~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ext4/extents_status.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  fs/ext4/extents_status.c
  4  *
  5  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
  6  * Modified by
  7  *      Allison Henderson <achender@linux.vnet.ibm.com>
  8  *      Hugh Dickins <hughd@google.com>
  9  *      Zheng Liu <wenqing.lz@taobao.com>
 10  *
 11  * Ext4 extents status tree core functions.
 12  */
 13 #include <linux/list_sort.h>
 14 #include <linux/proc_fs.h>
 15 #include <linux/seq_file.h>
 16 #include "ext4.h"
 17 
 18 #include <trace/events/ext4.h>
 19 
 20 /*
 21  * According to previous discussion in Ext4 Developer Workshop, we
 22  * will introduce a new structure called io tree to track all extent
 23  * status in order to solve some problems that we have met
 24  * (e.g. Reservation space warning), and provide extent-level locking.
 25  * Delay extent tree is the first step to achieve this goal.  It is
 26  * original built by Yongqiang Yang.  At that time it is called delay
 27  * extent tree, whose goal is only track delayed extents in memory to
 28  * simplify the implementation of fiemap and bigalloc, and introduce
 29  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
 30  * delay extent tree at the first commit.  But for better understand
 31  * what it does, it has been rename to extent status tree.
 32  *
 33  * Step1:
 34  * Currently the first step has been done.  All delayed extents are
 35  * tracked in the tree.  It maintains the delayed extent when a delayed
 36  * allocation is issued, and the delayed extent is written out or
 37  * invalidated.  Therefore the implementation of fiemap and bigalloc
 38  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
 39  *
 40  * The following comment describes the implemenmtation of extent
 41  * status tree and future works.
 42  *
 43  * Step2:
 44  * In this step all extent status are tracked by extent status tree.
 45  * Thus, we can first try to lookup a block mapping in this tree before
 46  * finding it in extent tree.  Hence, single extent cache can be removed
 47  * because extent status tree can do a better job.  Extents in status
 48  * tree are loaded on-demand.  Therefore, the extent status tree may not
 49  * contain all of the extents in a file.  Meanwhile we define a shrinker
 50  * to reclaim memory from extent status tree because fragmented extent
 51  * tree will make status tree cost too much memory.  written/unwritten/-
 52  * hole extents in the tree will be reclaimed by this shrinker when we
 53  * are under high memory pressure.  Delayed extents will not be
 54  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
 55  */
 56 
 57 /*
 58  * Extent status tree implementation for ext4.
 59  *
 60  *
 61  * ==========================================================================
 62  * Extent status tree tracks all extent status.
 63  *
 64  * 1. Why we need to implement extent status tree?
 65  *
 66  * Without extent status tree, ext4 identifies a delayed extent by looking
 67  * up page cache, this has several deficiencies - complicated, buggy,
 68  * and inefficient code.
 69  *
 70  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
 71  * block or a range of blocks are belonged to a delayed extent.
 72  *
 73  * Let us have a look at how they do without extent status tree.
 74  *   -- FIEMAP
 75  *      FIEMAP looks up page cache to identify delayed allocations from holes.
 76  *
 77  *   -- SEEK_HOLE/DATA
 78  *      SEEK_HOLE/DATA has the same problem as FIEMAP.
 79  *
 80  *   -- bigalloc
 81  *      bigalloc looks up page cache to figure out if a block is
 82  *      already under delayed allocation or not to determine whether
 83  *      quota reserving is needed for the cluster.
 84  *
 85  *   -- writeout
 86  *      Writeout looks up whole page cache to see if a buffer is
 87  *      mapped, If there are not very many delayed buffers, then it is
 88  *      time consuming.
 89  *
 90  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
 91  * bigalloc and writeout can figure out if a block or a range of
 92  * blocks is under delayed allocation(belonged to a delayed extent) or
 93  * not by searching the extent tree.
 94  *
 95  *
 96  * ==========================================================================
 97  * 2. Ext4 extent status tree impelmentation
 98  *
 99  *   -- extent
100  *      A extent is a range of blocks which are contiguous logically and
101  *      physically.  Unlike extent in extent tree, this extent in ext4 is
102  *      a in-memory struct, there is no corresponding on-disk data.  There
103  *      is no limit on length of extent, so an extent can contain as many
104  *      blocks as they are contiguous logically and physically.
105  *
106  *   -- extent status tree
107  *      Every inode has an extent status tree and all allocation blocks
108  *      are added to the tree with different status.  The extent in the
109  *      tree are ordered by logical block no.
110  *
111  *   -- operations on a extent status tree
112  *      There are three important operations on a delayed extent tree: find
113  *      next extent, adding a extent(a range of blocks) and removing a extent.
114  *
115  *   -- race on a extent status tree
116  *      Extent status tree is protected by inode->i_es_lock.
117  *
118  *   -- memory consumption
119  *      Fragmented extent tree will make extent status tree cost too much
120  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121  *      the tree under a heavy memory pressure.
122  *
123  *
124  * ==========================================================================
125  * 3. Performance analysis
126  *
127  *   -- overhead
128  *      1. There is a cache extent for write access, so if writes are
129  *      not very random, adding space operaions are in O(1) time.
130  *
131  *   -- gain
132  *      2. Code is much simpler, more readable, more maintainable and
133  *      more efficient.
134  *
135  *
136  * ==========================================================================
137  * 4. TODO list
138  *
139  *   -- Refactor delayed space reservation
140  *
141  *   -- Extent-level locking
142  */
143 
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146 
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148                               struct extent_status *prealloc);
149 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150                               ext4_lblk_t end, int *reserved,
151                               struct extent_status *prealloc);
152 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154                        struct ext4_inode_info *locked_ei);
155 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156                             ext4_lblk_t len,
157                             struct pending_reservation **prealloc);
158 
159 int __init ext4_init_es(void)
160 {
161         ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
162         if (ext4_es_cachep == NULL)
163                 return -ENOMEM;
164         return 0;
165 }
166 
167 void ext4_exit_es(void)
168 {
169         kmem_cache_destroy(ext4_es_cachep);
170 }
171 
172 void ext4_es_init_tree(struct ext4_es_tree *tree)
173 {
174         tree->root = RB_ROOT;
175         tree->cache_es = NULL;
176 }
177 
178 #ifdef ES_DEBUG__
179 static void ext4_es_print_tree(struct inode *inode)
180 {
181         struct ext4_es_tree *tree;
182         struct rb_node *node;
183 
184         printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
185         tree = &EXT4_I(inode)->i_es_tree;
186         node = rb_first(&tree->root);
187         while (node) {
188                 struct extent_status *es;
189                 es = rb_entry(node, struct extent_status, rb_node);
190                 printk(KERN_DEBUG " [%u/%u) %llu %x",
191                        es->es_lblk, es->es_len,
192                        ext4_es_pblock(es), ext4_es_status(es));
193                 node = rb_next(node);
194         }
195         printk(KERN_DEBUG "\n");
196 }
197 #else
198 #define ext4_es_print_tree(inode)
199 #endif
200 
201 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
202 {
203         BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
204         return es->es_lblk + es->es_len - 1;
205 }
206 
207 /*
208  * search through the tree for an delayed extent with a given offset.  If
209  * it can't be found, try to find next extent.
210  */
211 static struct extent_status *__es_tree_search(struct rb_root *root,
212                                               ext4_lblk_t lblk)
213 {
214         struct rb_node *node = root->rb_node;
215         struct extent_status *es = NULL;
216 
217         while (node) {
218                 es = rb_entry(node, struct extent_status, rb_node);
219                 if (lblk < es->es_lblk)
220                         node = node->rb_left;
221                 else if (lblk > ext4_es_end(es))
222                         node = node->rb_right;
223                 else
224                         return es;
225         }
226 
227         if (es && lblk < es->es_lblk)
228                 return es;
229 
230         if (es && lblk > ext4_es_end(es)) {
231                 node = rb_next(&es->rb_node);
232                 return node ? rb_entry(node, struct extent_status, rb_node) :
233                               NULL;
234         }
235 
236         return NULL;
237 }
238 
239 /*
240  * ext4_es_find_extent_range - find extent with specified status within block
241  *                             range or next extent following block range in
242  *                             extents status tree
243  *
244  * @inode - file containing the range
245  * @matching_fn - pointer to function that matches extents with desired status
246  * @lblk - logical block defining start of range
247  * @end - logical block defining end of range
248  * @es - extent found, if any
249  *
250  * Find the first extent within the block range specified by @lblk and @end
251  * in the extents status tree that satisfies @matching_fn.  If a match
252  * is found, it's returned in @es.  If not, and a matching extent is found
253  * beyond the block range, it's returned in @es.  If no match is found, an
254  * extent is returned in @es whose es_lblk, es_len, and es_pblk components
255  * are 0.
256  */
257 static void __es_find_extent_range(struct inode *inode,
258                                    int (*matching_fn)(struct extent_status *es),
259                                    ext4_lblk_t lblk, ext4_lblk_t end,
260                                    struct extent_status *es)
261 {
262         struct ext4_es_tree *tree = NULL;
263         struct extent_status *es1 = NULL;
264         struct rb_node *node;
265 
266         WARN_ON(es == NULL);
267         WARN_ON(end < lblk);
268 
269         tree = &EXT4_I(inode)->i_es_tree;
270 
271         /* see if the extent has been cached */
272         es->es_lblk = es->es_len = es->es_pblk = 0;
273         es1 = READ_ONCE(tree->cache_es);
274         if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
275                 es_debug("%u cached by [%u/%u) %llu %x\n",
276                          lblk, es1->es_lblk, es1->es_len,
277                          ext4_es_pblock(es1), ext4_es_status(es1));
278                 goto out;
279         }
280 
281         es1 = __es_tree_search(&tree->root, lblk);
282 
283 out:
284         if (es1 && !matching_fn(es1)) {
285                 while ((node = rb_next(&es1->rb_node)) != NULL) {
286                         es1 = rb_entry(node, struct extent_status, rb_node);
287                         if (es1->es_lblk > end) {
288                                 es1 = NULL;
289                                 break;
290                         }
291                         if (matching_fn(es1))
292                                 break;
293                 }
294         }
295 
296         if (es1 && matching_fn(es1)) {
297                 WRITE_ONCE(tree->cache_es, es1);
298                 es->es_lblk = es1->es_lblk;
299                 es->es_len = es1->es_len;
300                 es->es_pblk = es1->es_pblk;
301         }
302 
303 }
304 
305 /*
306  * Locking for __es_find_extent_range() for external use
307  */
308 void ext4_es_find_extent_range(struct inode *inode,
309                                int (*matching_fn)(struct extent_status *es),
310                                ext4_lblk_t lblk, ext4_lblk_t end,
311                                struct extent_status *es)
312 {
313         es->es_lblk = es->es_len = es->es_pblk = 0;
314 
315         if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
316                 return;
317 
318         trace_ext4_es_find_extent_range_enter(inode, lblk);
319 
320         read_lock(&EXT4_I(inode)->i_es_lock);
321         __es_find_extent_range(inode, matching_fn, lblk, end, es);
322         read_unlock(&EXT4_I(inode)->i_es_lock);
323 
324         trace_ext4_es_find_extent_range_exit(inode, es);
325 }
326 
327 /*
328  * __es_scan_range - search block range for block with specified status
329  *                   in extents status tree
330  *
331  * @inode - file containing the range
332  * @matching_fn - pointer to function that matches extents with desired status
333  * @lblk - logical block defining start of range
334  * @end - logical block defining end of range
335  *
336  * Returns true if at least one block in the specified block range satisfies
337  * the criterion specified by @matching_fn, and false if not.  If at least
338  * one extent has the specified status, then there is at least one block
339  * in the cluster with that status.  Should only be called by code that has
340  * taken i_es_lock.
341  */
342 static bool __es_scan_range(struct inode *inode,
343                             int (*matching_fn)(struct extent_status *es),
344                             ext4_lblk_t start, ext4_lblk_t end)
345 {
346         struct extent_status es;
347 
348         __es_find_extent_range(inode, matching_fn, start, end, &es);
349         if (es.es_len == 0)
350                 return false;   /* no matching extent in the tree */
351         else if (es.es_lblk <= start &&
352                  start < es.es_lblk + es.es_len)
353                 return true;
354         else if (start <= es.es_lblk && es.es_lblk <= end)
355                 return true;
356         else
357                 return false;
358 }
359 /*
360  * Locking for __es_scan_range() for external use
361  */
362 bool ext4_es_scan_range(struct inode *inode,
363                         int (*matching_fn)(struct extent_status *es),
364                         ext4_lblk_t lblk, ext4_lblk_t end)
365 {
366         bool ret;
367 
368         if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
369                 return false;
370 
371         read_lock(&EXT4_I(inode)->i_es_lock);
372         ret = __es_scan_range(inode, matching_fn, lblk, end);
373         read_unlock(&EXT4_I(inode)->i_es_lock);
374 
375         return ret;
376 }
377 
378 /*
379  * __es_scan_clu - search cluster for block with specified status in
380  *                 extents status tree
381  *
382  * @inode - file containing the cluster
383  * @matching_fn - pointer to function that matches extents with desired status
384  * @lblk - logical block in cluster to be searched
385  *
386  * Returns true if at least one extent in the cluster containing @lblk
387  * satisfies the criterion specified by @matching_fn, and false if not.  If at
388  * least one extent has the specified status, then there is at least one block
389  * in the cluster with that status.  Should only be called by code that has
390  * taken i_es_lock.
391  */
392 static bool __es_scan_clu(struct inode *inode,
393                           int (*matching_fn)(struct extent_status *es),
394                           ext4_lblk_t lblk)
395 {
396         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
397         ext4_lblk_t lblk_start, lblk_end;
398 
399         lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
400         lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
401 
402         return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
403 }
404 
405 /*
406  * Locking for __es_scan_clu() for external use
407  */
408 bool ext4_es_scan_clu(struct inode *inode,
409                       int (*matching_fn)(struct extent_status *es),
410                       ext4_lblk_t lblk)
411 {
412         bool ret;
413 
414         if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
415                 return false;
416 
417         read_lock(&EXT4_I(inode)->i_es_lock);
418         ret = __es_scan_clu(inode, matching_fn, lblk);
419         read_unlock(&EXT4_I(inode)->i_es_lock);
420 
421         return ret;
422 }
423 
424 static void ext4_es_list_add(struct inode *inode)
425 {
426         struct ext4_inode_info *ei = EXT4_I(inode);
427         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
428 
429         if (!list_empty(&ei->i_es_list))
430                 return;
431 
432         spin_lock(&sbi->s_es_lock);
433         if (list_empty(&ei->i_es_list)) {
434                 list_add_tail(&ei->i_es_list, &sbi->s_es_list);
435                 sbi->s_es_nr_inode++;
436         }
437         spin_unlock(&sbi->s_es_lock);
438 }
439 
440 static void ext4_es_list_del(struct inode *inode)
441 {
442         struct ext4_inode_info *ei = EXT4_I(inode);
443         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
444 
445         spin_lock(&sbi->s_es_lock);
446         if (!list_empty(&ei->i_es_list)) {
447                 list_del_init(&ei->i_es_list);
448                 sbi->s_es_nr_inode--;
449                 WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
450         }
451         spin_unlock(&sbi->s_es_lock);
452 }
453 
454 static inline struct pending_reservation *__alloc_pending(bool nofail)
455 {
456         if (!nofail)
457                 return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
458 
459         return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL);
460 }
461 
462 static inline void __free_pending(struct pending_reservation *pr)
463 {
464         kmem_cache_free(ext4_pending_cachep, pr);
465 }
466 
467 /*
468  * Returns true if we cannot fail to allocate memory for this extent_status
469  * entry and cannot reclaim it until its status changes.
470  */
471 static inline bool ext4_es_must_keep(struct extent_status *es)
472 {
473         /* fiemap, bigalloc, and seek_data/hole need to use it. */
474         if (ext4_es_is_delayed(es))
475                 return true;
476 
477         return false;
478 }
479 
480 static inline struct extent_status *__es_alloc_extent(bool nofail)
481 {
482         if (!nofail)
483                 return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
484 
485         return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
486 }
487 
488 static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
489                 ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
490 {
491         es->es_lblk = lblk;
492         es->es_len = len;
493         es->es_pblk = pblk;
494 
495         /* We never try to reclaim a must kept extent, so we don't count it. */
496         if (!ext4_es_must_keep(es)) {
497                 if (!EXT4_I(inode)->i_es_shk_nr++)
498                         ext4_es_list_add(inode);
499                 percpu_counter_inc(&EXT4_SB(inode->i_sb)->
500                                         s_es_stats.es_stats_shk_cnt);
501         }
502 
503         EXT4_I(inode)->i_es_all_nr++;
504         percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
505 }
506 
507 static inline void __es_free_extent(struct extent_status *es)
508 {
509         kmem_cache_free(ext4_es_cachep, es);
510 }
511 
512 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
513 {
514         EXT4_I(inode)->i_es_all_nr--;
515         percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
516 
517         /* Decrease the shrink counter when we can reclaim the extent. */
518         if (!ext4_es_must_keep(es)) {
519                 BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
520                 if (!--EXT4_I(inode)->i_es_shk_nr)
521                         ext4_es_list_del(inode);
522                 percpu_counter_dec(&EXT4_SB(inode->i_sb)->
523                                         s_es_stats.es_stats_shk_cnt);
524         }
525 
526         __es_free_extent(es);
527 }
528 
529 /*
530  * Check whether or not two extents can be merged
531  * Condition:
532  *  - logical block number is contiguous
533  *  - physical block number is contiguous
534  *  - status is equal
535  */
536 static int ext4_es_can_be_merged(struct extent_status *es1,
537                                  struct extent_status *es2)
538 {
539         if (ext4_es_type(es1) != ext4_es_type(es2))
540                 return 0;
541 
542         if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
543                 pr_warn("ES assertion failed when merging extents. "
544                         "The sum of lengths of es1 (%d) and es2 (%d) "
545                         "is bigger than allowed file size (%d)\n",
546                         es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
547                 WARN_ON(1);
548                 return 0;
549         }
550 
551         if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
552                 return 0;
553 
554         if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
555             (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
556                 return 1;
557 
558         if (ext4_es_is_hole(es1))
559                 return 1;
560 
561         /* we need to check delayed extent is without unwritten status */
562         if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
563                 return 1;
564 
565         return 0;
566 }
567 
568 static struct extent_status *
569 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
570 {
571         struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
572         struct extent_status *es1;
573         struct rb_node *node;
574 
575         node = rb_prev(&es->rb_node);
576         if (!node)
577                 return es;
578 
579         es1 = rb_entry(node, struct extent_status, rb_node);
580         if (ext4_es_can_be_merged(es1, es)) {
581                 es1->es_len += es->es_len;
582                 if (ext4_es_is_referenced(es))
583                         ext4_es_set_referenced(es1);
584                 rb_erase(&es->rb_node, &tree->root);
585                 ext4_es_free_extent(inode, es);
586                 es = es1;
587         }
588 
589         return es;
590 }
591 
592 static struct extent_status *
593 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
594 {
595         struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
596         struct extent_status *es1;
597         struct rb_node *node;
598 
599         node = rb_next(&es->rb_node);
600         if (!node)
601                 return es;
602 
603         es1 = rb_entry(node, struct extent_status, rb_node);
604         if (ext4_es_can_be_merged(es, es1)) {
605                 es->es_len += es1->es_len;
606                 if (ext4_es_is_referenced(es1))
607                         ext4_es_set_referenced(es);
608                 rb_erase(node, &tree->root);
609                 ext4_es_free_extent(inode, es1);
610         }
611 
612         return es;
613 }
614 
615 #ifdef ES_AGGRESSIVE_TEST
616 #include "ext4_extents.h"       /* Needed when ES_AGGRESSIVE_TEST is defined */
617 
618 static void ext4_es_insert_extent_ext_check(struct inode *inode,
619                                             struct extent_status *es)
620 {
621         struct ext4_ext_path *path = NULL;
622         struct ext4_extent *ex;
623         ext4_lblk_t ee_block;
624         ext4_fsblk_t ee_start;
625         unsigned short ee_len;
626         int depth, ee_status, es_status;
627 
628         path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
629         if (IS_ERR(path))
630                 return;
631 
632         depth = ext_depth(inode);
633         ex = path[depth].p_ext;
634 
635         if (ex) {
636 
637                 ee_block = le32_to_cpu(ex->ee_block);
638                 ee_start = ext4_ext_pblock(ex);
639                 ee_len = ext4_ext_get_actual_len(ex);
640 
641                 ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
642                 es_status = ext4_es_is_unwritten(es) ? 1 : 0;
643 
644                 /*
645                  * Make sure ex and es are not overlap when we try to insert
646                  * a delayed/hole extent.
647                  */
648                 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
649                         if (in_range(es->es_lblk, ee_block, ee_len)) {
650                                 pr_warn("ES insert assertion failed for "
651                                         "inode: %lu we can find an extent "
652                                         "at block [%d/%d/%llu/%c], but we "
653                                         "want to add a delayed/hole extent "
654                                         "[%d/%d/%llu/%x]\n",
655                                         inode->i_ino, ee_block, ee_len,
656                                         ee_start, ee_status ? 'u' : 'w',
657                                         es->es_lblk, es->es_len,
658                                         ext4_es_pblock(es), ext4_es_status(es));
659                         }
660                         goto out;
661                 }
662 
663                 /*
664                  * We don't check ee_block == es->es_lblk, etc. because es
665                  * might be a part of whole extent, vice versa.
666                  */
667                 if (es->es_lblk < ee_block ||
668                     ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
669                         pr_warn("ES insert assertion failed for inode: %lu "
670                                 "ex_status [%d/%d/%llu/%c] != "
671                                 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
672                                 ee_block, ee_len, ee_start,
673                                 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
674                                 ext4_es_pblock(es), es_status ? 'u' : 'w');
675                         goto out;
676                 }
677 
678                 if (ee_status ^ es_status) {
679                         pr_warn("ES insert assertion failed for inode: %lu "
680                                 "ex_status [%d/%d/%llu/%c] != "
681                                 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
682                                 ee_block, ee_len, ee_start,
683                                 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
684                                 ext4_es_pblock(es), es_status ? 'u' : 'w');
685                 }
686         } else {
687                 /*
688                  * We can't find an extent on disk.  So we need to make sure
689                  * that we don't want to add an written/unwritten extent.
690                  */
691                 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
692                         pr_warn("ES insert assertion failed for inode: %lu "
693                                 "can't find an extent at block %d but we want "
694                                 "to add a written/unwritten extent "
695                                 "[%d/%d/%llu/%x]\n", inode->i_ino,
696                                 es->es_lblk, es->es_lblk, es->es_len,
697                                 ext4_es_pblock(es), ext4_es_status(es));
698                 }
699         }
700 out:
701         ext4_free_ext_path(path);
702 }
703 
704 static void ext4_es_insert_extent_ind_check(struct inode *inode,
705                                             struct extent_status *es)
706 {
707         struct ext4_map_blocks map;
708         int retval;
709 
710         /*
711          * Here we call ext4_ind_map_blocks to lookup a block mapping because
712          * 'Indirect' structure is defined in indirect.c.  So we couldn't
713          * access direct/indirect tree from outside.  It is too dirty to define
714          * this function in indirect.c file.
715          */
716 
717         map.m_lblk = es->es_lblk;
718         map.m_len = es->es_len;
719 
720         retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
721         if (retval > 0) {
722                 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
723                         /*
724                          * We want to add a delayed/hole extent but this
725                          * block has been allocated.
726                          */
727                         pr_warn("ES insert assertion failed for inode: %lu "
728                                 "We can find blocks but we want to add a "
729                                 "delayed/hole extent [%d/%d/%llu/%x]\n",
730                                 inode->i_ino, es->es_lblk, es->es_len,
731                                 ext4_es_pblock(es), ext4_es_status(es));
732                         return;
733                 } else if (ext4_es_is_written(es)) {
734                         if (retval != es->es_len) {
735                                 pr_warn("ES insert assertion failed for "
736                                         "inode: %lu retval %d != es_len %d\n",
737                                         inode->i_ino, retval, es->es_len);
738                                 return;
739                         }
740                         if (map.m_pblk != ext4_es_pblock(es)) {
741                                 pr_warn("ES insert assertion failed for "
742                                         "inode: %lu m_pblk %llu != "
743                                         "es_pblk %llu\n",
744                                         inode->i_ino, map.m_pblk,
745                                         ext4_es_pblock(es));
746                                 return;
747                         }
748                 } else {
749                         /*
750                          * We don't need to check unwritten extent because
751                          * indirect-based file doesn't have it.
752                          */
753                         BUG();
754                 }
755         } else if (retval == 0) {
756                 if (ext4_es_is_written(es)) {
757                         pr_warn("ES insert assertion failed for inode: %lu "
758                                 "We can't find the block but we want to add "
759                                 "a written extent [%d/%d/%llu/%x]\n",
760                                 inode->i_ino, es->es_lblk, es->es_len,
761                                 ext4_es_pblock(es), ext4_es_status(es));
762                         return;
763                 }
764         }
765 }
766 
767 static inline void ext4_es_insert_extent_check(struct inode *inode,
768                                                struct extent_status *es)
769 {
770         /*
771          * We don't need to worry about the race condition because
772          * caller takes i_data_sem locking.
773          */
774         BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
775         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
776                 ext4_es_insert_extent_ext_check(inode, es);
777         else
778                 ext4_es_insert_extent_ind_check(inode, es);
779 }
780 #else
781 static inline void ext4_es_insert_extent_check(struct inode *inode,
782                                                struct extent_status *es)
783 {
784 }
785 #endif
786 
787 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
788                               struct extent_status *prealloc)
789 {
790         struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
791         struct rb_node **p = &tree->root.rb_node;
792         struct rb_node *parent = NULL;
793         struct extent_status *es;
794 
795         while (*p) {
796                 parent = *p;
797                 es = rb_entry(parent, struct extent_status, rb_node);
798 
799                 if (newes->es_lblk < es->es_lblk) {
800                         if (ext4_es_can_be_merged(newes, es)) {
801                                 /*
802                                  * Here we can modify es_lblk directly
803                                  * because it isn't overlapped.
804                                  */
805                                 es->es_lblk = newes->es_lblk;
806                                 es->es_len += newes->es_len;
807                                 if (ext4_es_is_written(es) ||
808                                     ext4_es_is_unwritten(es))
809                                         ext4_es_store_pblock(es,
810                                                              newes->es_pblk);
811                                 es = ext4_es_try_to_merge_left(inode, es);
812                                 goto out;
813                         }
814                         p = &(*p)->rb_left;
815                 } else if (newes->es_lblk > ext4_es_end(es)) {
816                         if (ext4_es_can_be_merged(es, newes)) {
817                                 es->es_len += newes->es_len;
818                                 es = ext4_es_try_to_merge_right(inode, es);
819                                 goto out;
820                         }
821                         p = &(*p)->rb_right;
822                 } else {
823                         BUG();
824                         return -EINVAL;
825                 }
826         }
827 
828         if (prealloc)
829                 es = prealloc;
830         else
831                 es = __es_alloc_extent(false);
832         if (!es)
833                 return -ENOMEM;
834         ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
835                             newes->es_pblk);
836 
837         rb_link_node(&es->rb_node, parent, p);
838         rb_insert_color(&es->rb_node, &tree->root);
839 
840 out:
841         tree->cache_es = es;
842         return 0;
843 }
844 
845 /*
846  * ext4_es_insert_extent() adds information to an inode's extent
847  * status tree.
848  */
849 void ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
850                            ext4_lblk_t len, ext4_fsblk_t pblk,
851                            unsigned int status)
852 {
853         struct extent_status newes;
854         ext4_lblk_t end = lblk + len - 1;
855         int err1 = 0, err2 = 0, err3 = 0;
856         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
857         struct extent_status *es1 = NULL;
858         struct extent_status *es2 = NULL;
859         struct pending_reservation *pr = NULL;
860         bool revise_pending = false;
861 
862         if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
863                 return;
864 
865         es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
866                  lblk, len, pblk, status, inode->i_ino);
867 
868         if (!len)
869                 return;
870 
871         BUG_ON(end < lblk);
872 
873         if ((status & EXTENT_STATUS_DELAYED) &&
874             (status & EXTENT_STATUS_WRITTEN)) {
875                 ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
876                                 " delayed and written which can potentially "
877                                 " cause data loss.", lblk, len);
878                 WARN_ON(1);
879         }
880 
881         newes.es_lblk = lblk;
882         newes.es_len = len;
883         ext4_es_store_pblock_status(&newes, pblk, status);
884         trace_ext4_es_insert_extent(inode, &newes);
885 
886         ext4_es_insert_extent_check(inode, &newes);
887 
888         revise_pending = sbi->s_cluster_ratio > 1 &&
889                          test_opt(inode->i_sb, DELALLOC) &&
890                          (status & (EXTENT_STATUS_WRITTEN |
891                                     EXTENT_STATUS_UNWRITTEN));
892 retry:
893         if (err1 && !es1)
894                 es1 = __es_alloc_extent(true);
895         if ((err1 || err2) && !es2)
896                 es2 = __es_alloc_extent(true);
897         if ((err1 || err2 || err3) && revise_pending && !pr)
898                 pr = __alloc_pending(true);
899         write_lock(&EXT4_I(inode)->i_es_lock);
900 
901         err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
902         if (err1 != 0)
903                 goto error;
904         /* Free preallocated extent if it didn't get used. */
905         if (es1) {
906                 if (!es1->es_len)
907                         __es_free_extent(es1);
908                 es1 = NULL;
909         }
910 
911         err2 = __es_insert_extent(inode, &newes, es2);
912         if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
913                 err2 = 0;
914         if (err2 != 0)
915                 goto error;
916         /* Free preallocated extent if it didn't get used. */
917         if (es2) {
918                 if (!es2->es_len)
919                         __es_free_extent(es2);
920                 es2 = NULL;
921         }
922 
923         if (revise_pending) {
924                 err3 = __revise_pending(inode, lblk, len, &pr);
925                 if (err3 != 0)
926                         goto error;
927                 if (pr) {
928                         __free_pending(pr);
929                         pr = NULL;
930                 }
931         }
932 error:
933         write_unlock(&EXT4_I(inode)->i_es_lock);
934         if (err1 || err2 || err3)
935                 goto retry;
936 
937         ext4_es_print_tree(inode);
938         return;
939 }
940 
941 /*
942  * ext4_es_cache_extent() inserts information into the extent status
943  * tree if and only if there isn't information about the range in
944  * question already.
945  */
946 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
947                           ext4_lblk_t len, ext4_fsblk_t pblk,
948                           unsigned int status)
949 {
950         struct extent_status *es;
951         struct extent_status newes;
952         ext4_lblk_t end = lblk + len - 1;
953 
954         if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
955                 return;
956 
957         newes.es_lblk = lblk;
958         newes.es_len = len;
959         ext4_es_store_pblock_status(&newes, pblk, status);
960         trace_ext4_es_cache_extent(inode, &newes);
961 
962         if (!len)
963                 return;
964 
965         BUG_ON(end < lblk);
966 
967         write_lock(&EXT4_I(inode)->i_es_lock);
968 
969         es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
970         if (!es || es->es_lblk > end)
971                 __es_insert_extent(inode, &newes, NULL);
972         write_unlock(&EXT4_I(inode)->i_es_lock);
973 }
974 
975 /*
976  * ext4_es_lookup_extent() looks up an extent in extent status tree.
977  *
978  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
979  *
980  * Return: 1 on found, 0 on not
981  */
982 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
983                           ext4_lblk_t *next_lblk,
984                           struct extent_status *es)
985 {
986         struct ext4_es_tree *tree;
987         struct ext4_es_stats *stats;
988         struct extent_status *es1 = NULL;
989         struct rb_node *node;
990         int found = 0;
991 
992         if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
993                 return 0;
994 
995         trace_ext4_es_lookup_extent_enter(inode, lblk);
996         es_debug("lookup extent in block %u\n", lblk);
997 
998         tree = &EXT4_I(inode)->i_es_tree;
999         read_lock(&EXT4_I(inode)->i_es_lock);
1000 
1001         /* find extent in cache firstly */
1002         es->es_lblk = es->es_len = es->es_pblk = 0;
1003         es1 = READ_ONCE(tree->cache_es);
1004         if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
1005                 es_debug("%u cached by [%u/%u)\n",
1006                          lblk, es1->es_lblk, es1->es_len);
1007                 found = 1;
1008                 goto out;
1009         }
1010 
1011         node = tree->root.rb_node;
1012         while (node) {
1013                 es1 = rb_entry(node, struct extent_status, rb_node);
1014                 if (lblk < es1->es_lblk)
1015                         node = node->rb_left;
1016                 else if (lblk > ext4_es_end(es1))
1017                         node = node->rb_right;
1018                 else {
1019                         found = 1;
1020                         break;
1021                 }
1022         }
1023 
1024 out:
1025         stats = &EXT4_SB(inode->i_sb)->s_es_stats;
1026         if (found) {
1027                 BUG_ON(!es1);
1028                 es->es_lblk = es1->es_lblk;
1029                 es->es_len = es1->es_len;
1030                 es->es_pblk = es1->es_pblk;
1031                 if (!ext4_es_is_referenced(es1))
1032                         ext4_es_set_referenced(es1);
1033                 percpu_counter_inc(&stats->es_stats_cache_hits);
1034                 if (next_lblk) {
1035                         node = rb_next(&es1->rb_node);
1036                         if (node) {
1037                                 es1 = rb_entry(node, struct extent_status,
1038                                                rb_node);
1039                                 *next_lblk = es1->es_lblk;
1040                         } else
1041                                 *next_lblk = 0;
1042                 }
1043         } else {
1044                 percpu_counter_inc(&stats->es_stats_cache_misses);
1045         }
1046 
1047         read_unlock(&EXT4_I(inode)->i_es_lock);
1048 
1049         trace_ext4_es_lookup_extent_exit(inode, es, found);
1050         return found;
1051 }
1052 
1053 struct rsvd_count {
1054         int ndelonly;
1055         bool first_do_lblk_found;
1056         ext4_lblk_t first_do_lblk;
1057         ext4_lblk_t last_do_lblk;
1058         struct extent_status *left_es;
1059         bool partial;
1060         ext4_lblk_t lclu;
1061 };
1062 
1063 /*
1064  * init_rsvd - initialize reserved count data before removing block range
1065  *             in file from extent status tree
1066  *
1067  * @inode - file containing range
1068  * @lblk - first block in range
1069  * @es - pointer to first extent in range
1070  * @rc - pointer to reserved count data
1071  *
1072  * Assumes es is not NULL
1073  */
1074 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1075                       struct extent_status *es, struct rsvd_count *rc)
1076 {
1077         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1078         struct rb_node *node;
1079 
1080         rc->ndelonly = 0;
1081 
1082         /*
1083          * for bigalloc, note the first delonly block in the range has not
1084          * been found, record the extent containing the block to the left of
1085          * the region to be removed, if any, and note that there's no partial
1086          * cluster to track
1087          */
1088         if (sbi->s_cluster_ratio > 1) {
1089                 rc->first_do_lblk_found = false;
1090                 if (lblk > es->es_lblk) {
1091                         rc->left_es = es;
1092                 } else {
1093                         node = rb_prev(&es->rb_node);
1094                         rc->left_es = node ? rb_entry(node,
1095                                                       struct extent_status,
1096                                                       rb_node) : NULL;
1097                 }
1098                 rc->partial = false;
1099         }
1100 }
1101 
1102 /*
1103  * count_rsvd - count the clusters containing delayed and not unwritten
1104  *              (delonly) blocks in a range within an extent and add to
1105  *              the running tally in rsvd_count
1106  *
1107  * @inode - file containing extent
1108  * @lblk - first block in range
1109  * @len - length of range in blocks
1110  * @es - pointer to extent containing clusters to be counted
1111  * @rc - pointer to reserved count data
1112  *
1113  * Tracks partial clusters found at the beginning and end of extents so
1114  * they aren't overcounted when they span adjacent extents
1115  */
1116 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1117                        struct extent_status *es, struct rsvd_count *rc)
1118 {
1119         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1120         ext4_lblk_t i, end, nclu;
1121 
1122         if (!ext4_es_is_delonly(es))
1123                 return;
1124 
1125         WARN_ON(len <= 0);
1126 
1127         if (sbi->s_cluster_ratio == 1) {
1128                 rc->ndelonly += (int) len;
1129                 return;
1130         }
1131 
1132         /* bigalloc */
1133 
1134         i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1135         end = lblk + (ext4_lblk_t) len - 1;
1136         end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1137 
1138         /* record the first block of the first delonly extent seen */
1139         if (!rc->first_do_lblk_found) {
1140                 rc->first_do_lblk = i;
1141                 rc->first_do_lblk_found = true;
1142         }
1143 
1144         /* update the last lblk in the region seen so far */
1145         rc->last_do_lblk = end;
1146 
1147         /*
1148          * if we're tracking a partial cluster and the current extent
1149          * doesn't start with it, count it and stop tracking
1150          */
1151         if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1152                 rc->ndelonly++;
1153                 rc->partial = false;
1154         }
1155 
1156         /*
1157          * if the first cluster doesn't start on a cluster boundary but
1158          * ends on one, count it
1159          */
1160         if (EXT4_LBLK_COFF(sbi, i) != 0) {
1161                 if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1162                         rc->ndelonly++;
1163                         rc->partial = false;
1164                         i = EXT4_LBLK_CFILL(sbi, i) + 1;
1165                 }
1166         }
1167 
1168         /*
1169          * if the current cluster starts on a cluster boundary, count the
1170          * number of whole delonly clusters in the extent
1171          */
1172         if ((i + sbi->s_cluster_ratio - 1) <= end) {
1173                 nclu = (end - i + 1) >> sbi->s_cluster_bits;
1174                 rc->ndelonly += nclu;
1175                 i += nclu << sbi->s_cluster_bits;
1176         }
1177 
1178         /*
1179          * start tracking a partial cluster if there's a partial at the end
1180          * of the current extent and we're not already tracking one
1181          */
1182         if (!rc->partial && i <= end) {
1183                 rc->partial = true;
1184                 rc->lclu = EXT4_B2C(sbi, i);
1185         }
1186 }
1187 
1188 /*
1189  * __pr_tree_search - search for a pending cluster reservation
1190  *
1191  * @root - root of pending reservation tree
1192  * @lclu - logical cluster to search for
1193  *
1194  * Returns the pending reservation for the cluster identified by @lclu
1195  * if found.  If not, returns a reservation for the next cluster if any,
1196  * and if not, returns NULL.
1197  */
1198 static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1199                                                     ext4_lblk_t lclu)
1200 {
1201         struct rb_node *node = root->rb_node;
1202         struct pending_reservation *pr = NULL;
1203 
1204         while (node) {
1205                 pr = rb_entry(node, struct pending_reservation, rb_node);
1206                 if (lclu < pr->lclu)
1207                         node = node->rb_left;
1208                 else if (lclu > pr->lclu)
1209                         node = node->rb_right;
1210                 else
1211                         return pr;
1212         }
1213         if (pr && lclu < pr->lclu)
1214                 return pr;
1215         if (pr && lclu > pr->lclu) {
1216                 node = rb_next(&pr->rb_node);
1217                 return node ? rb_entry(node, struct pending_reservation,
1218                                        rb_node) : NULL;
1219         }
1220         return NULL;
1221 }
1222 
1223 /*
1224  * get_rsvd - calculates and returns the number of cluster reservations to be
1225  *            released when removing a block range from the extent status tree
1226  *            and releases any pending reservations within the range
1227  *
1228  * @inode - file containing block range
1229  * @end - last block in range
1230  * @right_es - pointer to extent containing next block beyond end or NULL
1231  * @rc - pointer to reserved count data
1232  *
1233  * The number of reservations to be released is equal to the number of
1234  * clusters containing delayed and not unwritten (delonly) blocks within
1235  * the range, minus the number of clusters still containing delonly blocks
1236  * at the ends of the range, and minus the number of pending reservations
1237  * within the range.
1238  */
1239 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1240                              struct extent_status *right_es,
1241                              struct rsvd_count *rc)
1242 {
1243         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1244         struct pending_reservation *pr;
1245         struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1246         struct rb_node *node;
1247         ext4_lblk_t first_lclu, last_lclu;
1248         bool left_delonly, right_delonly, count_pending;
1249         struct extent_status *es;
1250 
1251         if (sbi->s_cluster_ratio > 1) {
1252                 /* count any remaining partial cluster */
1253                 if (rc->partial)
1254                         rc->ndelonly++;
1255 
1256                 if (rc->ndelonly == 0)
1257                         return 0;
1258 
1259                 first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1260                 last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1261 
1262                 /*
1263                  * decrease the delonly count by the number of clusters at the
1264                  * ends of the range that still contain delonly blocks -
1265                  * these clusters still need to be reserved
1266                  */
1267                 left_delonly = right_delonly = false;
1268 
1269                 es = rc->left_es;
1270                 while (es && ext4_es_end(es) >=
1271                        EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1272                         if (ext4_es_is_delonly(es)) {
1273                                 rc->ndelonly--;
1274                                 left_delonly = true;
1275                                 break;
1276                         }
1277                         node = rb_prev(&es->rb_node);
1278                         if (!node)
1279                                 break;
1280                         es = rb_entry(node, struct extent_status, rb_node);
1281                 }
1282                 if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1283                         if (end < ext4_es_end(right_es)) {
1284                                 es = right_es;
1285                         } else {
1286                                 node = rb_next(&right_es->rb_node);
1287                                 es = node ? rb_entry(node, struct extent_status,
1288                                                      rb_node) : NULL;
1289                         }
1290                         while (es && es->es_lblk <=
1291                                EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1292                                 if (ext4_es_is_delonly(es)) {
1293                                         rc->ndelonly--;
1294                                         right_delonly = true;
1295                                         break;
1296                                 }
1297                                 node = rb_next(&es->rb_node);
1298                                 if (!node)
1299                                         break;
1300                                 es = rb_entry(node, struct extent_status,
1301                                               rb_node);
1302                         }
1303                 }
1304 
1305                 /*
1306                  * Determine the block range that should be searched for
1307                  * pending reservations, if any.  Clusters on the ends of the
1308                  * original removed range containing delonly blocks are
1309                  * excluded.  They've already been accounted for and it's not
1310                  * possible to determine if an associated pending reservation
1311                  * should be released with the information available in the
1312                  * extents status tree.
1313                  */
1314                 if (first_lclu == last_lclu) {
1315                         if (left_delonly | right_delonly)
1316                                 count_pending = false;
1317                         else
1318                                 count_pending = true;
1319                 } else {
1320                         if (left_delonly)
1321                                 first_lclu++;
1322                         if (right_delonly)
1323                                 last_lclu--;
1324                         if (first_lclu <= last_lclu)
1325                                 count_pending = true;
1326                         else
1327                                 count_pending = false;
1328                 }
1329 
1330                 /*
1331                  * a pending reservation found between first_lclu and last_lclu
1332                  * represents an allocated cluster that contained at least one
1333                  * delonly block, so the delonly total must be reduced by one
1334                  * for each pending reservation found and released
1335                  */
1336                 if (count_pending) {
1337                         pr = __pr_tree_search(&tree->root, first_lclu);
1338                         while (pr && pr->lclu <= last_lclu) {
1339                                 rc->ndelonly--;
1340                                 node = rb_next(&pr->rb_node);
1341                                 rb_erase(&pr->rb_node, &tree->root);
1342                                 __free_pending(pr);
1343                                 if (!node)
1344                                         break;
1345                                 pr = rb_entry(node, struct pending_reservation,
1346                                               rb_node);
1347                         }
1348                 }
1349         }
1350         return rc->ndelonly;
1351 }
1352 
1353 
1354 /*
1355  * __es_remove_extent - removes block range from extent status tree
1356  *
1357  * @inode - file containing range
1358  * @lblk - first block in range
1359  * @end - last block in range
1360  * @reserved - number of cluster reservations released
1361  * @prealloc - pre-allocated es to avoid memory allocation failures
1362  *
1363  * If @reserved is not NULL and delayed allocation is enabled, counts
1364  * block/cluster reservations freed by removing range and if bigalloc
1365  * enabled cancels pending reservations as needed. Returns 0 on success,
1366  * error code on failure.
1367  */
1368 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1369                               ext4_lblk_t end, int *reserved,
1370                               struct extent_status *prealloc)
1371 {
1372         struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1373         struct rb_node *node;
1374         struct extent_status *es;
1375         struct extent_status orig_es;
1376         ext4_lblk_t len1, len2;
1377         ext4_fsblk_t block;
1378         int err = 0;
1379         bool count_reserved = true;
1380         struct rsvd_count rc;
1381 
1382         if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1383                 count_reserved = false;
1384 
1385         es = __es_tree_search(&tree->root, lblk);
1386         if (!es)
1387                 goto out;
1388         if (es->es_lblk > end)
1389                 goto out;
1390 
1391         /* Simply invalidate cache_es. */
1392         tree->cache_es = NULL;
1393         if (count_reserved)
1394                 init_rsvd(inode, lblk, es, &rc);
1395 
1396         orig_es.es_lblk = es->es_lblk;
1397         orig_es.es_len = es->es_len;
1398         orig_es.es_pblk = es->es_pblk;
1399 
1400         len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1401         len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1402         if (len1 > 0)
1403                 es->es_len = len1;
1404         if (len2 > 0) {
1405                 if (len1 > 0) {
1406                         struct extent_status newes;
1407 
1408                         newes.es_lblk = end + 1;
1409                         newes.es_len = len2;
1410                         block = 0x7FDEADBEEFULL;
1411                         if (ext4_es_is_written(&orig_es) ||
1412                             ext4_es_is_unwritten(&orig_es))
1413                                 block = ext4_es_pblock(&orig_es) +
1414                                         orig_es.es_len - len2;
1415                         ext4_es_store_pblock_status(&newes, block,
1416                                                     ext4_es_status(&orig_es));
1417                         err = __es_insert_extent(inode, &newes, prealloc);
1418                         if (err) {
1419                                 if (!ext4_es_must_keep(&newes))
1420                                         return 0;
1421 
1422                                 es->es_lblk = orig_es.es_lblk;
1423                                 es->es_len = orig_es.es_len;
1424                                 goto out;
1425                         }
1426                 } else {
1427                         es->es_lblk = end + 1;
1428                         es->es_len = len2;
1429                         if (ext4_es_is_written(es) ||
1430                             ext4_es_is_unwritten(es)) {
1431                                 block = orig_es.es_pblk + orig_es.es_len - len2;
1432                                 ext4_es_store_pblock(es, block);
1433                         }
1434                 }
1435                 if (count_reserved)
1436                         count_rsvd(inode, orig_es.es_lblk + len1,
1437                                    orig_es.es_len - len1 - len2, &orig_es, &rc);
1438                 goto out_get_reserved;
1439         }
1440 
1441         if (len1 > 0) {
1442                 if (count_reserved)
1443                         count_rsvd(inode, lblk, orig_es.es_len - len1,
1444                                    &orig_es, &rc);
1445                 node = rb_next(&es->rb_node);
1446                 if (node)
1447                         es = rb_entry(node, struct extent_status, rb_node);
1448                 else
1449                         es = NULL;
1450         }
1451 
1452         while (es && ext4_es_end(es) <= end) {
1453                 if (count_reserved)
1454                         count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1455                 node = rb_next(&es->rb_node);
1456                 rb_erase(&es->rb_node, &tree->root);
1457                 ext4_es_free_extent(inode, es);
1458                 if (!node) {
1459                         es = NULL;
1460                         break;
1461                 }
1462                 es = rb_entry(node, struct extent_status, rb_node);
1463         }
1464 
1465         if (es && es->es_lblk < end + 1) {
1466                 ext4_lblk_t orig_len = es->es_len;
1467 
1468                 len1 = ext4_es_end(es) - end;
1469                 if (count_reserved)
1470                         count_rsvd(inode, es->es_lblk, orig_len - len1,
1471                                    es, &rc);
1472                 es->es_lblk = end + 1;
1473                 es->es_len = len1;
1474                 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1475                         block = es->es_pblk + orig_len - len1;
1476                         ext4_es_store_pblock(es, block);
1477                 }
1478         }
1479 
1480 out_get_reserved:
1481         if (count_reserved)
1482                 *reserved = get_rsvd(inode, end, es, &rc);
1483 out:
1484         return err;
1485 }
1486 
1487 /*
1488  * ext4_es_remove_extent - removes block range from extent status tree
1489  *
1490  * @inode - file containing range
1491  * @lblk - first block in range
1492  * @len - number of blocks to remove
1493  *
1494  * Reduces block/cluster reservation count and for bigalloc cancels pending
1495  * reservations as needed.
1496  */
1497 void ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1498                            ext4_lblk_t len)
1499 {
1500         ext4_lblk_t end;
1501         int err = 0;
1502         int reserved = 0;
1503         struct extent_status *es = NULL;
1504 
1505         if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1506                 return;
1507 
1508         trace_ext4_es_remove_extent(inode, lblk, len);
1509         es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1510                  lblk, len, inode->i_ino);
1511 
1512         if (!len)
1513                 return;
1514 
1515         end = lblk + len - 1;
1516         BUG_ON(end < lblk);
1517 
1518 retry:
1519         if (err && !es)
1520                 es = __es_alloc_extent(true);
1521         /*
1522          * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1523          * so that we are sure __es_shrink() is done with the inode before it
1524          * is reclaimed.
1525          */
1526         write_lock(&EXT4_I(inode)->i_es_lock);
1527         err = __es_remove_extent(inode, lblk, end, &reserved, es);
1528         /* Free preallocated extent if it didn't get used. */
1529         if (es) {
1530                 if (!es->es_len)
1531                         __es_free_extent(es);
1532                 es = NULL;
1533         }
1534         write_unlock(&EXT4_I(inode)->i_es_lock);
1535         if (err)
1536                 goto retry;
1537 
1538         ext4_es_print_tree(inode);
1539         ext4_da_release_space(inode, reserved);
1540         return;
1541 }
1542 
1543 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1544                        struct ext4_inode_info *locked_ei)
1545 {
1546         struct ext4_inode_info *ei;
1547         struct ext4_es_stats *es_stats;
1548         ktime_t start_time;
1549         u64 scan_time;
1550         int nr_to_walk;
1551         int nr_shrunk = 0;
1552         int retried = 0, nr_skipped = 0;
1553 
1554         es_stats = &sbi->s_es_stats;
1555         start_time = ktime_get();
1556 
1557 retry:
1558         spin_lock(&sbi->s_es_lock);
1559         nr_to_walk = sbi->s_es_nr_inode;
1560         while (nr_to_walk-- > 0) {
1561                 if (list_empty(&sbi->s_es_list)) {
1562                         spin_unlock(&sbi->s_es_lock);
1563                         goto out;
1564                 }
1565                 ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1566                                       i_es_list);
1567                 /* Move the inode to the tail */
1568                 list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1569 
1570                 /*
1571                  * Normally we try hard to avoid shrinking precached inodes,
1572                  * but we will as a last resort.
1573                  */
1574                 if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1575                                                 EXT4_STATE_EXT_PRECACHED)) {
1576                         nr_skipped++;
1577                         continue;
1578                 }
1579 
1580                 if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1581                         nr_skipped++;
1582                         continue;
1583                 }
1584                 /*
1585                  * Now we hold i_es_lock which protects us from inode reclaim
1586                  * freeing inode under us
1587                  */
1588                 spin_unlock(&sbi->s_es_lock);
1589 
1590                 nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1591                 write_unlock(&ei->i_es_lock);
1592 
1593                 if (nr_to_scan <= 0)
1594                         goto out;
1595                 spin_lock(&sbi->s_es_lock);
1596         }
1597         spin_unlock(&sbi->s_es_lock);
1598 
1599         /*
1600          * If we skipped any inodes, and we weren't able to make any
1601          * forward progress, try again to scan precached inodes.
1602          */
1603         if ((nr_shrunk == 0) && nr_skipped && !retried) {
1604                 retried++;
1605                 goto retry;
1606         }
1607 
1608         if (locked_ei && nr_shrunk == 0)
1609                 nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1610 
1611 out:
1612         scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1613         if (likely(es_stats->es_stats_scan_time))
1614                 es_stats->es_stats_scan_time = (scan_time +
1615                                 es_stats->es_stats_scan_time*3) / 4;
1616         else
1617                 es_stats->es_stats_scan_time = scan_time;
1618         if (scan_time > es_stats->es_stats_max_scan_time)
1619                 es_stats->es_stats_max_scan_time = scan_time;
1620         if (likely(es_stats->es_stats_shrunk))
1621                 es_stats->es_stats_shrunk = (nr_shrunk +
1622                                 es_stats->es_stats_shrunk*3) / 4;
1623         else
1624                 es_stats->es_stats_shrunk = nr_shrunk;
1625 
1626         trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1627                              nr_skipped, retried);
1628         return nr_shrunk;
1629 }
1630 
1631 static unsigned long ext4_es_count(struct shrinker *shrink,
1632                                    struct shrink_control *sc)
1633 {
1634         unsigned long nr;
1635         struct ext4_sb_info *sbi;
1636 
1637         sbi = shrink->private_data;
1638         nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1639         trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1640         return nr;
1641 }
1642 
1643 static unsigned long ext4_es_scan(struct shrinker *shrink,
1644                                   struct shrink_control *sc)
1645 {
1646         struct ext4_sb_info *sbi = shrink->private_data;
1647         int nr_to_scan = sc->nr_to_scan;
1648         int ret, nr_shrunk;
1649 
1650         ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1651         trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1652 
1653         nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1654 
1655         ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1656         trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1657         return nr_shrunk;
1658 }
1659 
1660 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1661 {
1662         struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1663         struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1664         struct ext4_inode_info *ei, *max = NULL;
1665         unsigned int inode_cnt = 0;
1666 
1667         if (v != SEQ_START_TOKEN)
1668                 return 0;
1669 
1670         /* here we just find an inode that has the max nr. of objects */
1671         spin_lock(&sbi->s_es_lock);
1672         list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1673                 inode_cnt++;
1674                 if (max && max->i_es_all_nr < ei->i_es_all_nr)
1675                         max = ei;
1676                 else if (!max)
1677                         max = ei;
1678         }
1679         spin_unlock(&sbi->s_es_lock);
1680 
1681         seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1682                    percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1683                    percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1684         seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1685                    percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1686                    percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1687         if (inode_cnt)
1688                 seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1689 
1690         seq_printf(seq, "average:\n  %llu us scan time\n",
1691             div_u64(es_stats->es_stats_scan_time, 1000));
1692         seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1693         if (inode_cnt)
1694                 seq_printf(seq,
1695                     "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1696                     "  %llu us max scan time\n",
1697                     max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1698                     div_u64(es_stats->es_stats_max_scan_time, 1000));
1699 
1700         return 0;
1701 }
1702 
1703 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1704 {
1705         int err;
1706 
1707         /* Make sure we have enough bits for physical block number */
1708         BUILD_BUG_ON(ES_SHIFT < 48);
1709         INIT_LIST_HEAD(&sbi->s_es_list);
1710         sbi->s_es_nr_inode = 0;
1711         spin_lock_init(&sbi->s_es_lock);
1712         sbi->s_es_stats.es_stats_shrunk = 0;
1713         err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1714                                   GFP_KERNEL);
1715         if (err)
1716                 return err;
1717         err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1718                                   GFP_KERNEL);
1719         if (err)
1720                 goto err1;
1721         sbi->s_es_stats.es_stats_scan_time = 0;
1722         sbi->s_es_stats.es_stats_max_scan_time = 0;
1723         err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1724         if (err)
1725                 goto err2;
1726         err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1727         if (err)
1728                 goto err3;
1729 
1730         sbi->s_es_shrinker = shrinker_alloc(0, "ext4-es:%s", sbi->s_sb->s_id);
1731         if (!sbi->s_es_shrinker) {
1732                 err = -ENOMEM;
1733                 goto err4;
1734         }
1735 
1736         sbi->s_es_shrinker->scan_objects = ext4_es_scan;
1737         sbi->s_es_shrinker->count_objects = ext4_es_count;
1738         sbi->s_es_shrinker->private_data = sbi;
1739 
1740         shrinker_register(sbi->s_es_shrinker);
1741 
1742         return 0;
1743 err4:
1744         percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1745 err3:
1746         percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1747 err2:
1748         percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1749 err1:
1750         percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1751         return err;
1752 }
1753 
1754 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1755 {
1756         percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1757         percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1758         percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1759         percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1760         shrinker_free(sbi->s_es_shrinker);
1761 }
1762 
1763 /*
1764  * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1765  * most *nr_to_scan extents, update *nr_to_scan accordingly.
1766  *
1767  * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1768  * Increment *nr_shrunk by the number of reclaimed extents. Also update
1769  * ei->i_es_shrink_lblk to where we should continue scanning.
1770  */
1771 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1772                                  int *nr_to_scan, int *nr_shrunk)
1773 {
1774         struct inode *inode = &ei->vfs_inode;
1775         struct ext4_es_tree *tree = &ei->i_es_tree;
1776         struct extent_status *es;
1777         struct rb_node *node;
1778 
1779         es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1780         if (!es)
1781                 goto out_wrap;
1782 
1783         while (*nr_to_scan > 0) {
1784                 if (es->es_lblk > end) {
1785                         ei->i_es_shrink_lblk = end + 1;
1786                         return 0;
1787                 }
1788 
1789                 (*nr_to_scan)--;
1790                 node = rb_next(&es->rb_node);
1791 
1792                 if (ext4_es_must_keep(es))
1793                         goto next;
1794                 if (ext4_es_is_referenced(es)) {
1795                         ext4_es_clear_referenced(es);
1796                         goto next;
1797                 }
1798 
1799                 rb_erase(&es->rb_node, &tree->root);
1800                 ext4_es_free_extent(inode, es);
1801                 (*nr_shrunk)++;
1802 next:
1803                 if (!node)
1804                         goto out_wrap;
1805                 es = rb_entry(node, struct extent_status, rb_node);
1806         }
1807         ei->i_es_shrink_lblk = es->es_lblk;
1808         return 1;
1809 out_wrap:
1810         ei->i_es_shrink_lblk = 0;
1811         return 0;
1812 }
1813 
1814 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1815 {
1816         struct inode *inode = &ei->vfs_inode;
1817         int nr_shrunk = 0;
1818         ext4_lblk_t start = ei->i_es_shrink_lblk;
1819         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1820                                       DEFAULT_RATELIMIT_BURST);
1821 
1822         if (ei->i_es_shk_nr == 0)
1823                 return 0;
1824 
1825         if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1826             __ratelimit(&_rs))
1827                 ext4_warning(inode->i_sb, "forced shrink of precached extents");
1828 
1829         if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1830             start != 0)
1831                 es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1832 
1833         ei->i_es_tree.cache_es = NULL;
1834         return nr_shrunk;
1835 }
1836 
1837 /*
1838  * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1839  * discretionary entries from the extent status cache.  (Some entries
1840  * must be present for proper operations.)
1841  */
1842 void ext4_clear_inode_es(struct inode *inode)
1843 {
1844         struct ext4_inode_info *ei = EXT4_I(inode);
1845         struct extent_status *es;
1846         struct ext4_es_tree *tree;
1847         struct rb_node *node;
1848 
1849         write_lock(&ei->i_es_lock);
1850         tree = &EXT4_I(inode)->i_es_tree;
1851         tree->cache_es = NULL;
1852         node = rb_first(&tree->root);
1853         while (node) {
1854                 es = rb_entry(node, struct extent_status, rb_node);
1855                 node = rb_next(node);
1856                 if (!ext4_es_must_keep(es)) {
1857                         rb_erase(&es->rb_node, &tree->root);
1858                         ext4_es_free_extent(inode, es);
1859                 }
1860         }
1861         ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1862         write_unlock(&ei->i_es_lock);
1863 }
1864 
1865 #ifdef ES_DEBUG__
1866 static void ext4_print_pending_tree(struct inode *inode)
1867 {
1868         struct ext4_pending_tree *tree;
1869         struct rb_node *node;
1870         struct pending_reservation *pr;
1871 
1872         printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1873         tree = &EXT4_I(inode)->i_pending_tree;
1874         node = rb_first(&tree->root);
1875         while (node) {
1876                 pr = rb_entry(node, struct pending_reservation, rb_node);
1877                 printk(KERN_DEBUG " %u", pr->lclu);
1878                 node = rb_next(node);
1879         }
1880         printk(KERN_DEBUG "\n");
1881 }
1882 #else
1883 #define ext4_print_pending_tree(inode)
1884 #endif
1885 
1886 int __init ext4_init_pending(void)
1887 {
1888         ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT);
1889         if (ext4_pending_cachep == NULL)
1890                 return -ENOMEM;
1891         return 0;
1892 }
1893 
1894 void ext4_exit_pending(void)
1895 {
1896         kmem_cache_destroy(ext4_pending_cachep);
1897 }
1898 
1899 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1900 {
1901         tree->root = RB_ROOT;
1902 }
1903 
1904 /*
1905  * __get_pending - retrieve a pointer to a pending reservation
1906  *
1907  * @inode - file containing the pending cluster reservation
1908  * @lclu - logical cluster of interest
1909  *
1910  * Returns a pointer to a pending reservation if it's a member of
1911  * the set, and NULL if not.  Must be called holding i_es_lock.
1912  */
1913 static struct pending_reservation *__get_pending(struct inode *inode,
1914                                                  ext4_lblk_t lclu)
1915 {
1916         struct ext4_pending_tree *tree;
1917         struct rb_node *node;
1918         struct pending_reservation *pr = NULL;
1919 
1920         tree = &EXT4_I(inode)->i_pending_tree;
1921         node = (&tree->root)->rb_node;
1922 
1923         while (node) {
1924                 pr = rb_entry(node, struct pending_reservation, rb_node);
1925                 if (lclu < pr->lclu)
1926                         node = node->rb_left;
1927                 else if (lclu > pr->lclu)
1928                         node = node->rb_right;
1929                 else if (lclu == pr->lclu)
1930                         return pr;
1931         }
1932         return NULL;
1933 }
1934 
1935 /*
1936  * __insert_pending - adds a pending cluster reservation to the set of
1937  *                    pending reservations
1938  *
1939  * @inode - file containing the cluster
1940  * @lblk - logical block in the cluster to be added
1941  * @prealloc - preallocated pending entry
1942  *
1943  * Returns 0 on successful insertion and -ENOMEM on failure.  If the
1944  * pending reservation is already in the set, returns successfully.
1945  */
1946 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk,
1947                             struct pending_reservation **prealloc)
1948 {
1949         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1950         struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1951         struct rb_node **p = &tree->root.rb_node;
1952         struct rb_node *parent = NULL;
1953         struct pending_reservation *pr;
1954         ext4_lblk_t lclu;
1955         int ret = 0;
1956 
1957         lclu = EXT4_B2C(sbi, lblk);
1958         /* search to find parent for insertion */
1959         while (*p) {
1960                 parent = *p;
1961                 pr = rb_entry(parent, struct pending_reservation, rb_node);
1962 
1963                 if (lclu < pr->lclu) {
1964                         p = &(*p)->rb_left;
1965                 } else if (lclu > pr->lclu) {
1966                         p = &(*p)->rb_right;
1967                 } else {
1968                         /* pending reservation already inserted */
1969                         goto out;
1970                 }
1971         }
1972 
1973         if (likely(*prealloc == NULL)) {
1974                 pr = __alloc_pending(false);
1975                 if (!pr) {
1976                         ret = -ENOMEM;
1977                         goto out;
1978                 }
1979         } else {
1980                 pr = *prealloc;
1981                 *prealloc = NULL;
1982         }
1983         pr->lclu = lclu;
1984 
1985         rb_link_node(&pr->rb_node, parent, p);
1986         rb_insert_color(&pr->rb_node, &tree->root);
1987 
1988 out:
1989         return ret;
1990 }
1991 
1992 /*
1993  * __remove_pending - removes a pending cluster reservation from the set
1994  *                    of pending reservations
1995  *
1996  * @inode - file containing the cluster
1997  * @lblk - logical block in the pending cluster reservation to be removed
1998  *
1999  * Returns successfully if pending reservation is not a member of the set.
2000  */
2001 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
2002 {
2003         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2004         struct pending_reservation *pr;
2005         struct ext4_pending_tree *tree;
2006 
2007         pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
2008         if (pr != NULL) {
2009                 tree = &EXT4_I(inode)->i_pending_tree;
2010                 rb_erase(&pr->rb_node, &tree->root);
2011                 __free_pending(pr);
2012         }
2013 }
2014 
2015 /*
2016  * ext4_remove_pending - removes a pending cluster reservation from the set
2017  *                       of pending reservations
2018  *
2019  * @inode - file containing the cluster
2020  * @lblk - logical block in the pending cluster reservation to be removed
2021  *
2022  * Locking for external use of __remove_pending.
2023  */
2024 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
2025 {
2026         struct ext4_inode_info *ei = EXT4_I(inode);
2027 
2028         write_lock(&ei->i_es_lock);
2029         __remove_pending(inode, lblk);
2030         write_unlock(&ei->i_es_lock);
2031 }
2032 
2033 /*
2034  * ext4_is_pending - determine whether a cluster has a pending reservation
2035  *                   on it
2036  *
2037  * @inode - file containing the cluster
2038  * @lblk - logical block in the cluster
2039  *
2040  * Returns true if there's a pending reservation for the cluster in the
2041  * set of pending reservations, and false if not.
2042  */
2043 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
2044 {
2045         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2046         struct ext4_inode_info *ei = EXT4_I(inode);
2047         bool ret;
2048 
2049         read_lock(&ei->i_es_lock);
2050         ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2051         read_unlock(&ei->i_es_lock);
2052 
2053         return ret;
2054 }
2055 
2056 /*
2057  * ext4_es_insert_delayed_extent - adds some delayed blocks to the extents
2058  *                                 status tree, adding a pending reservation
2059  *                                 where needed
2060  *
2061  * @inode - file containing the newly added block
2062  * @lblk - start logical block to be added
2063  * @len - length of blocks to be added
2064  * @lclu_allocated/end_allocated - indicates whether a physical cluster has
2065  *                                 been allocated for the logical cluster
2066  *                                 that contains the start/end block. Note that
2067  *                                 end_allocated should always be set to false
2068  *                                 if the start and the end block are in the
2069  *                                 same cluster
2070  */
2071 void ext4_es_insert_delayed_extent(struct inode *inode, ext4_lblk_t lblk,
2072                                    ext4_lblk_t len, bool lclu_allocated,
2073                                    bool end_allocated)
2074 {
2075         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2076         struct extent_status newes;
2077         ext4_lblk_t end = lblk + len - 1;
2078         int err1 = 0, err2 = 0, err3 = 0;
2079         struct extent_status *es1 = NULL;
2080         struct extent_status *es2 = NULL;
2081         struct pending_reservation *pr1 = NULL;
2082         struct pending_reservation *pr2 = NULL;
2083 
2084         if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
2085                 return;
2086 
2087         es_debug("add [%u/%u) delayed to extent status tree of inode %lu\n",
2088                  lblk, len, inode->i_ino);
2089         if (!len)
2090                 return;
2091 
2092         WARN_ON_ONCE((EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) &&
2093                      end_allocated);
2094 
2095         newes.es_lblk = lblk;
2096         newes.es_len = len;
2097         ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2098         trace_ext4_es_insert_delayed_extent(inode, &newes, lclu_allocated,
2099                                             end_allocated);
2100 
2101         ext4_es_insert_extent_check(inode, &newes);
2102 
2103 retry:
2104         if (err1 && !es1)
2105                 es1 = __es_alloc_extent(true);
2106         if ((err1 || err2) && !es2)
2107                 es2 = __es_alloc_extent(true);
2108         if (err1 || err2 || err3) {
2109                 if (lclu_allocated && !pr1)
2110                         pr1 = __alloc_pending(true);
2111                 if (end_allocated && !pr2)
2112                         pr2 = __alloc_pending(true);
2113         }
2114         write_lock(&EXT4_I(inode)->i_es_lock);
2115 
2116         err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
2117         if (err1 != 0)
2118                 goto error;
2119         /* Free preallocated extent if it didn't get used. */
2120         if (es1) {
2121                 if (!es1->es_len)
2122                         __es_free_extent(es1);
2123                 es1 = NULL;
2124         }
2125 
2126         err2 = __es_insert_extent(inode, &newes, es2);
2127         if (err2 != 0)
2128                 goto error;
2129         /* Free preallocated extent if it didn't get used. */
2130         if (es2) {
2131                 if (!es2->es_len)
2132                         __es_free_extent(es2);
2133                 es2 = NULL;
2134         }
2135 
2136         if (lclu_allocated) {
2137                 err3 = __insert_pending(inode, lblk, &pr1);
2138                 if (err3 != 0)
2139                         goto error;
2140                 if (pr1) {
2141                         __free_pending(pr1);
2142                         pr1 = NULL;
2143                 }
2144         }
2145         if (end_allocated) {
2146                 err3 = __insert_pending(inode, end, &pr2);
2147                 if (err3 != 0)
2148                         goto error;
2149                 if (pr2) {
2150                         __free_pending(pr2);
2151                         pr2 = NULL;
2152                 }
2153         }
2154 error:
2155         write_unlock(&EXT4_I(inode)->i_es_lock);
2156         if (err1 || err2 || err3)
2157                 goto retry;
2158 
2159         ext4_es_print_tree(inode);
2160         ext4_print_pending_tree(inode);
2161         return;
2162 }
2163 
2164 /*
2165  * __es_delayed_clu - count number of clusters containing blocks that
2166  *                    are delayed only
2167  *
2168  * @inode - file containing block range
2169  * @start - logical block defining start of range
2170  * @end - logical block defining end of range
2171  *
2172  * Returns the number of clusters containing only delayed (not delayed
2173  * and unwritten) blocks in the range specified by @start and @end.  Any
2174  * cluster or part of a cluster within the range and containing a delayed
2175  * and not unwritten block within the range is counted as a whole cluster.
2176  */
2177 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2178                                      ext4_lblk_t end)
2179 {
2180         struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2181         struct extent_status *es;
2182         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2183         struct rb_node *node;
2184         ext4_lblk_t first_lclu, last_lclu;
2185         unsigned long long last_counted_lclu;
2186         unsigned int n = 0;
2187 
2188         /* guaranteed to be unequal to any ext4_lblk_t value */
2189         last_counted_lclu = ~0ULL;
2190 
2191         es = __es_tree_search(&tree->root, start);
2192 
2193         while (es && (es->es_lblk <= end)) {
2194                 if (ext4_es_is_delonly(es)) {
2195                         if (es->es_lblk <= start)
2196                                 first_lclu = EXT4_B2C(sbi, start);
2197                         else
2198                                 first_lclu = EXT4_B2C(sbi, es->es_lblk);
2199 
2200                         if (ext4_es_end(es) >= end)
2201                                 last_lclu = EXT4_B2C(sbi, end);
2202                         else
2203                                 last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2204 
2205                         if (first_lclu == last_counted_lclu)
2206                                 n += last_lclu - first_lclu;
2207                         else
2208                                 n += last_lclu - first_lclu + 1;
2209                         last_counted_lclu = last_lclu;
2210                 }
2211                 node = rb_next(&es->rb_node);
2212                 if (!node)
2213                         break;
2214                 es = rb_entry(node, struct extent_status, rb_node);
2215         }
2216 
2217         return n;
2218 }
2219 
2220 /*
2221  * ext4_es_delayed_clu - count number of clusters containing blocks that
2222  *                       are both delayed and unwritten
2223  *
2224  * @inode - file containing block range
2225  * @lblk - logical block defining start of range
2226  * @len - number of blocks in range
2227  *
2228  * Locking for external use of __es_delayed_clu().
2229  */
2230 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2231                                  ext4_lblk_t len)
2232 {
2233         struct ext4_inode_info *ei = EXT4_I(inode);
2234         ext4_lblk_t end;
2235         unsigned int n;
2236 
2237         if (len == 0)
2238                 return 0;
2239 
2240         end = lblk + len - 1;
2241         WARN_ON(end < lblk);
2242 
2243         read_lock(&ei->i_es_lock);
2244 
2245         n = __es_delayed_clu(inode, lblk, end);
2246 
2247         read_unlock(&ei->i_es_lock);
2248 
2249         return n;
2250 }
2251 
2252 /*
2253  * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2254  *                    reservations for a specified block range depending
2255  *                    upon the presence or absence of delayed blocks
2256  *                    outside the range within clusters at the ends of the
2257  *                    range
2258  *
2259  * @inode - file containing the range
2260  * @lblk - logical block defining the start of range
2261  * @len  - length of range in blocks
2262  * @prealloc - preallocated pending entry
2263  *
2264  * Used after a newly allocated extent is added to the extents status tree.
2265  * Requires that the extents in the range have either written or unwritten
2266  * status.  Must be called while holding i_es_lock.
2267  */
2268 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2269                             ext4_lblk_t len,
2270                             struct pending_reservation **prealloc)
2271 {
2272         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2273         ext4_lblk_t end = lblk + len - 1;
2274         ext4_lblk_t first, last;
2275         bool f_del = false, l_del = false;
2276         int ret = 0;
2277 
2278         if (len == 0)
2279                 return 0;
2280 
2281         /*
2282          * Two cases - block range within single cluster and block range
2283          * spanning two or more clusters.  Note that a cluster belonging
2284          * to a range starting and/or ending on a cluster boundary is treated
2285          * as if it does not contain a delayed extent.  The new range may
2286          * have allocated space for previously delayed blocks out to the
2287          * cluster boundary, requiring that any pre-existing pending
2288          * reservation be canceled.  Because this code only looks at blocks
2289          * outside the range, it should revise pending reservations
2290          * correctly even if the extent represented by the range can't be
2291          * inserted in the extents status tree due to ENOSPC.
2292          */
2293 
2294         if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2295                 first = EXT4_LBLK_CMASK(sbi, lblk);
2296                 if (first != lblk)
2297                         f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2298                                                 first, lblk - 1);
2299                 if (f_del) {
2300                         ret = __insert_pending(inode, first, prealloc);
2301                         if (ret < 0)
2302                                 goto out;
2303                 } else {
2304                         last = EXT4_LBLK_CMASK(sbi, end) +
2305                                sbi->s_cluster_ratio - 1;
2306                         if (last != end)
2307                                 l_del = __es_scan_range(inode,
2308                                                         &ext4_es_is_delonly,
2309                                                         end + 1, last);
2310                         if (l_del) {
2311                                 ret = __insert_pending(inode, last, prealloc);
2312                                 if (ret < 0)
2313                                         goto out;
2314                         } else
2315                                 __remove_pending(inode, last);
2316                 }
2317         } else {
2318                 first = EXT4_LBLK_CMASK(sbi, lblk);
2319                 if (first != lblk)
2320                         f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2321                                                 first, lblk - 1);
2322                 if (f_del) {
2323                         ret = __insert_pending(inode, first, prealloc);
2324                         if (ret < 0)
2325                                 goto out;
2326                 } else
2327                         __remove_pending(inode, first);
2328 
2329                 last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2330                 if (last != end)
2331                         l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2332                                                 end + 1, last);
2333                 if (l_del) {
2334                         ret = __insert_pending(inode, last, prealloc);
2335                         if (ret < 0)
2336                                 goto out;
2337                 } else
2338                         __remove_pending(inode, last);
2339         }
2340 out:
2341         return ret;
2342 }
2343 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php