias(struct inode *inode)
2009 {
2010         return __d_obtain_alias(inode, true);
2011 }
2012 EXPORT_SYMBOL(d_obtain_alias);
2013 
2014 /**
2015  * d_obtain_root - find or allocate a dentry for a given inode
2016  * @inode: inode to allocate the dentry for
2017  *
2018  * Obtain an IS_ROOT dentry for the root of a filesystem.
2019  *
2020  * We must ensure that directory inodes only ever have one dentry.  If a
2021  * dentry is found, that is returned instead of allocating a new one.
2022  *
2023  * On successful return, the reference to the inode has been transferred
2024  * to the dentry.  In case of an error the reference on the inode is
2025  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2026  * error will be propagate to the return value, with a %NULL @inode
2027  * replaced by ERR_PTR(-ESTALE).
2028  */
2029 struct dentry *d_obtain_root(struct inode *inode)
2030 {
2031         return __d_obtain_alias(inode, false);
2032 }
2033 EXPORT_SYMBOL(d_obtain_root);
2034 
2035 /**
2036  * d_add_ci - lookup or allocate new dentry with case-exact name
2037  * @inode:  the inode case-insensitive lookup has found
2038  * @dentry: the negative dentry that was passed to the parent's lookup func
2039  * @name:   the case-exact name to be associated with the returned dentry
2040  *
2041  * This is to avoid filling the dcache with case-insensitive names to the
2042  * same inode, only the actual correct case is stored in the dcache for
2043  * case-insensitive filesystems.
2044  *
2045  * For a case-insensitive lookup match and if the case-exact dentry
2046  * already exists in the dcache, use it and return it.
2047  *
2048  * If no entry exists with the exact case name, allocate new dentry with
2049  * the exact case, and return the spliced entry.
2050  */
2051 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2052                         struct qstr *name)
2053 {
2054         struct dentry *found, *res;
2055 
2056         /*
2057          * First check if a dentry matching the name already exists,
2058          * if not go ahead and create it now.
2059          */
2060         found = d_hash_and_lookup(dentry->d_parent, name);
2061         if (found) {
2062                 iput(inode);
2063                 return found;
2064         }
2065         if (d_in_lookup(dentry)) {
2066                 found = d_alloc_parallel(dentry->d_parent, name,
2067                                         dentry->d_wait);
2068                 if (IS_ERR(found) || !d_in_lookup(found)) {
2069                         iput(inode);
2070                         return found;
2071                 }
2072         } else {
2073                 found = d_alloc(dentry->d_parent, name);
2074                 if (!found) {
2075                         iput(inode);
2076                         return ERR_PTR(-ENOMEM);
2077                 } 
2078         }
2079         res = d_splice_alias(inode, found);
2080         if (res) {
2081                 d_lookup_done(found);
2082                 dput(found);
2083                 return res;
2084         }
2085         return found;
2086 }
2087 EXPORT_SYMBOL(d_add_ci);
2088 
2089 /**
2090  * d_same_name - compare dentry name with case-exact name
2091  * @parent: parent dentry
2092  * @dentry: the negative dentry that was passed to the parent's lookup func
2093  * @name:   the case-exact name to be associated with the returned dentry
2094  *
2095  * Return: true if names are same, or false
2096  */
2097 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2098                  const struct qstr *name)
2099 {
2100         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2101                 if (dentry->d_name.len != name->len)
2102                         return false;
2103                 return dentry_cmp(dentry, name->name, name->len) == 0;
2104         }
2105         return parent->d_op->d_compare(dentry,
2106                                        dentry->d_name.len, dentry->d_name.name,
2107                                        name) == 0;
2108 }
2109 EXPORT_SYMBOL_GPL(d_same_name);
2110 
2111 /*
2112  * This is __d_lookup_rcu() when the parent dentry has
2113  * DCACHE_OP_COMPARE, which makes things much nastier.
2114  */
2115 static noinline struct dentry *__d_lookup_rcu_op_compare(
2116         const struct dentry *parent,
2117         const struct qstr *name,
2118         unsigned *seqp)
2119 {
2120         u64 hashlen = name->hash_len;
2121         struct hlist_bl_head *b = d_hash(hashlen);
2122         struct hlist_bl_node *node;
2123         struct dentry *dentry;
2124 
2125         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2126                 int tlen;
2127                 const char *tname;
2128                 unsigned seq;
2129 
2130 seqretry:
2131                 seq = raw_seqcount_begin(&dentry->d_seq);
2132                 if (dentry->d_parent != parent)
2133                         continue;
2134                 if (d_unhashed(dentry))
2135                         continue;
2136                 if (dentry->d_name.hash != hashlen_hash(hashlen))
2137                         continue;
2138                 tlen = dentry->d_name.len;
2139                 tname = dentry->d_name.name;
2140                 /* we want a consistent (name,len) pair */
2141                 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2142                         cpu_relax();
2143                         goto seqretry;
2144                 }
2145                 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2146                         continue;
2147                 *seqp = seq;
2148                 return dentry;
2149         }
2150         return NULL;
2151 }
2152 
2153 /**
2154  * __d_lookup_rcu - search for a dentry (racy, store-free)
2155  * @parent: parent dentry
2156  * @name: qstr of name we wish to find
2157  * @seqp: returns d_seq value at the point where the dentry was found
2158  * Returns: dentry, or NULL
2159  *
2160  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2161  * resolution (store-free path walking) design described in
2162  * Documentation/filesystems/path-lookup.txt.
2163  *
2164  * This is not to be used outside core vfs.
2165  *
2166  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2167  * held, and rcu_read_lock held. The returned dentry must not be stored into
2168  * without taking d_lock and checking d_seq sequence count against @seq
2169  * returned here.
2170  *
2171  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2172  * function.
2173  *
2174  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2175  * the returned dentry, so long as its parent's seqlock is checked after the
2176  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2177  * is formed, giving integrity down the path walk.
2178  *
2179  * NOTE! The caller *has* to check the resulting dentry against the sequence
2180  * number we've returned before using any of the resulting dentry state!
2181  */
2182 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2183                                 const struct qstr *name,
2184                                 unsigned *seqp)
2185 {
2186         u64 hashlen = name->hash_len;
2187         const unsigned char *str = name->name;
2188         struct hlist_bl_head *b = d_hash(hashlen);
2189         struct hlist_bl_node *node;
2190         struct dentry *dentry;
2191 
2192         /*
2193          * Note: There is significant duplication with __d_lookup_rcu which is
2194          * required to prevent single threaded performance regressions
2195          * especially on architectures where smp_rmb (in seqcounts) are costly.
2196          * Keep the two functions in sync.
2197          */
2198 
2199         if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2200                 return __d_lookup_rcu_op_compare(parent, name, seqp);
2201 
2202         /*
2203          * The hash list is protected using RCU.
2204          *
2205          * Carefully use d_seq when comparing a candidate dentry, to avoid
2206          * races with d_move().
2207          *
2208          * It is possible that concurrent renames can mess up our list
2209          * walk here and result in missing our dentry, resulting in the
2210          * false-negative result. d_lookup() protects against concurrent
2211          * renames using rename_lock seqlock.
2212          *
2213          * See Documentation/filesystems/path-lookup.txt for more details.
2214          */
2215         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2216                 unsigned seq;
2217 
2218                 /*
2219                  * The dentry sequence count protects us from concurrent
2220                  * renames, and thus protects parent and name fields.
2221                  *
2222                  * The caller must perform a seqcount check in order
2223                  * to do anything useful with the returned dentry.
2224                  *
2225                  * NOTE! We do a "raw" seqcount_begin here. That means that
2226                  * we don't wait for the sequence count to stabilize if it
2227                  * is in the middle of a sequence change. If we do the slow
2228                  * dentry compare, we will do seqretries until it is stable,
2229                  * and if we end up with a successful lookup, we actually
2230                  * want to exit RCU lookup anyway.
2231                  *
2232                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2233                  * we are still guaranteed NUL-termination of ->d_name.name.
2234                  */
2235                 seq = raw_seqcount_begin(&dentry->d_seq);
2236                 if (dentry->d_parent != parent)
2237                         continue;
2238                 if (d_unhashed(dentry))
2239                         continue;
2240                 if (dentry->d_name.hash_len != hashlen)
2241                         continue;
2242                 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2243                         continue;
2244                 *seqp = seq;
2245                 return dentry;
2246         }
2247         return NULL;
2248 }
2249 
2250 /**
2251  * d_lookup - search for a dentry
2252  * @parent: parent dentry
2253  * @name: qstr of name we wish to find
2254  * Returns: dentry, or NULL
2255  *
2256  * d_lookup searches the children of the parent dentry for the name in
2257  * question. If the dentry is found its reference count is incremented and the
2258  * dentry is returned. The caller must use dput to free the entry when it has
2259  * finished using it. %NULL is returned if the dentry does not exist.
2260  */
2261 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2262 {
2263         struct dentry *dentry;
2264         unsigned seq;
2265 
2266         do {
2267                 seq = read_seqbegin(&rename_lock);
2268                 dentry = __d_lookup(parent, name);
2269                 if (dentry)
2270                         break;
2271         } while (read_seqretry(&rename_lock, seq));
2272         return dentry;
2273 }
2274 EXPORT_SYMBOL(d_lookup);
2275 
2276 /**
2277  * __d_lookup - search for a dentry (racy)
2278  * @parent: parent dentry
2279  * @name: qstr of name we wish to find
2280  * Returns: dentry, or NULL
2281  *
2282  * __d_lookup is like d_lookup, however it may (rarely) return a
2283  * false-negative result due to unrelated rename activity.
2284  *
2285  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2286  * however it must be used carefully, eg. with a following d_lookup in
2287  * the case of failure.
2288  *
2289  * __d_lookup callers must be commented.
2290  */
2291 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2292 {
2293         unsigned int hash = name->hash;
2294         struct hlist_bl_head *b = d_hash(hash);
2295         struct hlist_bl_node *node;
2296         struct dentry *found = NULL;
2297         struct dentry *dentry;
2298 
2299         /*
2300          * Note: There is significant duplication with __d_lookup_rcu which is
2301          * required to prevent single threaded performance regressions
2302          * especially on architectures where smp_rmb (in seqcounts) are costly.
2303          * Keep the two functions in sync.
2304          */
2305 
2306         /*
2307          * The hash list is protected using RCU.
2308          *
2309          * Take d_lock when comparing a candidate dentry, to avoid races
2310          * with d_move().
2311          *
2312          * It is possible that concurrent renames can mess up our list
2313          * walk here and result in missing our dentry, resulting in the
2314          * false-negative result. d_lookup() protects against concurrent
2315          * renames using rename_lock seqlock.
2316          *
2317          * See Documentation/filesystems/path-lookup.txt for more details.
2318          */
2319         rcu_read_lock();
2320         
2321         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2322 
2323                 if (dentry->d_name.hash != hash)
2324                         continue;
2325 
2326                 spin_lock(&dentry->d_lock);
2327                 if (dentry->d_parent != parent)
2328                         goto next;
2329                 if (d_unhashed(dentry))
2330                         goto next;
2331 
2332                 if (!d_same_name(dentry, parent, name))
2333                         goto next;
2334 
2335                 dentry->d_lockref.count++;
2336                 found = dentry;
2337                 spin_unlock(&dentry->d_lock);
2338                 break;
2339 next:
2340                 spin_unlock(&dentry->d_lock);
2341         }
2342         rcu_read_unlock();
2343 
2344         return found;
2345 }
2346 
2347 /**
2348  * d_hash_and_lookup - hash the qstr then search for a dentry
2349  * @dir: Directory to search in
2350  * @name: qstr of name we wish to find
2351  *
2352  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2353  */
2354 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2355 {
2356         /*
2357          * Check for a fs-specific hash function. Note that we must
2358          * calculate the standard hash first, as the d_op->d_hash()
2359          * routine may choose to leave the hash value unchanged.
2360          */
2361         name->hash = full_name_hash(dir, name->name, name->len);
2362         if (dir->d_flags & DCACHE_OP_HASH) {
2363                 int err = dir->d_op->d_hash(dir, name);
2364                 if (unlikely(err < 0))
2365                         return ERR_PTR(err);
2366         }
2367         return d_lookup(dir, name);
2368 }
2369 EXPORT_SYMBOL(d_hash_and_lookup);
2370 
2371 /*
2372  * When a file is deleted, we have two options:
2373  * - turn this dentry into a negative dentry
2374  * - unhash this dentry and free it.
2375  *
2376  * Usually, we want to just turn this into
2377  * a negative dentry, but if anybody else is
2378  * currently using the dentry or the inode
2379  * we can't do that and we fall back on removing
2380  * it from the hash queues and waiting for
2381  * it to be deleted later when it has no users
2382  */
2383  
2384 /**
2385  * d_delete - delete a dentry
2386  * @dentry: The dentry to delete
2387  *
2388  * Turn the dentry into a negative dentry if possible, otherwise
2389  * remove it from the hash queues so it can be deleted later
2390  */
2391  
2392 void d_delete(struct dentry * dentry)
2393 {
2394         struct inode *inode = dentry->d_inode;
2395 
2396         spin_lock(&inode->i_lock);
2397         spin_lock(&dentry->d_lock);
2398         /*
2399          * Are we the only user?
2400          */
2401         if (dentry->d_lockref.count == 1) {
2402                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2403                 dentry_unlink_inode(dentry);
2404         } else {
2405                 __d_drop(dentry);
2406                 spin_unlock(&dentry->d_lock);
2407                 spin_unlock(&inode->i_lock);
2408         }
2409 }
2410 EXPORT_SYMBOL(d_delete);
2411 
2412 static void __d_rehash(struct dentry *entry)
2413 {
2414         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2415 
2416         hlist_bl_lock(b);
2417         hlist_bl_add_head_rcu(&entry->d_hash, b);
2418         hlist_bl_unlock(b);
2419 }
2420 
2421 /**
2422  * d_rehash     - add an entry back to the hash
2423  * @entry: dentry to add to the hash
2424  *
2425  * Adds a dentry to the hash according to its name.
2426  */
2427  
2428 void d_rehash(struct dentry * entry)
2429 {
2430         spin_lock(&entry->d_lock);
2431         __d_rehash(entry);
2432         spin_unlock(&entry->d_lock);
2433 }
2434 EXPORT_SYMBOL(d_rehash);
2435 
2436 static inline unsigned start_dir_add(struct inode *dir)
2437 {
2438         preempt_disable_nested();
2439         for (;;) {
2440                 unsigned n = dir->i_dir_seq;
2441                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2442                         return n;
2443                 cpu_relax();
2444         }
2445 }
2446 
2447 static inline void end_dir_add(struct inode *dir, unsigned int n,
2448                                wait_queue_head_t *d_wait)
2449 {
2450         smp_store_release(&dir->i_dir_seq, n + 2);
2451         preempt_enable_nested();
2452         wake_up_all(d_wait);
2453 }
2454 
2455 static void d_wait_lookup(struct dentry *dentry)
2456 {
2457         if (d_in_lookup(dentry)) {
2458                 DECLARE_WAITQUEUE(wait, current);
2459                 add_wait_queue(dentry->d_wait, &wait);
2460                 do {
2461                         set_current_state(TASK_UNINTERRUPTIBLE);
2462                         spin_unlock(&dentry->d_lock);
2463                         schedule();
2464                         spin_lock(&dentry->d_lock);
2465                 } while (d_in_lookup(dentry));
2466         }
2467 }
2468 
2469 struct dentry *d_alloc_parallel(struct dentry *parent,
2470                                 const struct qstr *name,
2471                                 wait_queue_head_t *wq)
2472 {
2473         unsigned int hash = name->hash;
2474         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2475         struct hlist_bl_node *node;
2476         struct dentry *new = d_alloc(parent, name);
2477         struct dentry *dentry;
2478         unsigned seq, r_seq, d_seq;
2479 
2480         if (unlikely(!new))
2481                 return ERR_PTR(-ENOMEM);
2482 
2483 retry:
2484         rcu_read_lock();
2485         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2486         r_seq = read_seqbegin(&rename_lock);
2487         dentry = __d_lookup_rcu(parent, name, &d_seq);
2488         if (unlikely(dentry)) {
2489                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2490                         rcu_read_unlock();
2491                         goto retry;
2492                 }
2493                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2494                         rcu_read_unlock();
2495                         dput(dentry);
2496                         goto retry;
2497                 }
2498                 rcu_read_unlock();
2499                 dput(new);
2500                 return dentry;
2501         }
2502         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2503                 rcu_read_unlock();
2504                 goto retry;
2505         }
2506 
2507         if (unlikely(seq & 1)) {
2508                 rcu_read_unlock();
2509                 goto retry;
2510         }
2511 
2512         hlist_bl_lock(b);
2513         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2514                 hlist_bl_unlock(b);
2515                 rcu_read_unlock();
2516                 goto retry;
2517         }
2518         /*
2519          * No changes for the parent since the beginning of d_lookup().
2520          * Since all removals from the chain happen with hlist_bl_lock(),
2521          * any potential in-lookup matches are going to stay here until
2522          * we unlock the chain.  All fields are stable in everything
2523          * we encounter.
2524          */
2525         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2526                 if (dentry->d_name.hash != hash)
2527                         continue;
2528                 if (dentry->d_parent != parent)
2529                         continue;
2530                 if (!d_same_name(dentry, parent, name))
2531                         continue;
2532                 hlist_bl_unlock(b);
2533                 /* now we can try to grab a reference */
2534                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2535                         rcu_read_unlock();
2536                         goto retry;
2537                 }
2538 
2539                 rcu_read_unlock();
2540                 /*
2541                  * somebody is likely to be still doing lookup for it;
2542                  * wait for them to finish
2543                  */
2544                 spin_lock(&dentry->d_lock);
2545                 d_wait_lookup(dentry);
2546                 /*
2547                  * it's not in-lookup anymore; in principle we should repeat
2548                  * everything from dcache lookup, but it's likely to be what
2549                  * d_lookup() would've found anyway.  If it is, just return it;
2550                  * otherwise we really have to repeat the whole thing.
2551                  */
2552                 if (unlikely(dentry->d_name.hash != hash))
2553                         goto mismatch;
2554                 if (unlikely(dentry->d_parent != parent))
2555                         goto mismatch;
2556                 if (unlikely(d_unhashed(dentry)))
2557                         goto mismatch;
2558                 if (unlikely(!d_same_name(dentry, parent, name)))
2559                         goto mismatch;
2560                 /* OK, it *is* a hashed match; return it */
2561                 spin_unlock(&dentry->d_lock);
2562                 dput(new);
2563                 return dentry;
2564         }
2565         rcu_read_unlock();
2566         /* we can't take ->d_lock here; it's OK, though. */
2567         new->d_flags |= DCACHE_PAR_LOOKUP;
2568         new->d_wait = wq;
2569         hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2570         hlist_bl_unlock(b);
2571         return new;
2572 mismatch:
2573         spin_unlock(&dentry->d_lock);
2574         dput(dentry);
2575         goto retry;
2576 }
2577 EXPORT_SYMBOL(d_alloc_parallel);
2578 
2579 /*
2580  * - Unhash the dentry
2581  * - Retrieve and clear the waitqueue head in dentry
2582  * - Return the waitqueue head
2583  */
2584 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2585 {
2586         wait_queue_head_t *d_wait;
2587         struct hlist_bl_head *b;
2588 
2589         lockdep_assert_held(&dentry->d_lock);
2590 
2591         b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2592         hlist_bl_lock(b);
2593         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2594         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2595         d_wait = dentry->d_wait;
2596         dentry->d_wait = NULL;
2597         hlist_bl_unlock(b);
2598         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2599         INIT_LIST_HEAD(&dentry->d_lru);
2600         return d_wait;
2601 }
2602 
2603 void __d_lookup_unhash_wake(struct dentry *dentry)
2604 {
2605         spin_lock(&dentry->d_lock);
2606         wake_up_all(__d_lookup_unhash(dentry));
2607         spin_unlock(&dentry->d_lock);
2608 }
2609 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2610 
2611 /* inode->i_lock held if inode is non-NULL */
2612 
2613 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2614 {
2615         wait_queue_head_t *d_wait;
2616         struct inode *dir = NULL;
2617         unsigned n;
2618         spin_lock(&dentry->d_lock);
2619         if (unlikely(d_in_lookup(dentry))) {
2620                 dir = dentry->d_parent->d_inode;
2621                 n = start_dir_add(dir);
2622                 d_wait = __d_lookup_unhash(dentry);
2623         }
2624         if (inode) {
2625                 unsigned add_flags = d_flags_for_inode(inode);
2626                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2627                 raw_write_seqcount_begin(&dentry->d_seq);
2628                 __d_set_inode_and_type(dentry, inode, add_flags);
2629                 raw_write_seqcount_end(&dentry->d_seq);
2630                 fsnotify_update_flags(dentry);
2631         }
2632         __d_rehash(dentry);
2633         if (dir)
2634                 end_dir_add(dir, n, d_wait);
2635         spin_unlock(&dentry->d_lock);
2636         if (inode)
2637                 spin_unlock(&inode->i_lock);
2638 }
2639 
2640 /**
2641  * d_add - add dentry to hash queues
2642  * @entry: dentry to add
2643  * @inode: The inode to attach to this dentry
2644  *
2645  * This adds the entry to the hash queues and initializes @inode.
2646  * The entry was actually filled in earlier during d_alloc().
2647  */
2648 
2649 void d_add(struct dentry *entry, struct inode *inode)
2650 {
2651         if (inode) {
2652                 security_d_instantiate(entry, inode);
2653                 spin_lock(&inode->i_lock);
2654         }
2655         __d_add(entry, inode);
2656 }
2657 EXPORT_SYMBOL(d_add);
2658 
2659 /**
2660  * d_exact_alias - find and hash an exact unhashed alias
2661  * @entry: dentry to add
2662  * @inode: The inode to go with this dentry
2663  *
2664  * If an unhashed dentry with the same name/parent and desired
2665  * inode already exists, hash and return it.  Otherwise, return
2666  * NULL.
2667  *
2668  * Parent directory should be locked.
2669  */
2670 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2671 {
2672         struct dentry *alias;
2673         unsigned int hash = entry->d_name.hash;
2674 
2675         spin_lock(&inode->i_lock);
2676         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2677                 /*
2678                  * Don't need alias->d_lock here, because aliases with
2679                  * d_parent == entry->d_parent are not subject to name or
2680                  * parent changes, because the parent inode i_mutex is held.
2681                  */
2682                 if (alias->d_name.hash != hash)
2683                         continue;
2684                 if (alias->d_parent != entry->d_parent)
2685                         continue;
2686                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2687                         continue;
2688                 spin_lock(&alias->d_lock);
2689                 if (!d_unhashed(alias)) {
2690                         spin_unlock(&alias->d_lock);
2691                         alias = NULL;
2692                 } else {
2693                         dget_dlock(alias);
2694                         __d_rehash(alias);
2695                         spin_unlock(&alias->d_lock);
2696                 }
2697                 spin_unlock(&inode->i_lock);
2698                 return alias;
2699         }
2700         spin_unlock(&inode->i_lock);
2701         return NULL;
2702 }
2703 EXPORT_SYMBOL(d_exact_alias);
2704 
2705 static void swap_names(struct dentry *dentry, struct dentry *target)
2706 {
2707         if (unlikely(dname_external(target))) {
2708                 if (unlikely(dname_external(dentry))) {
2709                         /*
2710                          * Both external: swap the pointers
2711                          */
2712                         swap(target->d_name.name, dentry->d_name.name);
2713                 } else {
2714                         /*
2715                          * dentry:internal, target:external.  Steal target's
2716                          * storage and make target internal.
2717                          */
2718                         memcpy(target->d_iname, dentry->d_name.name,
2719                                         dentry->d_name.len + 1);
2720                         dentry->d_name.name = target->d_name.name;
2721                         target->d_name.name = target->d_iname;
2722                 }
2723         } else {
2724                 if (unlikely(dname_external(dentry))) {
2725                         /*
2726                          * dentry:external, target:internal.  Give dentry's
2727                          * storage to target and make dentry internal
2728                          */
2729                         memcpy(dentry->d_iname, target->d_name.name,
2730                                         target->d_name.len + 1);
2731                         target->d_name.name = dentry->d_name.name;
2732                         dentry->d_name.name = dentry->d_iname;
2733                 } else {
2734                         /*
2735                          * Both are internal.
2736                          */
2737                         unsigned int i;
2738                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2739                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2740                                 swap(((long *) &dentry->d_iname)[i],
2741                                      ((long *) &target->d_iname)[i]);
2742                         }
2743                 }
2744         }
2745         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2746 }
2747 
2748 static void copy_name(struct dentry *dentry, struct dentry *target)
2749 {
2750         struct external_name *old_name = NULL;
2751         if (unlikely(dname_external(dentry)))
2752                 old_name = external_name(dentry);
2753         if (unlikely(dname_external(target))) {
2754                 atomic_inc(&external_name(target)->u.count);
2755                 dentry->d_name = target->d_name;
2756         } else {
2757                 memcpy(dentry->d_iname, target->d_name.name,
2758                                 target->d_name.len + 1);
2759                 dentry->d_name.name = dentry->d_iname;
2760                 dentry->d_name.hash_len = target->d_name.hash_len;
2761         }
2762         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2763                 kfree_rcu(old_name, u.head);
2764 }
2765 
2766 /*
2767  * __d_move - move a dentry
2768  * @dentry: entry to move
2769  * @target: new dentry
2770  * @exchange: exchange the two dentries
2771  *
2772  * Update the dcache to reflect the move of a file name. Negative
2773  * dcache entries should not be moved in this way. Caller must hold
2774  * rename_lock, the i_mutex of the source and target directories,
2775  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2776  */
2777 static void __d_move(struct dentry *dentry, struct dentry *target,
2778                      bool exchange)
2779 {
2780         struct dentry *old_parent, *p;
2781         wait_queue_head_t *d_wait;
2782         struct inode *dir = NULL;
2783         unsigned n;
2784 
2785         WARN_ON(!dentry->d_inode);
2786         if (WARN_ON(dentry == target))
2787                 return;
2788 
2789         BUG_ON(d_ancestor(target, dentry));
2790         old_parent = dentry->d_parent;
2791         p = d_ancestor(old_parent, target);
2792         if (IS_ROOT(dentry)) {
2793                 BUG_ON(p);
2794                 spin_lock(&target->d_parent->d_lock);
2795         } else if (!p) {
2796                 /* target is not a descendent of dentry->d_parent */
2797                 spin_lock(&target->d_parent->d_lock);
2798                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2799         } else {
2800                 BUG_ON(p == dentry);
2801                 spin_lock(&old_parent->d_lock);
2802                 if (p != target)
2803                         spin_lock_nested(&target->d_parent->d_lock,
2804                                         DENTRY_D_LOCK_NESTED);
2805         }
2806         spin_lock_nested(&dentry->d_lock, 2);
2807         spin_lock_nested(&target->d_lock, 3);
2808 
2809         if (unlikely(d_in_lookup(target))) {
2810                 dir = target->d_parent->d_inode;
2811                 n = start_dir_add(dir);
2812                 d_wait = __d_lookup_unhash(target);
2813         }
2814 
2815         write_seqcount_begin(&dentry->d_seq);
2816         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2817 
2818         /* unhash both */
2819         if (!d_unhashed(dentry))
2820                 ___d_drop(dentry);
2821         if (!d_unhashed(target))
2822                 ___d_drop(target);
2823 
2824         /* ... and switch them in the tree */
2825         dentry->d_parent = target->d_parent;
2826         if (!exchange) {
2827                 copy_name(dentry, target);
2828                 target->d_hash.pprev = NULL;
2829                 dentry->d_parent->d_lockref.count++;
2830                 if (dentry != old_parent) /* wasn't IS_ROOT */
2831                         WARN_ON(!--old_parent->d_lockref.count);
2832         } else {
2833                 target->d_parent = old_parent;
2834                 swap_names(dentry, target);
2835                 if (!hlist_unhashed(&target->d_sib))
2836                         __hlist_del(&target->d_sib);
2837                 hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2838                 __d_rehash(target);
2839                 fsnotify_update_flags(target);
2840         }
2841         if (!hlist_unhashed(&dentry->d_sib))
2842                 __hlist_del(&dentry->d_sib);
2843         hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2844         __d_rehash(dentry);
2845         fsnotify_update_flags(dentry);
2846         fscrypt_handle_d_move(dentry);
2847 
2848         write_seqcount_end(&target->d_seq);
2849         write_seqcount_end(&dentry->d_seq);
2850 
2851         if (dir)
2852                 end_dir_add(dir, n, d_wait);
2853 
2854         if (dentry->d_parent != old_parent)
2855                 spin_unlock(&dentry->d_parent->d_lock);
2856         if (dentry != old_parent)
2857                 spin_unlock(&old_parent->d_lock);
2858         spin_unlock(&target->d_lock);
2859         spin_unlock(&dentry->d_lock);
2860 }
2861 
2862 /*
2863  * d_move - move a dentry
2864  * @dentry: entry to move
2865  * @target: new dentry
2866  *
2867  * Update the dcache to reflect the move of a file name. Negative
2868  * dcache entries should not be moved in this way. See the locking
2869  * requirements for __d_move.
2870  */
2871 void d_move(struct dentry *dentry, struct dentry *target)
2872 {
2873         write_seqlock(&rename_lock);
2874         __d_move(dentry, target, false);
2875         write_sequnlock(&rename_lock);
2876 }
2877 EXPORT_SYMBOL(d_move);
2878 
2879 /*
2880  * d_exchange - exchange two dentries
2881  * @dentry1: first dentry
2882  * @dentry2: second dentry
2883  */
2884 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2885 {
2886         write_seqlock(&rename_lock);
2887 
2888         WARN_ON(!dentry1->d_inode);
2889         WARN_ON(!dentry2->d_inode);
2890         WARN_ON(IS_ROOT(dentry1));
2891         WARN_ON(IS_ROOT(dentry2));
2892 
2893         __d_move(dentry1, dentry2, true);
2894 
2895         write_sequnlock(&rename_lock);
2896 }
2897 
2898 /**
2899  * d_ancestor - search for an ancestor
2900  * @p1: ancestor dentry
2901  * @p2: child dentry
2902  *
2903  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2904  * an ancestor of p2, else NULL.
2905  */
2906 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2907 {
2908         struct dentry *p;
2909 
2910         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2911                 if (p->d_parent == p1)
2912                         return p;
2913         }
2914         return NULL;
2915 }
2916 
2917 /*
2918  * This helper attempts to cope with remotely renamed directories
2919  *
2920  * It assumes that the caller is already holding
2921  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2922  *
2923  * Note: If ever the locking in lock_rename() changes, then please
2924  * remember to update this too...
2925  */
2926 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2927 {
2928         struct mutex *m1 = NULL;
2929         struct rw_semaphore *m2 = NULL;
2930         int ret = -ESTALE;
2931 
2932         /* If alias and dentry share a parent, then no extra locks required */
2933         if (alias->d_parent == dentry->d_parent)
2934                 goto out_unalias;
2935 
2936         /* See lock_rename() */
2937         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2938                 goto out_err;
2939         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2940         if (!inode_trylock_shared(alias->d_parent->d_inode))
2941                 goto out_err;
2942         m2 = &alias->d_parent->d_inode->i_rwsem;
2943 out_unalias:
2944         __d_move(alias, dentry, false);
2945         ret = 0;
2946 out_err:
2947         if (m2)
2948                 up_read(m2);
2949         if (m1)
2950                 mutex_unlock(m1);
2951         return ret;
2952 }
2953 
2954 /**
2955  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2956  * @inode:  the inode which may have a disconnected dentry
2957  * @dentry: a negative dentry which we want to point to the inode.
2958  *
2959  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2960  * place of the given dentry and return it, else simply d_add the inode
2961  * to the dentry and return NULL.
2962  *
2963  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2964  * we should error out: directories can't have multiple aliases.
2965  *
2966  * This is needed in the lookup routine of any filesystem that is exportable
2967  * (via knfsd) so that we can build dcache paths to directories effectively.
2968  *
2969  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2970  * is returned.  This matches the expected return value of ->lookup.
2971  *
2972  * Cluster filesystems may call this function with a negative, hashed dentry.
2973  * In that case, we know that the inode will be a regular file, and also this
2974  * will only occur during atomic_open. So we need to check for the dentry
2975  * being already hashed only in the final case.
2976  */
2977 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2978 {
2979         if (IS_ERR(inode))
2980                 return ERR_CAST(inode);
2981 
2982         BUG_ON(!d_unhashed(dentry));
2983 
2984         if (!inode)
2985                 goto out;
2986 
2987         security_d_instantiate(dentry, inode);
2988         spin_lock(&inode->i_lock);
2989         if (S_ISDIR(inode->i_mode)) {
2990                 struct dentry *new = __d_find_any_alias(inode);
2991                 if (unlikely(new)) {
2992                         /* The reference to new ensures it remains an alias */
2993                         spin_unlock(&inode->i_lock);
2994                         write_seqlock(&rename_lock);
2995                         if (unlikely(d_ancestor(new, dentry))) {
2996                                 write_sequnlock(&rename_lock);
2997                                 dput(new);
2998                                 new = ERR_PTR(-ELOOP);
2999                                 pr_warn_ratelimited(
3000                                         "VFS: Lookup of '%s' in %s %s"
3001                                         " would have caused loop\n",
3002                                         dentry->d_name.name,
3003                                         inode->i_sb->s_type->name,
3004                                         inode->i_sb->s_id);
3005                         } else if (!IS_ROOT(new)) {
3006                                 struct dentry *old_parent = dget(new->d_parent);
3007                                 int err = __d_unalias(dentry, new);
3008                                 write_sequnlock(&rename_lock);
3009                                 if (err) {
3010                                         dput(new);
3011                                         new = ERR_PTR(err);
3012                                 }
3013                                 dput(old_parent);
3014                         } else {
3015                                 __d_move(new, dentry, false);
3016                                 write_sequnlock(&rename_lock);
3017                         }
3018                         iput(inode);
3019                         return new;
3020                 }
3021         }
3022 out:
3023         __d_add(dentry, inode);
3024         return NULL;
3025 }
3026 EXPORT_SYMBOL(d_splice_alias);
3027 
3028 /*
3029  * Test whether new_dentry is a subdirectory of old_dentry.
3030  *
3031  * Trivially implemented using the dcache structure
3032  */
3033 
3034 /**
3035  * is_subdir - is new dentry a subdirectory of old_dentry
3036  * @new_dentry: new dentry
3037  * @old_dentry: old dentry
3038  *
3039  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3040  * Returns false otherwise.
3041  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3042  */
3043   
3044 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3045 {
3046         bool subdir;
3047         unsigned seq;
3048 
3049         if (new_dentry == old_dentry)
3050                 return true;
3051 
3052         /* Access d_parent under rcu as d_move() may change it. */
3053         rcu_read_lock();
3054         seq = read_seqbegin(&rename_lock);
3055         subdir = d_ancestor(old_dentry, new_dentry);
3056          /* Try lockless once... */
3057         if (read_seqretry(&rename_lock, seq)) {
3058                 /* ...else acquire lock for progress even on deep chains. */
3059                 read_seqlock_excl(&rename_lock);
3060                 subdir = d_ancestor(old_dentry, new_dentry);
3061                 read_sequnlock_excl(&rename_lock);
3062         }
3063         rcu_read_unlock();
3064         return subdir;
3065 }
3066 EXPORT_SYMBOL(is_subdir);
3067 
3068 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3069 {
3070         struct dentry *root = data;
3071         if (dentry != root) {
3072                 if (d_unhashed(dentry) || !dentry->d_inode)
3073                         return D_WALK_SKIP;
3074 
3075                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3076                         dentry->d_flags |= DCACHE_GENOCIDE;
3077                         dentry->d_lockref.count--;
3078                 }
3079         }
3080         return D_WALK_CONTINUE;
3081 }
3082 
3083 void d_genocide(struct dentry *parent)
3084 {
3085         d_walk(parent, parent, d_genocide_kill);
3086 }
3087 
3088 void d_mark_tmpfile(struct file *file, struct inode *inode)
3089 {
3090         struct dentry *dentry = file->f_path.dentry;
3091 
3092         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3093                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3094                 !d_unlinked(dentry));
3095         spin_lock(&dentry->d_parent->d_lock);
3096         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3097         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3098                                 (unsigned long long)inode->i_ino);
3099         spin_unlock(&dentry->d_lock);
3100         spin_unlock(&dentry->d_parent->d_lock);
3101 }
3102 EXPORT_SYMBOL(d_mark_tmpfile);
3103 
3104 void d_tmpfile(struct file *file, struct inode *inode)
3105 {
3106         struct dentry *dentry = file->f_path.dentry;
3107 
3108         inode_dec_link_count(inode);
3109         d_mark_tmpfile(file, inode);
3110         d_instantiate(dentry, inode);
3111 }
3112 EXPORT_SYMBOL(d_tmpfile);
3113 
3114 /*
3115  * Obtain inode number of the parent dentry.
3116  */
3117 ino_t d_parent_ino(struct dentry *dentry)
3118 {
3119         struct dentry *parent;
3120         struct inode *iparent;
3121         unsigned seq;
3122         ino_t ret;
3123 
3124         scoped_guard(rcu) {
3125                 seq = raw_seqcount_begin(&dentry->d_seq);
3126                 parent = READ_ONCE(dentry->d_parent);
3127                 iparent = d_inode_rcu(parent);
3128                 if (likely(iparent)) {
3129                         ret = iparent->i_ino;
3130                         if (!read_seqcount_retry(&dentry->d_seq, seq))
3131                                 return ret;
3132                 }
3133         }
3134 
3135         spin_lock(&dentry->d_lock);
3136         ret = dentry->d_parent->d_inode->i_ino;
3137         spin_unlock(&dentry->d_lock);
3138         return ret;
3139 }
3140 EXPORT_SYMBOL(d_parent_ino);
3141 
3142 static __initdata unsigned long dhash_entries;
3143 static int __init set_dhash_entries(char *str)
3144 {
3145         if (!str)
3146                 return 0;
3147         dhash_entries = simple_strtoul(str, &str, 0);
3148         return 1;
3149 }
3150 __setup("dhash_entries=", set_dhash_entries);
3151 
3152 static void __init dcache_init_early(void)
3153 {
3154         /* If hashes are distributed across NUMA nodes, defer
3155          * hash allocation until vmalloc space is available.
3156          */
3157         if (hashdist)
3158                 return;
3159 
3160         dentry_hashtable =
3161                 alloc_large_system_hash("Dentry cache",
3162                                         sizeof(struct hlist_bl_head),
3163                                         dhash_entries,
3164                                         13,
3165                                         HASH_EARLY | HASH_ZERO,
3166                                         &d_hash_shift,
3167                                         NULL,
3168                                         0,
3169                                         0);
3170         d_hash_shift = 32 - d_hash_shift;
3171 
3172         runtime_const_init(shift, d_hash_shift);
3173         runtime_const_init(ptr, dentry_hashtable);
3174 }
3175 
3176 static void __init dcache_init(void)
3177 {
3178         /*
3179          * A constructor could be added for stable state like the lists,
3180          * but it is probably not worth it because of the cache nature
3181          * of the dcache.
3182          */
3183         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3184                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3185                 d_iname);
3186 
3187         /* Hash may have been set up in dcache_init_early */
3188         if (!hashdist)
3189                 return;
3190 
3191         dentry_hashtable =
3192                 alloc_large_system_hash("Dentry cache",
3193                                         sizeof(struct hlist_bl_head),
3194                                         dhash_entries,
3195                                         13,
3196                                         HASH_ZERO,
3197                                         &d_hash_shift,
3198                                         NULL,
3199                                         0,
3200                                         0);
3201         d_hash_shift = 32 - d_hash_shift;
3202 
3203         runtime_const_init(shift, d_hash_shift);
3204         runtime_const_init(ptr, dentry_hashtable);
3205 }
3206 
3207 /* SLAB cache for __getname() consumers */
3208 struct kmem_cache *names_cachep __ro_after_init;
3209 EXPORT_SYMBOL(names_cachep);
3210 
3211 void __init vfs_caches_init_early(void)
3212 {
3213         int i;
3214 
3215         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3216                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3217 
3218         dcache_init_early();
3219         inode_init_early();
3220 }
3221 
3222 void __init vfs_caches_init(void)
3223 {
3224         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3225                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3226 
3227         dcache_init();
3228         inode_init();
3229         files_init();
3230         files_maxfiles_init();
3231         mnt_init();
3232         bdev_cache_init();
3233         chrdev_init();
3234 }
3235 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php