1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/ialloc.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * BSD ufs-inspired inode and directory allocation by 11 * Stephen Tweedie (sct@redhat.com), 1993 12 * Big-endian to little-endian byte-swapping/bitmaps by 13 * David S. Miller (davem@caip.rutgers.edu), 1995 14 */ 15 16 #include <linux/time.h> 17 #include <linux/fs.h> 18 #include <linux/stat.h> 19 #include <linux/string.h> 20 #include <linux/quotaops.h> 21 #include <linux/buffer_head.h> 22 #include <linux/random.h> 23 #include <linux/bitops.h> 24 #include <linux/blkdev.h> 25 #include <linux/cred.h> 26 27 #include <asm/byteorder.h> 28 29 #include "ext4.h" 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 #include <trace/events/ext4.h> 35 36 /* 37 * ialloc.c contains the inodes allocation and deallocation routines 38 */ 39 40 /* 41 * The free inodes are managed by bitmaps. A file system contains several 42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap 43 * block for inodes, N blocks for the inode table and data blocks. 44 * 45 * The file system contains group descriptors which are located after the 46 * super block. Each descriptor contains the number of the bitmap block and 47 * the free blocks count in the block. 48 */ 49 50 /* 51 * To avoid calling the atomic setbit hundreds or thousands of times, we only 52 * need to use it within a single byte (to ensure we get endianness right). 53 * We can use memset for the rest of the bitmap as there are no other users. 54 */ 55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 56 { 57 int i; 58 59 if (start_bit >= end_bit) 60 return; 61 62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); 63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 64 ext4_set_bit(i, bitmap); 65 if (i < end_bit) 66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 67 } 68 69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate) 70 { 71 if (uptodate) { 72 set_buffer_uptodate(bh); 73 set_bitmap_uptodate(bh); 74 } 75 unlock_buffer(bh); 76 put_bh(bh); 77 } 78 79 static int ext4_validate_inode_bitmap(struct super_block *sb, 80 struct ext4_group_desc *desc, 81 ext4_group_t block_group, 82 struct buffer_head *bh) 83 { 84 ext4_fsblk_t blk; 85 struct ext4_group_info *grp; 86 87 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 88 return 0; 89 90 grp = ext4_get_group_info(sb, block_group); 91 92 if (buffer_verified(bh)) 93 return 0; 94 if (!grp || EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 95 return -EFSCORRUPTED; 96 97 ext4_lock_group(sb, block_group); 98 if (buffer_verified(bh)) 99 goto verified; 100 blk = ext4_inode_bitmap(sb, desc); 101 if (!ext4_inode_bitmap_csum_verify(sb, desc, bh, 102 EXT4_INODES_PER_GROUP(sb) / 8) || 103 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) { 104 ext4_unlock_group(sb, block_group); 105 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, " 106 "inode_bitmap = %llu", block_group, blk); 107 ext4_mark_group_bitmap_corrupted(sb, block_group, 108 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 109 return -EFSBADCRC; 110 } 111 set_buffer_verified(bh); 112 verified: 113 ext4_unlock_group(sb, block_group); 114 return 0; 115 } 116 117 /* 118 * Read the inode allocation bitmap for a given block_group, reading 119 * into the specified slot in the superblock's bitmap cache. 120 * 121 * Return buffer_head of bitmap on success, or an ERR_PTR on error. 122 */ 123 static struct buffer_head * 124 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) 125 { 126 struct ext4_group_desc *desc; 127 struct ext4_sb_info *sbi = EXT4_SB(sb); 128 struct buffer_head *bh = NULL; 129 ext4_fsblk_t bitmap_blk; 130 int err; 131 132 desc = ext4_get_group_desc(sb, block_group, NULL); 133 if (!desc) 134 return ERR_PTR(-EFSCORRUPTED); 135 136 bitmap_blk = ext4_inode_bitmap(sb, desc); 137 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) || 138 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) { 139 ext4_error(sb, "Invalid inode bitmap blk %llu in " 140 "block_group %u", bitmap_blk, block_group); 141 ext4_mark_group_bitmap_corrupted(sb, block_group, 142 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 143 return ERR_PTR(-EFSCORRUPTED); 144 } 145 bh = sb_getblk(sb, bitmap_blk); 146 if (unlikely(!bh)) { 147 ext4_warning(sb, "Cannot read inode bitmap - " 148 "block_group = %u, inode_bitmap = %llu", 149 block_group, bitmap_blk); 150 return ERR_PTR(-ENOMEM); 151 } 152 if (bitmap_uptodate(bh)) 153 goto verify; 154 155 lock_buffer(bh); 156 if (bitmap_uptodate(bh)) { 157 unlock_buffer(bh); 158 goto verify; 159 } 160 161 ext4_lock_group(sb, block_group); 162 if (ext4_has_group_desc_csum(sb) && 163 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 164 if (block_group == 0) { 165 ext4_unlock_group(sb, block_group); 166 unlock_buffer(bh); 167 ext4_error(sb, "Inode bitmap for bg 0 marked " 168 "uninitialized"); 169 err = -EFSCORRUPTED; 170 goto out; 171 } 172 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); 173 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), 174 sb->s_blocksize * 8, bh->b_data); 175 set_bitmap_uptodate(bh); 176 set_buffer_uptodate(bh); 177 set_buffer_verified(bh); 178 ext4_unlock_group(sb, block_group); 179 unlock_buffer(bh); 180 return bh; 181 } 182 ext4_unlock_group(sb, block_group); 183 184 if (buffer_uptodate(bh)) { 185 /* 186 * if not uninit if bh is uptodate, 187 * bitmap is also uptodate 188 */ 189 set_bitmap_uptodate(bh); 190 unlock_buffer(bh); 191 goto verify; 192 } 193 /* 194 * submit the buffer_head for reading 195 */ 196 trace_ext4_load_inode_bitmap(sb, block_group); 197 ext4_read_bh(bh, REQ_META | REQ_PRIO, ext4_end_bitmap_read); 198 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO); 199 if (!buffer_uptodate(bh)) { 200 put_bh(bh); 201 ext4_error_err(sb, EIO, "Cannot read inode bitmap - " 202 "block_group = %u, inode_bitmap = %llu", 203 block_group, bitmap_blk); 204 ext4_mark_group_bitmap_corrupted(sb, block_group, 205 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 206 return ERR_PTR(-EIO); 207 } 208 209 verify: 210 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh); 211 if (err) 212 goto out; 213 return bh; 214 out: 215 put_bh(bh); 216 return ERR_PTR(err); 217 } 218 219 /* 220 * NOTE! When we get the inode, we're the only people 221 * that have access to it, and as such there are no 222 * race conditions we have to worry about. The inode 223 * is not on the hash-lists, and it cannot be reached 224 * through the filesystem because the directory entry 225 * has been deleted earlier. 226 * 227 * HOWEVER: we must make sure that we get no aliases, 228 * which means that we have to call "clear_inode()" 229 * _before_ we mark the inode not in use in the inode 230 * bitmaps. Otherwise a newly created file might use 231 * the same inode number (not actually the same pointer 232 * though), and then we'd have two inodes sharing the 233 * same inode number and space on the harddisk. 234 */ 235 void ext4_free_inode(handle_t *handle, struct inode *inode) 236 { 237 struct super_block *sb = inode->i_sb; 238 int is_directory; 239 unsigned long ino; 240 struct buffer_head *bitmap_bh = NULL; 241 struct buffer_head *bh2; 242 ext4_group_t block_group; 243 unsigned long bit; 244 struct ext4_group_desc *gdp; 245 struct ext4_super_block *es; 246 struct ext4_sb_info *sbi; 247 int fatal = 0, err, count, cleared; 248 struct ext4_group_info *grp; 249 250 if (!sb) { 251 printk(KERN_ERR "EXT4-fs: %s:%d: inode on " 252 "nonexistent device\n", __func__, __LINE__); 253 return; 254 } 255 if (atomic_read(&inode->i_count) > 1) { 256 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d", 257 __func__, __LINE__, inode->i_ino, 258 atomic_read(&inode->i_count)); 259 return; 260 } 261 if (inode->i_nlink) { 262 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n", 263 __func__, __LINE__, inode->i_ino, inode->i_nlink); 264 return; 265 } 266 sbi = EXT4_SB(sb); 267 268 ino = inode->i_ino; 269 ext4_debug("freeing inode %lu\n", ino); 270 trace_ext4_free_inode(inode); 271 272 dquot_initialize(inode); 273 dquot_free_inode(inode); 274 275 is_directory = S_ISDIR(inode->i_mode); 276 277 /* Do this BEFORE marking the inode not in use or returning an error */ 278 ext4_clear_inode(inode); 279 280 es = sbi->s_es; 281 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { 282 ext4_error(sb, "reserved or nonexistent inode %lu", ino); 283 goto error_return; 284 } 285 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 286 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 287 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 288 /* Don't bother if the inode bitmap is corrupt. */ 289 if (IS_ERR(bitmap_bh)) { 290 fatal = PTR_ERR(bitmap_bh); 291 bitmap_bh = NULL; 292 goto error_return; 293 } 294 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 295 grp = ext4_get_group_info(sb, block_group); 296 if (!grp || unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) { 297 fatal = -EFSCORRUPTED; 298 goto error_return; 299 } 300 } 301 302 BUFFER_TRACE(bitmap_bh, "get_write_access"); 303 fatal = ext4_journal_get_write_access(handle, sb, bitmap_bh, 304 EXT4_JTR_NONE); 305 if (fatal) 306 goto error_return; 307 308 fatal = -ESRCH; 309 gdp = ext4_get_group_desc(sb, block_group, &bh2); 310 if (gdp) { 311 BUFFER_TRACE(bh2, "get_write_access"); 312 fatal = ext4_journal_get_write_access(handle, sb, bh2, 313 EXT4_JTR_NONE); 314 } 315 ext4_lock_group(sb, block_group); 316 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data); 317 if (fatal || !cleared) { 318 ext4_unlock_group(sb, block_group); 319 goto out; 320 } 321 322 count = ext4_free_inodes_count(sb, gdp) + 1; 323 ext4_free_inodes_set(sb, gdp, count); 324 if (is_directory) { 325 count = ext4_used_dirs_count(sb, gdp) - 1; 326 ext4_used_dirs_set(sb, gdp, count); 327 if (percpu_counter_initialized(&sbi->s_dirs_counter)) 328 percpu_counter_dec(&sbi->s_dirs_counter); 329 } 330 ext4_inode_bitmap_csum_set(sb, gdp, bitmap_bh, 331 EXT4_INODES_PER_GROUP(sb) / 8); 332 ext4_group_desc_csum_set(sb, block_group, gdp); 333 ext4_unlock_group(sb, block_group); 334 335 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 336 percpu_counter_inc(&sbi->s_freeinodes_counter); 337 if (sbi->s_log_groups_per_flex) { 338 struct flex_groups *fg; 339 340 fg = sbi_array_rcu_deref(sbi, s_flex_groups, 341 ext4_flex_group(sbi, block_group)); 342 atomic_inc(&fg->free_inodes); 343 if (is_directory) 344 atomic_dec(&fg->used_dirs); 345 } 346 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata"); 347 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2); 348 out: 349 if (cleared) { 350 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata"); 351 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 352 if (!fatal) 353 fatal = err; 354 } else { 355 ext4_error(sb, "bit already cleared for inode %lu", ino); 356 ext4_mark_group_bitmap_corrupted(sb, block_group, 357 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 358 } 359 360 error_return: 361 brelse(bitmap_bh); 362 ext4_std_error(sb, fatal); 363 } 364 365 struct orlov_stats { 366 __u64 free_clusters; 367 __u32 free_inodes; 368 __u32 used_dirs; 369 }; 370 371 /* 372 * Helper function for Orlov's allocator; returns critical information 373 * for a particular block group or flex_bg. If flex_size is 1, then g 374 * is a block group number; otherwise it is flex_bg number. 375 */ 376 static void get_orlov_stats(struct super_block *sb, ext4_group_t g, 377 int flex_size, struct orlov_stats *stats) 378 { 379 struct ext4_group_desc *desc; 380 381 if (flex_size > 1) { 382 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb), 383 s_flex_groups, g); 384 stats->free_inodes = atomic_read(&fg->free_inodes); 385 stats->free_clusters = atomic64_read(&fg->free_clusters); 386 stats->used_dirs = atomic_read(&fg->used_dirs); 387 return; 388 } 389 390 desc = ext4_get_group_desc(sb, g, NULL); 391 if (desc) { 392 stats->free_inodes = ext4_free_inodes_count(sb, desc); 393 stats->free_clusters = ext4_free_group_clusters(sb, desc); 394 stats->used_dirs = ext4_used_dirs_count(sb, desc); 395 } else { 396 stats->free_inodes = 0; 397 stats->free_clusters = 0; 398 stats->used_dirs = 0; 399 } 400 } 401 402 /* 403 * Orlov's allocator for directories. 404 * 405 * We always try to spread first-level directories. 406 * 407 * If there are blockgroups with both free inodes and free clusters counts 408 * not worse than average we return one with smallest directory count. 409 * Otherwise we simply return a random group. 410 * 411 * For the rest rules look so: 412 * 413 * It's OK to put directory into a group unless 414 * it has too many directories already (max_dirs) or 415 * it has too few free inodes left (min_inodes) or 416 * it has too few free clusters left (min_clusters) or 417 * Parent's group is preferred, if it doesn't satisfy these 418 * conditions we search cyclically through the rest. If none 419 * of the groups look good we just look for a group with more 420 * free inodes than average (starting at parent's group). 421 */ 422 423 static int find_group_orlov(struct super_block *sb, struct inode *parent, 424 ext4_group_t *group, umode_t mode, 425 const struct qstr *qstr) 426 { 427 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 428 struct ext4_sb_info *sbi = EXT4_SB(sb); 429 ext4_group_t real_ngroups = ext4_get_groups_count(sb); 430 int inodes_per_group = EXT4_INODES_PER_GROUP(sb); 431 unsigned int freei, avefreei, grp_free; 432 ext4_fsblk_t freec, avefreec; 433 unsigned int ndirs; 434 int max_dirs, min_inodes; 435 ext4_grpblk_t min_clusters; 436 ext4_group_t i, grp, g, ngroups; 437 struct ext4_group_desc *desc; 438 struct orlov_stats stats; 439 int flex_size = ext4_flex_bg_size(sbi); 440 struct dx_hash_info hinfo; 441 442 ngroups = real_ngroups; 443 if (flex_size > 1) { 444 ngroups = (real_ngroups + flex_size - 1) >> 445 sbi->s_log_groups_per_flex; 446 parent_group >>= sbi->s_log_groups_per_flex; 447 } 448 449 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); 450 avefreei = freei / ngroups; 451 freec = percpu_counter_read_positive(&sbi->s_freeclusters_counter); 452 avefreec = freec; 453 do_div(avefreec, ngroups); 454 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); 455 456 if (S_ISDIR(mode) && 457 ((parent == d_inode(sb->s_root)) || 458 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) { 459 int best_ndir = inodes_per_group; 460 int ret = -1; 461 462 if (qstr) { 463 hinfo.hash_version = DX_HASH_HALF_MD4; 464 hinfo.seed = sbi->s_hash_seed; 465 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo); 466 parent_group = hinfo.hash % ngroups; 467 } else 468 parent_group = get_random_u32_below(ngroups); 469 for (i = 0; i < ngroups; i++) { 470 g = (parent_group + i) % ngroups; 471 get_orlov_stats(sb, g, flex_size, &stats); 472 if (!stats.free_inodes) 473 continue; 474 if (stats.used_dirs >= best_ndir) 475 continue; 476 if (stats.free_inodes < avefreei) 477 continue; 478 if (stats.free_clusters < avefreec) 479 continue; 480 grp = g; 481 ret = 0; 482 best_ndir = stats.used_dirs; 483 } 484 if (ret) 485 goto fallback; 486 found_flex_bg: 487 if (flex_size == 1) { 488 *group = grp; 489 return 0; 490 } 491 492 /* 493 * We pack inodes at the beginning of the flexgroup's 494 * inode tables. Block allocation decisions will do 495 * something similar, although regular files will 496 * start at 2nd block group of the flexgroup. See 497 * ext4_ext_find_goal() and ext4_find_near(). 498 */ 499 grp *= flex_size; 500 for (i = 0; i < flex_size; i++) { 501 if (grp+i >= real_ngroups) 502 break; 503 desc = ext4_get_group_desc(sb, grp+i, NULL); 504 if (desc && ext4_free_inodes_count(sb, desc)) { 505 *group = grp+i; 506 return 0; 507 } 508 } 509 goto fallback; 510 } 511 512 max_dirs = ndirs / ngroups + inodes_per_group*flex_size / 16; 513 min_inodes = avefreei - inodes_per_group*flex_size / 4; 514 if (min_inodes < 1) 515 min_inodes = 1; 516 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4; 517 if (min_clusters < 0) 518 min_clusters = 0; 519 520 /* 521 * Start looking in the flex group where we last allocated an 522 * inode for this parent directory 523 */ 524 if (EXT4_I(parent)->i_last_alloc_group != ~0) { 525 parent_group = EXT4_I(parent)->i_last_alloc_group; 526 if (flex_size > 1) 527 parent_group >>= sbi->s_log_groups_per_flex; 528 } 529 530 for (i = 0; i < ngroups; i++) { 531 grp = (parent_group + i) % ngroups; 532 get_orlov_stats(sb, grp, flex_size, &stats); 533 if (stats.used_dirs >= max_dirs) 534 continue; 535 if (stats.free_inodes < min_inodes) 536 continue; 537 if (stats.free_clusters < min_clusters) 538 continue; 539 goto found_flex_bg; 540 } 541 542 fallback: 543 ngroups = real_ngroups; 544 avefreei = freei / ngroups; 545 fallback_retry: 546 parent_group = EXT4_I(parent)->i_block_group; 547 for (i = 0; i < ngroups; i++) { 548 grp = (parent_group + i) % ngroups; 549 desc = ext4_get_group_desc(sb, grp, NULL); 550 if (desc) { 551 grp_free = ext4_free_inodes_count(sb, desc); 552 if (grp_free && grp_free >= avefreei) { 553 *group = grp; 554 return 0; 555 } 556 } 557 } 558 559 if (avefreei) { 560 /* 561 * The free-inodes counter is approximate, and for really small 562 * filesystems the above test can fail to find any blockgroups 563 */ 564 avefreei = 0; 565 goto fallback_retry; 566 } 567 568 return -1; 569 } 570 571 static int find_group_other(struct super_block *sb, struct inode *parent, 572 ext4_group_t *group, umode_t mode) 573 { 574 ext4_group_t parent_group = EXT4_I(parent)->i_block_group; 575 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb); 576 struct ext4_group_desc *desc; 577 int flex_size = ext4_flex_bg_size(EXT4_SB(sb)); 578 579 /* 580 * Try to place the inode is the same flex group as its 581 * parent. If we can't find space, use the Orlov algorithm to 582 * find another flex group, and store that information in the 583 * parent directory's inode information so that use that flex 584 * group for future allocations. 585 */ 586 if (flex_size > 1) { 587 int retry = 0; 588 589 try_again: 590 parent_group &= ~(flex_size-1); 591 last = parent_group + flex_size; 592 if (last > ngroups) 593 last = ngroups; 594 for (i = parent_group; i < last; i++) { 595 desc = ext4_get_group_desc(sb, i, NULL); 596 if (desc && ext4_free_inodes_count(sb, desc)) { 597 *group = i; 598 return 0; 599 } 600 } 601 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) { 602 retry = 1; 603 parent_group = EXT4_I(parent)->i_last_alloc_group; 604 goto try_again; 605 } 606 /* 607 * If this didn't work, use the Orlov search algorithm 608 * to find a new flex group; we pass in the mode to 609 * avoid the topdir algorithms. 610 */ 611 *group = parent_group + flex_size; 612 if (*group > ngroups) 613 *group = 0; 614 return find_group_orlov(sb, parent, group, mode, NULL); 615 } 616 617 /* 618 * Try to place the inode in its parent directory 619 */ 620 *group = parent_group; 621 desc = ext4_get_group_desc(sb, *group, NULL); 622 if (desc && ext4_free_inodes_count(sb, desc) && 623 ext4_free_group_clusters(sb, desc)) 624 return 0; 625 626 /* 627 * We're going to place this inode in a different blockgroup from its 628 * parent. We want to cause files in a common directory to all land in 629 * the same blockgroup. But we want files which are in a different 630 * directory which shares a blockgroup with our parent to land in a 631 * different blockgroup. 632 * 633 * So add our directory's i_ino into the starting point for the hash. 634 */ 635 *group = (*group + parent->i_ino) % ngroups; 636 637 /* 638 * Use a quadratic hash to find a group with a free inode and some free 639 * blocks. 640 */ 641 for (i = 1; i < ngroups; i <<= 1) { 642 *group += i; 643 if (*group >= ngroups) 644 *group -= ngroups; 645 desc = ext4_get_group_desc(sb, *group, NULL); 646 if (desc && ext4_free_inodes_count(sb, desc) && 647 ext4_free_group_clusters(sb, desc)) 648 return 0; 649 } 650 651 /* 652 * That failed: try linear search for a free inode, even if that group 653 * has no free blocks. 654 */ 655 *group = parent_group; 656 for (i = 0; i < ngroups; i++) { 657 if (++*group >= ngroups) 658 *group = 0; 659 desc = ext4_get_group_desc(sb, *group, NULL); 660 if (desc && ext4_free_inodes_count(sb, desc)) 661 return 0; 662 } 663 664 return -1; 665 } 666 667 /* 668 * In no journal mode, if an inode has recently been deleted, we want 669 * to avoid reusing it until we're reasonably sure the inode table 670 * block has been written back to disk. (Yes, these values are 671 * somewhat arbitrary...) 672 */ 673 #define RECENTCY_MIN 60 674 #define RECENTCY_DIRTY 300 675 676 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino) 677 { 678 struct ext4_group_desc *gdp; 679 struct ext4_inode *raw_inode; 680 struct buffer_head *bh; 681 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 682 int offset, ret = 0; 683 int recentcy = RECENTCY_MIN; 684 u32 dtime, now; 685 686 gdp = ext4_get_group_desc(sb, group, NULL); 687 if (unlikely(!gdp)) 688 return 0; 689 690 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) + 691 (ino / inodes_per_block)); 692 if (!bh || !buffer_uptodate(bh)) 693 /* 694 * If the block is not in the buffer cache, then it 695 * must have been written out. 696 */ 697 goto out; 698 699 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb); 700 raw_inode = (struct ext4_inode *) (bh->b_data + offset); 701 702 /* i_dtime is only 32 bits on disk, but we only care about relative 703 * times in the range of a few minutes (i.e. long enough to sync a 704 * recently-deleted inode to disk), so using the low 32 bits of the 705 * clock (a 68 year range) is enough, see time_before32() */ 706 dtime = le32_to_cpu(raw_inode->i_dtime); 707 now = ktime_get_real_seconds(); 708 if (buffer_dirty(bh)) 709 recentcy += RECENTCY_DIRTY; 710 711 if (dtime && time_before32(dtime, now) && 712 time_before32(now, dtime + recentcy)) 713 ret = 1; 714 out: 715 brelse(bh); 716 return ret; 717 } 718 719 static int find_inode_bit(struct super_block *sb, ext4_group_t group, 720 struct buffer_head *bitmap, unsigned long *ino) 721 { 722 bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL; 723 unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb); 724 725 next: 726 *ino = ext4_find_next_zero_bit((unsigned long *) 727 bitmap->b_data, 728 EXT4_INODES_PER_GROUP(sb), *ino); 729 if (*ino >= EXT4_INODES_PER_GROUP(sb)) 730 goto not_found; 731 732 if (check_recently_deleted && recently_deleted(sb, group, *ino)) { 733 recently_deleted_ino = *ino; 734 *ino = *ino + 1; 735 if (*ino < EXT4_INODES_PER_GROUP(sb)) 736 goto next; 737 goto not_found; 738 } 739 return 1; 740 not_found: 741 if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb)) 742 return 0; 743 /* 744 * Not reusing recently deleted inodes is mostly a preference. We don't 745 * want to report ENOSPC or skew allocation patterns because of that. 746 * So return even recently deleted inode if we could find better in the 747 * given range. 748 */ 749 *ino = recently_deleted_ino; 750 return 1; 751 } 752 753 int ext4_mark_inode_used(struct super_block *sb, int ino) 754 { 755 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 756 struct buffer_head *inode_bitmap_bh = NULL, *group_desc_bh = NULL; 757 struct ext4_group_desc *gdp; 758 ext4_group_t group; 759 int bit; 760 int err; 761 762 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 763 return -EFSCORRUPTED; 764 765 group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 766 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 767 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 768 if (IS_ERR(inode_bitmap_bh)) 769 return PTR_ERR(inode_bitmap_bh); 770 771 if (ext4_test_bit(bit, inode_bitmap_bh->b_data)) { 772 err = 0; 773 goto out; 774 } 775 776 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 777 if (!gdp || !group_desc_bh) { 778 err = -EINVAL; 779 goto out; 780 } 781 782 ext4_set_bit(bit, inode_bitmap_bh->b_data); 783 784 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 785 err = ext4_handle_dirty_metadata(NULL, NULL, inode_bitmap_bh); 786 if (err) { 787 ext4_std_error(sb, err); 788 goto out; 789 } 790 err = sync_dirty_buffer(inode_bitmap_bh); 791 if (err) { 792 ext4_std_error(sb, err); 793 goto out; 794 } 795 796 /* We may have to initialize the block bitmap if it isn't already */ 797 if (ext4_has_group_desc_csum(sb) && 798 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 799 struct buffer_head *block_bitmap_bh; 800 801 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 802 if (IS_ERR(block_bitmap_bh)) { 803 err = PTR_ERR(block_bitmap_bh); 804 goto out; 805 } 806 807 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 808 err = ext4_handle_dirty_metadata(NULL, NULL, block_bitmap_bh); 809 sync_dirty_buffer(block_bitmap_bh); 810 811 /* recheck and clear flag under lock if we still need to */ 812 ext4_lock_group(sb, group); 813 if (ext4_has_group_desc_csum(sb) && 814 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 815 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 816 ext4_free_group_clusters_set(sb, gdp, 817 ext4_free_clusters_after_init(sb, group, gdp)); 818 ext4_block_bitmap_csum_set(sb, gdp, block_bitmap_bh); 819 ext4_group_desc_csum_set(sb, group, gdp); 820 } 821 ext4_unlock_group(sb, group); 822 brelse(block_bitmap_bh); 823 824 if (err) { 825 ext4_std_error(sb, err); 826 goto out; 827 } 828 } 829 830 /* Update the relevant bg descriptor fields */ 831 if (ext4_has_group_desc_csum(sb)) { 832 int free; 833 834 ext4_lock_group(sb, group); /* while we modify the bg desc */ 835 free = EXT4_INODES_PER_GROUP(sb) - 836 ext4_itable_unused_count(sb, gdp); 837 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 838 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 839 free = 0; 840 } 841 842 /* 843 * Check the relative inode number against the last used 844 * relative inode number in this group. if it is greater 845 * we need to update the bg_itable_unused count 846 */ 847 if (bit >= free) 848 ext4_itable_unused_set(sb, gdp, 849 (EXT4_INODES_PER_GROUP(sb) - bit - 1)); 850 } else { 851 ext4_lock_group(sb, group); 852 } 853 854 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 855 if (ext4_has_group_desc_csum(sb)) { 856 ext4_inode_bitmap_csum_set(sb, gdp, inode_bitmap_bh, 857 EXT4_INODES_PER_GROUP(sb) / 8); 858 ext4_group_desc_csum_set(sb, group, gdp); 859 } 860 861 ext4_unlock_group(sb, group); 862 err = ext4_handle_dirty_metadata(NULL, NULL, group_desc_bh); 863 sync_dirty_buffer(group_desc_bh); 864 out: 865 brelse(inode_bitmap_bh); 866 return err; 867 } 868 869 static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode, 870 bool encrypt) 871 { 872 struct super_block *sb = dir->i_sb; 873 int nblocks = 0; 874 #ifdef CONFIG_EXT4_FS_POSIX_ACL 875 struct posix_acl *p = get_inode_acl(dir, ACL_TYPE_DEFAULT); 876 877 if (IS_ERR(p)) 878 return PTR_ERR(p); 879 if (p) { 880 int acl_size = p->a_count * sizeof(ext4_acl_entry); 881 882 nblocks += (S_ISDIR(mode) ? 2 : 1) * 883 __ext4_xattr_set_credits(sb, NULL /* inode */, 884 NULL /* block_bh */, acl_size, 885 true /* is_create */); 886 posix_acl_release(p); 887 } 888 #endif 889 890 #ifdef CONFIG_SECURITY 891 { 892 int num_security_xattrs = 1; 893 894 #ifdef CONFIG_INTEGRITY 895 num_security_xattrs++; 896 #endif 897 /* 898 * We assume that security xattrs are never more than 1k. 899 * In practice they are under 128 bytes. 900 */ 901 nblocks += num_security_xattrs * 902 __ext4_xattr_set_credits(sb, NULL /* inode */, 903 NULL /* block_bh */, 1024, 904 true /* is_create */); 905 } 906 #endif 907 if (encrypt) 908 nblocks += __ext4_xattr_set_credits(sb, 909 NULL /* inode */, 910 NULL /* block_bh */, 911 FSCRYPT_SET_CONTEXT_MAX_SIZE, 912 true /* is_create */); 913 return nblocks; 914 } 915 916 /* 917 * There are two policies for allocating an inode. If the new inode is 918 * a directory, then a forward search is made for a block group with both 919 * free space and a low directory-to-inode ratio; if that fails, then of 920 * the groups with above-average free space, that group with the fewest 921 * directories already is chosen. 922 * 923 * For other inodes, search forward from the parent directory's block 924 * group to find a free inode. 925 */ 926 struct inode *__ext4_new_inode(struct mnt_idmap *idmap, 927 handle_t *handle, struct inode *dir, 928 umode_t mode, const struct qstr *qstr, 929 __u32 goal, uid_t *owner, __u32 i_flags, 930 int handle_type, unsigned int line_no, 931 int nblocks) 932 { 933 struct super_block *sb; 934 struct buffer_head *inode_bitmap_bh = NULL; 935 struct buffer_head *group_desc_bh; 936 ext4_group_t ngroups, group = 0; 937 unsigned long ino = 0; 938 struct inode *inode; 939 struct ext4_group_desc *gdp = NULL; 940 struct ext4_inode_info *ei; 941 struct ext4_sb_info *sbi; 942 int ret2, err; 943 struct inode *ret; 944 ext4_group_t i; 945 ext4_group_t flex_group; 946 struct ext4_group_info *grp = NULL; 947 bool encrypt = false; 948 949 /* Cannot create files in a deleted directory */ 950 if (!dir || !dir->i_nlink) 951 return ERR_PTR(-EPERM); 952 953 sb = dir->i_sb; 954 sbi = EXT4_SB(sb); 955 956 if (unlikely(ext4_forced_shutdown(sb))) 957 return ERR_PTR(-EIO); 958 959 ngroups = ext4_get_groups_count(sb); 960 trace_ext4_request_inode(dir, mode); 961 inode = new_inode(sb); 962 if (!inode) 963 return ERR_PTR(-ENOMEM); 964 ei = EXT4_I(inode); 965 966 /* 967 * Initialize owners and quota early so that we don't have to account 968 * for quota initialization worst case in standard inode creating 969 * transaction 970 */ 971 if (owner) { 972 inode->i_mode = mode; 973 i_uid_write(inode, owner[0]); 974 i_gid_write(inode, owner[1]); 975 } else if (test_opt(sb, GRPID)) { 976 inode->i_mode = mode; 977 inode_fsuid_set(inode, idmap); 978 inode->i_gid = dir->i_gid; 979 } else 980 inode_init_owner(idmap, inode, dir, mode); 981 982 if (ext4_has_feature_project(sb) && 983 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) 984 ei->i_projid = EXT4_I(dir)->i_projid; 985 else 986 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID); 987 988 if (!(i_flags & EXT4_EA_INODE_FL)) { 989 err = fscrypt_prepare_new_inode(dir, inode, &encrypt); 990 if (err) 991 goto out; 992 } 993 994 err = dquot_initialize(inode); 995 if (err) 996 goto out; 997 998 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) { 999 ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt); 1000 if (ret2 < 0) { 1001 err = ret2; 1002 goto out; 1003 } 1004 nblocks += ret2; 1005 } 1006 1007 if (!goal) 1008 goal = sbi->s_inode_goal; 1009 1010 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) { 1011 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb); 1012 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb); 1013 ret2 = 0; 1014 goto got_group; 1015 } 1016 1017 if (S_ISDIR(mode)) 1018 ret2 = find_group_orlov(sb, dir, &group, mode, qstr); 1019 else 1020 ret2 = find_group_other(sb, dir, &group, mode); 1021 1022 got_group: 1023 EXT4_I(dir)->i_last_alloc_group = group; 1024 err = -ENOSPC; 1025 if (ret2 == -1) 1026 goto out; 1027 1028 /* 1029 * Normally we will only go through one pass of this loop, 1030 * unless we get unlucky and it turns out the group we selected 1031 * had its last inode grabbed by someone else. 1032 */ 1033 for (i = 0; i < ngroups; i++, ino = 0) { 1034 err = -EIO; 1035 1036 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1037 if (!gdp) 1038 goto out; 1039 1040 /* 1041 * Check free inodes count before loading bitmap. 1042 */ 1043 if (ext4_free_inodes_count(sb, gdp) == 0) 1044 goto next_group; 1045 1046 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1047 grp = ext4_get_group_info(sb, group); 1048 /* 1049 * Skip groups with already-known suspicious inode 1050 * tables 1051 */ 1052 if (!grp || EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 1053 goto next_group; 1054 } 1055 1056 brelse(inode_bitmap_bh); 1057 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group); 1058 /* Skip groups with suspicious inode tables */ 1059 if (IS_ERR(inode_bitmap_bh)) { 1060 inode_bitmap_bh = NULL; 1061 goto next_group; 1062 } 1063 if (!(sbi->s_mount_state & EXT4_FC_REPLAY) && 1064 EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) 1065 goto next_group; 1066 1067 repeat_in_this_group: 1068 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 1069 if (!ret2) 1070 goto next_group; 1071 1072 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) { 1073 ext4_error(sb, "reserved inode found cleared - " 1074 "inode=%lu", ino + 1); 1075 ext4_mark_group_bitmap_corrupted(sb, group, 1076 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1077 goto next_group; 1078 } 1079 1080 if ((!(sbi->s_mount_state & EXT4_FC_REPLAY)) && !handle) { 1081 BUG_ON(nblocks <= 0); 1082 handle = __ext4_journal_start_sb(NULL, dir->i_sb, 1083 line_no, handle_type, nblocks, 0, 1084 ext4_trans_default_revoke_credits(sb)); 1085 if (IS_ERR(handle)) { 1086 err = PTR_ERR(handle); 1087 ext4_std_error(sb, err); 1088 goto out; 1089 } 1090 } 1091 BUFFER_TRACE(inode_bitmap_bh, "get_write_access"); 1092 err = ext4_journal_get_write_access(handle, sb, inode_bitmap_bh, 1093 EXT4_JTR_NONE); 1094 if (err) { 1095 ext4_std_error(sb, err); 1096 goto out; 1097 } 1098 ext4_lock_group(sb, group); 1099 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data); 1100 if (ret2) { 1101 /* Someone already took the bit. Repeat the search 1102 * with lock held. 1103 */ 1104 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino); 1105 if (ret2) { 1106 ext4_set_bit(ino, inode_bitmap_bh->b_data); 1107 ret2 = 0; 1108 } else { 1109 ret2 = 1; /* we didn't grab the inode */ 1110 } 1111 } 1112 ext4_unlock_group(sb, group); 1113 ino++; /* the inode bitmap is zero-based */ 1114 if (!ret2) 1115 goto got; /* we grabbed the inode! */ 1116 1117 if (ino < EXT4_INODES_PER_GROUP(sb)) 1118 goto repeat_in_this_group; 1119 next_group: 1120 if (++group == ngroups) 1121 group = 0; 1122 } 1123 err = -ENOSPC; 1124 goto out; 1125 1126 got: 1127 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata"); 1128 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh); 1129 if (err) { 1130 ext4_std_error(sb, err); 1131 goto out; 1132 } 1133 1134 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1135 err = ext4_journal_get_write_access(handle, sb, group_desc_bh, 1136 EXT4_JTR_NONE); 1137 if (err) { 1138 ext4_std_error(sb, err); 1139 goto out; 1140 } 1141 1142 /* We may have to initialize the block bitmap if it isn't already */ 1143 if (ext4_has_group_desc_csum(sb) && 1144 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 1145 struct buffer_head *block_bitmap_bh; 1146 1147 block_bitmap_bh = ext4_read_block_bitmap(sb, group); 1148 if (IS_ERR(block_bitmap_bh)) { 1149 err = PTR_ERR(block_bitmap_bh); 1150 goto out; 1151 } 1152 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access"); 1153 err = ext4_journal_get_write_access(handle, sb, block_bitmap_bh, 1154 EXT4_JTR_NONE); 1155 if (err) { 1156 brelse(block_bitmap_bh); 1157 ext4_std_error(sb, err); 1158 goto out; 1159 } 1160 1161 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap"); 1162 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh); 1163 1164 /* recheck and clear flag under lock if we still need to */ 1165 ext4_lock_group(sb, group); 1166 if (ext4_has_group_desc_csum(sb) && 1167 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 1168 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 1169 ext4_free_group_clusters_set(sb, gdp, 1170 ext4_free_clusters_after_init(sb, group, gdp)); 1171 ext4_block_bitmap_csum_set(sb, gdp, block_bitmap_bh); 1172 ext4_group_desc_csum_set(sb, group, gdp); 1173 } 1174 ext4_unlock_group(sb, group); 1175 brelse(block_bitmap_bh); 1176 1177 if (err) { 1178 ext4_std_error(sb, err); 1179 goto out; 1180 } 1181 } 1182 1183 /* Update the relevant bg descriptor fields */ 1184 if (ext4_has_group_desc_csum(sb)) { 1185 int free; 1186 struct ext4_group_info *grp = NULL; 1187 1188 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1189 grp = ext4_get_group_info(sb, group); 1190 if (!grp) { 1191 err = -EFSCORRUPTED; 1192 goto out; 1193 } 1194 down_read(&grp->alloc_sem); /* 1195 * protect vs itable 1196 * lazyinit 1197 */ 1198 } 1199 ext4_lock_group(sb, group); /* while we modify the bg desc */ 1200 free = EXT4_INODES_PER_GROUP(sb) - 1201 ext4_itable_unused_count(sb, gdp); 1202 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { 1203 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); 1204 free = 0; 1205 } 1206 /* 1207 * Check the relative inode number against the last used 1208 * relative inode number in this group. if it is greater 1209 * we need to update the bg_itable_unused count 1210 */ 1211 if (ino > free) 1212 ext4_itable_unused_set(sb, gdp, 1213 (EXT4_INODES_PER_GROUP(sb) - ino)); 1214 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) 1215 up_read(&grp->alloc_sem); 1216 } else { 1217 ext4_lock_group(sb, group); 1218 } 1219 1220 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1); 1221 if (S_ISDIR(mode)) { 1222 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1); 1223 if (sbi->s_log_groups_per_flex) { 1224 ext4_group_t f = ext4_flex_group(sbi, group); 1225 1226 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups, 1227 f)->used_dirs); 1228 } 1229 } 1230 if (ext4_has_group_desc_csum(sb)) { 1231 ext4_inode_bitmap_csum_set(sb, gdp, inode_bitmap_bh, 1232 EXT4_INODES_PER_GROUP(sb) / 8); 1233 ext4_group_desc_csum_set(sb, group, gdp); 1234 } 1235 ext4_unlock_group(sb, group); 1236 1237 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata"); 1238 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh); 1239 if (err) { 1240 ext4_std_error(sb, err); 1241 goto out; 1242 } 1243 1244 percpu_counter_dec(&sbi->s_freeinodes_counter); 1245 if (S_ISDIR(mode)) 1246 percpu_counter_inc(&sbi->s_dirs_counter); 1247 1248 if (sbi->s_log_groups_per_flex) { 1249 flex_group = ext4_flex_group(sbi, group); 1250 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups, 1251 flex_group)->free_inodes); 1252 } 1253 1254 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); 1255 /* This is the optimal IO size (for stat), not the fs block size */ 1256 inode->i_blocks = 0; 1257 simple_inode_init_ts(inode); 1258 ei->i_crtime = inode_get_mtime(inode); 1259 1260 memset(ei->i_data, 0, sizeof(ei->i_data)); 1261 ei->i_dir_start_lookup = 0; 1262 ei->i_disksize = 0; 1263 1264 /* Don't inherit extent flag from directory, amongst others. */ 1265 ei->i_flags = 1266 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED); 1267 ei->i_flags |= i_flags; 1268 ei->i_file_acl = 0; 1269 ei->i_dtime = 0; 1270 ei->i_block_group = group; 1271 ei->i_last_alloc_group = ~0; 1272 1273 ext4_set_inode_flags(inode, true); 1274 if (IS_DIRSYNC(inode)) 1275 ext4_handle_sync(handle); 1276 if (insert_inode_locked(inode) < 0) { 1277 /* 1278 * Likely a bitmap corruption causing inode to be allocated 1279 * twice. 1280 */ 1281 err = -EIO; 1282 ext4_error(sb, "failed to insert inode %lu: doubly allocated?", 1283 inode->i_ino); 1284 ext4_mark_group_bitmap_corrupted(sb, group, 1285 EXT4_GROUP_INFO_IBITMAP_CORRUPT); 1286 goto out; 1287 } 1288 inode->i_generation = get_random_u32(); 1289 1290 /* Precompute checksum seed for inode metadata */ 1291 if (ext4_has_metadata_csum(sb)) { 1292 __u32 csum; 1293 __le32 inum = cpu_to_le32(inode->i_ino); 1294 __le32 gen = cpu_to_le32(inode->i_generation); 1295 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 1296 sizeof(inum)); 1297 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 1298 sizeof(gen)); 1299 } 1300 1301 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 1302 ext4_set_inode_state(inode, EXT4_STATE_NEW); 1303 1304 ei->i_extra_isize = sbi->s_want_extra_isize; 1305 ei->i_inline_off = 0; 1306 if (ext4_has_feature_inline_data(sb) && 1307 (!(ei->i_flags & EXT4_DAX_FL) || S_ISDIR(mode))) 1308 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 1309 ret = inode; 1310 err = dquot_alloc_inode(inode); 1311 if (err) 1312 goto fail_drop; 1313 1314 /* 1315 * Since the encryption xattr will always be unique, create it first so 1316 * that it's less likely to end up in an external xattr block and 1317 * prevent its deduplication. 1318 */ 1319 if (encrypt) { 1320 err = fscrypt_set_context(inode, handle); 1321 if (err) 1322 goto fail_free_drop; 1323 } 1324 1325 if (!(ei->i_flags & EXT4_EA_INODE_FL)) { 1326 err = ext4_init_acl(handle, inode, dir); 1327 if (err) 1328 goto fail_free_drop; 1329 1330 err = ext4_init_security(handle, inode, dir, qstr); 1331 if (err) 1332 goto fail_free_drop; 1333 } 1334 1335 if (ext4_has_feature_extents(sb)) { 1336 /* set extent flag only for directory, file and normal symlink*/ 1337 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { 1338 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS); 1339 ext4_ext_tree_init(handle, inode); 1340 } 1341 } 1342 1343 ext4_update_inode_fsync_trans(handle, inode, 1); 1344 1345 err = ext4_mark_inode_dirty(handle, inode); 1346 if (err) { 1347 ext4_std_error(sb, err); 1348 goto fail_free_drop; 1349 } 1350 1351 ext4_debug("allocating inode %lu\n", inode->i_ino); 1352 trace_ext4_allocate_inode(inode, dir, mode); 1353 brelse(inode_bitmap_bh); 1354 return ret; 1355 1356 fail_free_drop: 1357 dquot_free_inode(inode); 1358 fail_drop: 1359 clear_nlink(inode); 1360 unlock_new_inode(inode); 1361 out: 1362 dquot_drop(inode); 1363 inode->i_flags |= S_NOQUOTA; 1364 iput(inode); 1365 brelse(inode_bitmap_bh); 1366 return ERR_PTR(err); 1367 } 1368 1369 /* Verify that we are loading a valid orphan from disk */ 1370 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) 1371 { 1372 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); 1373 ext4_group_t block_group; 1374 int bit; 1375 struct buffer_head *bitmap_bh = NULL; 1376 struct inode *inode = NULL; 1377 int err = -EFSCORRUPTED; 1378 1379 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino) 1380 goto bad_orphan; 1381 1382 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 1383 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); 1384 bitmap_bh = ext4_read_inode_bitmap(sb, block_group); 1385 if (IS_ERR(bitmap_bh)) 1386 return ERR_CAST(bitmap_bh); 1387 1388 /* Having the inode bit set should be a 100% indicator that this 1389 * is a valid orphan (no e2fsck run on fs). Orphans also include 1390 * inodes that were being truncated, so we can't check i_nlink==0. 1391 */ 1392 if (!ext4_test_bit(bit, bitmap_bh->b_data)) 1393 goto bad_orphan; 1394 1395 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); 1396 if (IS_ERR(inode)) { 1397 err = PTR_ERR(inode); 1398 ext4_error_err(sb, -err, 1399 "couldn't read orphan inode %lu (err %d)", 1400 ino, err); 1401 brelse(bitmap_bh); 1402 return inode; 1403 } 1404 1405 /* 1406 * If the orphans has i_nlinks > 0 then it should be able to 1407 * be truncated, otherwise it won't be removed from the orphan 1408 * list during processing and an infinite loop will result. 1409 * Similarly, it must not be a bad inode. 1410 */ 1411 if ((inode->i_nlink && !ext4_can_truncate(inode)) || 1412 is_bad_inode(inode)) 1413 goto bad_orphan; 1414 1415 if (NEXT_ORPHAN(inode) > max_ino) 1416 goto bad_orphan; 1417 brelse(bitmap_bh); 1418 return inode; 1419 1420 bad_orphan: 1421 ext4_error(sb, "bad orphan inode %lu", ino); 1422 if (bitmap_bh) 1423 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n", 1424 bit, (unsigned long long)bitmap_bh->b_blocknr, 1425 ext4_test_bit(bit, bitmap_bh->b_data)); 1426 if (inode) { 1427 printk(KERN_ERR "is_bad_inode(inode)=%d\n", 1428 is_bad_inode(inode)); 1429 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n", 1430 NEXT_ORPHAN(inode)); 1431 printk(KERN_ERR "max_ino=%lu\n", max_ino); 1432 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink); 1433 /* Avoid freeing blocks if we got a bad deleted inode */ 1434 if (inode->i_nlink == 0) 1435 inode->i_blocks = 0; 1436 iput(inode); 1437 } 1438 brelse(bitmap_bh); 1439 return ERR_PTR(err); 1440 } 1441 1442 unsigned long ext4_count_free_inodes(struct super_block *sb) 1443 { 1444 unsigned long desc_count; 1445 struct ext4_group_desc *gdp; 1446 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1447 #ifdef EXT4FS_DEBUG 1448 struct ext4_super_block *es; 1449 unsigned long bitmap_count, x; 1450 struct buffer_head *bitmap_bh = NULL; 1451 1452 es = EXT4_SB(sb)->s_es; 1453 desc_count = 0; 1454 bitmap_count = 0; 1455 gdp = NULL; 1456 for (i = 0; i < ngroups; i++) { 1457 gdp = ext4_get_group_desc(sb, i, NULL); 1458 if (!gdp) 1459 continue; 1460 desc_count += ext4_free_inodes_count(sb, gdp); 1461 brelse(bitmap_bh); 1462 bitmap_bh = ext4_read_inode_bitmap(sb, i); 1463 if (IS_ERR(bitmap_bh)) { 1464 bitmap_bh = NULL; 1465 continue; 1466 } 1467 1468 x = ext4_count_free(bitmap_bh->b_data, 1469 EXT4_INODES_PER_GROUP(sb) / 8); 1470 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", 1471 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x); 1472 bitmap_count += x; 1473 } 1474 brelse(bitmap_bh); 1475 printk(KERN_DEBUG "ext4_count_free_inodes: " 1476 "stored = %u, computed = %lu, %lu\n", 1477 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); 1478 return desc_count; 1479 #else 1480 desc_count = 0; 1481 for (i = 0; i < ngroups; i++) { 1482 gdp = ext4_get_group_desc(sb, i, NULL); 1483 if (!gdp) 1484 continue; 1485 desc_count += ext4_free_inodes_count(sb, gdp); 1486 cond_resched(); 1487 } 1488 return desc_count; 1489 #endif 1490 } 1491 1492 /* Called at mount-time, super-block is locked */ 1493 unsigned long ext4_count_dirs(struct super_block * sb) 1494 { 1495 unsigned long count = 0; 1496 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 1497 1498 for (i = 0; i < ngroups; i++) { 1499 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1500 if (!gdp) 1501 continue; 1502 count += ext4_used_dirs_count(sb, gdp); 1503 } 1504 return count; 1505 } 1506 1507 /* 1508 * Zeroes not yet zeroed inode table - just write zeroes through the whole 1509 * inode table. Must be called without any spinlock held. The only place 1510 * where it is called from on active part of filesystem is ext4lazyinit 1511 * thread, so we do not need any special locks, however we have to prevent 1512 * inode allocation from the current group, so we take alloc_sem lock, to 1513 * block ext4_new_inode() until we are finished. 1514 */ 1515 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, 1516 int barrier) 1517 { 1518 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1519 struct ext4_sb_info *sbi = EXT4_SB(sb); 1520 struct ext4_group_desc *gdp = NULL; 1521 struct buffer_head *group_desc_bh; 1522 handle_t *handle; 1523 ext4_fsblk_t blk; 1524 int num, ret = 0, used_blks = 0; 1525 unsigned long used_inos = 0; 1526 1527 gdp = ext4_get_group_desc(sb, group, &group_desc_bh); 1528 if (!gdp || !grp) 1529 goto out; 1530 1531 /* 1532 * We do not need to lock this, because we are the only one 1533 * handling this flag. 1534 */ 1535 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 1536 goto out; 1537 1538 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); 1539 if (IS_ERR(handle)) { 1540 ret = PTR_ERR(handle); 1541 goto out; 1542 } 1543 1544 down_write(&grp->alloc_sem); 1545 /* 1546 * If inode bitmap was already initialized there may be some 1547 * used inodes so we need to skip blocks with used inodes in 1548 * inode table. 1549 */ 1550 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) { 1551 used_inos = EXT4_INODES_PER_GROUP(sb) - 1552 ext4_itable_unused_count(sb, gdp); 1553 used_blks = DIV_ROUND_UP(used_inos, sbi->s_inodes_per_block); 1554 1555 /* Bogus inode unused count? */ 1556 if (used_blks < 0 || used_blks > sbi->s_itb_per_group) { 1557 ext4_error(sb, "Something is wrong with group %u: " 1558 "used itable blocks: %d; " 1559 "itable unused count: %u", 1560 group, used_blks, 1561 ext4_itable_unused_count(sb, gdp)); 1562 ret = 1; 1563 goto err_out; 1564 } 1565 1566 used_inos += group * EXT4_INODES_PER_GROUP(sb); 1567 /* 1568 * Are there some uninitialized inodes in the inode table 1569 * before the first normal inode? 1570 */ 1571 if ((used_blks != sbi->s_itb_per_group) && 1572 (used_inos < EXT4_FIRST_INO(sb))) { 1573 ext4_error(sb, "Something is wrong with group %u: " 1574 "itable unused count: %u; " 1575 "itables initialized count: %ld", 1576 group, ext4_itable_unused_count(sb, gdp), 1577 used_inos); 1578 ret = 1; 1579 goto err_out; 1580 } 1581 } 1582 1583 blk = ext4_inode_table(sb, gdp) + used_blks; 1584 num = sbi->s_itb_per_group - used_blks; 1585 1586 BUFFER_TRACE(group_desc_bh, "get_write_access"); 1587 ret = ext4_journal_get_write_access(handle, sb, group_desc_bh, 1588 EXT4_JTR_NONE); 1589 if (ret) 1590 goto err_out; 1591 1592 /* 1593 * Skip zeroout if the inode table is full. But we set the ZEROED 1594 * flag anyway, because obviously, when it is full it does not need 1595 * further zeroing. 1596 */ 1597 if (unlikely(num == 0)) 1598 goto skip_zeroout; 1599 1600 ext4_debug("going to zero out inode table in group %d\n", 1601 group); 1602 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS); 1603 if (ret < 0) 1604 goto err_out; 1605 if (barrier) 1606 blkdev_issue_flush(sb->s_bdev); 1607 1608 skip_zeroout: 1609 ext4_lock_group(sb, group); 1610 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED); 1611 ext4_group_desc_csum_set(sb, group, gdp); 1612 ext4_unlock_group(sb, group); 1613 1614 BUFFER_TRACE(group_desc_bh, 1615 "call ext4_handle_dirty_metadata"); 1616 ret = ext4_handle_dirty_metadata(handle, NULL, 1617 group_desc_bh); 1618 1619 err_out: 1620 up_write(&grp->alloc_sem); 1621 ext4_journal_stop(handle); 1622 out: 1623 return ret; 1624 } 1625
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.