~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ext2/inode.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  linux/fs/ext2/inode.c
  4  *
  5  * Copyright (C) 1992, 1993, 1994, 1995
  6  * Remy Card (card@masi.ibp.fr)
  7  * Laboratoire MASI - Institut Blaise Pascal
  8  * Universite Pierre et Marie Curie (Paris VI)
  9  *
 10  *  from
 11  *
 12  *  linux/fs/minix/inode.c
 13  *
 14  *  Copyright (C) 1991, 1992  Linus Torvalds
 15  *
 16  *  Goal-directed block allocation by Stephen Tweedie
 17  *      (sct@dcs.ed.ac.uk), 1993, 1998
 18  *  Big-endian to little-endian byte-swapping/bitmaps by
 19  *        David S. Miller (davem@caip.rutgers.edu), 1995
 20  *  64-bit file support on 64-bit platforms by Jakub Jelinek
 21  *      (jj@sunsite.ms.mff.cuni.cz)
 22  *
 23  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
 24  */
 25 
 26 #include <linux/time.h>
 27 #include <linux/highuid.h>
 28 #include <linux/pagemap.h>
 29 #include <linux/dax.h>
 30 #include <linux/blkdev.h>
 31 #include <linux/quotaops.h>
 32 #include <linux/writeback.h>
 33 #include <linux/buffer_head.h>
 34 #include <linux/mpage.h>
 35 #include <linux/fiemap.h>
 36 #include <linux/iomap.h>
 37 #include <linux/namei.h>
 38 #include <linux/uio.h>
 39 #include "ext2.h"
 40 #include "acl.h"
 41 #include "xattr.h"
 42 
 43 static int __ext2_write_inode(struct inode *inode, int do_sync);
 44 
 45 /*
 46  * Test whether an inode is a fast symlink.
 47  */
 48 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
 49 {
 50         int ea_blocks = EXT2_I(inode)->i_file_acl ?
 51                 (inode->i_sb->s_blocksize >> 9) : 0;
 52 
 53         return (S_ISLNK(inode->i_mode) &&
 54                 inode->i_blocks - ea_blocks == 0);
 55 }
 56 
 57 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
 58 
 59 void ext2_write_failed(struct address_space *mapping, loff_t to)
 60 {
 61         struct inode *inode = mapping->host;
 62 
 63         if (to > inode->i_size) {
 64                 truncate_pagecache(inode, inode->i_size);
 65                 ext2_truncate_blocks(inode, inode->i_size);
 66         }
 67 }
 68 
 69 /*
 70  * Called at the last iput() if i_nlink is zero.
 71  */
 72 void ext2_evict_inode(struct inode * inode)
 73 {
 74         struct ext2_block_alloc_info *rsv;
 75         int want_delete = 0;
 76 
 77         if (!inode->i_nlink && !is_bad_inode(inode)) {
 78                 want_delete = 1;
 79                 dquot_initialize(inode);
 80         } else {
 81                 dquot_drop(inode);
 82         }
 83 
 84         truncate_inode_pages_final(&inode->i_data);
 85 
 86         if (want_delete) {
 87                 sb_start_intwrite(inode->i_sb);
 88                 /* set dtime */
 89                 EXT2_I(inode)->i_dtime  = ktime_get_real_seconds();
 90                 mark_inode_dirty(inode);
 91                 __ext2_write_inode(inode, inode_needs_sync(inode));
 92                 /* truncate to 0 */
 93                 inode->i_size = 0;
 94                 if (inode->i_blocks)
 95                         ext2_truncate_blocks(inode, 0);
 96                 ext2_xattr_delete_inode(inode);
 97         }
 98 
 99         invalidate_inode_buffers(inode);
100         clear_inode(inode);
101 
102         ext2_discard_reservation(inode);
103         rsv = EXT2_I(inode)->i_block_alloc_info;
104         EXT2_I(inode)->i_block_alloc_info = NULL;
105         if (unlikely(rsv))
106                 kfree(rsv);
107 
108         if (want_delete) {
109                 ext2_free_inode(inode);
110                 sb_end_intwrite(inode->i_sb);
111         }
112 }
113 
114 typedef struct {
115         __le32  *p;
116         __le32  key;
117         struct buffer_head *bh;
118 } Indirect;
119 
120 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
121 {
122         p->key = *(p->p = v);
123         p->bh = bh;
124 }
125 
126 static inline int verify_chain(Indirect *from, Indirect *to)
127 {
128         while (from <= to && from->key == *from->p)
129                 from++;
130         return (from > to);
131 }
132 
133 /**
134  *      ext2_block_to_path - parse the block number into array of offsets
135  *      @inode: inode in question (we are only interested in its superblock)
136  *      @i_block: block number to be parsed
137  *      @offsets: array to store the offsets in
138  *      @boundary: set this non-zero if the referred-to block is likely to be
139  *             followed (on disk) by an indirect block.
140  *      To store the locations of file's data ext2 uses a data structure common
141  *      for UNIX filesystems - tree of pointers anchored in the inode, with
142  *      data blocks at leaves and indirect blocks in intermediate nodes.
143  *      This function translates the block number into path in that tree -
144  *      return value is the path length and @offsets[n] is the offset of
145  *      pointer to (n+1)th node in the nth one. If @block is out of range
146  *      (negative or too large) warning is printed and zero returned.
147  *
148  *      Note: function doesn't find node addresses, so no IO is needed. All
149  *      we need to know is the capacity of indirect blocks (taken from the
150  *      inode->i_sb).
151  */
152 
153 /*
154  * Portability note: the last comparison (check that we fit into triple
155  * indirect block) is spelled differently, because otherwise on an
156  * architecture with 32-bit longs and 8Kb pages we might get into trouble
157  * if our filesystem had 8Kb blocks. We might use long long, but that would
158  * kill us on x86. Oh, well, at least the sign propagation does not matter -
159  * i_block would have to be negative in the very beginning, so we would not
160  * get there at all.
161  */
162 
163 static int ext2_block_to_path(struct inode *inode,
164                         long i_block, int offsets[4], int *boundary)
165 {
166         int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
167         int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
168         const long direct_blocks = EXT2_NDIR_BLOCKS,
169                 indirect_blocks = ptrs,
170                 double_blocks = (1 << (ptrs_bits * 2));
171         int n = 0;
172         int final = 0;
173 
174         if (i_block < 0) {
175                 ext2_msg(inode->i_sb, KERN_WARNING,
176                         "warning: %s: block < 0", __func__);
177         } else if (i_block < direct_blocks) {
178                 offsets[n++] = i_block;
179                 final = direct_blocks;
180         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
181                 offsets[n++] = EXT2_IND_BLOCK;
182                 offsets[n++] = i_block;
183                 final = ptrs;
184         } else if ((i_block -= indirect_blocks) < double_blocks) {
185                 offsets[n++] = EXT2_DIND_BLOCK;
186                 offsets[n++] = i_block >> ptrs_bits;
187                 offsets[n++] = i_block & (ptrs - 1);
188                 final = ptrs;
189         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
190                 offsets[n++] = EXT2_TIND_BLOCK;
191                 offsets[n++] = i_block >> (ptrs_bits * 2);
192                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
193                 offsets[n++] = i_block & (ptrs - 1);
194                 final = ptrs;
195         } else {
196                 ext2_msg(inode->i_sb, KERN_WARNING,
197                         "warning: %s: block is too big", __func__);
198         }
199         if (boundary)
200                 *boundary = final - 1 - (i_block & (ptrs - 1));
201 
202         return n;
203 }
204 
205 /**
206  *      ext2_get_branch - read the chain of indirect blocks leading to data
207  *      @inode: inode in question
208  *      @depth: depth of the chain (1 - direct pointer, etc.)
209  *      @offsets: offsets of pointers in inode/indirect blocks
210  *      @chain: place to store the result
211  *      @err: here we store the error value
212  *
213  *      Function fills the array of triples <key, p, bh> and returns %NULL
214  *      if everything went OK or the pointer to the last filled triple
215  *      (incomplete one) otherwise. Upon the return chain[i].key contains
216  *      the number of (i+1)-th block in the chain (as it is stored in memory,
217  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
218  *      number (it points into struct inode for i==0 and into the bh->b_data
219  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
220  *      block for i>0 and NULL for i==0. In other words, it holds the block
221  *      numbers of the chain, addresses they were taken from (and where we can
222  *      verify that chain did not change) and buffer_heads hosting these
223  *      numbers.
224  *
225  *      Function stops when it stumbles upon zero pointer (absent block)
226  *              (pointer to last triple returned, *@err == 0)
227  *      or when it gets an IO error reading an indirect block
228  *              (ditto, *@err == -EIO)
229  *      or when it notices that chain had been changed while it was reading
230  *              (ditto, *@err == -EAGAIN)
231  *      or when it reads all @depth-1 indirect blocks successfully and finds
232  *      the whole chain, all way to the data (returns %NULL, *err == 0).
233  */
234 static Indirect *ext2_get_branch(struct inode *inode,
235                                  int depth,
236                                  int *offsets,
237                                  Indirect chain[4],
238                                  int *err)
239 {
240         struct super_block *sb = inode->i_sb;
241         Indirect *p = chain;
242         struct buffer_head *bh;
243 
244         *err = 0;
245         /* i_data is not going away, no lock needed */
246         add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
247         if (!p->key)
248                 goto no_block;
249         while (--depth) {
250                 bh = sb_bread(sb, le32_to_cpu(p->key));
251                 if (!bh)
252                         goto failure;
253                 read_lock(&EXT2_I(inode)->i_meta_lock);
254                 if (!verify_chain(chain, p))
255                         goto changed;
256                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
257                 read_unlock(&EXT2_I(inode)->i_meta_lock);
258                 if (!p->key)
259                         goto no_block;
260         }
261         return NULL;
262 
263 changed:
264         read_unlock(&EXT2_I(inode)->i_meta_lock);
265         brelse(bh);
266         *err = -EAGAIN;
267         goto no_block;
268 failure:
269         *err = -EIO;
270 no_block:
271         return p;
272 }
273 
274 /**
275  *      ext2_find_near - find a place for allocation with sufficient locality
276  *      @inode: owner
277  *      @ind: descriptor of indirect block.
278  *
279  *      This function returns the preferred place for block allocation.
280  *      It is used when heuristic for sequential allocation fails.
281  *      Rules are:
282  *        + if there is a block to the left of our position - allocate near it.
283  *        + if pointer will live in indirect block - allocate near that block.
284  *        + if pointer will live in inode - allocate in the same cylinder group.
285  *
286  * In the latter case we colour the starting block by the callers PID to
287  * prevent it from clashing with concurrent allocations for a different inode
288  * in the same block group.   The PID is used here so that functionally related
289  * files will be close-by on-disk.
290  *
291  *      Caller must make sure that @ind is valid and will stay that way.
292  */
293 
294 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
295 {
296         struct ext2_inode_info *ei = EXT2_I(inode);
297         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
298         __le32 *p;
299         ext2_fsblk_t bg_start;
300         ext2_fsblk_t colour;
301 
302         /* Try to find previous block */
303         for (p = ind->p - 1; p >= start; p--)
304                 if (*p)
305                         return le32_to_cpu(*p);
306 
307         /* No such thing, so let's try location of indirect block */
308         if (ind->bh)
309                 return ind->bh->b_blocknr;
310 
311         /*
312          * It is going to be referred from inode itself? OK, just put it into
313          * the same cylinder group then.
314          */
315         bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
316         colour = (current->pid % 16) *
317                         (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
318         return bg_start + colour;
319 }
320 
321 /**
322  *      ext2_find_goal - find a preferred place for allocation.
323  *      @inode: owner
324  *      @block:  block we want
325  *      @partial: pointer to the last triple within a chain
326  *
327  *      Returns preferred place for a block (the goal).
328  */
329 
330 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
331                                           Indirect *partial)
332 {
333         struct ext2_block_alloc_info *block_i;
334 
335         block_i = EXT2_I(inode)->i_block_alloc_info;
336 
337         /*
338          * try the heuristic for sequential allocation,
339          * failing that at least try to get decent locality.
340          */
341         if (block_i && (block == block_i->last_alloc_logical_block + 1)
342                 && (block_i->last_alloc_physical_block != 0)) {
343                 return block_i->last_alloc_physical_block + 1;
344         }
345 
346         return ext2_find_near(inode, partial);
347 }
348 
349 /**
350  *      ext2_blks_to_allocate: Look up the block map and count the number
351  *      of direct blocks need to be allocated for the given branch.
352  *
353  *      @branch: chain of indirect blocks
354  *      @k: number of blocks need for indirect blocks
355  *      @blks: number of data blocks to be mapped.
356  *      @blocks_to_boundary:  the offset in the indirect block
357  *
358  *      return the number of direct blocks to allocate.
359  */
360 static int
361 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
362                 int blocks_to_boundary)
363 {
364         unsigned long count = 0;
365 
366         /*
367          * Simple case, [t,d]Indirect block(s) has not allocated yet
368          * then it's clear blocks on that path have not allocated
369          */
370         if (k > 0) {
371                 /* right now don't hanel cross boundary allocation */
372                 if (blks < blocks_to_boundary + 1)
373                         count += blks;
374                 else
375                         count += blocks_to_boundary + 1;
376                 return count;
377         }
378 
379         count++;
380         while (count < blks && count <= blocks_to_boundary
381                 && le32_to_cpu(*(branch[0].p + count)) == 0) {
382                 count++;
383         }
384         return count;
385 }
386 
387 /**
388  * ext2_alloc_blocks: Allocate multiple blocks needed for a branch.
389  * @inode: Owner.
390  * @goal: Preferred place for allocation.
391  * @indirect_blks: The number of blocks needed to allocate for indirect blocks.
392  * @blks: The number of blocks need to allocate for direct blocks.
393  * @new_blocks: On return it will store the new block numbers for
394  *      the indirect blocks(if needed) and the first direct block.
395  * @err: Error pointer.
396  *
397  * Return: Number of blocks allocated.
398  */
399 static int ext2_alloc_blocks(struct inode *inode,
400                         ext2_fsblk_t goal, int indirect_blks, int blks,
401                         ext2_fsblk_t new_blocks[4], int *err)
402 {
403         int target, i;
404         unsigned long count = 0;
405         int index = 0;
406         ext2_fsblk_t current_block = 0;
407         int ret = 0;
408 
409         /*
410          * Here we try to allocate the requested multiple blocks at once,
411          * on a best-effort basis.
412          * To build a branch, we should allocate blocks for
413          * the indirect blocks(if not allocated yet), and at least
414          * the first direct block of this branch.  That's the
415          * minimum number of blocks need to allocate(required)
416          */
417         target = blks + indirect_blks;
418 
419         while (1) {
420                 count = target;
421                 /* allocating blocks for indirect blocks and direct blocks */
422                 current_block = ext2_new_blocks(inode, goal, &count, err, 0);
423                 if (*err)
424                         goto failed_out;
425 
426                 target -= count;
427                 /* allocate blocks for indirect blocks */
428                 while (index < indirect_blks && count) {
429                         new_blocks[index++] = current_block++;
430                         count--;
431                 }
432 
433                 if (count > 0)
434                         break;
435         }
436 
437         /* save the new block number for the first direct block */
438         new_blocks[index] = current_block;
439 
440         /* total number of blocks allocated for direct blocks */
441         ret = count;
442         *err = 0;
443         return ret;
444 failed_out:
445         for (i = 0; i <index; i++)
446                 ext2_free_blocks(inode, new_blocks[i], 1);
447         if (index)
448                 mark_inode_dirty(inode);
449         return ret;
450 }
451 
452 /**
453  *      ext2_alloc_branch - allocate and set up a chain of blocks.
454  *      @inode: owner
455  *      @indirect_blks: depth of the chain (number of blocks to allocate)
456  *      @blks: number of allocated direct blocks
457  *      @goal: preferred place for allocation
458  *      @offsets: offsets (in the blocks) to store the pointers to next.
459  *      @branch: place to store the chain in.
460  *
461  *      This function allocates @num blocks, zeroes out all but the last one,
462  *      links them into chain and (if we are synchronous) writes them to disk.
463  *      In other words, it prepares a branch that can be spliced onto the
464  *      inode. It stores the information about that chain in the branch[], in
465  *      the same format as ext2_get_branch() would do. We are calling it after
466  *      we had read the existing part of chain and partial points to the last
467  *      triple of that (one with zero ->key). Upon the exit we have the same
468  *      picture as after the successful ext2_get_block(), except that in one
469  *      place chain is disconnected - *branch->p is still zero (we did not
470  *      set the last link), but branch->key contains the number that should
471  *      be placed into *branch->p to fill that gap.
472  *
473  *      If allocation fails we free all blocks we've allocated (and forget
474  *      their buffer_heads) and return the error value the from failed
475  *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
476  *      as described above and return 0.
477  */
478 
479 static int ext2_alloc_branch(struct inode *inode,
480                         int indirect_blks, int *blks, ext2_fsblk_t goal,
481                         int *offsets, Indirect *branch)
482 {
483         int blocksize = inode->i_sb->s_blocksize;
484         int i, n = 0;
485         int err = 0;
486         struct buffer_head *bh;
487         int num;
488         ext2_fsblk_t new_blocks[4];
489         ext2_fsblk_t current_block;
490 
491         num = ext2_alloc_blocks(inode, goal, indirect_blks,
492                                 *blks, new_blocks, &err);
493         if (err)
494                 return err;
495 
496         branch[0].key = cpu_to_le32(new_blocks[0]);
497         /*
498          * metadata blocks and data blocks are allocated.
499          */
500         for (n = 1; n <= indirect_blks;  n++) {
501                 /*
502                  * Get buffer_head for parent block, zero it out
503                  * and set the pointer to new one, then send
504                  * parent to disk.
505                  */
506                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
507                 if (unlikely(!bh)) {
508                         err = -ENOMEM;
509                         goto failed;
510                 }
511                 branch[n].bh = bh;
512                 lock_buffer(bh);
513                 memset(bh->b_data, 0, blocksize);
514                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
515                 branch[n].key = cpu_to_le32(new_blocks[n]);
516                 *branch[n].p = branch[n].key;
517                 if ( n == indirect_blks) {
518                         current_block = new_blocks[n];
519                         /*
520                          * End of chain, update the last new metablock of
521                          * the chain to point to the new allocated
522                          * data blocks numbers
523                          */
524                         for (i=1; i < num; i++)
525                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
526                 }
527                 set_buffer_uptodate(bh);
528                 unlock_buffer(bh);
529                 mark_buffer_dirty_inode(bh, inode);
530                 /* We used to sync bh here if IS_SYNC(inode).
531                  * But we now rely upon generic_write_sync()
532                  * and b_inode_buffers.  But not for directories.
533                  */
534                 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
535                         sync_dirty_buffer(bh);
536         }
537         *blks = num;
538         return err;
539 
540 failed:
541         for (i = 1; i < n; i++)
542                 bforget(branch[i].bh);
543         for (i = 0; i < indirect_blks; i++)
544                 ext2_free_blocks(inode, new_blocks[i], 1);
545         ext2_free_blocks(inode, new_blocks[i], num);
546         return err;
547 }
548 
549 /**
550  * ext2_splice_branch - splice the allocated branch onto inode.
551  * @inode: owner
552  * @block: (logical) number of block we are adding
553  * @where: location of missing link
554  * @num:   number of indirect blocks we are adding
555  * @blks:  number of direct blocks we are adding
556  *
557  * This function fills the missing link and does all housekeeping needed in
558  * inode (->i_blocks, etc.). In case of success we end up with the full
559  * chain to new block and return 0.
560  */
561 static void ext2_splice_branch(struct inode *inode,
562                         long block, Indirect *where, int num, int blks)
563 {
564         int i;
565         struct ext2_block_alloc_info *block_i;
566         ext2_fsblk_t current_block;
567 
568         block_i = EXT2_I(inode)->i_block_alloc_info;
569 
570         /* XXX LOCKING probably should have i_meta_lock ?*/
571         /* That's it */
572 
573         *where->p = where->key;
574 
575         /*
576          * Update the host buffer_head or inode to point to more just allocated
577          * direct blocks blocks
578          */
579         if (num == 0 && blks > 1) {
580                 current_block = le32_to_cpu(where->key) + 1;
581                 for (i = 1; i < blks; i++)
582                         *(where->p + i ) = cpu_to_le32(current_block++);
583         }
584 
585         /*
586          * update the most recently allocated logical & physical block
587          * in i_block_alloc_info, to assist find the proper goal block for next
588          * allocation
589          */
590         if (block_i) {
591                 block_i->last_alloc_logical_block = block + blks - 1;
592                 block_i->last_alloc_physical_block =
593                                 le32_to_cpu(where[num].key) + blks - 1;
594         }
595 
596         /* We are done with atomic stuff, now do the rest of housekeeping */
597 
598         /* had we spliced it onto indirect block? */
599         if (where->bh)
600                 mark_buffer_dirty_inode(where->bh, inode);
601 
602         inode_set_ctime_current(inode);
603         mark_inode_dirty(inode);
604 }
605 
606 /*
607  * Allocation strategy is simple: if we have to allocate something, we will
608  * have to go the whole way to leaf. So let's do it before attaching anything
609  * to tree, set linkage between the newborn blocks, write them if sync is
610  * required, recheck the path, free and repeat if check fails, otherwise
611  * set the last missing link (that will protect us from any truncate-generated
612  * removals - all blocks on the path are immune now) and possibly force the
613  * write on the parent block.
614  * That has a nice additional property: no special recovery from the failed
615  * allocations is needed - we simply release blocks and do not touch anything
616  * reachable from inode.
617  *
618  * `handle' can be NULL if create == 0.
619  *
620  * return > 0, # of blocks mapped or allocated.
621  * return = 0, if plain lookup failed.
622  * return < 0, error case.
623  */
624 static int ext2_get_blocks(struct inode *inode,
625                            sector_t iblock, unsigned long maxblocks,
626                            u32 *bno, bool *new, bool *boundary,
627                            int create)
628 {
629         int err;
630         int offsets[4];
631         Indirect chain[4];
632         Indirect *partial;
633         ext2_fsblk_t goal;
634         int indirect_blks;
635         int blocks_to_boundary = 0;
636         int depth;
637         struct ext2_inode_info *ei = EXT2_I(inode);
638         int count = 0;
639         ext2_fsblk_t first_block = 0;
640 
641         BUG_ON(maxblocks == 0);
642 
643         depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
644 
645         if (depth == 0)
646                 return -EIO;
647 
648         partial = ext2_get_branch(inode, depth, offsets, chain, &err);
649         /* Simplest case - block found, no allocation needed */
650         if (!partial) {
651                 first_block = le32_to_cpu(chain[depth - 1].key);
652                 count++;
653                 /*map more blocks*/
654                 while (count < maxblocks && count <= blocks_to_boundary) {
655                         ext2_fsblk_t blk;
656 
657                         if (!verify_chain(chain, chain + depth - 1)) {
658                                 /*
659                                  * Indirect block might be removed by
660                                  * truncate while we were reading it.
661                                  * Handling of that case: forget what we've
662                                  * got now, go to reread.
663                                  */
664                                 err = -EAGAIN;
665                                 count = 0;
666                                 partial = chain + depth - 1;
667                                 break;
668                         }
669                         blk = le32_to_cpu(*(chain[depth-1].p + count));
670                         if (blk == first_block + count)
671                                 count++;
672                         else
673                                 break;
674                 }
675                 if (err != -EAGAIN)
676                         goto got_it;
677         }
678 
679         /* Next simple case - plain lookup or failed read of indirect block */
680         if (!create || err == -EIO)
681                 goto cleanup;
682 
683         mutex_lock(&ei->truncate_mutex);
684         /*
685          * If the indirect block is missing while we are reading
686          * the chain(ext2_get_branch() returns -EAGAIN err), or
687          * if the chain has been changed after we grab the semaphore,
688          * (either because another process truncated this branch, or
689          * another get_block allocated this branch) re-grab the chain to see if
690          * the request block has been allocated or not.
691          *
692          * Since we already block the truncate/other get_block
693          * at this point, we will have the current copy of the chain when we
694          * splice the branch into the tree.
695          */
696         if (err == -EAGAIN || !verify_chain(chain, partial)) {
697                 while (partial > chain) {
698                         brelse(partial->bh);
699                         partial--;
700                 }
701                 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
702                 if (!partial) {
703                         count++;
704                         mutex_unlock(&ei->truncate_mutex);
705                         goto got_it;
706                 }
707 
708                 if (err) {
709                         mutex_unlock(&ei->truncate_mutex);
710                         goto cleanup;
711                 }
712         }
713 
714         /*
715          * Okay, we need to do block allocation.  Lazily initialize the block
716          * allocation info here if necessary
717         */
718         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
719                 ext2_init_block_alloc_info(inode);
720 
721         goal = ext2_find_goal(inode, iblock, partial);
722 
723         /* the number of blocks need to allocate for [d,t]indirect blocks */
724         indirect_blks = (chain + depth) - partial - 1;
725         /*
726          * Next look up the indirect map to count the total number of
727          * direct blocks to allocate for this branch.
728          */
729         count = ext2_blks_to_allocate(partial, indirect_blks,
730                                         maxblocks, blocks_to_boundary);
731         /*
732          * XXX ???? Block out ext2_truncate while we alter the tree
733          */
734         err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
735                                 offsets + (partial - chain), partial);
736 
737         if (err) {
738                 mutex_unlock(&ei->truncate_mutex);
739                 goto cleanup;
740         }
741 
742         if (IS_DAX(inode)) {
743                 /*
744                  * We must unmap blocks before zeroing so that writeback cannot
745                  * overwrite zeros with stale data from block device page cache.
746                  */
747                 clean_bdev_aliases(inode->i_sb->s_bdev,
748                                    le32_to_cpu(chain[depth-1].key),
749                                    count);
750                 /*
751                  * block must be initialised before we put it in the tree
752                  * so that it's not found by another thread before it's
753                  * initialised
754                  */
755                 err = sb_issue_zeroout(inode->i_sb,
756                                 le32_to_cpu(chain[depth-1].key), count,
757                                 GFP_KERNEL);
758                 if (err) {
759                         mutex_unlock(&ei->truncate_mutex);
760                         goto cleanup;
761                 }
762         }
763         *new = true;
764 
765         ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
766         mutex_unlock(&ei->truncate_mutex);
767 got_it:
768         if (count > blocks_to_boundary)
769                 *boundary = true;
770         err = count;
771         /* Clean up and exit */
772         partial = chain + depth - 1;    /* the whole chain */
773 cleanup:
774         while (partial > chain) {
775                 brelse(partial->bh);
776                 partial--;
777         }
778         if (err > 0)
779                 *bno = le32_to_cpu(chain[depth-1].key);
780         return err;
781 }
782 
783 int ext2_get_block(struct inode *inode, sector_t iblock,
784                 struct buffer_head *bh_result, int create)
785 {
786         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
787         bool new = false, boundary = false;
788         u32 bno;
789         int ret;
790 
791         ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
792                         create);
793         if (ret <= 0)
794                 return ret;
795 
796         map_bh(bh_result, inode->i_sb, bno);
797         bh_result->b_size = (ret << inode->i_blkbits);
798         if (new)
799                 set_buffer_new(bh_result);
800         if (boundary)
801                 set_buffer_boundary(bh_result);
802         return 0;
803 
804 }
805 
806 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
807                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
808 {
809         unsigned int blkbits = inode->i_blkbits;
810         unsigned long first_block = offset >> blkbits;
811         unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
812         struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
813         bool new = false, boundary = false;
814         u32 bno;
815         int ret;
816         bool create = flags & IOMAP_WRITE;
817 
818         /*
819          * For writes that could fill holes inside i_size on a
820          * DIO_SKIP_HOLES filesystem we forbid block creations: only
821          * overwrites are permitted.
822          */
823         if ((flags & IOMAP_DIRECT) &&
824             (first_block << blkbits) < i_size_read(inode))
825                 create = 0;
826 
827         /*
828          * Writes that span EOF might trigger an IO size update on completion,
829          * so consider them to be dirty for the purposes of O_DSYNC even if
830          * there is no other metadata changes pending or have been made here.
831          */
832         if ((flags & IOMAP_WRITE) && offset + length > i_size_read(inode))
833                 iomap->flags |= IOMAP_F_DIRTY;
834 
835         ret = ext2_get_blocks(inode, first_block, max_blocks,
836                         &bno, &new, &boundary, create);
837         if (ret < 0)
838                 return ret;
839 
840         iomap->flags = 0;
841         iomap->offset = (u64)first_block << blkbits;
842         if (flags & IOMAP_DAX)
843                 iomap->dax_dev = sbi->s_daxdev;
844         else
845                 iomap->bdev = inode->i_sb->s_bdev;
846 
847         if (ret == 0) {
848                 /*
849                  * Switch to buffered-io for writing to holes in a non-extent
850                  * based filesystem to avoid stale data exposure problem.
851                  */
852                 if (!create && (flags & IOMAP_WRITE) && (flags & IOMAP_DIRECT))
853                         return -ENOTBLK;
854                 iomap->type = IOMAP_HOLE;
855                 iomap->addr = IOMAP_NULL_ADDR;
856                 iomap->length = 1 << blkbits;
857         } else {
858                 iomap->type = IOMAP_MAPPED;
859                 iomap->addr = (u64)bno << blkbits;
860                 if (flags & IOMAP_DAX)
861                         iomap->addr += sbi->s_dax_part_off;
862                 iomap->length = (u64)ret << blkbits;
863                 iomap->flags |= IOMAP_F_MERGED;
864         }
865 
866         if (new)
867                 iomap->flags |= IOMAP_F_NEW;
868         return 0;
869 }
870 
871 static int
872 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
873                 ssize_t written, unsigned flags, struct iomap *iomap)
874 {
875         /*
876          * Switch to buffered-io in case of any error.
877          * Blocks allocated can be used by the buffered-io path.
878          */
879         if ((flags & IOMAP_DIRECT) && (flags & IOMAP_WRITE) && written == 0)
880                 return -ENOTBLK;
881 
882         if (iomap->type == IOMAP_MAPPED &&
883             written < length &&
884             (flags & IOMAP_WRITE))
885                 ext2_write_failed(inode->i_mapping, offset + length);
886         return 0;
887 }
888 
889 const struct iomap_ops ext2_iomap_ops = {
890         .iomap_begin            = ext2_iomap_begin,
891         .iomap_end              = ext2_iomap_end,
892 };
893 
894 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
895                 u64 start, u64 len)
896 {
897         int ret;
898 
899         inode_lock(inode);
900         len = min_t(u64, len, i_size_read(inode));
901         ret = iomap_fiemap(inode, fieinfo, start, len, &ext2_iomap_ops);
902         inode_unlock(inode);
903 
904         return ret;
905 }
906 
907 static int ext2_read_folio(struct file *file, struct folio *folio)
908 {
909         return mpage_read_folio(folio, ext2_get_block);
910 }
911 
912 static void ext2_readahead(struct readahead_control *rac)
913 {
914         mpage_readahead(rac, ext2_get_block);
915 }
916 
917 static int
918 ext2_write_begin(struct file *file, struct address_space *mapping,
919                 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
920 {
921         int ret;
922 
923         ret = block_write_begin(mapping, pos, len, pagep, ext2_get_block);
924         if (ret < 0)
925                 ext2_write_failed(mapping, pos + len);
926         return ret;
927 }
928 
929 static int ext2_write_end(struct file *file, struct address_space *mapping,
930                         loff_t pos, unsigned len, unsigned copied,
931                         struct page *page, void *fsdata)
932 {
933         int ret;
934 
935         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
936         if (ret < len)
937                 ext2_write_failed(mapping, pos + len);
938         return ret;
939 }
940 
941 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
942 {
943         return generic_block_bmap(mapping,block,ext2_get_block);
944 }
945 
946 static int
947 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
948 {
949         return mpage_writepages(mapping, wbc, ext2_get_block);
950 }
951 
952 static int
953 ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
954 {
955         struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
956 
957         return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
958 }
959 
960 const struct address_space_operations ext2_aops = {
961         .dirty_folio            = block_dirty_folio,
962         .invalidate_folio       = block_invalidate_folio,
963         .read_folio             = ext2_read_folio,
964         .readahead              = ext2_readahead,
965         .write_begin            = ext2_write_begin,
966         .write_end              = ext2_write_end,
967         .bmap                   = ext2_bmap,
968         .writepages             = ext2_writepages,
969         .migrate_folio          = buffer_migrate_folio,
970         .is_partially_uptodate  = block_is_partially_uptodate,
971         .error_remove_folio     = generic_error_remove_folio,
972 };
973 
974 static const struct address_space_operations ext2_dax_aops = {
975         .writepages             = ext2_dax_writepages,
976         .dirty_folio            = noop_dirty_folio,
977 };
978 
979 /*
980  * Probably it should be a library function... search for first non-zero word
981  * or memcmp with zero_page, whatever is better for particular architecture.
982  * Linus?
983  */
984 static inline int all_zeroes(__le32 *p, __le32 *q)
985 {
986         while (p < q)
987                 if (*p++)
988                         return 0;
989         return 1;
990 }
991 
992 /**
993  *      ext2_find_shared - find the indirect blocks for partial truncation.
994  *      @inode:   inode in question
995  *      @depth:   depth of the affected branch
996  *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
997  *      @chain:   place to store the pointers to partial indirect blocks
998  *      @top:     place to the (detached) top of branch
999  *
1000  *      This is a helper function used by ext2_truncate().
1001  *
1002  *      When we do truncate() we may have to clean the ends of several indirect
1003  *      blocks but leave the blocks themselves alive. Block is partially
1004  *      truncated if some data below the new i_size is referred from it (and
1005  *      it is on the path to the first completely truncated data block, indeed).
1006  *      We have to free the top of that path along with everything to the right
1007  *      of the path. Since no allocation past the truncation point is possible
1008  *      until ext2_truncate() finishes, we may safely do the latter, but top
1009  *      of branch may require special attention - pageout below the truncation
1010  *      point might try to populate it.
1011  *
1012  *      We atomically detach the top of branch from the tree, store the block
1013  *      number of its root in *@top, pointers to buffer_heads of partially
1014  *      truncated blocks - in @chain[].bh and pointers to their last elements
1015  *      that should not be removed - in @chain[].p. Return value is the pointer
1016  *      to last filled element of @chain.
1017  *
1018  *      The work left to caller to do the actual freeing of subtrees:
1019  *              a) free the subtree starting from *@top
1020  *              b) free the subtrees whose roots are stored in
1021  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1022  *              c) free the subtrees growing from the inode past the @chain[0].p
1023  *                      (no partially truncated stuff there).
1024  */
1025 
1026 static Indirect *ext2_find_shared(struct inode *inode,
1027                                 int depth,
1028                                 int offsets[4],
1029                                 Indirect chain[4],
1030                                 __le32 *top)
1031 {
1032         Indirect *partial, *p;
1033         int k, err;
1034 
1035         *top = 0;
1036         for (k = depth; k > 1 && !offsets[k-1]; k--)
1037                 ;
1038         partial = ext2_get_branch(inode, k, offsets, chain, &err);
1039         if (!partial)
1040                 partial = chain + k-1;
1041         /*
1042          * If the branch acquired continuation since we've looked at it -
1043          * fine, it should all survive and (new) top doesn't belong to us.
1044          */
1045         write_lock(&EXT2_I(inode)->i_meta_lock);
1046         if (!partial->key && *partial->p) {
1047                 write_unlock(&EXT2_I(inode)->i_meta_lock);
1048                 goto no_top;
1049         }
1050         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1051                 ;
1052         /*
1053          * OK, we've found the last block that must survive. The rest of our
1054          * branch should be detached before unlocking. However, if that rest
1055          * of branch is all ours and does not grow immediately from the inode
1056          * it's easier to cheat and just decrement partial->p.
1057          */
1058         if (p == chain + k - 1 && p > chain) {
1059                 p->p--;
1060         } else {
1061                 *top = *p->p;
1062                 *p->p = 0;
1063         }
1064         write_unlock(&EXT2_I(inode)->i_meta_lock);
1065 
1066         while(partial > p)
1067         {
1068                 brelse(partial->bh);
1069                 partial--;
1070         }
1071 no_top:
1072         return partial;
1073 }
1074 
1075 /**
1076  *      ext2_free_data - free a list of data blocks
1077  *      @inode: inode we are dealing with
1078  *      @p:     array of block numbers
1079  *      @q:     points immediately past the end of array
1080  *
1081  *      We are freeing all blocks referred from that array (numbers are
1082  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1083  *      appropriately.
1084  */
1085 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1086 {
1087         ext2_fsblk_t block_to_free = 0, count = 0;
1088         ext2_fsblk_t nr;
1089 
1090         for ( ; p < q ; p++) {
1091                 nr = le32_to_cpu(*p);
1092                 if (nr) {
1093                         *p = 0;
1094                         /* accumulate blocks to free if they're contiguous */
1095                         if (count == 0)
1096                                 goto free_this;
1097                         else if (block_to_free == nr - count)
1098                                 count++;
1099                         else {
1100                                 ext2_free_blocks (inode, block_to_free, count);
1101                                 mark_inode_dirty(inode);
1102                         free_this:
1103                                 block_to_free = nr;
1104                                 count = 1;
1105                         }
1106                 }
1107         }
1108         if (count > 0) {
1109                 ext2_free_blocks (inode, block_to_free, count);
1110                 mark_inode_dirty(inode);
1111         }
1112 }
1113 
1114 /**
1115  *      ext2_free_branches - free an array of branches
1116  *      @inode: inode we are dealing with
1117  *      @p:     array of block numbers
1118  *      @q:     pointer immediately past the end of array
1119  *      @depth: depth of the branches to free
1120  *
1121  *      We are freeing all blocks referred from these branches (numbers are
1122  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1123  *      appropriately.
1124  */
1125 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1126 {
1127         struct buffer_head * bh;
1128         ext2_fsblk_t nr;
1129 
1130         if (depth--) {
1131                 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1132                 for ( ; p < q ; p++) {
1133                         nr = le32_to_cpu(*p);
1134                         if (!nr)
1135                                 continue;
1136                         *p = 0;
1137                         bh = sb_bread(inode->i_sb, nr);
1138                         /*
1139                          * A read failure? Report error and clear slot
1140                          * (should be rare).
1141                          */ 
1142                         if (!bh) {
1143                                 ext2_error(inode->i_sb, "ext2_free_branches",
1144                                         "Read failure, inode=%ld, block=%ld",
1145                                         inode->i_ino, nr);
1146                                 continue;
1147                         }
1148                         ext2_free_branches(inode,
1149                                            (__le32*)bh->b_data,
1150                                            (__le32*)bh->b_data + addr_per_block,
1151                                            depth);
1152                         bforget(bh);
1153                         ext2_free_blocks(inode, nr, 1);
1154                         mark_inode_dirty(inode);
1155                 }
1156         } else
1157                 ext2_free_data(inode, p, q);
1158 }
1159 
1160 /* mapping->invalidate_lock must be held when calling this function */
1161 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1162 {
1163         __le32 *i_data = EXT2_I(inode)->i_data;
1164         struct ext2_inode_info *ei = EXT2_I(inode);
1165         int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1166         int offsets[4];
1167         Indirect chain[4];
1168         Indirect *partial;
1169         __le32 nr = 0;
1170         int n;
1171         long iblock;
1172         unsigned blocksize;
1173         blocksize = inode->i_sb->s_blocksize;
1174         iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1175 
1176 #ifdef CONFIG_FS_DAX
1177         WARN_ON(!rwsem_is_locked(&inode->i_mapping->invalidate_lock));
1178 #endif
1179 
1180         n = ext2_block_to_path(inode, iblock, offsets, NULL);
1181         if (n == 0)
1182                 return;
1183 
1184         /*
1185          * From here we block out all ext2_get_block() callers who want to
1186          * modify the block allocation tree.
1187          */
1188         mutex_lock(&ei->truncate_mutex);
1189 
1190         if (n == 1) {
1191                 ext2_free_data(inode, i_data+offsets[0],
1192                                         i_data + EXT2_NDIR_BLOCKS);
1193                 goto do_indirects;
1194         }
1195 
1196         partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1197         /* Kill the top of shared branch (already detached) */
1198         if (nr) {
1199                 if (partial == chain)
1200                         mark_inode_dirty(inode);
1201                 else
1202                         mark_buffer_dirty_inode(partial->bh, inode);
1203                 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1204         }
1205         /* Clear the ends of indirect blocks on the shared branch */
1206         while (partial > chain) {
1207                 ext2_free_branches(inode,
1208                                    partial->p + 1,
1209                                    (__le32*)partial->bh->b_data+addr_per_block,
1210                                    (chain+n-1) - partial);
1211                 mark_buffer_dirty_inode(partial->bh, inode);
1212                 brelse (partial->bh);
1213                 partial--;
1214         }
1215 do_indirects:
1216         /* Kill the remaining (whole) subtrees */
1217         switch (offsets[0]) {
1218                 default:
1219                         nr = i_data[EXT2_IND_BLOCK];
1220                         if (nr) {
1221                                 i_data[EXT2_IND_BLOCK] = 0;
1222                                 mark_inode_dirty(inode);
1223                                 ext2_free_branches(inode, &nr, &nr+1, 1);
1224                         }
1225                         fallthrough;
1226                 case EXT2_IND_BLOCK:
1227                         nr = i_data[EXT2_DIND_BLOCK];
1228                         if (nr) {
1229                                 i_data[EXT2_DIND_BLOCK] = 0;
1230                                 mark_inode_dirty(inode);
1231                                 ext2_free_branches(inode, &nr, &nr+1, 2);
1232                         }
1233                         fallthrough;
1234                 case EXT2_DIND_BLOCK:
1235                         nr = i_data[EXT2_TIND_BLOCK];
1236                         if (nr) {
1237                                 i_data[EXT2_TIND_BLOCK] = 0;
1238                                 mark_inode_dirty(inode);
1239                                 ext2_free_branches(inode, &nr, &nr+1, 3);
1240                         }
1241                         break;
1242                 case EXT2_TIND_BLOCK:
1243                         ;
1244         }
1245 
1246         ext2_discard_reservation(inode);
1247 
1248         mutex_unlock(&ei->truncate_mutex);
1249 }
1250 
1251 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1252 {
1253         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1254             S_ISLNK(inode->i_mode)))
1255                 return;
1256         if (ext2_inode_is_fast_symlink(inode))
1257                 return;
1258 
1259         filemap_invalidate_lock(inode->i_mapping);
1260         __ext2_truncate_blocks(inode, offset);
1261         filemap_invalidate_unlock(inode->i_mapping);
1262 }
1263 
1264 static int ext2_setsize(struct inode *inode, loff_t newsize)
1265 {
1266         int error;
1267 
1268         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1269             S_ISLNK(inode->i_mode)))
1270                 return -EINVAL;
1271         if (ext2_inode_is_fast_symlink(inode))
1272                 return -EINVAL;
1273         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1274                 return -EPERM;
1275 
1276         inode_dio_wait(inode);
1277 
1278         if (IS_DAX(inode))
1279                 error = dax_truncate_page(inode, newsize, NULL,
1280                                           &ext2_iomap_ops);
1281         else
1282                 error = block_truncate_page(inode->i_mapping,
1283                                 newsize, ext2_get_block);
1284         if (error)
1285                 return error;
1286 
1287         filemap_invalidate_lock(inode->i_mapping);
1288         truncate_setsize(inode, newsize);
1289         __ext2_truncate_blocks(inode, newsize);
1290         filemap_invalidate_unlock(inode->i_mapping);
1291 
1292         inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1293         if (inode_needs_sync(inode)) {
1294                 sync_mapping_buffers(inode->i_mapping);
1295                 sync_inode_metadata(inode, 1);
1296         } else {
1297                 mark_inode_dirty(inode);
1298         }
1299 
1300         return 0;
1301 }
1302 
1303 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1304                                         struct buffer_head **p)
1305 {
1306         struct buffer_head * bh;
1307         unsigned long block_group;
1308         unsigned long block;
1309         unsigned long offset;
1310         struct ext2_group_desc * gdp;
1311 
1312         *p = NULL;
1313         if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1314             ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1315                 goto Einval;
1316 
1317         block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1318         gdp = ext2_get_group_desc(sb, block_group, NULL);
1319         if (!gdp)
1320                 goto Egdp;
1321         /*
1322          * Figure out the offset within the block group inode table
1323          */
1324         offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1325         block = le32_to_cpu(gdp->bg_inode_table) +
1326                 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1327         if (!(bh = sb_bread(sb, block)))
1328                 goto Eio;
1329 
1330         *p = bh;
1331         offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1332         return (struct ext2_inode *) (bh->b_data + offset);
1333 
1334 Einval:
1335         ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1336                    (unsigned long) ino);
1337         return ERR_PTR(-EINVAL);
1338 Eio:
1339         ext2_error(sb, "ext2_get_inode",
1340                    "unable to read inode block - inode=%lu, block=%lu",
1341                    (unsigned long) ino, block);
1342 Egdp:
1343         return ERR_PTR(-EIO);
1344 }
1345 
1346 void ext2_set_inode_flags(struct inode *inode)
1347 {
1348         unsigned int flags = EXT2_I(inode)->i_flags;
1349 
1350         inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1351                                 S_DIRSYNC | S_DAX);
1352         if (flags & EXT2_SYNC_FL)
1353                 inode->i_flags |= S_SYNC;
1354         if (flags & EXT2_APPEND_FL)
1355                 inode->i_flags |= S_APPEND;
1356         if (flags & EXT2_IMMUTABLE_FL)
1357                 inode->i_flags |= S_IMMUTABLE;
1358         if (flags & EXT2_NOATIME_FL)
1359                 inode->i_flags |= S_NOATIME;
1360         if (flags & EXT2_DIRSYNC_FL)
1361                 inode->i_flags |= S_DIRSYNC;
1362         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1363                 inode->i_flags |= S_DAX;
1364 }
1365 
1366 void ext2_set_file_ops(struct inode *inode)
1367 {
1368         inode->i_op = &ext2_file_inode_operations;
1369         inode->i_fop = &ext2_file_operations;
1370         if (IS_DAX(inode))
1371                 inode->i_mapping->a_ops = &ext2_dax_aops;
1372         else
1373                 inode->i_mapping->a_ops = &ext2_aops;
1374 }
1375 
1376 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1377 {
1378         struct ext2_inode_info *ei;
1379         struct buffer_head * bh = NULL;
1380         struct ext2_inode *raw_inode;
1381         struct inode *inode;
1382         long ret = -EIO;
1383         int n;
1384         uid_t i_uid;
1385         gid_t i_gid;
1386 
1387         inode = iget_locked(sb, ino);
1388         if (!inode)
1389                 return ERR_PTR(-ENOMEM);
1390         if (!(inode->i_state & I_NEW))
1391                 return inode;
1392 
1393         ei = EXT2_I(inode);
1394         ei->i_block_alloc_info = NULL;
1395 
1396         raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1397         if (IS_ERR(raw_inode)) {
1398                 ret = PTR_ERR(raw_inode);
1399                 goto bad_inode;
1400         }
1401 
1402         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1403         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1404         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1405         if (!(test_opt (inode->i_sb, NO_UID32))) {
1406                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1407                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1408         }
1409         i_uid_write(inode, i_uid);
1410         i_gid_write(inode, i_gid);
1411         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1412         inode->i_size = le32_to_cpu(raw_inode->i_size);
1413         inode_set_atime(inode, (signed)le32_to_cpu(raw_inode->i_atime), 0);
1414         inode_set_ctime(inode, (signed)le32_to_cpu(raw_inode->i_ctime), 0);
1415         inode_set_mtime(inode, (signed)le32_to_cpu(raw_inode->i_mtime), 0);
1416         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1417         /* We now have enough fields to check if the inode was active or not.
1418          * This is needed because nfsd might try to access dead inodes
1419          * the test is that same one that e2fsck uses
1420          * NeilBrown 1999oct15
1421          */
1422         if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1423                 /* this inode is deleted */
1424                 ret = -ESTALE;
1425                 goto bad_inode;
1426         }
1427         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1428         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1429         ext2_set_inode_flags(inode);
1430         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1431         ei->i_frag_no = raw_inode->i_frag;
1432         ei->i_frag_size = raw_inode->i_fsize;
1433         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1434         ei->i_dir_acl = 0;
1435 
1436         if (ei->i_file_acl &&
1437             !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1438                 ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1439                            ei->i_file_acl);
1440                 ret = -EFSCORRUPTED;
1441                 goto bad_inode;
1442         }
1443 
1444         if (S_ISREG(inode->i_mode))
1445                 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1446         else
1447                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1448         if (i_size_read(inode) < 0) {
1449                 ret = -EFSCORRUPTED;
1450                 goto bad_inode;
1451         }
1452         ei->i_dtime = 0;
1453         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1454         ei->i_state = 0;
1455         ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1456         ei->i_dir_start_lookup = 0;
1457 
1458         /*
1459          * NOTE! The in-memory inode i_data array is in little-endian order
1460          * even on big-endian machines: we do NOT byteswap the block numbers!
1461          */
1462         for (n = 0; n < EXT2_N_BLOCKS; n++)
1463                 ei->i_data[n] = raw_inode->i_block[n];
1464 
1465         if (S_ISREG(inode->i_mode)) {
1466                 ext2_set_file_ops(inode);
1467         } else if (S_ISDIR(inode->i_mode)) {
1468                 inode->i_op = &ext2_dir_inode_operations;
1469                 inode->i_fop = &ext2_dir_operations;
1470                 inode->i_mapping->a_ops = &ext2_aops;
1471         } else if (S_ISLNK(inode->i_mode)) {
1472                 if (ext2_inode_is_fast_symlink(inode)) {
1473                         inode->i_link = (char *)ei->i_data;
1474                         inode->i_op = &ext2_fast_symlink_inode_operations;
1475                         nd_terminate_link(ei->i_data, inode->i_size,
1476                                 sizeof(ei->i_data) - 1);
1477                 } else {
1478                         inode->i_op = &ext2_symlink_inode_operations;
1479                         inode_nohighmem(inode);
1480                         inode->i_mapping->a_ops = &ext2_aops;
1481                 }
1482         } else {
1483                 inode->i_op = &ext2_special_inode_operations;
1484                 if (raw_inode->i_block[0])
1485                         init_special_inode(inode, inode->i_mode,
1486                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1487                 else 
1488                         init_special_inode(inode, inode->i_mode,
1489                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1490         }
1491         brelse (bh);
1492         unlock_new_inode(inode);
1493         return inode;
1494         
1495 bad_inode:
1496         brelse(bh);
1497         iget_failed(inode);
1498         return ERR_PTR(ret);
1499 }
1500 
1501 static int __ext2_write_inode(struct inode *inode, int do_sync)
1502 {
1503         struct ext2_inode_info *ei = EXT2_I(inode);
1504         struct super_block *sb = inode->i_sb;
1505         ino_t ino = inode->i_ino;
1506         uid_t uid = i_uid_read(inode);
1507         gid_t gid = i_gid_read(inode);
1508         struct buffer_head * bh;
1509         struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1510         int n;
1511         int err = 0;
1512 
1513         if (IS_ERR(raw_inode))
1514                 return -EIO;
1515 
1516         /* For fields not tracking in the in-memory inode,
1517          * initialise them to zero for new inodes. */
1518         if (ei->i_state & EXT2_STATE_NEW)
1519                 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1520 
1521         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1522         if (!(test_opt(sb, NO_UID32))) {
1523                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1524                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1525 /*
1526  * Fix up interoperability with old kernels. Otherwise, old inodes get
1527  * re-used with the upper 16 bits of the uid/gid intact
1528  */
1529                 if (!ei->i_dtime) {
1530                         raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1531                         raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1532                 } else {
1533                         raw_inode->i_uid_high = 0;
1534                         raw_inode->i_gid_high = 0;
1535                 }
1536         } else {
1537                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1538                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1539                 raw_inode->i_uid_high = 0;
1540                 raw_inode->i_gid_high = 0;
1541         }
1542         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1543         raw_inode->i_size = cpu_to_le32(inode->i_size);
1544         raw_inode->i_atime = cpu_to_le32(inode_get_atime_sec(inode));
1545         raw_inode->i_ctime = cpu_to_le32(inode_get_ctime_sec(inode));
1546         raw_inode->i_mtime = cpu_to_le32(inode_get_mtime_sec(inode));
1547 
1548         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1549         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1550         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1551         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1552         raw_inode->i_frag = ei->i_frag_no;
1553         raw_inode->i_fsize = ei->i_frag_size;
1554         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1555         if (!S_ISREG(inode->i_mode))
1556                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1557         else {
1558                 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1559                 if (inode->i_size > 0x7fffffffULL) {
1560                         if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1561                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1562                             EXT2_SB(sb)->s_es->s_rev_level ==
1563                                         cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1564                                /* If this is the first large file
1565                                 * created, add a flag to the superblock.
1566                                 */
1567                                 spin_lock(&EXT2_SB(sb)->s_lock);
1568                                 ext2_update_dynamic_rev(sb);
1569                                 EXT2_SET_RO_COMPAT_FEATURE(sb,
1570                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1571                                 spin_unlock(&EXT2_SB(sb)->s_lock);
1572                                 ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1573                         }
1574                 }
1575         }
1576         
1577         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1578         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1579                 if (old_valid_dev(inode->i_rdev)) {
1580                         raw_inode->i_block[0] =
1581                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
1582                         raw_inode->i_block[1] = 0;
1583                 } else {
1584                         raw_inode->i_block[0] = 0;
1585                         raw_inode->i_block[1] =
1586                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
1587                         raw_inode->i_block[2] = 0;
1588                 }
1589         } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1590                 raw_inode->i_block[n] = ei->i_data[n];
1591         mark_buffer_dirty(bh);
1592         if (do_sync) {
1593                 sync_dirty_buffer(bh);
1594                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1595                         printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1596                                 sb->s_id, (unsigned long) ino);
1597                         err = -EIO;
1598                 }
1599         }
1600         ei->i_state &= ~EXT2_STATE_NEW;
1601         brelse (bh);
1602         return err;
1603 }
1604 
1605 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1606 {
1607         return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1608 }
1609 
1610 int ext2_getattr(struct mnt_idmap *idmap, const struct path *path,
1611                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
1612 {
1613         struct inode *inode = d_inode(path->dentry);
1614         struct ext2_inode_info *ei = EXT2_I(inode);
1615         unsigned int flags;
1616 
1617         flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1618         if (flags & EXT2_APPEND_FL)
1619                 stat->attributes |= STATX_ATTR_APPEND;
1620         if (flags & EXT2_COMPR_FL)
1621                 stat->attributes |= STATX_ATTR_COMPRESSED;
1622         if (flags & EXT2_IMMUTABLE_FL)
1623                 stat->attributes |= STATX_ATTR_IMMUTABLE;
1624         if (flags & EXT2_NODUMP_FL)
1625                 stat->attributes |= STATX_ATTR_NODUMP;
1626         stat->attributes_mask |= (STATX_ATTR_APPEND |
1627                         STATX_ATTR_COMPRESSED |
1628                         STATX_ATTR_ENCRYPTED |
1629                         STATX_ATTR_IMMUTABLE |
1630                         STATX_ATTR_NODUMP);
1631 
1632         generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1633         return 0;
1634 }
1635 
1636 int ext2_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1637                  struct iattr *iattr)
1638 {
1639         struct inode *inode = d_inode(dentry);
1640         int error;
1641 
1642         error = setattr_prepare(&nop_mnt_idmap, dentry, iattr);
1643         if (error)
1644                 return error;
1645 
1646         if (is_quota_modification(&nop_mnt_idmap, inode, iattr)) {
1647                 error = dquot_initialize(inode);
1648                 if (error)
1649                         return error;
1650         }
1651         if (i_uid_needs_update(&nop_mnt_idmap, iattr, inode) ||
1652             i_gid_needs_update(&nop_mnt_idmap, iattr, inode)) {
1653                 error = dquot_transfer(&nop_mnt_idmap, inode, iattr);
1654                 if (error)
1655                         return error;
1656         }
1657         if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1658                 error = ext2_setsize(inode, iattr->ia_size);
1659                 if (error)
1660                         return error;
1661         }
1662         setattr_copy(&nop_mnt_idmap, inode, iattr);
1663         if (iattr->ia_valid & ATTR_MODE)
1664                 error = posix_acl_chmod(&nop_mnt_idmap, dentry, inode->i_mode);
1665         mark_inode_dirty(inode);
1666 
1667         return error;
1668 }
1669 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php