~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ext4/indirect.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  linux/fs/ext4/indirect.c
  4  *
  5  *  from
  6  *
  7  *  linux/fs/ext4/inode.c
  8  *
  9  * Copyright (C) 1992, 1993, 1994, 1995
 10  * Remy Card (card@masi.ibp.fr)
 11  * Laboratoire MASI - Institut Blaise Pascal
 12  * Universite Pierre et Marie Curie (Paris VI)
 13  *
 14  *  from
 15  *
 16  *  linux/fs/minix/inode.c
 17  *
 18  *  Copyright (C) 1991, 1992  Linus Torvalds
 19  *
 20  *  Goal-directed block allocation by Stephen Tweedie
 21  *      (sct@redhat.com), 1993, 1998
 22  */
 23 
 24 #include "ext4_jbd2.h"
 25 #include "truncate.h"
 26 #include <linux/dax.h>
 27 #include <linux/uio.h>
 28 
 29 #include <trace/events/ext4.h>
 30 
 31 typedef struct {
 32         __le32  *p;
 33         __le32  key;
 34         struct buffer_head *bh;
 35 } Indirect;
 36 
 37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 38 {
 39         p->key = *(p->p = v);
 40         p->bh = bh;
 41 }
 42 
 43 /**
 44  *      ext4_block_to_path - parse the block number into array of offsets
 45  *      @inode: inode in question (we are only interested in its superblock)
 46  *      @i_block: block number to be parsed
 47  *      @offsets: array to store the offsets in
 48  *      @boundary: set this non-zero if the referred-to block is likely to be
 49  *             followed (on disk) by an indirect block.
 50  *
 51  *      To store the locations of file's data ext4 uses a data structure common
 52  *      for UNIX filesystems - tree of pointers anchored in the inode, with
 53  *      data blocks at leaves and indirect blocks in intermediate nodes.
 54  *      This function translates the block number into path in that tree -
 55  *      return value is the path length and @offsets[n] is the offset of
 56  *      pointer to (n+1)th node in the nth one. If @block is out of range
 57  *      (negative or too large) warning is printed and zero returned.
 58  *
 59  *      Note: function doesn't find node addresses, so no IO is needed. All
 60  *      we need to know is the capacity of indirect blocks (taken from the
 61  *      inode->i_sb).
 62  */
 63 
 64 /*
 65  * Portability note: the last comparison (check that we fit into triple
 66  * indirect block) is spelled differently, because otherwise on an
 67  * architecture with 32-bit longs and 8Kb pages we might get into trouble
 68  * if our filesystem had 8Kb blocks. We might use long long, but that would
 69  * kill us on x86. Oh, well, at least the sign propagation does not matter -
 70  * i_block would have to be negative in the very beginning, so we would not
 71  * get there at all.
 72  */
 73 
 74 static int ext4_block_to_path(struct inode *inode,
 75                               ext4_lblk_t i_block,
 76                               ext4_lblk_t offsets[4], int *boundary)
 77 {
 78         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
 79         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
 80         const long direct_blocks = EXT4_NDIR_BLOCKS,
 81                 indirect_blocks = ptrs,
 82                 double_blocks = (1 << (ptrs_bits * 2));
 83         int n = 0;
 84         int final = 0;
 85 
 86         if (i_block < direct_blocks) {
 87                 offsets[n++] = i_block;
 88                 final = direct_blocks;
 89         } else if ((i_block -= direct_blocks) < indirect_blocks) {
 90                 offsets[n++] = EXT4_IND_BLOCK;
 91                 offsets[n++] = i_block;
 92                 final = ptrs;
 93         } else if ((i_block -= indirect_blocks) < double_blocks) {
 94                 offsets[n++] = EXT4_DIND_BLOCK;
 95                 offsets[n++] = i_block >> ptrs_bits;
 96                 offsets[n++] = i_block & (ptrs - 1);
 97                 final = ptrs;
 98         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 99                 offsets[n++] = EXT4_TIND_BLOCK;
100                 offsets[n++] = i_block >> (ptrs_bits * 2);
101                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
102                 offsets[n++] = i_block & (ptrs - 1);
103                 final = ptrs;
104         } else {
105                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
106                              i_block + direct_blocks +
107                              indirect_blocks + double_blocks, inode->i_ino);
108         }
109         if (boundary)
110                 *boundary = final - 1 - (i_block & (ptrs - 1));
111         return n;
112 }
113 
114 /**
115  *      ext4_get_branch - read the chain of indirect blocks leading to data
116  *      @inode: inode in question
117  *      @depth: depth of the chain (1 - direct pointer, etc.)
118  *      @offsets: offsets of pointers in inode/indirect blocks
119  *      @chain: place to store the result
120  *      @err: here we store the error value
121  *
122  *      Function fills the array of triples <key, p, bh> and returns %NULL
123  *      if everything went OK or the pointer to the last filled triple
124  *      (incomplete one) otherwise. Upon the return chain[i].key contains
125  *      the number of (i+1)-th block in the chain (as it is stored in memory,
126  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
127  *      number (it points into struct inode for i==0 and into the bh->b_data
128  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
129  *      block for i>0 and NULL for i==0. In other words, it holds the block
130  *      numbers of the chain, addresses they were taken from (and where we can
131  *      verify that chain did not change) and buffer_heads hosting these
132  *      numbers.
133  *
134  *      Function stops when it stumbles upon zero pointer (absent block)
135  *              (pointer to last triple returned, *@err == 0)
136  *      or when it gets an IO error reading an indirect block
137  *              (ditto, *@err == -EIO)
138  *      or when it reads all @depth-1 indirect blocks successfully and finds
139  *      the whole chain, all way to the data (returns %NULL, *err == 0).
140  *
141  *      Need to be called with
142  *      down_read(&EXT4_I(inode)->i_data_sem)
143  */
144 static Indirect *ext4_get_branch(struct inode *inode, int depth,
145                                  ext4_lblk_t  *offsets,
146                                  Indirect chain[4], int *err)
147 {
148         struct super_block *sb = inode->i_sb;
149         Indirect *p = chain;
150         struct buffer_head *bh;
151         unsigned int key;
152         int ret = -EIO;
153 
154         *err = 0;
155         /* i_data is not going away, no lock needed */
156         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
157         if (!p->key)
158                 goto no_block;
159         while (--depth) {
160                 key = le32_to_cpu(p->key);
161                 if (key > ext4_blocks_count(EXT4_SB(sb)->s_es)) {
162                         /* the block was out of range */
163                         ret = -EFSCORRUPTED;
164                         goto failure;
165                 }
166                 bh = sb_getblk(sb, key);
167                 if (unlikely(!bh)) {
168                         ret = -ENOMEM;
169                         goto failure;
170                 }
171 
172                 if (!bh_uptodate_or_lock(bh)) {
173                         if (ext4_read_bh(bh, 0, NULL) < 0) {
174                                 put_bh(bh);
175                                 goto failure;
176                         }
177                         /* validate block references */
178                         if (ext4_check_indirect_blockref(inode, bh)) {
179                                 put_bh(bh);
180                                 goto failure;
181                         }
182                 }
183 
184                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
185                 /* Reader: end */
186                 if (!p->key)
187                         goto no_block;
188         }
189         return NULL;
190 
191 failure:
192         *err = ret;
193 no_block:
194         return p;
195 }
196 
197 /**
198  *      ext4_find_near - find a place for allocation with sufficient locality
199  *      @inode: owner
200  *      @ind: descriptor of indirect block.
201  *
202  *      This function returns the preferred place for block allocation.
203  *      It is used when heuristic for sequential allocation fails.
204  *      Rules are:
205  *        + if there is a block to the left of our position - allocate near it.
206  *        + if pointer will live in indirect block - allocate near that block.
207  *        + if pointer will live in inode - allocate in the same
208  *          cylinder group.
209  *
210  * In the latter case we colour the starting block by the callers PID to
211  * prevent it from clashing with concurrent allocations for a different inode
212  * in the same block group.   The PID is used here so that functionally related
213  * files will be close-by on-disk.
214  *
215  *      Caller must make sure that @ind is valid and will stay that way.
216  */
217 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
218 {
219         struct ext4_inode_info *ei = EXT4_I(inode);
220         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
221         __le32 *p;
222 
223         /* Try to find previous block */
224         for (p = ind->p - 1; p >= start; p--) {
225                 if (*p)
226                         return le32_to_cpu(*p);
227         }
228 
229         /* No such thing, so let's try location of indirect block */
230         if (ind->bh)
231                 return ind->bh->b_blocknr;
232 
233         /*
234          * It is going to be referred to from the inode itself? OK, just put it
235          * into the same cylinder group then.
236          */
237         return ext4_inode_to_goal_block(inode);
238 }
239 
240 /**
241  *      ext4_find_goal - find a preferred place for allocation.
242  *      @inode: owner
243  *      @block:  block we want
244  *      @partial: pointer to the last triple within a chain
245  *
246  *      Normally this function find the preferred place for block allocation,
247  *      returns it.
248  *      Because this is only used for non-extent files, we limit the block nr
249  *      to 32 bits.
250  */
251 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
252                                    Indirect *partial)
253 {
254         ext4_fsblk_t goal;
255 
256         /*
257          * XXX need to get goal block from mballoc's data structures
258          */
259 
260         goal = ext4_find_near(inode, partial);
261         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
262         return goal;
263 }
264 
265 /**
266  *      ext4_blks_to_allocate - Look up the block map and count the number
267  *      of direct blocks need to be allocated for the given branch.
268  *
269  *      @branch: chain of indirect blocks
270  *      @k: number of blocks need for indirect blocks
271  *      @blks: number of data blocks to be mapped.
272  *      @blocks_to_boundary:  the offset in the indirect block
273  *
274  *      return the total number of blocks to be allocate, including the
275  *      direct and indirect blocks.
276  */
277 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
278                                  int blocks_to_boundary)
279 {
280         unsigned int count = 0;
281 
282         /*
283          * Simple case, [t,d]Indirect block(s) has not allocated yet
284          * then it's clear blocks on that path have not allocated
285          */
286         if (k > 0) {
287                 /* right now we don't handle cross boundary allocation */
288                 if (blks < blocks_to_boundary + 1)
289                         count += blks;
290                 else
291                         count += blocks_to_boundary + 1;
292                 return count;
293         }
294 
295         count++;
296         while (count < blks && count <= blocks_to_boundary &&
297                 le32_to_cpu(*(branch[0].p + count)) == 0) {
298                 count++;
299         }
300         return count;
301 }
302 
303 /**
304  * ext4_alloc_branch() - allocate and set up a chain of blocks
305  * @handle: handle for this transaction
306  * @ar: structure describing the allocation request
307  * @indirect_blks: number of allocated indirect blocks
308  * @offsets: offsets (in the blocks) to store the pointers to next.
309  * @branch: place to store the chain in.
310  *
311  *      This function allocates blocks, zeroes out all but the last one,
312  *      links them into chain and (if we are synchronous) writes them to disk.
313  *      In other words, it prepares a branch that can be spliced onto the
314  *      inode. It stores the information about that chain in the branch[], in
315  *      the same format as ext4_get_branch() would do. We are calling it after
316  *      we had read the existing part of chain and partial points to the last
317  *      triple of that (one with zero ->key). Upon the exit we have the same
318  *      picture as after the successful ext4_get_block(), except that in one
319  *      place chain is disconnected - *branch->p is still zero (we did not
320  *      set the last link), but branch->key contains the number that should
321  *      be placed into *branch->p to fill that gap.
322  *
323  *      If allocation fails we free all blocks we've allocated (and forget
324  *      their buffer_heads) and return the error value the from failed
325  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
326  *      as described above and return 0.
327  */
328 static int ext4_alloc_branch(handle_t *handle,
329                              struct ext4_allocation_request *ar,
330                              int indirect_blks, ext4_lblk_t *offsets,
331                              Indirect *branch)
332 {
333         struct buffer_head *            bh;
334         ext4_fsblk_t                    b, new_blocks[4];
335         __le32                          *p;
336         int                             i, j, err, len = 1;
337 
338         for (i = 0; i <= indirect_blks; i++) {
339                 if (i == indirect_blks) {
340                         new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
341                 } else {
342                         ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
343                                         ar->inode, ar->goal,
344                                         ar->flags & EXT4_MB_DELALLOC_RESERVED,
345                                         NULL, &err);
346                         /* Simplify error cleanup... */
347                         branch[i+1].bh = NULL;
348                 }
349                 if (err) {
350                         i--;
351                         goto failed;
352                 }
353                 branch[i].key = cpu_to_le32(new_blocks[i]);
354                 if (i == 0)
355                         continue;
356 
357                 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
358                 if (unlikely(!bh)) {
359                         err = -ENOMEM;
360                         goto failed;
361                 }
362                 lock_buffer(bh);
363                 BUFFER_TRACE(bh, "call get_create_access");
364                 err = ext4_journal_get_create_access(handle, ar->inode->i_sb,
365                                                      bh, EXT4_JTR_NONE);
366                 if (err) {
367                         unlock_buffer(bh);
368                         goto failed;
369                 }
370 
371                 memset(bh->b_data, 0, bh->b_size);
372                 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
373                 b = new_blocks[i];
374 
375                 if (i == indirect_blks)
376                         len = ar->len;
377                 for (j = 0; j < len; j++)
378                         *p++ = cpu_to_le32(b++);
379 
380                 BUFFER_TRACE(bh, "marking uptodate");
381                 set_buffer_uptodate(bh);
382                 unlock_buffer(bh);
383 
384                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
385                 err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
386                 if (err)
387                         goto failed;
388         }
389         return 0;
390 failed:
391         if (i == indirect_blks) {
392                 /* Free data blocks */
393                 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
394                                  ar->len, 0);
395                 i--;
396         }
397         for (; i >= 0; i--) {
398                 /*
399                  * We want to ext4_forget() only freshly allocated indirect
400                  * blocks. Buffer for new_blocks[i] is at branch[i+1].bh
401                  * (buffer at branch[0].bh is indirect block / inode already
402                  * existing before ext4_alloc_branch() was called). Also
403                  * because blocks are freshly allocated, we don't need to
404                  * revoke them which is why we don't set
405                  * EXT4_FREE_BLOCKS_METADATA.
406                  */
407                 ext4_free_blocks(handle, ar->inode, branch[i+1].bh,
408                                  new_blocks[i], 1,
409                                  branch[i+1].bh ? EXT4_FREE_BLOCKS_FORGET : 0);
410         }
411         return err;
412 }
413 
414 /**
415  * ext4_splice_branch() - splice the allocated branch onto inode.
416  * @handle: handle for this transaction
417  * @ar: structure describing the allocation request
418  * @where: location of missing link
419  * @num:   number of indirect blocks we are adding
420  *
421  * This function fills the missing link and does all housekeeping needed in
422  * inode (->i_blocks, etc.). In case of success we end up with the full
423  * chain to new block and return 0.
424  */
425 static int ext4_splice_branch(handle_t *handle,
426                               struct ext4_allocation_request *ar,
427                               Indirect *where, int num)
428 {
429         int i;
430         int err = 0;
431         ext4_fsblk_t current_block;
432 
433         /*
434          * If we're splicing into a [td]indirect block (as opposed to the
435          * inode) then we need to get write access to the [td]indirect block
436          * before the splice.
437          */
438         if (where->bh) {
439                 BUFFER_TRACE(where->bh, "get_write_access");
440                 err = ext4_journal_get_write_access(handle, ar->inode->i_sb,
441                                                     where->bh, EXT4_JTR_NONE);
442                 if (err)
443                         goto err_out;
444         }
445         /* That's it */
446 
447         *where->p = where->key;
448 
449         /*
450          * Update the host buffer_head or inode to point to more just allocated
451          * direct blocks blocks
452          */
453         if (num == 0 && ar->len > 1) {
454                 current_block = le32_to_cpu(where->key) + 1;
455                 for (i = 1; i < ar->len; i++)
456                         *(where->p + i) = cpu_to_le32(current_block++);
457         }
458 
459         /* We are done with atomic stuff, now do the rest of housekeeping */
460         /* had we spliced it onto indirect block? */
461         if (where->bh) {
462                 /*
463                  * If we spliced it onto an indirect block, we haven't
464                  * altered the inode.  Note however that if it is being spliced
465                  * onto an indirect block at the very end of the file (the
466                  * file is growing) then we *will* alter the inode to reflect
467                  * the new i_size.  But that is not done here - it is done in
468                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
469                  */
470                 ext4_debug("splicing indirect only\n");
471                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
472                 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
473                 if (err)
474                         goto err_out;
475         } else {
476                 /*
477                  * OK, we spliced it into the inode itself on a direct block.
478                  */
479                 err = ext4_mark_inode_dirty(handle, ar->inode);
480                 if (unlikely(err))
481                         goto err_out;
482                 ext4_debug("splicing direct\n");
483         }
484         return err;
485 
486 err_out:
487         for (i = 1; i <= num; i++) {
488                 /*
489                  * branch[i].bh is newly allocated, so there is no
490                  * need to revoke the block, which is why we don't
491                  * need to set EXT4_FREE_BLOCKS_METADATA.
492                  */
493                 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
494                                  EXT4_FREE_BLOCKS_FORGET);
495         }
496         ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
497                          ar->len, 0);
498 
499         return err;
500 }
501 
502 /*
503  * The ext4_ind_map_blocks() function handles non-extents inodes
504  * (i.e., using the traditional indirect/double-indirect i_blocks
505  * scheme) for ext4_map_blocks().
506  *
507  * Allocation strategy is simple: if we have to allocate something, we will
508  * have to go the whole way to leaf. So let's do it before attaching anything
509  * to tree, set linkage between the newborn blocks, write them if sync is
510  * required, recheck the path, free and repeat if check fails, otherwise
511  * set the last missing link (that will protect us from any truncate-generated
512  * removals - all blocks on the path are immune now) and possibly force the
513  * write on the parent block.
514  * That has a nice additional property: no special recovery from the failed
515  * allocations is needed - we simply release blocks and do not touch anything
516  * reachable from inode.
517  *
518  * `handle' can be NULL if create == 0.
519  *
520  * return > 0, # of blocks mapped or allocated.
521  * return = 0, if plain lookup failed.
522  * return < 0, error case.
523  *
524  * The ext4_ind_get_blocks() function should be called with
525  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
526  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
527  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
528  * blocks.
529  */
530 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
531                         struct ext4_map_blocks *map,
532                         int flags)
533 {
534         struct ext4_allocation_request ar;
535         int err = -EIO;
536         ext4_lblk_t offsets[4];
537         Indirect chain[4];
538         Indirect *partial;
539         int indirect_blks;
540         int blocks_to_boundary = 0;
541         int depth;
542         int count = 0;
543         ext4_fsblk_t first_block = 0;
544 
545         trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
546         ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
547         ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
548         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
549                                    &blocks_to_boundary);
550 
551         if (depth == 0)
552                 goto out;
553 
554         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
555 
556         /* Simplest case - block found, no allocation needed */
557         if (!partial) {
558                 first_block = le32_to_cpu(chain[depth - 1].key);
559                 count++;
560                 /*map more blocks*/
561                 while (count < map->m_len && count <= blocks_to_boundary) {
562                         ext4_fsblk_t blk;
563 
564                         blk = le32_to_cpu(*(chain[depth-1].p + count));
565 
566                         if (blk == first_block + count)
567                                 count++;
568                         else
569                                 break;
570                 }
571                 goto got_it;
572         }
573 
574         /* Next simple case - plain lookup failed */
575         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
576                 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
577                 int i;
578 
579                 /*
580                  * Count number blocks in a subtree under 'partial'. At each
581                  * level we count number of complete empty subtrees beyond
582                  * current offset and then descend into the subtree only
583                  * partially beyond current offset.
584                  */
585                 count = 0;
586                 for (i = partial - chain + 1; i < depth; i++)
587                         count = count * epb + (epb - offsets[i] - 1);
588                 count++;
589                 /* Fill in size of a hole we found */
590                 map->m_pblk = 0;
591                 map->m_len = min_t(unsigned int, map->m_len, count);
592                 goto cleanup;
593         }
594 
595         /* Failed read of indirect block */
596         if (err == -EIO)
597                 goto cleanup;
598 
599         /*
600          * Okay, we need to do block allocation.
601         */
602         if (ext4_has_feature_bigalloc(inode->i_sb)) {
603                 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
604                                  "non-extent mapped inodes with bigalloc");
605                 err = -EFSCORRUPTED;
606                 goto out;
607         }
608 
609         /* Set up for the direct block allocation */
610         memset(&ar, 0, sizeof(ar));
611         ar.inode = inode;
612         ar.logical = map->m_lblk;
613         if (S_ISREG(inode->i_mode))
614                 ar.flags = EXT4_MB_HINT_DATA;
615         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
616                 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
617         if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
618                 ar.flags |= EXT4_MB_USE_RESERVED;
619 
620         ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
621 
622         /* the number of blocks need to allocate for [d,t]indirect blocks */
623         indirect_blks = (chain + depth) - partial - 1;
624 
625         /*
626          * Next look up the indirect map to count the totoal number of
627          * direct blocks to allocate for this branch.
628          */
629         ar.len = ext4_blks_to_allocate(partial, indirect_blks,
630                                        map->m_len, blocks_to_boundary);
631 
632         /*
633          * Block out ext4_truncate while we alter the tree
634          */
635         err = ext4_alloc_branch(handle, &ar, indirect_blks,
636                                 offsets + (partial - chain), partial);
637 
638         /*
639          * The ext4_splice_branch call will free and forget any buffers
640          * on the new chain if there is a failure, but that risks using
641          * up transaction credits, especially for bitmaps where the
642          * credits cannot be returned.  Can we handle this somehow?  We
643          * may need to return -EAGAIN upwards in the worst case.  --sct
644          */
645         if (!err)
646                 err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
647         if (err)
648                 goto cleanup;
649 
650         map->m_flags |= EXT4_MAP_NEW;
651 
652         ext4_update_inode_fsync_trans(handle, inode, 1);
653         count = ar.len;
654 
655         /*
656          * Update reserved blocks/metadata blocks after successful block
657          * allocation which had been deferred till now.
658          */
659         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
660                 ext4_da_update_reserve_space(inode, count, 1);
661 
662 got_it:
663         map->m_flags |= EXT4_MAP_MAPPED;
664         map->m_pblk = le32_to_cpu(chain[depth-1].key);
665         map->m_len = count;
666         if (count > blocks_to_boundary)
667                 map->m_flags |= EXT4_MAP_BOUNDARY;
668         err = count;
669         /* Clean up and exit */
670         partial = chain + depth - 1;    /* the whole chain */
671 cleanup:
672         while (partial > chain) {
673                 BUFFER_TRACE(partial->bh, "call brelse");
674                 brelse(partial->bh);
675                 partial--;
676         }
677 out:
678         trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
679         return err;
680 }
681 
682 /*
683  * Calculate number of indirect blocks touched by mapping @nrblocks logically
684  * contiguous blocks
685  */
686 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
687 {
688         /*
689          * With N contiguous data blocks, we need at most
690          * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
691          * 2 dindirect blocks, and 1 tindirect block
692          */
693         return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
694 }
695 
696 static int ext4_ind_trunc_restart_fn(handle_t *handle, struct inode *inode,
697                                      struct buffer_head *bh, int *dropped)
698 {
699         int err;
700 
701         if (bh) {
702                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
703                 err = ext4_handle_dirty_metadata(handle, inode, bh);
704                 if (unlikely(err))
705                         return err;
706         }
707         err = ext4_mark_inode_dirty(handle, inode);
708         if (unlikely(err))
709                 return err;
710         /*
711          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
712          * moment, get_block can be called only for blocks inside i_size since
713          * page cache has been already dropped and writes are blocked by
714          * i_rwsem. So we can safely drop the i_data_sem here.
715          */
716         BUG_ON(EXT4_JOURNAL(inode) == NULL);
717         ext4_discard_preallocations(inode);
718         up_write(&EXT4_I(inode)->i_data_sem);
719         *dropped = 1;
720         return 0;
721 }
722 
723 /*
724  * Truncate transactions can be complex and absolutely huge.  So we need to
725  * be able to restart the transaction at a convenient checkpoint to make
726  * sure we don't overflow the journal.
727  *
728  * Try to extend this transaction for the purposes of truncation.  If
729  * extend fails, we restart transaction.
730  */
731 static int ext4_ind_truncate_ensure_credits(handle_t *handle,
732                                             struct inode *inode,
733                                             struct buffer_head *bh,
734                                             int revoke_creds)
735 {
736         int ret;
737         int dropped = 0;
738 
739         ret = ext4_journal_ensure_credits_fn(handle, EXT4_RESERVE_TRANS_BLOCKS,
740                         ext4_blocks_for_truncate(inode), revoke_creds,
741                         ext4_ind_trunc_restart_fn(handle, inode, bh, &dropped));
742         if (dropped)
743                 down_write(&EXT4_I(inode)->i_data_sem);
744         if (ret <= 0)
745                 return ret;
746         if (bh) {
747                 BUFFER_TRACE(bh, "retaking write access");
748                 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
749                                                     EXT4_JTR_NONE);
750                 if (unlikely(ret))
751                         return ret;
752         }
753         return 0;
754 }
755 
756 /*
757  * Probably it should be a library function... search for first non-zero word
758  * or memcmp with zero_page, whatever is better for particular architecture.
759  * Linus?
760  */
761 static inline int all_zeroes(__le32 *p, __le32 *q)
762 {
763         while (p < q)
764                 if (*p++)
765                         return 0;
766         return 1;
767 }
768 
769 /**
770  *      ext4_find_shared - find the indirect blocks for partial truncation.
771  *      @inode:   inode in question
772  *      @depth:   depth of the affected branch
773  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
774  *      @chain:   place to store the pointers to partial indirect blocks
775  *      @top:     place to the (detached) top of branch
776  *
777  *      This is a helper function used by ext4_truncate().
778  *
779  *      When we do truncate() we may have to clean the ends of several
780  *      indirect blocks but leave the blocks themselves alive. Block is
781  *      partially truncated if some data below the new i_size is referred
782  *      from it (and it is on the path to the first completely truncated
783  *      data block, indeed).  We have to free the top of that path along
784  *      with everything to the right of the path. Since no allocation
785  *      past the truncation point is possible until ext4_truncate()
786  *      finishes, we may safely do the latter, but top of branch may
787  *      require special attention - pageout below the truncation point
788  *      might try to populate it.
789  *
790  *      We atomically detach the top of branch from the tree, store the
791  *      block number of its root in *@top, pointers to buffer_heads of
792  *      partially truncated blocks - in @chain[].bh and pointers to
793  *      their last elements that should not be removed - in
794  *      @chain[].p. Return value is the pointer to last filled element
795  *      of @chain.
796  *
797  *      The work left to caller to do the actual freeing of subtrees:
798  *              a) free the subtree starting from *@top
799  *              b) free the subtrees whose roots are stored in
800  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
801  *              c) free the subtrees growing from the inode past the @chain[0].
802  *                      (no partially truncated stuff there).  */
803 
804 static Indirect *ext4_find_shared(struct inode *inode, int depth,
805                                   ext4_lblk_t offsets[4], Indirect chain[4],
806                                   __le32 *top)
807 {
808         Indirect *partial, *p;
809         int k, err;
810 
811         *top = 0;
812         /* Make k index the deepest non-null offset + 1 */
813         for (k = depth; k > 1 && !offsets[k-1]; k--)
814                 ;
815         partial = ext4_get_branch(inode, k, offsets, chain, &err);
816         /* Writer: pointers */
817         if (!partial)
818                 partial = chain + k-1;
819         /*
820          * If the branch acquired continuation since we've looked at it -
821          * fine, it should all survive and (new) top doesn't belong to us.
822          */
823         if (!partial->key && *partial->p)
824                 /* Writer: end */
825                 goto no_top;
826         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
827                 ;
828         /*
829          * OK, we've found the last block that must survive. The rest of our
830          * branch should be detached before unlocking. However, if that rest
831          * of branch is all ours and does not grow immediately from the inode
832          * it's easier to cheat and just decrement partial->p.
833          */
834         if (p == chain + k - 1 && p > chain) {
835                 p->p--;
836         } else {
837                 *top = *p->p;
838                 /* Nope, don't do this in ext4.  Must leave the tree intact */
839 #if 0
840                 *p->p = 0;
841 #endif
842         }
843         /* Writer: end */
844 
845         while (partial > p) {
846                 brelse(partial->bh);
847                 partial--;
848         }
849 no_top:
850         return partial;
851 }
852 
853 /*
854  * Zero a number of block pointers in either an inode or an indirect block.
855  * If we restart the transaction we must again get write access to the
856  * indirect block for further modification.
857  *
858  * We release `count' blocks on disk, but (last - first) may be greater
859  * than `count' because there can be holes in there.
860  *
861  * Return 0 on success, 1 on invalid block range
862  * and < 0 on fatal error.
863  */
864 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
865                              struct buffer_head *bh,
866                              ext4_fsblk_t block_to_free,
867                              unsigned long count, __le32 *first,
868                              __le32 *last)
869 {
870         __le32 *p;
871         int     flags = EXT4_FREE_BLOCKS_VALIDATED;
872         int     err;
873 
874         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
875             ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
876                 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
877         else if (ext4_should_journal_data(inode))
878                 flags |= EXT4_FREE_BLOCKS_FORGET;
879 
880         if (!ext4_inode_block_valid(inode, block_to_free, count)) {
881                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
882                                  "blocks %llu len %lu",
883                                  (unsigned long long) block_to_free, count);
884                 return 1;
885         }
886 
887         err = ext4_ind_truncate_ensure_credits(handle, inode, bh,
888                                 ext4_free_data_revoke_credits(inode, count));
889         if (err < 0)
890                 goto out_err;
891 
892         for (p = first; p < last; p++)
893                 *p = 0;
894 
895         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
896         return 0;
897 out_err:
898         ext4_std_error(inode->i_sb, err);
899         return err;
900 }
901 
902 /**
903  * ext4_free_data - free a list of data blocks
904  * @handle:     handle for this transaction
905  * @inode:      inode we are dealing with
906  * @this_bh:    indirect buffer_head which contains *@first and *@last
907  * @first:      array of block numbers
908  * @last:       points immediately past the end of array
909  *
910  * We are freeing all blocks referred from that array (numbers are stored as
911  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
912  *
913  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
914  * blocks are contiguous then releasing them at one time will only affect one
915  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
916  * actually use a lot of journal space.
917  *
918  * @this_bh will be %NULL if @first and @last point into the inode's direct
919  * block pointers.
920  */
921 static void ext4_free_data(handle_t *handle, struct inode *inode,
922                            struct buffer_head *this_bh,
923                            __le32 *first, __le32 *last)
924 {
925         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
926         unsigned long count = 0;            /* Number of blocks in the run */
927         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
928                                                corresponding to
929                                                block_to_free */
930         ext4_fsblk_t nr;                    /* Current block # */
931         __le32 *p;                          /* Pointer into inode/ind
932                                                for current block */
933         int err = 0;
934 
935         if (this_bh) {                          /* For indirect block */
936                 BUFFER_TRACE(this_bh, "get_write_access");
937                 err = ext4_journal_get_write_access(handle, inode->i_sb,
938                                                     this_bh, EXT4_JTR_NONE);
939                 /* Important: if we can't update the indirect pointers
940                  * to the blocks, we can't free them. */
941                 if (err)
942                         return;
943         }
944 
945         for (p = first; p < last; p++) {
946                 nr = le32_to_cpu(*p);
947                 if (nr) {
948                         /* accumulate blocks to free if they're contiguous */
949                         if (count == 0) {
950                                 block_to_free = nr;
951                                 block_to_free_p = p;
952                                 count = 1;
953                         } else if (nr == block_to_free + count) {
954                                 count++;
955                         } else {
956                                 err = ext4_clear_blocks(handle, inode, this_bh,
957                                                         block_to_free, count,
958                                                         block_to_free_p, p);
959                                 if (err)
960                                         break;
961                                 block_to_free = nr;
962                                 block_to_free_p = p;
963                                 count = 1;
964                         }
965                 }
966         }
967 
968         if (!err && count > 0)
969                 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
970                                         count, block_to_free_p, p);
971         if (err < 0)
972                 /* fatal error */
973                 return;
974 
975         if (this_bh) {
976                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
977 
978                 /*
979                  * The buffer head should have an attached journal head at this
980                  * point. However, if the data is corrupted and an indirect
981                  * block pointed to itself, it would have been detached when
982                  * the block was cleared. Check for this instead of OOPSing.
983                  */
984                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
985                         ext4_handle_dirty_metadata(handle, inode, this_bh);
986                 else
987                         EXT4_ERROR_INODE(inode,
988                                          "circular indirect block detected at "
989                                          "block %llu",
990                                 (unsigned long long) this_bh->b_blocknr);
991         }
992 }
993 
994 /**
995  *      ext4_free_branches - free an array of branches
996  *      @handle: JBD handle for this transaction
997  *      @inode: inode we are dealing with
998  *      @parent_bh: the buffer_head which contains *@first and *@last
999  *      @first: array of block numbers
1000  *      @last:  pointer immediately past the end of array
1001  *      @depth: depth of the branches to free
1002  *
1003  *      We are freeing all blocks referred from these branches (numbers are
1004  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1005  *      appropriately.
1006  */
1007 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1008                                struct buffer_head *parent_bh,
1009                                __le32 *first, __le32 *last, int depth)
1010 {
1011         ext4_fsblk_t nr;
1012         __le32 *p;
1013 
1014         if (ext4_handle_is_aborted(handle))
1015                 return;
1016 
1017         if (depth--) {
1018                 struct buffer_head *bh;
1019                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1020                 p = last;
1021                 while (--p >= first) {
1022                         nr = le32_to_cpu(*p);
1023                         if (!nr)
1024                                 continue;               /* A hole */
1025 
1026                         if (!ext4_inode_block_valid(inode, nr, 1)) {
1027                                 EXT4_ERROR_INODE(inode,
1028                                                  "invalid indirect mapped "
1029                                                  "block %lu (level %d)",
1030                                                  (unsigned long) nr, depth);
1031                                 break;
1032                         }
1033 
1034                         /* Go read the buffer for the next level down */
1035                         bh = ext4_sb_bread(inode->i_sb, nr, 0);
1036 
1037                         /*
1038                          * A read failure? Report error and clear slot
1039                          * (should be rare).
1040                          */
1041                         if (IS_ERR(bh)) {
1042                                 ext4_error_inode_block(inode, nr, -PTR_ERR(bh),
1043                                                        "Read failure");
1044                                 continue;
1045                         }
1046 
1047                         /* This zaps the entire block.  Bottom up. */
1048                         BUFFER_TRACE(bh, "free child branches");
1049                         ext4_free_branches(handle, inode, bh,
1050                                         (__le32 *) bh->b_data,
1051                                         (__le32 *) bh->b_data + addr_per_block,
1052                                         depth);
1053                         brelse(bh);
1054 
1055                         /*
1056                          * Everything below this pointer has been
1057                          * released.  Now let this top-of-subtree go.
1058                          *
1059                          * We want the freeing of this indirect block to be
1060                          * atomic in the journal with the updating of the
1061                          * bitmap block which owns it.  So make some room in
1062                          * the journal.
1063                          *
1064                          * We zero the parent pointer *after* freeing its
1065                          * pointee in the bitmaps, so if extend_transaction()
1066                          * for some reason fails to put the bitmap changes and
1067                          * the release into the same transaction, recovery
1068                          * will merely complain about releasing a free block,
1069                          * rather than leaking blocks.
1070                          */
1071                         if (ext4_handle_is_aborted(handle))
1072                                 return;
1073                         if (ext4_ind_truncate_ensure_credits(handle, inode,
1074                                         NULL,
1075                                         ext4_free_metadata_revoke_credits(
1076                                                         inode->i_sb, 1)) < 0)
1077                                 return;
1078 
1079                         /*
1080                          * The forget flag here is critical because if
1081                          * we are journaling (and not doing data
1082                          * journaling), we have to make sure a revoke
1083                          * record is written to prevent the journal
1084                          * replay from overwriting the (former)
1085                          * indirect block if it gets reallocated as a
1086                          * data block.  This must happen in the same
1087                          * transaction where the data blocks are
1088                          * actually freed.
1089                          */
1090                         ext4_free_blocks(handle, inode, NULL, nr, 1,
1091                                          EXT4_FREE_BLOCKS_METADATA|
1092                                          EXT4_FREE_BLOCKS_FORGET);
1093 
1094                         if (parent_bh) {
1095                                 /*
1096                                  * The block which we have just freed is
1097                                  * pointed to by an indirect block: journal it
1098                                  */
1099                                 BUFFER_TRACE(parent_bh, "get_write_access");
1100                                 if (!ext4_journal_get_write_access(handle,
1101                                                 inode->i_sb, parent_bh,
1102                                                 EXT4_JTR_NONE)) {
1103                                         *p = 0;
1104                                         BUFFER_TRACE(parent_bh,
1105                                         "call ext4_handle_dirty_metadata");
1106                                         ext4_handle_dirty_metadata(handle,
1107                                                                    inode,
1108                                                                    parent_bh);
1109                                 }
1110                         }
1111                 }
1112         } else {
1113                 /* We have reached the bottom of the tree. */
1114                 BUFFER_TRACE(parent_bh, "free data blocks");
1115                 ext4_free_data(handle, inode, parent_bh, first, last);
1116         }
1117 }
1118 
1119 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1120 {
1121         struct ext4_inode_info *ei = EXT4_I(inode);
1122         __le32 *i_data = ei->i_data;
1123         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1124         ext4_lblk_t offsets[4];
1125         Indirect chain[4];
1126         Indirect *partial;
1127         __le32 nr = 0;
1128         int n = 0;
1129         ext4_lblk_t last_block, max_block;
1130         unsigned blocksize = inode->i_sb->s_blocksize;
1131 
1132         last_block = (inode->i_size + blocksize-1)
1133                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1134         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1135                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1136 
1137         if (last_block != max_block) {
1138                 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1139                 if (n == 0)
1140                         return;
1141         }
1142 
1143         ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1144 
1145         /*
1146          * The orphan list entry will now protect us from any crash which
1147          * occurs before the truncate completes, so it is now safe to propagate
1148          * the new, shorter inode size (held for now in i_size) into the
1149          * on-disk inode. We do this via i_disksize, which is the value which
1150          * ext4 *really* writes onto the disk inode.
1151          */
1152         ei->i_disksize = inode->i_size;
1153 
1154         if (last_block == max_block) {
1155                 /*
1156                  * It is unnecessary to free any data blocks if last_block is
1157                  * equal to the indirect block limit.
1158                  */
1159                 return;
1160         } else if (n == 1) {            /* direct blocks */
1161                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1162                                i_data + EXT4_NDIR_BLOCKS);
1163                 goto do_indirects;
1164         }
1165 
1166         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1167         /* Kill the top of shared branch (not detached) */
1168         if (nr) {
1169                 if (partial == chain) {
1170                         /* Shared branch grows from the inode */
1171                         ext4_free_branches(handle, inode, NULL,
1172                                            &nr, &nr+1, (chain+n-1) - partial);
1173                         *partial->p = 0;
1174                         /*
1175                          * We mark the inode dirty prior to restart,
1176                          * and prior to stop.  No need for it here.
1177                          */
1178                 } else {
1179                         /* Shared branch grows from an indirect block */
1180                         BUFFER_TRACE(partial->bh, "get_write_access");
1181                         ext4_free_branches(handle, inode, partial->bh,
1182                                         partial->p,
1183                                         partial->p+1, (chain+n-1) - partial);
1184                 }
1185         }
1186         /* Clear the ends of indirect blocks on the shared branch */
1187         while (partial > chain) {
1188                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1189                                    (__le32*)partial->bh->b_data+addr_per_block,
1190                                    (chain+n-1) - partial);
1191                 BUFFER_TRACE(partial->bh, "call brelse");
1192                 brelse(partial->bh);
1193                 partial--;
1194         }
1195 do_indirects:
1196         /* Kill the remaining (whole) subtrees */
1197         switch (offsets[0]) {
1198         default:
1199                 nr = i_data[EXT4_IND_BLOCK];
1200                 if (nr) {
1201                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1202                         i_data[EXT4_IND_BLOCK] = 0;
1203                 }
1204                 fallthrough;
1205         case EXT4_IND_BLOCK:
1206                 nr = i_data[EXT4_DIND_BLOCK];
1207                 if (nr) {
1208                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1209                         i_data[EXT4_DIND_BLOCK] = 0;
1210                 }
1211                 fallthrough;
1212         case EXT4_DIND_BLOCK:
1213                 nr = i_data[EXT4_TIND_BLOCK];
1214                 if (nr) {
1215                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1216                         i_data[EXT4_TIND_BLOCK] = 0;
1217                 }
1218                 fallthrough;
1219         case EXT4_TIND_BLOCK:
1220                 ;
1221         }
1222 }
1223 
1224 /**
1225  *      ext4_ind_remove_space - remove space from the range
1226  *      @handle: JBD handle for this transaction
1227  *      @inode: inode we are dealing with
1228  *      @start: First block to remove
1229  *      @end:   One block after the last block to remove (exclusive)
1230  *
1231  *      Free the blocks in the defined range (end is exclusive endpoint of
1232  *      range). This is used by ext4_punch_hole().
1233  */
1234 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1235                           ext4_lblk_t start, ext4_lblk_t end)
1236 {
1237         struct ext4_inode_info *ei = EXT4_I(inode);
1238         __le32 *i_data = ei->i_data;
1239         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1240         ext4_lblk_t offsets[4], offsets2[4];
1241         Indirect chain[4], chain2[4];
1242         Indirect *partial, *partial2;
1243         Indirect *p = NULL, *p2 = NULL;
1244         ext4_lblk_t max_block;
1245         __le32 nr = 0, nr2 = 0;
1246         int n = 0, n2 = 0;
1247         unsigned blocksize = inode->i_sb->s_blocksize;
1248 
1249         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1250                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1251         if (end >= max_block)
1252                 end = max_block;
1253         if ((start >= end) || (start > max_block))
1254                 return 0;
1255 
1256         n = ext4_block_to_path(inode, start, offsets, NULL);
1257         n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1258 
1259         BUG_ON(n > n2);
1260 
1261         if ((n == 1) && (n == n2)) {
1262                 /* We're punching only within direct block range */
1263                 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1264                                i_data + offsets2[0]);
1265                 return 0;
1266         } else if (n2 > n) {
1267                 /*
1268                  * Start and end are on a different levels so we're going to
1269                  * free partial block at start, and partial block at end of
1270                  * the range. If there are some levels in between then
1271                  * do_indirects label will take care of that.
1272                  */
1273 
1274                 if (n == 1) {
1275                         /*
1276                          * Start is at the direct block level, free
1277                          * everything to the end of the level.
1278                          */
1279                         ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1280                                        i_data + EXT4_NDIR_BLOCKS);
1281                         goto end_range;
1282                 }
1283 
1284 
1285                 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1286                 if (nr) {
1287                         if (partial == chain) {
1288                                 /* Shared branch grows from the inode */
1289                                 ext4_free_branches(handle, inode, NULL,
1290                                            &nr, &nr+1, (chain+n-1) - partial);
1291                                 *partial->p = 0;
1292                         } else {
1293                                 /* Shared branch grows from an indirect block */
1294                                 BUFFER_TRACE(partial->bh, "get_write_access");
1295                                 ext4_free_branches(handle, inode, partial->bh,
1296                                         partial->p,
1297                                         partial->p+1, (chain+n-1) - partial);
1298                         }
1299                 }
1300 
1301                 /*
1302                  * Clear the ends of indirect blocks on the shared branch
1303                  * at the start of the range
1304                  */
1305                 while (partial > chain) {
1306                         ext4_free_branches(handle, inode, partial->bh,
1307                                 partial->p + 1,
1308                                 (__le32 *)partial->bh->b_data+addr_per_block,
1309                                 (chain+n-1) - partial);
1310                         partial--;
1311                 }
1312 
1313 end_range:
1314                 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1315                 if (nr2) {
1316                         if (partial2 == chain2) {
1317                                 /*
1318                                  * Remember, end is exclusive so here we're at
1319                                  * the start of the next level we're not going
1320                                  * to free. Everything was covered by the start
1321                                  * of the range.
1322                                  */
1323                                 goto do_indirects;
1324                         }
1325                 } else {
1326                         /*
1327                          * ext4_find_shared returns Indirect structure which
1328                          * points to the last element which should not be
1329                          * removed by truncate. But this is end of the range
1330                          * in punch_hole so we need to point to the next element
1331                          */
1332                         partial2->p++;
1333                 }
1334 
1335                 /*
1336                  * Clear the ends of indirect blocks on the shared branch
1337                  * at the end of the range
1338                  */
1339                 while (partial2 > chain2) {
1340                         ext4_free_branches(handle, inode, partial2->bh,
1341                                            (__le32 *)partial2->bh->b_data,
1342                                            partial2->p,
1343                                            (chain2+n2-1) - partial2);
1344                         partial2--;
1345                 }
1346                 goto do_indirects;
1347         }
1348 
1349         /* Punch happened within the same level (n == n2) */
1350         partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1351         partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1352 
1353         /* Free top, but only if partial2 isn't its subtree. */
1354         if (nr) {
1355                 int level = min(partial - chain, partial2 - chain2);
1356                 int i;
1357                 int subtree = 1;
1358 
1359                 for (i = 0; i <= level; i++) {
1360                         if (offsets[i] != offsets2[i]) {
1361                                 subtree = 0;
1362                                 break;
1363                         }
1364                 }
1365 
1366                 if (!subtree) {
1367                         if (partial == chain) {
1368                                 /* Shared branch grows from the inode */
1369                                 ext4_free_branches(handle, inode, NULL,
1370                                                    &nr, &nr+1,
1371                                                    (chain+n-1) - partial);
1372                                 *partial->p = 0;
1373                         } else {
1374                                 /* Shared branch grows from an indirect block */
1375                                 BUFFER_TRACE(partial->bh, "get_write_access");
1376                                 ext4_free_branches(handle, inode, partial->bh,
1377                                                    partial->p,
1378                                                    partial->p+1,
1379                                                    (chain+n-1) - partial);
1380                         }
1381                 }
1382         }
1383 
1384         if (!nr2) {
1385                 /*
1386                  * ext4_find_shared returns Indirect structure which
1387                  * points to the last element which should not be
1388                  * removed by truncate. But this is end of the range
1389                  * in punch_hole so we need to point to the next element
1390                  */
1391                 partial2->p++;
1392         }
1393 
1394         while (partial > chain || partial2 > chain2) {
1395                 int depth = (chain+n-1) - partial;
1396                 int depth2 = (chain2+n2-1) - partial2;
1397 
1398                 if (partial > chain && partial2 > chain2 &&
1399                     partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1400                         /*
1401                          * We've converged on the same block. Clear the range,
1402                          * then we're done.
1403                          */
1404                         ext4_free_branches(handle, inode, partial->bh,
1405                                            partial->p + 1,
1406                                            partial2->p,
1407                                            (chain+n-1) - partial);
1408                         goto cleanup;
1409                 }
1410 
1411                 /*
1412                  * The start and end partial branches may not be at the same
1413                  * level even though the punch happened within one level. So, we
1414                  * give them a chance to arrive at the same level, then walk
1415                  * them in step with each other until we converge on the same
1416                  * block.
1417                  */
1418                 if (partial > chain && depth <= depth2) {
1419                         ext4_free_branches(handle, inode, partial->bh,
1420                                            partial->p + 1,
1421                                            (__le32 *)partial->bh->b_data+addr_per_block,
1422                                            (chain+n-1) - partial);
1423                         partial--;
1424                 }
1425                 if (partial2 > chain2 && depth2 <= depth) {
1426                         ext4_free_branches(handle, inode, partial2->bh,
1427                                            (__le32 *)partial2->bh->b_data,
1428                                            partial2->p,
1429                                            (chain2+n2-1) - partial2);
1430                         partial2--;
1431                 }
1432         }
1433 
1434 cleanup:
1435         while (p && p > chain) {
1436                 BUFFER_TRACE(p->bh, "call brelse");
1437                 brelse(p->bh);
1438                 p--;
1439         }
1440         while (p2 && p2 > chain2) {
1441                 BUFFER_TRACE(p2->bh, "call brelse");
1442                 brelse(p2->bh);
1443                 p2--;
1444         }
1445         return 0;
1446 
1447 do_indirects:
1448         /* Kill the remaining (whole) subtrees */
1449         switch (offsets[0]) {
1450         default:
1451                 if (++n >= n2)
1452                         break;
1453                 nr = i_data[EXT4_IND_BLOCK];
1454                 if (nr) {
1455                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1456                         i_data[EXT4_IND_BLOCK] = 0;
1457                 }
1458                 fallthrough;
1459         case EXT4_IND_BLOCK:
1460                 if (++n >= n2)
1461                         break;
1462                 nr = i_data[EXT4_DIND_BLOCK];
1463                 if (nr) {
1464                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1465                         i_data[EXT4_DIND_BLOCK] = 0;
1466                 }
1467                 fallthrough;
1468         case EXT4_DIND_BLOCK:
1469                 if (++n >= n2)
1470                         break;
1471                 nr = i_data[EXT4_TIND_BLOCK];
1472                 if (nr) {
1473                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1474                         i_data[EXT4_TIND_BLOCK] = 0;
1475                 }
1476                 fallthrough;
1477         case EXT4_TIND_BLOCK:
1478                 ;
1479         }
1480         goto cleanup;
1481 }
1482 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php