~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ext4/file.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  linux/fs/ext4/file.c
  4  *
  5  * Copyright (C) 1992, 1993, 1994, 1995
  6  * Remy Card (card@masi.ibp.fr)
  7  * Laboratoire MASI - Institut Blaise Pascal
  8  * Universite Pierre et Marie Curie (Paris VI)
  9  *
 10  *  from
 11  *
 12  *  linux/fs/minix/file.c
 13  *
 14  *  Copyright (C) 1991, 1992  Linus Torvalds
 15  *
 16  *  ext4 fs regular file handling primitives
 17  *
 18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
 19  *      (jj@sunsite.ms.mff.cuni.cz)
 20  */
 21 
 22 #include <linux/time.h>
 23 #include <linux/fs.h>
 24 #include <linux/iomap.h>
 25 #include <linux/mount.h>
 26 #include <linux/path.h>
 27 #include <linux/dax.h>
 28 #include <linux/quotaops.h>
 29 #include <linux/pagevec.h>
 30 #include <linux/uio.h>
 31 #include <linux/mman.h>
 32 #include <linux/backing-dev.h>
 33 #include "ext4.h"
 34 #include "ext4_jbd2.h"
 35 #include "xattr.h"
 36 #include "acl.h"
 37 #include "truncate.h"
 38 
 39 /*
 40  * Returns %true if the given DIO request should be attempted with DIO, or
 41  * %false if it should fall back to buffered I/O.
 42  *
 43  * DIO isn't well specified; when it's unsupported (either due to the request
 44  * being misaligned, or due to the file not supporting DIO at all), filesystems
 45  * either fall back to buffered I/O or return EINVAL.  For files that don't use
 46  * any special features like encryption or verity, ext4 has traditionally
 47  * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
 48  * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
 49  *
 50  * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
 51  * traditionally falls back to buffered I/O.
 52  *
 53  * This function implements the traditional ext4 behavior in all these cases.
 54  */
 55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
 56 {
 57         struct inode *inode = file_inode(iocb->ki_filp);
 58         u32 dio_align = ext4_dio_alignment(inode);
 59 
 60         if (dio_align == 0)
 61                 return false;
 62 
 63         if (dio_align == 1)
 64                 return true;
 65 
 66         return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
 67 }
 68 
 69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
 70 {
 71         ssize_t ret;
 72         struct inode *inode = file_inode(iocb->ki_filp);
 73 
 74         if (iocb->ki_flags & IOCB_NOWAIT) {
 75                 if (!inode_trylock_shared(inode))
 76                         return -EAGAIN;
 77         } else {
 78                 inode_lock_shared(inode);
 79         }
 80 
 81         if (!ext4_should_use_dio(iocb, to)) {
 82                 inode_unlock_shared(inode);
 83                 /*
 84                  * Fallback to buffered I/O if the operation being performed on
 85                  * the inode is not supported by direct I/O. The IOCB_DIRECT
 86                  * flag needs to be cleared here in order to ensure that the
 87                  * direct I/O path within generic_file_read_iter() is not
 88                  * taken.
 89                  */
 90                 iocb->ki_flags &= ~IOCB_DIRECT;
 91                 return generic_file_read_iter(iocb, to);
 92         }
 93 
 94         ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
 95         inode_unlock_shared(inode);
 96 
 97         file_accessed(iocb->ki_filp);
 98         return ret;
 99 }
100 
101 #ifdef CONFIG_FS_DAX
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104         struct inode *inode = file_inode(iocb->ki_filp);
105         ssize_t ret;
106 
107         if (iocb->ki_flags & IOCB_NOWAIT) {
108                 if (!inode_trylock_shared(inode))
109                         return -EAGAIN;
110         } else {
111                 inode_lock_shared(inode);
112         }
113         /*
114          * Recheck under inode lock - at this point we are sure it cannot
115          * change anymore
116          */
117         if (!IS_DAX(inode)) {
118                 inode_unlock_shared(inode);
119                 /* Fallback to buffered IO in case we cannot support DAX */
120                 return generic_file_read_iter(iocb, to);
121         }
122         ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123         inode_unlock_shared(inode);
124 
125         file_accessed(iocb->ki_filp);
126         return ret;
127 }
128 #endif
129 
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132         struct inode *inode = file_inode(iocb->ki_filp);
133 
134         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
135                 return -EIO;
136 
137         if (!iov_iter_count(to))
138                 return 0; /* skip atime */
139 
140 #ifdef CONFIG_FS_DAX
141         if (IS_DAX(inode))
142                 return ext4_dax_read_iter(iocb, to);
143 #endif
144         if (iocb->ki_flags & IOCB_DIRECT)
145                 return ext4_dio_read_iter(iocb, to);
146 
147         return generic_file_read_iter(iocb, to);
148 }
149 
150 static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos,
151                                      struct pipe_inode_info *pipe,
152                                      size_t len, unsigned int flags)
153 {
154         struct inode *inode = file_inode(in);
155 
156         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
157                 return -EIO;
158         return filemap_splice_read(in, ppos, pipe, len, flags);
159 }
160 
161 /*
162  * Called when an inode is released. Note that this is different
163  * from ext4_file_open: open gets called at every open, but release
164  * gets called only when /all/ the files are closed.
165  */
166 static int ext4_release_file(struct inode *inode, struct file *filp)
167 {
168         if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
169                 ext4_alloc_da_blocks(inode);
170                 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
171         }
172         /* if we are the last writer on the inode, drop the block reservation */
173         if ((filp->f_mode & FMODE_WRITE) &&
174                         (atomic_read(&inode->i_writecount) == 1) &&
175                         !EXT4_I(inode)->i_reserved_data_blocks) {
176                 down_write(&EXT4_I(inode)->i_data_sem);
177                 ext4_discard_preallocations(inode);
178                 up_write(&EXT4_I(inode)->i_data_sem);
179         }
180         if (is_dx(inode) && filp->private_data)
181                 ext4_htree_free_dir_info(filp->private_data);
182 
183         return 0;
184 }
185 
186 /*
187  * This tests whether the IO in question is block-aligned or not.
188  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
189  * are converted to written only after the IO is complete.  Until they are
190  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
191  * it needs to zero out portions of the start and/or end block.  If 2 AIO
192  * threads are at work on the same unwritten block, they must be synchronized
193  * or one thread will zero the other's data, causing corruption.
194  */
195 static bool
196 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
197 {
198         struct super_block *sb = inode->i_sb;
199         unsigned long blockmask = sb->s_blocksize - 1;
200 
201         if ((pos | iov_iter_alignment(from)) & blockmask)
202                 return true;
203 
204         return false;
205 }
206 
207 static bool
208 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
209 {
210         if (offset + len > i_size_read(inode) ||
211             offset + len > EXT4_I(inode)->i_disksize)
212                 return true;
213         return false;
214 }
215 
216 /* Is IO overwriting allocated or initialized blocks? */
217 static bool ext4_overwrite_io(struct inode *inode,
218                               loff_t pos, loff_t len, bool *unwritten)
219 {
220         struct ext4_map_blocks map;
221         unsigned int blkbits = inode->i_blkbits;
222         int err, blklen;
223 
224         if (pos + len > i_size_read(inode))
225                 return false;
226 
227         map.m_lblk = pos >> blkbits;
228         map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
229         blklen = map.m_len;
230 
231         err = ext4_map_blocks(NULL, inode, &map, 0);
232         if (err != blklen)
233                 return false;
234         /*
235          * 'err==len' means that all of the blocks have been preallocated,
236          * regardless of whether they have been initialized or not. We need to
237          * check m_flags to distinguish the unwritten extents.
238          */
239         *unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
240         return true;
241 }
242 
243 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
244                                          struct iov_iter *from)
245 {
246         struct inode *inode = file_inode(iocb->ki_filp);
247         ssize_t ret;
248 
249         if (unlikely(IS_IMMUTABLE(inode)))
250                 return -EPERM;
251 
252         ret = generic_write_checks(iocb, from);
253         if (ret <= 0)
254                 return ret;
255 
256         /*
257          * If we have encountered a bitmap-format file, the size limit
258          * is smaller than s_maxbytes, which is for extent-mapped files.
259          */
260         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
261                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
262 
263                 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
264                         return -EFBIG;
265                 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
266         }
267 
268         return iov_iter_count(from);
269 }
270 
271 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
272 {
273         ssize_t ret, count;
274 
275         count = ext4_generic_write_checks(iocb, from);
276         if (count <= 0)
277                 return count;
278 
279         ret = file_modified(iocb->ki_filp);
280         if (ret)
281                 return ret;
282         return count;
283 }
284 
285 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
286                                         struct iov_iter *from)
287 {
288         ssize_t ret;
289         struct inode *inode = file_inode(iocb->ki_filp);
290 
291         if (iocb->ki_flags & IOCB_NOWAIT)
292                 return -EOPNOTSUPP;
293 
294         inode_lock(inode);
295         ret = ext4_write_checks(iocb, from);
296         if (ret <= 0)
297                 goto out;
298 
299         ret = generic_perform_write(iocb, from);
300 
301 out:
302         inode_unlock(inode);
303         if (unlikely(ret <= 0))
304                 return ret;
305         return generic_write_sync(iocb, ret);
306 }
307 
308 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
309                                            ssize_t count)
310 {
311         handle_t *handle;
312 
313         lockdep_assert_held_write(&inode->i_rwsem);
314         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
315         if (IS_ERR(handle))
316                 return PTR_ERR(handle);
317 
318         if (ext4_update_inode_size(inode, offset + count)) {
319                 int ret = ext4_mark_inode_dirty(handle, inode);
320                 if (unlikely(ret)) {
321                         ext4_journal_stop(handle);
322                         return ret;
323                 }
324         }
325 
326         if (inode->i_nlink)
327                 ext4_orphan_del(handle, inode);
328         ext4_journal_stop(handle);
329 
330         return count;
331 }
332 
333 /*
334  * Clean up the inode after DIO or DAX extending write has completed and the
335  * inode size has been updated using ext4_handle_inode_extension().
336  */
337 static void ext4_inode_extension_cleanup(struct inode *inode, ssize_t count)
338 {
339         lockdep_assert_held_write(&inode->i_rwsem);
340         if (count < 0) {
341                 ext4_truncate_failed_write(inode);
342                 /*
343                  * If the truncate operation failed early, then the inode may
344                  * still be on the orphan list. In that case, we need to try
345                  * remove the inode from the in-memory linked list.
346                  */
347                 if (inode->i_nlink)
348                         ext4_orphan_del(NULL, inode);
349                 return;
350         }
351         /*
352          * If i_disksize got extended either due to writeback of delalloc
353          * blocks or extending truncate while the DIO was running we could fail
354          * to cleanup the orphan list in ext4_handle_inode_extension(). Do it
355          * now.
356          */
357         if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
358                 handle_t *handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
359 
360                 if (IS_ERR(handle)) {
361                         /*
362                          * The write has successfully completed. Not much to
363                          * do with the error here so just cleanup the orphan
364                          * list and hope for the best.
365                          */
366                         ext4_orphan_del(NULL, inode);
367                         return;
368                 }
369                 ext4_orphan_del(handle, inode);
370                 ext4_journal_stop(handle);
371         }
372 }
373 
374 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
375                                  int error, unsigned int flags)
376 {
377         loff_t pos = iocb->ki_pos;
378         struct inode *inode = file_inode(iocb->ki_filp);
379 
380         if (!error && size && flags & IOMAP_DIO_UNWRITTEN)
381                 error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
382         if (error)
383                 return error;
384         /*
385          * Note that EXT4_I(inode)->i_disksize can get extended up to
386          * inode->i_size while the I/O was running due to writeback of delalloc
387          * blocks. But the code in ext4_iomap_alloc() is careful to use
388          * zeroed/unwritten extents if this is possible; thus we won't leave
389          * uninitialized blocks in a file even if we didn't succeed in writing
390          * as much as we intended. Also we can race with truncate or write
391          * expanding the file so we have to be a bit careful here.
392          */
393         if (pos + size <= READ_ONCE(EXT4_I(inode)->i_disksize) &&
394             pos + size <= i_size_read(inode))
395                 return size;
396         return ext4_handle_inode_extension(inode, pos, size);
397 }
398 
399 static const struct iomap_dio_ops ext4_dio_write_ops = {
400         .end_io = ext4_dio_write_end_io,
401 };
402 
403 /*
404  * The intention here is to start with shared lock acquired then see if any
405  * condition requires an exclusive inode lock. If yes, then we restart the
406  * whole operation by releasing the shared lock and acquiring exclusive lock.
407  *
408  * - For unaligned_io we never take shared lock as it may cause data corruption
409  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
410  *
411  * - For extending writes case we don't take the shared lock, since it requires
412  *   updating inode i_disksize and/or orphan handling with exclusive lock.
413  *
414  * - shared locking will only be true mostly with overwrites, including
415  *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
416  *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
417  *   also release exclusive i_rwsem lock.
418  *
419  * - Otherwise we will switch to exclusive i_rwsem lock.
420  */
421 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
422                                      bool *ilock_shared, bool *extend,
423                                      bool *unwritten, int *dio_flags)
424 {
425         struct file *file = iocb->ki_filp;
426         struct inode *inode = file_inode(file);
427         loff_t offset;
428         size_t count;
429         ssize_t ret;
430         bool overwrite, unaligned_io;
431 
432 restart:
433         ret = ext4_generic_write_checks(iocb, from);
434         if (ret <= 0)
435                 goto out;
436 
437         offset = iocb->ki_pos;
438         count = ret;
439 
440         unaligned_io = ext4_unaligned_io(inode, from, offset);
441         *extend = ext4_extending_io(inode, offset, count);
442         overwrite = ext4_overwrite_io(inode, offset, count, unwritten);
443 
444         /*
445          * Determine whether we need to upgrade to an exclusive lock. This is
446          * required to change security info in file_modified(), for extending
447          * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten
448          * extents (as partial block zeroing may be required).
449          *
450          * Note that unaligned writes are allowed under shared lock so long as
451          * they are pure overwrites. Otherwise, concurrent unaligned writes risk
452          * data corruption due to partial block zeroing in the dio layer, and so
453          * the I/O must occur exclusively.
454          */
455         if (*ilock_shared &&
456             ((!IS_NOSEC(inode) || *extend || !overwrite ||
457              (unaligned_io && *unwritten)))) {
458                 if (iocb->ki_flags & IOCB_NOWAIT) {
459                         ret = -EAGAIN;
460                         goto out;
461                 }
462                 inode_unlock_shared(inode);
463                 *ilock_shared = false;
464                 inode_lock(inode);
465                 goto restart;
466         }
467 
468         /*
469          * Now that locking is settled, determine dio flags and exclusivity
470          * requirements. We don't use DIO_OVERWRITE_ONLY because we enforce
471          * behavior already. The inode lock is already held exclusive if the
472          * write is non-overwrite or extending, so drain all outstanding dio and
473          * set the force wait dio flag.
474          */
475         if (!*ilock_shared && (unaligned_io || *extend)) {
476                 if (iocb->ki_flags & IOCB_NOWAIT) {
477                         ret = -EAGAIN;
478                         goto out;
479                 }
480                 if (unaligned_io && (!overwrite || *unwritten))
481                         inode_dio_wait(inode);
482                 *dio_flags = IOMAP_DIO_FORCE_WAIT;
483         }
484 
485         ret = file_modified(file);
486         if (ret < 0)
487                 goto out;
488 
489         return count;
490 out:
491         if (*ilock_shared)
492                 inode_unlock_shared(inode);
493         else
494                 inode_unlock(inode);
495         return ret;
496 }
497 
498 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
499 {
500         ssize_t ret;
501         handle_t *handle;
502         struct inode *inode = file_inode(iocb->ki_filp);
503         loff_t offset = iocb->ki_pos;
504         size_t count = iov_iter_count(from);
505         const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
506         bool extend = false, unwritten = false;
507         bool ilock_shared = true;
508         int dio_flags = 0;
509 
510         /*
511          * Quick check here without any i_rwsem lock to see if it is extending
512          * IO. A more reliable check is done in ext4_dio_write_checks() with
513          * proper locking in place.
514          */
515         if (offset + count > i_size_read(inode))
516                 ilock_shared = false;
517 
518         if (iocb->ki_flags & IOCB_NOWAIT) {
519                 if (ilock_shared) {
520                         if (!inode_trylock_shared(inode))
521                                 return -EAGAIN;
522                 } else {
523                         if (!inode_trylock(inode))
524                                 return -EAGAIN;
525                 }
526         } else {
527                 if (ilock_shared)
528                         inode_lock_shared(inode);
529                 else
530                         inode_lock(inode);
531         }
532 
533         /* Fallback to buffered I/O if the inode does not support direct I/O. */
534         if (!ext4_should_use_dio(iocb, from)) {
535                 if (ilock_shared)
536                         inode_unlock_shared(inode);
537                 else
538                         inode_unlock(inode);
539                 return ext4_buffered_write_iter(iocb, from);
540         }
541 
542         /*
543          * Prevent inline data from being created since we are going to allocate
544          * blocks for DIO. We know the inode does not currently have inline data
545          * because ext4_should_use_dio() checked for it, but we have to clear
546          * the state flag before the write checks because a lock cycle could
547          * introduce races with other writers.
548          */
549         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
550 
551         ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend,
552                                     &unwritten, &dio_flags);
553         if (ret <= 0)
554                 return ret;
555 
556         offset = iocb->ki_pos;
557         count = ret;
558 
559         if (extend) {
560                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
561                 if (IS_ERR(handle)) {
562                         ret = PTR_ERR(handle);
563                         goto out;
564                 }
565 
566                 ret = ext4_orphan_add(handle, inode);
567                 if (ret) {
568                         ext4_journal_stop(handle);
569                         goto out;
570                 }
571 
572                 ext4_journal_stop(handle);
573         }
574 
575         if (ilock_shared && !unwritten)
576                 iomap_ops = &ext4_iomap_overwrite_ops;
577         ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
578                            dio_flags, NULL, 0);
579         if (ret == -ENOTBLK)
580                 ret = 0;
581         if (extend) {
582                 /*
583                  * We always perform extending DIO write synchronously so by
584                  * now the IO is completed and ext4_handle_inode_extension()
585                  * was called. Cleanup the inode in case of error or race with
586                  * writeback of delalloc blocks.
587                  */
588                 WARN_ON_ONCE(ret == -EIOCBQUEUED);
589                 ext4_inode_extension_cleanup(inode, ret);
590         }
591 
592 out:
593         if (ilock_shared)
594                 inode_unlock_shared(inode);
595         else
596                 inode_unlock(inode);
597 
598         if (ret >= 0 && iov_iter_count(from)) {
599                 ssize_t err;
600                 loff_t endbyte;
601 
602                 offset = iocb->ki_pos;
603                 err = ext4_buffered_write_iter(iocb, from);
604                 if (err < 0)
605                         return err;
606 
607                 /*
608                  * We need to ensure that the pages within the page cache for
609                  * the range covered by this I/O are written to disk and
610                  * invalidated. This is in attempt to preserve the expected
611                  * direct I/O semantics in the case we fallback to buffered I/O
612                  * to complete off the I/O request.
613                  */
614                 ret += err;
615                 endbyte = offset + err - 1;
616                 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
617                                                    offset, endbyte);
618                 if (!err)
619                         invalidate_mapping_pages(iocb->ki_filp->f_mapping,
620                                                  offset >> PAGE_SHIFT,
621                                                  endbyte >> PAGE_SHIFT);
622         }
623 
624         return ret;
625 }
626 
627 #ifdef CONFIG_FS_DAX
628 static ssize_t
629 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
630 {
631         ssize_t ret;
632         size_t count;
633         loff_t offset;
634         handle_t *handle;
635         bool extend = false;
636         struct inode *inode = file_inode(iocb->ki_filp);
637 
638         if (iocb->ki_flags & IOCB_NOWAIT) {
639                 if (!inode_trylock(inode))
640                         return -EAGAIN;
641         } else {
642                 inode_lock(inode);
643         }
644 
645         ret = ext4_write_checks(iocb, from);
646         if (ret <= 0)
647                 goto out;
648 
649         offset = iocb->ki_pos;
650         count = iov_iter_count(from);
651 
652         if (offset + count > EXT4_I(inode)->i_disksize) {
653                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
654                 if (IS_ERR(handle)) {
655                         ret = PTR_ERR(handle);
656                         goto out;
657                 }
658 
659                 ret = ext4_orphan_add(handle, inode);
660                 if (ret) {
661                         ext4_journal_stop(handle);
662                         goto out;
663                 }
664 
665                 extend = true;
666                 ext4_journal_stop(handle);
667         }
668 
669         ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
670 
671         if (extend) {
672                 ret = ext4_handle_inode_extension(inode, offset, ret);
673                 ext4_inode_extension_cleanup(inode, ret);
674         }
675 out:
676         inode_unlock(inode);
677         if (ret > 0)
678                 ret = generic_write_sync(iocb, ret);
679         return ret;
680 }
681 #endif
682 
683 static ssize_t
684 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
685 {
686         struct inode *inode = file_inode(iocb->ki_filp);
687 
688         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
689                 return -EIO;
690 
691 #ifdef CONFIG_FS_DAX
692         if (IS_DAX(inode))
693                 return ext4_dax_write_iter(iocb, from);
694 #endif
695         if (iocb->ki_flags & IOCB_DIRECT)
696                 return ext4_dio_write_iter(iocb, from);
697         else
698                 return ext4_buffered_write_iter(iocb, from);
699 }
700 
701 #ifdef CONFIG_FS_DAX
702 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, unsigned int order)
703 {
704         int error = 0;
705         vm_fault_t result;
706         int retries = 0;
707         handle_t *handle = NULL;
708         struct inode *inode = file_inode(vmf->vma->vm_file);
709         struct super_block *sb = inode->i_sb;
710 
711         /*
712          * We have to distinguish real writes from writes which will result in a
713          * COW page; COW writes should *not* poke the journal (the file will not
714          * be changed). Doing so would cause unintended failures when mounted
715          * read-only.
716          *
717          * We check for VM_SHARED rather than vmf->cow_page since the latter is
718          * unset for order != 0 (i.e. only in do_cow_fault); for
719          * other sizes, dax_iomap_fault will handle splitting / fallback so that
720          * we eventually come back with a COW page.
721          */
722         bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
723                 (vmf->vma->vm_flags & VM_SHARED);
724         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
725         pfn_t pfn;
726 
727         if (write) {
728                 sb_start_pagefault(sb);
729                 file_update_time(vmf->vma->vm_file);
730                 filemap_invalidate_lock_shared(mapping);
731 retry:
732                 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
733                                                EXT4_DATA_TRANS_BLOCKS(sb));
734                 if (IS_ERR(handle)) {
735                         filemap_invalidate_unlock_shared(mapping);
736                         sb_end_pagefault(sb);
737                         return VM_FAULT_SIGBUS;
738                 }
739         } else {
740                 filemap_invalidate_lock_shared(mapping);
741         }
742         result = dax_iomap_fault(vmf, order, &pfn, &error, &ext4_iomap_ops);
743         if (write) {
744                 ext4_journal_stop(handle);
745 
746                 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
747                     ext4_should_retry_alloc(sb, &retries))
748                         goto retry;
749                 /* Handling synchronous page fault? */
750                 if (result & VM_FAULT_NEEDDSYNC)
751                         result = dax_finish_sync_fault(vmf, order, pfn);
752                 filemap_invalidate_unlock_shared(mapping);
753                 sb_end_pagefault(sb);
754         } else {
755                 filemap_invalidate_unlock_shared(mapping);
756         }
757 
758         return result;
759 }
760 
761 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
762 {
763         return ext4_dax_huge_fault(vmf, 0);
764 }
765 
766 static const struct vm_operations_struct ext4_dax_vm_ops = {
767         .fault          = ext4_dax_fault,
768         .huge_fault     = ext4_dax_huge_fault,
769         .page_mkwrite   = ext4_dax_fault,
770         .pfn_mkwrite    = ext4_dax_fault,
771 };
772 #else
773 #define ext4_dax_vm_ops ext4_file_vm_ops
774 #endif
775 
776 static const struct vm_operations_struct ext4_file_vm_ops = {
777         .fault          = filemap_fault,
778         .map_pages      = filemap_map_pages,
779         .page_mkwrite   = ext4_page_mkwrite,
780 };
781 
782 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
783 {
784         struct inode *inode = file->f_mapping->host;
785         struct dax_device *dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
786 
787         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
788                 return -EIO;
789 
790         /*
791          * We don't support synchronous mappings for non-DAX files and
792          * for DAX files if underneath dax_device is not synchronous.
793          */
794         if (!daxdev_mapping_supported(vma, dax_dev))
795                 return -EOPNOTSUPP;
796 
797         file_accessed(file);
798         if (IS_DAX(file_inode(file))) {
799                 vma->vm_ops = &ext4_dax_vm_ops;
800                 vm_flags_set(vma, VM_HUGEPAGE);
801         } else {
802                 vma->vm_ops = &ext4_file_vm_ops;
803         }
804         return 0;
805 }
806 
807 static int ext4_sample_last_mounted(struct super_block *sb,
808                                     struct vfsmount *mnt)
809 {
810         struct ext4_sb_info *sbi = EXT4_SB(sb);
811         struct path path;
812         char buf[64], *cp;
813         handle_t *handle;
814         int err;
815 
816         if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
817                 return 0;
818 
819         if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
820                 return 0;
821 
822         ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
823         /*
824          * Sample where the filesystem has been mounted and
825          * store it in the superblock for sysadmin convenience
826          * when trying to sort through large numbers of block
827          * devices or filesystem images.
828          */
829         memset(buf, 0, sizeof(buf));
830         path.mnt = mnt;
831         path.dentry = mnt->mnt_root;
832         cp = d_path(&path, buf, sizeof(buf));
833         err = 0;
834         if (IS_ERR(cp))
835                 goto out;
836 
837         handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
838         err = PTR_ERR(handle);
839         if (IS_ERR(handle))
840                 goto out;
841         BUFFER_TRACE(sbi->s_sbh, "get_write_access");
842         err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
843                                             EXT4_JTR_NONE);
844         if (err)
845                 goto out_journal;
846         lock_buffer(sbi->s_sbh);
847         strtomem_pad(sbi->s_es->s_last_mounted, cp, 0);
848         ext4_superblock_csum_set(sb);
849         unlock_buffer(sbi->s_sbh);
850         ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
851 out_journal:
852         ext4_journal_stop(handle);
853 out:
854         sb_end_intwrite(sb);
855         return err;
856 }
857 
858 static int ext4_file_open(struct inode *inode, struct file *filp)
859 {
860         int ret;
861 
862         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
863                 return -EIO;
864 
865         ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
866         if (ret)
867                 return ret;
868 
869         ret = fscrypt_file_open(inode, filp);
870         if (ret)
871                 return ret;
872 
873         ret = fsverity_file_open(inode, filp);
874         if (ret)
875                 return ret;
876 
877         /*
878          * Set up the jbd2_inode if we are opening the inode for
879          * writing and the journal is present
880          */
881         if (filp->f_mode & FMODE_WRITE) {
882                 ret = ext4_inode_attach_jinode(inode);
883                 if (ret < 0)
884                         return ret;
885         }
886 
887         filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
888         return dquot_file_open(inode, filp);
889 }
890 
891 /*
892  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
893  * by calling generic_file_llseek_size() with the appropriate maxbytes
894  * value for each.
895  */
896 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
897 {
898         struct inode *inode = file->f_mapping->host;
899         loff_t maxbytes;
900 
901         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
902                 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
903         else
904                 maxbytes = inode->i_sb->s_maxbytes;
905 
906         switch (whence) {
907         default:
908                 return generic_file_llseek_size(file, offset, whence,
909                                                 maxbytes, i_size_read(inode));
910         case SEEK_HOLE:
911                 inode_lock_shared(inode);
912                 offset = iomap_seek_hole(inode, offset,
913                                          &ext4_iomap_report_ops);
914                 inode_unlock_shared(inode);
915                 break;
916         case SEEK_DATA:
917                 inode_lock_shared(inode);
918                 offset = iomap_seek_data(inode, offset,
919                                          &ext4_iomap_report_ops);
920                 inode_unlock_shared(inode);
921                 break;
922         }
923 
924         if (offset < 0)
925                 return offset;
926         return vfs_setpos(file, offset, maxbytes);
927 }
928 
929 const struct file_operations ext4_file_operations = {
930         .llseek         = ext4_llseek,
931         .read_iter      = ext4_file_read_iter,
932         .write_iter     = ext4_file_write_iter,
933         .iopoll         = iocb_bio_iopoll,
934         .unlocked_ioctl = ext4_ioctl,
935 #ifdef CONFIG_COMPAT
936         .compat_ioctl   = ext4_compat_ioctl,
937 #endif
938         .mmap           = ext4_file_mmap,
939         .open           = ext4_file_open,
940         .release        = ext4_release_file,
941         .fsync          = ext4_sync_file,
942         .get_unmapped_area = thp_get_unmapped_area,
943         .splice_read    = ext4_file_splice_read,
944         .splice_write   = iter_file_splice_write,
945         .fallocate      = ext4_fallocate,
946         .fop_flags      = FOP_MMAP_SYNC | FOP_BUFFER_RASYNC |
947                           FOP_DIO_PARALLEL_WRITE,
948 };
949 
950 const struct inode_operations ext4_file_inode_operations = {
951         .setattr        = ext4_setattr,
952         .getattr        = ext4_file_getattr,
953         .listxattr      = ext4_listxattr,
954         .get_inode_acl  = ext4_get_acl,
955         .set_acl        = ext4_set_acl,
956         .fiemap         = ext4_fiemap,
957         .fileattr_get   = ext4_fileattr_get,
958         .fileattr_set   = ext4_fileattr_set,
959 };
960 
961 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php