~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/exec.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/fs/exec.c
  4  *
  5  *  Copyright (C) 1991, 1992  Linus Torvalds
  6  */
  7 
  8 /*
  9  * #!-checking implemented by tytso.
 10  */
 11 /*
 12  * Demand-loading implemented 01.12.91 - no need to read anything but
 13  * the header into memory. The inode of the executable is put into
 14  * "current->executable", and page faults do the actual loading. Clean.
 15  *
 16  * Once more I can proudly say that linux stood up to being changed: it
 17  * was less than 2 hours work to get demand-loading completely implemented.
 18  *
 19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
 20  * current->executable is only used by the procfs.  This allows a dispatch
 21  * table to check for several different types  of binary formats.  We keep
 22  * trying until we recognize the file or we run out of supported binary
 23  * formats.
 24  */
 25 
 26 #include <linux/kernel_read_file.h>
 27 #include <linux/slab.h>
 28 #include <linux/file.h>
 29 #include <linux/fdtable.h>
 30 #include <linux/mm.h>
 31 #include <linux/stat.h>
 32 #include <linux/fcntl.h>
 33 #include <linux/swap.h>
 34 #include <linux/string.h>
 35 #include <linux/init.h>
 36 #include <linux/sched/mm.h>
 37 #include <linux/sched/coredump.h>
 38 #include <linux/sched/signal.h>
 39 #include <linux/sched/numa_balancing.h>
 40 #include <linux/sched/task.h>
 41 #include <linux/pagemap.h>
 42 #include <linux/perf_event.h>
 43 #include <linux/highmem.h>
 44 #include <linux/spinlock.h>
 45 #include <linux/key.h>
 46 #include <linux/personality.h>
 47 #include <linux/binfmts.h>
 48 #include <linux/utsname.h>
 49 #include <linux/pid_namespace.h>
 50 #include <linux/module.h>
 51 #include <linux/namei.h>
 52 #include <linux/mount.h>
 53 #include <linux/security.h>
 54 #include <linux/syscalls.h>
 55 #include <linux/tsacct_kern.h>
 56 #include <linux/cn_proc.h>
 57 #include <linux/audit.h>
 58 #include <linux/kmod.h>
 59 #include <linux/fsnotify.h>
 60 #include <linux/fs_struct.h>
 61 #include <linux/oom.h>
 62 #include <linux/compat.h>
 63 #include <linux/vmalloc.h>
 64 #include <linux/io_uring.h>
 65 #include <linux/syscall_user_dispatch.h>
 66 #include <linux/coredump.h>
 67 #include <linux/time_namespace.h>
 68 #include <linux/user_events.h>
 69 #include <linux/rseq.h>
 70 #include <linux/ksm.h>
 71 
 72 #include <linux/uaccess.h>
 73 #include <asm/mmu_context.h>
 74 #include <asm/tlb.h>
 75 
 76 #include <trace/events/task.h>
 77 #include "internal.h"
 78 
 79 #include <trace/events/sched.h>
 80 
 81 static int bprm_creds_from_file(struct linux_binprm *bprm);
 82 
 83 int suid_dumpable = 0;
 84 
 85 static LIST_HEAD(formats);
 86 static DEFINE_RWLOCK(binfmt_lock);
 87 
 88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
 89 {
 90         write_lock(&binfmt_lock);
 91         insert ? list_add(&fmt->lh, &formats) :
 92                  list_add_tail(&fmt->lh, &formats);
 93         write_unlock(&binfmt_lock);
 94 }
 95 
 96 EXPORT_SYMBOL(__register_binfmt);
 97 
 98 void unregister_binfmt(struct linux_binfmt * fmt)
 99 {
100         write_lock(&binfmt_lock);
101         list_del(&fmt->lh);
102         write_unlock(&binfmt_lock);
103 }
104 
105 EXPORT_SYMBOL(unregister_binfmt);
106 
107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109         module_put(fmt->module);
110 }
111 
112 bool path_noexec(const struct path *path)
113 {
114         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 
118 #ifdef CONFIG_USELIB
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from the file itself.
124  */
125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127         struct linux_binfmt *fmt;
128         struct file *file;
129         struct filename *tmp = getname(library);
130         int error = PTR_ERR(tmp);
131         static const struct open_flags uselib_flags = {
132                 .open_flag = O_LARGEFILE | O_RDONLY,
133                 .acc_mode = MAY_READ | MAY_EXEC,
134                 .intent = LOOKUP_OPEN,
135                 .lookup_flags = LOOKUP_FOLLOW,
136         };
137 
138         if (IS_ERR(tmp))
139                 goto out;
140 
141         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142         putname(tmp);
143         error = PTR_ERR(file);
144         if (IS_ERR(file))
145                 goto out;
146 
147         /*
148          * Check do_open_execat() for an explanation.
149          */
150         error = -EACCES;
151         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
152             path_noexec(&file->f_path))
153                 goto exit;
154 
155         error = -ENOEXEC;
156 
157         read_lock(&binfmt_lock);
158         list_for_each_entry(fmt, &formats, lh) {
159                 if (!fmt->load_shlib)
160                         continue;
161                 if (!try_module_get(fmt->module))
162                         continue;
163                 read_unlock(&binfmt_lock);
164                 error = fmt->load_shlib(file);
165                 read_lock(&binfmt_lock);
166                 put_binfmt(fmt);
167                 if (error != -ENOEXEC)
168                         break;
169         }
170         read_unlock(&binfmt_lock);
171 exit:
172         fput(file);
173 out:
174         return error;
175 }
176 #endif /* #ifdef CONFIG_USELIB */
177 
178 #ifdef CONFIG_MMU
179 /*
180  * The nascent bprm->mm is not visible until exec_mmap() but it can
181  * use a lot of memory, account these pages in current->mm temporary
182  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183  * change the counter back via acct_arg_size(0).
184  */
185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
186 {
187         struct mm_struct *mm = current->mm;
188         long diff = (long)(pages - bprm->vma_pages);
189 
190         if (!mm || !diff)
191                 return;
192 
193         bprm->vma_pages = pages;
194         add_mm_counter(mm, MM_ANONPAGES, diff);
195 }
196 
197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
198                 int write)
199 {
200         struct page *page;
201         struct vm_area_struct *vma = bprm->vma;
202         struct mm_struct *mm = bprm->mm;
203         int ret;
204 
205         /*
206          * Avoid relying on expanding the stack down in GUP (which
207          * does not work for STACK_GROWSUP anyway), and just do it
208          * by hand ahead of time.
209          */
210         if (write && pos < vma->vm_start) {
211                 mmap_write_lock(mm);
212                 ret = expand_downwards(vma, pos);
213                 if (unlikely(ret < 0)) {
214                         mmap_write_unlock(mm);
215                         return NULL;
216                 }
217                 mmap_write_downgrade(mm);
218         } else
219                 mmap_read_lock(mm);
220 
221         /*
222          * We are doing an exec().  'current' is the process
223          * doing the exec and 'mm' is the new process's mm.
224          */
225         ret = get_user_pages_remote(mm, pos, 1,
226                         write ? FOLL_WRITE : 0,
227                         &page, NULL);
228         mmap_read_unlock(mm);
229         if (ret <= 0)
230                 return NULL;
231 
232         if (write)
233                 acct_arg_size(bprm, vma_pages(vma));
234 
235         return page;
236 }
237 
238 static void put_arg_page(struct page *page)
239 {
240         put_page(page);
241 }
242 
243 static void free_arg_pages(struct linux_binprm *bprm)
244 {
245 }
246 
247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248                 struct page *page)
249 {
250         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
251 }
252 
253 static int __bprm_mm_init(struct linux_binprm *bprm)
254 {
255         int err;
256         struct vm_area_struct *vma = NULL;
257         struct mm_struct *mm = bprm->mm;
258 
259         bprm->vma = vma = vm_area_alloc(mm);
260         if (!vma)
261                 return -ENOMEM;
262         vma_set_anonymous(vma);
263 
264         if (mmap_write_lock_killable(mm)) {
265                 err = -EINTR;
266                 goto err_free;
267         }
268 
269         /*
270          * Need to be called with mmap write lock
271          * held, to avoid race with ksmd.
272          */
273         err = ksm_execve(mm);
274         if (err)
275                 goto err_ksm;
276 
277         /*
278          * Place the stack at the largest stack address the architecture
279          * supports. Later, we'll move this to an appropriate place. We don't
280          * use STACK_TOP because that can depend on attributes which aren't
281          * configured yet.
282          */
283         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
284         vma->vm_end = STACK_TOP_MAX;
285         vma->vm_start = vma->vm_end - PAGE_SIZE;
286         vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
287         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
288 
289         err = insert_vm_struct(mm, vma);
290         if (err)
291                 goto err;
292 
293         mm->stack_vm = mm->total_vm = 1;
294         mmap_write_unlock(mm);
295         bprm->p = vma->vm_end - sizeof(void *);
296         return 0;
297 err:
298         ksm_exit(mm);
299 err_ksm:
300         mmap_write_unlock(mm);
301 err_free:
302         bprm->vma = NULL;
303         vm_area_free(vma);
304         return err;
305 }
306 
307 static bool valid_arg_len(struct linux_binprm *bprm, long len)
308 {
309         return len <= MAX_ARG_STRLEN;
310 }
311 
312 #else
313 
314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
315 {
316 }
317 
318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
319                 int write)
320 {
321         struct page *page;
322 
323         page = bprm->page[pos / PAGE_SIZE];
324         if (!page && write) {
325                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
326                 if (!page)
327                         return NULL;
328                 bprm->page[pos / PAGE_SIZE] = page;
329         }
330 
331         return page;
332 }
333 
334 static void put_arg_page(struct page *page)
335 {
336 }
337 
338 static void free_arg_page(struct linux_binprm *bprm, int i)
339 {
340         if (bprm->page[i]) {
341                 __free_page(bprm->page[i]);
342                 bprm->page[i] = NULL;
343         }
344 }
345 
346 static void free_arg_pages(struct linux_binprm *bprm)
347 {
348         int i;
349 
350         for (i = 0; i < MAX_ARG_PAGES; i++)
351                 free_arg_page(bprm, i);
352 }
353 
354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
355                 struct page *page)
356 {
357 }
358 
359 static int __bprm_mm_init(struct linux_binprm *bprm)
360 {
361         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
362         return 0;
363 }
364 
365 static bool valid_arg_len(struct linux_binprm *bprm, long len)
366 {
367         return len <= bprm->p;
368 }
369 
370 #endif /* CONFIG_MMU */
371 
372 /*
373  * Create a new mm_struct and populate it with a temporary stack
374  * vm_area_struct.  We don't have enough context at this point to set the stack
375  * flags, permissions, and offset, so we use temporary values.  We'll update
376  * them later in setup_arg_pages().
377  */
378 static int bprm_mm_init(struct linux_binprm *bprm)
379 {
380         int err;
381         struct mm_struct *mm = NULL;
382 
383         bprm->mm = mm = mm_alloc();
384         err = -ENOMEM;
385         if (!mm)
386                 goto err;
387 
388         /* Save current stack limit for all calculations made during exec. */
389         task_lock(current->group_leader);
390         bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
391         task_unlock(current->group_leader);
392 
393         err = __bprm_mm_init(bprm);
394         if (err)
395                 goto err;
396 
397         return 0;
398 
399 err:
400         if (mm) {
401                 bprm->mm = NULL;
402                 mmdrop(mm);
403         }
404 
405         return err;
406 }
407 
408 struct user_arg_ptr {
409 #ifdef CONFIG_COMPAT
410         bool is_compat;
411 #endif
412         union {
413                 const char __user *const __user *native;
414 #ifdef CONFIG_COMPAT
415                 const compat_uptr_t __user *compat;
416 #endif
417         } ptr;
418 };
419 
420 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
421 {
422         const char __user *native;
423 
424 #ifdef CONFIG_COMPAT
425         if (unlikely(argv.is_compat)) {
426                 compat_uptr_t compat;
427 
428                 if (get_user(compat, argv.ptr.compat + nr))
429                         return ERR_PTR(-EFAULT);
430 
431                 return compat_ptr(compat);
432         }
433 #endif
434 
435         if (get_user(native, argv.ptr.native + nr))
436                 return ERR_PTR(-EFAULT);
437 
438         return native;
439 }
440 
441 /*
442  * count() counts the number of strings in array ARGV.
443  */
444 static int count(struct user_arg_ptr argv, int max)
445 {
446         int i = 0;
447 
448         if (argv.ptr.native != NULL) {
449                 for (;;) {
450                         const char __user *p = get_user_arg_ptr(argv, i);
451 
452                         if (!p)
453                                 break;
454 
455                         if (IS_ERR(p))
456                                 return -EFAULT;
457 
458                         if (i >= max)
459                                 return -E2BIG;
460                         ++i;
461 
462                         if (fatal_signal_pending(current))
463                                 return -ERESTARTNOHAND;
464                         cond_resched();
465                 }
466         }
467         return i;
468 }
469 
470 static int count_strings_kernel(const char *const *argv)
471 {
472         int i;
473 
474         if (!argv)
475                 return 0;
476 
477         for (i = 0; argv[i]; ++i) {
478                 if (i >= MAX_ARG_STRINGS)
479                         return -E2BIG;
480                 if (fatal_signal_pending(current))
481                         return -ERESTARTNOHAND;
482                 cond_resched();
483         }
484         return i;
485 }
486 
487 static inline int bprm_set_stack_limit(struct linux_binprm *bprm,
488                                        unsigned long limit)
489 {
490 #ifdef CONFIG_MMU
491         /* Avoid a pathological bprm->p. */
492         if (bprm->p < limit)
493                 return -E2BIG;
494         bprm->argmin = bprm->p - limit;
495 #endif
496         return 0;
497 }
498 static inline bool bprm_hit_stack_limit(struct linux_binprm *bprm)
499 {
500 #ifdef CONFIG_MMU
501         return bprm->p < bprm->argmin;
502 #else
503         return false;
504 #endif
505 }
506 
507 /*
508  * Calculate bprm->argmin from:
509  * - _STK_LIM
510  * - ARG_MAX
511  * - bprm->rlim_stack.rlim_cur
512  * - bprm->argc
513  * - bprm->envc
514  * - bprm->p
515  */
516 static int bprm_stack_limits(struct linux_binprm *bprm)
517 {
518         unsigned long limit, ptr_size;
519 
520         /*
521          * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
522          * (whichever is smaller) for the argv+env strings.
523          * This ensures that:
524          *  - the remaining binfmt code will not run out of stack space,
525          *  - the program will have a reasonable amount of stack left
526          *    to work from.
527          */
528         limit = _STK_LIM / 4 * 3;
529         limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
530         /*
531          * We've historically supported up to 32 pages (ARG_MAX)
532          * of argument strings even with small stacks
533          */
534         limit = max_t(unsigned long, limit, ARG_MAX);
535         /* Reject totally pathological counts. */
536         if (bprm->argc < 0 || bprm->envc < 0)
537                 return -E2BIG;
538         /*
539          * We must account for the size of all the argv and envp pointers to
540          * the argv and envp strings, since they will also take up space in
541          * the stack. They aren't stored until much later when we can't
542          * signal to the parent that the child has run out of stack space.
543          * Instead, calculate it here so it's possible to fail gracefully.
544          *
545          * In the case of argc = 0, make sure there is space for adding a
546          * empty string (which will bump argc to 1), to ensure confused
547          * userspace programs don't start processing from argv[1], thinking
548          * argc can never be 0, to keep them from walking envp by accident.
549          * See do_execveat_common().
550          */
551         if (check_add_overflow(max(bprm->argc, 1), bprm->envc, &ptr_size) ||
552             check_mul_overflow(ptr_size, sizeof(void *), &ptr_size))
553                 return -E2BIG;
554         if (limit <= ptr_size)
555                 return -E2BIG;
556         limit -= ptr_size;
557 
558         return bprm_set_stack_limit(bprm, limit);
559 }
560 
561 /*
562  * 'copy_strings()' copies argument/environment strings from the old
563  * processes's memory to the new process's stack.  The call to get_user_pages()
564  * ensures the destination page is created and not swapped out.
565  */
566 static int copy_strings(int argc, struct user_arg_ptr argv,
567                         struct linux_binprm *bprm)
568 {
569         struct page *kmapped_page = NULL;
570         char *kaddr = NULL;
571         unsigned long kpos = 0;
572         int ret;
573 
574         while (argc-- > 0) {
575                 const char __user *str;
576                 int len;
577                 unsigned long pos;
578 
579                 ret = -EFAULT;
580                 str = get_user_arg_ptr(argv, argc);
581                 if (IS_ERR(str))
582                         goto out;
583 
584                 len = strnlen_user(str, MAX_ARG_STRLEN);
585                 if (!len)
586                         goto out;
587 
588                 ret = -E2BIG;
589                 if (!valid_arg_len(bprm, len))
590                         goto out;
591 
592                 /* We're going to work our way backwards. */
593                 pos = bprm->p;
594                 str += len;
595                 bprm->p -= len;
596                 if (bprm_hit_stack_limit(bprm))
597                         goto out;
598 
599                 while (len > 0) {
600                         int offset, bytes_to_copy;
601 
602                         if (fatal_signal_pending(current)) {
603                                 ret = -ERESTARTNOHAND;
604                                 goto out;
605                         }
606                         cond_resched();
607 
608                         offset = pos % PAGE_SIZE;
609                         if (offset == 0)
610                                 offset = PAGE_SIZE;
611 
612                         bytes_to_copy = offset;
613                         if (bytes_to_copy > len)
614                                 bytes_to_copy = len;
615 
616                         offset -= bytes_to_copy;
617                         pos -= bytes_to_copy;
618                         str -= bytes_to_copy;
619                         len -= bytes_to_copy;
620 
621                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
622                                 struct page *page;
623 
624                                 page = get_arg_page(bprm, pos, 1);
625                                 if (!page) {
626                                         ret = -E2BIG;
627                                         goto out;
628                                 }
629 
630                                 if (kmapped_page) {
631                                         flush_dcache_page(kmapped_page);
632                                         kunmap_local(kaddr);
633                                         put_arg_page(kmapped_page);
634                                 }
635                                 kmapped_page = page;
636                                 kaddr = kmap_local_page(kmapped_page);
637                                 kpos = pos & PAGE_MASK;
638                                 flush_arg_page(bprm, kpos, kmapped_page);
639                         }
640                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
641                                 ret = -EFAULT;
642                                 goto out;
643                         }
644                 }
645         }
646         ret = 0;
647 out:
648         if (kmapped_page) {
649                 flush_dcache_page(kmapped_page);
650                 kunmap_local(kaddr);
651                 put_arg_page(kmapped_page);
652         }
653         return ret;
654 }
655 
656 /*
657  * Copy and argument/environment string from the kernel to the processes stack.
658  */
659 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
660 {
661         int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
662         unsigned long pos = bprm->p;
663 
664         if (len == 0)
665                 return -EFAULT;
666         if (!valid_arg_len(bprm, len))
667                 return -E2BIG;
668 
669         /* We're going to work our way backwards. */
670         arg += len;
671         bprm->p -= len;
672         if (bprm_hit_stack_limit(bprm))
673                 return -E2BIG;
674 
675         while (len > 0) {
676                 unsigned int bytes_to_copy = min_t(unsigned int, len,
677                                 min_not_zero(offset_in_page(pos), PAGE_SIZE));
678                 struct page *page;
679 
680                 pos -= bytes_to_copy;
681                 arg -= bytes_to_copy;
682                 len -= bytes_to_copy;
683 
684                 page = get_arg_page(bprm, pos, 1);
685                 if (!page)
686                         return -E2BIG;
687                 flush_arg_page(bprm, pos & PAGE_MASK, page);
688                 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
689                 put_arg_page(page);
690         }
691 
692         return 0;
693 }
694 EXPORT_SYMBOL(copy_string_kernel);
695 
696 static int copy_strings_kernel(int argc, const char *const *argv,
697                                struct linux_binprm *bprm)
698 {
699         while (argc-- > 0) {
700                 int ret = copy_string_kernel(argv[argc], bprm);
701                 if (ret < 0)
702                         return ret;
703                 if (fatal_signal_pending(current))
704                         return -ERESTARTNOHAND;
705                 cond_resched();
706         }
707         return 0;
708 }
709 
710 #ifdef CONFIG_MMU
711 
712 /*
713  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
714  * the binfmt code determines where the new stack should reside, we shift it to
715  * its final location.  The process proceeds as follows:
716  *
717  * 1) Use shift to calculate the new vma endpoints.
718  * 2) Extend vma to cover both the old and new ranges.  This ensures the
719  *    arguments passed to subsequent functions are consistent.
720  * 3) Move vma's page tables to the new range.
721  * 4) Free up any cleared pgd range.
722  * 5) Shrink the vma to cover only the new range.
723  */
724 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
725 {
726         struct mm_struct *mm = vma->vm_mm;
727         unsigned long old_start = vma->vm_start;
728         unsigned long old_end = vma->vm_end;
729         unsigned long length = old_end - old_start;
730         unsigned long new_start = old_start - shift;
731         unsigned long new_end = old_end - shift;
732         VMA_ITERATOR(vmi, mm, new_start);
733         struct vm_area_struct *next;
734         struct mmu_gather tlb;
735 
736         BUG_ON(new_start > new_end);
737 
738         /*
739          * ensure there are no vmas between where we want to go
740          * and where we are
741          */
742         if (vma != vma_next(&vmi))
743                 return -EFAULT;
744 
745         vma_iter_prev_range(&vmi);
746         /*
747          * cover the whole range: [new_start, old_end)
748          */
749         if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
750                 return -ENOMEM;
751 
752         /*
753          * move the page tables downwards, on failure we rely on
754          * process cleanup to remove whatever mess we made.
755          */
756         if (length != move_page_tables(vma, old_start,
757                                        vma, new_start, length, false, true))
758                 return -ENOMEM;
759 
760         lru_add_drain();
761         tlb_gather_mmu(&tlb, mm);
762         next = vma_next(&vmi);
763         if (new_end > old_start) {
764                 /*
765                  * when the old and new regions overlap clear from new_end.
766                  */
767                 free_pgd_range(&tlb, new_end, old_end, new_end,
768                         next ? next->vm_start : USER_PGTABLES_CEILING);
769         } else {
770                 /*
771                  * otherwise, clean from old_start; this is done to not touch
772                  * the address space in [new_end, old_start) some architectures
773                  * have constraints on va-space that make this illegal (IA64) -
774                  * for the others its just a little faster.
775                  */
776                 free_pgd_range(&tlb, old_start, old_end, new_end,
777                         next ? next->vm_start : USER_PGTABLES_CEILING);
778         }
779         tlb_finish_mmu(&tlb);
780 
781         vma_prev(&vmi);
782         /* Shrink the vma to just the new range */
783         return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
784 }
785 
786 /*
787  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
788  * the stack is optionally relocated, and some extra space is added.
789  */
790 int setup_arg_pages(struct linux_binprm *bprm,
791                     unsigned long stack_top,
792                     int executable_stack)
793 {
794         unsigned long ret;
795         unsigned long stack_shift;
796         struct mm_struct *mm = current->mm;
797         struct vm_area_struct *vma = bprm->vma;
798         struct vm_area_struct *prev = NULL;
799         unsigned long vm_flags;
800         unsigned long stack_base;
801         unsigned long stack_size;
802         unsigned long stack_expand;
803         unsigned long rlim_stack;
804         struct mmu_gather tlb;
805         struct vma_iterator vmi;
806 
807 #ifdef CONFIG_STACK_GROWSUP
808         /* Limit stack size */
809         stack_base = bprm->rlim_stack.rlim_max;
810 
811         stack_base = calc_max_stack_size(stack_base);
812 
813         /* Add space for stack randomization. */
814         if (current->flags & PF_RANDOMIZE)
815                 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
816 
817         /* Make sure we didn't let the argument array grow too large. */
818         if (vma->vm_end - vma->vm_start > stack_base)
819                 return -ENOMEM;
820 
821         stack_base = PAGE_ALIGN(stack_top - stack_base);
822 
823         stack_shift = vma->vm_start - stack_base;
824         mm->arg_start = bprm->p - stack_shift;
825         bprm->p = vma->vm_end - stack_shift;
826 #else
827         stack_top = arch_align_stack(stack_top);
828         stack_top = PAGE_ALIGN(stack_top);
829 
830         if (unlikely(stack_top < mmap_min_addr) ||
831             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
832                 return -ENOMEM;
833 
834         stack_shift = vma->vm_end - stack_top;
835 
836         bprm->p -= stack_shift;
837         mm->arg_start = bprm->p;
838 #endif
839 
840         if (bprm->loader)
841                 bprm->loader -= stack_shift;
842         bprm->exec -= stack_shift;
843 
844         if (mmap_write_lock_killable(mm))
845                 return -EINTR;
846 
847         vm_flags = VM_STACK_FLAGS;
848 
849         /*
850          * Adjust stack execute permissions; explicitly enable for
851          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
852          * (arch default) otherwise.
853          */
854         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
855                 vm_flags |= VM_EXEC;
856         else if (executable_stack == EXSTACK_DISABLE_X)
857                 vm_flags &= ~VM_EXEC;
858         vm_flags |= mm->def_flags;
859         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
860 
861         vma_iter_init(&vmi, mm, vma->vm_start);
862 
863         tlb_gather_mmu(&tlb, mm);
864         ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
865                         vm_flags);
866         tlb_finish_mmu(&tlb);
867 
868         if (ret)
869                 goto out_unlock;
870         BUG_ON(prev != vma);
871 
872         if (unlikely(vm_flags & VM_EXEC)) {
873                 pr_warn_once("process '%pD4' started with executable stack\n",
874                              bprm->file);
875         }
876 
877         /* Move stack pages down in memory. */
878         if (stack_shift) {
879                 ret = shift_arg_pages(vma, stack_shift);
880                 if (ret)
881                         goto out_unlock;
882         }
883 
884         /* mprotect_fixup is overkill to remove the temporary stack flags */
885         vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
886 
887         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
888         stack_size = vma->vm_end - vma->vm_start;
889         /*
890          * Align this down to a page boundary as expand_stack
891          * will align it up.
892          */
893         rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
894 
895         stack_expand = min(rlim_stack, stack_size + stack_expand);
896 
897 #ifdef CONFIG_STACK_GROWSUP
898         stack_base = vma->vm_start + stack_expand;
899 #else
900         stack_base = vma->vm_end - stack_expand;
901 #endif
902         current->mm->start_stack = bprm->p;
903         ret = expand_stack_locked(vma, stack_base);
904         if (ret)
905                 ret = -EFAULT;
906 
907 out_unlock:
908         mmap_write_unlock(mm);
909         return ret;
910 }
911 EXPORT_SYMBOL(setup_arg_pages);
912 
913 #else
914 
915 /*
916  * Transfer the program arguments and environment from the holding pages
917  * onto the stack. The provided stack pointer is adjusted accordingly.
918  */
919 int transfer_args_to_stack(struct linux_binprm *bprm,
920                            unsigned long *sp_location)
921 {
922         unsigned long index, stop, sp;
923         int ret = 0;
924 
925         stop = bprm->p >> PAGE_SHIFT;
926         sp = *sp_location;
927 
928         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
929                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
930                 char *src = kmap_local_page(bprm->page[index]) + offset;
931                 sp -= PAGE_SIZE - offset;
932                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
933                         ret = -EFAULT;
934                 kunmap_local(src);
935                 if (ret)
936                         goto out;
937         }
938 
939         bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
940         *sp_location = sp;
941 
942 out:
943         return ret;
944 }
945 EXPORT_SYMBOL(transfer_args_to_stack);
946 
947 #endif /* CONFIG_MMU */
948 
949 /*
950  * On success, caller must call do_close_execat() on the returned
951  * struct file to close it.
952  */
953 static struct file *do_open_execat(int fd, struct filename *name, int flags)
954 {
955         struct file *file;
956         struct open_flags open_exec_flags = {
957                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
958                 .acc_mode = MAY_EXEC,
959                 .intent = LOOKUP_OPEN,
960                 .lookup_flags = LOOKUP_FOLLOW,
961         };
962 
963         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
964                 return ERR_PTR(-EINVAL);
965         if (flags & AT_SYMLINK_NOFOLLOW)
966                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
967         if (flags & AT_EMPTY_PATH)
968                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
969 
970         file = do_filp_open(fd, name, &open_exec_flags);
971         if (IS_ERR(file))
972                 return file;
973 
974         /*
975          * In the past the regular type check was here. It moved to may_open() in
976          * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
977          * an invariant that all non-regular files error out before we get here.
978          */
979         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
980             path_noexec(&file->f_path)) {
981                 fput(file);
982                 return ERR_PTR(-EACCES);
983         }
984 
985         return file;
986 }
987 
988 /**
989  * open_exec - Open a path name for execution
990  *
991  * @name: path name to open with the intent of executing it.
992  *
993  * Returns ERR_PTR on failure or allocated struct file on success.
994  *
995  * As this is a wrapper for the internal do_open_execat(). Also see
996  * do_close_execat().
997  */
998 struct file *open_exec(const char *name)
999 {
1000         struct filename *filename = getname_kernel(name);
1001         struct file *f = ERR_CAST(filename);
1002 
1003         if (!IS_ERR(filename)) {
1004                 f = do_open_execat(AT_FDCWD, filename, 0);
1005                 putname(filename);
1006         }
1007         return f;
1008 }
1009 EXPORT_SYMBOL(open_exec);
1010 
1011 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
1012 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1013 {
1014         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1015         if (res > 0)
1016                 flush_icache_user_range(addr, addr + len);
1017         return res;
1018 }
1019 EXPORT_SYMBOL(read_code);
1020 #endif
1021 
1022 /*
1023  * Maps the mm_struct mm into the current task struct.
1024  * On success, this function returns with exec_update_lock
1025  * held for writing.
1026  */
1027 static int exec_mmap(struct mm_struct *mm)
1028 {
1029         struct task_struct *tsk;
1030         struct mm_struct *old_mm, *active_mm;
1031         int ret;
1032 
1033         /* Notify parent that we're no longer interested in the old VM */
1034         tsk = current;
1035         old_mm = current->mm;
1036         exec_mm_release(tsk, old_mm);
1037 
1038         ret = down_write_killable(&tsk->signal->exec_update_lock);
1039         if (ret)
1040                 return ret;
1041 
1042         if (old_mm) {
1043                 /*
1044                  * If there is a pending fatal signal perhaps a signal
1045                  * whose default action is to create a coredump get
1046                  * out and die instead of going through with the exec.
1047                  */
1048                 ret = mmap_read_lock_killable(old_mm);
1049                 if (ret) {
1050                         up_write(&tsk->signal->exec_update_lock);
1051                         return ret;
1052                 }
1053         }
1054 
1055         task_lock(tsk);
1056         membarrier_exec_mmap(mm);
1057 
1058         local_irq_disable();
1059         active_mm = tsk->active_mm;
1060         tsk->active_mm = mm;
1061         tsk->mm = mm;
1062         mm_init_cid(mm);
1063         /*
1064          * This prevents preemption while active_mm is being loaded and
1065          * it and mm are being updated, which could cause problems for
1066          * lazy tlb mm refcounting when these are updated by context
1067          * switches. Not all architectures can handle irqs off over
1068          * activate_mm yet.
1069          */
1070         if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1071                 local_irq_enable();
1072         activate_mm(active_mm, mm);
1073         if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1074                 local_irq_enable();
1075         lru_gen_add_mm(mm);
1076         task_unlock(tsk);
1077         lru_gen_use_mm(mm);
1078         if (old_mm) {
1079                 mmap_read_unlock(old_mm);
1080                 BUG_ON(active_mm != old_mm);
1081                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1082                 mm_update_next_owner(old_mm);
1083                 mmput(old_mm);
1084                 return 0;
1085         }
1086         mmdrop_lazy_tlb(active_mm);
1087         return 0;
1088 }
1089 
1090 static int de_thread(struct task_struct *tsk)
1091 {
1092         struct signal_struct *sig = tsk->signal;
1093         struct sighand_struct *oldsighand = tsk->sighand;
1094         spinlock_t *lock = &oldsighand->siglock;
1095 
1096         if (thread_group_empty(tsk))
1097                 goto no_thread_group;
1098 
1099         /*
1100          * Kill all other threads in the thread group.
1101          */
1102         spin_lock_irq(lock);
1103         if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1104                 /*
1105                  * Another group action in progress, just
1106                  * return so that the signal is processed.
1107                  */
1108                 spin_unlock_irq(lock);
1109                 return -EAGAIN;
1110         }
1111 
1112         sig->group_exec_task = tsk;
1113         sig->notify_count = zap_other_threads(tsk);
1114         if (!thread_group_leader(tsk))
1115                 sig->notify_count--;
1116 
1117         while (sig->notify_count) {
1118                 __set_current_state(TASK_KILLABLE);
1119                 spin_unlock_irq(lock);
1120                 schedule();
1121                 if (__fatal_signal_pending(tsk))
1122                         goto killed;
1123                 spin_lock_irq(lock);
1124         }
1125         spin_unlock_irq(lock);
1126 
1127         /*
1128          * At this point all other threads have exited, all we have to
1129          * do is to wait for the thread group leader to become inactive,
1130          * and to assume its PID:
1131          */
1132         if (!thread_group_leader(tsk)) {
1133                 struct task_struct *leader = tsk->group_leader;
1134 
1135                 for (;;) {
1136                         cgroup_threadgroup_change_begin(tsk);
1137                         write_lock_irq(&tasklist_lock);
1138                         /*
1139                          * Do this under tasklist_lock to ensure that
1140                          * exit_notify() can't miss ->group_exec_task
1141                          */
1142                         sig->notify_count = -1;
1143                         if (likely(leader->exit_state))
1144                                 break;
1145                         __set_current_state(TASK_KILLABLE);
1146                         write_unlock_irq(&tasklist_lock);
1147                         cgroup_threadgroup_change_end(tsk);
1148                         schedule();
1149                         if (__fatal_signal_pending(tsk))
1150                                 goto killed;
1151                 }
1152 
1153                 /*
1154                  * The only record we have of the real-time age of a
1155                  * process, regardless of execs it's done, is start_time.
1156                  * All the past CPU time is accumulated in signal_struct
1157                  * from sister threads now dead.  But in this non-leader
1158                  * exec, nothing survives from the original leader thread,
1159                  * whose birth marks the true age of this process now.
1160                  * When we take on its identity by switching to its PID, we
1161                  * also take its birthdate (always earlier than our own).
1162                  */
1163                 tsk->start_time = leader->start_time;
1164                 tsk->start_boottime = leader->start_boottime;
1165 
1166                 BUG_ON(!same_thread_group(leader, tsk));
1167                 /*
1168                  * An exec() starts a new thread group with the
1169                  * TGID of the previous thread group. Rehash the
1170                  * two threads with a switched PID, and release
1171                  * the former thread group leader:
1172                  */
1173 
1174                 /* Become a process group leader with the old leader's pid.
1175                  * The old leader becomes a thread of the this thread group.
1176                  */
1177                 exchange_tids(tsk, leader);
1178                 transfer_pid(leader, tsk, PIDTYPE_TGID);
1179                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1180                 transfer_pid(leader, tsk, PIDTYPE_SID);
1181 
1182                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1183                 list_replace_init(&leader->sibling, &tsk->sibling);
1184 
1185                 tsk->group_leader = tsk;
1186                 leader->group_leader = tsk;
1187 
1188                 tsk->exit_signal = SIGCHLD;
1189                 leader->exit_signal = -1;
1190 
1191                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1192                 leader->exit_state = EXIT_DEAD;
1193                 /*
1194                  * We are going to release_task()->ptrace_unlink() silently,
1195                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1196                  * the tracer won't block again waiting for this thread.
1197                  */
1198                 if (unlikely(leader->ptrace))
1199                         __wake_up_parent(leader, leader->parent);
1200                 write_unlock_irq(&tasklist_lock);
1201                 cgroup_threadgroup_change_end(tsk);
1202 
1203                 release_task(leader);
1204         }
1205 
1206         sig->group_exec_task = NULL;
1207         sig->notify_count = 0;
1208 
1209 no_thread_group:
1210         /* we have changed execution domain */
1211         tsk->exit_signal = SIGCHLD;
1212 
1213         BUG_ON(!thread_group_leader(tsk));
1214         return 0;
1215 
1216 killed:
1217         /* protects against exit_notify() and __exit_signal() */
1218         read_lock(&tasklist_lock);
1219         sig->group_exec_task = NULL;
1220         sig->notify_count = 0;
1221         read_unlock(&tasklist_lock);
1222         return -EAGAIN;
1223 }
1224 
1225 
1226 /*
1227  * This function makes sure the current process has its own signal table,
1228  * so that flush_signal_handlers can later reset the handlers without
1229  * disturbing other processes.  (Other processes might share the signal
1230  * table via the CLONE_SIGHAND option to clone().)
1231  */
1232 static int unshare_sighand(struct task_struct *me)
1233 {
1234         struct sighand_struct *oldsighand = me->sighand;
1235 
1236         if (refcount_read(&oldsighand->count) != 1) {
1237                 struct sighand_struct *newsighand;
1238                 /*
1239                  * This ->sighand is shared with the CLONE_SIGHAND
1240                  * but not CLONE_THREAD task, switch to the new one.
1241                  */
1242                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1243                 if (!newsighand)
1244                         return -ENOMEM;
1245 
1246                 refcount_set(&newsighand->count, 1);
1247 
1248                 write_lock_irq(&tasklist_lock);
1249                 spin_lock(&oldsighand->siglock);
1250                 memcpy(newsighand->action, oldsighand->action,
1251                        sizeof(newsighand->action));
1252                 rcu_assign_pointer(me->sighand, newsighand);
1253                 spin_unlock(&oldsighand->siglock);
1254                 write_unlock_irq(&tasklist_lock);
1255 
1256                 __cleanup_sighand(oldsighand);
1257         }
1258         return 0;
1259 }
1260 
1261 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1262 {
1263         task_lock(tsk);
1264         /* Always NUL terminated and zero-padded */
1265         strscpy_pad(buf, tsk->comm, buf_size);
1266         task_unlock(tsk);
1267         return buf;
1268 }
1269 EXPORT_SYMBOL_GPL(__get_task_comm);
1270 
1271 /*
1272  * These functions flushes out all traces of the currently running executable
1273  * so that a new one can be started
1274  */
1275 
1276 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1277 {
1278         task_lock(tsk);
1279         trace_task_rename(tsk, buf);
1280         strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1281         task_unlock(tsk);
1282         perf_event_comm(tsk, exec);
1283 }
1284 
1285 /*
1286  * Calling this is the point of no return. None of the failures will be
1287  * seen by userspace since either the process is already taking a fatal
1288  * signal (via de_thread() or coredump), or will have SEGV raised
1289  * (after exec_mmap()) by search_binary_handler (see below).
1290  */
1291 int begin_new_exec(struct linux_binprm * bprm)
1292 {
1293         struct task_struct *me = current;
1294         int retval;
1295 
1296         /* Once we are committed compute the creds */
1297         retval = bprm_creds_from_file(bprm);
1298         if (retval)
1299                 return retval;
1300 
1301         /*
1302          * This tracepoint marks the point before flushing the old exec where
1303          * the current task is still unchanged, but errors are fatal (point of
1304          * no return). The later "sched_process_exec" tracepoint is called after
1305          * the current task has successfully switched to the new exec.
1306          */
1307         trace_sched_prepare_exec(current, bprm);
1308 
1309         /*
1310          * Ensure all future errors are fatal.
1311          */
1312         bprm->point_of_no_return = true;
1313 
1314         /*
1315          * Make this the only thread in the thread group.
1316          */
1317         retval = de_thread(me);
1318         if (retval)
1319                 goto out;
1320 
1321         /*
1322          * Cancel any io_uring activity across execve
1323          */
1324         io_uring_task_cancel();
1325 
1326         /* Ensure the files table is not shared. */
1327         retval = unshare_files();
1328         if (retval)
1329                 goto out;
1330 
1331         /*
1332          * Must be called _before_ exec_mmap() as bprm->mm is
1333          * not visible until then. Doing it here also ensures
1334          * we don't race against replace_mm_exe_file().
1335          */
1336         retval = set_mm_exe_file(bprm->mm, bprm->file);
1337         if (retval)
1338                 goto out;
1339 
1340         /* If the binary is not readable then enforce mm->dumpable=0 */
1341         would_dump(bprm, bprm->file);
1342         if (bprm->have_execfd)
1343                 would_dump(bprm, bprm->executable);
1344 
1345         /*
1346          * Release all of the old mmap stuff
1347          */
1348         acct_arg_size(bprm, 0);
1349         retval = exec_mmap(bprm->mm);
1350         if (retval)
1351                 goto out;
1352 
1353         bprm->mm = NULL;
1354 
1355         retval = exec_task_namespaces();
1356         if (retval)
1357                 goto out_unlock;
1358 
1359 #ifdef CONFIG_POSIX_TIMERS
1360         spin_lock_irq(&me->sighand->siglock);
1361         posix_cpu_timers_exit(me);
1362         spin_unlock_irq(&me->sighand->siglock);
1363         exit_itimers(me);
1364         flush_itimer_signals();
1365 #endif
1366 
1367         /*
1368          * Make the signal table private.
1369          */
1370         retval = unshare_sighand(me);
1371         if (retval)
1372                 goto out_unlock;
1373 
1374         me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1375                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1376         flush_thread();
1377         me->personality &= ~bprm->per_clear;
1378 
1379         clear_syscall_work_syscall_user_dispatch(me);
1380 
1381         /*
1382          * We have to apply CLOEXEC before we change whether the process is
1383          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1384          * trying to access the should-be-closed file descriptors of a process
1385          * undergoing exec(2).
1386          */
1387         do_close_on_exec(me->files);
1388 
1389         if (bprm->secureexec) {
1390                 /* Make sure parent cannot signal privileged process. */
1391                 me->pdeath_signal = 0;
1392 
1393                 /*
1394                  * For secureexec, reset the stack limit to sane default to
1395                  * avoid bad behavior from the prior rlimits. This has to
1396                  * happen before arch_pick_mmap_layout(), which examines
1397                  * RLIMIT_STACK, but after the point of no return to avoid
1398                  * needing to clean up the change on failure.
1399                  */
1400                 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1401                         bprm->rlim_stack.rlim_cur = _STK_LIM;
1402         }
1403 
1404         me->sas_ss_sp = me->sas_ss_size = 0;
1405 
1406         /*
1407          * Figure out dumpability. Note that this checking only of current
1408          * is wrong, but userspace depends on it. This should be testing
1409          * bprm->secureexec instead.
1410          */
1411         if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1412             !(uid_eq(current_euid(), current_uid()) &&
1413               gid_eq(current_egid(), current_gid())))
1414                 set_dumpable(current->mm, suid_dumpable);
1415         else
1416                 set_dumpable(current->mm, SUID_DUMP_USER);
1417 
1418         perf_event_exec();
1419         __set_task_comm(me, kbasename(bprm->filename), true);
1420 
1421         /* An exec changes our domain. We are no longer part of the thread
1422            group */
1423         WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1424         flush_signal_handlers(me, 0);
1425 
1426         retval = set_cred_ucounts(bprm->cred);
1427         if (retval < 0)
1428                 goto out_unlock;
1429 
1430         /*
1431          * install the new credentials for this executable
1432          */
1433         security_bprm_committing_creds(bprm);
1434 
1435         commit_creds(bprm->cred);
1436         bprm->cred = NULL;
1437 
1438         /*
1439          * Disable monitoring for regular users
1440          * when executing setuid binaries. Must
1441          * wait until new credentials are committed
1442          * by commit_creds() above
1443          */
1444         if (get_dumpable(me->mm) != SUID_DUMP_USER)
1445                 perf_event_exit_task(me);
1446         /*
1447          * cred_guard_mutex must be held at least to this point to prevent
1448          * ptrace_attach() from altering our determination of the task's
1449          * credentials; any time after this it may be unlocked.
1450          */
1451         security_bprm_committed_creds(bprm);
1452 
1453         /* Pass the opened binary to the interpreter. */
1454         if (bprm->have_execfd) {
1455                 retval = get_unused_fd_flags(0);
1456                 if (retval < 0)
1457                         goto out_unlock;
1458                 fd_install(retval, bprm->executable);
1459                 bprm->executable = NULL;
1460                 bprm->execfd = retval;
1461         }
1462         return 0;
1463 
1464 out_unlock:
1465         up_write(&me->signal->exec_update_lock);
1466         if (!bprm->cred)
1467                 mutex_unlock(&me->signal->cred_guard_mutex);
1468 
1469 out:
1470         return retval;
1471 }
1472 EXPORT_SYMBOL(begin_new_exec);
1473 
1474 void would_dump(struct linux_binprm *bprm, struct file *file)
1475 {
1476         struct inode *inode = file_inode(file);
1477         struct mnt_idmap *idmap = file_mnt_idmap(file);
1478         if (inode_permission(idmap, inode, MAY_READ) < 0) {
1479                 struct user_namespace *old, *user_ns;
1480                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1481 
1482                 /* Ensure mm->user_ns contains the executable */
1483                 user_ns = old = bprm->mm->user_ns;
1484                 while ((user_ns != &init_user_ns) &&
1485                        !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1486                         user_ns = user_ns->parent;
1487 
1488                 if (old != user_ns) {
1489                         bprm->mm->user_ns = get_user_ns(user_ns);
1490                         put_user_ns(old);
1491                 }
1492         }
1493 }
1494 EXPORT_SYMBOL(would_dump);
1495 
1496 void setup_new_exec(struct linux_binprm * bprm)
1497 {
1498         /* Setup things that can depend upon the personality */
1499         struct task_struct *me = current;
1500 
1501         arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1502 
1503         arch_setup_new_exec();
1504 
1505         /* Set the new mm task size. We have to do that late because it may
1506          * depend on TIF_32BIT which is only updated in flush_thread() on
1507          * some architectures like powerpc
1508          */
1509         me->mm->task_size = TASK_SIZE;
1510         up_write(&me->signal->exec_update_lock);
1511         mutex_unlock(&me->signal->cred_guard_mutex);
1512 }
1513 EXPORT_SYMBOL(setup_new_exec);
1514 
1515 /* Runs immediately before start_thread() takes over. */
1516 void finalize_exec(struct linux_binprm *bprm)
1517 {
1518         /* Store any stack rlimit changes before starting thread. */
1519         task_lock(current->group_leader);
1520         current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1521         task_unlock(current->group_leader);
1522 }
1523 EXPORT_SYMBOL(finalize_exec);
1524 
1525 /*
1526  * Prepare credentials and lock ->cred_guard_mutex.
1527  * setup_new_exec() commits the new creds and drops the lock.
1528  * Or, if exec fails before, free_bprm() should release ->cred
1529  * and unlock.
1530  */
1531 static int prepare_bprm_creds(struct linux_binprm *bprm)
1532 {
1533         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1534                 return -ERESTARTNOINTR;
1535 
1536         bprm->cred = prepare_exec_creds();
1537         if (likely(bprm->cred))
1538                 return 0;
1539 
1540         mutex_unlock(&current->signal->cred_guard_mutex);
1541         return -ENOMEM;
1542 }
1543 
1544 /* Matches do_open_execat() */
1545 static void do_close_execat(struct file *file)
1546 {
1547         if (file)
1548                 fput(file);
1549 }
1550 
1551 static void free_bprm(struct linux_binprm *bprm)
1552 {
1553         if (bprm->mm) {
1554                 acct_arg_size(bprm, 0);
1555                 mmput(bprm->mm);
1556         }
1557         free_arg_pages(bprm);
1558         if (bprm->cred) {
1559                 mutex_unlock(&current->signal->cred_guard_mutex);
1560                 abort_creds(bprm->cred);
1561         }
1562         do_close_execat(bprm->file);
1563         if (bprm->executable)
1564                 fput(bprm->executable);
1565         /* If a binfmt changed the interp, free it. */
1566         if (bprm->interp != bprm->filename)
1567                 kfree(bprm->interp);
1568         kfree(bprm->fdpath);
1569         kfree(bprm);
1570 }
1571 
1572 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename, int flags)
1573 {
1574         struct linux_binprm *bprm;
1575         struct file *file;
1576         int retval = -ENOMEM;
1577 
1578         file = do_open_execat(fd, filename, flags);
1579         if (IS_ERR(file))
1580                 return ERR_CAST(file);
1581 
1582         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1583         if (!bprm) {
1584                 do_close_execat(file);
1585                 return ERR_PTR(-ENOMEM);
1586         }
1587 
1588         bprm->file = file;
1589 
1590         if (fd == AT_FDCWD || filename->name[0] == '/') {
1591                 bprm->filename = filename->name;
1592         } else {
1593                 if (filename->name[0] == '\0')
1594                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1595                 else
1596                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1597                                                   fd, filename->name);
1598                 if (!bprm->fdpath)
1599                         goto out_free;
1600 
1601                 /*
1602                  * Record that a name derived from an O_CLOEXEC fd will be
1603                  * inaccessible after exec.  This allows the code in exec to
1604                  * choose to fail when the executable is not mmaped into the
1605                  * interpreter and an open file descriptor is not passed to
1606                  * the interpreter.  This makes for a better user experience
1607                  * than having the interpreter start and then immediately fail
1608                  * when it finds the executable is inaccessible.
1609                  */
1610                 if (get_close_on_exec(fd))
1611                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1612 
1613                 bprm->filename = bprm->fdpath;
1614         }
1615         bprm->interp = bprm->filename;
1616 
1617         retval = bprm_mm_init(bprm);
1618         if (!retval)
1619                 return bprm;
1620 
1621 out_free:
1622         free_bprm(bprm);
1623         return ERR_PTR(retval);
1624 }
1625 
1626 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1627 {
1628         /* If a binfmt changed the interp, free it first. */
1629         if (bprm->interp != bprm->filename)
1630                 kfree(bprm->interp);
1631         bprm->interp = kstrdup(interp, GFP_KERNEL);
1632         if (!bprm->interp)
1633                 return -ENOMEM;
1634         return 0;
1635 }
1636 EXPORT_SYMBOL(bprm_change_interp);
1637 
1638 /*
1639  * determine how safe it is to execute the proposed program
1640  * - the caller must hold ->cred_guard_mutex to protect against
1641  *   PTRACE_ATTACH or seccomp thread-sync
1642  */
1643 static void check_unsafe_exec(struct linux_binprm *bprm)
1644 {
1645         struct task_struct *p = current, *t;
1646         unsigned n_fs;
1647 
1648         if (p->ptrace)
1649                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1650 
1651         /*
1652          * This isn't strictly necessary, but it makes it harder for LSMs to
1653          * mess up.
1654          */
1655         if (task_no_new_privs(current))
1656                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1657 
1658         /*
1659          * If another task is sharing our fs, we cannot safely
1660          * suid exec because the differently privileged task
1661          * will be able to manipulate the current directory, etc.
1662          * It would be nice to force an unshare instead...
1663          */
1664         n_fs = 1;
1665         spin_lock(&p->fs->lock);
1666         rcu_read_lock();
1667         for_other_threads(p, t) {
1668                 if (t->fs == p->fs)
1669                         n_fs++;
1670         }
1671         rcu_read_unlock();
1672 
1673         /* "users" and "in_exec" locked for copy_fs() */
1674         if (p->fs->users > n_fs)
1675                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1676         else
1677                 p->fs->in_exec = 1;
1678         spin_unlock(&p->fs->lock);
1679 }
1680 
1681 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1682 {
1683         /* Handle suid and sgid on files */
1684         struct mnt_idmap *idmap;
1685         struct inode *inode = file_inode(file);
1686         unsigned int mode;
1687         vfsuid_t vfsuid;
1688         vfsgid_t vfsgid;
1689         int err;
1690 
1691         if (!mnt_may_suid(file->f_path.mnt))
1692                 return;
1693 
1694         if (task_no_new_privs(current))
1695                 return;
1696 
1697         mode = READ_ONCE(inode->i_mode);
1698         if (!(mode & (S_ISUID|S_ISGID)))
1699                 return;
1700 
1701         idmap = file_mnt_idmap(file);
1702 
1703         /* Be careful if suid/sgid is set */
1704         inode_lock(inode);
1705 
1706         /* Atomically reload and check mode/uid/gid now that lock held. */
1707         mode = inode->i_mode;
1708         vfsuid = i_uid_into_vfsuid(idmap, inode);
1709         vfsgid = i_gid_into_vfsgid(idmap, inode);
1710         err = inode_permission(idmap, inode, MAY_EXEC);
1711         inode_unlock(inode);
1712 
1713         /* Did the exec bit vanish out from under us? Give up. */
1714         if (err)
1715                 return;
1716 
1717         /* We ignore suid/sgid if there are no mappings for them in the ns */
1718         if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1719             !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1720                 return;
1721 
1722         if (mode & S_ISUID) {
1723                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1724                 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1725         }
1726 
1727         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1728                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1729                 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1730         }
1731 }
1732 
1733 /*
1734  * Compute brpm->cred based upon the final binary.
1735  */
1736 static int bprm_creds_from_file(struct linux_binprm *bprm)
1737 {
1738         /* Compute creds based on which file? */
1739         struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1740 
1741         bprm_fill_uid(bprm, file);
1742         return security_bprm_creds_from_file(bprm, file);
1743 }
1744 
1745 /*
1746  * Fill the binprm structure from the inode.
1747  * Read the first BINPRM_BUF_SIZE bytes
1748  *
1749  * This may be called multiple times for binary chains (scripts for example).
1750  */
1751 static int prepare_binprm(struct linux_binprm *bprm)
1752 {
1753         loff_t pos = 0;
1754 
1755         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1756         return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1757 }
1758 
1759 /*
1760  * Arguments are '\0' separated strings found at the location bprm->p
1761  * points to; chop off the first by relocating brpm->p to right after
1762  * the first '\0' encountered.
1763  */
1764 int remove_arg_zero(struct linux_binprm *bprm)
1765 {
1766         unsigned long offset;
1767         char *kaddr;
1768         struct page *page;
1769 
1770         if (!bprm->argc)
1771                 return 0;
1772 
1773         do {
1774                 offset = bprm->p & ~PAGE_MASK;
1775                 page = get_arg_page(bprm, bprm->p, 0);
1776                 if (!page)
1777                         return -EFAULT;
1778                 kaddr = kmap_local_page(page);
1779 
1780                 for (; offset < PAGE_SIZE && kaddr[offset];
1781                                 offset++, bprm->p++)
1782                         ;
1783 
1784                 kunmap_local(kaddr);
1785                 put_arg_page(page);
1786         } while (offset == PAGE_SIZE);
1787 
1788         bprm->p++;
1789         bprm->argc--;
1790 
1791         return 0;
1792 }
1793 EXPORT_SYMBOL(remove_arg_zero);
1794 
1795 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1796 /*
1797  * cycle the list of binary formats handler, until one recognizes the image
1798  */
1799 static int search_binary_handler(struct linux_binprm *bprm)
1800 {
1801         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1802         struct linux_binfmt *fmt;
1803         int retval;
1804 
1805         retval = prepare_binprm(bprm);
1806         if (retval < 0)
1807                 return retval;
1808 
1809         retval = security_bprm_check(bprm);
1810         if (retval)
1811                 return retval;
1812 
1813         retval = -ENOENT;
1814  retry:
1815         read_lock(&binfmt_lock);
1816         list_for_each_entry(fmt, &formats, lh) {
1817                 if (!try_module_get(fmt->module))
1818                         continue;
1819                 read_unlock(&binfmt_lock);
1820 
1821                 retval = fmt->load_binary(bprm);
1822 
1823                 read_lock(&binfmt_lock);
1824                 put_binfmt(fmt);
1825                 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1826                         read_unlock(&binfmt_lock);
1827                         return retval;
1828                 }
1829         }
1830         read_unlock(&binfmt_lock);
1831 
1832         if (need_retry) {
1833                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1834                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1835                         return retval;
1836                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1837                         return retval;
1838                 need_retry = false;
1839                 goto retry;
1840         }
1841 
1842         return retval;
1843 }
1844 
1845 /* binfmt handlers will call back into begin_new_exec() on success. */
1846 static int exec_binprm(struct linux_binprm *bprm)
1847 {
1848         pid_t old_pid, old_vpid;
1849         int ret, depth;
1850 
1851         /* Need to fetch pid before load_binary changes it */
1852         old_pid = current->pid;
1853         rcu_read_lock();
1854         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1855         rcu_read_unlock();
1856 
1857         /* This allows 4 levels of binfmt rewrites before failing hard. */
1858         for (depth = 0;; depth++) {
1859                 struct file *exec;
1860                 if (depth > 5)
1861                         return -ELOOP;
1862 
1863                 ret = search_binary_handler(bprm);
1864                 if (ret < 0)
1865                         return ret;
1866                 if (!bprm->interpreter)
1867                         break;
1868 
1869                 exec = bprm->file;
1870                 bprm->file = bprm->interpreter;
1871                 bprm->interpreter = NULL;
1872 
1873                 if (unlikely(bprm->have_execfd)) {
1874                         if (bprm->executable) {
1875                                 fput(exec);
1876                                 return -ENOEXEC;
1877                         }
1878                         bprm->executable = exec;
1879                 } else
1880                         fput(exec);
1881         }
1882 
1883         audit_bprm(bprm);
1884         trace_sched_process_exec(current, old_pid, bprm);
1885         ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1886         proc_exec_connector(current);
1887         return 0;
1888 }
1889 
1890 static int bprm_execve(struct linux_binprm *bprm)
1891 {
1892         int retval;
1893 
1894         retval = prepare_bprm_creds(bprm);
1895         if (retval)
1896                 return retval;
1897 
1898         /*
1899          * Check for unsafe execution states before exec_binprm(), which
1900          * will call back into begin_new_exec(), into bprm_creds_from_file(),
1901          * where setuid-ness is evaluated.
1902          */
1903         check_unsafe_exec(bprm);
1904         current->in_execve = 1;
1905         sched_mm_cid_before_execve(current);
1906 
1907         sched_exec();
1908 
1909         /* Set the unchanging part of bprm->cred */
1910         retval = security_bprm_creds_for_exec(bprm);
1911         if (retval)
1912                 goto out;
1913 
1914         retval = ccs_exec_binprm(bprm);
1915         if (retval < 0)
1916                 goto out;
1917 
1918         sched_mm_cid_after_execve(current);
1919         /* execve succeeded */
1920         current->fs->in_exec = 0;
1921         current->in_execve = 0;
1922         rseq_execve(current);
1923         user_events_execve(current);
1924         acct_update_integrals(current);
1925         task_numa_free(current, false);
1926         return retval;
1927 
1928 out:
1929         /*
1930          * If past the point of no return ensure the code never
1931          * returns to the userspace process.  Use an existing fatal
1932          * signal if present otherwise terminate the process with
1933          * SIGSEGV.
1934          */
1935         if (bprm->point_of_no_return && !fatal_signal_pending(current))
1936                 force_fatal_sig(SIGSEGV);
1937 
1938         sched_mm_cid_after_execve(current);
1939         current->fs->in_exec = 0;
1940         current->in_execve = 0;
1941 
1942         return retval;
1943 }
1944 
1945 static int do_execveat_common(int fd, struct filename *filename,
1946                               struct user_arg_ptr argv,
1947                               struct user_arg_ptr envp,
1948                               int flags)
1949 {
1950         struct linux_binprm *bprm;
1951         int retval;
1952 
1953         if (IS_ERR(filename))
1954                 return PTR_ERR(filename);
1955 
1956         /*
1957          * We move the actual failure in case of RLIMIT_NPROC excess from
1958          * set*uid() to execve() because too many poorly written programs
1959          * don't check setuid() return code.  Here we additionally recheck
1960          * whether NPROC limit is still exceeded.
1961          */
1962         if ((current->flags & PF_NPROC_EXCEEDED) &&
1963             is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1964                 retval = -EAGAIN;
1965                 goto out_ret;
1966         }
1967 
1968         /* We're below the limit (still or again), so we don't want to make
1969          * further execve() calls fail. */
1970         current->flags &= ~PF_NPROC_EXCEEDED;
1971 
1972         bprm = alloc_bprm(fd, filename, flags);
1973         if (IS_ERR(bprm)) {
1974                 retval = PTR_ERR(bprm);
1975                 goto out_ret;
1976         }
1977 
1978         retval = count(argv, MAX_ARG_STRINGS);
1979         if (retval == 0)
1980                 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1981                              current->comm, bprm->filename);
1982         if (retval < 0)
1983                 goto out_free;
1984         bprm->argc = retval;
1985 
1986         retval = count(envp, MAX_ARG_STRINGS);
1987         if (retval < 0)
1988                 goto out_free;
1989         bprm->envc = retval;
1990 
1991         retval = bprm_stack_limits(bprm);
1992         if (retval < 0)
1993                 goto out_free;
1994 
1995         retval = copy_string_kernel(bprm->filename, bprm);
1996         if (retval < 0)
1997                 goto out_free;
1998         bprm->exec = bprm->p;
1999 
2000         retval = copy_strings(bprm->envc, envp, bprm);
2001         if (retval < 0)
2002                 goto out_free;
2003 
2004         retval = copy_strings(bprm->argc, argv, bprm);
2005         if (retval < 0)
2006                 goto out_free;
2007 
2008         /*
2009          * When argv is empty, add an empty string ("") as argv[0] to
2010          * ensure confused userspace programs that start processing
2011          * from argv[1] won't end up walking envp. See also
2012          * bprm_stack_limits().
2013          */
2014         if (bprm->argc == 0) {
2015                 retval = copy_string_kernel("", bprm);
2016                 if (retval < 0)
2017                         goto out_free;
2018                 bprm->argc = 1;
2019         }
2020 
2021         retval = bprm_execve(bprm);
2022 out_free:
2023         free_bprm(bprm);
2024 
2025 out_ret:
2026         putname(filename);
2027         return retval;
2028 }
2029 
2030 int kernel_execve(const char *kernel_filename,
2031                   const char *const *argv, const char *const *envp)
2032 {
2033         struct filename *filename;
2034         struct linux_binprm *bprm;
2035         int fd = AT_FDCWD;
2036         int retval;
2037 
2038         /* It is non-sense for kernel threads to call execve */
2039         if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2040                 return -EINVAL;
2041 
2042         filename = getname_kernel(kernel_filename);
2043         if (IS_ERR(filename))
2044                 return PTR_ERR(filename);
2045 
2046         bprm = alloc_bprm(fd, filename, 0);
2047         if (IS_ERR(bprm)) {
2048                 retval = PTR_ERR(bprm);
2049                 goto out_ret;
2050         }
2051 
2052         retval = count_strings_kernel(argv);
2053         if (WARN_ON_ONCE(retval == 0))
2054                 retval = -EINVAL;
2055         if (retval < 0)
2056                 goto out_free;
2057         bprm->argc = retval;
2058 
2059         retval = count_strings_kernel(envp);
2060         if (retval < 0)
2061                 goto out_free;
2062         bprm->envc = retval;
2063 
2064         retval = bprm_stack_limits(bprm);
2065         if (retval < 0)
2066                 goto out_free;
2067 
2068         retval = copy_string_kernel(bprm->filename, bprm);
2069         if (retval < 0)
2070                 goto out_free;
2071         bprm->exec = bprm->p;
2072 
2073         retval = copy_strings_kernel(bprm->envc, envp, bprm);
2074         if (retval < 0)
2075                 goto out_free;
2076 
2077         retval = copy_strings_kernel(bprm->argc, argv, bprm);
2078         if (retval < 0)
2079                 goto out_free;
2080 
2081         retval = bprm_execve(bprm);
2082 out_free:
2083         free_bprm(bprm);
2084 out_ret:
2085         putname(filename);
2086         return retval;
2087 }
2088 
2089 static int do_execve(struct filename *filename,
2090         const char __user *const __user *__argv,
2091         const char __user *const __user *__envp)
2092 {
2093         struct user_arg_ptr argv = { .ptr.native = __argv };
2094         struct user_arg_ptr envp = { .ptr.native = __envp };
2095         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2096 }
2097 
2098 static int do_execveat(int fd, struct filename *filename,
2099                 const char __user *const __user *__argv,
2100                 const char __user *const __user *__envp,
2101                 int flags)
2102 {
2103         struct user_arg_ptr argv = { .ptr.native = __argv };
2104         struct user_arg_ptr envp = { .ptr.native = __envp };
2105 
2106         return do_execveat_common(fd, filename, argv, envp, flags);
2107 }
2108 
2109 #ifdef CONFIG_COMPAT
2110 static int compat_do_execve(struct filename *filename,
2111         const compat_uptr_t __user *__argv,
2112         const compat_uptr_t __user *__envp)
2113 {
2114         struct user_arg_ptr argv = {
2115                 .is_compat = true,
2116                 .ptr.compat = __argv,
2117         };
2118         struct user_arg_ptr envp = {
2119                 .is_compat = true,
2120                 .ptr.compat = __envp,
2121         };
2122         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2123 }
2124 
2125 static int compat_do_execveat(int fd, struct filename *filename,
2126                               const compat_uptr_t __user *__argv,
2127                               const compat_uptr_t __user *__envp,
2128                               int flags)
2129 {
2130         struct user_arg_ptr argv = {
2131                 .is_compat = true,
2132                 .ptr.compat = __argv,
2133         };
2134         struct user_arg_ptr envp = {
2135                 .is_compat = true,
2136                 .ptr.compat = __envp,
2137         };
2138         return do_execveat_common(fd, filename, argv, envp, flags);
2139 }
2140 #endif
2141 
2142 void set_binfmt(struct linux_binfmt *new)
2143 {
2144         struct mm_struct *mm = current->mm;
2145 
2146         if (mm->binfmt)
2147                 module_put(mm->binfmt->module);
2148 
2149         mm->binfmt = new;
2150         if (new)
2151                 __module_get(new->module);
2152 }
2153 EXPORT_SYMBOL(set_binfmt);
2154 
2155 /*
2156  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2157  */
2158 void set_dumpable(struct mm_struct *mm, int value)
2159 {
2160         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2161                 return;
2162 
2163         set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2164 }
2165 
2166 SYSCALL_DEFINE3(execve,
2167                 const char __user *, filename,
2168                 const char __user *const __user *, argv,
2169                 const char __user *const __user *, envp)
2170 {
2171         return do_execve(getname(filename), argv, envp);
2172 }
2173 
2174 SYSCALL_DEFINE5(execveat,
2175                 int, fd, const char __user *, filename,
2176                 const char __user *const __user *, argv,
2177                 const char __user *const __user *, envp,
2178                 int, flags)
2179 {
2180         return do_execveat(fd,
2181                            getname_uflags(filename, flags),
2182                            argv, envp, flags);
2183 }
2184 
2185 #ifdef CONFIG_COMPAT
2186 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2187         const compat_uptr_t __user *, argv,
2188         const compat_uptr_t __user *, envp)
2189 {
2190         return compat_do_execve(getname(filename), argv, envp);
2191 }
2192 
2193 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2194                        const char __user *, filename,
2195                        const compat_uptr_t __user *, argv,
2196                        const compat_uptr_t __user *, envp,
2197                        int,  flags)
2198 {
2199         return compat_do_execveat(fd,
2200                                   getname_uflags(filename, flags),
2201                                   argv, envp, flags);
2202 }
2203 #endif
2204 
2205 #ifdef CONFIG_SYSCTL
2206 
2207 static int proc_dointvec_minmax_coredump(const struct ctl_table *table, int write,
2208                 void *buffer, size_t *lenp, loff_t *ppos)
2209 {
2210         int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2211 
2212         if (!error)
2213                 validate_coredump_safety();
2214         return error;
2215 }
2216 
2217 static struct ctl_table fs_exec_sysctls[] = {
2218         {
2219                 .procname       = "suid_dumpable",
2220                 .data           = &suid_dumpable,
2221                 .maxlen         = sizeof(int),
2222                 .mode           = 0644,
2223                 .proc_handler   = proc_dointvec_minmax_coredump,
2224                 .extra1         = SYSCTL_ZERO,
2225                 .extra2         = SYSCTL_TWO,
2226         },
2227 };
2228 
2229 static int __init init_fs_exec_sysctls(void)
2230 {
2231         register_sysctl_init("fs", fs_exec_sysctls);
2232         return 0;
2233 }
2234 
2235 fs_initcall(init_fs_exec_sysctls);
2236 #endif /* CONFIG_SYSCTL */
2237 
2238 #ifdef CONFIG_EXEC_KUNIT_TEST
2239 #include "tests/exec_kunit.c"
2240 #endif
2241 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php