~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/direct-io.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * fs/direct-io.c
  4  *
  5  * Copyright (C) 2002, Linus Torvalds.
  6  *
  7  * O_DIRECT
  8  *
  9  * 04Jul2002    Andrew Morton
 10  *              Initial version
 11  * 11Sep2002    janetinc@us.ibm.com
 12  *              added readv/writev support.
 13  * 29Oct2002    Andrew Morton
 14  *              rewrote bio_add_page() support.
 15  * 30Oct2002    pbadari@us.ibm.com
 16  *              added support for non-aligned IO.
 17  * 06Nov2002    pbadari@us.ibm.com
 18  *              added asynchronous IO support.
 19  * 21Jul2003    nathans@sgi.com
 20  *              added IO completion notifier.
 21  */
 22 
 23 #include <linux/kernel.h>
 24 #include <linux/module.h>
 25 #include <linux/types.h>
 26 #include <linux/fs.h>
 27 #include <linux/mm.h>
 28 #include <linux/slab.h>
 29 #include <linux/highmem.h>
 30 #include <linux/pagemap.h>
 31 #include <linux/task_io_accounting_ops.h>
 32 #include <linux/bio.h>
 33 #include <linux/wait.h>
 34 #include <linux/err.h>
 35 #include <linux/blkdev.h>
 36 #include <linux/buffer_head.h>
 37 #include <linux/rwsem.h>
 38 #include <linux/uio.h>
 39 #include <linux/atomic.h>
 40 #include <linux/prefetch.h>
 41 
 42 #include "internal.h"
 43 
 44 /*
 45  * How many user pages to map in one call to iov_iter_extract_pages().  This
 46  * determines the size of a structure in the slab cache
 47  */
 48 #define DIO_PAGES       64
 49 
 50 /*
 51  * Flags for dio_complete()
 52  */
 53 #define DIO_COMPLETE_ASYNC              0x01    /* This is async IO */
 54 #define DIO_COMPLETE_INVALIDATE         0x02    /* Can invalidate pages */
 55 
 56 /*
 57  * This code generally works in units of "dio_blocks".  A dio_block is
 58  * somewhere between the hard sector size and the filesystem block size.  it
 59  * is determined on a per-invocation basis.   When talking to the filesystem
 60  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
 61  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
 62  * to bio_block quantities by shifting left by blkfactor.
 63  *
 64  * If blkfactor is zero then the user's request was aligned to the filesystem's
 65  * blocksize.
 66  */
 67 
 68 /* dio_state only used in the submission path */
 69 
 70 struct dio_submit {
 71         struct bio *bio;                /* bio under assembly */
 72         unsigned blkbits;               /* doesn't change */
 73         unsigned blkfactor;             /* When we're using an alignment which
 74                                            is finer than the filesystem's soft
 75                                            blocksize, this specifies how much
 76                                            finer.  blkfactor=2 means 1/4-block
 77                                            alignment.  Does not change */
 78         unsigned start_zero_done;       /* flag: sub-blocksize zeroing has
 79                                            been performed at the start of a
 80                                            write */
 81         int pages_in_io;                /* approximate total IO pages */
 82         sector_t block_in_file;         /* Current offset into the underlying
 83                                            file in dio_block units. */
 84         unsigned blocks_available;      /* At block_in_file.  changes */
 85         int reap_counter;               /* rate limit reaping */
 86         sector_t final_block_in_request;/* doesn't change */
 87         int boundary;                   /* prev block is at a boundary */
 88         get_block_t *get_block;         /* block mapping function */
 89 
 90         loff_t logical_offset_in_bio;   /* current first logical block in bio */
 91         sector_t final_block_in_bio;    /* current final block in bio + 1 */
 92         sector_t next_block_for_io;     /* next block to be put under IO,
 93                                            in dio_blocks units */
 94 
 95         /*
 96          * Deferred addition of a page to the dio.  These variables are
 97          * private to dio_send_cur_page(), submit_page_section() and
 98          * dio_bio_add_page().
 99          */
100         struct page *cur_page;          /* The page */
101         unsigned cur_page_offset;       /* Offset into it, in bytes */
102         unsigned cur_page_len;          /* Nr of bytes at cur_page_offset */
103         sector_t cur_page_block;        /* Where it starts */
104         loff_t cur_page_fs_offset;      /* Offset in file */
105 
106         struct iov_iter *iter;
107         /*
108          * Page queue.  These variables belong to dio_refill_pages() and
109          * dio_get_page().
110          */
111         unsigned head;                  /* next page to process */
112         unsigned tail;                  /* last valid page + 1 */
113         size_t from, to;
114 };
115 
116 /* dio_state communicated between submission path and end_io */
117 struct dio {
118         int flags;                      /* doesn't change */
119         blk_opf_t opf;                  /* request operation type and flags */
120         struct gendisk *bio_disk;
121         struct inode *inode;
122         loff_t i_size;                  /* i_size when submitted */
123         dio_iodone_t *end_io;           /* IO completion function */
124         bool is_pinned;                 /* T if we have pins on the pages */
125 
126         void *private;                  /* copy from map_bh.b_private */
127 
128         /* BIO completion state */
129         spinlock_t bio_lock;            /* protects BIO fields below */
130         int page_errors;                /* err from iov_iter_extract_pages() */
131         int is_async;                   /* is IO async ? */
132         bool defer_completion;          /* defer AIO completion to workqueue? */
133         bool should_dirty;              /* if pages should be dirtied */
134         int io_error;                   /* IO error in completion path */
135         unsigned long refcount;         /* direct_io_worker() and bios */
136         struct bio *bio_list;           /* singly linked via bi_private */
137         struct task_struct *waiter;     /* waiting task (NULL if none) */
138 
139         /* AIO related stuff */
140         struct kiocb *iocb;             /* kiocb */
141         ssize_t result;                 /* IO result */
142 
143         /*
144          * pages[] (and any fields placed after it) are not zeroed out at
145          * allocation time.  Don't add new fields after pages[] unless you
146          * wish that they not be zeroed.
147          */
148         union {
149                 struct page *pages[DIO_PAGES];  /* page buffer */
150                 struct work_struct complete_work;/* deferred AIO completion */
151         };
152 } ____cacheline_aligned_in_smp;
153 
154 static struct kmem_cache *dio_cache __ro_after_init;
155 
156 /*
157  * How many pages are in the queue?
158  */
159 static inline unsigned dio_pages_present(struct dio_submit *sdio)
160 {
161         return sdio->tail - sdio->head;
162 }
163 
164 /*
165  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
166  */
167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
168 {
169         struct page **pages = dio->pages;
170         const enum req_op dio_op = dio->opf & REQ_OP_MASK;
171         ssize_t ret;
172 
173         ret = iov_iter_extract_pages(sdio->iter, &pages, LONG_MAX,
174                                      DIO_PAGES, 0, &sdio->from);
175 
176         if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) {
177                 /*
178                  * A memory fault, but the filesystem has some outstanding
179                  * mapped blocks.  We need to use those blocks up to avoid
180                  * leaking stale data in the file.
181                  */
182                 if (dio->page_errors == 0)
183                         dio->page_errors = ret;
184                 dio->pages[0] = ZERO_PAGE(0);
185                 sdio->head = 0;
186                 sdio->tail = 1;
187                 sdio->from = 0;
188                 sdio->to = PAGE_SIZE;
189                 return 0;
190         }
191 
192         if (ret >= 0) {
193                 ret += sdio->from;
194                 sdio->head = 0;
195                 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
196                 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
197                 return 0;
198         }
199         return ret;     
200 }
201 
202 /*
203  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
204  * buffered inside the dio so that we can call iov_iter_extract_pages()
205  * against a decent number of pages, less frequently.  To provide nicer use of
206  * the L1 cache.
207  */
208 static inline struct page *dio_get_page(struct dio *dio,
209                                         struct dio_submit *sdio)
210 {
211         if (dio_pages_present(sdio) == 0) {
212                 int ret;
213 
214                 ret = dio_refill_pages(dio, sdio);
215                 if (ret)
216                         return ERR_PTR(ret);
217                 BUG_ON(dio_pages_present(sdio) == 0);
218         }
219         return dio->pages[sdio->head];
220 }
221 
222 static void dio_pin_page(struct dio *dio, struct page *page)
223 {
224         if (dio->is_pinned)
225                 folio_add_pin(page_folio(page));
226 }
227 
228 static void dio_unpin_page(struct dio *dio, struct page *page)
229 {
230         if (dio->is_pinned)
231                 unpin_user_page(page);
232 }
233 
234 /*
235  * dio_complete() - called when all DIO BIO I/O has been completed
236  *
237  * This drops i_dio_count, lets interested parties know that a DIO operation
238  * has completed, and calculates the resulting return code for the operation.
239  *
240  * It lets the filesystem know if it registered an interest earlier via
241  * get_block.  Pass the private field of the map buffer_head so that
242  * filesystems can use it to hold additional state between get_block calls and
243  * dio_complete.
244  */
245 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
246 {
247         const enum req_op dio_op = dio->opf & REQ_OP_MASK;
248         loff_t offset = dio->iocb->ki_pos;
249         ssize_t transferred = 0;
250         int err;
251 
252         /*
253          * AIO submission can race with bio completion to get here while
254          * expecting to have the last io completed by bio completion.
255          * In that case -EIOCBQUEUED is in fact not an error we want
256          * to preserve through this call.
257          */
258         if (ret == -EIOCBQUEUED)
259                 ret = 0;
260 
261         if (dio->result) {
262                 transferred = dio->result;
263 
264                 /* Check for short read case */
265                 if (dio_op == REQ_OP_READ &&
266                     ((offset + transferred) > dio->i_size))
267                         transferred = dio->i_size - offset;
268                 /* ignore EFAULT if some IO has been done */
269                 if (unlikely(ret == -EFAULT) && transferred)
270                         ret = 0;
271         }
272 
273         if (ret == 0)
274                 ret = dio->page_errors;
275         if (ret == 0)
276                 ret = dio->io_error;
277         if (ret == 0)
278                 ret = transferred;
279 
280         if (dio->end_io) {
281                 // XXX: ki_pos??
282                 err = dio->end_io(dio->iocb, offset, ret, dio->private);
283                 if (err)
284                         ret = err;
285         }
286 
287         /*
288          * Try again to invalidate clean pages which might have been cached by
289          * non-direct readahead, or faulted in by get_user_pages() if the source
290          * of the write was an mmap'ed region of the file we're writing.  Either
291          * one is a pretty crazy thing to do, so we don't support it 100%.  If
292          * this invalidation fails, tough, the write still worked...
293          *
294          * And this page cache invalidation has to be after dio->end_io(), as
295          * some filesystems convert unwritten extents to real allocations in
296          * end_io() when necessary, otherwise a racing buffer read would cache
297          * zeros from unwritten extents.
298          */
299         if (flags & DIO_COMPLETE_INVALIDATE &&
300             ret > 0 && dio_op == REQ_OP_WRITE)
301                 kiocb_invalidate_post_direct_write(dio->iocb, ret);
302 
303         inode_dio_end(dio->inode);
304 
305         if (flags & DIO_COMPLETE_ASYNC) {
306                 /*
307                  * generic_write_sync expects ki_pos to have been updated
308                  * already, but the submission path only does this for
309                  * synchronous I/O.
310                  */
311                 dio->iocb->ki_pos += transferred;
312 
313                 if (ret > 0 && dio_op == REQ_OP_WRITE)
314                         ret = generic_write_sync(dio->iocb, ret);
315                 dio->iocb->ki_complete(dio->iocb, ret);
316         }
317 
318         kmem_cache_free(dio_cache, dio);
319         return ret;
320 }
321 
322 static void dio_aio_complete_work(struct work_struct *work)
323 {
324         struct dio *dio = container_of(work, struct dio, complete_work);
325 
326         dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
327 }
328 
329 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
330 
331 /*
332  * Asynchronous IO callback. 
333  */
334 static void dio_bio_end_aio(struct bio *bio)
335 {
336         struct dio *dio = bio->bi_private;
337         const enum req_op dio_op = dio->opf & REQ_OP_MASK;
338         unsigned long remaining;
339         unsigned long flags;
340         bool defer_completion = false;
341 
342         /* cleanup the bio */
343         dio_bio_complete(dio, bio);
344 
345         spin_lock_irqsave(&dio->bio_lock, flags);
346         remaining = --dio->refcount;
347         if (remaining == 1 && dio->waiter)
348                 wake_up_process(dio->waiter);
349         spin_unlock_irqrestore(&dio->bio_lock, flags);
350 
351         if (remaining == 0) {
352                 /*
353                  * Defer completion when defer_completion is set or
354                  * when the inode has pages mapped and this is AIO write.
355                  * We need to invalidate those pages because there is a
356                  * chance they contain stale data in the case buffered IO
357                  * went in between AIO submission and completion into the
358                  * same region.
359                  */
360                 if (dio->result)
361                         defer_completion = dio->defer_completion ||
362                                            (dio_op == REQ_OP_WRITE &&
363                                             dio->inode->i_mapping->nrpages);
364                 if (defer_completion) {
365                         INIT_WORK(&dio->complete_work, dio_aio_complete_work);
366                         queue_work(dio->inode->i_sb->s_dio_done_wq,
367                                    &dio->complete_work);
368                 } else {
369                         dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
370                 }
371         }
372 }
373 
374 /*
375  * The BIO completion handler simply queues the BIO up for the process-context
376  * handler.
377  *
378  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
379  * implement a singly-linked list of completed BIOs, at dio->bio_list.
380  */
381 static void dio_bio_end_io(struct bio *bio)
382 {
383         struct dio *dio = bio->bi_private;
384         unsigned long flags;
385 
386         spin_lock_irqsave(&dio->bio_lock, flags);
387         bio->bi_private = dio->bio_list;
388         dio->bio_list = bio;
389         if (--dio->refcount == 1 && dio->waiter)
390                 wake_up_process(dio->waiter);
391         spin_unlock_irqrestore(&dio->bio_lock, flags);
392 }
393 
394 static inline void
395 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
396               struct block_device *bdev,
397               sector_t first_sector, int nr_vecs)
398 {
399         struct bio *bio;
400 
401         /*
402          * bio_alloc() is guaranteed to return a bio when allowed to sleep and
403          * we request a valid number of vectors.
404          */
405         bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL);
406         bio->bi_iter.bi_sector = first_sector;
407         if (dio->is_async)
408                 bio->bi_end_io = dio_bio_end_aio;
409         else
410                 bio->bi_end_io = dio_bio_end_io;
411         if (dio->is_pinned)
412                 bio_set_flag(bio, BIO_PAGE_PINNED);
413         bio->bi_write_hint = file_inode(dio->iocb->ki_filp)->i_write_hint;
414 
415         sdio->bio = bio;
416         sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
417 }
418 
419 /*
420  * In the AIO read case we speculatively dirty the pages before starting IO.
421  * During IO completion, any of these pages which happen to have been written
422  * back will be redirtied by bio_check_pages_dirty().
423  *
424  * bios hold a dio reference between submit_bio and ->end_io.
425  */
426 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
427 {
428         const enum req_op dio_op = dio->opf & REQ_OP_MASK;
429         struct bio *bio = sdio->bio;
430         unsigned long flags;
431 
432         bio->bi_private = dio;
433 
434         spin_lock_irqsave(&dio->bio_lock, flags);
435         dio->refcount++;
436         spin_unlock_irqrestore(&dio->bio_lock, flags);
437 
438         if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty)
439                 bio_set_pages_dirty(bio);
440 
441         dio->bio_disk = bio->bi_bdev->bd_disk;
442 
443         submit_bio(bio);
444 
445         sdio->bio = NULL;
446         sdio->boundary = 0;
447         sdio->logical_offset_in_bio = 0;
448 }
449 
450 /*
451  * Release any resources in case of a failure
452  */
453 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
454 {
455         if (dio->is_pinned)
456                 unpin_user_pages(dio->pages + sdio->head,
457                                  sdio->tail - sdio->head);
458         sdio->head = sdio->tail;
459 }
460 
461 /*
462  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
463  * returned once all BIOs have been completed.  This must only be called once
464  * all bios have been issued so that dio->refcount can only decrease.  This
465  * requires that the caller hold a reference on the dio.
466  */
467 static struct bio *dio_await_one(struct dio *dio)
468 {
469         unsigned long flags;
470         struct bio *bio = NULL;
471 
472         spin_lock_irqsave(&dio->bio_lock, flags);
473 
474         /*
475          * Wait as long as the list is empty and there are bios in flight.  bio
476          * completion drops the count, maybe adds to the list, and wakes while
477          * holding the bio_lock so we don't need set_current_state()'s barrier
478          * and can call it after testing our condition.
479          */
480         while (dio->refcount > 1 && dio->bio_list == NULL) {
481                 __set_current_state(TASK_UNINTERRUPTIBLE);
482                 dio->waiter = current;
483                 spin_unlock_irqrestore(&dio->bio_lock, flags);
484                 blk_io_schedule();
485                 /* wake up sets us TASK_RUNNING */
486                 spin_lock_irqsave(&dio->bio_lock, flags);
487                 dio->waiter = NULL;
488         }
489         if (dio->bio_list) {
490                 bio = dio->bio_list;
491                 dio->bio_list = bio->bi_private;
492         }
493         spin_unlock_irqrestore(&dio->bio_lock, flags);
494         return bio;
495 }
496 
497 /*
498  * Process one completed BIO.  No locks are held.
499  */
500 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
501 {
502         blk_status_t err = bio->bi_status;
503         const enum req_op dio_op = dio->opf & REQ_OP_MASK;
504         bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty;
505 
506         if (err) {
507                 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
508                         dio->io_error = -EAGAIN;
509                 else
510                         dio->io_error = -EIO;
511         }
512 
513         if (dio->is_async && should_dirty) {
514                 bio_check_pages_dirty(bio);     /* transfers ownership */
515         } else {
516                 bio_release_pages(bio, should_dirty);
517                 bio_put(bio);
518         }
519         return err;
520 }
521 
522 /*
523  * Wait on and process all in-flight BIOs.  This must only be called once
524  * all bios have been issued so that the refcount can only decrease.
525  * This just waits for all bios to make it through dio_bio_complete.  IO
526  * errors are propagated through dio->io_error and should be propagated via
527  * dio_complete().
528  */
529 static void dio_await_completion(struct dio *dio)
530 {
531         struct bio *bio;
532         do {
533                 bio = dio_await_one(dio);
534                 if (bio)
535                         dio_bio_complete(dio, bio);
536         } while (bio);
537 }
538 
539 /*
540  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
541  * to keep the memory consumption sane we periodically reap any completed BIOs
542  * during the BIO generation phase.
543  *
544  * This also helps to limit the peak amount of pinned userspace memory.
545  */
546 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
547 {
548         int ret = 0;
549 
550         if (sdio->reap_counter++ >= 64) {
551                 while (dio->bio_list) {
552                         unsigned long flags;
553                         struct bio *bio;
554                         int ret2;
555 
556                         spin_lock_irqsave(&dio->bio_lock, flags);
557                         bio = dio->bio_list;
558                         dio->bio_list = bio->bi_private;
559                         spin_unlock_irqrestore(&dio->bio_lock, flags);
560                         ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
561                         if (ret == 0)
562                                 ret = ret2;
563                 }
564                 sdio->reap_counter = 0;
565         }
566         return ret;
567 }
568 
569 static int dio_set_defer_completion(struct dio *dio)
570 {
571         struct super_block *sb = dio->inode->i_sb;
572 
573         if (dio->defer_completion)
574                 return 0;
575         dio->defer_completion = true;
576         if (!sb->s_dio_done_wq)
577                 return sb_init_dio_done_wq(sb);
578         return 0;
579 }
580 
581 /*
582  * Call into the fs to map some more disk blocks.  We record the current number
583  * of available blocks at sdio->blocks_available.  These are in units of the
584  * fs blocksize, i_blocksize(inode).
585  *
586  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
587  * it uses the passed inode-relative block number as the file offset, as usual.
588  *
589  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
590  * has remaining to do.  The fs should not map more than this number of blocks.
591  *
592  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
593  * indicate how much contiguous disk space has been made available at
594  * bh->b_blocknr.
595  *
596  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
597  * This isn't very efficient...
598  *
599  * In the case of filesystem holes: the fs may return an arbitrarily-large
600  * hole by returning an appropriate value in b_size and by clearing
601  * buffer_mapped().  However the direct-io code will only process holes one
602  * block at a time - it will repeatedly call get_block() as it walks the hole.
603  */
604 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
605                            struct buffer_head *map_bh)
606 {
607         const enum req_op dio_op = dio->opf & REQ_OP_MASK;
608         int ret;
609         sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
610         sector_t fs_endblk;     /* Into file, in filesystem-sized blocks */
611         unsigned long fs_count; /* Number of filesystem-sized blocks */
612         int create;
613         unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
614         loff_t i_size;
615 
616         /*
617          * If there was a memory error and we've overwritten all the
618          * mapped blocks then we can now return that memory error
619          */
620         ret = dio->page_errors;
621         if (ret == 0) {
622                 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
623                 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
624                 fs_endblk = (sdio->final_block_in_request - 1) >>
625                                         sdio->blkfactor;
626                 fs_count = fs_endblk - fs_startblk + 1;
627 
628                 map_bh->b_state = 0;
629                 map_bh->b_size = fs_count << i_blkbits;
630 
631                 /*
632                  * For writes that could fill holes inside i_size on a
633                  * DIO_SKIP_HOLES filesystem we forbid block creations: only
634                  * overwrites are permitted. We will return early to the caller
635                  * once we see an unmapped buffer head returned, and the caller
636                  * will fall back to buffered I/O.
637                  *
638                  * Otherwise the decision is left to the get_blocks method,
639                  * which may decide to handle it or also return an unmapped
640                  * buffer head.
641                  */
642                 create = dio_op == REQ_OP_WRITE;
643                 if (dio->flags & DIO_SKIP_HOLES) {
644                         i_size = i_size_read(dio->inode);
645                         if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
646                                 create = 0;
647                 }
648 
649                 ret = (*sdio->get_block)(dio->inode, fs_startblk,
650                                                 map_bh, create);
651 
652                 /* Store for completion */
653                 dio->private = map_bh->b_private;
654 
655                 if (ret == 0 && buffer_defer_completion(map_bh))
656                         ret = dio_set_defer_completion(dio);
657         }
658         return ret;
659 }
660 
661 /*
662  * There is no bio.  Make one now.
663  */
664 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
665                 sector_t start_sector, struct buffer_head *map_bh)
666 {
667         sector_t sector;
668         int ret, nr_pages;
669 
670         ret = dio_bio_reap(dio, sdio);
671         if (ret)
672                 goto out;
673         sector = start_sector << (sdio->blkbits - 9);
674         nr_pages = bio_max_segs(sdio->pages_in_io);
675         BUG_ON(nr_pages <= 0);
676         dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
677         sdio->boundary = 0;
678 out:
679         return ret;
680 }
681 
682 /*
683  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
684  * that was successful then update final_block_in_bio and take a ref against
685  * the just-added page.
686  *
687  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
688  */
689 static inline int dio_bio_add_page(struct dio *dio, struct dio_submit *sdio)
690 {
691         int ret;
692 
693         ret = bio_add_page(sdio->bio, sdio->cur_page,
694                         sdio->cur_page_len, sdio->cur_page_offset);
695         if (ret == sdio->cur_page_len) {
696                 /*
697                  * Decrement count only, if we are done with this page
698                  */
699                 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
700                         sdio->pages_in_io--;
701                 dio_pin_page(dio, sdio->cur_page);
702                 sdio->final_block_in_bio = sdio->cur_page_block +
703                         (sdio->cur_page_len >> sdio->blkbits);
704                 ret = 0;
705         } else {
706                 ret = 1;
707         }
708         return ret;
709 }
710                 
711 /*
712  * Put cur_page under IO.  The section of cur_page which is described by
713  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
714  * starts on-disk at cur_page_block.
715  *
716  * We take a ref against the page here (on behalf of its presence in the bio).
717  *
718  * The caller of this function is responsible for removing cur_page from the
719  * dio, and for dropping the refcount which came from that presence.
720  */
721 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
722                 struct buffer_head *map_bh)
723 {
724         int ret = 0;
725 
726         if (sdio->bio) {
727                 loff_t cur_offset = sdio->cur_page_fs_offset;
728                 loff_t bio_next_offset = sdio->logical_offset_in_bio +
729                         sdio->bio->bi_iter.bi_size;
730 
731                 /*
732                  * See whether this new request is contiguous with the old.
733                  *
734                  * Btrfs cannot handle having logically non-contiguous requests
735                  * submitted.  For example if you have
736                  *
737                  * Logical:  [0-4095][HOLE][8192-12287]
738                  * Physical: [0-4095]      [4096-8191]
739                  *
740                  * We cannot submit those pages together as one BIO.  So if our
741                  * current logical offset in the file does not equal what would
742                  * be the next logical offset in the bio, submit the bio we
743                  * have.
744                  */
745                 if (sdio->final_block_in_bio != sdio->cur_page_block ||
746                     cur_offset != bio_next_offset)
747                         dio_bio_submit(dio, sdio);
748         }
749 
750         if (sdio->bio == NULL) {
751                 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
752                 if (ret)
753                         goto out;
754         }
755 
756         if (dio_bio_add_page(dio, sdio) != 0) {
757                 dio_bio_submit(dio, sdio);
758                 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
759                 if (ret == 0) {
760                         ret = dio_bio_add_page(dio, sdio);
761                         BUG_ON(ret != 0);
762                 }
763         }
764 out:
765         return ret;
766 }
767 
768 /*
769  * An autonomous function to put a chunk of a page under deferred IO.
770  *
771  * The caller doesn't actually know (or care) whether this piece of page is in
772  * a BIO, or is under IO or whatever.  We just take care of all possible 
773  * situations here.  The separation between the logic of do_direct_IO() and
774  * that of submit_page_section() is important for clarity.  Please don't break.
775  *
776  * The chunk of page starts on-disk at blocknr.
777  *
778  * We perform deferred IO, by recording the last-submitted page inside our
779  * private part of the dio structure.  If possible, we just expand the IO
780  * across that page here.
781  *
782  * If that doesn't work out then we put the old page into the bio and add this
783  * page to the dio instead.
784  */
785 static inline int
786 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
787                     unsigned offset, unsigned len, sector_t blocknr,
788                     struct buffer_head *map_bh)
789 {
790         const enum req_op dio_op = dio->opf & REQ_OP_MASK;
791         int ret = 0;
792         int boundary = sdio->boundary;  /* dio_send_cur_page may clear it */
793 
794         if (dio_op == REQ_OP_WRITE) {
795                 /*
796                  * Read accounting is performed in submit_bio()
797                  */
798                 task_io_account_write(len);
799         }
800 
801         /*
802          * Can we just grow the current page's presence in the dio?
803          */
804         if (sdio->cur_page == page &&
805             sdio->cur_page_offset + sdio->cur_page_len == offset &&
806             sdio->cur_page_block +
807             (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
808                 sdio->cur_page_len += len;
809                 goto out;
810         }
811 
812         /*
813          * If there's a deferred page already there then send it.
814          */
815         if (sdio->cur_page) {
816                 ret = dio_send_cur_page(dio, sdio, map_bh);
817                 dio_unpin_page(dio, sdio->cur_page);
818                 sdio->cur_page = NULL;
819                 if (ret)
820                         return ret;
821         }
822 
823         dio_pin_page(dio, page);                /* It is in dio */
824         sdio->cur_page = page;
825         sdio->cur_page_offset = offset;
826         sdio->cur_page_len = len;
827         sdio->cur_page_block = blocknr;
828         sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
829 out:
830         /*
831          * If boundary then we want to schedule the IO now to
832          * avoid metadata seeks.
833          */
834         if (boundary) {
835                 ret = dio_send_cur_page(dio, sdio, map_bh);
836                 if (sdio->bio)
837                         dio_bio_submit(dio, sdio);
838                 dio_unpin_page(dio, sdio->cur_page);
839                 sdio->cur_page = NULL;
840         }
841         return ret;
842 }
843 
844 /*
845  * If we are not writing the entire block and get_block() allocated
846  * the block for us, we need to fill-in the unused portion of the
847  * block with zeros. This happens only if user-buffer, fileoffset or
848  * io length is not filesystem block-size multiple.
849  *
850  * `end' is zero if we're doing the start of the IO, 1 at the end of the
851  * IO.
852  */
853 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
854                 int end, struct buffer_head *map_bh)
855 {
856         unsigned dio_blocks_per_fs_block;
857         unsigned this_chunk_blocks;     /* In dio_blocks */
858         unsigned this_chunk_bytes;
859         struct page *page;
860 
861         sdio->start_zero_done = 1;
862         if (!sdio->blkfactor || !buffer_new(map_bh))
863                 return;
864 
865         dio_blocks_per_fs_block = 1 << sdio->blkfactor;
866         this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
867 
868         if (!this_chunk_blocks)
869                 return;
870 
871         /*
872          * We need to zero out part of an fs block.  It is either at the
873          * beginning or the end of the fs block.
874          */
875         if (end) 
876                 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
877 
878         this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
879 
880         page = ZERO_PAGE(0);
881         if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
882                                 sdio->next_block_for_io, map_bh))
883                 return;
884 
885         sdio->next_block_for_io += this_chunk_blocks;
886 }
887 
888 /*
889  * Walk the user pages, and the file, mapping blocks to disk and generating
890  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
891  * into submit_page_section(), which takes care of the next stage of submission
892  *
893  * Direct IO against a blockdev is different from a file.  Because we can
894  * happily perform page-sized but 512-byte aligned IOs.  It is important that
895  * blockdev IO be able to have fine alignment and large sizes.
896  *
897  * So what we do is to permit the ->get_block function to populate bh.b_size
898  * with the size of IO which is permitted at this offset and this i_blkbits.
899  *
900  * For best results, the blockdev should be set up with 512-byte i_blkbits and
901  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
902  * fine alignment but still allows this function to work in PAGE_SIZE units.
903  */
904 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
905                         struct buffer_head *map_bh)
906 {
907         const enum req_op dio_op = dio->opf & REQ_OP_MASK;
908         const unsigned blkbits = sdio->blkbits;
909         const unsigned i_blkbits = blkbits + sdio->blkfactor;
910         int ret = 0;
911 
912         while (sdio->block_in_file < sdio->final_block_in_request) {
913                 struct page *page;
914                 size_t from, to;
915 
916                 page = dio_get_page(dio, sdio);
917                 if (IS_ERR(page)) {
918                         ret = PTR_ERR(page);
919                         goto out;
920                 }
921                 from = sdio->head ? 0 : sdio->from;
922                 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
923                 sdio->head++;
924 
925                 while (from < to) {
926                         unsigned this_chunk_bytes;      /* # of bytes mapped */
927                         unsigned this_chunk_blocks;     /* # of blocks */
928                         unsigned u;
929 
930                         if (sdio->blocks_available == 0) {
931                                 /*
932                                  * Need to go and map some more disk
933                                  */
934                                 unsigned long blkmask;
935                                 unsigned long dio_remainder;
936 
937                                 ret = get_more_blocks(dio, sdio, map_bh);
938                                 if (ret) {
939                                         dio_unpin_page(dio, page);
940                                         goto out;
941                                 }
942                                 if (!buffer_mapped(map_bh))
943                                         goto do_holes;
944 
945                                 sdio->blocks_available =
946                                                 map_bh->b_size >> blkbits;
947                                 sdio->next_block_for_io =
948                                         map_bh->b_blocknr << sdio->blkfactor;
949                                 if (buffer_new(map_bh)) {
950                                         clean_bdev_aliases(
951                                                 map_bh->b_bdev,
952                                                 map_bh->b_blocknr,
953                                                 map_bh->b_size >> i_blkbits);
954                                 }
955 
956                                 if (!sdio->blkfactor)
957                                         goto do_holes;
958 
959                                 blkmask = (1 << sdio->blkfactor) - 1;
960                                 dio_remainder = (sdio->block_in_file & blkmask);
961 
962                                 /*
963                                  * If we are at the start of IO and that IO
964                                  * starts partway into a fs-block,
965                                  * dio_remainder will be non-zero.  If the IO
966                                  * is a read then we can simply advance the IO
967                                  * cursor to the first block which is to be
968                                  * read.  But if the IO is a write and the
969                                  * block was newly allocated we cannot do that;
970                                  * the start of the fs block must be zeroed out
971                                  * on-disk
972                                  */
973                                 if (!buffer_new(map_bh))
974                                         sdio->next_block_for_io += dio_remainder;
975                                 sdio->blocks_available -= dio_remainder;
976                         }
977 do_holes:
978                         /* Handle holes */
979                         if (!buffer_mapped(map_bh)) {
980                                 loff_t i_size_aligned;
981 
982                                 /* AKPM: eargh, -ENOTBLK is a hack */
983                                 if (dio_op == REQ_OP_WRITE) {
984                                         dio_unpin_page(dio, page);
985                                         return -ENOTBLK;
986                                 }
987 
988                                 /*
989                                  * Be sure to account for a partial block as the
990                                  * last block in the file
991                                  */
992                                 i_size_aligned = ALIGN(i_size_read(dio->inode),
993                                                         1 << blkbits);
994                                 if (sdio->block_in_file >=
995                                                 i_size_aligned >> blkbits) {
996                                         /* We hit eof */
997                                         dio_unpin_page(dio, page);
998                                         goto out;
999                                 }
1000                                 zero_user(page, from, 1 << blkbits);
1001                                 sdio->block_in_file++;
1002                                 from += 1 << blkbits;
1003                                 dio->result += 1 << blkbits;
1004                                 goto next_block;
1005                         }
1006 
1007                         /*
1008                          * If we're performing IO which has an alignment which
1009                          * is finer than the underlying fs, go check to see if
1010                          * we must zero out the start of this block.
1011                          */
1012                         if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1013                                 dio_zero_block(dio, sdio, 0, map_bh);
1014 
1015                         /*
1016                          * Work out, in this_chunk_blocks, how much disk we
1017                          * can add to this page
1018                          */
1019                         this_chunk_blocks = sdio->blocks_available;
1020                         u = (to - from) >> blkbits;
1021                         if (this_chunk_blocks > u)
1022                                 this_chunk_blocks = u;
1023                         u = sdio->final_block_in_request - sdio->block_in_file;
1024                         if (this_chunk_blocks > u)
1025                                 this_chunk_blocks = u;
1026                         this_chunk_bytes = this_chunk_blocks << blkbits;
1027                         BUG_ON(this_chunk_bytes == 0);
1028 
1029                         if (this_chunk_blocks == sdio->blocks_available)
1030                                 sdio->boundary = buffer_boundary(map_bh);
1031                         ret = submit_page_section(dio, sdio, page,
1032                                                   from,
1033                                                   this_chunk_bytes,
1034                                                   sdio->next_block_for_io,
1035                                                   map_bh);
1036                         if (ret) {
1037                                 dio_unpin_page(dio, page);
1038                                 goto out;
1039                         }
1040                         sdio->next_block_for_io += this_chunk_blocks;
1041 
1042                         sdio->block_in_file += this_chunk_blocks;
1043                         from += this_chunk_bytes;
1044                         dio->result += this_chunk_bytes;
1045                         sdio->blocks_available -= this_chunk_blocks;
1046 next_block:
1047                         BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1048                         if (sdio->block_in_file == sdio->final_block_in_request)
1049                                 break;
1050                 }
1051 
1052                 /* Drop the pin which was taken in get_user_pages() */
1053                 dio_unpin_page(dio, page);
1054         }
1055 out:
1056         return ret;
1057 }
1058 
1059 static inline int drop_refcount(struct dio *dio)
1060 {
1061         int ret2;
1062         unsigned long flags;
1063 
1064         /*
1065          * Sync will always be dropping the final ref and completing the
1066          * operation.  AIO can if it was a broken operation described above or
1067          * in fact if all the bios race to complete before we get here.  In
1068          * that case dio_complete() translates the EIOCBQUEUED into the proper
1069          * return code that the caller will hand to ->complete().
1070          *
1071          * This is managed by the bio_lock instead of being an atomic_t so that
1072          * completion paths can drop their ref and use the remaining count to
1073          * decide to wake the submission path atomically.
1074          */
1075         spin_lock_irqsave(&dio->bio_lock, flags);
1076         ret2 = --dio->refcount;
1077         spin_unlock_irqrestore(&dio->bio_lock, flags);
1078         return ret2;
1079 }
1080 
1081 /*
1082  * This is a library function for use by filesystem drivers.
1083  *
1084  * The locking rules are governed by the flags parameter:
1085  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1086  *    scheme for dumb filesystems.
1087  *    For writes this function is called under i_mutex and returns with
1088  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1089  *    taken and dropped again before returning.
1090  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1091  *    internal locking but rather rely on the filesystem to synchronize
1092  *    direct I/O reads/writes versus each other and truncate.
1093  *
1094  * To help with locking against truncate we incremented the i_dio_count
1095  * counter before starting direct I/O, and decrement it once we are done.
1096  * Truncate can wait for it to reach zero to provide exclusion.  It is
1097  * expected that filesystem provide exclusion between new direct I/O
1098  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1099  * but other filesystems need to take care of this on their own.
1100  *
1101  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1102  * is always inlined. Otherwise gcc is unable to split the structure into
1103  * individual fields and will generate much worse code. This is important
1104  * for the whole file.
1105  */
1106 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1107                 struct block_device *bdev, struct iov_iter *iter,
1108                 get_block_t get_block, dio_iodone_t end_io,
1109                 int flags)
1110 {
1111         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1112         unsigned blkbits = i_blkbits;
1113         unsigned blocksize_mask = (1 << blkbits) - 1;
1114         ssize_t retval = -EINVAL;
1115         const size_t count = iov_iter_count(iter);
1116         loff_t offset = iocb->ki_pos;
1117         const loff_t end = offset + count;
1118         struct dio *dio;
1119         struct dio_submit sdio = { NULL, };
1120         struct buffer_head map_bh = { 0, };
1121         struct blk_plug plug;
1122         unsigned long align = offset | iov_iter_alignment(iter);
1123 
1124         /*
1125          * Avoid references to bdev if not absolutely needed to give
1126          * the early prefetch in the caller enough time.
1127          */
1128 
1129         /* watch out for a 0 len io from a tricksy fs */
1130         if (iov_iter_rw(iter) == READ && !count)
1131                 return 0;
1132 
1133         dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1134         if (!dio)
1135                 return -ENOMEM;
1136         /*
1137          * Believe it or not, zeroing out the page array caused a .5%
1138          * performance regression in a database benchmark.  So, we take
1139          * care to only zero out what's needed.
1140          */
1141         memset(dio, 0, offsetof(struct dio, pages));
1142 
1143         dio->flags = flags;
1144         if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1145                 /* will be released by direct_io_worker */
1146                 inode_lock(inode);
1147         }
1148         dio->is_pinned = iov_iter_extract_will_pin(iter);
1149 
1150         /* Once we sampled i_size check for reads beyond EOF */
1151         dio->i_size = i_size_read(inode);
1152         if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1153                 retval = 0;
1154                 goto fail_dio;
1155         }
1156 
1157         if (align & blocksize_mask) {
1158                 if (bdev)
1159                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
1160                 blocksize_mask = (1 << blkbits) - 1;
1161                 if (align & blocksize_mask)
1162                         goto fail_dio;
1163         }
1164 
1165         if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1166                 struct address_space *mapping = iocb->ki_filp->f_mapping;
1167 
1168                 retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1169                 if (retval)
1170                         goto fail_dio;
1171         }
1172 
1173         /*
1174          * For file extending writes updating i_size before data writeouts
1175          * complete can expose uninitialized blocks in dumb filesystems.
1176          * In that case we need to wait for I/O completion even if asked
1177          * for an asynchronous write.
1178          */
1179         if (is_sync_kiocb(iocb))
1180                 dio->is_async = false;
1181         else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1182                 dio->is_async = false;
1183         else
1184                 dio->is_async = true;
1185 
1186         dio->inode = inode;
1187         if (iov_iter_rw(iter) == WRITE) {
1188                 dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1189                 if (iocb->ki_flags & IOCB_NOWAIT)
1190                         dio->opf |= REQ_NOWAIT;
1191         } else {
1192                 dio->opf = REQ_OP_READ;
1193         }
1194 
1195         /*
1196          * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1197          * so that we can call ->fsync.
1198          */
1199         if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1200                 retval = 0;
1201                 if (iocb_is_dsync(iocb))
1202                         retval = dio_set_defer_completion(dio);
1203                 else if (!dio->inode->i_sb->s_dio_done_wq) {
1204                         /*
1205                          * In case of AIO write racing with buffered read we
1206                          * need to defer completion. We can't decide this now,
1207                          * however the workqueue needs to be initialized here.
1208                          */
1209                         retval = sb_init_dio_done_wq(dio->inode->i_sb);
1210                 }
1211                 if (retval)
1212                         goto fail_dio;
1213         }
1214 
1215         /*
1216          * Will be decremented at I/O completion time.
1217          */
1218         inode_dio_begin(inode);
1219 
1220         sdio.blkbits = blkbits;
1221         sdio.blkfactor = i_blkbits - blkbits;
1222         sdio.block_in_file = offset >> blkbits;
1223 
1224         sdio.get_block = get_block;
1225         dio->end_io = end_io;
1226         sdio.final_block_in_bio = -1;
1227         sdio.next_block_for_io = -1;
1228 
1229         dio->iocb = iocb;
1230 
1231         spin_lock_init(&dio->bio_lock);
1232         dio->refcount = 1;
1233 
1234         dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ;
1235         sdio.iter = iter;
1236         sdio.final_block_in_request = end >> blkbits;
1237 
1238         /*
1239          * In case of non-aligned buffers, we may need 2 more
1240          * pages since we need to zero out first and last block.
1241          */
1242         if (unlikely(sdio.blkfactor))
1243                 sdio.pages_in_io = 2;
1244 
1245         sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1246 
1247         blk_start_plug(&plug);
1248 
1249         retval = do_direct_IO(dio, &sdio, &map_bh);
1250         if (retval)
1251                 dio_cleanup(dio, &sdio);
1252 
1253         if (retval == -ENOTBLK) {
1254                 /*
1255                  * The remaining part of the request will be
1256                  * handled by buffered I/O when we return
1257                  */
1258                 retval = 0;
1259         }
1260         /*
1261          * There may be some unwritten disk at the end of a part-written
1262          * fs-block-sized block.  Go zero that now.
1263          */
1264         dio_zero_block(dio, &sdio, 1, &map_bh);
1265 
1266         if (sdio.cur_page) {
1267                 ssize_t ret2;
1268 
1269                 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1270                 if (retval == 0)
1271                         retval = ret2;
1272                 dio_unpin_page(dio, sdio.cur_page);
1273                 sdio.cur_page = NULL;
1274         }
1275         if (sdio.bio)
1276                 dio_bio_submit(dio, &sdio);
1277 
1278         blk_finish_plug(&plug);
1279 
1280         /*
1281          * It is possible that, we return short IO due to end of file.
1282          * In that case, we need to release all the pages we got hold on.
1283          */
1284         dio_cleanup(dio, &sdio);
1285 
1286         /*
1287          * All block lookups have been performed. For READ requests
1288          * we can let i_mutex go now that its achieved its purpose
1289          * of protecting us from looking up uninitialized blocks.
1290          */
1291         if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1292                 inode_unlock(dio->inode);
1293 
1294         /*
1295          * The only time we want to leave bios in flight is when a successful
1296          * partial aio read or full aio write have been setup.  In that case
1297          * bio completion will call aio_complete.  The only time it's safe to
1298          * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1299          * This had *better* be the only place that raises -EIOCBQUEUED.
1300          */
1301         BUG_ON(retval == -EIOCBQUEUED);
1302         if (dio->is_async && retval == 0 && dio->result &&
1303             (iov_iter_rw(iter) == READ || dio->result == count))
1304                 retval = -EIOCBQUEUED;
1305         else
1306                 dio_await_completion(dio);
1307 
1308         if (drop_refcount(dio) == 0) {
1309                 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1310         } else
1311                 BUG_ON(retval != -EIOCBQUEUED);
1312 
1313         return retval;
1314 
1315 fail_dio:
1316         if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1317                 inode_unlock(inode);
1318 
1319         kmem_cache_free(dio_cache, dio);
1320         return retval;
1321 }
1322 EXPORT_SYMBOL(__blockdev_direct_IO);
1323 
1324 static __init int dio_init(void)
1325 {
1326         dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1327         return 0;
1328 }
1329 module_init(dio_init)
1330 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php