~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ext4/fast_commit.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 
  3 /*
  4  * fs/ext4/fast_commit.c
  5  *
  6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
  7  *
  8  * Ext4 fast commits routines.
  9  */
 10 #include "ext4.h"
 11 #include "ext4_jbd2.h"
 12 #include "ext4_extents.h"
 13 #include "mballoc.h"
 14 
 15 /*
 16  * Ext4 Fast Commits
 17  * -----------------
 18  *
 19  * Ext4 fast commits implement fine grained journalling for Ext4.
 20  *
 21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
 22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
 23  * TLV during the recovery phase. For the scenarios for which we currently
 24  * don't have replay code, fast commit falls back to full commits.
 25  * Fast commits record delta in one of the following three categories.
 26  *
 27  * (A) Directory entry updates:
 28  *
 29  * - EXT4_FC_TAG_UNLINK         - records directory entry unlink
 30  * - EXT4_FC_TAG_LINK           - records directory entry link
 31  * - EXT4_FC_TAG_CREAT          - records inode and directory entry creation
 32  *
 33  * (B) File specific data range updates:
 34  *
 35  * - EXT4_FC_TAG_ADD_RANGE      - records addition of new blocks to an inode
 36  * - EXT4_FC_TAG_DEL_RANGE      - records deletion of blocks from an inode
 37  *
 38  * (C) Inode metadata (mtime / ctime etc):
 39  *
 40  * - EXT4_FC_TAG_INODE          - record the inode that should be replayed
 41  *                                during recovery. Note that iblocks field is
 42  *                                not replayed and instead derived during
 43  *                                replay.
 44  * Commit Operation
 45  * ----------------
 46  * With fast commits, we maintain all the directory entry operations in the
 47  * order in which they are issued in an in-memory queue. This queue is flushed
 48  * to disk during the commit operation. We also maintain a list of inodes
 49  * that need to be committed during a fast commit in another in memory queue of
 50  * inodes. During the commit operation, we commit in the following order:
 51  *
 52  * [1] Lock inodes for any further data updates by setting COMMITTING state
 53  * [2] Submit data buffers of all the inodes
 54  * [3] Wait for [2] to complete
 55  * [4] Commit all the directory entry updates in the fast commit space
 56  * [5] Commit all the changed inode structures
 57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
 58  *     section for more details).
 59  * [7] Wait for [4], [5] and [6] to complete.
 60  *
 61  * All the inode updates must call ext4_fc_start_update() before starting an
 62  * update. If such an ongoing update is present, fast commit waits for it to
 63  * complete. The completion of such an update is marked by
 64  * ext4_fc_stop_update().
 65  *
 66  * Fast Commit Ineligibility
 67  * -------------------------
 68  *
 69  * Not all operations are supported by fast commits today (e.g extended
 70  * attributes). Fast commit ineligibility is marked by calling
 71  * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
 72  * to full commit.
 73  *
 74  * Atomicity of commits
 75  * --------------------
 76  * In order to guarantee atomicity during the commit operation, fast commit
 77  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
 78  * tag contains CRC of the contents and TID of the transaction after which
 79  * this fast commit should be applied. Recovery code replays fast commit
 80  * logs only if there's at least 1 valid tail present. For every fast commit
 81  * operation, there is 1 tail. This means, we may end up with multiple tails
 82  * in the fast commit space. Here's an example:
 83  *
 84  * - Create a new file A and remove existing file B
 85  * - fsync()
 86  * - Append contents to file A
 87  * - Truncate file A
 88  * - fsync()
 89  *
 90  * The fast commit space at the end of above operations would look like this:
 91  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
 92  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
 93  *
 94  * Replay code should thus check for all the valid tails in the FC area.
 95  *
 96  * Fast Commit Replay Idempotence
 97  * ------------------------------
 98  *
 99  * Fast commits tags are idempotent in nature provided the recovery code follows
100  * certain rules. The guiding principle that the commit path follows while
101  * committing is that it stores the result of a particular operation instead of
102  * storing the procedure.
103  *
104  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105  * was associated with inode 10. During fast commit, instead of storing this
106  * operation as a procedure "rename a to b", we store the resulting file system
107  * state as a "series" of outcomes:
108  *
109  * - Link dirent b to inode 10
110  * - Unlink dirent a
111  * - Inode <10> with valid refcount
112  *
113  * Now when recovery code runs, it needs "enforce" this state on the file
114  * system. This is what guarantees idempotence of fast commit replay.
115  *
116  * Let's take an example of a procedure that is not idempotent and see how fast
117  * commits make it idempotent. Consider following sequence of operations:
118  *
119  *     rm A;    mv B A;    read A
120  *  (x)     (y)        (z)
121  *
122  * (x), (y) and (z) are the points at which we can crash. If we store this
123  * sequence of operations as is then the replay is not idempotent. Let's say
124  * while in replay, we crash at (z). During the second replay, file A (which was
125  * actually created as a result of "mv B A" operation) would get deleted. Thus,
126  * file named A would be absent when we try to read A. So, this sequence of
127  * operations is not idempotent. However, as mentioned above, instead of storing
128  * the procedure fast commits store the outcome of each procedure. Thus the fast
129  * commit log for above procedure would be as follows:
130  *
131  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132  * inode 11 before the replay)
133  *
134  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
135  * (w)          (x)                    (y)          (z)
136  *
137  * If we crash at (z), we will have file A linked to inode 11. During the second
138  * replay, we will remove file A (inode 11). But we will create it back and make
139  * it point to inode 11. We won't find B, so we'll just skip that step. At this
140  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142  * similarly. Thus, by converting a non-idempotent procedure into a series of
143  * idempotent outcomes, fast commits ensured idempotence during the replay.
144  *
145  * TODOs
146  * -----
147  *
148  * 0) Fast commit replay path hardening: Fast commit replay code should use
149  *    journal handles to make sure all the updates it does during the replay
150  *    path are atomic. With that if we crash during fast commit replay, after
151  *    trying to do recovery again, we will find a file system where fast commit
152  *    area is invalid (because new full commit would be found). In order to deal
153  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
154  *    superblock state is persisted before starting the replay, so that after
155  *    the crash, fast commit recovery code can look at that flag and perform
156  *    fast commit recovery even if that area is invalidated by later full
157  *    commits.
158  *
159  * 1) Fast commit's commit path locks the entire file system during fast
160  *    commit. This has significant performance penalty. Instead of that, we
161  *    should use ext4_fc_start/stop_update functions to start inode level
162  *    updates from ext4_journal_start/stop. Once we do that we can drop file
163  *    system locking during commit path.
164  *
165  * 2) Handle more ineligible cases.
166  */
167 
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
170 
171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172 {
173         BUFFER_TRACE(bh, "");
174         if (uptodate) {
175                 ext4_debug("%s: Block %lld up-to-date",
176                            __func__, bh->b_blocknr);
177                 set_buffer_uptodate(bh);
178         } else {
179                 ext4_debug("%s: Block %lld not up-to-date",
180                            __func__, bh->b_blocknr);
181                 clear_buffer_uptodate(bh);
182         }
183 
184         unlock_buffer(bh);
185 }
186 
187 static inline void ext4_fc_reset_inode(struct inode *inode)
188 {
189         struct ext4_inode_info *ei = EXT4_I(inode);
190 
191         ei->i_fc_lblk_start = 0;
192         ei->i_fc_lblk_len = 0;
193 }
194 
195 void ext4_fc_init_inode(struct inode *inode)
196 {
197         struct ext4_inode_info *ei = EXT4_I(inode);
198 
199         ext4_fc_reset_inode(inode);
200         ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201         INIT_LIST_HEAD(&ei->i_fc_list);
202         INIT_LIST_HEAD(&ei->i_fc_dilist);
203         init_waitqueue_head(&ei->i_fc_wait);
204         atomic_set(&ei->i_fc_updates, 0);
205 }
206 
207 /* This function must be called with sbi->s_fc_lock held. */
208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210 {
211         wait_queue_head_t *wq;
212         struct ext4_inode_info *ei = EXT4_I(inode);
213 
214 #if (BITS_PER_LONG < 64)
215         DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216                         EXT4_STATE_FC_COMMITTING);
217         wq = bit_waitqueue(&ei->i_state_flags,
218                                 EXT4_STATE_FC_COMMITTING);
219 #else
220         DEFINE_WAIT_BIT(wait, &ei->i_flags,
221                         EXT4_STATE_FC_COMMITTING);
222         wq = bit_waitqueue(&ei->i_flags,
223                                 EXT4_STATE_FC_COMMITTING);
224 #endif
225         lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226         prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228         schedule();
229         finish_wait(wq, &wait.wq_entry);
230 }
231 
232 static bool ext4_fc_disabled(struct super_block *sb)
233 {
234         return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235                 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236 }
237 
238 /*
239  * Inform Ext4's fast about start of an inode update
240  *
241  * This function is called by the high level call VFS callbacks before
242  * performing any inode update. This function blocks if there's an ongoing
243  * fast commit on the inode in question.
244  */
245 void ext4_fc_start_update(struct inode *inode)
246 {
247         struct ext4_inode_info *ei = EXT4_I(inode);
248 
249         if (ext4_fc_disabled(inode->i_sb))
250                 return;
251 
252 restart:
253         spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254         if (list_empty(&ei->i_fc_list))
255                 goto out;
256 
257         if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258                 ext4_fc_wait_committing_inode(inode);
259                 goto restart;
260         }
261 out:
262         atomic_inc(&ei->i_fc_updates);
263         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264 }
265 
266 /*
267  * Stop inode update and wake up waiting fast commits if any.
268  */
269 void ext4_fc_stop_update(struct inode *inode)
270 {
271         struct ext4_inode_info *ei = EXT4_I(inode);
272 
273         if (ext4_fc_disabled(inode->i_sb))
274                 return;
275 
276         if (atomic_dec_and_test(&ei->i_fc_updates))
277                 wake_up_all(&ei->i_fc_wait);
278 }
279 
280 /*
281  * Remove inode from fast commit list. If the inode is being committed
282  * we wait until inode commit is done.
283  */
284 void ext4_fc_del(struct inode *inode)
285 {
286         struct ext4_inode_info *ei = EXT4_I(inode);
287         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288         struct ext4_fc_dentry_update *fc_dentry;
289 
290         if (ext4_fc_disabled(inode->i_sb))
291                 return;
292 
293 restart:
294         spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
295         if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296                 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
297                 return;
298         }
299 
300         if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301                 ext4_fc_wait_committing_inode(inode);
302                 goto restart;
303         }
304 
305         if (!list_empty(&ei->i_fc_list))
306                 list_del_init(&ei->i_fc_list);
307 
308         /*
309          * Since this inode is getting removed, let's also remove all FC
310          * dentry create references, since it is not needed to log it anyways.
311          */
312         if (list_empty(&ei->i_fc_dilist)) {
313                 spin_unlock(&sbi->s_fc_lock);
314                 return;
315         }
316 
317         fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318         WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319         list_del_init(&fc_dentry->fcd_list);
320         list_del_init(&fc_dentry->fcd_dilist);
321 
322         WARN_ON(!list_empty(&ei->i_fc_dilist));
323         spin_unlock(&sbi->s_fc_lock);
324 
325         if (fc_dentry->fcd_name.name &&
326                 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327                 kfree(fc_dentry->fcd_name.name);
328         kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
329 
330         return;
331 }
332 
333 /*
334  * Mark file system as fast commit ineligible, and record latest
335  * ineligible transaction tid. This means until the recorded
336  * transaction, commit operation would result in a full jbd2 commit.
337  */
338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(sb);
341         tid_t tid;
342         bool has_transaction = true;
343         bool is_ineligible;
344 
345         if (ext4_fc_disabled(sb))
346                 return;
347 
348         if (handle && !IS_ERR(handle))
349                 tid = handle->h_transaction->t_tid;
350         else {
351                 read_lock(&sbi->s_journal->j_state_lock);
352                 if (sbi->s_journal->j_running_transaction)
353                         tid = sbi->s_journal->j_running_transaction->t_tid;
354                 else
355                         has_transaction = false;
356                 read_unlock(&sbi->s_journal->j_state_lock);
357         }
358         spin_lock(&sbi->s_fc_lock);
359         is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360         if (has_transaction &&
361             (!is_ineligible ||
362              (is_ineligible && tid_gt(tid, sbi->s_fc_ineligible_tid))))
363                 sbi->s_fc_ineligible_tid = tid;
364         ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
365         spin_unlock(&sbi->s_fc_lock);
366         WARN_ON(reason >= EXT4_FC_REASON_MAX);
367         sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
368 }
369 
370 /*
371  * Generic fast commit tracking function. If this is the first time this we are
372  * called after a full commit, we initialize fast commit fields and then call
373  * __fc_track_fn() with update = 0. If we have already been called after a full
374  * commit, we pass update = 1. Based on that, the track function can determine
375  * if it needs to track a field for the first time or if it needs to just
376  * update the previously tracked value.
377  *
378  * If enqueue is set, this function enqueues the inode in fast commit list.
379  */
380 static int ext4_fc_track_template(
381         handle_t *handle, struct inode *inode,
382         int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool),
383         void *args, int enqueue)
384 {
385         bool update = false;
386         struct ext4_inode_info *ei = EXT4_I(inode);
387         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
388         tid_t tid = 0;
389         int ret;
390 
391         tid = handle->h_transaction->t_tid;
392         mutex_lock(&ei->i_fc_lock);
393         if (tid == ei->i_sync_tid) {
394                 update = true;
395         } else {
396                 ext4_fc_reset_inode(inode);
397                 ei->i_sync_tid = tid;
398         }
399         ret = __fc_track_fn(handle, inode, args, update);
400         mutex_unlock(&ei->i_fc_lock);
401 
402         if (!enqueue)
403                 return ret;
404 
405         spin_lock(&sbi->s_fc_lock);
406         if (list_empty(&EXT4_I(inode)->i_fc_list))
407                 list_add_tail(&EXT4_I(inode)->i_fc_list,
408                                 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
409                                  sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
410                                 &sbi->s_fc_q[FC_Q_STAGING] :
411                                 &sbi->s_fc_q[FC_Q_MAIN]);
412         spin_unlock(&sbi->s_fc_lock);
413 
414         return ret;
415 }
416 
417 struct __track_dentry_update_args {
418         struct dentry *dentry;
419         int op;
420 };
421 
422 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
423 static int __track_dentry_update(handle_t *handle, struct inode *inode,
424                                  void *arg, bool update)
425 {
426         struct ext4_fc_dentry_update *node;
427         struct ext4_inode_info *ei = EXT4_I(inode);
428         struct __track_dentry_update_args *dentry_update =
429                 (struct __track_dentry_update_args *)arg;
430         struct dentry *dentry = dentry_update->dentry;
431         struct inode *dir = dentry->d_parent->d_inode;
432         struct super_block *sb = inode->i_sb;
433         struct ext4_sb_info *sbi = EXT4_SB(sb);
434 
435         mutex_unlock(&ei->i_fc_lock);
436 
437         if (IS_ENCRYPTED(dir)) {
438                 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
439                                         handle);
440                 mutex_lock(&ei->i_fc_lock);
441                 return -EOPNOTSUPP;
442         }
443 
444         node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
445         if (!node) {
446                 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
447                 mutex_lock(&ei->i_fc_lock);
448                 return -ENOMEM;
449         }
450 
451         node->fcd_op = dentry_update->op;
452         node->fcd_parent = dir->i_ino;
453         node->fcd_ino = inode->i_ino;
454         if (dentry->d_name.len > DNAME_INLINE_LEN) {
455                 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
456                 if (!node->fcd_name.name) {
457                         kmem_cache_free(ext4_fc_dentry_cachep, node);
458                         ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
459                         mutex_lock(&ei->i_fc_lock);
460                         return -ENOMEM;
461                 }
462                 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
463                         dentry->d_name.len);
464         } else {
465                 memcpy(node->fcd_iname, dentry->d_name.name,
466                         dentry->d_name.len);
467                 node->fcd_name.name = node->fcd_iname;
468         }
469         node->fcd_name.len = dentry->d_name.len;
470         INIT_LIST_HEAD(&node->fcd_dilist);
471         spin_lock(&sbi->s_fc_lock);
472         if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
473                 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
474                 list_add_tail(&node->fcd_list,
475                                 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
476         else
477                 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
478 
479         /*
480          * This helps us keep a track of all fc_dentry updates which is part of
481          * this ext4 inode. So in case the inode is getting unlinked, before
482          * even we get a chance to fsync, we could remove all fc_dentry
483          * references while evicting the inode in ext4_fc_del().
484          * Also with this, we don't need to loop over all the inodes in
485          * sbi->s_fc_q to get the corresponding inode in
486          * ext4_fc_commit_dentry_updates().
487          */
488         if (dentry_update->op == EXT4_FC_TAG_CREAT) {
489                 WARN_ON(!list_empty(&ei->i_fc_dilist));
490                 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
491         }
492         spin_unlock(&sbi->s_fc_lock);
493         mutex_lock(&ei->i_fc_lock);
494 
495         return 0;
496 }
497 
498 void __ext4_fc_track_unlink(handle_t *handle,
499                 struct inode *inode, struct dentry *dentry)
500 {
501         struct __track_dentry_update_args args;
502         int ret;
503 
504         args.dentry = dentry;
505         args.op = EXT4_FC_TAG_UNLINK;
506 
507         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
508                                         (void *)&args, 0);
509         trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
510 }
511 
512 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
513 {
514         struct inode *inode = d_inode(dentry);
515 
516         if (ext4_fc_disabled(inode->i_sb))
517                 return;
518 
519         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
520                 return;
521 
522         __ext4_fc_track_unlink(handle, inode, dentry);
523 }
524 
525 void __ext4_fc_track_link(handle_t *handle,
526         struct inode *inode, struct dentry *dentry)
527 {
528         struct __track_dentry_update_args args;
529         int ret;
530 
531         args.dentry = dentry;
532         args.op = EXT4_FC_TAG_LINK;
533 
534         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
535                                         (void *)&args, 0);
536         trace_ext4_fc_track_link(handle, inode, dentry, ret);
537 }
538 
539 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
540 {
541         struct inode *inode = d_inode(dentry);
542 
543         if (ext4_fc_disabled(inode->i_sb))
544                 return;
545 
546         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
547                 return;
548 
549         __ext4_fc_track_link(handle, inode, dentry);
550 }
551 
552 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
553                           struct dentry *dentry)
554 {
555         struct __track_dentry_update_args args;
556         int ret;
557 
558         args.dentry = dentry;
559         args.op = EXT4_FC_TAG_CREAT;
560 
561         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
562                                         (void *)&args, 0);
563         trace_ext4_fc_track_create(handle, inode, dentry, ret);
564 }
565 
566 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
567 {
568         struct inode *inode = d_inode(dentry);
569 
570         if (ext4_fc_disabled(inode->i_sb))
571                 return;
572 
573         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
574                 return;
575 
576         __ext4_fc_track_create(handle, inode, dentry);
577 }
578 
579 /* __track_fn for inode tracking */
580 static int __track_inode(handle_t *handle, struct inode *inode, void *arg,
581                          bool update)
582 {
583         if (update)
584                 return -EEXIST;
585 
586         EXT4_I(inode)->i_fc_lblk_len = 0;
587 
588         return 0;
589 }
590 
591 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
592 {
593         int ret;
594 
595         if (S_ISDIR(inode->i_mode))
596                 return;
597 
598         if (ext4_fc_disabled(inode->i_sb))
599                 return;
600 
601         if (ext4_should_journal_data(inode)) {
602                 ext4_fc_mark_ineligible(inode->i_sb,
603                                         EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
604                 return;
605         }
606 
607         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
608                 return;
609 
610         ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
611         trace_ext4_fc_track_inode(handle, inode, ret);
612 }
613 
614 struct __track_range_args {
615         ext4_lblk_t start, end;
616 };
617 
618 /* __track_fn for tracking data updates */
619 static int __track_range(handle_t *handle, struct inode *inode, void *arg,
620                          bool update)
621 {
622         struct ext4_inode_info *ei = EXT4_I(inode);
623         ext4_lblk_t oldstart;
624         struct __track_range_args *__arg =
625                 (struct __track_range_args *)arg;
626 
627         if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
628                 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
629                 return -ECANCELED;
630         }
631 
632         oldstart = ei->i_fc_lblk_start;
633 
634         if (update && ei->i_fc_lblk_len > 0) {
635                 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
636                 ei->i_fc_lblk_len =
637                         max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
638                                 ei->i_fc_lblk_start + 1;
639         } else {
640                 ei->i_fc_lblk_start = __arg->start;
641                 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
642         }
643 
644         return 0;
645 }
646 
647 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
648                          ext4_lblk_t end)
649 {
650         struct __track_range_args args;
651         int ret;
652 
653         if (S_ISDIR(inode->i_mode))
654                 return;
655 
656         if (ext4_fc_disabled(inode->i_sb))
657                 return;
658 
659         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
660                 return;
661 
662         if (ext4_has_inline_data(inode)) {
663                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
664                                         handle);
665                 return;
666         }
667 
668         args.start = start;
669         args.end = end;
670 
671         ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
672 
673         trace_ext4_fc_track_range(handle, inode, start, end, ret);
674 }
675 
676 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
677 {
678         blk_opf_t write_flags = REQ_SYNC;
679         struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
680 
681         /* Add REQ_FUA | REQ_PREFLUSH only its tail */
682         if (test_opt(sb, BARRIER) && is_tail)
683                 write_flags |= REQ_FUA | REQ_PREFLUSH;
684         lock_buffer(bh);
685         set_buffer_dirty(bh);
686         set_buffer_uptodate(bh);
687         bh->b_end_io = ext4_end_buffer_io_sync;
688         submit_bh(REQ_OP_WRITE | write_flags, bh);
689         EXT4_SB(sb)->s_fc_bh = NULL;
690 }
691 
692 /* Ext4 commit path routines */
693 
694 /*
695  * Allocate len bytes on a fast commit buffer.
696  *
697  * During the commit time this function is used to manage fast commit
698  * block space. We don't split a fast commit log onto different
699  * blocks. So this function makes sure that if there's not enough space
700  * on the current block, the remaining space in the current block is
701  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
702  * new block is from jbd2 and CRC is updated to reflect the padding
703  * we added.
704  */
705 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
706 {
707         struct ext4_fc_tl tl;
708         struct ext4_sb_info *sbi = EXT4_SB(sb);
709         struct buffer_head *bh;
710         int bsize = sbi->s_journal->j_blocksize;
711         int ret, off = sbi->s_fc_bytes % bsize;
712         int remaining;
713         u8 *dst;
714 
715         /*
716          * If 'len' is too long to fit in any block alongside a PAD tlv, then we
717          * cannot fulfill the request.
718          */
719         if (len > bsize - EXT4_FC_TAG_BASE_LEN)
720                 return NULL;
721 
722         if (!sbi->s_fc_bh) {
723                 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
724                 if (ret)
725                         return NULL;
726                 sbi->s_fc_bh = bh;
727         }
728         dst = sbi->s_fc_bh->b_data + off;
729 
730         /*
731          * Allocate the bytes in the current block if we can do so while still
732          * leaving enough space for a PAD tlv.
733          */
734         remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
735         if (len <= remaining) {
736                 sbi->s_fc_bytes += len;
737                 return dst;
738         }
739 
740         /*
741          * Else, terminate the current block with a PAD tlv, then allocate a new
742          * block and allocate the bytes at the start of that new block.
743          */
744 
745         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
746         tl.fc_len = cpu_to_le16(remaining);
747         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
748         memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
749         *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
750 
751         ext4_fc_submit_bh(sb, false);
752 
753         ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
754         if (ret)
755                 return NULL;
756         sbi->s_fc_bh = bh;
757         sbi->s_fc_bytes += bsize - off + len;
758         return sbi->s_fc_bh->b_data;
759 }
760 
761 /*
762  * Complete a fast commit by writing tail tag.
763  *
764  * Writing tail tag marks the end of a fast commit. In order to guarantee
765  * atomicity, after writing tail tag, even if there's space remaining
766  * in the block, next commit shouldn't use it. That's why tail tag
767  * has the length as that of the remaining space on the block.
768  */
769 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
770 {
771         struct ext4_sb_info *sbi = EXT4_SB(sb);
772         struct ext4_fc_tl tl;
773         struct ext4_fc_tail tail;
774         int off, bsize = sbi->s_journal->j_blocksize;
775         u8 *dst;
776 
777         /*
778          * ext4_fc_reserve_space takes care of allocating an extra block if
779          * there's no enough space on this block for accommodating this tail.
780          */
781         dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
782         if (!dst)
783                 return -ENOSPC;
784 
785         off = sbi->s_fc_bytes % bsize;
786 
787         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
788         tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
789         sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
790 
791         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
792         dst += EXT4_FC_TAG_BASE_LEN;
793         tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
794         memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
795         dst += sizeof(tail.fc_tid);
796         crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
797                           dst - (u8 *)sbi->s_fc_bh->b_data);
798         tail.fc_crc = cpu_to_le32(crc);
799         memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
800         dst += sizeof(tail.fc_crc);
801         memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
802 
803         ext4_fc_submit_bh(sb, true);
804 
805         return 0;
806 }
807 
808 /*
809  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
810  * Returns false if there's not enough space.
811  */
812 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
813                            u32 *crc)
814 {
815         struct ext4_fc_tl tl;
816         u8 *dst;
817 
818         dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
819         if (!dst)
820                 return false;
821 
822         tl.fc_tag = cpu_to_le16(tag);
823         tl.fc_len = cpu_to_le16(len);
824 
825         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
826         memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
827 
828         return true;
829 }
830 
831 /* Same as above, but adds dentry tlv. */
832 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
833                                    struct ext4_fc_dentry_update *fc_dentry)
834 {
835         struct ext4_fc_dentry_info fcd;
836         struct ext4_fc_tl tl;
837         int dlen = fc_dentry->fcd_name.len;
838         u8 *dst = ext4_fc_reserve_space(sb,
839                         EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
840 
841         if (!dst)
842                 return false;
843 
844         fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
845         fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
846         tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
847         tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
848         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
849         dst += EXT4_FC_TAG_BASE_LEN;
850         memcpy(dst, &fcd, sizeof(fcd));
851         dst += sizeof(fcd);
852         memcpy(dst, fc_dentry->fcd_name.name, dlen);
853 
854         return true;
855 }
856 
857 /*
858  * Writes inode in the fast commit space under TLV with tag @tag.
859  * Returns 0 on success, error on failure.
860  */
861 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
862 {
863         struct ext4_inode_info *ei = EXT4_I(inode);
864         int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
865         int ret;
866         struct ext4_iloc iloc;
867         struct ext4_fc_inode fc_inode;
868         struct ext4_fc_tl tl;
869         u8 *dst;
870 
871         ret = ext4_get_inode_loc(inode, &iloc);
872         if (ret)
873                 return ret;
874 
875         if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
876                 inode_len = EXT4_INODE_SIZE(inode->i_sb);
877         else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
878                 inode_len += ei->i_extra_isize;
879 
880         fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
881         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
882         tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
883 
884         ret = -ECANCELED;
885         dst = ext4_fc_reserve_space(inode->i_sb,
886                 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
887         if (!dst)
888                 goto err;
889 
890         memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
891         dst += EXT4_FC_TAG_BASE_LEN;
892         memcpy(dst, &fc_inode, sizeof(fc_inode));
893         dst += sizeof(fc_inode);
894         memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
895         ret = 0;
896 err:
897         brelse(iloc.bh);
898         return ret;
899 }
900 
901 /*
902  * Writes updated data ranges for the inode in question. Updates CRC.
903  * Returns 0 on success, error otherwise.
904  */
905 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
906 {
907         ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
908         struct ext4_inode_info *ei = EXT4_I(inode);
909         struct ext4_map_blocks map;
910         struct ext4_fc_add_range fc_ext;
911         struct ext4_fc_del_range lrange;
912         struct ext4_extent *ex;
913         int ret;
914 
915         mutex_lock(&ei->i_fc_lock);
916         if (ei->i_fc_lblk_len == 0) {
917                 mutex_unlock(&ei->i_fc_lock);
918                 return 0;
919         }
920         old_blk_size = ei->i_fc_lblk_start;
921         new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
922         ei->i_fc_lblk_len = 0;
923         mutex_unlock(&ei->i_fc_lock);
924 
925         cur_lblk_off = old_blk_size;
926         ext4_debug("will try writing %d to %d for inode %ld\n",
927                    cur_lblk_off, new_blk_size, inode->i_ino);
928 
929         while (cur_lblk_off <= new_blk_size) {
930                 map.m_lblk = cur_lblk_off;
931                 map.m_len = new_blk_size - cur_lblk_off + 1;
932                 ret = ext4_map_blocks(NULL, inode, &map, 0);
933                 if (ret < 0)
934                         return -ECANCELED;
935 
936                 if (map.m_len == 0) {
937                         cur_lblk_off++;
938                         continue;
939                 }
940 
941                 if (ret == 0) {
942                         lrange.fc_ino = cpu_to_le32(inode->i_ino);
943                         lrange.fc_lblk = cpu_to_le32(map.m_lblk);
944                         lrange.fc_len = cpu_to_le32(map.m_len);
945                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
946                                             sizeof(lrange), (u8 *)&lrange, crc))
947                                 return -ENOSPC;
948                 } else {
949                         unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
950                                 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
951 
952                         /* Limit the number of blocks in one extent */
953                         map.m_len = min(max, map.m_len);
954 
955                         fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
956                         ex = (struct ext4_extent *)&fc_ext.fc_ex;
957                         ex->ee_block = cpu_to_le32(map.m_lblk);
958                         ex->ee_len = cpu_to_le16(map.m_len);
959                         ext4_ext_store_pblock(ex, map.m_pblk);
960                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
961                                 ext4_ext_mark_unwritten(ex);
962                         else
963                                 ext4_ext_mark_initialized(ex);
964                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
965                                             sizeof(fc_ext), (u8 *)&fc_ext, crc))
966                                 return -ENOSPC;
967                 }
968 
969                 cur_lblk_off += map.m_len;
970         }
971 
972         return 0;
973 }
974 
975 
976 /* Submit data for all the fast commit inodes */
977 static int ext4_fc_submit_inode_data_all(journal_t *journal)
978 {
979         struct super_block *sb = journal->j_private;
980         struct ext4_sb_info *sbi = EXT4_SB(sb);
981         struct ext4_inode_info *ei;
982         int ret = 0;
983 
984         spin_lock(&sbi->s_fc_lock);
985         list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
986                 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
987                 while (atomic_read(&ei->i_fc_updates)) {
988                         DEFINE_WAIT(wait);
989 
990                         prepare_to_wait(&ei->i_fc_wait, &wait,
991                                                 TASK_UNINTERRUPTIBLE);
992                         if (atomic_read(&ei->i_fc_updates)) {
993                                 spin_unlock(&sbi->s_fc_lock);
994                                 schedule();
995                                 spin_lock(&sbi->s_fc_lock);
996                         }
997                         finish_wait(&ei->i_fc_wait, &wait);
998                 }
999                 spin_unlock(&sbi->s_fc_lock);
1000                 ret = jbd2_submit_inode_data(journal, ei->jinode);
1001                 if (ret)
1002                         return ret;
1003                 spin_lock(&sbi->s_fc_lock);
1004         }
1005         spin_unlock(&sbi->s_fc_lock);
1006 
1007         return ret;
1008 }
1009 
1010 /* Wait for completion of data for all the fast commit inodes */
1011 static int ext4_fc_wait_inode_data_all(journal_t *journal)
1012 {
1013         struct super_block *sb = journal->j_private;
1014         struct ext4_sb_info *sbi = EXT4_SB(sb);
1015         struct ext4_inode_info *pos, *n;
1016         int ret = 0;
1017 
1018         spin_lock(&sbi->s_fc_lock);
1019         list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1020                 if (!ext4_test_inode_state(&pos->vfs_inode,
1021                                            EXT4_STATE_FC_COMMITTING))
1022                         continue;
1023                 spin_unlock(&sbi->s_fc_lock);
1024 
1025                 ret = jbd2_wait_inode_data(journal, pos->jinode);
1026                 if (ret)
1027                         return ret;
1028                 spin_lock(&sbi->s_fc_lock);
1029         }
1030         spin_unlock(&sbi->s_fc_lock);
1031 
1032         return 0;
1033 }
1034 
1035 /* Commit all the directory entry updates */
1036 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1037 __acquires(&sbi->s_fc_lock)
1038 __releases(&sbi->s_fc_lock)
1039 {
1040         struct super_block *sb = journal->j_private;
1041         struct ext4_sb_info *sbi = EXT4_SB(sb);
1042         struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1043         struct inode *inode;
1044         struct ext4_inode_info *ei;
1045         int ret;
1046 
1047         if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1048                 return 0;
1049         list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1050                                  &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1051                 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1052                         spin_unlock(&sbi->s_fc_lock);
1053                         if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1054                                 ret = -ENOSPC;
1055                                 goto lock_and_exit;
1056                         }
1057                         spin_lock(&sbi->s_fc_lock);
1058                         continue;
1059                 }
1060                 /*
1061                  * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1062                  * corresponding inode pointer
1063                  */
1064                 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1065                 ei = list_first_entry(&fc_dentry->fcd_dilist,
1066                                 struct ext4_inode_info, i_fc_dilist);
1067                 inode = &ei->vfs_inode;
1068                 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1069 
1070                 spin_unlock(&sbi->s_fc_lock);
1071 
1072                 /*
1073                  * We first write the inode and then the create dirent. This
1074                  * allows the recovery code to create an unnamed inode first
1075                  * and then link it to a directory entry. This allows us
1076                  * to use namei.c routines almost as is and simplifies
1077                  * the recovery code.
1078                  */
1079                 ret = ext4_fc_write_inode(inode, crc);
1080                 if (ret)
1081                         goto lock_and_exit;
1082 
1083                 ret = ext4_fc_write_inode_data(inode, crc);
1084                 if (ret)
1085                         goto lock_and_exit;
1086 
1087                 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1088                         ret = -ENOSPC;
1089                         goto lock_and_exit;
1090                 }
1091 
1092                 spin_lock(&sbi->s_fc_lock);
1093         }
1094         return 0;
1095 lock_and_exit:
1096         spin_lock(&sbi->s_fc_lock);
1097         return ret;
1098 }
1099 
1100 static int ext4_fc_perform_commit(journal_t *journal)
1101 {
1102         struct super_block *sb = journal->j_private;
1103         struct ext4_sb_info *sbi = EXT4_SB(sb);
1104         struct ext4_inode_info *iter;
1105         struct ext4_fc_head head;
1106         struct inode *inode;
1107         struct blk_plug plug;
1108         int ret = 0;
1109         u32 crc = 0;
1110 
1111         ret = ext4_fc_submit_inode_data_all(journal);
1112         if (ret)
1113                 return ret;
1114 
1115         ret = ext4_fc_wait_inode_data_all(journal);
1116         if (ret)
1117                 return ret;
1118 
1119         /*
1120          * If file system device is different from journal device, issue a cache
1121          * flush before we start writing fast commit blocks.
1122          */
1123         if (journal->j_fs_dev != journal->j_dev)
1124                 blkdev_issue_flush(journal->j_fs_dev);
1125 
1126         blk_start_plug(&plug);
1127         if (sbi->s_fc_bytes == 0) {
1128                 /*
1129                  * Add a head tag only if this is the first fast commit
1130                  * in this TID.
1131                  */
1132                 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1133                 head.fc_tid = cpu_to_le32(
1134                         sbi->s_journal->j_running_transaction->t_tid);
1135                 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1136                         (u8 *)&head, &crc)) {
1137                         ret = -ENOSPC;
1138                         goto out;
1139                 }
1140         }
1141 
1142         spin_lock(&sbi->s_fc_lock);
1143         ret = ext4_fc_commit_dentry_updates(journal, &crc);
1144         if (ret) {
1145                 spin_unlock(&sbi->s_fc_lock);
1146                 goto out;
1147         }
1148 
1149         list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1150                 inode = &iter->vfs_inode;
1151                 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1152                         continue;
1153 
1154                 spin_unlock(&sbi->s_fc_lock);
1155                 ret = ext4_fc_write_inode_data(inode, &crc);
1156                 if (ret)
1157                         goto out;
1158                 ret = ext4_fc_write_inode(inode, &crc);
1159                 if (ret)
1160                         goto out;
1161                 spin_lock(&sbi->s_fc_lock);
1162         }
1163         spin_unlock(&sbi->s_fc_lock);
1164 
1165         ret = ext4_fc_write_tail(sb, crc);
1166 
1167 out:
1168         blk_finish_plug(&plug);
1169         return ret;
1170 }
1171 
1172 static void ext4_fc_update_stats(struct super_block *sb, int status,
1173                                  u64 commit_time, int nblks, tid_t commit_tid)
1174 {
1175         struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1176 
1177         ext4_debug("Fast commit ended with status = %d for tid %u",
1178                         status, commit_tid);
1179         if (status == EXT4_FC_STATUS_OK) {
1180                 stats->fc_num_commits++;
1181                 stats->fc_numblks += nblks;
1182                 if (likely(stats->s_fc_avg_commit_time))
1183                         stats->s_fc_avg_commit_time =
1184                                 (commit_time +
1185                                  stats->s_fc_avg_commit_time * 3) / 4;
1186                 else
1187                         stats->s_fc_avg_commit_time = commit_time;
1188         } else if (status == EXT4_FC_STATUS_FAILED ||
1189                    status == EXT4_FC_STATUS_INELIGIBLE) {
1190                 if (status == EXT4_FC_STATUS_FAILED)
1191                         stats->fc_failed_commits++;
1192                 stats->fc_ineligible_commits++;
1193         } else {
1194                 stats->fc_skipped_commits++;
1195         }
1196         trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1197 }
1198 
1199 /*
1200  * The main commit entry point. Performs a fast commit for transaction
1201  * commit_tid if needed. If it's not possible to perform a fast commit
1202  * due to various reasons, we fall back to full commit. Returns 0
1203  * on success, error otherwise.
1204  */
1205 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1206 {
1207         struct super_block *sb = journal->j_private;
1208         struct ext4_sb_info *sbi = EXT4_SB(sb);
1209         int nblks = 0, ret, bsize = journal->j_blocksize;
1210         int subtid = atomic_read(&sbi->s_fc_subtid);
1211         int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1212         ktime_t start_time, commit_time;
1213 
1214         if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1215                 return jbd2_complete_transaction(journal, commit_tid);
1216 
1217         trace_ext4_fc_commit_start(sb, commit_tid);
1218 
1219         start_time = ktime_get();
1220 
1221 restart_fc:
1222         ret = jbd2_fc_begin_commit(journal, commit_tid);
1223         if (ret == -EALREADY) {
1224                 /* There was an ongoing commit, check if we need to restart */
1225                 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1226                     tid_gt(commit_tid, journal->j_commit_sequence))
1227                         goto restart_fc;
1228                 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1229                                 commit_tid);
1230                 return 0;
1231         } else if (ret) {
1232                 /*
1233                  * Commit couldn't start. Just update stats and perform a
1234                  * full commit.
1235                  */
1236                 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1237                                 commit_tid);
1238                 return jbd2_complete_transaction(journal, commit_tid);
1239         }
1240 
1241         /*
1242          * After establishing journal barrier via jbd2_fc_begin_commit(), check
1243          * if we are fast commit ineligible.
1244          */
1245         if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1246                 status = EXT4_FC_STATUS_INELIGIBLE;
1247                 goto fallback;
1248         }
1249 
1250         fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1251         ret = ext4_fc_perform_commit(journal);
1252         if (ret < 0) {
1253                 status = EXT4_FC_STATUS_FAILED;
1254                 goto fallback;
1255         }
1256         nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1257         ret = jbd2_fc_wait_bufs(journal, nblks);
1258         if (ret < 0) {
1259                 status = EXT4_FC_STATUS_FAILED;
1260                 goto fallback;
1261         }
1262         atomic_inc(&sbi->s_fc_subtid);
1263         ret = jbd2_fc_end_commit(journal);
1264         /*
1265          * weight the commit time higher than the average time so we
1266          * don't react too strongly to vast changes in the commit time
1267          */
1268         commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1269         ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1270         return ret;
1271 
1272 fallback:
1273         ret = jbd2_fc_end_commit_fallback(journal);
1274         ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1275         return ret;
1276 }
1277 
1278 /*
1279  * Fast commit cleanup routine. This is called after every fast commit and
1280  * full commit. full is true if we are called after a full commit.
1281  */
1282 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1283 {
1284         struct super_block *sb = journal->j_private;
1285         struct ext4_sb_info *sbi = EXT4_SB(sb);
1286         struct ext4_inode_info *iter, *iter_n;
1287         struct ext4_fc_dentry_update *fc_dentry;
1288 
1289         if (full && sbi->s_fc_bh)
1290                 sbi->s_fc_bh = NULL;
1291 
1292         trace_ext4_fc_cleanup(journal, full, tid);
1293         jbd2_fc_release_bufs(journal);
1294 
1295         spin_lock(&sbi->s_fc_lock);
1296         list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1297                                  i_fc_list) {
1298                 list_del_init(&iter->i_fc_list);
1299                 ext4_clear_inode_state(&iter->vfs_inode,
1300                                        EXT4_STATE_FC_COMMITTING);
1301                 if (tid_geq(tid, iter->i_sync_tid)) {
1302                         ext4_fc_reset_inode(&iter->vfs_inode);
1303                 } else if (full) {
1304                         /*
1305                          * We are called after a full commit, inode has been
1306                          * modified while the commit was running. Re-enqueue
1307                          * the inode into STAGING, which will then be splice
1308                          * back into MAIN. This cannot happen during
1309                          * fastcommit because the journal is locked all the
1310                          * time in that case (and tid doesn't increase so
1311                          * tid check above isn't reliable).
1312                          */
1313                         list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list,
1314                                       &sbi->s_fc_q[FC_Q_STAGING]);
1315                 }
1316                 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1317                 smp_mb();
1318 #if (BITS_PER_LONG < 64)
1319                 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1320 #else
1321                 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1322 #endif
1323         }
1324 
1325         while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1326                 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1327                                              struct ext4_fc_dentry_update,
1328                                              fcd_list);
1329                 list_del_init(&fc_dentry->fcd_list);
1330                 list_del_init(&fc_dentry->fcd_dilist);
1331                 spin_unlock(&sbi->s_fc_lock);
1332 
1333                 if (fc_dentry->fcd_name.name &&
1334                         fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1335                         kfree(fc_dentry->fcd_name.name);
1336                 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1337                 spin_lock(&sbi->s_fc_lock);
1338         }
1339 
1340         list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1341                                 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1342         list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1343                                 &sbi->s_fc_q[FC_Q_MAIN]);
1344 
1345         if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1346                 sbi->s_fc_ineligible_tid = 0;
1347                 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1348         }
1349 
1350         if (full)
1351                 sbi->s_fc_bytes = 0;
1352         spin_unlock(&sbi->s_fc_lock);
1353         trace_ext4_fc_stats(sb);
1354 }
1355 
1356 /* Ext4 Replay Path Routines */
1357 
1358 /* Helper struct for dentry replay routines */
1359 struct dentry_info_args {
1360         int parent_ino, dname_len, ino, inode_len;
1361         char *dname;
1362 };
1363 
1364 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1365 struct ext4_fc_tl_mem {
1366         u16 fc_tag;
1367         u16 fc_len;
1368 };
1369 
1370 static inline void tl_to_darg(struct dentry_info_args *darg,
1371                               struct ext4_fc_tl_mem *tl, u8 *val)
1372 {
1373         struct ext4_fc_dentry_info fcd;
1374 
1375         memcpy(&fcd, val, sizeof(fcd));
1376 
1377         darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1378         darg->ino = le32_to_cpu(fcd.fc_ino);
1379         darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1380         darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1381 }
1382 
1383 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1384 {
1385         struct ext4_fc_tl tl_disk;
1386 
1387         memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1388         tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1389         tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1390 }
1391 
1392 /* Unlink replay function */
1393 static int ext4_fc_replay_unlink(struct super_block *sb,
1394                                  struct ext4_fc_tl_mem *tl, u8 *val)
1395 {
1396         struct inode *inode, *old_parent;
1397         struct qstr entry;
1398         struct dentry_info_args darg;
1399         int ret = 0;
1400 
1401         tl_to_darg(&darg, tl, val);
1402 
1403         trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1404                         darg.parent_ino, darg.dname_len);
1405 
1406         entry.name = darg.dname;
1407         entry.len = darg.dname_len;
1408         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1409 
1410         if (IS_ERR(inode)) {
1411                 ext4_debug("Inode %d not found", darg.ino);
1412                 return 0;
1413         }
1414 
1415         old_parent = ext4_iget(sb, darg.parent_ino,
1416                                 EXT4_IGET_NORMAL);
1417         if (IS_ERR(old_parent)) {
1418                 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1419                 iput(inode);
1420                 return 0;
1421         }
1422 
1423         ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1424         /* -ENOENT ok coz it might not exist anymore. */
1425         if (ret == -ENOENT)
1426                 ret = 0;
1427         iput(old_parent);
1428         iput(inode);
1429         return ret;
1430 }
1431 
1432 static int ext4_fc_replay_link_internal(struct super_block *sb,
1433                                 struct dentry_info_args *darg,
1434                                 struct inode *inode)
1435 {
1436         struct inode *dir = NULL;
1437         struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1438         struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1439         int ret = 0;
1440 
1441         dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1442         if (IS_ERR(dir)) {
1443                 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1444                 dir = NULL;
1445                 goto out;
1446         }
1447 
1448         dentry_dir = d_obtain_alias(dir);
1449         if (IS_ERR(dentry_dir)) {
1450                 ext4_debug("Failed to obtain dentry");
1451                 dentry_dir = NULL;
1452                 goto out;
1453         }
1454 
1455         dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1456         if (!dentry_inode) {
1457                 ext4_debug("Inode dentry not created.");
1458                 ret = -ENOMEM;
1459                 goto out;
1460         }
1461 
1462         ret = __ext4_link(dir, inode, dentry_inode);
1463         /*
1464          * It's possible that link already existed since data blocks
1465          * for the dir in question got persisted before we crashed OR
1466          * we replayed this tag and crashed before the entire replay
1467          * could complete.
1468          */
1469         if (ret && ret != -EEXIST) {
1470                 ext4_debug("Failed to link\n");
1471                 goto out;
1472         }
1473 
1474         ret = 0;
1475 out:
1476         if (dentry_dir) {
1477                 d_drop(dentry_dir);
1478                 dput(dentry_dir);
1479         } else if (dir) {
1480                 iput(dir);
1481         }
1482         if (dentry_inode) {
1483                 d_drop(dentry_inode);
1484                 dput(dentry_inode);
1485         }
1486 
1487         return ret;
1488 }
1489 
1490 /* Link replay function */
1491 static int ext4_fc_replay_link(struct super_block *sb,
1492                                struct ext4_fc_tl_mem *tl, u8 *val)
1493 {
1494         struct inode *inode;
1495         struct dentry_info_args darg;
1496         int ret = 0;
1497 
1498         tl_to_darg(&darg, tl, val);
1499         trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1500                         darg.parent_ino, darg.dname_len);
1501 
1502         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1503         if (IS_ERR(inode)) {
1504                 ext4_debug("Inode not found.");
1505                 return 0;
1506         }
1507 
1508         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1509         iput(inode);
1510         return ret;
1511 }
1512 
1513 /*
1514  * Record all the modified inodes during replay. We use this later to setup
1515  * block bitmaps correctly.
1516  */
1517 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1518 {
1519         struct ext4_fc_replay_state *state;
1520         int i;
1521 
1522         state = &EXT4_SB(sb)->s_fc_replay_state;
1523         for (i = 0; i < state->fc_modified_inodes_used; i++)
1524                 if (state->fc_modified_inodes[i] == ino)
1525                         return 0;
1526         if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1527                 int *fc_modified_inodes;
1528 
1529                 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1530                                 sizeof(int) * (state->fc_modified_inodes_size +
1531                                 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1532                                 GFP_KERNEL);
1533                 if (!fc_modified_inodes)
1534                         return -ENOMEM;
1535                 state->fc_modified_inodes = fc_modified_inodes;
1536                 state->fc_modified_inodes_size +=
1537                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1538         }
1539         state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1540         return 0;
1541 }
1542 
1543 /*
1544  * Inode replay function
1545  */
1546 static int ext4_fc_replay_inode(struct super_block *sb,
1547                                 struct ext4_fc_tl_mem *tl, u8 *val)
1548 {
1549         struct ext4_fc_inode fc_inode;
1550         struct ext4_inode *raw_inode;
1551         struct ext4_inode *raw_fc_inode;
1552         struct inode *inode = NULL;
1553         struct ext4_iloc iloc;
1554         int inode_len, ino, ret, tag = tl->fc_tag;
1555         struct ext4_extent_header *eh;
1556         size_t off_gen = offsetof(struct ext4_inode, i_generation);
1557 
1558         memcpy(&fc_inode, val, sizeof(fc_inode));
1559 
1560         ino = le32_to_cpu(fc_inode.fc_ino);
1561         trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1562 
1563         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1564         if (!IS_ERR(inode)) {
1565                 ext4_ext_clear_bb(inode);
1566                 iput(inode);
1567         }
1568         inode = NULL;
1569 
1570         ret = ext4_fc_record_modified_inode(sb, ino);
1571         if (ret)
1572                 goto out;
1573 
1574         raw_fc_inode = (struct ext4_inode *)
1575                 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1576         ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1577         if (ret)
1578                 goto out;
1579 
1580         inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1581         raw_inode = ext4_raw_inode(&iloc);
1582 
1583         memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1584         memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1585                inode_len - off_gen);
1586         if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1587                 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1588                 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1589                         memset(eh, 0, sizeof(*eh));
1590                         eh->eh_magic = EXT4_EXT_MAGIC;
1591                         eh->eh_max = cpu_to_le16(
1592                                 (sizeof(raw_inode->i_block) -
1593                                  sizeof(struct ext4_extent_header))
1594                                  / sizeof(struct ext4_extent));
1595                 }
1596         } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1597                 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1598                         sizeof(raw_inode->i_block));
1599         }
1600 
1601         /* Immediately update the inode on disk. */
1602         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1603         if (ret)
1604                 goto out;
1605         ret = sync_dirty_buffer(iloc.bh);
1606         if (ret)
1607                 goto out;
1608         ret = ext4_mark_inode_used(sb, ino);
1609         if (ret)
1610                 goto out;
1611 
1612         /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1613         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1614         if (IS_ERR(inode)) {
1615                 ext4_debug("Inode not found.");
1616                 return -EFSCORRUPTED;
1617         }
1618 
1619         /*
1620          * Our allocator could have made different decisions than before
1621          * crashing. This should be fixed but until then, we calculate
1622          * the number of blocks the inode.
1623          */
1624         if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1625                 ext4_ext_replay_set_iblocks(inode);
1626 
1627         inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1628         ext4_reset_inode_seed(inode);
1629 
1630         ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1631         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1632         sync_dirty_buffer(iloc.bh);
1633         brelse(iloc.bh);
1634 out:
1635         iput(inode);
1636         if (!ret)
1637                 blkdev_issue_flush(sb->s_bdev);
1638 
1639         return 0;
1640 }
1641 
1642 /*
1643  * Dentry create replay function.
1644  *
1645  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1646  * inode for which we are trying to create a dentry here, should already have
1647  * been replayed before we start here.
1648  */
1649 static int ext4_fc_replay_create(struct super_block *sb,
1650                                  struct ext4_fc_tl_mem *tl, u8 *val)
1651 {
1652         int ret = 0;
1653         struct inode *inode = NULL;
1654         struct inode *dir = NULL;
1655         struct dentry_info_args darg;
1656 
1657         tl_to_darg(&darg, tl, val);
1658 
1659         trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1660                         darg.parent_ino, darg.dname_len);
1661 
1662         /* This takes care of update group descriptor and other metadata */
1663         ret = ext4_mark_inode_used(sb, darg.ino);
1664         if (ret)
1665                 goto out;
1666 
1667         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1668         if (IS_ERR(inode)) {
1669                 ext4_debug("inode %d not found.", darg.ino);
1670                 inode = NULL;
1671                 ret = -EINVAL;
1672                 goto out;
1673         }
1674 
1675         if (S_ISDIR(inode->i_mode)) {
1676                 /*
1677                  * If we are creating a directory, we need to make sure that the
1678                  * dot and dot dot dirents are setup properly.
1679                  */
1680                 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1681                 if (IS_ERR(dir)) {
1682                         ext4_debug("Dir %d not found.", darg.ino);
1683                         goto out;
1684                 }
1685                 ret = ext4_init_new_dir(NULL, dir, inode);
1686                 iput(dir);
1687                 if (ret) {
1688                         ret = 0;
1689                         goto out;
1690                 }
1691         }
1692         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1693         if (ret)
1694                 goto out;
1695         set_nlink(inode, 1);
1696         ext4_mark_inode_dirty(NULL, inode);
1697 out:
1698         iput(inode);
1699         return ret;
1700 }
1701 
1702 /*
1703  * Record physical disk regions which are in use as per fast commit area,
1704  * and used by inodes during replay phase. Our simple replay phase
1705  * allocator excludes these regions from allocation.
1706  */
1707 int ext4_fc_record_regions(struct super_block *sb, int ino,
1708                 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1709 {
1710         struct ext4_fc_replay_state *state;
1711         struct ext4_fc_alloc_region *region;
1712 
1713         state = &EXT4_SB(sb)->s_fc_replay_state;
1714         /*
1715          * during replay phase, the fc_regions_valid may not same as
1716          * fc_regions_used, update it when do new additions.
1717          */
1718         if (replay && state->fc_regions_used != state->fc_regions_valid)
1719                 state->fc_regions_used = state->fc_regions_valid;
1720         if (state->fc_regions_used == state->fc_regions_size) {
1721                 struct ext4_fc_alloc_region *fc_regions;
1722 
1723                 fc_regions = krealloc(state->fc_regions,
1724                                       sizeof(struct ext4_fc_alloc_region) *
1725                                       (state->fc_regions_size +
1726                                        EXT4_FC_REPLAY_REALLOC_INCREMENT),
1727                                       GFP_KERNEL);
1728                 if (!fc_regions)
1729                         return -ENOMEM;
1730                 state->fc_regions_size +=
1731                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1732                 state->fc_regions = fc_regions;
1733         }
1734         region = &state->fc_regions[state->fc_regions_used++];
1735         region->ino = ino;
1736         region->lblk = lblk;
1737         region->pblk = pblk;
1738         region->len = len;
1739 
1740         if (replay)
1741                 state->fc_regions_valid++;
1742 
1743         return 0;
1744 }
1745 
1746 /* Replay add range tag */
1747 static int ext4_fc_replay_add_range(struct super_block *sb,
1748                                     struct ext4_fc_tl_mem *tl, u8 *val)
1749 {
1750         struct ext4_fc_add_range fc_add_ex;
1751         struct ext4_extent newex, *ex;
1752         struct inode *inode;
1753         ext4_lblk_t start, cur;
1754         int remaining, len;
1755         ext4_fsblk_t start_pblk;
1756         struct ext4_map_blocks map;
1757         struct ext4_ext_path *path = NULL;
1758         int ret;
1759 
1760         memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1761         ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1762 
1763         trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1764                 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1765                 ext4_ext_get_actual_len(ex));
1766 
1767         inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1768         if (IS_ERR(inode)) {
1769                 ext4_debug("Inode not found.");
1770                 return 0;
1771         }
1772 
1773         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1774         if (ret)
1775                 goto out;
1776 
1777         start = le32_to_cpu(ex->ee_block);
1778         start_pblk = ext4_ext_pblock(ex);
1779         len = ext4_ext_get_actual_len(ex);
1780 
1781         cur = start;
1782         remaining = len;
1783         ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1784                   start, start_pblk, len, ext4_ext_is_unwritten(ex),
1785                   inode->i_ino);
1786 
1787         while (remaining > 0) {
1788                 map.m_lblk = cur;
1789                 map.m_len = remaining;
1790                 map.m_pblk = 0;
1791                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1792 
1793                 if (ret < 0)
1794                         goto out;
1795 
1796                 if (ret == 0) {
1797                         /* Range is not mapped */
1798                         path = ext4_find_extent(inode, cur, NULL, 0);
1799                         if (IS_ERR(path))
1800                                 goto out;
1801                         memset(&newex, 0, sizeof(newex));
1802                         newex.ee_block = cpu_to_le32(cur);
1803                         ext4_ext_store_pblock(
1804                                 &newex, start_pblk + cur - start);
1805                         newex.ee_len = cpu_to_le16(map.m_len);
1806                         if (ext4_ext_is_unwritten(ex))
1807                                 ext4_ext_mark_unwritten(&newex);
1808                         down_write(&EXT4_I(inode)->i_data_sem);
1809                         ret = ext4_ext_insert_extent(
1810                                 NULL, inode, &path, &newex, 0);
1811                         up_write((&EXT4_I(inode)->i_data_sem));
1812                         ext4_free_ext_path(path);
1813                         if (ret)
1814                                 goto out;
1815                         goto next;
1816                 }
1817 
1818                 if (start_pblk + cur - start != map.m_pblk) {
1819                         /*
1820                          * Logical to physical mapping changed. This can happen
1821                          * if this range was removed and then reallocated to
1822                          * map to new physical blocks during a fast commit.
1823                          */
1824                         ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1825                                         ext4_ext_is_unwritten(ex),
1826                                         start_pblk + cur - start);
1827                         if (ret)
1828                                 goto out;
1829                         /*
1830                          * Mark the old blocks as free since they aren't used
1831                          * anymore. We maintain an array of all the modified
1832                          * inodes. In case these blocks are still used at either
1833                          * a different logical range in the same inode or in
1834                          * some different inode, we will mark them as allocated
1835                          * at the end of the FC replay using our array of
1836                          * modified inodes.
1837                          */
1838                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1839                         goto next;
1840                 }
1841 
1842                 /* Range is mapped and needs a state change */
1843                 ext4_debug("Converting from %ld to %d %lld",
1844                                 map.m_flags & EXT4_MAP_UNWRITTEN,
1845                         ext4_ext_is_unwritten(ex), map.m_pblk);
1846                 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1847                                         ext4_ext_is_unwritten(ex), map.m_pblk);
1848                 if (ret)
1849                         goto out;
1850                 /*
1851                  * We may have split the extent tree while toggling the state.
1852                  * Try to shrink the extent tree now.
1853                  */
1854                 ext4_ext_replay_shrink_inode(inode, start + len);
1855 next:
1856                 cur += map.m_len;
1857                 remaining -= map.m_len;
1858         }
1859         ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1860                                         sb->s_blocksize_bits);
1861 out:
1862         iput(inode);
1863         return 0;
1864 }
1865 
1866 /* Replay DEL_RANGE tag */
1867 static int
1868 ext4_fc_replay_del_range(struct super_block *sb,
1869                          struct ext4_fc_tl_mem *tl, u8 *val)
1870 {
1871         struct inode *inode;
1872         struct ext4_fc_del_range lrange;
1873         struct ext4_map_blocks map;
1874         ext4_lblk_t cur, remaining;
1875         int ret;
1876 
1877         memcpy(&lrange, val, sizeof(lrange));
1878         cur = le32_to_cpu(lrange.fc_lblk);
1879         remaining = le32_to_cpu(lrange.fc_len);
1880 
1881         trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1882                 le32_to_cpu(lrange.fc_ino), cur, remaining);
1883 
1884         inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1885         if (IS_ERR(inode)) {
1886                 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1887                 return 0;
1888         }
1889 
1890         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1891         if (ret)
1892                 goto out;
1893 
1894         ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1895                         inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1896                         le32_to_cpu(lrange.fc_len));
1897         while (remaining > 0) {
1898                 map.m_lblk = cur;
1899                 map.m_len = remaining;
1900 
1901                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1902                 if (ret < 0)
1903                         goto out;
1904                 if (ret > 0) {
1905                         remaining -= ret;
1906                         cur += ret;
1907                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1908                 } else {
1909                         remaining -= map.m_len;
1910                         cur += map.m_len;
1911                 }
1912         }
1913 
1914         down_write(&EXT4_I(inode)->i_data_sem);
1915         ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1916                                 le32_to_cpu(lrange.fc_lblk) +
1917                                 le32_to_cpu(lrange.fc_len) - 1);
1918         up_write(&EXT4_I(inode)->i_data_sem);
1919         if (ret)
1920                 goto out;
1921         ext4_ext_replay_shrink_inode(inode,
1922                 i_size_read(inode) >> sb->s_blocksize_bits);
1923         ext4_mark_inode_dirty(NULL, inode);
1924 out:
1925         iput(inode);
1926         return 0;
1927 }
1928 
1929 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1930 {
1931         struct ext4_fc_replay_state *state;
1932         struct inode *inode;
1933         struct ext4_ext_path *path = NULL;
1934         struct ext4_map_blocks map;
1935         int i, ret, j;
1936         ext4_lblk_t cur, end;
1937 
1938         state = &EXT4_SB(sb)->s_fc_replay_state;
1939         for (i = 0; i < state->fc_modified_inodes_used; i++) {
1940                 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1941                         EXT4_IGET_NORMAL);
1942                 if (IS_ERR(inode)) {
1943                         ext4_debug("Inode %d not found.",
1944                                 state->fc_modified_inodes[i]);
1945                         continue;
1946                 }
1947                 cur = 0;
1948                 end = EXT_MAX_BLOCKS;
1949                 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1950                         iput(inode);
1951                         continue;
1952                 }
1953                 while (cur < end) {
1954                         map.m_lblk = cur;
1955                         map.m_len = end - cur;
1956 
1957                         ret = ext4_map_blocks(NULL, inode, &map, 0);
1958                         if (ret < 0)
1959                                 break;
1960 
1961                         if (ret > 0) {
1962                                 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1963                                 if (!IS_ERR(path)) {
1964                                         for (j = 0; j < path->p_depth; j++)
1965                                                 ext4_mb_mark_bb(inode->i_sb,
1966                                                         path[j].p_block, 1, true);
1967                                         ext4_free_ext_path(path);
1968                                 }
1969                                 cur += ret;
1970                                 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1971                                                         map.m_len, true);
1972                         } else {
1973                                 cur = cur + (map.m_len ? map.m_len : 1);
1974                         }
1975                 }
1976                 iput(inode);
1977         }
1978 }
1979 
1980 /*
1981  * Check if block is in excluded regions for block allocation. The simple
1982  * allocator that runs during replay phase is calls this function to see
1983  * if it is okay to use a block.
1984  */
1985 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1986 {
1987         int i;
1988         struct ext4_fc_replay_state *state;
1989 
1990         state = &EXT4_SB(sb)->s_fc_replay_state;
1991         for (i = 0; i < state->fc_regions_valid; i++) {
1992                 if (state->fc_regions[i].ino == 0 ||
1993                         state->fc_regions[i].len == 0)
1994                         continue;
1995                 if (in_range(blk, state->fc_regions[i].pblk,
1996                                         state->fc_regions[i].len))
1997                         return true;
1998         }
1999         return false;
2000 }
2001 
2002 /* Cleanup function called after replay */
2003 void ext4_fc_replay_cleanup(struct super_block *sb)
2004 {
2005         struct ext4_sb_info *sbi = EXT4_SB(sb);
2006 
2007         sbi->s_mount_state &= ~EXT4_FC_REPLAY;
2008         kfree(sbi->s_fc_replay_state.fc_regions);
2009         kfree(sbi->s_fc_replay_state.fc_modified_inodes);
2010 }
2011 
2012 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
2013                                       int tag, int len)
2014 {
2015         switch (tag) {
2016         case EXT4_FC_TAG_ADD_RANGE:
2017                 return len == sizeof(struct ext4_fc_add_range);
2018         case EXT4_FC_TAG_DEL_RANGE:
2019                 return len == sizeof(struct ext4_fc_del_range);
2020         case EXT4_FC_TAG_CREAT:
2021         case EXT4_FC_TAG_LINK:
2022         case EXT4_FC_TAG_UNLINK:
2023                 len -= sizeof(struct ext4_fc_dentry_info);
2024                 return len >= 1 && len <= EXT4_NAME_LEN;
2025         case EXT4_FC_TAG_INODE:
2026                 len -= sizeof(struct ext4_fc_inode);
2027                 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2028                         len <= sbi->s_inode_size;
2029         case EXT4_FC_TAG_PAD:
2030                 return true; /* padding can have any length */
2031         case EXT4_FC_TAG_TAIL:
2032                 return len >= sizeof(struct ext4_fc_tail);
2033         case EXT4_FC_TAG_HEAD:
2034                 return len == sizeof(struct ext4_fc_head);
2035         }
2036         return false;
2037 }
2038 
2039 /*
2040  * Recovery Scan phase handler
2041  *
2042  * This function is called during the scan phase and is responsible
2043  * for doing following things:
2044  * - Make sure the fast commit area has valid tags for replay
2045  * - Count number of tags that need to be replayed by the replay handler
2046  * - Verify CRC
2047  * - Create a list of excluded blocks for allocation during replay phase
2048  *
2049  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2050  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2051  * to indicate that scan has finished and JBD2 can now start replay phase.
2052  * It returns a negative error to indicate that there was an error. At the end
2053  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2054  * to indicate the number of tags that need to replayed during the replay phase.
2055  */
2056 static int ext4_fc_replay_scan(journal_t *journal,
2057                                 struct buffer_head *bh, int off,
2058                                 tid_t expected_tid)
2059 {
2060         struct super_block *sb = journal->j_private;
2061         struct ext4_sb_info *sbi = EXT4_SB(sb);
2062         struct ext4_fc_replay_state *state;
2063         int ret = JBD2_FC_REPLAY_CONTINUE;
2064         struct ext4_fc_add_range ext;
2065         struct ext4_fc_tl_mem tl;
2066         struct ext4_fc_tail tail;
2067         __u8 *start, *end, *cur, *val;
2068         struct ext4_fc_head head;
2069         struct ext4_extent *ex;
2070 
2071         state = &sbi->s_fc_replay_state;
2072 
2073         start = (u8 *)bh->b_data;
2074         end = start + journal->j_blocksize;
2075 
2076         if (state->fc_replay_expected_off == 0) {
2077                 state->fc_cur_tag = 0;
2078                 state->fc_replay_num_tags = 0;
2079                 state->fc_crc = 0;
2080                 state->fc_regions = NULL;
2081                 state->fc_regions_valid = state->fc_regions_used =
2082                         state->fc_regions_size = 0;
2083                 /* Check if we can stop early */
2084                 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2085                         != EXT4_FC_TAG_HEAD)
2086                         return 0;
2087         }
2088 
2089         if (off != state->fc_replay_expected_off) {
2090                 ret = -EFSCORRUPTED;
2091                 goto out_err;
2092         }
2093 
2094         state->fc_replay_expected_off++;
2095         for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2096              cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2097                 ext4_fc_get_tl(&tl, cur);
2098                 val = cur + EXT4_FC_TAG_BASE_LEN;
2099                 if (tl.fc_len > end - val ||
2100                     !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2101                         ret = state->fc_replay_num_tags ?
2102                                 JBD2_FC_REPLAY_STOP : -ECANCELED;
2103                         goto out_err;
2104                 }
2105                 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2106                            tag2str(tl.fc_tag), bh->b_blocknr);
2107                 switch (tl.fc_tag) {
2108                 case EXT4_FC_TAG_ADD_RANGE:
2109                         memcpy(&ext, val, sizeof(ext));
2110                         ex = (struct ext4_extent *)&ext.fc_ex;
2111                         ret = ext4_fc_record_regions(sb,
2112                                 le32_to_cpu(ext.fc_ino),
2113                                 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2114                                 ext4_ext_get_actual_len(ex), 0);
2115                         if (ret < 0)
2116                                 break;
2117                         ret = JBD2_FC_REPLAY_CONTINUE;
2118                         fallthrough;
2119                 case EXT4_FC_TAG_DEL_RANGE:
2120                 case EXT4_FC_TAG_LINK:
2121                 case EXT4_FC_TAG_UNLINK:
2122                 case EXT4_FC_TAG_CREAT:
2123                 case EXT4_FC_TAG_INODE:
2124                 case EXT4_FC_TAG_PAD:
2125                         state->fc_cur_tag++;
2126                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2127                                 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2128                         break;
2129                 case EXT4_FC_TAG_TAIL:
2130                         state->fc_cur_tag++;
2131                         memcpy(&tail, val, sizeof(tail));
2132                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2133                                                 EXT4_FC_TAG_BASE_LEN +
2134                                                 offsetof(struct ext4_fc_tail,
2135                                                 fc_crc));
2136                         if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2137                                 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2138                                 state->fc_replay_num_tags = state->fc_cur_tag;
2139                                 state->fc_regions_valid =
2140                                         state->fc_regions_used;
2141                         } else {
2142                                 ret = state->fc_replay_num_tags ?
2143                                         JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2144                         }
2145                         state->fc_crc = 0;
2146                         break;
2147                 case EXT4_FC_TAG_HEAD:
2148                         memcpy(&head, val, sizeof(head));
2149                         if (le32_to_cpu(head.fc_features) &
2150                                 ~EXT4_FC_SUPPORTED_FEATURES) {
2151                                 ret = -EOPNOTSUPP;
2152                                 break;
2153                         }
2154                         if (le32_to_cpu(head.fc_tid) != expected_tid) {
2155                                 ret = JBD2_FC_REPLAY_STOP;
2156                                 break;
2157                         }
2158                         state->fc_cur_tag++;
2159                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2160                                 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2161                         break;
2162                 default:
2163                         ret = state->fc_replay_num_tags ?
2164                                 JBD2_FC_REPLAY_STOP : -ECANCELED;
2165                 }
2166                 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2167                         break;
2168         }
2169 
2170 out_err:
2171         trace_ext4_fc_replay_scan(sb, ret, off);
2172         return ret;
2173 }
2174 
2175 /*
2176  * Main recovery path entry point.
2177  * The meaning of return codes is similar as above.
2178  */
2179 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2180                                 enum passtype pass, int off, tid_t expected_tid)
2181 {
2182         struct super_block *sb = journal->j_private;
2183         struct ext4_sb_info *sbi = EXT4_SB(sb);
2184         struct ext4_fc_tl_mem tl;
2185         __u8 *start, *end, *cur, *val;
2186         int ret = JBD2_FC_REPLAY_CONTINUE;
2187         struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2188         struct ext4_fc_tail tail;
2189 
2190         if (pass == PASS_SCAN) {
2191                 state->fc_current_pass = PASS_SCAN;
2192                 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2193         }
2194 
2195         if (state->fc_current_pass != pass) {
2196                 state->fc_current_pass = pass;
2197                 sbi->s_mount_state |= EXT4_FC_REPLAY;
2198         }
2199         if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2200                 ext4_debug("Replay stops\n");
2201                 ext4_fc_set_bitmaps_and_counters(sb);
2202                 return 0;
2203         }
2204 
2205 #ifdef CONFIG_EXT4_DEBUG
2206         if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2207                 pr_warn("Dropping fc block %d because max_replay set\n", off);
2208                 return JBD2_FC_REPLAY_STOP;
2209         }
2210 #endif
2211 
2212         start = (u8 *)bh->b_data;
2213         end = start + journal->j_blocksize;
2214 
2215         for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2216              cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2217                 ext4_fc_get_tl(&tl, cur);
2218                 val = cur + EXT4_FC_TAG_BASE_LEN;
2219 
2220                 if (state->fc_replay_num_tags == 0) {
2221                         ret = JBD2_FC_REPLAY_STOP;
2222                         ext4_fc_set_bitmaps_and_counters(sb);
2223                         break;
2224                 }
2225 
2226                 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2227                 state->fc_replay_num_tags--;
2228                 switch (tl.fc_tag) {
2229                 case EXT4_FC_TAG_LINK:
2230                         ret = ext4_fc_replay_link(sb, &tl, val);
2231                         break;
2232                 case EXT4_FC_TAG_UNLINK:
2233                         ret = ext4_fc_replay_unlink(sb, &tl, val);
2234                         break;
2235                 case EXT4_FC_TAG_ADD_RANGE:
2236                         ret = ext4_fc_replay_add_range(sb, &tl, val);
2237                         break;
2238                 case EXT4_FC_TAG_CREAT:
2239                         ret = ext4_fc_replay_create(sb, &tl, val);
2240                         break;
2241                 case EXT4_FC_TAG_DEL_RANGE:
2242                         ret = ext4_fc_replay_del_range(sb, &tl, val);
2243                         break;
2244                 case EXT4_FC_TAG_INODE:
2245                         ret = ext4_fc_replay_inode(sb, &tl, val);
2246                         break;
2247                 case EXT4_FC_TAG_PAD:
2248                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2249                                              tl.fc_len, 0);
2250                         break;
2251                 case EXT4_FC_TAG_TAIL:
2252                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2253                                              0, tl.fc_len, 0);
2254                         memcpy(&tail, val, sizeof(tail));
2255                         WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2256                         break;
2257                 case EXT4_FC_TAG_HEAD:
2258                         break;
2259                 default:
2260                         trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2261                         ret = -ECANCELED;
2262                         break;
2263                 }
2264                 if (ret < 0)
2265                         break;
2266                 ret = JBD2_FC_REPLAY_CONTINUE;
2267         }
2268         return ret;
2269 }
2270 
2271 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2272 {
2273         /*
2274          * We set replay callback even if fast commit disabled because we may
2275          * could still have fast commit blocks that need to be replayed even if
2276          * fast commit has now been turned off.
2277          */
2278         journal->j_fc_replay_callback = ext4_fc_replay;
2279         if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2280                 return;
2281         journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2282 }
2283 
2284 static const char * const fc_ineligible_reasons[] = {
2285         [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2286         [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2287         [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2288         [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2289         [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2290         [EXT4_FC_REASON_RESIZE] = "Resize",
2291         [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2292         [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2293         [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2294         [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2295 };
2296 
2297 int ext4_fc_info_show(struct seq_file *seq, void *v)
2298 {
2299         struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2300         struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2301         int i;
2302 
2303         if (v != SEQ_START_TOKEN)
2304                 return 0;
2305 
2306         seq_printf(seq,
2307                 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2308                    stats->fc_num_commits, stats->fc_ineligible_commits,
2309                    stats->fc_numblks,
2310                    div_u64(stats->s_fc_avg_commit_time, 1000));
2311         seq_puts(seq, "Ineligible reasons:\n");
2312         for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2313                 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2314                         stats->fc_ineligible_reason_count[i]);
2315 
2316         return 0;
2317 }
2318 
2319 int __init ext4_fc_init_dentry_cache(void)
2320 {
2321         ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2322                                            SLAB_RECLAIM_ACCOUNT);
2323 
2324         if (ext4_fc_dentry_cachep == NULL)
2325                 return -ENOMEM;
2326 
2327         return 0;
2328 }
2329 
2330 void ext4_fc_destroy_dentry_cache(void)
2331 {
2332         kmem_cache_destroy(ext4_fc_dentry_cachep);
2333 }
2334 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php