1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 ******************************************************************************* 4 ** 5 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 6 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. 7 ** 8 ** 9 ******************************************************************************* 10 ******************************************************************************/ 11 12 /* 13 * lowcomms.c 14 * 15 * This is the "low-level" comms layer. 16 * 17 * It is responsible for sending/receiving messages 18 * from other nodes in the cluster. 19 * 20 * Cluster nodes are referred to by their nodeids. nodeids are 21 * simply 32 bit numbers to the locking module - if they need to 22 * be expanded for the cluster infrastructure then that is its 23 * responsibility. It is this layer's 24 * responsibility to resolve these into IP address or 25 * whatever it needs for inter-node communication. 26 * 27 * The comms level is two kernel threads that deal mainly with 28 * the receiving of messages from other nodes and passing them 29 * up to the mid-level comms layer (which understands the 30 * message format) for execution by the locking core, and 31 * a send thread which does all the setting up of connections 32 * to remote nodes and the sending of data. Threads are not allowed 33 * to send their own data because it may cause them to wait in times 34 * of high load. Also, this way, the sending thread can collect together 35 * messages bound for one node and send them in one block. 36 * 37 * lowcomms will choose to use either TCP or SCTP as its transport layer 38 * depending on the configuration variable 'protocol'. This should be set 39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a 40 * cluster-wide mechanism as it must be the same on all nodes of the cluster 41 * for the DLM to function. 42 * 43 */ 44 45 #include <asm/ioctls.h> 46 #include <net/sock.h> 47 #include <net/tcp.h> 48 #include <linux/pagemap.h> 49 #include <linux/file.h> 50 #include <linux/mutex.h> 51 #include <linux/sctp.h> 52 #include <linux/slab.h> 53 #include <net/sctp/sctp.h> 54 #include <net/ipv6.h> 55 56 #include <trace/events/dlm.h> 57 #include <trace/events/sock.h> 58 59 #include "dlm_internal.h" 60 #include "lowcomms.h" 61 #include "midcomms.h" 62 #include "memory.h" 63 #include "config.h" 64 65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000) 66 #define DLM_MAX_PROCESS_BUFFERS 24 67 #define NEEDED_RMEM (4*1024*1024) 68 69 struct connection { 70 struct socket *sock; /* NULL if not connected */ 71 uint32_t nodeid; /* So we know who we are in the list */ 72 /* this semaphore is used to allow parallel recv/send in read 73 * lock mode. When we release a sock we need to held the write lock. 74 * 75 * However this is locking code and not nice. When we remove the 76 * othercon handling we can look into other mechanism to synchronize 77 * io handling to call sock_release() at the right time. 78 */ 79 struct rw_semaphore sock_lock; 80 unsigned long flags; 81 #define CF_APP_LIMITED 0 82 #define CF_RECV_PENDING 1 83 #define CF_SEND_PENDING 2 84 #define CF_RECV_INTR 3 85 #define CF_IO_STOP 4 86 #define CF_IS_OTHERCON 5 87 struct list_head writequeue; /* List of outgoing writequeue_entries */ 88 spinlock_t writequeue_lock; 89 int retries; 90 struct hlist_node list; 91 /* due some connect()/accept() races we currently have this cross over 92 * connection attempt second connection for one node. 93 * 94 * There is a solution to avoid the race by introducing a connect 95 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to 96 * connect. Otherside can connect but will only be considered that 97 * the other side wants to have a reconnect. 98 * 99 * However changing to this behaviour will break backwards compatible. 100 * In a DLM protocol major version upgrade we should remove this! 101 */ 102 struct connection *othercon; 103 struct work_struct rwork; /* receive worker */ 104 struct work_struct swork; /* send worker */ 105 wait_queue_head_t shutdown_wait; 106 unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE]; 107 int rx_leftover; 108 int mark; 109 int addr_count; 110 int curr_addr_index; 111 struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT]; 112 spinlock_t addrs_lock; 113 struct rcu_head rcu; 114 }; 115 #define sock2con(x) ((struct connection *)(x)->sk_user_data) 116 117 struct listen_connection { 118 struct socket *sock; 119 struct work_struct rwork; 120 }; 121 122 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end) 123 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset) 124 125 /* An entry waiting to be sent */ 126 struct writequeue_entry { 127 struct list_head list; 128 struct page *page; 129 int offset; 130 int len; 131 int end; 132 int users; 133 bool dirty; 134 struct connection *con; 135 struct list_head msgs; 136 struct kref ref; 137 }; 138 139 struct dlm_msg { 140 struct writequeue_entry *entry; 141 struct dlm_msg *orig_msg; 142 bool retransmit; 143 void *ppc; 144 int len; 145 int idx; /* new()/commit() idx exchange */ 146 147 struct list_head list; 148 struct kref ref; 149 }; 150 151 struct processqueue_entry { 152 unsigned char *buf; 153 int nodeid; 154 int buflen; 155 156 struct list_head list; 157 }; 158 159 struct dlm_proto_ops { 160 bool try_new_addr; 161 const char *name; 162 int proto; 163 164 int (*connect)(struct connection *con, struct socket *sock, 165 struct sockaddr *addr, int addr_len); 166 void (*sockopts)(struct socket *sock); 167 int (*bind)(struct socket *sock); 168 int (*listen_validate)(void); 169 void (*listen_sockopts)(struct socket *sock); 170 int (*listen_bind)(struct socket *sock); 171 }; 172 173 static struct listen_sock_callbacks { 174 void (*sk_error_report)(struct sock *); 175 void (*sk_data_ready)(struct sock *); 176 void (*sk_state_change)(struct sock *); 177 void (*sk_write_space)(struct sock *); 178 } listen_sock; 179 180 static struct listen_connection listen_con; 181 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT]; 182 static int dlm_local_count; 183 184 /* Work queues */ 185 static struct workqueue_struct *io_workqueue; 186 static struct workqueue_struct *process_workqueue; 187 188 static struct hlist_head connection_hash[CONN_HASH_SIZE]; 189 static DEFINE_SPINLOCK(connections_lock); 190 DEFINE_STATIC_SRCU(connections_srcu); 191 192 static const struct dlm_proto_ops *dlm_proto_ops; 193 194 #define DLM_IO_SUCCESS 0 195 #define DLM_IO_END 1 196 #define DLM_IO_EOF 2 197 #define DLM_IO_RESCHED 3 198 #define DLM_IO_FLUSH 4 199 200 static void process_recv_sockets(struct work_struct *work); 201 static void process_send_sockets(struct work_struct *work); 202 static void process_dlm_messages(struct work_struct *work); 203 204 static DECLARE_WORK(process_work, process_dlm_messages); 205 static DEFINE_SPINLOCK(processqueue_lock); 206 static bool process_dlm_messages_pending; 207 static DECLARE_WAIT_QUEUE_HEAD(processqueue_wq); 208 static atomic_t processqueue_count; 209 static LIST_HEAD(processqueue); 210 211 bool dlm_lowcomms_is_running(void) 212 { 213 return !!listen_con.sock; 214 } 215 216 static void lowcomms_queue_swork(struct connection *con) 217 { 218 assert_spin_locked(&con->writequeue_lock); 219 220 if (!test_bit(CF_IO_STOP, &con->flags) && 221 !test_bit(CF_APP_LIMITED, &con->flags) && 222 !test_and_set_bit(CF_SEND_PENDING, &con->flags)) 223 queue_work(io_workqueue, &con->swork); 224 } 225 226 static void lowcomms_queue_rwork(struct connection *con) 227 { 228 #ifdef CONFIG_LOCKDEP 229 WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk)); 230 #endif 231 232 if (!test_bit(CF_IO_STOP, &con->flags) && 233 !test_and_set_bit(CF_RECV_PENDING, &con->flags)) 234 queue_work(io_workqueue, &con->rwork); 235 } 236 237 static void writequeue_entry_ctor(void *data) 238 { 239 struct writequeue_entry *entry = data; 240 241 INIT_LIST_HEAD(&entry->msgs); 242 } 243 244 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void) 245 { 246 return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry), 247 0, 0, writequeue_entry_ctor); 248 } 249 250 struct kmem_cache *dlm_lowcomms_msg_cache_create(void) 251 { 252 return KMEM_CACHE(dlm_msg, 0); 253 } 254 255 /* need to held writequeue_lock */ 256 static struct writequeue_entry *con_next_wq(struct connection *con) 257 { 258 struct writequeue_entry *e; 259 260 e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry, 261 list); 262 /* if len is zero nothing is to send, if there are users filling 263 * buffers we wait until the users are done so we can send more. 264 */ 265 if (!e || e->users || e->len == 0) 266 return NULL; 267 268 return e; 269 } 270 271 static struct connection *__find_con(int nodeid, int r) 272 { 273 struct connection *con; 274 275 hlist_for_each_entry_rcu(con, &connection_hash[r], list) { 276 if (con->nodeid == nodeid) 277 return con; 278 } 279 280 return NULL; 281 } 282 283 static void dlm_con_init(struct connection *con, int nodeid) 284 { 285 con->nodeid = nodeid; 286 init_rwsem(&con->sock_lock); 287 INIT_LIST_HEAD(&con->writequeue); 288 spin_lock_init(&con->writequeue_lock); 289 INIT_WORK(&con->swork, process_send_sockets); 290 INIT_WORK(&con->rwork, process_recv_sockets); 291 spin_lock_init(&con->addrs_lock); 292 init_waitqueue_head(&con->shutdown_wait); 293 } 294 295 /* 296 * If 'allocation' is zero then we don't attempt to create a new 297 * connection structure for this node. 298 */ 299 static struct connection *nodeid2con(int nodeid, gfp_t alloc) 300 { 301 struct connection *con, *tmp; 302 int r; 303 304 r = nodeid_hash(nodeid); 305 con = __find_con(nodeid, r); 306 if (con || !alloc) 307 return con; 308 309 con = kzalloc(sizeof(*con), alloc); 310 if (!con) 311 return NULL; 312 313 dlm_con_init(con, nodeid); 314 315 spin_lock(&connections_lock); 316 /* Because multiple workqueues/threads calls this function it can 317 * race on multiple cpu's. Instead of locking hot path __find_con() 318 * we just check in rare cases of recently added nodes again 319 * under protection of connections_lock. If this is the case we 320 * abort our connection creation and return the existing connection. 321 */ 322 tmp = __find_con(nodeid, r); 323 if (tmp) { 324 spin_unlock(&connections_lock); 325 kfree(con); 326 return tmp; 327 } 328 329 hlist_add_head_rcu(&con->list, &connection_hash[r]); 330 spin_unlock(&connections_lock); 331 332 return con; 333 } 334 335 static int addr_compare(const struct sockaddr_storage *x, 336 const struct sockaddr_storage *y) 337 { 338 switch (x->ss_family) { 339 case AF_INET: { 340 struct sockaddr_in *sinx = (struct sockaddr_in *)x; 341 struct sockaddr_in *siny = (struct sockaddr_in *)y; 342 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr) 343 return 0; 344 if (sinx->sin_port != siny->sin_port) 345 return 0; 346 break; 347 } 348 case AF_INET6: { 349 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x; 350 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y; 351 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr)) 352 return 0; 353 if (sinx->sin6_port != siny->sin6_port) 354 return 0; 355 break; 356 } 357 default: 358 return 0; 359 } 360 return 1; 361 } 362 363 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out, 364 struct sockaddr *sa_out, bool try_new_addr, 365 unsigned int *mark) 366 { 367 struct sockaddr_storage sas; 368 struct connection *con; 369 int idx; 370 371 if (!dlm_local_count) 372 return -1; 373 374 idx = srcu_read_lock(&connections_srcu); 375 con = nodeid2con(nodeid, 0); 376 if (!con) { 377 srcu_read_unlock(&connections_srcu, idx); 378 return -ENOENT; 379 } 380 381 spin_lock(&con->addrs_lock); 382 if (!con->addr_count) { 383 spin_unlock(&con->addrs_lock); 384 srcu_read_unlock(&connections_srcu, idx); 385 return -ENOENT; 386 } 387 388 memcpy(&sas, &con->addr[con->curr_addr_index], 389 sizeof(struct sockaddr_storage)); 390 391 if (try_new_addr) { 392 con->curr_addr_index++; 393 if (con->curr_addr_index == con->addr_count) 394 con->curr_addr_index = 0; 395 } 396 397 *mark = con->mark; 398 spin_unlock(&con->addrs_lock); 399 400 if (sas_out) 401 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage)); 402 403 if (!sa_out) { 404 srcu_read_unlock(&connections_srcu, idx); 405 return 0; 406 } 407 408 if (dlm_local_addr[0].ss_family == AF_INET) { 409 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas; 410 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out; 411 ret4->sin_addr.s_addr = in4->sin_addr.s_addr; 412 } else { 413 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas; 414 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out; 415 ret6->sin6_addr = in6->sin6_addr; 416 } 417 418 srcu_read_unlock(&connections_srcu, idx); 419 return 0; 420 } 421 422 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid, 423 unsigned int *mark) 424 { 425 struct connection *con; 426 int i, idx, addr_i; 427 428 idx = srcu_read_lock(&connections_srcu); 429 for (i = 0; i < CONN_HASH_SIZE; i++) { 430 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 431 WARN_ON_ONCE(!con->addr_count); 432 433 spin_lock(&con->addrs_lock); 434 for (addr_i = 0; addr_i < con->addr_count; addr_i++) { 435 if (addr_compare(&con->addr[addr_i], addr)) { 436 *nodeid = con->nodeid; 437 *mark = con->mark; 438 spin_unlock(&con->addrs_lock); 439 srcu_read_unlock(&connections_srcu, idx); 440 return 0; 441 } 442 } 443 spin_unlock(&con->addrs_lock); 444 } 445 } 446 srcu_read_unlock(&connections_srcu, idx); 447 448 return -ENOENT; 449 } 450 451 static bool dlm_lowcomms_con_has_addr(const struct connection *con, 452 const struct sockaddr_storage *addr) 453 { 454 int i; 455 456 for (i = 0; i < con->addr_count; i++) { 457 if (addr_compare(&con->addr[i], addr)) 458 return true; 459 } 460 461 return false; 462 } 463 464 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr) 465 { 466 struct connection *con; 467 bool ret, idx; 468 469 idx = srcu_read_lock(&connections_srcu); 470 con = nodeid2con(nodeid, GFP_NOFS); 471 if (!con) { 472 srcu_read_unlock(&connections_srcu, idx); 473 return -ENOMEM; 474 } 475 476 spin_lock(&con->addrs_lock); 477 if (!con->addr_count) { 478 memcpy(&con->addr[0], addr, sizeof(*addr)); 479 con->addr_count = 1; 480 con->mark = dlm_config.ci_mark; 481 spin_unlock(&con->addrs_lock); 482 srcu_read_unlock(&connections_srcu, idx); 483 return 0; 484 } 485 486 ret = dlm_lowcomms_con_has_addr(con, addr); 487 if (ret) { 488 spin_unlock(&con->addrs_lock); 489 srcu_read_unlock(&connections_srcu, idx); 490 return -EEXIST; 491 } 492 493 if (con->addr_count >= DLM_MAX_ADDR_COUNT) { 494 spin_unlock(&con->addrs_lock); 495 srcu_read_unlock(&connections_srcu, idx); 496 return -ENOSPC; 497 } 498 499 memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr)); 500 srcu_read_unlock(&connections_srcu, idx); 501 spin_unlock(&con->addrs_lock); 502 return 0; 503 } 504 505 /* Data available on socket or listen socket received a connect */ 506 static void lowcomms_data_ready(struct sock *sk) 507 { 508 struct connection *con = sock2con(sk); 509 510 trace_sk_data_ready(sk); 511 512 set_bit(CF_RECV_INTR, &con->flags); 513 lowcomms_queue_rwork(con); 514 } 515 516 static void lowcomms_write_space(struct sock *sk) 517 { 518 struct connection *con = sock2con(sk); 519 520 clear_bit(SOCK_NOSPACE, &con->sock->flags); 521 522 spin_lock_bh(&con->writequeue_lock); 523 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) { 524 con->sock->sk->sk_write_pending--; 525 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags); 526 } 527 528 lowcomms_queue_swork(con); 529 spin_unlock_bh(&con->writequeue_lock); 530 } 531 532 static void lowcomms_state_change(struct sock *sk) 533 { 534 /* SCTP layer is not calling sk_data_ready when the connection 535 * is done, so we catch the signal through here. 536 */ 537 if (sk->sk_shutdown == RCV_SHUTDOWN) 538 lowcomms_data_ready(sk); 539 } 540 541 static void lowcomms_listen_data_ready(struct sock *sk) 542 { 543 trace_sk_data_ready(sk); 544 545 queue_work(io_workqueue, &listen_con.rwork); 546 } 547 548 int dlm_lowcomms_connect_node(int nodeid) 549 { 550 struct connection *con; 551 int idx; 552 553 idx = srcu_read_lock(&connections_srcu); 554 con = nodeid2con(nodeid, 0); 555 if (WARN_ON_ONCE(!con)) { 556 srcu_read_unlock(&connections_srcu, idx); 557 return -ENOENT; 558 } 559 560 down_read(&con->sock_lock); 561 if (!con->sock) { 562 spin_lock_bh(&con->writequeue_lock); 563 lowcomms_queue_swork(con); 564 spin_unlock_bh(&con->writequeue_lock); 565 } 566 up_read(&con->sock_lock); 567 srcu_read_unlock(&connections_srcu, idx); 568 569 cond_resched(); 570 return 0; 571 } 572 573 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark) 574 { 575 struct connection *con; 576 int idx; 577 578 idx = srcu_read_lock(&connections_srcu); 579 con = nodeid2con(nodeid, 0); 580 if (!con) { 581 srcu_read_unlock(&connections_srcu, idx); 582 return -ENOENT; 583 } 584 585 spin_lock(&con->addrs_lock); 586 con->mark = mark; 587 spin_unlock(&con->addrs_lock); 588 srcu_read_unlock(&connections_srcu, idx); 589 return 0; 590 } 591 592 static void lowcomms_error_report(struct sock *sk) 593 { 594 struct connection *con = sock2con(sk); 595 struct inet_sock *inet; 596 597 inet = inet_sk(sk); 598 switch (sk->sk_family) { 599 case AF_INET: 600 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 601 "sending to node %d at %pI4, dport %d, " 602 "sk_err=%d/%d\n", dlm_our_nodeid(), 603 con->nodeid, &inet->inet_daddr, 604 ntohs(inet->inet_dport), sk->sk_err, 605 READ_ONCE(sk->sk_err_soft)); 606 break; 607 #if IS_ENABLED(CONFIG_IPV6) 608 case AF_INET6: 609 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 610 "sending to node %d at %pI6c, " 611 "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(), 612 con->nodeid, &sk->sk_v6_daddr, 613 ntohs(inet->inet_dport), sk->sk_err, 614 READ_ONCE(sk->sk_err_soft)); 615 break; 616 #endif 617 default: 618 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 619 "invalid socket family %d set, " 620 "sk_err=%d/%d\n", dlm_our_nodeid(), 621 sk->sk_family, sk->sk_err, 622 READ_ONCE(sk->sk_err_soft)); 623 break; 624 } 625 626 dlm_midcomms_unack_msg_resend(con->nodeid); 627 628 listen_sock.sk_error_report(sk); 629 } 630 631 static void restore_callbacks(struct sock *sk) 632 { 633 #ifdef CONFIG_LOCKDEP 634 WARN_ON_ONCE(!lockdep_sock_is_held(sk)); 635 #endif 636 637 sk->sk_user_data = NULL; 638 sk->sk_data_ready = listen_sock.sk_data_ready; 639 sk->sk_state_change = listen_sock.sk_state_change; 640 sk->sk_write_space = listen_sock.sk_write_space; 641 sk->sk_error_report = listen_sock.sk_error_report; 642 } 643 644 /* Make a socket active */ 645 static void add_sock(struct socket *sock, struct connection *con) 646 { 647 struct sock *sk = sock->sk; 648 649 lock_sock(sk); 650 con->sock = sock; 651 652 sk->sk_user_data = con; 653 sk->sk_data_ready = lowcomms_data_ready; 654 sk->sk_write_space = lowcomms_write_space; 655 if (dlm_config.ci_protocol == DLM_PROTO_SCTP) 656 sk->sk_state_change = lowcomms_state_change; 657 sk->sk_allocation = GFP_NOFS; 658 sk->sk_use_task_frag = false; 659 sk->sk_error_report = lowcomms_error_report; 660 release_sock(sk); 661 } 662 663 /* Add the port number to an IPv6 or 4 sockaddr and return the address 664 length */ 665 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port, 666 int *addr_len) 667 { 668 saddr->ss_family = dlm_local_addr[0].ss_family; 669 if (saddr->ss_family == AF_INET) { 670 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr; 671 in4_addr->sin_port = cpu_to_be16(port); 672 *addr_len = sizeof(struct sockaddr_in); 673 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero)); 674 } else { 675 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr; 676 in6_addr->sin6_port = cpu_to_be16(port); 677 *addr_len = sizeof(struct sockaddr_in6); 678 } 679 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len); 680 } 681 682 static void dlm_page_release(struct kref *kref) 683 { 684 struct writequeue_entry *e = container_of(kref, struct writequeue_entry, 685 ref); 686 687 __free_page(e->page); 688 dlm_free_writequeue(e); 689 } 690 691 static void dlm_msg_release(struct kref *kref) 692 { 693 struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref); 694 695 kref_put(&msg->entry->ref, dlm_page_release); 696 dlm_free_msg(msg); 697 } 698 699 static void free_entry(struct writequeue_entry *e) 700 { 701 struct dlm_msg *msg, *tmp; 702 703 list_for_each_entry_safe(msg, tmp, &e->msgs, list) { 704 if (msg->orig_msg) { 705 msg->orig_msg->retransmit = false; 706 kref_put(&msg->orig_msg->ref, dlm_msg_release); 707 } 708 709 list_del(&msg->list); 710 kref_put(&msg->ref, dlm_msg_release); 711 } 712 713 list_del(&e->list); 714 kref_put(&e->ref, dlm_page_release); 715 } 716 717 static void dlm_close_sock(struct socket **sock) 718 { 719 lock_sock((*sock)->sk); 720 restore_callbacks((*sock)->sk); 721 release_sock((*sock)->sk); 722 723 sock_release(*sock); 724 *sock = NULL; 725 } 726 727 static void allow_connection_io(struct connection *con) 728 { 729 if (con->othercon) 730 clear_bit(CF_IO_STOP, &con->othercon->flags); 731 clear_bit(CF_IO_STOP, &con->flags); 732 } 733 734 static void stop_connection_io(struct connection *con) 735 { 736 if (con->othercon) 737 stop_connection_io(con->othercon); 738 739 spin_lock_bh(&con->writequeue_lock); 740 set_bit(CF_IO_STOP, &con->flags); 741 spin_unlock_bh(&con->writequeue_lock); 742 743 down_write(&con->sock_lock); 744 if (con->sock) { 745 lock_sock(con->sock->sk); 746 restore_callbacks(con->sock->sk); 747 release_sock(con->sock->sk); 748 } 749 up_write(&con->sock_lock); 750 751 cancel_work_sync(&con->swork); 752 cancel_work_sync(&con->rwork); 753 } 754 755 /* Close a remote connection and tidy up */ 756 static void close_connection(struct connection *con, bool and_other) 757 { 758 struct writequeue_entry *e; 759 760 if (con->othercon && and_other) 761 close_connection(con->othercon, false); 762 763 down_write(&con->sock_lock); 764 if (!con->sock) { 765 up_write(&con->sock_lock); 766 return; 767 } 768 769 dlm_close_sock(&con->sock); 770 771 /* if we send a writequeue entry only a half way, we drop the 772 * whole entry because reconnection and that we not start of the 773 * middle of a msg which will confuse the other end. 774 * 775 * we can always drop messages because retransmits, but what we 776 * cannot allow is to transmit half messages which may be processed 777 * at the other side. 778 * 779 * our policy is to start on a clean state when disconnects, we don't 780 * know what's send/received on transport layer in this case. 781 */ 782 spin_lock_bh(&con->writequeue_lock); 783 if (!list_empty(&con->writequeue)) { 784 e = list_first_entry(&con->writequeue, struct writequeue_entry, 785 list); 786 if (e->dirty) 787 free_entry(e); 788 } 789 spin_unlock_bh(&con->writequeue_lock); 790 791 con->rx_leftover = 0; 792 con->retries = 0; 793 clear_bit(CF_APP_LIMITED, &con->flags); 794 clear_bit(CF_RECV_PENDING, &con->flags); 795 clear_bit(CF_SEND_PENDING, &con->flags); 796 up_write(&con->sock_lock); 797 } 798 799 static void shutdown_connection(struct connection *con, bool and_other) 800 { 801 int ret; 802 803 if (con->othercon && and_other) 804 shutdown_connection(con->othercon, false); 805 806 flush_workqueue(io_workqueue); 807 down_read(&con->sock_lock); 808 /* nothing to shutdown */ 809 if (!con->sock) { 810 up_read(&con->sock_lock); 811 return; 812 } 813 814 ret = kernel_sock_shutdown(con->sock, SHUT_WR); 815 up_read(&con->sock_lock); 816 if (ret) { 817 log_print("Connection %p failed to shutdown: %d will force close", 818 con, ret); 819 goto force_close; 820 } else { 821 ret = wait_event_timeout(con->shutdown_wait, !con->sock, 822 DLM_SHUTDOWN_WAIT_TIMEOUT); 823 if (ret == 0) { 824 log_print("Connection %p shutdown timed out, will force close", 825 con); 826 goto force_close; 827 } 828 } 829 830 return; 831 832 force_close: 833 close_connection(con, false); 834 } 835 836 static struct processqueue_entry *new_processqueue_entry(int nodeid, 837 int buflen) 838 { 839 struct processqueue_entry *pentry; 840 841 pentry = kmalloc(sizeof(*pentry), GFP_NOFS); 842 if (!pentry) 843 return NULL; 844 845 pentry->buf = kmalloc(buflen, GFP_NOFS); 846 if (!pentry->buf) { 847 kfree(pentry); 848 return NULL; 849 } 850 851 pentry->nodeid = nodeid; 852 return pentry; 853 } 854 855 static void free_processqueue_entry(struct processqueue_entry *pentry) 856 { 857 kfree(pentry->buf); 858 kfree(pentry); 859 } 860 861 static void process_dlm_messages(struct work_struct *work) 862 { 863 struct processqueue_entry *pentry; 864 865 spin_lock_bh(&processqueue_lock); 866 pentry = list_first_entry_or_null(&processqueue, 867 struct processqueue_entry, list); 868 if (WARN_ON_ONCE(!pentry)) { 869 process_dlm_messages_pending = false; 870 spin_unlock_bh(&processqueue_lock); 871 return; 872 } 873 874 list_del(&pentry->list); 875 if (atomic_dec_and_test(&processqueue_count)) 876 wake_up(&processqueue_wq); 877 spin_unlock_bh(&processqueue_lock); 878 879 for (;;) { 880 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf, 881 pentry->buflen); 882 free_processqueue_entry(pentry); 883 884 spin_lock_bh(&processqueue_lock); 885 pentry = list_first_entry_or_null(&processqueue, 886 struct processqueue_entry, list); 887 if (!pentry) { 888 process_dlm_messages_pending = false; 889 spin_unlock_bh(&processqueue_lock); 890 break; 891 } 892 893 list_del(&pentry->list); 894 if (atomic_dec_and_test(&processqueue_count)) 895 wake_up(&processqueue_wq); 896 spin_unlock_bh(&processqueue_lock); 897 } 898 } 899 900 /* Data received from remote end */ 901 static int receive_from_sock(struct connection *con, int buflen) 902 { 903 struct processqueue_entry *pentry; 904 int ret, buflen_real; 905 struct msghdr msg; 906 struct kvec iov; 907 908 pentry = new_processqueue_entry(con->nodeid, buflen); 909 if (!pentry) 910 return DLM_IO_RESCHED; 911 912 memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover); 913 914 /* calculate new buffer parameter regarding last receive and 915 * possible leftover bytes 916 */ 917 iov.iov_base = pentry->buf + con->rx_leftover; 918 iov.iov_len = buflen - con->rx_leftover; 919 920 memset(&msg, 0, sizeof(msg)); 921 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 922 clear_bit(CF_RECV_INTR, &con->flags); 923 again: 924 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len, 925 msg.msg_flags); 926 trace_dlm_recv(con->nodeid, ret); 927 if (ret == -EAGAIN) { 928 lock_sock(con->sock->sk); 929 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) { 930 release_sock(con->sock->sk); 931 goto again; 932 } 933 934 clear_bit(CF_RECV_PENDING, &con->flags); 935 release_sock(con->sock->sk); 936 free_processqueue_entry(pentry); 937 return DLM_IO_END; 938 } else if (ret == 0) { 939 /* close will clear CF_RECV_PENDING */ 940 free_processqueue_entry(pentry); 941 return DLM_IO_EOF; 942 } else if (ret < 0) { 943 free_processqueue_entry(pentry); 944 return ret; 945 } 946 947 /* new buflen according readed bytes and leftover from last receive */ 948 buflen_real = ret + con->rx_leftover; 949 ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf, 950 buflen_real); 951 if (ret < 0) { 952 free_processqueue_entry(pentry); 953 return ret; 954 } 955 956 pentry->buflen = ret; 957 958 /* calculate leftover bytes from process and put it into begin of 959 * the receive buffer, so next receive we have the full message 960 * at the start address of the receive buffer. 961 */ 962 con->rx_leftover = buflen_real - ret; 963 memmove(con->rx_leftover_buf, pentry->buf + ret, 964 con->rx_leftover); 965 966 spin_lock_bh(&processqueue_lock); 967 ret = atomic_inc_return(&processqueue_count); 968 list_add_tail(&pentry->list, &processqueue); 969 if (!process_dlm_messages_pending) { 970 process_dlm_messages_pending = true; 971 queue_work(process_workqueue, &process_work); 972 } 973 spin_unlock_bh(&processqueue_lock); 974 975 if (ret > DLM_MAX_PROCESS_BUFFERS) 976 return DLM_IO_FLUSH; 977 978 return DLM_IO_SUCCESS; 979 } 980 981 /* Listening socket is busy, accept a connection */ 982 static int accept_from_sock(void) 983 { 984 struct sockaddr_storage peeraddr; 985 int len, idx, result, nodeid; 986 struct connection *newcon; 987 struct socket *newsock; 988 unsigned int mark; 989 990 result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK); 991 if (result == -EAGAIN) 992 return DLM_IO_END; 993 else if (result < 0) 994 goto accept_err; 995 996 /* Get the connected socket's peer */ 997 memset(&peeraddr, 0, sizeof(peeraddr)); 998 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2); 999 if (len < 0) { 1000 result = -ECONNABORTED; 1001 goto accept_err; 1002 } 1003 1004 /* Get the new node's NODEID */ 1005 make_sockaddr(&peeraddr, 0, &len); 1006 if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) { 1007 switch (peeraddr.ss_family) { 1008 case AF_INET: { 1009 struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr; 1010 1011 log_print("connect from non cluster IPv4 node %pI4", 1012 &sin->sin_addr); 1013 break; 1014 } 1015 #if IS_ENABLED(CONFIG_IPV6) 1016 case AF_INET6: { 1017 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr; 1018 1019 log_print("connect from non cluster IPv6 node %pI6c", 1020 &sin6->sin6_addr); 1021 break; 1022 } 1023 #endif 1024 default: 1025 log_print("invalid family from non cluster node"); 1026 break; 1027 } 1028 1029 sock_release(newsock); 1030 return -1; 1031 } 1032 1033 log_print("got connection from %d", nodeid); 1034 1035 /* Check to see if we already have a connection to this node. This 1036 * could happen if the two nodes initiate a connection at roughly 1037 * the same time and the connections cross on the wire. 1038 * In this case we store the incoming one in "othercon" 1039 */ 1040 idx = srcu_read_lock(&connections_srcu); 1041 newcon = nodeid2con(nodeid, 0); 1042 if (WARN_ON_ONCE(!newcon)) { 1043 srcu_read_unlock(&connections_srcu, idx); 1044 result = -ENOENT; 1045 goto accept_err; 1046 } 1047 1048 sock_set_mark(newsock->sk, mark); 1049 1050 down_write(&newcon->sock_lock); 1051 if (newcon->sock) { 1052 struct connection *othercon = newcon->othercon; 1053 1054 if (!othercon) { 1055 othercon = kzalloc(sizeof(*othercon), GFP_NOFS); 1056 if (!othercon) { 1057 log_print("failed to allocate incoming socket"); 1058 up_write(&newcon->sock_lock); 1059 srcu_read_unlock(&connections_srcu, idx); 1060 result = -ENOMEM; 1061 goto accept_err; 1062 } 1063 1064 dlm_con_init(othercon, nodeid); 1065 lockdep_set_subclass(&othercon->sock_lock, 1); 1066 newcon->othercon = othercon; 1067 set_bit(CF_IS_OTHERCON, &othercon->flags); 1068 } else { 1069 /* close other sock con if we have something new */ 1070 close_connection(othercon, false); 1071 } 1072 1073 down_write(&othercon->sock_lock); 1074 add_sock(newsock, othercon); 1075 1076 /* check if we receved something while adding */ 1077 lock_sock(othercon->sock->sk); 1078 lowcomms_queue_rwork(othercon); 1079 release_sock(othercon->sock->sk); 1080 up_write(&othercon->sock_lock); 1081 } 1082 else { 1083 /* accept copies the sk after we've saved the callbacks, so we 1084 don't want to save them a second time or comm errors will 1085 result in calling sk_error_report recursively. */ 1086 add_sock(newsock, newcon); 1087 1088 /* check if we receved something while adding */ 1089 lock_sock(newcon->sock->sk); 1090 lowcomms_queue_rwork(newcon); 1091 release_sock(newcon->sock->sk); 1092 } 1093 up_write(&newcon->sock_lock); 1094 srcu_read_unlock(&connections_srcu, idx); 1095 1096 return DLM_IO_SUCCESS; 1097 1098 accept_err: 1099 if (newsock) 1100 sock_release(newsock); 1101 1102 return result; 1103 } 1104 1105 /* 1106 * writequeue_entry_complete - try to delete and free write queue entry 1107 * @e: write queue entry to try to delete 1108 * @completed: bytes completed 1109 * 1110 * writequeue_lock must be held. 1111 */ 1112 static void writequeue_entry_complete(struct writequeue_entry *e, int completed) 1113 { 1114 e->offset += completed; 1115 e->len -= completed; 1116 /* signal that page was half way transmitted */ 1117 e->dirty = true; 1118 1119 if (e->len == 0 && e->users == 0) 1120 free_entry(e); 1121 } 1122 1123 /* 1124 * sctp_bind_addrs - bind a SCTP socket to all our addresses 1125 */ 1126 static int sctp_bind_addrs(struct socket *sock, uint16_t port) 1127 { 1128 struct sockaddr_storage localaddr; 1129 struct sockaddr *addr = (struct sockaddr *)&localaddr; 1130 int i, addr_len, result = 0; 1131 1132 for (i = 0; i < dlm_local_count; i++) { 1133 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr)); 1134 make_sockaddr(&localaddr, port, &addr_len); 1135 1136 if (!i) 1137 result = kernel_bind(sock, addr, addr_len); 1138 else 1139 result = sock_bind_add(sock->sk, addr, addr_len); 1140 1141 if (result < 0) { 1142 log_print("Can't bind to %d addr number %d, %d.\n", 1143 port, i + 1, result); 1144 break; 1145 } 1146 } 1147 return result; 1148 } 1149 1150 /* Get local addresses */ 1151 static void init_local(void) 1152 { 1153 struct sockaddr_storage sas; 1154 int i; 1155 1156 dlm_local_count = 0; 1157 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) { 1158 if (dlm_our_addr(&sas, i)) 1159 break; 1160 1161 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas)); 1162 } 1163 } 1164 1165 static struct writequeue_entry *new_writequeue_entry(struct connection *con) 1166 { 1167 struct writequeue_entry *entry; 1168 1169 entry = dlm_allocate_writequeue(); 1170 if (!entry) 1171 return NULL; 1172 1173 entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 1174 if (!entry->page) { 1175 dlm_free_writequeue(entry); 1176 return NULL; 1177 } 1178 1179 entry->offset = 0; 1180 entry->len = 0; 1181 entry->end = 0; 1182 entry->dirty = false; 1183 entry->con = con; 1184 entry->users = 1; 1185 kref_init(&entry->ref); 1186 return entry; 1187 } 1188 1189 static struct writequeue_entry *new_wq_entry(struct connection *con, int len, 1190 char **ppc, void (*cb)(void *data), 1191 void *data) 1192 { 1193 struct writequeue_entry *e; 1194 1195 spin_lock_bh(&con->writequeue_lock); 1196 if (!list_empty(&con->writequeue)) { 1197 e = list_last_entry(&con->writequeue, struct writequeue_entry, list); 1198 if (DLM_WQ_REMAIN_BYTES(e) >= len) { 1199 kref_get(&e->ref); 1200 1201 *ppc = page_address(e->page) + e->end; 1202 if (cb) 1203 cb(data); 1204 1205 e->end += len; 1206 e->users++; 1207 goto out; 1208 } 1209 } 1210 1211 e = new_writequeue_entry(con); 1212 if (!e) 1213 goto out; 1214 1215 kref_get(&e->ref); 1216 *ppc = page_address(e->page); 1217 e->end += len; 1218 if (cb) 1219 cb(data); 1220 1221 list_add_tail(&e->list, &con->writequeue); 1222 1223 out: 1224 spin_unlock_bh(&con->writequeue_lock); 1225 return e; 1226 }; 1227 1228 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len, 1229 char **ppc, void (*cb)(void *data), 1230 void *data) 1231 { 1232 struct writequeue_entry *e; 1233 struct dlm_msg *msg; 1234 1235 msg = dlm_allocate_msg(); 1236 if (!msg) 1237 return NULL; 1238 1239 kref_init(&msg->ref); 1240 1241 e = new_wq_entry(con, len, ppc, cb, data); 1242 if (!e) { 1243 dlm_free_msg(msg); 1244 return NULL; 1245 } 1246 1247 msg->retransmit = false; 1248 msg->orig_msg = NULL; 1249 msg->ppc = *ppc; 1250 msg->len = len; 1251 msg->entry = e; 1252 1253 return msg; 1254 } 1255 1256 /* avoid false positive for nodes_srcu, unlock happens in 1257 * dlm_lowcomms_commit_msg which is a must call if success 1258 */ 1259 #ifndef __CHECKER__ 1260 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, char **ppc, 1261 void (*cb)(void *data), void *data) 1262 { 1263 struct connection *con; 1264 struct dlm_msg *msg; 1265 int idx; 1266 1267 if (len > DLM_MAX_SOCKET_BUFSIZE || 1268 len < sizeof(struct dlm_header)) { 1269 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE); 1270 log_print("failed to allocate a buffer of size %d", len); 1271 WARN_ON_ONCE(1); 1272 return NULL; 1273 } 1274 1275 idx = srcu_read_lock(&connections_srcu); 1276 con = nodeid2con(nodeid, 0); 1277 if (WARN_ON_ONCE(!con)) { 1278 srcu_read_unlock(&connections_srcu, idx); 1279 return NULL; 1280 } 1281 1282 msg = dlm_lowcomms_new_msg_con(con, len, ppc, cb, data); 1283 if (!msg) { 1284 srcu_read_unlock(&connections_srcu, idx); 1285 return NULL; 1286 } 1287 1288 /* for dlm_lowcomms_commit_msg() */ 1289 kref_get(&msg->ref); 1290 /* we assume if successful commit must called */ 1291 msg->idx = idx; 1292 return msg; 1293 } 1294 #endif 1295 1296 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg) 1297 { 1298 struct writequeue_entry *e = msg->entry; 1299 struct connection *con = e->con; 1300 int users; 1301 1302 spin_lock_bh(&con->writequeue_lock); 1303 kref_get(&msg->ref); 1304 list_add(&msg->list, &e->msgs); 1305 1306 users = --e->users; 1307 if (users) 1308 goto out; 1309 1310 e->len = DLM_WQ_LENGTH_BYTES(e); 1311 1312 lowcomms_queue_swork(con); 1313 1314 out: 1315 spin_unlock_bh(&con->writequeue_lock); 1316 return; 1317 } 1318 1319 /* avoid false positive for nodes_srcu, lock was happen in 1320 * dlm_lowcomms_new_msg 1321 */ 1322 #ifndef __CHECKER__ 1323 void dlm_lowcomms_commit_msg(struct dlm_msg *msg) 1324 { 1325 _dlm_lowcomms_commit_msg(msg); 1326 srcu_read_unlock(&connections_srcu, msg->idx); 1327 /* because dlm_lowcomms_new_msg() */ 1328 kref_put(&msg->ref, dlm_msg_release); 1329 } 1330 #endif 1331 1332 void dlm_lowcomms_put_msg(struct dlm_msg *msg) 1333 { 1334 kref_put(&msg->ref, dlm_msg_release); 1335 } 1336 1337 /* does not held connections_srcu, usage lowcomms_error_report only */ 1338 int dlm_lowcomms_resend_msg(struct dlm_msg *msg) 1339 { 1340 struct dlm_msg *msg_resend; 1341 char *ppc; 1342 1343 if (msg->retransmit) 1344 return 1; 1345 1346 msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len, &ppc, 1347 NULL, NULL); 1348 if (!msg_resend) 1349 return -ENOMEM; 1350 1351 msg->retransmit = true; 1352 kref_get(&msg->ref); 1353 msg_resend->orig_msg = msg; 1354 1355 memcpy(ppc, msg->ppc, msg->len); 1356 _dlm_lowcomms_commit_msg(msg_resend); 1357 dlm_lowcomms_put_msg(msg_resend); 1358 1359 return 0; 1360 } 1361 1362 /* Send a message */ 1363 static int send_to_sock(struct connection *con) 1364 { 1365 struct writequeue_entry *e; 1366 struct bio_vec bvec; 1367 struct msghdr msg = { 1368 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL, 1369 }; 1370 int len, offset, ret; 1371 1372 spin_lock_bh(&con->writequeue_lock); 1373 e = con_next_wq(con); 1374 if (!e) { 1375 clear_bit(CF_SEND_PENDING, &con->flags); 1376 spin_unlock_bh(&con->writequeue_lock); 1377 return DLM_IO_END; 1378 } 1379 1380 len = e->len; 1381 offset = e->offset; 1382 WARN_ON_ONCE(len == 0 && e->users == 0); 1383 spin_unlock_bh(&con->writequeue_lock); 1384 1385 bvec_set_page(&bvec, e->page, len, offset); 1386 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1387 ret = sock_sendmsg(con->sock, &msg); 1388 trace_dlm_send(con->nodeid, ret); 1389 if (ret == -EAGAIN || ret == 0) { 1390 lock_sock(con->sock->sk); 1391 spin_lock_bh(&con->writequeue_lock); 1392 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) && 1393 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) { 1394 /* Notify TCP that we're limited by the 1395 * application window size. 1396 */ 1397 set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags); 1398 con->sock->sk->sk_write_pending++; 1399 1400 clear_bit(CF_SEND_PENDING, &con->flags); 1401 spin_unlock_bh(&con->writequeue_lock); 1402 release_sock(con->sock->sk); 1403 1404 /* wait for write_space() event */ 1405 return DLM_IO_END; 1406 } 1407 spin_unlock_bh(&con->writequeue_lock); 1408 release_sock(con->sock->sk); 1409 1410 return DLM_IO_RESCHED; 1411 } else if (ret < 0) { 1412 return ret; 1413 } 1414 1415 spin_lock_bh(&con->writequeue_lock); 1416 writequeue_entry_complete(e, ret); 1417 spin_unlock_bh(&con->writequeue_lock); 1418 1419 return DLM_IO_SUCCESS; 1420 } 1421 1422 static void clean_one_writequeue(struct connection *con) 1423 { 1424 struct writequeue_entry *e, *safe; 1425 1426 spin_lock_bh(&con->writequeue_lock); 1427 list_for_each_entry_safe(e, safe, &con->writequeue, list) { 1428 free_entry(e); 1429 } 1430 spin_unlock_bh(&con->writequeue_lock); 1431 } 1432 1433 static void connection_release(struct rcu_head *rcu) 1434 { 1435 struct connection *con = container_of(rcu, struct connection, rcu); 1436 1437 WARN_ON_ONCE(!list_empty(&con->writequeue)); 1438 WARN_ON_ONCE(con->sock); 1439 kfree(con); 1440 } 1441 1442 /* Called from recovery when it knows that a node has 1443 left the cluster */ 1444 int dlm_lowcomms_close(int nodeid) 1445 { 1446 struct connection *con; 1447 int idx; 1448 1449 log_print("closing connection to node %d", nodeid); 1450 1451 idx = srcu_read_lock(&connections_srcu); 1452 con = nodeid2con(nodeid, 0); 1453 if (WARN_ON_ONCE(!con)) { 1454 srcu_read_unlock(&connections_srcu, idx); 1455 return -ENOENT; 1456 } 1457 1458 stop_connection_io(con); 1459 log_print("io handling for node: %d stopped", nodeid); 1460 close_connection(con, true); 1461 1462 spin_lock(&connections_lock); 1463 hlist_del_rcu(&con->list); 1464 spin_unlock(&connections_lock); 1465 1466 clean_one_writequeue(con); 1467 call_srcu(&connections_srcu, &con->rcu, connection_release); 1468 if (con->othercon) { 1469 clean_one_writequeue(con->othercon); 1470 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release); 1471 } 1472 srcu_read_unlock(&connections_srcu, idx); 1473 1474 /* for debugging we print when we are done to compare with other 1475 * messages in between. This function need to be correctly synchronized 1476 * with io handling 1477 */ 1478 log_print("closing connection to node %d done", nodeid); 1479 1480 return 0; 1481 } 1482 1483 /* Receive worker function */ 1484 static void process_recv_sockets(struct work_struct *work) 1485 { 1486 struct connection *con = container_of(work, struct connection, rwork); 1487 int ret, buflen; 1488 1489 down_read(&con->sock_lock); 1490 if (!con->sock) { 1491 up_read(&con->sock_lock); 1492 return; 1493 } 1494 1495 buflen = READ_ONCE(dlm_config.ci_buffer_size); 1496 do { 1497 ret = receive_from_sock(con, buflen); 1498 } while (ret == DLM_IO_SUCCESS); 1499 up_read(&con->sock_lock); 1500 1501 switch (ret) { 1502 case DLM_IO_END: 1503 /* CF_RECV_PENDING cleared */ 1504 break; 1505 case DLM_IO_EOF: 1506 close_connection(con, false); 1507 wake_up(&con->shutdown_wait); 1508 /* CF_RECV_PENDING cleared */ 1509 break; 1510 case DLM_IO_FLUSH: 1511 /* we can't flush the process_workqueue here because a 1512 * WQ_MEM_RECLAIM workequeue can occurr a deadlock for a non 1513 * WQ_MEM_RECLAIM workqueue such as process_workqueue. Instead 1514 * we have a waitqueue to wait until all messages are 1515 * processed. 1516 * 1517 * This handling is only necessary to backoff the sender and 1518 * not queue all messages from the socket layer into DLM 1519 * processqueue. When DLM is capable to parse multiple messages 1520 * on an e.g. per socket basis this handling can might be 1521 * removed. Especially in a message burst we are too slow to 1522 * process messages and the queue will fill up memory. 1523 */ 1524 wait_event(processqueue_wq, !atomic_read(&processqueue_count)); 1525 fallthrough; 1526 case DLM_IO_RESCHED: 1527 cond_resched(); 1528 queue_work(io_workqueue, &con->rwork); 1529 /* CF_RECV_PENDING not cleared */ 1530 break; 1531 default: 1532 if (ret < 0) { 1533 if (test_bit(CF_IS_OTHERCON, &con->flags)) { 1534 close_connection(con, false); 1535 } else { 1536 spin_lock_bh(&con->writequeue_lock); 1537 lowcomms_queue_swork(con); 1538 spin_unlock_bh(&con->writequeue_lock); 1539 } 1540 1541 /* CF_RECV_PENDING cleared for othercon 1542 * we trigger send queue if not already done 1543 * and process_send_sockets will handle it 1544 */ 1545 break; 1546 } 1547 1548 WARN_ON_ONCE(1); 1549 break; 1550 } 1551 } 1552 1553 static void process_listen_recv_socket(struct work_struct *work) 1554 { 1555 int ret; 1556 1557 if (WARN_ON_ONCE(!listen_con.sock)) 1558 return; 1559 1560 do { 1561 ret = accept_from_sock(); 1562 } while (ret == DLM_IO_SUCCESS); 1563 1564 if (ret < 0) 1565 log_print("critical error accepting connection: %d", ret); 1566 } 1567 1568 static int dlm_connect(struct connection *con) 1569 { 1570 struct sockaddr_storage addr; 1571 int result, addr_len; 1572 struct socket *sock; 1573 unsigned int mark; 1574 1575 memset(&addr, 0, sizeof(addr)); 1576 result = nodeid_to_addr(con->nodeid, &addr, NULL, 1577 dlm_proto_ops->try_new_addr, &mark); 1578 if (result < 0) { 1579 log_print("no address for nodeid %d", con->nodeid); 1580 return result; 1581 } 1582 1583 /* Create a socket to communicate with */ 1584 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family, 1585 SOCK_STREAM, dlm_proto_ops->proto, &sock); 1586 if (result < 0) 1587 return result; 1588 1589 sock_set_mark(sock->sk, mark); 1590 dlm_proto_ops->sockopts(sock); 1591 1592 result = dlm_proto_ops->bind(sock); 1593 if (result < 0) { 1594 sock_release(sock); 1595 return result; 1596 } 1597 1598 add_sock(sock, con); 1599 1600 log_print_ratelimited("connecting to %d", con->nodeid); 1601 make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len); 1602 result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr, 1603 addr_len); 1604 switch (result) { 1605 case -EINPROGRESS: 1606 /* not an error */ 1607 fallthrough; 1608 case 0: 1609 break; 1610 default: 1611 if (result < 0) 1612 dlm_close_sock(&con->sock); 1613 1614 break; 1615 } 1616 1617 return result; 1618 } 1619 1620 /* Send worker function */ 1621 static void process_send_sockets(struct work_struct *work) 1622 { 1623 struct connection *con = container_of(work, struct connection, swork); 1624 int ret; 1625 1626 WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags)); 1627 1628 down_read(&con->sock_lock); 1629 if (!con->sock) { 1630 up_read(&con->sock_lock); 1631 down_write(&con->sock_lock); 1632 if (!con->sock) { 1633 ret = dlm_connect(con); 1634 switch (ret) { 1635 case 0: 1636 break; 1637 case -EINPROGRESS: 1638 /* avoid spamming resched on connection 1639 * we might can switch to a state_change 1640 * event based mechanism if established 1641 */ 1642 msleep(100); 1643 break; 1644 default: 1645 /* CF_SEND_PENDING not cleared */ 1646 up_write(&con->sock_lock); 1647 log_print("connect to node %d try %d error %d", 1648 con->nodeid, con->retries++, ret); 1649 msleep(1000); 1650 /* For now we try forever to reconnect. In 1651 * future we should send a event to cluster 1652 * manager to fence itself after certain amount 1653 * of retries. 1654 */ 1655 queue_work(io_workqueue, &con->swork); 1656 return; 1657 } 1658 } 1659 downgrade_write(&con->sock_lock); 1660 } 1661 1662 do { 1663 ret = send_to_sock(con); 1664 } while (ret == DLM_IO_SUCCESS); 1665 up_read(&con->sock_lock); 1666 1667 switch (ret) { 1668 case DLM_IO_END: 1669 /* CF_SEND_PENDING cleared */ 1670 break; 1671 case DLM_IO_RESCHED: 1672 /* CF_SEND_PENDING not cleared */ 1673 cond_resched(); 1674 queue_work(io_workqueue, &con->swork); 1675 break; 1676 default: 1677 if (ret < 0) { 1678 close_connection(con, false); 1679 1680 /* CF_SEND_PENDING cleared */ 1681 spin_lock_bh(&con->writequeue_lock); 1682 lowcomms_queue_swork(con); 1683 spin_unlock_bh(&con->writequeue_lock); 1684 break; 1685 } 1686 1687 WARN_ON_ONCE(1); 1688 break; 1689 } 1690 } 1691 1692 static void work_stop(void) 1693 { 1694 if (io_workqueue) { 1695 destroy_workqueue(io_workqueue); 1696 io_workqueue = NULL; 1697 } 1698 1699 if (process_workqueue) { 1700 destroy_workqueue(process_workqueue); 1701 process_workqueue = NULL; 1702 } 1703 } 1704 1705 static int work_start(void) 1706 { 1707 io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM | 1708 WQ_UNBOUND, 0); 1709 if (!io_workqueue) { 1710 log_print("can't start dlm_io"); 1711 return -ENOMEM; 1712 } 1713 1714 process_workqueue = alloc_workqueue("dlm_process", WQ_HIGHPRI | WQ_BH, 0); 1715 if (!process_workqueue) { 1716 log_print("can't start dlm_process"); 1717 destroy_workqueue(io_workqueue); 1718 io_workqueue = NULL; 1719 return -ENOMEM; 1720 } 1721 1722 return 0; 1723 } 1724 1725 void dlm_lowcomms_shutdown(void) 1726 { 1727 struct connection *con; 1728 int i, idx; 1729 1730 /* stop lowcomms_listen_data_ready calls */ 1731 lock_sock(listen_con.sock->sk); 1732 listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready; 1733 release_sock(listen_con.sock->sk); 1734 1735 cancel_work_sync(&listen_con.rwork); 1736 dlm_close_sock(&listen_con.sock); 1737 1738 idx = srcu_read_lock(&connections_srcu); 1739 for (i = 0; i < CONN_HASH_SIZE; i++) { 1740 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 1741 shutdown_connection(con, true); 1742 stop_connection_io(con); 1743 flush_workqueue(process_workqueue); 1744 close_connection(con, true); 1745 1746 clean_one_writequeue(con); 1747 if (con->othercon) 1748 clean_one_writequeue(con->othercon); 1749 allow_connection_io(con); 1750 } 1751 } 1752 srcu_read_unlock(&connections_srcu, idx); 1753 } 1754 1755 void dlm_lowcomms_stop(void) 1756 { 1757 work_stop(); 1758 dlm_proto_ops = NULL; 1759 } 1760 1761 static int dlm_listen_for_all(void) 1762 { 1763 struct socket *sock; 1764 int result; 1765 1766 log_print("Using %s for communications", 1767 dlm_proto_ops->name); 1768 1769 result = dlm_proto_ops->listen_validate(); 1770 if (result < 0) 1771 return result; 1772 1773 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family, 1774 SOCK_STREAM, dlm_proto_ops->proto, &sock); 1775 if (result < 0) { 1776 log_print("Can't create comms socket: %d", result); 1777 return result; 1778 } 1779 1780 sock_set_mark(sock->sk, dlm_config.ci_mark); 1781 dlm_proto_ops->listen_sockopts(sock); 1782 1783 result = dlm_proto_ops->listen_bind(sock); 1784 if (result < 0) 1785 goto out; 1786 1787 lock_sock(sock->sk); 1788 listen_sock.sk_data_ready = sock->sk->sk_data_ready; 1789 listen_sock.sk_write_space = sock->sk->sk_write_space; 1790 listen_sock.sk_error_report = sock->sk->sk_error_report; 1791 listen_sock.sk_state_change = sock->sk->sk_state_change; 1792 1793 listen_con.sock = sock; 1794 1795 sock->sk->sk_allocation = GFP_NOFS; 1796 sock->sk->sk_use_task_frag = false; 1797 sock->sk->sk_data_ready = lowcomms_listen_data_ready; 1798 release_sock(sock->sk); 1799 1800 result = sock->ops->listen(sock, 128); 1801 if (result < 0) { 1802 dlm_close_sock(&listen_con.sock); 1803 return result; 1804 } 1805 1806 return 0; 1807 1808 out: 1809 sock_release(sock); 1810 return result; 1811 } 1812 1813 static int dlm_tcp_bind(struct socket *sock) 1814 { 1815 struct sockaddr_storage src_addr; 1816 int result, addr_len; 1817 1818 /* Bind to our cluster-known address connecting to avoid 1819 * routing problems. 1820 */ 1821 memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr)); 1822 make_sockaddr(&src_addr, 0, &addr_len); 1823 1824 result = kernel_bind(sock, (struct sockaddr *)&src_addr, 1825 addr_len); 1826 if (result < 0) { 1827 /* This *may* not indicate a critical error */ 1828 log_print("could not bind for connect: %d", result); 1829 } 1830 1831 return 0; 1832 } 1833 1834 static int dlm_tcp_connect(struct connection *con, struct socket *sock, 1835 struct sockaddr *addr, int addr_len) 1836 { 1837 return kernel_connect(sock, addr, addr_len, O_NONBLOCK); 1838 } 1839 1840 static int dlm_tcp_listen_validate(void) 1841 { 1842 /* We don't support multi-homed hosts */ 1843 if (dlm_local_count > 1) { 1844 log_print("TCP protocol can't handle multi-homed hosts, try SCTP"); 1845 return -EINVAL; 1846 } 1847 1848 return 0; 1849 } 1850 1851 static void dlm_tcp_sockopts(struct socket *sock) 1852 { 1853 /* Turn off Nagle's algorithm */ 1854 tcp_sock_set_nodelay(sock->sk); 1855 } 1856 1857 static void dlm_tcp_listen_sockopts(struct socket *sock) 1858 { 1859 dlm_tcp_sockopts(sock); 1860 sock_set_reuseaddr(sock->sk); 1861 } 1862 1863 static int dlm_tcp_listen_bind(struct socket *sock) 1864 { 1865 int addr_len; 1866 1867 /* Bind to our port */ 1868 make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len); 1869 return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0], 1870 addr_len); 1871 } 1872 1873 static const struct dlm_proto_ops dlm_tcp_ops = { 1874 .name = "TCP", 1875 .proto = IPPROTO_TCP, 1876 .connect = dlm_tcp_connect, 1877 .sockopts = dlm_tcp_sockopts, 1878 .bind = dlm_tcp_bind, 1879 .listen_validate = dlm_tcp_listen_validate, 1880 .listen_sockopts = dlm_tcp_listen_sockopts, 1881 .listen_bind = dlm_tcp_listen_bind, 1882 }; 1883 1884 static int dlm_sctp_bind(struct socket *sock) 1885 { 1886 return sctp_bind_addrs(sock, 0); 1887 } 1888 1889 static int dlm_sctp_connect(struct connection *con, struct socket *sock, 1890 struct sockaddr *addr, int addr_len) 1891 { 1892 int ret; 1893 1894 /* 1895 * Make kernel_connect() function return in specified time, 1896 * since O_NONBLOCK argument in connect() function does not work here, 1897 * then, we should restore the default value of this attribute. 1898 */ 1899 sock_set_sndtimeo(sock->sk, 5); 1900 ret = kernel_connect(sock, addr, addr_len, 0); 1901 sock_set_sndtimeo(sock->sk, 0); 1902 return ret; 1903 } 1904 1905 static int dlm_sctp_listen_validate(void) 1906 { 1907 if (!IS_ENABLED(CONFIG_IP_SCTP)) { 1908 log_print("SCTP is not enabled by this kernel"); 1909 return -EOPNOTSUPP; 1910 } 1911 1912 request_module("sctp"); 1913 return 0; 1914 } 1915 1916 static int dlm_sctp_bind_listen(struct socket *sock) 1917 { 1918 return sctp_bind_addrs(sock, dlm_config.ci_tcp_port); 1919 } 1920 1921 static void dlm_sctp_sockopts(struct socket *sock) 1922 { 1923 /* Turn off Nagle's algorithm */ 1924 sctp_sock_set_nodelay(sock->sk); 1925 sock_set_rcvbuf(sock->sk, NEEDED_RMEM); 1926 } 1927 1928 static const struct dlm_proto_ops dlm_sctp_ops = { 1929 .name = "SCTP", 1930 .proto = IPPROTO_SCTP, 1931 .try_new_addr = true, 1932 .connect = dlm_sctp_connect, 1933 .sockopts = dlm_sctp_sockopts, 1934 .bind = dlm_sctp_bind, 1935 .listen_validate = dlm_sctp_listen_validate, 1936 .listen_sockopts = dlm_sctp_sockopts, 1937 .listen_bind = dlm_sctp_bind_listen, 1938 }; 1939 1940 int dlm_lowcomms_start(void) 1941 { 1942 int error; 1943 1944 init_local(); 1945 if (!dlm_local_count) { 1946 error = -ENOTCONN; 1947 log_print("no local IP address has been set"); 1948 goto fail; 1949 } 1950 1951 error = work_start(); 1952 if (error) 1953 goto fail; 1954 1955 /* Start listening */ 1956 switch (dlm_config.ci_protocol) { 1957 case DLM_PROTO_TCP: 1958 dlm_proto_ops = &dlm_tcp_ops; 1959 break; 1960 case DLM_PROTO_SCTP: 1961 dlm_proto_ops = &dlm_sctp_ops; 1962 break; 1963 default: 1964 log_print("Invalid protocol identifier %d set", 1965 dlm_config.ci_protocol); 1966 error = -EINVAL; 1967 goto fail_proto_ops; 1968 } 1969 1970 error = dlm_listen_for_all(); 1971 if (error) 1972 goto fail_listen; 1973 1974 return 0; 1975 1976 fail_listen: 1977 dlm_proto_ops = NULL; 1978 fail_proto_ops: 1979 work_stop(); 1980 fail: 1981 return error; 1982 } 1983 1984 void dlm_lowcomms_init(void) 1985 { 1986 int i; 1987 1988 for (i = 0; i < CONN_HASH_SIZE; i++) 1989 INIT_HLIST_HEAD(&connection_hash[i]); 1990 1991 INIT_WORK(&listen_con.rwork, process_listen_recv_socket); 1992 } 1993 1994 void dlm_lowcomms_exit(void) 1995 { 1996 struct connection *con; 1997 int i, idx; 1998 1999 idx = srcu_read_lock(&connections_srcu); 2000 for (i = 0; i < CONN_HASH_SIZE; i++) { 2001 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 2002 spin_lock(&connections_lock); 2003 hlist_del_rcu(&con->list); 2004 spin_unlock(&connections_lock); 2005 2006 if (con->othercon) 2007 call_srcu(&connections_srcu, &con->othercon->rcu, 2008 connection_release); 2009 call_srcu(&connections_srcu, &con->rcu, connection_release); 2010 } 2011 } 2012 srcu_read_unlock(&connections_srcu, idx); 2013 } 2014
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.