1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 ******************************************************************************* 4 ** 5 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 6 ** Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 7 ** 8 ** 9 ******************************************************************************* 10 ******************************************************************************/ 11 12 #include "dlm_internal.h" 13 #include "lockspace.h" 14 #include "dir.h" 15 #include "config.h" 16 #include "ast.h" 17 #include "memory.h" 18 #include "rcom.h" 19 #include "lock.h" 20 #include "lowcomms.h" 21 #include "member.h" 22 #include "recover.h" 23 24 25 /* 26 * Recovery waiting routines: these functions wait for a particular reply from 27 * a remote node, or for the remote node to report a certain status. They need 28 * to abort if the lockspace is stopped indicating a node has failed (perhaps 29 * the one being waited for). 30 */ 31 32 /* 33 * Wait until given function returns non-zero or lockspace is stopped 34 * (LS_RECOVERY_STOP set due to failure of a node in ls_nodes). When another 35 * function thinks it could have completed the waited-on task, they should wake 36 * up ls_wait_general to get an immediate response rather than waiting for the 37 * timeout. This uses a timeout so it can check periodically if the wait 38 * should abort due to node failure (which doesn't cause a wake_up). 39 * This should only be called by the dlm_recoverd thread. 40 */ 41 42 int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls)) 43 { 44 int error = 0; 45 int rv; 46 47 while (1) { 48 rv = wait_event_timeout(ls->ls_wait_general, 49 testfn(ls) || dlm_recovery_stopped(ls), 50 dlm_config.ci_recover_timer * HZ); 51 if (rv) 52 break; 53 if (test_bit(LSFL_RCOM_WAIT, &ls->ls_flags)) { 54 log_debug(ls, "dlm_wait_function timed out"); 55 return -ETIMEDOUT; 56 } 57 } 58 59 if (dlm_recovery_stopped(ls)) { 60 log_debug(ls, "dlm_wait_function aborted"); 61 error = -EINTR; 62 } 63 return error; 64 } 65 66 /* 67 * An efficient way for all nodes to wait for all others to have a certain 68 * status. The node with the lowest nodeid polls all the others for their 69 * status (wait_status_all) and all the others poll the node with the low id 70 * for its accumulated result (wait_status_low). When all nodes have set 71 * status flag X, then status flag X_ALL will be set on the low nodeid. 72 */ 73 74 uint32_t dlm_recover_status(struct dlm_ls *ls) 75 { 76 uint32_t status; 77 spin_lock_bh(&ls->ls_recover_lock); 78 status = ls->ls_recover_status; 79 spin_unlock_bh(&ls->ls_recover_lock); 80 return status; 81 } 82 83 static void _set_recover_status(struct dlm_ls *ls, uint32_t status) 84 { 85 ls->ls_recover_status |= status; 86 } 87 88 void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status) 89 { 90 spin_lock_bh(&ls->ls_recover_lock); 91 _set_recover_status(ls, status); 92 spin_unlock_bh(&ls->ls_recover_lock); 93 } 94 95 static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status, 96 int save_slots, uint64_t seq) 97 { 98 struct dlm_rcom *rc = ls->ls_recover_buf; 99 struct dlm_member *memb; 100 int error = 0, delay; 101 102 list_for_each_entry(memb, &ls->ls_nodes, list) { 103 delay = 0; 104 for (;;) { 105 if (dlm_recovery_stopped(ls)) { 106 error = -EINTR; 107 goto out; 108 } 109 110 error = dlm_rcom_status(ls, memb->nodeid, 0, seq); 111 if (error) 112 goto out; 113 114 if (save_slots) 115 dlm_slot_save(ls, rc, memb); 116 117 if (le32_to_cpu(rc->rc_result) & wait_status) 118 break; 119 if (delay < 1000) 120 delay += 20; 121 msleep(delay); 122 } 123 } 124 out: 125 return error; 126 } 127 128 static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status, 129 uint32_t status_flags, uint64_t seq) 130 { 131 struct dlm_rcom *rc = ls->ls_recover_buf; 132 int error = 0, delay = 0, nodeid = ls->ls_low_nodeid; 133 134 for (;;) { 135 if (dlm_recovery_stopped(ls)) { 136 error = -EINTR; 137 goto out; 138 } 139 140 error = dlm_rcom_status(ls, nodeid, status_flags, seq); 141 if (error) 142 break; 143 144 if (le32_to_cpu(rc->rc_result) & wait_status) 145 break; 146 if (delay < 1000) 147 delay += 20; 148 msleep(delay); 149 } 150 out: 151 return error; 152 } 153 154 static int wait_status(struct dlm_ls *ls, uint32_t status, uint64_t seq) 155 { 156 uint32_t status_all = status << 1; 157 int error; 158 159 if (ls->ls_low_nodeid == dlm_our_nodeid()) { 160 error = wait_status_all(ls, status, 0, seq); 161 if (!error) 162 dlm_set_recover_status(ls, status_all); 163 } else 164 error = wait_status_low(ls, status_all, 0, seq); 165 166 return error; 167 } 168 169 int dlm_recover_members_wait(struct dlm_ls *ls, uint64_t seq) 170 { 171 struct dlm_member *memb; 172 struct dlm_slot *slots; 173 int num_slots, slots_size; 174 int error, rv; 175 uint32_t gen; 176 177 list_for_each_entry(memb, &ls->ls_nodes, list) { 178 memb->slot = -1; 179 memb->generation = 0; 180 } 181 182 if (ls->ls_low_nodeid == dlm_our_nodeid()) { 183 error = wait_status_all(ls, DLM_RS_NODES, 1, seq); 184 if (error) 185 goto out; 186 187 /* slots array is sparse, slots_size may be > num_slots */ 188 189 rv = dlm_slots_assign(ls, &num_slots, &slots_size, &slots, &gen); 190 if (!rv) { 191 spin_lock_bh(&ls->ls_recover_lock); 192 _set_recover_status(ls, DLM_RS_NODES_ALL); 193 ls->ls_num_slots = num_slots; 194 ls->ls_slots_size = slots_size; 195 ls->ls_slots = slots; 196 ls->ls_generation = gen; 197 spin_unlock_bh(&ls->ls_recover_lock); 198 } else { 199 dlm_set_recover_status(ls, DLM_RS_NODES_ALL); 200 } 201 } else { 202 error = wait_status_low(ls, DLM_RS_NODES_ALL, 203 DLM_RSF_NEED_SLOTS, seq); 204 if (error) 205 goto out; 206 207 dlm_slots_copy_in(ls); 208 } 209 out: 210 return error; 211 } 212 213 int dlm_recover_directory_wait(struct dlm_ls *ls, uint64_t seq) 214 { 215 return wait_status(ls, DLM_RS_DIR, seq); 216 } 217 218 int dlm_recover_locks_wait(struct dlm_ls *ls, uint64_t seq) 219 { 220 return wait_status(ls, DLM_RS_LOCKS, seq); 221 } 222 223 int dlm_recover_done_wait(struct dlm_ls *ls, uint64_t seq) 224 { 225 return wait_status(ls, DLM_RS_DONE, seq); 226 } 227 228 /* 229 * The recover_list contains all the rsb's for which we've requested the new 230 * master nodeid. As replies are returned from the resource directories the 231 * rsb's are removed from the list. When the list is empty we're done. 232 * 233 * The recover_list is later similarly used for all rsb's for which we've sent 234 * new lkb's and need to receive new corresponding lkid's. 235 * 236 * We use the address of the rsb struct as a simple local identifier for the 237 * rsb so we can match an rcom reply with the rsb it was sent for. 238 */ 239 240 static int recover_list_empty(struct dlm_ls *ls) 241 { 242 int empty; 243 244 spin_lock_bh(&ls->ls_recover_list_lock); 245 empty = list_empty(&ls->ls_recover_list); 246 spin_unlock_bh(&ls->ls_recover_list_lock); 247 248 return empty; 249 } 250 251 static void recover_list_add(struct dlm_rsb *r) 252 { 253 struct dlm_ls *ls = r->res_ls; 254 255 spin_lock_bh(&ls->ls_recover_list_lock); 256 if (list_empty(&r->res_recover_list)) { 257 list_add_tail(&r->res_recover_list, &ls->ls_recover_list); 258 ls->ls_recover_list_count++; 259 dlm_hold_rsb(r); 260 } 261 spin_unlock_bh(&ls->ls_recover_list_lock); 262 } 263 264 static void recover_list_del(struct dlm_rsb *r) 265 { 266 struct dlm_ls *ls = r->res_ls; 267 268 spin_lock_bh(&ls->ls_recover_list_lock); 269 list_del_init(&r->res_recover_list); 270 ls->ls_recover_list_count--; 271 spin_unlock_bh(&ls->ls_recover_list_lock); 272 273 dlm_put_rsb(r); 274 } 275 276 static void recover_list_clear(struct dlm_ls *ls) 277 { 278 struct dlm_rsb *r, *s; 279 280 spin_lock_bh(&ls->ls_recover_list_lock); 281 list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) { 282 list_del_init(&r->res_recover_list); 283 r->res_recover_locks_count = 0; 284 dlm_put_rsb(r); 285 ls->ls_recover_list_count--; 286 } 287 288 if (ls->ls_recover_list_count != 0) { 289 log_error(ls, "warning: recover_list_count %d", 290 ls->ls_recover_list_count); 291 ls->ls_recover_list_count = 0; 292 } 293 spin_unlock_bh(&ls->ls_recover_list_lock); 294 } 295 296 static int recover_xa_empty(struct dlm_ls *ls) 297 { 298 int empty = 1; 299 300 spin_lock_bh(&ls->ls_recover_xa_lock); 301 if (ls->ls_recover_list_count) 302 empty = 0; 303 spin_unlock_bh(&ls->ls_recover_xa_lock); 304 305 return empty; 306 } 307 308 static int recover_xa_add(struct dlm_rsb *r) 309 { 310 struct dlm_ls *ls = r->res_ls; 311 struct xa_limit limit = { 312 .min = 1, 313 .max = UINT_MAX, 314 }; 315 uint32_t id; 316 int rv; 317 318 spin_lock_bh(&ls->ls_recover_xa_lock); 319 if (r->res_id) { 320 rv = -1; 321 goto out_unlock; 322 } 323 rv = xa_alloc(&ls->ls_recover_xa, &id, r, limit, GFP_ATOMIC); 324 if (rv < 0) 325 goto out_unlock; 326 327 r->res_id = id; 328 ls->ls_recover_list_count++; 329 dlm_hold_rsb(r); 330 rv = 0; 331 out_unlock: 332 spin_unlock_bh(&ls->ls_recover_xa_lock); 333 return rv; 334 } 335 336 static void recover_xa_del(struct dlm_rsb *r) 337 { 338 struct dlm_ls *ls = r->res_ls; 339 340 spin_lock_bh(&ls->ls_recover_xa_lock); 341 xa_erase_bh(&ls->ls_recover_xa, r->res_id); 342 r->res_id = 0; 343 ls->ls_recover_list_count--; 344 spin_unlock_bh(&ls->ls_recover_xa_lock); 345 346 dlm_put_rsb(r); 347 } 348 349 static struct dlm_rsb *recover_xa_find(struct dlm_ls *ls, uint64_t id) 350 { 351 struct dlm_rsb *r; 352 353 spin_lock_bh(&ls->ls_recover_xa_lock); 354 r = xa_load(&ls->ls_recover_xa, (int)id); 355 spin_unlock_bh(&ls->ls_recover_xa_lock); 356 return r; 357 } 358 359 static void recover_xa_clear(struct dlm_ls *ls) 360 { 361 struct dlm_rsb *r; 362 unsigned long id; 363 364 spin_lock_bh(&ls->ls_recover_xa_lock); 365 366 xa_for_each(&ls->ls_recover_xa, id, r) { 367 xa_erase_bh(&ls->ls_recover_xa, id); 368 r->res_id = 0; 369 r->res_recover_locks_count = 0; 370 ls->ls_recover_list_count--; 371 372 dlm_put_rsb(r); 373 } 374 375 if (ls->ls_recover_list_count != 0) { 376 log_error(ls, "warning: recover_list_count %d", 377 ls->ls_recover_list_count); 378 ls->ls_recover_list_count = 0; 379 } 380 spin_unlock_bh(&ls->ls_recover_xa_lock); 381 } 382 383 384 /* Master recovery: find new master node for rsb's that were 385 mastered on nodes that have been removed. 386 387 dlm_recover_masters 388 recover_master 389 dlm_send_rcom_lookup -> receive_rcom_lookup 390 dlm_dir_lookup 391 receive_rcom_lookup_reply <- 392 dlm_recover_master_reply 393 set_new_master 394 set_master_lkbs 395 set_lock_master 396 */ 397 398 /* 399 * Set the lock master for all LKBs in a lock queue 400 * If we are the new master of the rsb, we may have received new 401 * MSTCPY locks from other nodes already which we need to ignore 402 * when setting the new nodeid. 403 */ 404 405 static void set_lock_master(struct list_head *queue, int nodeid) 406 { 407 struct dlm_lkb *lkb; 408 409 list_for_each_entry(lkb, queue, lkb_statequeue) { 410 if (!test_bit(DLM_IFL_MSTCPY_BIT, &lkb->lkb_iflags)) { 411 lkb->lkb_nodeid = nodeid; 412 lkb->lkb_remid = 0; 413 } 414 } 415 } 416 417 static void set_master_lkbs(struct dlm_rsb *r) 418 { 419 set_lock_master(&r->res_grantqueue, r->res_nodeid); 420 set_lock_master(&r->res_convertqueue, r->res_nodeid); 421 set_lock_master(&r->res_waitqueue, r->res_nodeid); 422 } 423 424 /* 425 * Propagate the new master nodeid to locks 426 * The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider. 427 * The NEW_MASTER2 flag tells recover_lvb() and recover_grant() which 428 * rsb's to consider. 429 */ 430 431 static void set_new_master(struct dlm_rsb *r) 432 { 433 set_master_lkbs(r); 434 rsb_set_flag(r, RSB_NEW_MASTER); 435 rsb_set_flag(r, RSB_NEW_MASTER2); 436 } 437 438 /* 439 * We do async lookups on rsb's that need new masters. The rsb's 440 * waiting for a lookup reply are kept on the recover_list. 441 * 442 * Another node recovering the master may have sent us a rcom lookup, 443 * and our dlm_master_lookup() set it as the new master, along with 444 * NEW_MASTER so that we'll recover it here (this implies dir_nodeid 445 * equals our_nodeid below). 446 */ 447 448 static int recover_master(struct dlm_rsb *r, unsigned int *count, uint64_t seq) 449 { 450 struct dlm_ls *ls = r->res_ls; 451 int our_nodeid, dir_nodeid; 452 int is_removed = 0; 453 int error; 454 455 if (is_master(r)) 456 return 0; 457 458 is_removed = dlm_is_removed(ls, r->res_nodeid); 459 460 if (!is_removed && !rsb_flag(r, RSB_NEW_MASTER)) 461 return 0; 462 463 our_nodeid = dlm_our_nodeid(); 464 dir_nodeid = dlm_dir_nodeid(r); 465 466 if (dir_nodeid == our_nodeid) { 467 if (is_removed) { 468 r->res_master_nodeid = our_nodeid; 469 r->res_nodeid = 0; 470 } 471 472 /* set master of lkbs to ourself when is_removed, or to 473 another new master which we set along with NEW_MASTER 474 in dlm_master_lookup */ 475 set_new_master(r); 476 error = 0; 477 } else { 478 recover_xa_add(r); 479 error = dlm_send_rcom_lookup(r, dir_nodeid, seq); 480 } 481 482 (*count)++; 483 return error; 484 } 485 486 /* 487 * All MSTCPY locks are purged and rebuilt, even if the master stayed the same. 488 * This is necessary because recovery can be started, aborted and restarted, 489 * causing the master nodeid to briefly change during the aborted recovery, and 490 * change back to the original value in the second recovery. The MSTCPY locks 491 * may or may not have been purged during the aborted recovery. Another node 492 * with an outstanding request in waiters list and a request reply saved in the 493 * requestqueue, cannot know whether it should ignore the reply and resend the 494 * request, or accept the reply and complete the request. It must do the 495 * former if the remote node purged MSTCPY locks, and it must do the later if 496 * the remote node did not. This is solved by always purging MSTCPY locks, in 497 * which case, the request reply would always be ignored and the request 498 * resent. 499 */ 500 501 static int recover_master_static(struct dlm_rsb *r, unsigned int *count) 502 { 503 int dir_nodeid = dlm_dir_nodeid(r); 504 int new_master = dir_nodeid; 505 506 if (dir_nodeid == dlm_our_nodeid()) 507 new_master = 0; 508 509 dlm_purge_mstcpy_locks(r); 510 r->res_master_nodeid = dir_nodeid; 511 r->res_nodeid = new_master; 512 set_new_master(r); 513 (*count)++; 514 return 0; 515 } 516 517 /* 518 * Go through local root resources and for each rsb which has a master which 519 * has departed, get the new master nodeid from the directory. The dir will 520 * assign mastery to the first node to look up the new master. That means 521 * we'll discover in this lookup if we're the new master of any rsb's. 522 * 523 * We fire off all the dir lookup requests individually and asynchronously to 524 * the correct dir node. 525 */ 526 527 int dlm_recover_masters(struct dlm_ls *ls, uint64_t seq, 528 const struct list_head *root_list) 529 { 530 struct dlm_rsb *r; 531 unsigned int total = 0; 532 unsigned int count = 0; 533 int nodir = dlm_no_directory(ls); 534 int error; 535 536 log_rinfo(ls, "dlm_recover_masters"); 537 538 list_for_each_entry(r, root_list, res_root_list) { 539 if (dlm_recovery_stopped(ls)) { 540 error = -EINTR; 541 goto out; 542 } 543 544 lock_rsb(r); 545 if (nodir) 546 error = recover_master_static(r, &count); 547 else 548 error = recover_master(r, &count, seq); 549 unlock_rsb(r); 550 cond_resched(); 551 total++; 552 553 if (error) 554 goto out; 555 } 556 557 log_rinfo(ls, "dlm_recover_masters %u of %u", count, total); 558 559 error = dlm_wait_function(ls, &recover_xa_empty); 560 out: 561 if (error) 562 recover_xa_clear(ls); 563 return error; 564 } 565 566 int dlm_recover_master_reply(struct dlm_ls *ls, const struct dlm_rcom *rc) 567 { 568 struct dlm_rsb *r; 569 int ret_nodeid, new_master; 570 571 r = recover_xa_find(ls, le64_to_cpu(rc->rc_id)); 572 if (!r) { 573 log_error(ls, "dlm_recover_master_reply no id %llx", 574 (unsigned long long)le64_to_cpu(rc->rc_id)); 575 goto out; 576 } 577 578 ret_nodeid = le32_to_cpu(rc->rc_result); 579 580 if (ret_nodeid == dlm_our_nodeid()) 581 new_master = 0; 582 else 583 new_master = ret_nodeid; 584 585 lock_rsb(r); 586 r->res_master_nodeid = ret_nodeid; 587 r->res_nodeid = new_master; 588 set_new_master(r); 589 unlock_rsb(r); 590 recover_xa_del(r); 591 592 if (recover_xa_empty(ls)) 593 wake_up(&ls->ls_wait_general); 594 out: 595 return 0; 596 } 597 598 599 /* Lock recovery: rebuild the process-copy locks we hold on a 600 remastered rsb on the new rsb master. 601 602 dlm_recover_locks 603 recover_locks 604 recover_locks_queue 605 dlm_send_rcom_lock -> receive_rcom_lock 606 dlm_recover_master_copy 607 receive_rcom_lock_reply <- 608 dlm_recover_process_copy 609 */ 610 611 612 /* 613 * keep a count of the number of lkb's we send to the new master; when we get 614 * an equal number of replies then recovery for the rsb is done 615 */ 616 617 static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head, 618 uint64_t seq) 619 { 620 struct dlm_lkb *lkb; 621 int error = 0; 622 623 list_for_each_entry(lkb, head, lkb_statequeue) { 624 error = dlm_send_rcom_lock(r, lkb, seq); 625 if (error) 626 break; 627 r->res_recover_locks_count++; 628 } 629 630 return error; 631 } 632 633 static int recover_locks(struct dlm_rsb *r, uint64_t seq) 634 { 635 int error = 0; 636 637 lock_rsb(r); 638 639 DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r);); 640 641 error = recover_locks_queue(r, &r->res_grantqueue, seq); 642 if (error) 643 goto out; 644 error = recover_locks_queue(r, &r->res_convertqueue, seq); 645 if (error) 646 goto out; 647 error = recover_locks_queue(r, &r->res_waitqueue, seq); 648 if (error) 649 goto out; 650 651 if (r->res_recover_locks_count) 652 recover_list_add(r); 653 else 654 rsb_clear_flag(r, RSB_NEW_MASTER); 655 out: 656 unlock_rsb(r); 657 return error; 658 } 659 660 int dlm_recover_locks(struct dlm_ls *ls, uint64_t seq, 661 const struct list_head *root_list) 662 { 663 struct dlm_rsb *r; 664 int error, count = 0; 665 666 list_for_each_entry(r, root_list, res_root_list) { 667 if (is_master(r)) { 668 rsb_clear_flag(r, RSB_NEW_MASTER); 669 continue; 670 } 671 672 if (!rsb_flag(r, RSB_NEW_MASTER)) 673 continue; 674 675 if (dlm_recovery_stopped(ls)) { 676 error = -EINTR; 677 goto out; 678 } 679 680 error = recover_locks(r, seq); 681 if (error) 682 goto out; 683 684 count += r->res_recover_locks_count; 685 } 686 687 log_rinfo(ls, "dlm_recover_locks %d out", count); 688 689 error = dlm_wait_function(ls, &recover_list_empty); 690 out: 691 if (error) 692 recover_list_clear(ls); 693 return error; 694 } 695 696 void dlm_recovered_lock(struct dlm_rsb *r) 697 { 698 DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r);); 699 700 r->res_recover_locks_count--; 701 if (!r->res_recover_locks_count) { 702 rsb_clear_flag(r, RSB_NEW_MASTER); 703 recover_list_del(r); 704 } 705 706 if (recover_list_empty(r->res_ls)) 707 wake_up(&r->res_ls->ls_wait_general); 708 } 709 710 /* 711 * The lvb needs to be recovered on all master rsb's. This includes setting 712 * the VALNOTVALID flag if necessary, and determining the correct lvb contents 713 * based on the lvb's of the locks held on the rsb. 714 * 715 * RSB_VALNOTVALID is set in two cases: 716 * 717 * 1. we are master, but not new, and we purged an EX/PW lock held by a 718 * failed node (in dlm_recover_purge which set RSB_RECOVER_LVB_INVAL) 719 * 720 * 2. we are a new master, and there are only NL/CR locks left. 721 * (We could probably improve this by only invaliding in this way when 722 * the previous master left uncleanly. VMS docs mention that.) 723 * 724 * The LVB contents are only considered for changing when this is a new master 725 * of the rsb (NEW_MASTER2). Then, the rsb's lvb is taken from any lkb with 726 * mode > CR. If no lkb's exist with mode above CR, the lvb contents are taken 727 * from the lkb with the largest lvb sequence number. 728 */ 729 730 static void recover_lvb(struct dlm_rsb *r) 731 { 732 struct dlm_lkb *big_lkb = NULL, *iter, *high_lkb = NULL; 733 uint32_t high_seq = 0; 734 int lock_lvb_exists = 0; 735 int lvblen = r->res_ls->ls_lvblen; 736 737 if (!rsb_flag(r, RSB_NEW_MASTER2) && 738 rsb_flag(r, RSB_RECOVER_LVB_INVAL)) { 739 /* case 1 above */ 740 rsb_set_flag(r, RSB_VALNOTVALID); 741 return; 742 } 743 744 if (!rsb_flag(r, RSB_NEW_MASTER2)) 745 return; 746 747 /* we are the new master, so figure out if VALNOTVALID should 748 be set, and set the rsb lvb from the best lkb available. */ 749 750 list_for_each_entry(iter, &r->res_grantqueue, lkb_statequeue) { 751 if (!(iter->lkb_exflags & DLM_LKF_VALBLK)) 752 continue; 753 754 lock_lvb_exists = 1; 755 756 if (iter->lkb_grmode > DLM_LOCK_CR) { 757 big_lkb = iter; 758 goto setflag; 759 } 760 761 if (((int)iter->lkb_lvbseq - (int)high_seq) >= 0) { 762 high_lkb = iter; 763 high_seq = iter->lkb_lvbseq; 764 } 765 } 766 767 list_for_each_entry(iter, &r->res_convertqueue, lkb_statequeue) { 768 if (!(iter->lkb_exflags & DLM_LKF_VALBLK)) 769 continue; 770 771 lock_lvb_exists = 1; 772 773 if (iter->lkb_grmode > DLM_LOCK_CR) { 774 big_lkb = iter; 775 goto setflag; 776 } 777 778 if (((int)iter->lkb_lvbseq - (int)high_seq) >= 0) { 779 high_lkb = iter; 780 high_seq = iter->lkb_lvbseq; 781 } 782 } 783 784 setflag: 785 if (!lock_lvb_exists) 786 goto out; 787 788 /* lvb is invalidated if only NL/CR locks remain */ 789 if (!big_lkb) 790 rsb_set_flag(r, RSB_VALNOTVALID); 791 792 if (!r->res_lvbptr) { 793 r->res_lvbptr = dlm_allocate_lvb(r->res_ls); 794 if (!r->res_lvbptr) 795 goto out; 796 } 797 798 if (big_lkb) { 799 r->res_lvbseq = big_lkb->lkb_lvbseq; 800 memcpy(r->res_lvbptr, big_lkb->lkb_lvbptr, lvblen); 801 } else if (high_lkb) { 802 r->res_lvbseq = high_lkb->lkb_lvbseq; 803 memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen); 804 } else { 805 r->res_lvbseq = 0; 806 memset(r->res_lvbptr, 0, lvblen); 807 } 808 out: 809 return; 810 } 811 812 /* All master rsb's flagged RECOVER_CONVERT need to be looked at. The locks 813 converting PR->CW or CW->PR need to have their lkb_grmode set. */ 814 815 static void recover_conversion(struct dlm_rsb *r) 816 { 817 struct dlm_ls *ls = r->res_ls; 818 struct dlm_lkb *lkb; 819 int grmode = -1; 820 821 list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) { 822 if (lkb->lkb_grmode == DLM_LOCK_PR || 823 lkb->lkb_grmode == DLM_LOCK_CW) { 824 grmode = lkb->lkb_grmode; 825 break; 826 } 827 } 828 829 list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) { 830 if (lkb->lkb_grmode != DLM_LOCK_IV) 831 continue; 832 if (grmode == -1) { 833 log_debug(ls, "recover_conversion %x set gr to rq %d", 834 lkb->lkb_id, lkb->lkb_rqmode); 835 lkb->lkb_grmode = lkb->lkb_rqmode; 836 } else { 837 log_debug(ls, "recover_conversion %x set gr %d", 838 lkb->lkb_id, grmode); 839 lkb->lkb_grmode = grmode; 840 } 841 } 842 } 843 844 /* We've become the new master for this rsb and waiting/converting locks may 845 need to be granted in dlm_recover_grant() due to locks that may have 846 existed from a removed node. */ 847 848 static void recover_grant(struct dlm_rsb *r) 849 { 850 if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue)) 851 rsb_set_flag(r, RSB_RECOVER_GRANT); 852 } 853 854 void dlm_recover_rsbs(struct dlm_ls *ls, const struct list_head *root_list) 855 { 856 struct dlm_rsb *r; 857 unsigned int count = 0; 858 859 list_for_each_entry(r, root_list, res_root_list) { 860 lock_rsb(r); 861 if (is_master(r)) { 862 if (rsb_flag(r, RSB_RECOVER_CONVERT)) 863 recover_conversion(r); 864 865 /* recover lvb before granting locks so the updated 866 lvb/VALNOTVALID is presented in the completion */ 867 recover_lvb(r); 868 869 if (rsb_flag(r, RSB_NEW_MASTER2)) 870 recover_grant(r); 871 count++; 872 } else { 873 rsb_clear_flag(r, RSB_VALNOTVALID); 874 } 875 rsb_clear_flag(r, RSB_RECOVER_CONVERT); 876 rsb_clear_flag(r, RSB_RECOVER_LVB_INVAL); 877 rsb_clear_flag(r, RSB_NEW_MASTER2); 878 unlock_rsb(r); 879 } 880 881 if (count) 882 log_rinfo(ls, "dlm_recover_rsbs %d done", count); 883 } 884 885 void dlm_clear_inactive(struct dlm_ls *ls) 886 { 887 struct dlm_rsb *r, *safe; 888 unsigned int count = 0; 889 890 write_lock_bh(&ls->ls_rsbtbl_lock); 891 list_for_each_entry_safe(r, safe, &ls->ls_slow_inactive, res_slow_list) { 892 list_del(&r->res_slow_list); 893 rhashtable_remove_fast(&ls->ls_rsbtbl, &r->res_node, 894 dlm_rhash_rsb_params); 895 896 if (!list_empty(&r->res_scan_list)) 897 list_del_init(&r->res_scan_list); 898 899 free_inactive_rsb(r); 900 count++; 901 } 902 write_unlock_bh(&ls->ls_rsbtbl_lock); 903 904 if (count) 905 log_rinfo(ls, "dlm_clear_inactive %u done", count); 906 } 907 908
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.