~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/exec.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/fs/exec.c
  4  *
  5  *  Copyright (C) 1991, 1992  Linus Torvalds
  6  */
  7 
  8 /*
  9  * #!-checking implemented by tytso.
 10  */
 11 /*
 12  * Demand-loading implemented 01.12.91 - no need to read anything but
 13  * the header into memory. The inode of the executable is put into
 14  * "current->executable", and page faults do the actual loading. Clean.
 15  *
 16  * Once more I can proudly say that linux stood up to being changed: it
 17  * was less than 2 hours work to get demand-loading completely implemented.
 18  *
 19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
 20  * current->executable is only used by the procfs.  This allows a dispatch
 21  * table to check for several different types  of binary formats.  We keep
 22  * trying until we recognize the file or we run out of supported binary
 23  * formats.
 24  */
 25 
 26 #include <linux/kernel_read_file.h>
 27 #include <linux/slab.h>
 28 #include <linux/file.h>
 29 #include <linux/fdtable.h>
 30 #include <linux/mm.h>
 31 #include <linux/stat.h>
 32 #include <linux/fcntl.h>
 33 #include <linux/swap.h>
 34 #include <linux/string.h>
 35 #include <linux/init.h>
 36 #include <linux/sched/mm.h>
 37 #include <linux/sched/coredump.h>
 38 #include <linux/sched/signal.h>
 39 #include <linux/sched/numa_balancing.h>
 40 #include <linux/sched/task.h>
 41 #include <linux/pagemap.h>
 42 #include <linux/perf_event.h>
 43 #include <linux/highmem.h>
 44 #include <linux/spinlock.h>
 45 #include <linux/key.h>
 46 #include <linux/personality.h>
 47 #include <linux/binfmts.h>
 48 #include <linux/utsname.h>
 49 #include <linux/pid_namespace.h>
 50 #include <linux/module.h>
 51 #include <linux/namei.h>
 52 #include <linux/mount.h>
 53 #include <linux/security.h>
 54 #include <linux/syscalls.h>
 55 #include <linux/tsacct_kern.h>
 56 #include <linux/cn_proc.h>
 57 #include <linux/audit.h>
 58 #include <linux/kmod.h>
 59 #include <linux/fsnotify.h>
 60 #include <linux/fs_struct.h>
 61 #include <linux/oom.h>
 62 #include <linux/compat.h>
 63 #include <linux/vmalloc.h>
 64 #include <linux/io_uring.h>
 65 #include <linux/syscall_user_dispatch.h>
 66 #include <linux/coredump.h>
 67 #include <linux/time_namespace.h>
 68 #include <linux/user_events.h>
 69 #include <linux/rseq.h>
 70 #include <linux/ksm.h>
 71 
 72 #include <linux/uaccess.h>
 73 #include <asm/mmu_context.h>
 74 #include <asm/tlb.h>
 75 
 76 #include <trace/events/task.h>
 77 #include "internal.h"
 78 
 79 #include <trace/events/sched.h>
 80 
 81 static int bprm_creds_from_file(struct linux_binprm *bprm);
 82 
 83 int suid_dumpable = 0;
 84 
 85 static LIST_HEAD(formats);
 86 static DEFINE_RWLOCK(binfmt_lock);
 87 
 88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
 89 {
 90         write_lock(&binfmt_lock);
 91         insert ? list_add(&fmt->lh, &formats) :
 92                  list_add_tail(&fmt->lh, &formats);
 93         write_unlock(&binfmt_lock);
 94 }
 95 
 96 EXPORT_SYMBOL(__register_binfmt);
 97 
 98 void unregister_binfmt(struct linux_binfmt * fmt)
 99 {
100         write_lock(&binfmt_lock);
101         list_del(&fmt->lh);
102         write_unlock(&binfmt_lock);
103 }
104 
105 EXPORT_SYMBOL(unregister_binfmt);
106 
107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109         module_put(fmt->module);
110 }
111 
112 bool path_noexec(const struct path *path)
113 {
114         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 
118 #ifdef CONFIG_USELIB
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from the file itself.
124  */
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127         struct linux_binfmt *fmt;
128         struct file *file;
129         struct filename *tmp = getname(library);
130         int error = PTR_ERR(tmp);
131         static const struct open_flags uselib_flags = {
132                 .open_flag = O_LARGEFILE | O_RDONLY,
133                 .acc_mode = MAY_READ | MAY_EXEC,
134                 .intent = LOOKUP_OPEN,
135                 .lookup_flags = LOOKUP_FOLLOW,
136         };
137 
138         if (IS_ERR(tmp))
139                 goto out;
140 
141         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142         putname(tmp);
143         error = PTR_ERR(file);
144         if (IS_ERR(file))
145                 goto out;
146 
147         /*
148          * may_open() has already checked for this, so it should be
149          * impossible to trip now. But we need to be extra cautious
150          * and check again at the very end too.
151          */
152         error = -EACCES;
153         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154                          path_noexec(&file->f_path)))
155                 goto exit;
156 
157         error = -ENOEXEC;
158 
159         read_lock(&binfmt_lock);
160         list_for_each_entry(fmt, &formats, lh) {
161                 if (!fmt->load_shlib)
162                         continue;
163                 if (!try_module_get(fmt->module))
164                         continue;
165                 read_unlock(&binfmt_lock);
166                 error = fmt->load_shlib(file);
167                 read_lock(&binfmt_lock);
168                 put_binfmt(fmt);
169                 if (error != -ENOEXEC)
170                         break;
171         }
172         read_unlock(&binfmt_lock);
173 exit:
174         fput(file);
175 out:
176         return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179 
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189         struct mm_struct *mm = current->mm;
190         long diff = (long)(pages - bprm->vma_pages);
191 
192         if (!mm || !diff)
193                 return;
194 
195         bprm->vma_pages = pages;
196         add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198 
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200                 int write)
201 {
202         struct page *page;
203         struct vm_area_struct *vma = bprm->vma;
204         struct mm_struct *mm = bprm->mm;
205         int ret;
206 
207         /*
208          * Avoid relying on expanding the stack down in GUP (which
209          * does not work for STACK_GROWSUP anyway), and just do it
210          * by hand ahead of time.
211          */
212         if (write && pos < vma->vm_start) {
213                 mmap_write_lock(mm);
214                 ret = expand_downwards(vma, pos);
215                 if (unlikely(ret < 0)) {
216                         mmap_write_unlock(mm);
217                         return NULL;
218                 }
219                 mmap_write_downgrade(mm);
220         } else
221                 mmap_read_lock(mm);
222 
223         /*
224          * We are doing an exec().  'current' is the process
225          * doing the exec and 'mm' is the new process's mm.
226          */
227         ret = get_user_pages_remote(mm, pos, 1,
228                         write ? FOLL_WRITE : 0,
229                         &page, NULL);
230         mmap_read_unlock(mm);
231         if (ret <= 0)
232                 return NULL;
233 
234         if (write)
235                 acct_arg_size(bprm, vma_pages(vma));
236 
237         return page;
238 }
239 
240 static void put_arg_page(struct page *page)
241 {
242         put_page(page);
243 }
244 
245 static void free_arg_pages(struct linux_binprm *bprm)
246 {
247 }
248 
249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250                 struct page *page)
251 {
252         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 }
254 
255 static int __bprm_mm_init(struct linux_binprm *bprm)
256 {
257         int err;
258         struct vm_area_struct *vma = NULL;
259         struct mm_struct *mm = bprm->mm;
260 
261         bprm->vma = vma = vm_area_alloc(mm);
262         if (!vma)
263                 return -ENOMEM;
264         vma_set_anonymous(vma);
265 
266         if (mmap_write_lock_killable(mm)) {
267                 err = -EINTR;
268                 goto err_free;
269         }
270 
271         /*
272          * Need to be called with mmap write lock
273          * held, to avoid race with ksmd.
274          */
275         err = ksm_execve(mm);
276         if (err)
277                 goto err_ksm;
278 
279         /*
280          * Place the stack at the largest stack address the architecture
281          * supports. Later, we'll move this to an appropriate place. We don't
282          * use STACK_TOP because that can depend on attributes which aren't
283          * configured yet.
284          */
285         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286         vma->vm_end = STACK_TOP_MAX;
287         vma->vm_start = vma->vm_end - PAGE_SIZE;
288         vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
289         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290 
291         err = insert_vm_struct(mm, vma);
292         if (err)
293                 goto err;
294 
295         mm->stack_vm = mm->total_vm = 1;
296         mmap_write_unlock(mm);
297         bprm->p = vma->vm_end - sizeof(void *);
298         return 0;
299 err:
300         ksm_exit(mm);
301 err_ksm:
302         mmap_write_unlock(mm);
303 err_free:
304         bprm->vma = NULL;
305         vm_area_free(vma);
306         return err;
307 }
308 
309 static bool valid_arg_len(struct linux_binprm *bprm, long len)
310 {
311         return len <= MAX_ARG_STRLEN;
312 }
313 
314 #else
315 
316 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
317 {
318 }
319 
320 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
321                 int write)
322 {
323         struct page *page;
324 
325         page = bprm->page[pos / PAGE_SIZE];
326         if (!page && write) {
327                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
328                 if (!page)
329                         return NULL;
330                 bprm->page[pos / PAGE_SIZE] = page;
331         }
332 
333         return page;
334 }
335 
336 static void put_arg_page(struct page *page)
337 {
338 }
339 
340 static void free_arg_page(struct linux_binprm *bprm, int i)
341 {
342         if (bprm->page[i]) {
343                 __free_page(bprm->page[i]);
344                 bprm->page[i] = NULL;
345         }
346 }
347 
348 static void free_arg_pages(struct linux_binprm *bprm)
349 {
350         int i;
351 
352         for (i = 0; i < MAX_ARG_PAGES; i++)
353                 free_arg_page(bprm, i);
354 }
355 
356 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
357                 struct page *page)
358 {
359 }
360 
361 static int __bprm_mm_init(struct linux_binprm *bprm)
362 {
363         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
364         return 0;
365 }
366 
367 static bool valid_arg_len(struct linux_binprm *bprm, long len)
368 {
369         return len <= bprm->p;
370 }
371 
372 #endif /* CONFIG_MMU */
373 
374 /*
375  * Create a new mm_struct and populate it with a temporary stack
376  * vm_area_struct.  We don't have enough context at this point to set the stack
377  * flags, permissions, and offset, so we use temporary values.  We'll update
378  * them later in setup_arg_pages().
379  */
380 static int bprm_mm_init(struct linux_binprm *bprm)
381 {
382         int err;
383         struct mm_struct *mm = NULL;
384 
385         bprm->mm = mm = mm_alloc();
386         err = -ENOMEM;
387         if (!mm)
388                 goto err;
389 
390         /* Save current stack limit for all calculations made during exec. */
391         task_lock(current->group_leader);
392         bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
393         task_unlock(current->group_leader);
394 
395         err = __bprm_mm_init(bprm);
396         if (err)
397                 goto err;
398 
399         return 0;
400 
401 err:
402         if (mm) {
403                 bprm->mm = NULL;
404                 mmdrop(mm);
405         }
406 
407         return err;
408 }
409 
410 struct user_arg_ptr {
411 #ifdef CONFIG_COMPAT
412         bool is_compat;
413 #endif
414         union {
415                 const char __user *const __user *native;
416 #ifdef CONFIG_COMPAT
417                 const compat_uptr_t __user *compat;
418 #endif
419         } ptr;
420 };
421 
422 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
423 {
424         const char __user *native;
425 
426 #ifdef CONFIG_COMPAT
427         if (unlikely(argv.is_compat)) {
428                 compat_uptr_t compat;
429 
430                 if (get_user(compat, argv.ptr.compat + nr))
431                         return ERR_PTR(-EFAULT);
432 
433                 return compat_ptr(compat);
434         }
435 #endif
436 
437         if (get_user(native, argv.ptr.native + nr))
438                 return ERR_PTR(-EFAULT);
439 
440         return native;
441 }
442 
443 /*
444  * count() counts the number of strings in array ARGV.
445  */
446 static int count(struct user_arg_ptr argv, int max)
447 {
448         int i = 0;
449 
450         if (argv.ptr.native != NULL) {
451                 for (;;) {
452                         const char __user *p = get_user_arg_ptr(argv, i);
453 
454                         if (!p)
455                                 break;
456 
457                         if (IS_ERR(p))
458                                 return -EFAULT;
459 
460                         if (i >= max)
461                                 return -E2BIG;
462                         ++i;
463 
464                         if (fatal_signal_pending(current))
465                                 return -ERESTARTNOHAND;
466                         cond_resched();
467                 }
468         }
469         return i;
470 }
471 
472 static int count_strings_kernel(const char *const *argv)
473 {
474         int i;
475 
476         if (!argv)
477                 return 0;
478 
479         for (i = 0; argv[i]; ++i) {
480                 if (i >= MAX_ARG_STRINGS)
481                         return -E2BIG;
482                 if (fatal_signal_pending(current))
483                         return -ERESTARTNOHAND;
484                 cond_resched();
485         }
486         return i;
487 }
488 
489 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
490                                        unsigned long limit)
491 {
492 #ifdef CONFIG_MMU
493         /* Avoid a pathological bprm->p. */
494         if (bprm->p < limit)
495                 return -E2BIG;
496         bprm->argmin = bprm->p - limit;
497 #endif
498         return 0;
499 }
500 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
501 {
502 #ifdef CONFIG_MMU
503         return bprm->p < bprm->argmin;
504 #else
505         return false;
506 #endif
507 }
508 
509 /*
510  * Calculate bprm->argmin from:
511  * - _STK_LIM
512  * - ARG_MAX
513  * - bprm->rlim_stack.rlim_cur
514  * - bprm->argc
515  * - bprm->envc
516  * - bprm->p
517  */
518 static int bprm_stack_limits(struct linux_binprm *bprm)
519 {
520         unsigned long limit, ptr_size;
521 
522         /*
523          * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
524          * (whichever is smaller) for the argv+env strings.
525          * This ensures that:
526          *  - the remaining binfmt code will not run out of stack space,
527          *  - the program will have a reasonable amount of stack left
528          *    to work from.
529          */
530         limit = _STK_LIM / 4 * 3;
531         limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
532         /*
533          * We've historically supported up to 32 pages (ARG_MAX)
534          * of argument strings even with small stacks
535          */
536         limit = max_t(unsigned long, limit, ARG_MAX);
537         /* Reject totally pathological counts. */
538         if (bprm->argc < 0 || bprm->envc < 0)
539                 return -E2BIG;
540         /*
541          * We must account for the size of all the argv and envp pointers to
542          * the argv and envp strings, since they will also take up space in
543          * the stack. They aren't stored until much later when we can't
544          * signal to the parent that the child has run out of stack space.
545          * Instead, calculate it here so it's possible to fail gracefully.
546          *
547          * In the case of argc = 0, make sure there is space for adding a
548          * empty string (which will bump argc to 1), to ensure confused
549          * userspace programs don't start processing from argv[1], thinking
550          * argc can never be 0, to keep them from walking envp by accident.
551          * See do_execveat_common().
552          */
553         if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
554             check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
555                 return -E2BIG;
556         if (limit <= ptr_size)
557                 return -E2BIG;
558         limit -= ptr_size;
559 
560         return bprm_set_stack_limit(bprm, limit);
561 }
562 
563 /*
564  * 'copy_strings()' copies argument/environment strings from the old
565  * processes's memory to the new process's stack.  The call to get_user_pages()
566  * ensures the destination page is created and not swapped out.
567  */
568 static int copy_strings(int argc, struct user_arg_ptr argv,
569                         struct linux_binprm *bprm)
570 {
571         struct page *kmapped_page = NULL;
572         char *kaddr = NULL;
573         unsigned long kpos = 0;
574         int ret;
575 
576         while (argc-- > 0) {
577                 const char __user *str;
578                 int len;
579                 unsigned long pos;
580 
581                 ret = -EFAULT;
582                 str = get_user_arg_ptr(argv, argc);
583                 if (IS_ERR(str))
584                         goto out;
585 
586                 len = strnlen_user(str, MAX_ARG_STRLEN);
587                 if (!len)
588                         goto out;
589 
590                 ret = -E2BIG;
591                 if (!valid_arg_len(bprm, len))
592                         goto out;
593 
594                 /* We're going to work our way backwards. */
595                 pos = bprm->p;
596                 str += len;
597                 bprm->p -= len;
598                 if (bprm_hit_stack_limit(bprm))
599                         goto out;
600 
601                 while (len > 0) {
602                         int offset, bytes_to_copy;
603 
604                         if (fatal_signal_pending(current)) {
605                                 ret = -ERESTARTNOHAND;
606                                 goto out;
607                         }
608                         cond_resched();
609 
610                         offset = pos % PAGE_SIZE;
611                         if (offset == 0)
612                                 offset = PAGE_SIZE;
613 
614                         bytes_to_copy = offset;
615                         if (bytes_to_copy > len)
616                                 bytes_to_copy = len;
617 
618                         offset -= bytes_to_copy;
619                         pos -= bytes_to_copy;
620                         str -= bytes_to_copy;
621                         len -= bytes_to_copy;
622 
623                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
624                                 struct page *page;
625 
626                                 page = get_arg_page(bprm, pos, 1);
627                                 if (!page) {
628                                         ret = -E2BIG;
629                                         goto out;
630                                 }
631 
632                                 if (kmapped_page) {
633                                         flush_dcache_page(kmapped_page);
634                                         kunmap_local(kaddr);
635                                         put_arg_page(kmapped_page);
636                                 }
637                                 kmapped_page = page;
638                                 kaddr = kmap_local_page(kmapped_page);
639                                 kpos = pos & PAGE_MASK;
640                                 flush_arg_page(bprm, kpos, kmapped_page);
641                         }
642                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
643                                 ret = -EFAULT;
644                                 goto out;
645                         }
646                 }
647         }
648         ret = 0;
649 out:
650         if (kmapped_page) {
651                 flush_dcache_page(kmapped_page);
652                 kunmap_local(kaddr);
653                 put_arg_page(kmapped_page);
654         }
655         return ret;
656 }
657 
658 /*
659  * Copy and argument/environment string from the kernel to the processes stack.
660  */
661 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
662 {
663         int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
664         unsigned long pos = bprm->p;
665 
666         if (len == 0)
667                 return -EFAULT;
668         if (!valid_arg_len(bprm, len))
669                 return -E2BIG;
670 
671         /* We're going to work our way backwards. */
672         arg += len;
673         bprm->p -= len;
674         if (bprm_hit_stack_limit(bprm))
675                 return -E2BIG;
676 
677         while (len > 0) {
678                 unsigned int bytes_to_copy = min_t(unsigned int, len,
679                                 min_not_zero(offset_in_page(pos), PAGE_SIZE));
680                 struct page *page;
681 
682                 pos -= bytes_to_copy;
683                 arg -= bytes_to_copy;
684                 len -= bytes_to_copy;
685 
686                 page = get_arg_page(bprm, pos, 1);
687                 if (!page)
688                         return -E2BIG;
689                 flush_arg_page(bprm, pos & PAGE_MASK, page);
690                 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
691                 put_arg_page(page);
692         }
693 
694         return 0;
695 }
696 EXPORT_SYMBOL(copy_string_kernel);
697 
698 static int copy_strings_kernel(int argc, const char *const *argv,
699                                struct linux_binprm *bprm)
700 {
701         while (argc-- > 0) {
702                 int ret = copy_string_kernel(argv[argc], bprm);
703                 if (ret < 0)
704                         return ret;
705                 if (fatal_signal_pending(current))
706                         return -ERESTARTNOHAND;
707                 cond_resched();
708         }
709         return 0;
710 }
711 
712 #ifdef CONFIG_MMU
713 
714 /*
715  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
716  * the binfmt code determines where the new stack should reside, we shift it to
717  * its final location.  The process proceeds as follows:
718  *
719  * 1) Use shift to calculate the new vma endpoints.
720  * 2) Extend vma to cover both the old and new ranges.  This ensures the
721  *    arguments passed to subsequent functions are consistent.
722  * 3) Move vma's page tables to the new range.
723  * 4) Free up any cleared pgd range.
724  * 5) Shrink the vma to cover only the new range.
725  */
726 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
727 {
728         struct mm_struct *mm = vma->vm_mm;
729         unsigned long old_start = vma->vm_start;
730         unsigned long old_end = vma->vm_end;
731         unsigned long length = old_end - old_start;
732         unsigned long new_start = old_start - shift;
733         unsigned long new_end = old_end - shift;
734         VMA_ITERATOR(vmi, mm, new_start);
735         struct vm_area_struct *next;
736         struct mmu_gather tlb;
737 
738         BUG_ON(new_start > new_end);
739 
740         /*
741          * ensure there are no vmas between where we want to go
742          * and where we are
743          */
744         if (vma != vma_next(&vmi))
745                 return -EFAULT;
746 
747         vma_iter_prev_range(&vmi);
748         /*
749          * cover the whole range: [new_start, old_end)
750          */
751         if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
752                 return -ENOMEM;
753 
754         /*
755          * move the page tables downwards, on failure we rely on
756          * process cleanup to remove whatever mess we made.
757          */
758         if (length != move_page_tables(vma, old_start,
759                                        vma, new_start, length, false, true))
760                 return -ENOMEM;
761 
762         lru_add_drain();
763         tlb_gather_mmu(&tlb, mm);
764         next = vma_next(&vmi);
765         if (new_end > old_start) {
766                 /*
767                  * when the old and new regions overlap clear from new_end.
768                  */
769                 free_pgd_range(&tlb, new_end, old_end, new_end,
770                         next ? next->vm_start : USER_PGTABLES_CEILING);
771         } else {
772                 /*
773                  * otherwise, clean from old_start; this is done to not touch
774                  * the address space in [new_end, old_start) some architectures
775                  * have constraints on va-space that make this illegal (IA64) -
776                  * for the others its just a little faster.
777                  */
778                 free_pgd_range(&tlb, old_start, old_end, new_end,
779                         next ? next->vm_start : USER_PGTABLES_CEILING);
780         }
781         tlb_finish_mmu(&tlb);
782 
783         vma_prev(&vmi);
784         /* Shrink the vma to just the new range */
785         return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
786 }
787 
788 /*
789  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
790  * the stack is optionally relocated, and some extra space is added.
791  */
792 int setup_arg_pages(struct linux_binprm *bprm,
793                     unsigned long stack_top,
794                     int executable_stack)
795 {
796         unsigned long ret;
797         unsigned long stack_shift;
798         struct mm_struct *mm = current->mm;
799         struct vm_area_struct *vma = bprm->vma;
800         struct vm_area_struct *prev = NULL;
801         unsigned long vm_flags;
802         unsigned long stack_base;
803         unsigned long stack_size;
804         unsigned long stack_expand;
805         unsigned long rlim_stack;
806         struct mmu_gather tlb;
807         struct vma_iterator vmi;
808 
809 #ifdef CONFIG_STACK_GROWSUP
810         /* Limit stack size */
811         stack_base = bprm->rlim_stack.rlim_max;
812 
813         stack_base = calc_max_stack_size(stack_base);
814 
815         /* Add space for stack randomization. */
816         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
817 
818         /* Make sure we didn't let the argument array grow too large. */
819         if (vma->vm_end - vma->vm_start > stack_base)
820                 return -ENOMEM;
821 
822         stack_base = PAGE_ALIGN(stack_top - stack_base);
823 
824         stack_shift = vma->vm_start - stack_base;
825         mm->arg_start = bprm->p - stack_shift;
826         bprm->p = vma->vm_end - stack_shift;
827 #else
828         stack_top = arch_align_stack(stack_top);
829         stack_top = PAGE_ALIGN(stack_top);
830 
831         if (unlikely(stack_top < mmap_min_addr) ||
832             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
833                 return -ENOMEM;
834 
835         stack_shift = vma->vm_end - stack_top;
836 
837         bprm->p -= stack_shift;
838         mm->arg_start = bprm->p;
839 #endif
840 
841         if (bprm->loader)
842                 bprm->loader -= stack_shift;
843         bprm->exec -= stack_shift;
844 
845         if (mmap_write_lock_killable(mm))
846                 return -EINTR;
847 
848         vm_flags = VM_STACK_FLAGS;
849 
850         /*
851          * Adjust stack execute permissions; explicitly enable for
852          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
853          * (arch default) otherwise.
854          */
855         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
856                 vm_flags |= VM_EXEC;
857         else if (executable_stack == EXSTACK_DISABLE_X)
858                 vm_flags &= ~VM_EXEC;
859         vm_flags |= mm->def_flags;
860         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
861 
862         vma_iter_init(&vmi, mm, vma->vm_start);
863 
864         tlb_gather_mmu(&tlb, mm);
865         ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
866                         vm_flags);
867         tlb_finish_mmu(&tlb);
868 
869         if (ret)
870                 goto out_unlock;
871         BUG_ON(prev != vma);
872 
873         if (unlikely(vm_flags & VM_EXEC)) {
874                 pr_warn_once("process '%pD4' started with executable stack\n",
875                              bprm->file);
876         }
877 
878         /* Move stack pages down in memory. */
879         if (stack_shift) {
880                 ret = shift_arg_pages(vma, stack_shift);
881                 if (ret)
882                         goto out_unlock;
883         }
884 
885         /* mprotect_fixup is overkill to remove the temporary stack flags */
886         vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
887 
888         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
889         stack_size = vma->vm_end - vma->vm_start;
890         /*
891          * Align this down to a page boundary as expand_stack
892          * will align it up.
893          */
894         rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
895 
896         stack_expand = min(rlim_stack, stack_size + stack_expand);
897 
898 #ifdef CONFIG_STACK_GROWSUP
899         stack_base = vma->vm_start + stack_expand;
900 #else
901         stack_base = vma->vm_end - stack_expand;
902 #endif
903         current->mm->start_stack = bprm->p;
904         ret = expand_stack_locked(vma, stack_base);
905         if (ret)
906                 ret = -EFAULT;
907 
908 out_unlock:
909         mmap_write_unlock(mm);
910         return ret;
911 }
912 EXPORT_SYMBOL(setup_arg_pages);
913 
914 #else
915 
916 /*
917  * Transfer the program arguments and environment from the holding pages
918  * onto the stack. The provided stack pointer is adjusted accordingly.
919  */
920 int transfer_args_to_stack(struct linux_binprm *bprm,
921                            unsigned long *sp_location)
922 {
923         unsigned long index, stop, sp;
924         int ret = 0;
925 
926         stop = bprm->p >> PAGE_SHIFT;
927         sp = *sp_location;
928 
929         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
930                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
931                 char *src = kmap_local_page(bprm->page[index]) + offset;
932                 sp -= PAGE_SIZE - offset;
933                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
934                         ret = -EFAULT;
935                 kunmap_local(src);
936                 if (ret)
937                         goto out;
938         }
939 
940         bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
941         *sp_location = sp;
942 
943 out:
944         return ret;
945 }
946 EXPORT_SYMBOL(transfer_args_to_stack);
947 
948 #endif /* CONFIG_MMU */
949 
950 /*
951  * On success, caller must call do_close_execat() on the returned
952  * struct file to close it.
953  */
954 static struct file *do_open_execat(int fd, struct filename *name, int flags)
955 {
956         struct file *file;
957         int err;
958         struct open_flags open_exec_flags = {
959                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
960                 .acc_mode = MAY_EXEC,
961                 .intent = LOOKUP_OPEN,
962                 .lookup_flags = LOOKUP_FOLLOW,
963         };
964 
965         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
966                 return ERR_PTR(-EINVAL);
967         if (flags & AT_SYMLINK_NOFOLLOW)
968                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
969         if (flags & AT_EMPTY_PATH)
970                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
971 
972         file = do_filp_open(fd, name, &open_exec_flags);
973         if (IS_ERR(file))
974                 goto out;
975 
976         /*
977          * may_open() has already checked for this, so it should be
978          * impossible to trip now. But we need to be extra cautious
979          * and check again at the very end too.
980          */
981         err = -EACCES;
982         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
983                          path_noexec(&file->f_path)))
984                 goto exit;
985 
986 out:
987         return file;
988 
989 exit:
990         fput(file);
991         return ERR_PTR(err);
992 }
993 
994 /**
995  * open_exec - Open a path name for execution
996  *
997  * @name: path name to open with the intent of executing it.
998  *
999  * Returns ERR_PTR on failure or allocated struct file on success.
1000  *
1001  * As this is a wrapper for the internal do_open_execat(). Also see
1002  * do_close_execat().
1003  */
1004 struct file *open_exec(const char *name)
1005 {
1006         struct filename *filename = getname_kernel(name);
1007         struct file *f = ERR_CAST(filename);
1008 
1009         if (!IS_ERR(filename)) {
1010                 f = do_open_execat(AT_FDCWD, filename, 0);
1011                 putname(filename);
1012         }
1013         return f;
1014 }
1015 EXPORT_SYMBOL(open_exec);
1016 
1017 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
1018 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1019 {
1020         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1021         if (res > 0)
1022                 flush_icache_user_range(addr, addr + len);
1023         return res;
1024 }
1025 EXPORT_SYMBOL(read_code);
1026 #endif
1027 
1028 /*
1029  * Maps the mm_struct mm into the current task struct.
1030  * On success, this function returns with exec_update_lock
1031  * held for writing.
1032  */
1033 static int exec_mmap(struct mm_struct *mm)
1034 {
1035         struct task_struct *tsk;
1036         struct mm_struct *old_mm, *active_mm;
1037         int ret;
1038 
1039         /* Notify parent that we're no longer interested in the old VM */
1040         tsk = current;
1041         old_mm = current->mm;
1042         exec_mm_release(tsk, old_mm);
1043 
1044         ret = down_write_killable(&tsk->signal->exec_update_lock);
1045         if (ret)
1046                 return ret;
1047 
1048         if (old_mm) {
1049                 /*
1050                  * If there is a pending fatal signal perhaps a signal
1051                  * whose default action is to create a coredump get
1052                  * out and die instead of going through with the exec.
1053                  */
1054                 ret = mmap_read_lock_killable(old_mm);
1055                 if (ret) {
1056                         up_write(&tsk->signal->exec_update_lock);
1057                         return ret;
1058                 }
1059         }
1060 
1061         task_lock(tsk);
1062         membarrier_exec_mmap(mm);
1063 
1064         local_irq_disable();
1065         active_mm = tsk->active_mm;
1066         tsk->active_mm = mm;
1067         tsk->mm = mm;
1068         mm_init_cid(mm);
1069         /*
1070          * This prevents preemption while active_mm is being loaded and
1071          * it and mm are being updated, which could cause problems for
1072          * lazy tlb mm refcounting when these are updated by context
1073          * switches. Not all architectures can handle irqs off over
1074          * activate_mm yet.
1075          */
1076         if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1077                 local_irq_enable();
1078         activate_mm(active_mm, mm);
1079         if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1080                 local_irq_enable();
1081         lru_gen_add_mm(mm);
1082         task_unlock(tsk);
1083         lru_gen_use_mm(mm);
1084         if (old_mm) {
1085                 mmap_read_unlock(old_mm);
1086                 BUG_ON(active_mm != old_mm);
1087                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1088                 mm_update_next_owner(old_mm);
1089                 mmput(old_mm);
1090                 return 0;
1091         }
1092         mmdrop_lazy_tlb(active_mm);
1093         return 0;
1094 }
1095 
1096 static int de_thread(struct task_struct *tsk)
1097 {
1098         struct signal_struct *sig = tsk->signal;
1099         struct sighand_struct *oldsighand = tsk->sighand;
1100         spinlock_t *lock = &oldsighand->siglock;
1101 
1102         if (thread_group_empty(tsk))
1103                 goto no_thread_group;
1104 
1105         /*
1106          * Kill all other threads in the thread group.
1107          */
1108         spin_lock_irq(lock);
1109         if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1110                 /*
1111                  * Another group action in progress, just
1112                  * return so that the signal is processed.
1113                  */
1114                 spin_unlock_irq(lock);
1115                 return -EAGAIN;
1116         }
1117 
1118         sig->group_exec_task = tsk;
1119         sig->notify_count = zap_other_threads(tsk);
1120         if (!thread_group_leader(tsk))
1121                 sig->notify_count--;
1122 
1123         while (sig->notify_count) {
1124                 __set_current_state(TASK_KILLABLE);
1125                 spin_unlock_irq(lock);
1126                 schedule();
1127                 if (__fatal_signal_pending(tsk))
1128                         goto killed;
1129                 spin_lock_irq(lock);
1130         }
1131         spin_unlock_irq(lock);
1132 
1133         /*
1134          * At this point all other threads have exited, all we have to
1135          * do is to wait for the thread group leader to become inactive,
1136          * and to assume its PID:
1137          */
1138         if (!thread_group_leader(tsk)) {
1139                 struct task_struct *leader = tsk->group_leader;
1140 
1141                 for (;;) {
1142                         cgroup_threadgroup_change_begin(tsk);
1143                         write_lock_irq(&tasklist_lock);
1144                         /*
1145                          * Do this under tasklist_lock to ensure that
1146                          * exit_notify() can't miss ->group_exec_task
1147                          */
1148                         sig->notify_count = -1;
1149                         if (likely(leader->exit_state))
1150                                 break;
1151                         __set_current_state(TASK_KILLABLE);
1152                         write_unlock_irq(&tasklist_lock);
1153                         cgroup_threadgroup_change_end(tsk);
1154                         schedule();
1155                         if (__fatal_signal_pending(tsk))
1156                                 goto killed;
1157                 }
1158 
1159                 /*
1160                  * The only record we have of the real-time age of a
1161                  * process, regardless of execs it's done, is start_time.
1162                  * All the past CPU time is accumulated in signal_struct
1163                  * from sister threads now dead.  But in this non-leader
1164                  * exec, nothing survives from the original leader thread,
1165                  * whose birth marks the true age of this process now.
1166                  * When we take on its identity by switching to its PID, we
1167                  * also take its birthdate (always earlier than our own).
1168                  */
1169                 tsk->start_time = leader->start_time;
1170                 tsk->start_boottime = leader->start_boottime;
1171 
1172                 BUG_ON(!same_thread_group(leader, tsk));
1173                 /*
1174                  * An exec() starts a new thread group with the
1175                  * TGID of the previous thread group. Rehash the
1176                  * two threads with a switched PID, and release
1177                  * the former thread group leader:
1178                  */
1179 
1180                 /* Become a process group leader with the old leader's pid.
1181                  * The old leader becomes a thread of the this thread group.
1182                  */
1183                 exchange_tids(tsk, leader);
1184                 transfer_pid(leader, tsk, PIDTYPE_TGID);
1185                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1186                 transfer_pid(leader, tsk, PIDTYPE_SID);
1187 
1188                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1189                 list_replace_init(&leader->sibling, &tsk->sibling);
1190 
1191                 tsk->group_leader = tsk;
1192                 leader->group_leader = tsk;
1193 
1194                 tsk->exit_signal = SIGCHLD;
1195                 leader->exit_signal = -1;
1196 
1197                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1198                 leader->exit_state = EXIT_DEAD;
1199                 /*
1200                  * We are going to release_task()->ptrace_unlink() silently,
1201                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1202                  * the tracer won't block again waiting for this thread.
1203                  */
1204                 if (unlikely(leader->ptrace))
1205                         __wake_up_parent(leader, leader->parent);
1206                 write_unlock_irq(&tasklist_lock);
1207                 cgroup_threadgroup_change_end(tsk);
1208 
1209                 release_task(leader);
1210         }
1211 
1212         sig->group_exec_task = NULL;
1213         sig->notify_count = 0;
1214 
1215 no_thread_group:
1216         /* we have changed execution domain */
1217         tsk->exit_signal = SIGCHLD;
1218 
1219         BUG_ON(!thread_group_leader(tsk));
1220         return 0;
1221 
1222 killed:
1223         /* protects against exit_notify() and __exit_signal() */
1224         read_lock(&tasklist_lock);
1225         sig->group_exec_task = NULL;
1226         sig->notify_count = 0;
1227         read_unlock(&tasklist_lock);
1228         return -EAGAIN;
1229 }
1230 
1231 
1232 /*
1233  * This function makes sure the current process has its own signal table,
1234  * so that flush_signal_handlers can later reset the handlers without
1235  * disturbing other processes.  (Other processes might share the signal
1236  * table via the CLONE_SIGHAND option to clone().)
1237  */
1238 static int unshare_sighand(struct task_struct *me)
1239 {
1240         struct sighand_struct *oldsighand = me->sighand;
1241 
1242         if (refcount_read(&oldsighand->count) != 1) {
1243                 struct sighand_struct *newsighand;
1244                 /*
1245                  * This ->sighand is shared with the CLONE_SIGHAND
1246                  * but not CLONE_THREAD task, switch to the new one.
1247                  */
1248                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1249                 if (!newsighand)
1250                         return -ENOMEM;
1251 
1252                 refcount_set(&newsighand->count, 1);
1253 
1254                 write_lock_irq(&tasklist_lock);
1255                 spin_lock(&oldsighand->siglock);
1256                 memcpy(newsighand->action, oldsighand->action,
1257                        sizeof(newsighand->action));
1258                 rcu_assign_pointer(me->sighand, newsighand);
1259                 spin_unlock(&oldsighand->siglock);
1260                 write_unlock_irq(&tasklist_lock);
1261 
1262                 __cleanup_sighand(oldsighand);
1263         }
1264         return 0;
1265 }
1266 
1267 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1268 {
1269         task_lock(tsk);
1270         /* Always NUL terminated and zero-padded */
1271         strscpy_pad(buf, tsk->comm, buf_size);
1272         task_unlock(tsk);
1273         return buf;
1274 }
1275 EXPORT_SYMBOL_GPL(__get_task_comm);
1276 
1277 /*
1278  * These functions flushes out all traces of the currently running executable
1279  * so that a new one can be started
1280  */
1281 
1282 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1283 {
1284         task_lock(tsk);
1285         trace_task_rename(tsk, buf);
1286         strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1287         task_unlock(tsk);
1288         perf_event_comm(tsk, exec);
1289 }
1290 
1291 /*
1292  * Calling this is the point of no return. None of the failures will be
1293  * seen by userspace since either the process is already taking a fatal
1294  * signal (via de_thread() or coredump), or will have SEGV raised
1295  * (after exec_mmap()) by search_binary_handler (see below).
1296  */
1297 int begin_new_exec(struct linux_binprm * bprm)
1298 {
1299         struct task_struct *me = current;
1300         int retval;
1301 
1302         /* Once we are committed compute the creds */
1303         retval = bprm_creds_from_file(bprm);
1304         if (retval)
1305                 return retval;
1306 
1307         /*
1308          * This tracepoint marks the point before flushing the old exec where
1309          * the current task is still unchanged, but errors are fatal (point of
1310          * no return). The later "sched_process_exec" tracepoint is called after
1311          * the current task has successfully switched to the new exec.
1312          */
1313         trace_sched_prepare_exec(current, bprm);
1314 
1315         /*
1316          * Ensure all future errors are fatal.
1317          */
1318         bprm->point_of_no_return = true;
1319 
1320         /*
1321          * Make this the only thread in the thread group.
1322          */
1323         retval = de_thread(me);
1324         if (retval)
1325                 goto out;
1326 
1327         /*
1328          * Cancel any io_uring activity across execve
1329          */
1330         io_uring_task_cancel();
1331 
1332         /* Ensure the files table is not shared. */
1333         retval = unshare_files();
1334         if (retval)
1335                 goto out;
1336 
1337         /*
1338          * Must be called _before_ exec_mmap() as bprm->mm is
1339          * not visible until then. Doing it here also ensures
1340          * we don't race against replace_mm_exe_file().
1341          */
1342         retval = set_mm_exe_file(bprm->mm, bprm->file);
1343         if (retval)
1344                 goto out;
1345 
1346         /* If the binary is not readable then enforce mm->dumpable=0 */
1347         would_dump(bprm, bprm->file);
1348         if (bprm->have_execfd)
1349                 would_dump(bprm, bprm->executable);
1350 
1351         /*
1352          * Release all of the old mmap stuff
1353          */
1354         acct_arg_size(bprm, 0);
1355         retval = exec_mmap(bprm->mm);
1356         if (retval)
1357                 goto out;
1358 
1359         bprm->mm = NULL;
1360 
1361         retval = exec_task_namespaces();
1362         if (retval)
1363                 goto out_unlock;
1364 
1365 #ifdef CONFIG_POSIX_TIMERS
1366         spin_lock_irq(&me->sighand->siglock);
1367         posix_cpu_timers_exit(me);
1368         spin_unlock_irq(&me->sighand->siglock);
1369         exit_itimers(me);
1370         flush_itimer_signals();
1371 #endif
1372 
1373         /*
1374          * Make the signal table private.
1375          */
1376         retval = unshare_sighand(me);
1377         if (retval)
1378                 goto out_unlock;
1379 
1380         me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1381                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1382         flush_thread();
1383         me->personality &= ~bprm->per_clear;
1384 
1385         clear_syscall_work_syscall_user_dispatch(me);
1386 
1387         /*
1388          * We have to apply CLOEXEC before we change whether the process is
1389          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1390          * trying to access the should-be-closed file descriptors of a process
1391          * undergoing exec(2).
1392          */
1393         do_close_on_exec(me->files);
1394 
1395         if (bprm->secureexec) {
1396                 /* Make sure parent cannot signal privileged process. */
1397                 me->pdeath_signal = 0;
1398 
1399                 /*
1400                  * For secureexec, reset the stack limit to sane default to
1401                  * avoid bad behavior from the prior rlimits. This has to
1402                  * happen before arch_pick_mmap_layout(), which examines
1403                  * RLIMIT_STACK, but after the point of no return to avoid
1404                  * needing to clean up the change on failure.
1405                  */
1406                 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1407                         bprm->rlim_stack.rlim_cur = _STK_LIM;
1408         }
1409 
1410         me->sas_ss_sp = me->sas_ss_size = 0;
1411 
1412         /*
1413          * Figure out dumpability. Note that this checking only of current
1414          * is wrong, but userspace depends on it. This should be testing
1415          * bprm->secureexec instead.
1416          */
1417         if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1418             !(uid_eq(current_euid(), current_uid()) &&
1419               gid_eq(current_egid(), current_gid())))
1420                 set_dumpable(current->mm, suid_dumpable);
1421         else
1422                 set_dumpable(current->mm, SUID_DUMP_USER);
1423 
1424         perf_event_exec();
1425         __set_task_comm(me, kbasename(bprm->filename), true);
1426 
1427         /* An exec changes our domain. We are no longer part of the thread
1428            group */
1429         WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1430         flush_signal_handlers(me, 0);
1431 
1432         retval = set_cred_ucounts(bprm->cred);
1433         if (retval < 0)
1434                 goto out_unlock;
1435 
1436         /*
1437          * install the new credentials for this executable
1438          */
1439         security_bprm_committing_creds(bprm);
1440 
1441         commit_creds(bprm->cred);
1442         bprm->cred = NULL;
1443 
1444         /*
1445          * Disable monitoring for regular users
1446          * when executing setuid binaries. Must
1447          * wait until new credentials are committed
1448          * by commit_creds() above
1449          */
1450         if (get_dumpable(me->mm) != SUID_DUMP_USER)
1451                 perf_event_exit_task(me);
1452         /*
1453          * cred_guard_mutex must be held at least to this point to prevent
1454          * ptrace_attach() from altering our determination of the task's
1455          * credentials; any time after this it may be unlocked.
1456          */
1457         security_bprm_committed_creds(bprm);
1458 
1459         /* Pass the opened binary to the interpreter. */
1460         if (bprm->have_execfd) {
1461                 retval = get_unused_fd_flags(0);
1462                 if (retval < 0)
1463                         goto out_unlock;
1464                 fd_install(retval, bprm->executable);
1465                 bprm->executable = NULL;
1466                 bprm->execfd = retval;
1467         }
1468         return 0;
1469 
1470 out_unlock:
1471         up_write(&me->signal->exec_update_lock);
1472         if (!bprm->cred)
1473                 mutex_unlock(&me->signal->cred_guard_mutex);
1474 
1475 out:
1476         return retval;
1477 }
1478 EXPORT_SYMBOL(begin_new_exec);
1479 
1480 void would_dump(struct linux_binprm *bprm, struct file *file)
1481 {
1482         struct inode *inode = file_inode(file);
1483         struct mnt_idmap *idmap = file_mnt_idmap(file);
1484         if (inode_permission(idmap, inode, MAY_READ) < 0) {
1485                 struct user_namespace *old, *user_ns;
1486                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1487 
1488                 /* Ensure mm->user_ns contains the executable */
1489                 user_ns = old = bprm->mm->user_ns;
1490                 while ((user_ns != &init_user_ns) &&
1491                        !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1492                         user_ns = user_ns->parent;
1493 
1494                 if (old != user_ns) {
1495                         bprm->mm->user_ns = get_user_ns(user_ns);
1496                         put_user_ns(old);
1497                 }
1498         }
1499 }
1500 EXPORT_SYMBOL(would_dump);
1501 
1502 void setup_new_exec(struct linux_binprm * bprm)
1503 {
1504         /* Setup things that can depend upon the personality */
1505         struct task_struct *me = current;
1506 
1507         arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1508 
1509         arch_setup_new_exec();
1510 
1511         /* Set the new mm task size. We have to do that late because it may
1512          * depend on TIF_32BIT which is only updated in flush_thread() on
1513          * some architectures like powerpc
1514          */
1515         me->mm->task_size = TASK_SIZE;
1516         up_write(&me->signal->exec_update_lock);
1517         mutex_unlock(&me->signal->cred_guard_mutex);
1518 }
1519 EXPORT_SYMBOL(setup_new_exec);
1520 
1521 /* Runs immediately before start_thread() takes over. */
1522 void finalize_exec(struct linux_binprm *bprm)
1523 {
1524         /* Store any stack rlimit changes before starting thread. */
1525         task_lock(current->group_leader);
1526         current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1527         task_unlock(current->group_leader);
1528 }
1529 EXPORT_SYMBOL(finalize_exec);
1530 
1531 /*
1532  * Prepare credentials and lock ->cred_guard_mutex.
1533  * setup_new_exec() commits the new creds and drops the lock.
1534  * Or, if exec fails before, free_bprm() should release ->cred
1535  * and unlock.
1536  */
1537 static int prepare_bprm_creds(struct linux_binprm *bprm)
1538 {
1539         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1540                 return -ERESTARTNOINTR;
1541 
1542         bprm->cred = prepare_exec_creds();
1543         if (likely(bprm->cred))
1544                 return 0;
1545 
1546         mutex_unlock(&current->signal->cred_guard_mutex);
1547         return -ENOMEM;
1548 }
1549 
1550 /* Matches do_open_execat() */
1551 static void do_close_execat(struct file *file)
1552 {
1553         if (file)
1554                 fput(file);
1555 }
1556 
1557 static void free_bprm(struct linux_binprm *bprm)
1558 {
1559         if (bprm->mm) {
1560                 acct_arg_size(bprm, 0);
1561                 mmput(bprm->mm);
1562         }
1563         free_arg_pages(bprm);
1564         if (bprm->cred) {
1565                 mutex_unlock(&current->signal->cred_guard_mutex);
1566                 abort_creds(bprm->cred);
1567         }
1568         do_close_execat(bprm->file);
1569         if (bprm->executable)
1570                 fput(bprm->executable);
1571         /* If a binfmt changed the interp, free it. */
1572         if (bprm->interp != bprm->filename)
1573                 kfree(bprm->interp);
1574         kfree(bprm->fdpath);
1575         kfree(bprm);
1576 }
1577 
1578 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1579 {
1580         struct linux_binprm *bprm;
1581         struct file *file;
1582         int retval = -ENOMEM;
1583 
1584         file = do_open_execat(fd, filename, flags);
1585         if (IS_ERR(file))
1586                 return ERR_CAST(file);
1587 
1588         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1589         if (!bprm) {
1590                 do_close_execat(file);
1591                 return ERR_PTR(-ENOMEM);
1592         }
1593 
1594         bprm->file = file;
1595 
1596         if (fd == AT_FDCWD || filename->name[0] == '/') {
1597                 bprm->filename = filename->name;
1598         } else {
1599                 if (filename->name[0] == '\0')
1600                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1601                 else
1602                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1603                                                   fd, filename->name);
1604                 if (!bprm->fdpath)
1605                         goto out_free;
1606 
1607                 /*
1608                  * Record that a name derived from an O_CLOEXEC fd will be
1609                  * inaccessible after exec.  This allows the code in exec to
1610                  * choose to fail when the executable is not mmaped into the
1611                  * interpreter and an open file descriptor is not passed to
1612                  * the interpreter.  This makes for a better user experience
1613                  * than having the interpreter start and then immediately fail
1614                  * when it finds the executable is inaccessible.
1615                  */
1616                 if (get_close_on_exec(fd))
1617                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1618 
1619                 bprm->filename = bprm->fdpath;
1620         }
1621         bprm->interp = bprm->filename;
1622 
1623         retval = bprm_mm_init(bprm);
1624         if (!retval)
1625                 return bprm;
1626 
1627 out_free:
1628         free_bprm(bprm);
1629         return ERR_PTR(retval);
1630 }
1631 
1632 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1633 {
1634         /* If a binfmt changed the interp, free it first. */
1635         if (bprm->interp != bprm->filename)
1636                 kfree(bprm->interp);
1637         bprm->interp = kstrdup(interp, GFP_KERNEL);
1638         if (!bprm->interp)
1639                 return -ENOMEM;
1640         return 0;
1641 }
1642 EXPORT_SYMBOL(bprm_change_interp);
1643 
1644 /*
1645  * determine how safe it is to execute the proposed program
1646  * - the caller must hold ->cred_guard_mutex to protect against
1647  *   PTRACE_ATTACH or seccomp thread-sync
1648  */
1649 static void check_unsafe_exec(struct linux_binprm *bprm)
1650 {
1651         struct task_struct *p = current, *t;
1652         unsigned n_fs;
1653 
1654         if (p->ptrace)
1655                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1656 
1657         /*
1658          * This isn't strictly necessary, but it makes it harder for LSMs to
1659          * mess up.
1660          */
1661         if (task_no_new_privs(current))
1662                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1663 
1664         /*
1665          * If another task is sharing our fs, we cannot safely
1666          * suid exec because the differently privileged task
1667          * will be able to manipulate the current directory, etc.
1668          * It would be nice to force an unshare instead...
1669          */
1670         n_fs = 1;
1671         spin_lock(&p->fs->lock);
1672         rcu_read_lock();
1673         for_other_threads(p, t) {
1674                 if (t->fs == p->fs)
1675                         n_fs++;
1676         }
1677         rcu_read_unlock();
1678 
1679         /* "users" and "in_exec" locked for copy_fs() */
1680         if (p->fs->users > n_fs)
1681                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1682         else
1683                 p->fs->in_exec = 1;
1684         spin_unlock(&p->fs->lock);
1685 }
1686 
1687 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1688 {
1689         /* Handle suid and sgid on files */
1690         struct mnt_idmap *idmap;
1691         struct inode *inode = file_inode(file);
1692         unsigned int mode;
1693         vfsuid_t vfsuid;
1694         vfsgid_t vfsgid;
1695 
1696         if (!mnt_may_suid(file->f_path.mnt))
1697                 return;
1698 
1699         if (task_no_new_privs(current))
1700                 return;
1701 
1702         mode = READ_ONCE(inode->i_mode);
1703         if (!(mode & (S_ISUID|S_ISGID)))
1704                 return;
1705 
1706         idmap = file_mnt_idmap(file);
1707 
1708         /* Be careful if suid/sgid is set */
1709         inode_lock(inode);
1710 
1711         /* reload atomically mode/uid/gid now that lock held */
1712         mode = inode->i_mode;
1713         vfsuid = i_uid_into_vfsuid(idmap, inode);
1714         vfsgid = i_gid_into_vfsgid(idmap, inode);
1715         inode_unlock(inode);
1716 
1717         /* We ignore suid/sgid if there are no mappings for them in the ns */
1718         if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1719             !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1720                 return;
1721 
1722         if (mode & S_ISUID) {
1723                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1724                 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1725         }
1726 
1727         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1728                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1729                 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1730         }
1731 }
1732 
1733 /*
1734  * Compute brpm->cred based upon the final binary.
1735  */
1736 static int bprm_creds_from_file(struct linux_binprm *bprm)
1737 {
1738         /* Compute creds based on which file? */
1739         struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1740 
1741         bprm_fill_uid(bprm, file);
1742         return security_bprm_creds_from_file(bprm, file);
1743 }
1744 
1745 /*
1746  * Fill the binprm structure from the inode.
1747  * Read the first BINPRM_BUF_SIZE bytes
1748  *
1749  * This may be called multiple times for binary chains (scripts for example).
1750  */
1751 static int prepare_binprm(struct linux_binprm *bprm)
1752 {
1753         loff_t pos = 0;
1754 
1755         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1756         return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1757 }
1758 
1759 /*
1760  * Arguments are '\0' separated strings found at the location bprm->p
1761  * points to; chop off the first by relocating brpm->p to right after
1762  * the first '\0' encountered.
1763  */
1764 int remove_arg_zero(struct linux_binprm *bprm)
1765 {
1766         unsigned long offset;
1767         char *kaddr;
1768         struct page *page;
1769 
1770         if (!bprm->argc)
1771                 return 0;
1772 
1773         do {
1774                 offset = bprm->p & ~PAGE_MASK;
1775                 page = get_arg_page(bprm, bprm->p, 0);
1776                 if (!page)
1777                         return -EFAULT;
1778                 kaddr = kmap_local_page(page);
1779 
1780                 for (; offset < PAGE_SIZE && kaddr[offset];
1781                                 offset++, bprm->p++)
1782                         ;
1783 
1784                 kunmap_local(kaddr);
1785                 put_arg_page(page);
1786         } while (offset == PAGE_SIZE);
1787 
1788         bprm->p++;
1789         bprm->argc--;
1790 
1791         return 0;
1792 }
1793 EXPORT_SYMBOL(remove_arg_zero);
1794 
1795 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1796 /*
1797  * cycle the list of binary formats handler, until one recognizes the image
1798  */
1799 static int search_binary_handler(struct linux_binprm *bprm)
1800 {
1801         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1802         struct linux_binfmt *fmt;
1803         int retval;
1804 
1805         retval = prepare_binprm(bprm);
1806         if (retval < 0)
1807                 return retval;
1808 
1809         retval = security_bprm_check(bprm);
1810         if (retval)
1811                 return retval;
1812 
1813         retval = -ENOENT;
1814  retry:
1815         read_lock(&binfmt_lock);
1816         list_for_each_entry(fmt, &formats, lh) {
1817                 if (!try_module_get(fmt->module))
1818                         continue;
1819                 read_unlock(&binfmt_lock);
1820 
1821                 retval = fmt->load_binary(bprm);
1822 
1823                 read_lock(&binfmt_lock);
1824                 put_binfmt(fmt);
1825                 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1826                         read_unlock(&binfmt_lock);
1827                         return retval;
1828                 }
1829         }
1830         read_unlock(&binfmt_lock);
1831 
1832         if (need_retry) {
1833                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1834                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1835                         return retval;
1836                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1837                         return retval;
1838                 need_retry = false;
1839                 goto retry;
1840         }
1841 
1842         return retval;
1843 }
1844 
1845 /* binfmt handlers will call back into begin_new_exec() on success. */
1846 static int exec_binprm(struct linux_binprm *bprm)
1847 {
1848         pid_t old_pid, old_vpid;
1849         int ret, depth;
1850 
1851         /* Need to fetch pid before load_binary changes it */
1852         old_pid = current->pid;
1853         rcu_read_lock();
1854         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1855         rcu_read_unlock();
1856 
1857         /* This allows 4 levels of binfmt rewrites before failing hard. */
1858         for (depth = 0;; depth++) {
1859                 struct file *exec;
1860                 if (depth > 5)
1861                         return -ELOOP;
1862 
1863                 ret = search_binary_handler(bprm);
1864                 if (ret < 0)
1865                         return ret;
1866                 if (!bprm->interpreter)
1867                         break;
1868 
1869                 exec = bprm->file;
1870                 bprm->file = bprm->interpreter;
1871                 bprm->interpreter = NULL;
1872 
1873                 if (unlikely(bprm->have_execfd)) {
1874                         if (bprm->executable) {
1875                                 fput(exec);
1876                                 return -ENOEXEC;
1877                         }
1878                         bprm->executable = exec;
1879                 } else
1880                         fput(exec);
1881         }
1882 
1883         audit_bprm(bprm);
1884         trace_sched_process_exec(current, old_pid, bprm);
1885         ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1886         proc_exec_connector(current);
1887         return 0;
1888 }
1889 
1890 static int bprm_execve(struct linux_binprm *bprm)
1891 {
1892         int retval;
1893 
1894         retval = prepare_bprm_creds(bprm);
1895         if (retval)
1896                 return retval;
1897 
1898         /*
1899          * Check for unsafe execution states before exec_binprm(), which
1900          * will call back into begin_new_exec(), into bprm_creds_from_file(),
1901          * where setuid-ness is evaluated.
1902          */
1903         check_unsafe_exec(bprm);
1904         current->in_execve = 1;
1905         sched_mm_cid_before_execve(current);
1906 
1907         sched_exec();
1908 
1909         /* Set the unchanging part of bprm->cred */
1910         retval = security_bprm_creds_for_exec(bprm);
1911         if (retval)
1912                 goto out;
1913 
1914         retval = ccs_exec_binprm(bprm);
1915         if (retval < 0)
1916                 goto out;
1917 
1918         sched_mm_cid_after_execve(current);
1919         /* execve succeeded */
1920         current->fs->in_exec = 0;
1921         current->in_execve = 0;
1922         rseq_execve(current);
1923         user_events_execve(current);
1924         acct_update_integrals(current);
1925         task_numa_free(current, false);
1926         return retval;
1927 
1928 out:
1929         /*
1930          * If past the point of no return ensure the code never
1931          * returns to the userspace process.  Use an existing fatal
1932          * signal if present otherwise terminate the process with
1933          * SIGSEGV.
1934          */
1935         if (bprm->point_of_no_return && !fatal_signal_pending(current))
1936                 force_fatal_sig(SIGSEGV);
1937 
1938         sched_mm_cid_after_execve(current);
1939         current->fs->in_exec = 0;
1940         current->in_execve = 0;
1941 
1942         return retval;
1943 }
1944 
1945 static int do_execveat_common(int fd, struct filename *filename,
1946                               struct user_arg_ptr argv,
1947                               struct user_arg_ptr envp,
1948                               int flags)
1949 {
1950         struct linux_binprm *bprm;
1951         int retval;
1952 
1953         if (IS_ERR(filename))
1954                 return PTR_ERR(filename);
1955 
1956         /*
1957          * We move the actual failure in case of RLIMIT_NPROC excess from
1958          * set*uid() to execve() because too many poorly written programs
1959          * don't check setuid() return code.  Here we additionally recheck
1960          * whether NPROC limit is still exceeded.
1961          */
1962         if ((current->flags & PF_NPROC_EXCEEDED) &&
1963             is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1964                 retval = -EAGAIN;
1965                 goto out_ret;
1966         }
1967 
1968         /* We're below the limit (still or again), so we don't want to make
1969          * further execve() calls fail. */
1970         current->flags &= ~PF_NPROC_EXCEEDED;
1971 
1972         bprm = alloc_bprm(fd, filename, flags);
1973         if (IS_ERR(bprm)) {
1974                 retval = PTR_ERR(bprm);
1975                 goto out_ret;
1976         }
1977 
1978         retval = count(argv, MAX_ARG_STRINGS);
1979         if (retval == 0)
1980                 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1981                              current->comm, bprm->filename);
1982         if (retval < 0)
1983                 goto out_free;
1984         bprm->argc = retval;
1985 
1986         retval = count(envp, MAX_ARG_STRINGS);
1987         if (retval < 0)
1988                 goto out_free;
1989         bprm->envc = retval;
1990 
1991         retval = bprm_stack_limits(bprm);
1992         if (retval < 0)
1993                 goto out_free;
1994 
1995         retval = copy_string_kernel(bprm->filename, bprm);
1996         if (retval < 0)
1997                 goto out_free;
1998         bprm->exec = bprm->p;
1999 
2000         retval = copy_strings(bprm->envc, envp, bprm);
2001         if (retval < 0)
2002                 goto out_free;
2003 
2004         retval = copy_strings(bprm->argc, argv, bprm);
2005         if (retval < 0)
2006                 goto out_free;
2007 
2008         /*
2009          * When argv is empty, add an empty string ("") as argv[0] to
2010          * ensure confused userspace programs that start processing
2011          * from argv[1] won't end up walking envp. See also
2012          * bprm_stack_limits().
2013          */
2014         if (bprm->argc == 0) {
2015                 retval = copy_string_kernel("", bprm);
2016                 if (retval < 0)
2017                         goto out_free;
2018                 bprm->argc = 1;
2019         }
2020 
2021         retval = bprm_execve(bprm);
2022 out_free:
2023         free_bprm(bprm);
2024 
2025 out_ret:
2026         putname(filename);
2027         return retval;
2028 }
2029 
2030 int kernel_execve(const char *kernel_filename,
2031                   const char *const *argv, const char *const *envp)
2032 {
2033         struct filename *filename;
2034         struct linux_binprm *bprm;
2035         int fd = AT_FDCWD;
2036         int retval;
2037 
2038         /* It is non-sense for kernel threads to call execve */
2039         if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2040                 return -EINVAL;
2041 
2042         filename = getname_kernel(kernel_filename);
2043         if (IS_ERR(filename))
2044                 return PTR_ERR(filename);
2045 
2046         bprm = alloc_bprm(fd, filename, 0);
2047         if (IS_ERR(bprm)) {
2048                 retval = PTR_ERR(bprm);
2049                 goto out_ret;
2050         }
2051 
2052         retval = count_strings_kernel(argv);
2053         if (WARN_ON_ONCE(retval == 0))
2054                 retval = -EINVAL;
2055         if (retval < 0)
2056                 goto out_free;
2057         bprm->argc = retval;
2058 
2059         retval = count_strings_kernel(envp);
2060         if (retval < 0)
2061                 goto out_free;
2062         bprm->envc = retval;
2063 
2064         retval = bprm_stack_limits(bprm);
2065         if (retval < 0)
2066                 goto out_free;
2067 
2068         retval = copy_string_kernel(bprm->filename, bprm);
2069         if (retval < 0)
2070                 goto out_free;
2071         bprm->exec = bprm->p;
2072 
2073         retval = copy_strings_kernel(bprm->envc, envp, bprm);
2074         if (retval < 0)
2075                 goto out_free;
2076 
2077         retval = copy_strings_kernel(bprm->argc, argv, bprm);
2078         if (retval < 0)
2079                 goto out_free;
2080 
2081         retval = bprm_execve(bprm);
2082 out_free:
2083         free_bprm(bprm);
2084 out_ret:
2085         putname(filename);
2086         return retval;
2087 }
2088 
2089 static int do_execve(struct filename *filename,
2090         const char __user *const __user *__argv,
2091         const char __user *const __user *__envp)
2092 {
2093         struct user_arg_ptr argv = { .ptr.native = __argv };
2094         struct user_arg_ptr envp = { .ptr.native = __envp };
2095         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2096 }
2097 
2098 static int do_execveat(int fd, struct filename *filename,
2099                 const char __user *const __user *__argv,
2100                 const char __user *const __user *__envp,
2101                 int flags)
2102 {
2103         struct user_arg_ptr argv = { .ptr.native = __argv };
2104         struct user_arg_ptr envp = { .ptr.native = __envp };
2105 
2106         return do_execveat_common(fd, filename, argv, envp, flags);
2107 }
2108 
2109 #ifdef CONFIG_COMPAT
2110 static int compat_do_execve(struct filename *filename,
2111         const compat_uptr_t __user *__argv,
2112         const compat_uptr_t __user *__envp)
2113 {
2114         struct user_arg_ptr argv = {
2115                 .is_compat = true,
2116                 .ptr.compat = __argv,
2117         };
2118         struct user_arg_ptr envp = {
2119                 .is_compat = true,
2120                 .ptr.compat = __envp,
2121         };
2122         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2123 }
2124 
2125 static int compat_do_execveat(int fd, struct filename *filename,
2126                               const compat_uptr_t __user *__argv,
2127                               const compat_uptr_t __user *__envp,
2128                               int flags)
2129 {
2130         struct user_arg_ptr argv = {
2131                 .is_compat = true,
2132                 .ptr.compat = __argv,
2133         };
2134         struct user_arg_ptr envp = {
2135                 .is_compat = true,
2136                 .ptr.compat = __envp,
2137         };
2138         return do_execveat_common(fd, filename, argv, envp, flags);
2139 }
2140 #endif
2141 
2142 void set_binfmt(struct linux_binfmt *new)
2143 {
2144         struct mm_struct *mm = current->mm;
2145 
2146         if (mm->binfmt)
2147                 module_put(mm->binfmt->module);
2148 
2149         mm->binfmt = new;
2150         if (new)
2151                 __module_get(new->module);
2152 }
2153 EXPORT_SYMBOL(set_binfmt);
2154 
2155 /*
2156  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2157  */
2158 void set_dumpable(struct mm_struct *mm, int value)
2159 {
2160         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2161                 return;
2162 
2163         set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2164 }
2165 
2166 SYSCALL_DEFINE3(execve,
2167                 const char __user *, filename,
2168                 const char __user *const __user *, argv,
2169                 const char __user *const __user *, envp)
2170 {
2171         return do_execve(getname(filename), argv, envp);
2172 }
2173 
2174 SYSCALL_DEFINE5(execveat,
2175                 int, fd, const char __user *, filename,
2176                 const char __user *const __user *, argv,
2177                 const char __user *const __user *, envp,
2178                 int, flags)
2179 {
2180         return do_execveat(fd,
2181                            getname_uflags(filename, flags),
2182                            argv, envp, flags);
2183 }
2184 
2185 #ifdef CONFIG_COMPAT
2186 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2187         const compat_uptr_t __user *, argv,
2188         const compat_uptr_t __user *, envp)
2189 {
2190         return compat_do_execve(getname(filename), argv, envp);
2191 }
2192 
2193 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2194                        const char __user *, filename,
2195                        const compat_uptr_t __user *, argv,
2196                        const compat_uptr_t __user *, envp,
2197                        int,  flags)
2198 {
2199         return compat_do_execveat(fd,
2200                                   getname_uflags(filename, flags),
2201                                   argv, envp, flags);
2202 }
2203 #endif
2204 
2205 #ifdef CONFIG_SYSCTL
2206 
2207 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2208                 void *buffer, size_t *lenp, loff_t *ppos)
2209 {
2210         int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2211 
2212         if (!error)
2213                 validate_coredump_safety();
2214         return error;
2215 }
2216 
2217 static struct ctl_table fs_exec_sysctls[] = {
2218         {
2219                 .procname       = "suid_dumpable",
2220                 .data           = &suid_dumpable,
2221                 .maxlen         = sizeof(int),
2222                 .mode           = 0644,
2223                 .proc_handler   = proc_dointvec_minmax_coredump,
2224                 .extra1         = SYSCTL_ZERO,
2225                 .extra2         = SYSCTL_TWO,
2226         },
2227 };
2228 
2229 static int __init init_fs_exec_sysctls(void)
2230 {
2231         register_sysctl_init("fs", fs_exec_sysctls);
2232         return 0;
2233 }
2234 
2235 fs_initcall(init_fs_exec_sysctls);
2236 #endif /* CONFIG_SYSCTL */
2237 
2238 #ifdef CONFIG_EXEC_KUNIT_TEST
2239 #include "tests/exec_kunit.c"
2240 #endif
2241 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php