1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 145 */ 146 int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 149 int ea_blocks = EXT4_I(inode)->i_file_acl ? 150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 151 152 if (ext4_has_inline_data(inode)) 153 return 0; 154 155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 156 } 157 return S_ISLNK(inode->i_mode) && inode->i_size && 158 (inode->i_size < EXT4_N_BLOCKS * 4); 159 } 160 161 /* 162 * Called at the last iput() if i_nlink is zero. 163 */ 164 void ext4_evict_inode(struct inode *inode) 165 { 166 handle_t *handle; 167 int err; 168 /* 169 * Credits for final inode cleanup and freeing: 170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 171 * (xattr block freeing), bitmap, group descriptor (inode freeing) 172 */ 173 int extra_credits = 6; 174 struct ext4_xattr_inode_array *ea_inode_array = NULL; 175 bool freeze_protected = false; 176 177 trace_ext4_evict_inode(inode); 178 179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 180 ext4_evict_ea_inode(inode); 181 if (inode->i_nlink) { 182 truncate_inode_pages_final(&inode->i_data); 183 184 goto no_delete; 185 } 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 dquot_initialize(inode); 190 191 if (ext4_should_order_data(inode)) 192 ext4_begin_ordered_truncate(inode, 0); 193 truncate_inode_pages_final(&inode->i_data); 194 195 /* 196 * For inodes with journalled data, transaction commit could have 197 * dirtied the inode. And for inodes with dioread_nolock, unwritten 198 * extents converting worker could merge extents and also have dirtied 199 * the inode. Flush worker is ignoring it because of I_FREEING flag but 200 * we still need to remove the inode from the writeback lists. 201 */ 202 if (!list_empty_careful(&inode->i_io_list)) 203 inode_io_list_del(inode); 204 205 /* 206 * Protect us against freezing - iput() caller didn't have to have any 207 * protection against it. When we are in a running transaction though, 208 * we are already protected against freezing and we cannot grab further 209 * protection due to lock ordering constraints. 210 */ 211 if (!ext4_journal_current_handle()) { 212 sb_start_intwrite(inode->i_sb); 213 freeze_protected = true; 214 } 215 216 if (!IS_NOQUOTA(inode)) 217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 218 219 /* 220 * Block bitmap, group descriptor, and inode are accounted in both 221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 222 */ 223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 224 ext4_blocks_for_truncate(inode) + extra_credits - 3); 225 if (IS_ERR(handle)) { 226 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 227 /* 228 * If we're going to skip the normal cleanup, we still need to 229 * make sure that the in-core orphan linked list is properly 230 * cleaned up. 231 */ 232 ext4_orphan_del(NULL, inode); 233 if (freeze_protected) 234 sb_end_intwrite(inode->i_sb); 235 goto no_delete; 236 } 237 238 if (IS_SYNC(inode)) 239 ext4_handle_sync(handle); 240 241 /* 242 * Set inode->i_size to 0 before calling ext4_truncate(). We need 243 * special handling of symlinks here because i_size is used to 244 * determine whether ext4_inode_info->i_data contains symlink data or 245 * block mappings. Setting i_size to 0 will remove its fast symlink 246 * status. Erase i_data so that it becomes a valid empty block map. 247 */ 248 if (ext4_inode_is_fast_symlink(inode)) 249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) { 258 err = ext4_truncate(inode); 259 if (err) { 260 ext4_error_err(inode->i_sb, -err, 261 "couldn't truncate inode %lu (err %d)", 262 inode->i_ino, err); 263 goto stop_handle; 264 } 265 } 266 267 /* Remove xattr references. */ 268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 269 extra_credits); 270 if (err) { 271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 272 stop_handle: 273 ext4_journal_stop(handle); 274 ext4_orphan_del(NULL, inode); 275 if (freeze_protected) 276 sb_end_intwrite(inode->i_sb); 277 ext4_xattr_inode_array_free(ea_inode_array); 278 goto no_delete; 279 } 280 281 /* 282 * Kill off the orphan record which ext4_truncate created. 283 * AKPM: I think this can be inside the above `if'. 284 * Note that ext4_orphan_del() has to be able to cope with the 285 * deletion of a non-existent orphan - this is because we don't 286 * know if ext4_truncate() actually created an orphan record. 287 * (Well, we could do this if we need to, but heck - it works) 288 */ 289 ext4_orphan_del(handle, inode); 290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 291 292 /* 293 * One subtle ordering requirement: if anything has gone wrong 294 * (transaction abort, IO errors, whatever), then we can still 295 * do these next steps (the fs will already have been marked as 296 * having errors), but we can't free the inode if the mark_dirty 297 * fails. 298 */ 299 if (ext4_mark_inode_dirty(handle, inode)) 300 /* If that failed, just do the required in-core inode clear. */ 301 ext4_clear_inode(inode); 302 else 303 ext4_free_inode(handle, inode); 304 ext4_journal_stop(handle); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 return; 309 no_delete: 310 /* 311 * Check out some where else accidentally dirty the evicting inode, 312 * which may probably cause inode use-after-free issues later. 313 */ 314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 315 316 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 319 } 320 321 #ifdef CONFIG_QUOTA 322 qsize_t *ext4_get_reserved_space(struct inode *inode) 323 { 324 return &EXT4_I(inode)->i_reserved_quota; 325 } 326 #endif 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 352 353 spin_unlock(&ei->i_block_reservation_lock); 354 355 /* Update quota subsystem for data blocks */ 356 if (quota_claim) 357 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 358 else { 359 /* 360 * We did fallocate with an offset that is already delayed 361 * allocated. So on delayed allocated writeback we should 362 * not re-claim the quota for fallocated blocks. 363 */ 364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 365 } 366 367 /* 368 * If we have done all the pending block allocations and if 369 * there aren't any writers on the inode, we can discard the 370 * inode's preallocations. 371 */ 372 if ((ei->i_reserved_data_blocks == 0) && 373 !inode_is_open_for_write(inode)) 374 ext4_discard_preallocations(inode); 375 } 376 377 static int __check_block_validity(struct inode *inode, const char *func, 378 unsigned int line, 379 struct ext4_map_blocks *map) 380 { 381 if (ext4_has_feature_journal(inode->i_sb) && 382 (inode->i_ino == 383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 384 return 0; 385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock %llu " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_pblk, map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, 0); 433 } else { 434 retval = ext4_ind_map_blocks(handle, inode, map, 0); 435 } 436 up_read((&EXT4_I(inode)->i_data_sem)); 437 438 /* 439 * We don't check m_len because extent will be collpased in status 440 * tree. So the m_len might not equal. 441 */ 442 if (es_map->m_lblk != map->m_lblk || 443 es_map->m_flags != map->m_flags || 444 es_map->m_pblk != map->m_pblk) { 445 printk("ES cache assertion failed for inode: %lu " 446 "es_cached ex [%d/%d/%llu/%x] != " 447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 448 inode->i_ino, es_map->m_lblk, es_map->m_len, 449 es_map->m_pblk, es_map->m_flags, map->m_lblk, 450 map->m_len, map->m_pblk, map->m_flags, 451 retval, flags); 452 } 453 } 454 #endif /* ES_AGGRESSIVE_TEST */ 455 456 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, 457 struct ext4_map_blocks *map) 458 { 459 unsigned int status; 460 int retval; 461 462 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 463 retval = ext4_ext_map_blocks(handle, inode, map, 0); 464 else 465 retval = ext4_ind_map_blocks(handle, inode, map, 0); 466 467 if (retval <= 0) 468 return retval; 469 470 if (unlikely(retval != map->m_len)) { 471 ext4_warning(inode->i_sb, 472 "ES len assertion failed for inode " 473 "%lu: retval %d != map->m_len %d", 474 inode->i_ino, retval, map->m_len); 475 WARN_ON(1); 476 } 477 478 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 479 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 480 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 481 map->m_pblk, status); 482 return retval; 483 } 484 485 /* 486 * The ext4_map_blocks() function tries to look up the requested blocks, 487 * and returns if the blocks are already mapped. 488 * 489 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 490 * and store the allocated blocks in the result buffer head and mark it 491 * mapped. 492 * 493 * If file type is extents based, it will call ext4_ext_map_blocks(), 494 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 495 * based files 496 * 497 * On success, it returns the number of blocks being mapped or allocated. 498 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are 499 * pre-allocated and unwritten, the resulting @map is marked as unwritten. 500 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped. 501 * 502 * It returns 0 if plain look up failed (blocks have not been allocated), in 503 * that case, @map is returned as unmapped but we still do fill map->m_len to 504 * indicate the length of a hole starting at map->m_lblk. 505 * 506 * It returns the error in case of allocation failure. 507 */ 508 int ext4_map_blocks(handle_t *handle, struct inode *inode, 509 struct ext4_map_blocks *map, int flags) 510 { 511 struct extent_status es; 512 int retval; 513 int ret = 0; 514 #ifdef ES_AGGRESSIVE_TEST 515 struct ext4_map_blocks orig_map; 516 517 memcpy(&orig_map, map, sizeof(*map)); 518 #endif 519 520 map->m_flags = 0; 521 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 522 flags, map->m_len, (unsigned long) map->m_lblk); 523 524 /* 525 * ext4_map_blocks returns an int, and m_len is an unsigned int 526 */ 527 if (unlikely(map->m_len > INT_MAX)) 528 map->m_len = INT_MAX; 529 530 /* We can handle the block number less than EXT_MAX_BLOCKS */ 531 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 532 return -EFSCORRUPTED; 533 534 /* Lookup extent status tree firstly */ 535 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 536 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 537 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 538 map->m_pblk = ext4_es_pblock(&es) + 539 map->m_lblk - es.es_lblk; 540 map->m_flags |= ext4_es_is_written(&es) ? 541 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 542 retval = es.es_len - (map->m_lblk - es.es_lblk); 543 if (retval > map->m_len) 544 retval = map->m_len; 545 map->m_len = retval; 546 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 547 map->m_pblk = 0; 548 map->m_flags |= ext4_es_is_delayed(&es) ? 549 EXT4_MAP_DELAYED : 0; 550 retval = es.es_len - (map->m_lblk - es.es_lblk); 551 if (retval > map->m_len) 552 retval = map->m_len; 553 map->m_len = retval; 554 retval = 0; 555 } else { 556 BUG(); 557 } 558 559 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 560 return retval; 561 #ifdef ES_AGGRESSIVE_TEST 562 ext4_map_blocks_es_recheck(handle, inode, map, 563 &orig_map, flags); 564 #endif 565 goto found; 566 } 567 /* 568 * In the query cache no-wait mode, nothing we can do more if we 569 * cannot find extent in the cache. 570 */ 571 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 572 return 0; 573 574 /* 575 * Try to see if we can get the block without requesting a new 576 * file system block. 577 */ 578 down_read(&EXT4_I(inode)->i_data_sem); 579 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 580 retval = ext4_ext_map_blocks(handle, inode, map, 0); 581 } else { 582 retval = ext4_ind_map_blocks(handle, inode, map, 0); 583 } 584 if (retval > 0) { 585 unsigned int status; 586 587 if (unlikely(retval != map->m_len)) { 588 ext4_warning(inode->i_sb, 589 "ES len assertion failed for inode " 590 "%lu: retval %d != map->m_len %d", 591 inode->i_ino, retval, map->m_len); 592 WARN_ON(1); 593 } 594 595 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 596 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 597 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 598 !(status & EXTENT_STATUS_WRITTEN) && 599 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 600 map->m_lblk + map->m_len - 1)) 601 status |= EXTENT_STATUS_DELAYED; 602 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 603 map->m_pblk, status); 604 } 605 up_read((&EXT4_I(inode)->i_data_sem)); 606 607 found: 608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 609 ret = check_block_validity(inode, map); 610 if (ret != 0) 611 return ret; 612 } 613 614 /* If it is only a block(s) look up */ 615 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 616 return retval; 617 618 /* 619 * Returns if the blocks have already allocated 620 * 621 * Note that if blocks have been preallocated 622 * ext4_ext_map_blocks() returns with buffer head unmapped 623 */ 624 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 625 /* 626 * If we need to convert extent to unwritten 627 * we continue and do the actual work in 628 * ext4_ext_map_blocks() 629 */ 630 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 631 return retval; 632 633 /* 634 * Here we clear m_flags because after allocating an new extent, 635 * it will be set again. 636 */ 637 map->m_flags &= ~EXT4_MAP_FLAGS; 638 639 /* 640 * New blocks allocate and/or writing to unwritten extent 641 * will possibly result in updating i_data, so we take 642 * the write lock of i_data_sem, and call get_block() 643 * with create == 1 flag. 644 */ 645 down_write(&EXT4_I(inode)->i_data_sem); 646 647 /* 648 * We need to check for EXT4 here because migrate 649 * could have changed the inode type in between 650 */ 651 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 652 retval = ext4_ext_map_blocks(handle, inode, map, flags); 653 } else { 654 retval = ext4_ind_map_blocks(handle, inode, map, flags); 655 656 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 657 /* 658 * We allocated new blocks which will result in 659 * i_data's format changing. Force the migrate 660 * to fail by clearing migrate flags 661 */ 662 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 663 } 664 } 665 666 if (retval > 0) { 667 unsigned int status; 668 669 if (unlikely(retval != map->m_len)) { 670 ext4_warning(inode->i_sb, 671 "ES len assertion failed for inode " 672 "%lu: retval %d != map->m_len %d", 673 inode->i_ino, retval, map->m_len); 674 WARN_ON(1); 675 } 676 677 /* 678 * We have to zeroout blocks before inserting them into extent 679 * status tree. Otherwise someone could look them up there and 680 * use them before they are really zeroed. We also have to 681 * unmap metadata before zeroing as otherwise writeback can 682 * overwrite zeros with stale data from block device. 683 */ 684 if (flags & EXT4_GET_BLOCKS_ZERO && 685 map->m_flags & EXT4_MAP_MAPPED && 686 map->m_flags & EXT4_MAP_NEW) { 687 ret = ext4_issue_zeroout(inode, map->m_lblk, 688 map->m_pblk, map->m_len); 689 if (ret) { 690 retval = ret; 691 goto out_sem; 692 } 693 } 694 695 /* 696 * If the extent has been zeroed out, we don't need to update 697 * extent status tree. 698 */ 699 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 700 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 701 if (ext4_es_is_written(&es)) 702 goto out_sem; 703 } 704 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 705 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 706 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 707 !(status & EXTENT_STATUS_WRITTEN) && 708 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 709 map->m_lblk + map->m_len - 1)) 710 status |= EXTENT_STATUS_DELAYED; 711 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 712 map->m_pblk, status); 713 } 714 715 out_sem: 716 up_write((&EXT4_I(inode)->i_data_sem)); 717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 718 ret = check_block_validity(inode, map); 719 if (ret != 0) 720 return ret; 721 722 /* 723 * Inodes with freshly allocated blocks where contents will be 724 * visible after transaction commit must be on transaction's 725 * ordered data list. 726 */ 727 if (map->m_flags & EXT4_MAP_NEW && 728 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 729 !(flags & EXT4_GET_BLOCKS_ZERO) && 730 !ext4_is_quota_file(inode) && 731 ext4_should_order_data(inode)) { 732 loff_t start_byte = 733 (loff_t)map->m_lblk << inode->i_blkbits; 734 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 735 736 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 737 ret = ext4_jbd2_inode_add_wait(handle, inode, 738 start_byte, length); 739 else 740 ret = ext4_jbd2_inode_add_write(handle, inode, 741 start_byte, length); 742 if (ret) 743 return ret; 744 } 745 } 746 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 747 map->m_flags & EXT4_MAP_MAPPED)) 748 ext4_fc_track_range(handle, inode, map->m_lblk, 749 map->m_lblk + map->m_len - 1); 750 if (retval < 0) 751 ext_debug(inode, "failed with err %d\n", retval); 752 return retval; 753 } 754 755 /* 756 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 757 * we have to be careful as someone else may be manipulating b_state as well. 758 */ 759 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 760 { 761 unsigned long old_state; 762 unsigned long new_state; 763 764 flags &= EXT4_MAP_FLAGS; 765 766 /* Dummy buffer_head? Set non-atomically. */ 767 if (!bh->b_page) { 768 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 769 return; 770 } 771 /* 772 * Someone else may be modifying b_state. Be careful! This is ugly but 773 * once we get rid of using bh as a container for mapping information 774 * to pass to / from get_block functions, this can go away. 775 */ 776 old_state = READ_ONCE(bh->b_state); 777 do { 778 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 779 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 780 } 781 782 static int _ext4_get_block(struct inode *inode, sector_t iblock, 783 struct buffer_head *bh, int flags) 784 { 785 struct ext4_map_blocks map; 786 int ret = 0; 787 788 if (ext4_has_inline_data(inode)) 789 return -ERANGE; 790 791 map.m_lblk = iblock; 792 map.m_len = bh->b_size >> inode->i_blkbits; 793 794 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 795 flags); 796 if (ret > 0) { 797 map_bh(bh, inode->i_sb, map.m_pblk); 798 ext4_update_bh_state(bh, map.m_flags); 799 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 800 ret = 0; 801 } else if (ret == 0) { 802 /* hole case, need to fill in bh->b_size */ 803 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 804 } 805 return ret; 806 } 807 808 int ext4_get_block(struct inode *inode, sector_t iblock, 809 struct buffer_head *bh, int create) 810 { 811 return _ext4_get_block(inode, iblock, bh, 812 create ? EXT4_GET_BLOCKS_CREATE : 0); 813 } 814 815 /* 816 * Get block function used when preparing for buffered write if we require 817 * creating an unwritten extent if blocks haven't been allocated. The extent 818 * will be converted to written after the IO is complete. 819 */ 820 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 821 struct buffer_head *bh_result, int create) 822 { 823 int ret = 0; 824 825 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 826 inode->i_ino, create); 827 ret = _ext4_get_block(inode, iblock, bh_result, 828 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 829 830 /* 831 * If the buffer is marked unwritten, mark it as new to make sure it is 832 * zeroed out correctly in case of partial writes. Otherwise, there is 833 * a chance of stale data getting exposed. 834 */ 835 if (ret == 0 && buffer_unwritten(bh_result)) 836 set_buffer_new(bh_result); 837 838 return ret; 839 } 840 841 /* Maximum number of blocks we map for direct IO at once. */ 842 #define DIO_MAX_BLOCKS 4096 843 844 /* 845 * `handle' can be NULL if create is zero 846 */ 847 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 848 ext4_lblk_t block, int map_flags) 849 { 850 struct ext4_map_blocks map; 851 struct buffer_head *bh; 852 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 853 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 854 int err; 855 856 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 857 || handle != NULL || create == 0); 858 ASSERT(create == 0 || !nowait); 859 860 map.m_lblk = block; 861 map.m_len = 1; 862 err = ext4_map_blocks(handle, inode, &map, map_flags); 863 864 if (err == 0) 865 return create ? ERR_PTR(-ENOSPC) : NULL; 866 if (err < 0) 867 return ERR_PTR(err); 868 869 if (nowait) 870 return sb_find_get_block(inode->i_sb, map.m_pblk); 871 872 bh = sb_getblk(inode->i_sb, map.m_pblk); 873 if (unlikely(!bh)) 874 return ERR_PTR(-ENOMEM); 875 if (map.m_flags & EXT4_MAP_NEW) { 876 ASSERT(create != 0); 877 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 878 || (handle != NULL)); 879 880 /* 881 * Now that we do not always journal data, we should 882 * keep in mind whether this should always journal the 883 * new buffer as metadata. For now, regular file 884 * writes use ext4_get_block instead, so it's not a 885 * problem. 886 */ 887 lock_buffer(bh); 888 BUFFER_TRACE(bh, "call get_create_access"); 889 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 890 EXT4_JTR_NONE); 891 if (unlikely(err)) { 892 unlock_buffer(bh); 893 goto errout; 894 } 895 if (!buffer_uptodate(bh)) { 896 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 897 set_buffer_uptodate(bh); 898 } 899 unlock_buffer(bh); 900 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 901 err = ext4_handle_dirty_metadata(handle, inode, bh); 902 if (unlikely(err)) 903 goto errout; 904 } else 905 BUFFER_TRACE(bh, "not a new buffer"); 906 return bh; 907 errout: 908 brelse(bh); 909 return ERR_PTR(err); 910 } 911 912 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 913 ext4_lblk_t block, int map_flags) 914 { 915 struct buffer_head *bh; 916 int ret; 917 918 bh = ext4_getblk(handle, inode, block, map_flags); 919 if (IS_ERR(bh)) 920 return bh; 921 if (!bh || ext4_buffer_uptodate(bh)) 922 return bh; 923 924 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 925 if (ret) { 926 put_bh(bh); 927 return ERR_PTR(ret); 928 } 929 return bh; 930 } 931 932 /* Read a contiguous batch of blocks. */ 933 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 934 bool wait, struct buffer_head **bhs) 935 { 936 int i, err; 937 938 for (i = 0; i < bh_count; i++) { 939 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 940 if (IS_ERR(bhs[i])) { 941 err = PTR_ERR(bhs[i]); 942 bh_count = i; 943 goto out_brelse; 944 } 945 } 946 947 for (i = 0; i < bh_count; i++) 948 /* Note that NULL bhs[i] is valid because of holes. */ 949 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 950 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 951 952 if (!wait) 953 return 0; 954 955 for (i = 0; i < bh_count; i++) 956 if (bhs[i]) 957 wait_on_buffer(bhs[i]); 958 959 for (i = 0; i < bh_count; i++) { 960 if (bhs[i] && !buffer_uptodate(bhs[i])) { 961 err = -EIO; 962 goto out_brelse; 963 } 964 } 965 return 0; 966 967 out_brelse: 968 for (i = 0; i < bh_count; i++) { 969 brelse(bhs[i]); 970 bhs[i] = NULL; 971 } 972 return err; 973 } 974 975 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 976 struct buffer_head *head, 977 unsigned from, 978 unsigned to, 979 int *partial, 980 int (*fn)(handle_t *handle, struct inode *inode, 981 struct buffer_head *bh)) 982 { 983 struct buffer_head *bh; 984 unsigned block_start, block_end; 985 unsigned blocksize = head->b_size; 986 int err, ret = 0; 987 struct buffer_head *next; 988 989 for (bh = head, block_start = 0; 990 ret == 0 && (bh != head || !block_start); 991 block_start = block_end, bh = next) { 992 next = bh->b_this_page; 993 block_end = block_start + blocksize; 994 if (block_end <= from || block_start >= to) { 995 if (partial && !buffer_uptodate(bh)) 996 *partial = 1; 997 continue; 998 } 999 err = (*fn)(handle, inode, bh); 1000 if (!ret) 1001 ret = err; 1002 } 1003 return ret; 1004 } 1005 1006 /* 1007 * Helper for handling dirtying of journalled data. We also mark the folio as 1008 * dirty so that writeback code knows about this page (and inode) contains 1009 * dirty data. ext4_writepages() then commits appropriate transaction to 1010 * make data stable. 1011 */ 1012 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 1013 { 1014 folio_mark_dirty(bh->b_folio); 1015 return ext4_handle_dirty_metadata(handle, NULL, bh); 1016 } 1017 1018 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1019 struct buffer_head *bh) 1020 { 1021 int dirty = buffer_dirty(bh); 1022 int ret; 1023 1024 if (!buffer_mapped(bh) || buffer_freed(bh)) 1025 return 0; 1026 /* 1027 * __block_write_begin() could have dirtied some buffers. Clean 1028 * the dirty bit as jbd2_journal_get_write_access() could complain 1029 * otherwise about fs integrity issues. Setting of the dirty bit 1030 * by __block_write_begin() isn't a real problem here as we clear 1031 * the bit before releasing a page lock and thus writeback cannot 1032 * ever write the buffer. 1033 */ 1034 if (dirty) 1035 clear_buffer_dirty(bh); 1036 BUFFER_TRACE(bh, "get write access"); 1037 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1038 EXT4_JTR_NONE); 1039 if (!ret && dirty) 1040 ret = ext4_dirty_journalled_data(handle, bh); 1041 return ret; 1042 } 1043 1044 #ifdef CONFIG_FS_ENCRYPTION 1045 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len, 1046 get_block_t *get_block) 1047 { 1048 unsigned from = pos & (PAGE_SIZE - 1); 1049 unsigned to = from + len; 1050 struct inode *inode = folio->mapping->host; 1051 unsigned block_start, block_end; 1052 sector_t block; 1053 int err = 0; 1054 unsigned blocksize = inode->i_sb->s_blocksize; 1055 unsigned bbits; 1056 struct buffer_head *bh, *head, *wait[2]; 1057 int nr_wait = 0; 1058 int i; 1059 1060 BUG_ON(!folio_test_locked(folio)); 1061 BUG_ON(from > PAGE_SIZE); 1062 BUG_ON(to > PAGE_SIZE); 1063 BUG_ON(from > to); 1064 1065 head = folio_buffers(folio); 1066 if (!head) 1067 head = create_empty_buffers(folio, blocksize, 0); 1068 bbits = ilog2(blocksize); 1069 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1070 1071 for (bh = head, block_start = 0; bh != head || !block_start; 1072 block++, block_start = block_end, bh = bh->b_this_page) { 1073 block_end = block_start + blocksize; 1074 if (block_end <= from || block_start >= to) { 1075 if (folio_test_uptodate(folio)) { 1076 set_buffer_uptodate(bh); 1077 } 1078 continue; 1079 } 1080 if (buffer_new(bh)) 1081 clear_buffer_new(bh); 1082 if (!buffer_mapped(bh)) { 1083 WARN_ON(bh->b_size != blocksize); 1084 err = get_block(inode, block, bh, 1); 1085 if (err) 1086 break; 1087 if (buffer_new(bh)) { 1088 if (folio_test_uptodate(folio)) { 1089 clear_buffer_new(bh); 1090 set_buffer_uptodate(bh); 1091 mark_buffer_dirty(bh); 1092 continue; 1093 } 1094 if (block_end > to || block_start < from) 1095 folio_zero_segments(folio, to, 1096 block_end, 1097 block_start, from); 1098 continue; 1099 } 1100 } 1101 if (folio_test_uptodate(folio)) { 1102 set_buffer_uptodate(bh); 1103 continue; 1104 } 1105 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1106 !buffer_unwritten(bh) && 1107 (block_start < from || block_end > to)) { 1108 ext4_read_bh_lock(bh, 0, false); 1109 wait[nr_wait++] = bh; 1110 } 1111 } 1112 /* 1113 * If we issued read requests, let them complete. 1114 */ 1115 for (i = 0; i < nr_wait; i++) { 1116 wait_on_buffer(wait[i]); 1117 if (!buffer_uptodate(wait[i])) 1118 err = -EIO; 1119 } 1120 if (unlikely(err)) { 1121 folio_zero_new_buffers(folio, from, to); 1122 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1123 for (i = 0; i < nr_wait; i++) { 1124 int err2; 1125 1126 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1127 blocksize, bh_offset(wait[i])); 1128 if (err2) { 1129 clear_buffer_uptodate(wait[i]); 1130 err = err2; 1131 } 1132 } 1133 } 1134 1135 return err; 1136 } 1137 #endif 1138 1139 /* 1140 * To preserve ordering, it is essential that the hole instantiation and 1141 * the data write be encapsulated in a single transaction. We cannot 1142 * close off a transaction and start a new one between the ext4_get_block() 1143 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1144 * ext4_write_begin() is the right place. 1145 */ 1146 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1147 loff_t pos, unsigned len, 1148 struct page **pagep, void **fsdata) 1149 { 1150 struct inode *inode = mapping->host; 1151 int ret, needed_blocks; 1152 handle_t *handle; 1153 int retries = 0; 1154 struct folio *folio; 1155 pgoff_t index; 1156 unsigned from, to; 1157 1158 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 1159 return -EIO; 1160 1161 trace_ext4_write_begin(inode, pos, len); 1162 /* 1163 * Reserve one block more for addition to orphan list in case 1164 * we allocate blocks but write fails for some reason 1165 */ 1166 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1167 index = pos >> PAGE_SHIFT; 1168 from = pos & (PAGE_SIZE - 1); 1169 to = from + len; 1170 1171 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1172 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1173 pagep); 1174 if (ret < 0) 1175 return ret; 1176 if (ret == 1) 1177 return 0; 1178 } 1179 1180 /* 1181 * __filemap_get_folio() can take a long time if the 1182 * system is thrashing due to memory pressure, or if the folio 1183 * is being written back. So grab it first before we start 1184 * the transaction handle. This also allows us to allocate 1185 * the folio (if needed) without using GFP_NOFS. 1186 */ 1187 retry_grab: 1188 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1189 mapping_gfp_mask(mapping)); 1190 if (IS_ERR(folio)) 1191 return PTR_ERR(folio); 1192 /* 1193 * The same as page allocation, we prealloc buffer heads before 1194 * starting the handle. 1195 */ 1196 if (!folio_buffers(folio)) 1197 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0); 1198 1199 folio_unlock(folio); 1200 1201 retry_journal: 1202 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1203 if (IS_ERR(handle)) { 1204 folio_put(folio); 1205 return PTR_ERR(handle); 1206 } 1207 1208 folio_lock(folio); 1209 if (folio->mapping != mapping) { 1210 /* The folio got truncated from under us */ 1211 folio_unlock(folio); 1212 folio_put(folio); 1213 ext4_journal_stop(handle); 1214 goto retry_grab; 1215 } 1216 /* In case writeback began while the folio was unlocked */ 1217 folio_wait_stable(folio); 1218 1219 #ifdef CONFIG_FS_ENCRYPTION 1220 if (ext4_should_dioread_nolock(inode)) 1221 ret = ext4_block_write_begin(folio, pos, len, 1222 ext4_get_block_unwritten); 1223 else 1224 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block); 1225 #else 1226 if (ext4_should_dioread_nolock(inode)) 1227 ret = __block_write_begin(&folio->page, pos, len, 1228 ext4_get_block_unwritten); 1229 else 1230 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block); 1231 #endif 1232 if (!ret && ext4_should_journal_data(inode)) { 1233 ret = ext4_walk_page_buffers(handle, inode, 1234 folio_buffers(folio), from, to, 1235 NULL, do_journal_get_write_access); 1236 } 1237 1238 if (ret) { 1239 bool extended = (pos + len > inode->i_size) && 1240 !ext4_verity_in_progress(inode); 1241 1242 folio_unlock(folio); 1243 /* 1244 * __block_write_begin may have instantiated a few blocks 1245 * outside i_size. Trim these off again. Don't need 1246 * i_size_read because we hold i_rwsem. 1247 * 1248 * Add inode to orphan list in case we crash before 1249 * truncate finishes 1250 */ 1251 if (extended && ext4_can_truncate(inode)) 1252 ext4_orphan_add(handle, inode); 1253 1254 ext4_journal_stop(handle); 1255 if (extended) { 1256 ext4_truncate_failed_write(inode); 1257 /* 1258 * If truncate failed early the inode might 1259 * still be on the orphan list; we need to 1260 * make sure the inode is removed from the 1261 * orphan list in that case. 1262 */ 1263 if (inode->i_nlink) 1264 ext4_orphan_del(NULL, inode); 1265 } 1266 1267 if (ret == -ENOSPC && 1268 ext4_should_retry_alloc(inode->i_sb, &retries)) 1269 goto retry_journal; 1270 folio_put(folio); 1271 return ret; 1272 } 1273 *pagep = &folio->page; 1274 return ret; 1275 } 1276 1277 /* For write_end() in data=journal mode */ 1278 static int write_end_fn(handle_t *handle, struct inode *inode, 1279 struct buffer_head *bh) 1280 { 1281 int ret; 1282 if (!buffer_mapped(bh) || buffer_freed(bh)) 1283 return 0; 1284 set_buffer_uptodate(bh); 1285 ret = ext4_dirty_journalled_data(handle, bh); 1286 clear_buffer_meta(bh); 1287 clear_buffer_prio(bh); 1288 return ret; 1289 } 1290 1291 /* 1292 * We need to pick up the new inode size which generic_commit_write gave us 1293 * `file' can be NULL - eg, when called from page_symlink(). 1294 * 1295 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata 1296 * buffers are managed internally. 1297 */ 1298 static int ext4_write_end(struct file *file, 1299 struct address_space *mapping, 1300 loff_t pos, unsigned len, unsigned copied, 1301 struct page *page, void *fsdata) 1302 { 1303 struct folio *folio = page_folio(page); 1304 handle_t *handle = ext4_journal_current_handle(); 1305 struct inode *inode = mapping->host; 1306 loff_t old_size = inode->i_size; 1307 int ret = 0, ret2; 1308 int i_size_changed = 0; 1309 bool verity = ext4_verity_in_progress(inode); 1310 1311 trace_ext4_write_end(inode, pos, len, copied); 1312 1313 if (ext4_has_inline_data(inode) && 1314 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1315 return ext4_write_inline_data_end(inode, pos, len, copied, 1316 folio); 1317 1318 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1319 /* 1320 * it's important to update i_size while still holding folio lock: 1321 * page writeout could otherwise come in and zero beyond i_size. 1322 * 1323 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1324 * blocks are being written past EOF, so skip the i_size update. 1325 */ 1326 if (!verity) 1327 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1328 folio_unlock(folio); 1329 folio_put(folio); 1330 1331 if (old_size < pos && !verity) 1332 pagecache_isize_extended(inode, old_size, pos); 1333 /* 1334 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1335 * makes the holding time of folio lock longer. Second, it forces lock 1336 * ordering of folio lock and transaction start for journaling 1337 * filesystems. 1338 */ 1339 if (i_size_changed) 1340 ret = ext4_mark_inode_dirty(handle, inode); 1341 1342 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1343 /* if we have allocated more blocks and copied 1344 * less. We will have blocks allocated outside 1345 * inode->i_size. So truncate them 1346 */ 1347 ext4_orphan_add(handle, inode); 1348 1349 ret2 = ext4_journal_stop(handle); 1350 if (!ret) 1351 ret = ret2; 1352 1353 if (pos + len > inode->i_size && !verity) { 1354 ext4_truncate_failed_write(inode); 1355 /* 1356 * If truncate failed early the inode might still be 1357 * on the orphan list; we need to make sure the inode 1358 * is removed from the orphan list in that case. 1359 */ 1360 if (inode->i_nlink) 1361 ext4_orphan_del(NULL, inode); 1362 } 1363 1364 return ret ? ret : copied; 1365 } 1366 1367 /* 1368 * This is a private version of folio_zero_new_buffers() which doesn't 1369 * set the buffer to be dirty, since in data=journalled mode we need 1370 * to call ext4_dirty_journalled_data() instead. 1371 */ 1372 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1373 struct inode *inode, 1374 struct folio *folio, 1375 unsigned from, unsigned to) 1376 { 1377 unsigned int block_start = 0, block_end; 1378 struct buffer_head *head, *bh; 1379 1380 bh = head = folio_buffers(folio); 1381 do { 1382 block_end = block_start + bh->b_size; 1383 if (buffer_new(bh)) { 1384 if (block_end > from && block_start < to) { 1385 if (!folio_test_uptodate(folio)) { 1386 unsigned start, size; 1387 1388 start = max(from, block_start); 1389 size = min(to, block_end) - start; 1390 1391 folio_zero_range(folio, start, size); 1392 write_end_fn(handle, inode, bh); 1393 } 1394 clear_buffer_new(bh); 1395 } 1396 } 1397 block_start = block_end; 1398 bh = bh->b_this_page; 1399 } while (bh != head); 1400 } 1401 1402 static int ext4_journalled_write_end(struct file *file, 1403 struct address_space *mapping, 1404 loff_t pos, unsigned len, unsigned copied, 1405 struct page *page, void *fsdata) 1406 { 1407 struct folio *folio = page_folio(page); 1408 handle_t *handle = ext4_journal_current_handle(); 1409 struct inode *inode = mapping->host; 1410 loff_t old_size = inode->i_size; 1411 int ret = 0, ret2; 1412 int partial = 0; 1413 unsigned from, to; 1414 int size_changed = 0; 1415 bool verity = ext4_verity_in_progress(inode); 1416 1417 trace_ext4_journalled_write_end(inode, pos, len, copied); 1418 from = pos & (PAGE_SIZE - 1); 1419 to = from + len; 1420 1421 BUG_ON(!ext4_handle_valid(handle)); 1422 1423 if (ext4_has_inline_data(inode)) 1424 return ext4_write_inline_data_end(inode, pos, len, copied, 1425 folio); 1426 1427 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1428 copied = 0; 1429 ext4_journalled_zero_new_buffers(handle, inode, folio, 1430 from, to); 1431 } else { 1432 if (unlikely(copied < len)) 1433 ext4_journalled_zero_new_buffers(handle, inode, folio, 1434 from + copied, to); 1435 ret = ext4_walk_page_buffers(handle, inode, 1436 folio_buffers(folio), 1437 from, from + copied, &partial, 1438 write_end_fn); 1439 if (!partial) 1440 folio_mark_uptodate(folio); 1441 } 1442 if (!verity) 1443 size_changed = ext4_update_inode_size(inode, pos + copied); 1444 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1445 folio_unlock(folio); 1446 folio_put(folio); 1447 1448 if (old_size < pos && !verity) 1449 pagecache_isize_extended(inode, old_size, pos); 1450 1451 if (size_changed) { 1452 ret2 = ext4_mark_inode_dirty(handle, inode); 1453 if (!ret) 1454 ret = ret2; 1455 } 1456 1457 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1458 /* if we have allocated more blocks and copied 1459 * less. We will have blocks allocated outside 1460 * inode->i_size. So truncate them 1461 */ 1462 ext4_orphan_add(handle, inode); 1463 1464 ret2 = ext4_journal_stop(handle); 1465 if (!ret) 1466 ret = ret2; 1467 if (pos + len > inode->i_size && !verity) { 1468 ext4_truncate_failed_write(inode); 1469 /* 1470 * If truncate failed early the inode might still be 1471 * on the orphan list; we need to make sure the inode 1472 * is removed from the orphan list in that case. 1473 */ 1474 if (inode->i_nlink) 1475 ext4_orphan_del(NULL, inode); 1476 } 1477 1478 return ret ? ret : copied; 1479 } 1480 1481 /* 1482 * Reserve space for 'nr_resv' clusters 1483 */ 1484 static int ext4_da_reserve_space(struct inode *inode, int nr_resv) 1485 { 1486 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1487 struct ext4_inode_info *ei = EXT4_I(inode); 1488 int ret; 1489 1490 /* 1491 * We will charge metadata quota at writeout time; this saves 1492 * us from metadata over-estimation, though we may go over by 1493 * a small amount in the end. Here we just reserve for data. 1494 */ 1495 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv)); 1496 if (ret) 1497 return ret; 1498 1499 spin_lock(&ei->i_block_reservation_lock); 1500 if (ext4_claim_free_clusters(sbi, nr_resv, 0)) { 1501 spin_unlock(&ei->i_block_reservation_lock); 1502 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv)); 1503 return -ENOSPC; 1504 } 1505 ei->i_reserved_data_blocks += nr_resv; 1506 trace_ext4_da_reserve_space(inode, nr_resv); 1507 spin_unlock(&ei->i_block_reservation_lock); 1508 1509 return 0; /* success */ 1510 } 1511 1512 void ext4_da_release_space(struct inode *inode, int to_free) 1513 { 1514 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1515 struct ext4_inode_info *ei = EXT4_I(inode); 1516 1517 if (!to_free) 1518 return; /* Nothing to release, exit */ 1519 1520 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1521 1522 trace_ext4_da_release_space(inode, to_free); 1523 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1524 /* 1525 * if there aren't enough reserved blocks, then the 1526 * counter is messed up somewhere. Since this 1527 * function is called from invalidate page, it's 1528 * harmless to return without any action. 1529 */ 1530 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1531 "ino %lu, to_free %d with only %d reserved " 1532 "data blocks", inode->i_ino, to_free, 1533 ei->i_reserved_data_blocks); 1534 WARN_ON(1); 1535 to_free = ei->i_reserved_data_blocks; 1536 } 1537 ei->i_reserved_data_blocks -= to_free; 1538 1539 /* update fs dirty data blocks counter */ 1540 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1541 1542 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1543 1544 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1545 } 1546 1547 /* 1548 * Delayed allocation stuff 1549 */ 1550 1551 struct mpage_da_data { 1552 /* These are input fields for ext4_do_writepages() */ 1553 struct inode *inode; 1554 struct writeback_control *wbc; 1555 unsigned int can_map:1; /* Can writepages call map blocks? */ 1556 1557 /* These are internal state of ext4_do_writepages() */ 1558 pgoff_t first_page; /* The first page to write */ 1559 pgoff_t next_page; /* Current page to examine */ 1560 pgoff_t last_page; /* Last page to examine */ 1561 /* 1562 * Extent to map - this can be after first_page because that can be 1563 * fully mapped. We somewhat abuse m_flags to store whether the extent 1564 * is delalloc or unwritten. 1565 */ 1566 struct ext4_map_blocks map; 1567 struct ext4_io_submit io_submit; /* IO submission data */ 1568 unsigned int do_map:1; 1569 unsigned int scanned_until_end:1; 1570 unsigned int journalled_more_data:1; 1571 }; 1572 1573 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1574 bool invalidate) 1575 { 1576 unsigned nr, i; 1577 pgoff_t index, end; 1578 struct folio_batch fbatch; 1579 struct inode *inode = mpd->inode; 1580 struct address_space *mapping = inode->i_mapping; 1581 1582 /* This is necessary when next_page == 0. */ 1583 if (mpd->first_page >= mpd->next_page) 1584 return; 1585 1586 mpd->scanned_until_end = 0; 1587 index = mpd->first_page; 1588 end = mpd->next_page - 1; 1589 if (invalidate) { 1590 ext4_lblk_t start, last; 1591 start = index << (PAGE_SHIFT - inode->i_blkbits); 1592 last = end << (PAGE_SHIFT - inode->i_blkbits); 1593 1594 /* 1595 * avoid racing with extent status tree scans made by 1596 * ext4_insert_delayed_block() 1597 */ 1598 down_write(&EXT4_I(inode)->i_data_sem); 1599 ext4_es_remove_extent(inode, start, last - start + 1); 1600 up_write(&EXT4_I(inode)->i_data_sem); 1601 } 1602 1603 folio_batch_init(&fbatch); 1604 while (index <= end) { 1605 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1606 if (nr == 0) 1607 break; 1608 for (i = 0; i < nr; i++) { 1609 struct folio *folio = fbatch.folios[i]; 1610 1611 if (folio->index < mpd->first_page) 1612 continue; 1613 if (folio_next_index(folio) - 1 > end) 1614 continue; 1615 BUG_ON(!folio_test_locked(folio)); 1616 BUG_ON(folio_test_writeback(folio)); 1617 if (invalidate) { 1618 if (folio_mapped(folio)) 1619 folio_clear_dirty_for_io(folio); 1620 block_invalidate_folio(folio, 0, 1621 folio_size(folio)); 1622 folio_clear_uptodate(folio); 1623 } 1624 folio_unlock(folio); 1625 } 1626 folio_batch_release(&fbatch); 1627 } 1628 } 1629 1630 static void ext4_print_free_blocks(struct inode *inode) 1631 { 1632 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1633 struct super_block *sb = inode->i_sb; 1634 struct ext4_inode_info *ei = EXT4_I(inode); 1635 1636 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1637 EXT4_C2B(EXT4_SB(inode->i_sb), 1638 ext4_count_free_clusters(sb))); 1639 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1640 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1641 (long long) EXT4_C2B(EXT4_SB(sb), 1642 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1643 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1644 (long long) EXT4_C2B(EXT4_SB(sb), 1645 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1646 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1647 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1648 ei->i_reserved_data_blocks); 1649 return; 1650 } 1651 1652 /* 1653 * Check whether the cluster containing lblk has been allocated or has 1654 * delalloc reservation. 1655 * 1656 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc 1657 * reservation, 2 if it's already been allocated, negative error code on 1658 * failure. 1659 */ 1660 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk) 1661 { 1662 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1663 int ret; 1664 1665 /* Has delalloc reservation? */ 1666 if (ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) 1667 return 1; 1668 1669 /* Already been allocated? */ 1670 if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk)) 1671 return 2; 1672 ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); 1673 if (ret < 0) 1674 return ret; 1675 if (ret > 0) 1676 return 2; 1677 1678 return 0; 1679 } 1680 1681 /* 1682 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents 1683 * status tree, incrementing the reserved 1684 * cluster/block count or making pending 1685 * reservations where needed 1686 * 1687 * @inode - file containing the newly added block 1688 * @lblk - start logical block to be added 1689 * @len - length of blocks to be added 1690 * 1691 * Returns 0 on success, negative error code on failure. 1692 */ 1693 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk, 1694 ext4_lblk_t len) 1695 { 1696 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1697 int ret; 1698 bool lclu_allocated = false; 1699 bool end_allocated = false; 1700 ext4_lblk_t resv_clu; 1701 ext4_lblk_t end = lblk + len - 1; 1702 1703 /* 1704 * If the cluster containing lblk or end is shared with a delayed, 1705 * written, or unwritten extent in a bigalloc file system, it's 1706 * already been accounted for and does not need to be reserved. 1707 * A pending reservation must be made for the cluster if it's 1708 * shared with a written or unwritten extent and doesn't already 1709 * have one. Written and unwritten extents can be purged from the 1710 * extents status tree if the system is under memory pressure, so 1711 * it's necessary to examine the extent tree if a search of the 1712 * extents status tree doesn't get a match. 1713 */ 1714 if (sbi->s_cluster_ratio == 1) { 1715 ret = ext4_da_reserve_space(inode, len); 1716 if (ret != 0) /* ENOSPC */ 1717 return ret; 1718 } else { /* bigalloc */ 1719 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1; 1720 1721 ret = ext4_clu_alloc_state(inode, lblk); 1722 if (ret < 0) 1723 return ret; 1724 if (ret > 0) { 1725 resv_clu--; 1726 lclu_allocated = (ret == 2); 1727 } 1728 1729 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) { 1730 ret = ext4_clu_alloc_state(inode, end); 1731 if (ret < 0) 1732 return ret; 1733 if (ret > 0) { 1734 resv_clu--; 1735 end_allocated = (ret == 2); 1736 } 1737 } 1738 1739 if (resv_clu) { 1740 ret = ext4_da_reserve_space(inode, resv_clu); 1741 if (ret != 0) /* ENOSPC */ 1742 return ret; 1743 } 1744 } 1745 1746 ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated, 1747 end_allocated); 1748 return 0; 1749 } 1750 1751 /* 1752 * Looks up the requested blocks and sets the delalloc extent map. 1753 * First try to look up for the extent entry that contains the requested 1754 * blocks in the extent status tree without i_data_sem, then try to look 1755 * up for the ondisk extent mapping with i_data_sem in read mode, 1756 * finally hold i_data_sem in write mode, looks up again and add a 1757 * delalloc extent entry if it still couldn't find any extent. Pass out 1758 * the mapped extent through @map and return 0 on success. 1759 */ 1760 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map) 1761 { 1762 struct extent_status es; 1763 int retval; 1764 #ifdef ES_AGGRESSIVE_TEST 1765 struct ext4_map_blocks orig_map; 1766 1767 memcpy(&orig_map, map, sizeof(*map)); 1768 #endif 1769 1770 map->m_flags = 0; 1771 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1772 (unsigned long) map->m_lblk); 1773 1774 /* Lookup extent status tree firstly */ 1775 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1776 map->m_len = min_t(unsigned int, map->m_len, 1777 es.es_len - (map->m_lblk - es.es_lblk)); 1778 1779 if (ext4_es_is_hole(&es)) 1780 goto add_delayed; 1781 1782 found: 1783 /* 1784 * Delayed extent could be allocated by fallocate. 1785 * So we need to check it. 1786 */ 1787 if (ext4_es_is_delonly(&es)) { 1788 map->m_flags |= EXT4_MAP_DELAYED; 1789 return 0; 1790 } 1791 1792 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk; 1793 if (ext4_es_is_written(&es)) 1794 map->m_flags |= EXT4_MAP_MAPPED; 1795 else if (ext4_es_is_unwritten(&es)) 1796 map->m_flags |= EXT4_MAP_UNWRITTEN; 1797 else 1798 BUG(); 1799 1800 #ifdef ES_AGGRESSIVE_TEST 1801 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1802 #endif 1803 return 0; 1804 } 1805 1806 /* 1807 * Try to see if we can get the block without requesting a new 1808 * file system block. 1809 */ 1810 down_read(&EXT4_I(inode)->i_data_sem); 1811 if (ext4_has_inline_data(inode)) 1812 retval = 0; 1813 else 1814 retval = ext4_map_query_blocks(NULL, inode, map); 1815 up_read(&EXT4_I(inode)->i_data_sem); 1816 if (retval) 1817 return retval < 0 ? retval : 0; 1818 1819 add_delayed: 1820 down_write(&EXT4_I(inode)->i_data_sem); 1821 /* 1822 * Page fault path (ext4_page_mkwrite does not take i_rwsem) 1823 * and fallocate path (no folio lock) can race. Make sure we 1824 * lookup the extent status tree here again while i_data_sem 1825 * is held in write mode, before inserting a new da entry in 1826 * the extent status tree. 1827 */ 1828 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 1829 map->m_len = min_t(unsigned int, map->m_len, 1830 es.es_len - (map->m_lblk - es.es_lblk)); 1831 1832 if (!ext4_es_is_hole(&es)) { 1833 up_write(&EXT4_I(inode)->i_data_sem); 1834 goto found; 1835 } 1836 } else if (!ext4_has_inline_data(inode)) { 1837 retval = ext4_map_query_blocks(NULL, inode, map); 1838 if (retval) { 1839 up_write(&EXT4_I(inode)->i_data_sem); 1840 return retval < 0 ? retval : 0; 1841 } 1842 } 1843 1844 map->m_flags |= EXT4_MAP_DELAYED; 1845 retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len); 1846 up_write(&EXT4_I(inode)->i_data_sem); 1847 1848 return retval; 1849 } 1850 1851 /* 1852 * This is a special get_block_t callback which is used by 1853 * ext4_da_write_begin(). It will either return mapped block or 1854 * reserve space for a single block. 1855 * 1856 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1857 * We also have b_blocknr = -1 and b_bdev initialized properly 1858 * 1859 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1860 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1861 * initialized properly. 1862 */ 1863 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1864 struct buffer_head *bh, int create) 1865 { 1866 struct ext4_map_blocks map; 1867 sector_t invalid_block = ~((sector_t) 0xffff); 1868 int ret = 0; 1869 1870 BUG_ON(create == 0); 1871 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1872 1873 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1874 invalid_block = ~0; 1875 1876 map.m_lblk = iblock; 1877 map.m_len = 1; 1878 1879 /* 1880 * first, we need to know whether the block is allocated already 1881 * preallocated blocks are unmapped but should treated 1882 * the same as allocated blocks. 1883 */ 1884 ret = ext4_da_map_blocks(inode, &map); 1885 if (ret < 0) 1886 return ret; 1887 1888 if (map.m_flags & EXT4_MAP_DELAYED) { 1889 map_bh(bh, inode->i_sb, invalid_block); 1890 set_buffer_new(bh); 1891 set_buffer_delay(bh); 1892 return 0; 1893 } 1894 1895 map_bh(bh, inode->i_sb, map.m_pblk); 1896 ext4_update_bh_state(bh, map.m_flags); 1897 1898 if (buffer_unwritten(bh)) { 1899 /* A delayed write to unwritten bh should be marked 1900 * new and mapped. Mapped ensures that we don't do 1901 * get_block multiple times when we write to the same 1902 * offset and new ensures that we do proper zero out 1903 * for partial write. 1904 */ 1905 set_buffer_new(bh); 1906 set_buffer_mapped(bh); 1907 } 1908 return 0; 1909 } 1910 1911 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1912 { 1913 mpd->first_page += folio_nr_pages(folio); 1914 folio_unlock(folio); 1915 } 1916 1917 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1918 { 1919 size_t len; 1920 loff_t size; 1921 int err; 1922 1923 BUG_ON(folio->index != mpd->first_page); 1924 folio_clear_dirty_for_io(folio); 1925 /* 1926 * We have to be very careful here! Nothing protects writeback path 1927 * against i_size changes and the page can be writeably mapped into 1928 * page tables. So an application can be growing i_size and writing 1929 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1930 * write-protects our page in page tables and the page cannot get 1931 * written to again until we release folio lock. So only after 1932 * folio_clear_dirty_for_io() we are safe to sample i_size for 1933 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1934 * on the barrier provided by folio_test_clear_dirty() in 1935 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1936 * after page tables are updated. 1937 */ 1938 size = i_size_read(mpd->inode); 1939 len = folio_size(folio); 1940 if (folio_pos(folio) + len > size && 1941 !ext4_verity_in_progress(mpd->inode)) 1942 len = size & (len - 1); 1943 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1944 if (!err) 1945 mpd->wbc->nr_to_write--; 1946 1947 return err; 1948 } 1949 1950 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1951 1952 /* 1953 * mballoc gives us at most this number of blocks... 1954 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1955 * The rest of mballoc seems to handle chunks up to full group size. 1956 */ 1957 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1958 1959 /* 1960 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1961 * 1962 * @mpd - extent of blocks 1963 * @lblk - logical number of the block in the file 1964 * @bh - buffer head we want to add to the extent 1965 * 1966 * The function is used to collect contig. blocks in the same state. If the 1967 * buffer doesn't require mapping for writeback and we haven't started the 1968 * extent of buffers to map yet, the function returns 'true' immediately - the 1969 * caller can write the buffer right away. Otherwise the function returns true 1970 * if the block has been added to the extent, false if the block couldn't be 1971 * added. 1972 */ 1973 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1974 struct buffer_head *bh) 1975 { 1976 struct ext4_map_blocks *map = &mpd->map; 1977 1978 /* Buffer that doesn't need mapping for writeback? */ 1979 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1980 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1981 /* So far no extent to map => we write the buffer right away */ 1982 if (map->m_len == 0) 1983 return true; 1984 return false; 1985 } 1986 1987 /* First block in the extent? */ 1988 if (map->m_len == 0) { 1989 /* We cannot map unless handle is started... */ 1990 if (!mpd->do_map) 1991 return false; 1992 map->m_lblk = lblk; 1993 map->m_len = 1; 1994 map->m_flags = bh->b_state & BH_FLAGS; 1995 return true; 1996 } 1997 1998 /* Don't go larger than mballoc is willing to allocate */ 1999 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2000 return false; 2001 2002 /* Can we merge the block to our big extent? */ 2003 if (lblk == map->m_lblk + map->m_len && 2004 (bh->b_state & BH_FLAGS) == map->m_flags) { 2005 map->m_len++; 2006 return true; 2007 } 2008 return false; 2009 } 2010 2011 /* 2012 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2013 * 2014 * @mpd - extent of blocks for mapping 2015 * @head - the first buffer in the page 2016 * @bh - buffer we should start processing from 2017 * @lblk - logical number of the block in the file corresponding to @bh 2018 * 2019 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2020 * the page for IO if all buffers in this page were mapped and there's no 2021 * accumulated extent of buffers to map or add buffers in the page to the 2022 * extent of buffers to map. The function returns 1 if the caller can continue 2023 * by processing the next page, 0 if it should stop adding buffers to the 2024 * extent to map because we cannot extend it anymore. It can also return value 2025 * < 0 in case of error during IO submission. 2026 */ 2027 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2028 struct buffer_head *head, 2029 struct buffer_head *bh, 2030 ext4_lblk_t lblk) 2031 { 2032 struct inode *inode = mpd->inode; 2033 int err; 2034 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2035 >> inode->i_blkbits; 2036 2037 if (ext4_verity_in_progress(inode)) 2038 blocks = EXT_MAX_BLOCKS; 2039 2040 do { 2041 BUG_ON(buffer_locked(bh)); 2042 2043 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2044 /* Found extent to map? */ 2045 if (mpd->map.m_len) 2046 return 0; 2047 /* Buffer needs mapping and handle is not started? */ 2048 if (!mpd->do_map) 2049 return 0; 2050 /* Everything mapped so far and we hit EOF */ 2051 break; 2052 } 2053 } while (lblk++, (bh = bh->b_this_page) != head); 2054 /* So far everything mapped? Submit the page for IO. */ 2055 if (mpd->map.m_len == 0) { 2056 err = mpage_submit_folio(mpd, head->b_folio); 2057 if (err < 0) 2058 return err; 2059 mpage_folio_done(mpd, head->b_folio); 2060 } 2061 if (lblk >= blocks) { 2062 mpd->scanned_until_end = 1; 2063 return 0; 2064 } 2065 return 1; 2066 } 2067 2068 /* 2069 * mpage_process_folio - update folio buffers corresponding to changed extent 2070 * and may submit fully mapped page for IO 2071 * @mpd: description of extent to map, on return next extent to map 2072 * @folio: Contains these buffers. 2073 * @m_lblk: logical block mapping. 2074 * @m_pblk: corresponding physical mapping. 2075 * @map_bh: determines on return whether this page requires any further 2076 * mapping or not. 2077 * 2078 * Scan given folio buffers corresponding to changed extent and update buffer 2079 * state according to new extent state. 2080 * We map delalloc buffers to their physical location, clear unwritten bits. 2081 * If the given folio is not fully mapped, we update @mpd to the next extent in 2082 * the given folio that needs mapping & return @map_bh as true. 2083 */ 2084 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2085 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2086 bool *map_bh) 2087 { 2088 struct buffer_head *head, *bh; 2089 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2090 ext4_lblk_t lblk = *m_lblk; 2091 ext4_fsblk_t pblock = *m_pblk; 2092 int err = 0; 2093 int blkbits = mpd->inode->i_blkbits; 2094 ssize_t io_end_size = 0; 2095 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2096 2097 bh = head = folio_buffers(folio); 2098 do { 2099 if (lblk < mpd->map.m_lblk) 2100 continue; 2101 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2102 /* 2103 * Buffer after end of mapped extent. 2104 * Find next buffer in the folio to map. 2105 */ 2106 mpd->map.m_len = 0; 2107 mpd->map.m_flags = 0; 2108 io_end_vec->size += io_end_size; 2109 2110 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2111 if (err > 0) 2112 err = 0; 2113 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2114 io_end_vec = ext4_alloc_io_end_vec(io_end); 2115 if (IS_ERR(io_end_vec)) { 2116 err = PTR_ERR(io_end_vec); 2117 goto out; 2118 } 2119 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2120 } 2121 *map_bh = true; 2122 goto out; 2123 } 2124 if (buffer_delay(bh)) { 2125 clear_buffer_delay(bh); 2126 bh->b_blocknr = pblock++; 2127 } 2128 clear_buffer_unwritten(bh); 2129 io_end_size += (1 << blkbits); 2130 } while (lblk++, (bh = bh->b_this_page) != head); 2131 2132 io_end_vec->size += io_end_size; 2133 *map_bh = false; 2134 out: 2135 *m_lblk = lblk; 2136 *m_pblk = pblock; 2137 return err; 2138 } 2139 2140 /* 2141 * mpage_map_buffers - update buffers corresponding to changed extent and 2142 * submit fully mapped pages for IO 2143 * 2144 * @mpd - description of extent to map, on return next extent to map 2145 * 2146 * Scan buffers corresponding to changed extent (we expect corresponding pages 2147 * to be already locked) and update buffer state according to new extent state. 2148 * We map delalloc buffers to their physical location, clear unwritten bits, 2149 * and mark buffers as uninit when we perform writes to unwritten extents 2150 * and do extent conversion after IO is finished. If the last page is not fully 2151 * mapped, we update @map to the next extent in the last page that needs 2152 * mapping. Otherwise we submit the page for IO. 2153 */ 2154 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2155 { 2156 struct folio_batch fbatch; 2157 unsigned nr, i; 2158 struct inode *inode = mpd->inode; 2159 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2160 pgoff_t start, end; 2161 ext4_lblk_t lblk; 2162 ext4_fsblk_t pblock; 2163 int err; 2164 bool map_bh = false; 2165 2166 start = mpd->map.m_lblk >> bpp_bits; 2167 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2168 lblk = start << bpp_bits; 2169 pblock = mpd->map.m_pblk; 2170 2171 folio_batch_init(&fbatch); 2172 while (start <= end) { 2173 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2174 if (nr == 0) 2175 break; 2176 for (i = 0; i < nr; i++) { 2177 struct folio *folio = fbatch.folios[i]; 2178 2179 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2180 &map_bh); 2181 /* 2182 * If map_bh is true, means page may require further bh 2183 * mapping, or maybe the page was submitted for IO. 2184 * So we return to call further extent mapping. 2185 */ 2186 if (err < 0 || map_bh) 2187 goto out; 2188 /* Page fully mapped - let IO run! */ 2189 err = mpage_submit_folio(mpd, folio); 2190 if (err < 0) 2191 goto out; 2192 mpage_folio_done(mpd, folio); 2193 } 2194 folio_batch_release(&fbatch); 2195 } 2196 /* Extent fully mapped and matches with page boundary. We are done. */ 2197 mpd->map.m_len = 0; 2198 mpd->map.m_flags = 0; 2199 return 0; 2200 out: 2201 folio_batch_release(&fbatch); 2202 return err; 2203 } 2204 2205 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2206 { 2207 struct inode *inode = mpd->inode; 2208 struct ext4_map_blocks *map = &mpd->map; 2209 int get_blocks_flags; 2210 int err, dioread_nolock; 2211 2212 trace_ext4_da_write_pages_extent(inode, map); 2213 /* 2214 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2215 * to convert an unwritten extent to be initialized (in the case 2216 * where we have written into one or more preallocated blocks). It is 2217 * possible that we're going to need more metadata blocks than 2218 * previously reserved. However we must not fail because we're in 2219 * writeback and there is nothing we can do about it so it might result 2220 * in data loss. So use reserved blocks to allocate metadata if 2221 * possible. 2222 * 2223 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2224 * the blocks in question are delalloc blocks. This indicates 2225 * that the blocks and quotas has already been checked when 2226 * the data was copied into the page cache. 2227 */ 2228 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2229 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2230 EXT4_GET_BLOCKS_IO_SUBMIT; 2231 dioread_nolock = ext4_should_dioread_nolock(inode); 2232 if (dioread_nolock) 2233 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2234 if (map->m_flags & BIT(BH_Delay)) 2235 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2236 2237 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2238 if (err < 0) 2239 return err; 2240 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2241 if (!mpd->io_submit.io_end->handle && 2242 ext4_handle_valid(handle)) { 2243 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2244 handle->h_rsv_handle = NULL; 2245 } 2246 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2247 } 2248 2249 BUG_ON(map->m_len == 0); 2250 return 0; 2251 } 2252 2253 /* 2254 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2255 * mpd->len and submit pages underlying it for IO 2256 * 2257 * @handle - handle for journal operations 2258 * @mpd - extent to map 2259 * @give_up_on_write - we set this to true iff there is a fatal error and there 2260 * is no hope of writing the data. The caller should discard 2261 * dirty pages to avoid infinite loops. 2262 * 2263 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2264 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2265 * them to initialized or split the described range from larger unwritten 2266 * extent. Note that we need not map all the described range since allocation 2267 * can return less blocks or the range is covered by more unwritten extents. We 2268 * cannot map more because we are limited by reserved transaction credits. On 2269 * the other hand we always make sure that the last touched page is fully 2270 * mapped so that it can be written out (and thus forward progress is 2271 * guaranteed). After mapping we submit all mapped pages for IO. 2272 */ 2273 static int mpage_map_and_submit_extent(handle_t *handle, 2274 struct mpage_da_data *mpd, 2275 bool *give_up_on_write) 2276 { 2277 struct inode *inode = mpd->inode; 2278 struct ext4_map_blocks *map = &mpd->map; 2279 int err; 2280 loff_t disksize; 2281 int progress = 0; 2282 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2283 struct ext4_io_end_vec *io_end_vec; 2284 2285 io_end_vec = ext4_alloc_io_end_vec(io_end); 2286 if (IS_ERR(io_end_vec)) 2287 return PTR_ERR(io_end_vec); 2288 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2289 do { 2290 err = mpage_map_one_extent(handle, mpd); 2291 if (err < 0) { 2292 struct super_block *sb = inode->i_sb; 2293 2294 if (ext4_forced_shutdown(sb)) 2295 goto invalidate_dirty_pages; 2296 /* 2297 * Let the uper layers retry transient errors. 2298 * In the case of ENOSPC, if ext4_count_free_blocks() 2299 * is non-zero, a commit should free up blocks. 2300 */ 2301 if ((err == -ENOMEM) || 2302 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2303 if (progress) 2304 goto update_disksize; 2305 return err; 2306 } 2307 ext4_msg(sb, KERN_CRIT, 2308 "Delayed block allocation failed for " 2309 "inode %lu at logical offset %llu with" 2310 " max blocks %u with error %d", 2311 inode->i_ino, 2312 (unsigned long long)map->m_lblk, 2313 (unsigned)map->m_len, -err); 2314 ext4_msg(sb, KERN_CRIT, 2315 "This should not happen!! Data will " 2316 "be lost\n"); 2317 if (err == -ENOSPC) 2318 ext4_print_free_blocks(inode); 2319 invalidate_dirty_pages: 2320 *give_up_on_write = true; 2321 return err; 2322 } 2323 progress = 1; 2324 /* 2325 * Update buffer state, submit mapped pages, and get us new 2326 * extent to map 2327 */ 2328 err = mpage_map_and_submit_buffers(mpd); 2329 if (err < 0) 2330 goto update_disksize; 2331 } while (map->m_len); 2332 2333 update_disksize: 2334 /* 2335 * Update on-disk size after IO is submitted. Races with 2336 * truncate are avoided by checking i_size under i_data_sem. 2337 */ 2338 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2339 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2340 int err2; 2341 loff_t i_size; 2342 2343 down_write(&EXT4_I(inode)->i_data_sem); 2344 i_size = i_size_read(inode); 2345 if (disksize > i_size) 2346 disksize = i_size; 2347 if (disksize > EXT4_I(inode)->i_disksize) 2348 EXT4_I(inode)->i_disksize = disksize; 2349 up_write(&EXT4_I(inode)->i_data_sem); 2350 err2 = ext4_mark_inode_dirty(handle, inode); 2351 if (err2) { 2352 ext4_error_err(inode->i_sb, -err2, 2353 "Failed to mark inode %lu dirty", 2354 inode->i_ino); 2355 } 2356 if (!err) 2357 err = err2; 2358 } 2359 return err; 2360 } 2361 2362 /* 2363 * Calculate the total number of credits to reserve for one writepages 2364 * iteration. This is called from ext4_writepages(). We map an extent of 2365 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2366 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2367 * bpp - 1 blocks in bpp different extents. 2368 */ 2369 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2370 { 2371 int bpp = ext4_journal_blocks_per_page(inode); 2372 2373 return ext4_meta_trans_blocks(inode, 2374 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2375 } 2376 2377 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, 2378 size_t len) 2379 { 2380 struct buffer_head *page_bufs = folio_buffers(folio); 2381 struct inode *inode = folio->mapping->host; 2382 int ret, err; 2383 2384 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2385 NULL, do_journal_get_write_access); 2386 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2387 NULL, write_end_fn); 2388 if (ret == 0) 2389 ret = err; 2390 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len); 2391 if (ret == 0) 2392 ret = err; 2393 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2394 2395 return ret; 2396 } 2397 2398 static int mpage_journal_page_buffers(handle_t *handle, 2399 struct mpage_da_data *mpd, 2400 struct folio *folio) 2401 { 2402 struct inode *inode = mpd->inode; 2403 loff_t size = i_size_read(inode); 2404 size_t len = folio_size(folio); 2405 2406 folio_clear_checked(folio); 2407 mpd->wbc->nr_to_write--; 2408 2409 if (folio_pos(folio) + len > size && 2410 !ext4_verity_in_progress(inode)) 2411 len = size & (len - 1); 2412 2413 return ext4_journal_folio_buffers(handle, folio, len); 2414 } 2415 2416 /* 2417 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2418 * needing mapping, submit mapped pages 2419 * 2420 * @mpd - where to look for pages 2421 * 2422 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2423 * IO immediately. If we cannot map blocks, we submit just already mapped 2424 * buffers in the page for IO and keep page dirty. When we can map blocks and 2425 * we find a page which isn't mapped we start accumulating extent of buffers 2426 * underlying these pages that needs mapping (formed by either delayed or 2427 * unwritten buffers). We also lock the pages containing these buffers. The 2428 * extent found is returned in @mpd structure (starting at mpd->lblk with 2429 * length mpd->len blocks). 2430 * 2431 * Note that this function can attach bios to one io_end structure which are 2432 * neither logically nor physically contiguous. Although it may seem as an 2433 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2434 * case as we need to track IO to all buffers underlying a page in one io_end. 2435 */ 2436 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2437 { 2438 struct address_space *mapping = mpd->inode->i_mapping; 2439 struct folio_batch fbatch; 2440 unsigned int nr_folios; 2441 pgoff_t index = mpd->first_page; 2442 pgoff_t end = mpd->last_page; 2443 xa_mark_t tag; 2444 int i, err = 0; 2445 int blkbits = mpd->inode->i_blkbits; 2446 ext4_lblk_t lblk; 2447 struct buffer_head *head; 2448 handle_t *handle = NULL; 2449 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2450 2451 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2452 tag = PAGECACHE_TAG_TOWRITE; 2453 else 2454 tag = PAGECACHE_TAG_DIRTY; 2455 2456 mpd->map.m_len = 0; 2457 mpd->next_page = index; 2458 if (ext4_should_journal_data(mpd->inode)) { 2459 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2460 bpp); 2461 if (IS_ERR(handle)) 2462 return PTR_ERR(handle); 2463 } 2464 folio_batch_init(&fbatch); 2465 while (index <= end) { 2466 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2467 tag, &fbatch); 2468 if (nr_folios == 0) 2469 break; 2470 2471 for (i = 0; i < nr_folios; i++) { 2472 struct folio *folio = fbatch.folios[i]; 2473 2474 /* 2475 * Accumulated enough dirty pages? This doesn't apply 2476 * to WB_SYNC_ALL mode. For integrity sync we have to 2477 * keep going because someone may be concurrently 2478 * dirtying pages, and we might have synced a lot of 2479 * newly appeared dirty pages, but have not synced all 2480 * of the old dirty pages. 2481 */ 2482 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2483 mpd->wbc->nr_to_write <= 2484 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2485 goto out; 2486 2487 /* If we can't merge this page, we are done. */ 2488 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2489 goto out; 2490 2491 if (handle) { 2492 err = ext4_journal_ensure_credits(handle, bpp, 2493 0); 2494 if (err < 0) 2495 goto out; 2496 } 2497 2498 folio_lock(folio); 2499 /* 2500 * If the page is no longer dirty, or its mapping no 2501 * longer corresponds to inode we are writing (which 2502 * means it has been truncated or invalidated), or the 2503 * page is already under writeback and we are not doing 2504 * a data integrity writeback, skip the page 2505 */ 2506 if (!folio_test_dirty(folio) || 2507 (folio_test_writeback(folio) && 2508 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2509 unlikely(folio->mapping != mapping)) { 2510 folio_unlock(folio); 2511 continue; 2512 } 2513 2514 folio_wait_writeback(folio); 2515 BUG_ON(folio_test_writeback(folio)); 2516 2517 /* 2518 * Should never happen but for buggy code in 2519 * other subsystems that call 2520 * set_page_dirty() without properly warning 2521 * the file system first. See [1] for more 2522 * information. 2523 * 2524 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2525 */ 2526 if (!folio_buffers(folio)) { 2527 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2528 folio_clear_dirty(folio); 2529 folio_unlock(folio); 2530 continue; 2531 } 2532 2533 if (mpd->map.m_len == 0) 2534 mpd->first_page = folio->index; 2535 mpd->next_page = folio_next_index(folio); 2536 /* 2537 * Writeout when we cannot modify metadata is simple. 2538 * Just submit the page. For data=journal mode we 2539 * first handle writeout of the page for checkpoint and 2540 * only after that handle delayed page dirtying. This 2541 * makes sure current data is checkpointed to the final 2542 * location before possibly journalling it again which 2543 * is desirable when the page is frequently dirtied 2544 * through a pin. 2545 */ 2546 if (!mpd->can_map) { 2547 err = mpage_submit_folio(mpd, folio); 2548 if (err < 0) 2549 goto out; 2550 /* Pending dirtying of journalled data? */ 2551 if (folio_test_checked(folio)) { 2552 err = mpage_journal_page_buffers(handle, 2553 mpd, folio); 2554 if (err < 0) 2555 goto out; 2556 mpd->journalled_more_data = 1; 2557 } 2558 mpage_folio_done(mpd, folio); 2559 } else { 2560 /* Add all dirty buffers to mpd */ 2561 lblk = ((ext4_lblk_t)folio->index) << 2562 (PAGE_SHIFT - blkbits); 2563 head = folio_buffers(folio); 2564 err = mpage_process_page_bufs(mpd, head, head, 2565 lblk); 2566 if (err <= 0) 2567 goto out; 2568 err = 0; 2569 } 2570 } 2571 folio_batch_release(&fbatch); 2572 cond_resched(); 2573 } 2574 mpd->scanned_until_end = 1; 2575 if (handle) 2576 ext4_journal_stop(handle); 2577 return 0; 2578 out: 2579 folio_batch_release(&fbatch); 2580 if (handle) 2581 ext4_journal_stop(handle); 2582 return err; 2583 } 2584 2585 static int ext4_do_writepages(struct mpage_da_data *mpd) 2586 { 2587 struct writeback_control *wbc = mpd->wbc; 2588 pgoff_t writeback_index = 0; 2589 long nr_to_write = wbc->nr_to_write; 2590 int range_whole = 0; 2591 int cycled = 1; 2592 handle_t *handle = NULL; 2593 struct inode *inode = mpd->inode; 2594 struct address_space *mapping = inode->i_mapping; 2595 int needed_blocks, rsv_blocks = 0, ret = 0; 2596 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2597 struct blk_plug plug; 2598 bool give_up_on_write = false; 2599 2600 trace_ext4_writepages(inode, wbc); 2601 2602 /* 2603 * No pages to write? This is mainly a kludge to avoid starting 2604 * a transaction for special inodes like journal inode on last iput() 2605 * because that could violate lock ordering on umount 2606 */ 2607 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2608 goto out_writepages; 2609 2610 /* 2611 * If the filesystem has aborted, it is read-only, so return 2612 * right away instead of dumping stack traces later on that 2613 * will obscure the real source of the problem. We test 2614 * fs shutdown state instead of sb->s_flag's SB_RDONLY because 2615 * the latter could be true if the filesystem is mounted 2616 * read-only, and in that case, ext4_writepages should 2617 * *never* be called, so if that ever happens, we would want 2618 * the stack trace. 2619 */ 2620 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) { 2621 ret = -EROFS; 2622 goto out_writepages; 2623 } 2624 2625 /* 2626 * If we have inline data and arrive here, it means that 2627 * we will soon create the block for the 1st page, so 2628 * we'd better clear the inline data here. 2629 */ 2630 if (ext4_has_inline_data(inode)) { 2631 /* Just inode will be modified... */ 2632 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2633 if (IS_ERR(handle)) { 2634 ret = PTR_ERR(handle); 2635 goto out_writepages; 2636 } 2637 BUG_ON(ext4_test_inode_state(inode, 2638 EXT4_STATE_MAY_INLINE_DATA)); 2639 ext4_destroy_inline_data(handle, inode); 2640 ext4_journal_stop(handle); 2641 } 2642 2643 /* 2644 * data=journal mode does not do delalloc so we just need to writeout / 2645 * journal already mapped buffers. On the other hand we need to commit 2646 * transaction to make data stable. We expect all the data to be 2647 * already in the journal (the only exception are DMA pinned pages 2648 * dirtied behind our back) so we commit transaction here and run the 2649 * writeback loop to checkpoint them. The checkpointing is not actually 2650 * necessary to make data persistent *but* quite a few places (extent 2651 * shifting operations, fsverity, ...) depend on being able to drop 2652 * pagecache pages after calling filemap_write_and_wait() and for that 2653 * checkpointing needs to happen. 2654 */ 2655 if (ext4_should_journal_data(inode)) { 2656 mpd->can_map = 0; 2657 if (wbc->sync_mode == WB_SYNC_ALL) 2658 ext4_fc_commit(sbi->s_journal, 2659 EXT4_I(inode)->i_datasync_tid); 2660 } 2661 mpd->journalled_more_data = 0; 2662 2663 if (ext4_should_dioread_nolock(inode)) { 2664 /* 2665 * We may need to convert up to one extent per block in 2666 * the page and we may dirty the inode. 2667 */ 2668 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2669 PAGE_SIZE >> inode->i_blkbits); 2670 } 2671 2672 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2673 range_whole = 1; 2674 2675 if (wbc->range_cyclic) { 2676 writeback_index = mapping->writeback_index; 2677 if (writeback_index) 2678 cycled = 0; 2679 mpd->first_page = writeback_index; 2680 mpd->last_page = -1; 2681 } else { 2682 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2683 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2684 } 2685 2686 ext4_io_submit_init(&mpd->io_submit, wbc); 2687 retry: 2688 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2689 tag_pages_for_writeback(mapping, mpd->first_page, 2690 mpd->last_page); 2691 blk_start_plug(&plug); 2692 2693 /* 2694 * First writeback pages that don't need mapping - we can avoid 2695 * starting a transaction unnecessarily and also avoid being blocked 2696 * in the block layer on device congestion while having transaction 2697 * started. 2698 */ 2699 mpd->do_map = 0; 2700 mpd->scanned_until_end = 0; 2701 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2702 if (!mpd->io_submit.io_end) { 2703 ret = -ENOMEM; 2704 goto unplug; 2705 } 2706 ret = mpage_prepare_extent_to_map(mpd); 2707 /* Unlock pages we didn't use */ 2708 mpage_release_unused_pages(mpd, false); 2709 /* Submit prepared bio */ 2710 ext4_io_submit(&mpd->io_submit); 2711 ext4_put_io_end_defer(mpd->io_submit.io_end); 2712 mpd->io_submit.io_end = NULL; 2713 if (ret < 0) 2714 goto unplug; 2715 2716 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2717 /* For each extent of pages we use new io_end */ 2718 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2719 if (!mpd->io_submit.io_end) { 2720 ret = -ENOMEM; 2721 break; 2722 } 2723 2724 WARN_ON_ONCE(!mpd->can_map); 2725 /* 2726 * We have two constraints: We find one extent to map and we 2727 * must always write out whole page (makes a difference when 2728 * blocksize < pagesize) so that we don't block on IO when we 2729 * try to write out the rest of the page. Journalled mode is 2730 * not supported by delalloc. 2731 */ 2732 BUG_ON(ext4_should_journal_data(inode)); 2733 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2734 2735 /* start a new transaction */ 2736 handle = ext4_journal_start_with_reserve(inode, 2737 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2738 if (IS_ERR(handle)) { 2739 ret = PTR_ERR(handle); 2740 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2741 "%ld pages, ino %lu; err %d", __func__, 2742 wbc->nr_to_write, inode->i_ino, ret); 2743 /* Release allocated io_end */ 2744 ext4_put_io_end(mpd->io_submit.io_end); 2745 mpd->io_submit.io_end = NULL; 2746 break; 2747 } 2748 mpd->do_map = 1; 2749 2750 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2751 ret = mpage_prepare_extent_to_map(mpd); 2752 if (!ret && mpd->map.m_len) 2753 ret = mpage_map_and_submit_extent(handle, mpd, 2754 &give_up_on_write); 2755 /* 2756 * Caution: If the handle is synchronous, 2757 * ext4_journal_stop() can wait for transaction commit 2758 * to finish which may depend on writeback of pages to 2759 * complete or on page lock to be released. In that 2760 * case, we have to wait until after we have 2761 * submitted all the IO, released page locks we hold, 2762 * and dropped io_end reference (for extent conversion 2763 * to be able to complete) before stopping the handle. 2764 */ 2765 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2766 ext4_journal_stop(handle); 2767 handle = NULL; 2768 mpd->do_map = 0; 2769 } 2770 /* Unlock pages we didn't use */ 2771 mpage_release_unused_pages(mpd, give_up_on_write); 2772 /* Submit prepared bio */ 2773 ext4_io_submit(&mpd->io_submit); 2774 2775 /* 2776 * Drop our io_end reference we got from init. We have 2777 * to be careful and use deferred io_end finishing if 2778 * we are still holding the transaction as we can 2779 * release the last reference to io_end which may end 2780 * up doing unwritten extent conversion. 2781 */ 2782 if (handle) { 2783 ext4_put_io_end_defer(mpd->io_submit.io_end); 2784 ext4_journal_stop(handle); 2785 } else 2786 ext4_put_io_end(mpd->io_submit.io_end); 2787 mpd->io_submit.io_end = NULL; 2788 2789 if (ret == -ENOSPC && sbi->s_journal) { 2790 /* 2791 * Commit the transaction which would 2792 * free blocks released in the transaction 2793 * and try again 2794 */ 2795 jbd2_journal_force_commit_nested(sbi->s_journal); 2796 ret = 0; 2797 continue; 2798 } 2799 /* Fatal error - ENOMEM, EIO... */ 2800 if (ret) 2801 break; 2802 } 2803 unplug: 2804 blk_finish_plug(&plug); 2805 if (!ret && !cycled && wbc->nr_to_write > 0) { 2806 cycled = 1; 2807 mpd->last_page = writeback_index - 1; 2808 mpd->first_page = 0; 2809 goto retry; 2810 } 2811 2812 /* Update index */ 2813 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2814 /* 2815 * Set the writeback_index so that range_cyclic 2816 * mode will write it back later 2817 */ 2818 mapping->writeback_index = mpd->first_page; 2819 2820 out_writepages: 2821 trace_ext4_writepages_result(inode, wbc, ret, 2822 nr_to_write - wbc->nr_to_write); 2823 return ret; 2824 } 2825 2826 static int ext4_writepages(struct address_space *mapping, 2827 struct writeback_control *wbc) 2828 { 2829 struct super_block *sb = mapping->host->i_sb; 2830 struct mpage_da_data mpd = { 2831 .inode = mapping->host, 2832 .wbc = wbc, 2833 .can_map = 1, 2834 }; 2835 int ret; 2836 int alloc_ctx; 2837 2838 if (unlikely(ext4_forced_shutdown(sb))) 2839 return -EIO; 2840 2841 alloc_ctx = ext4_writepages_down_read(sb); 2842 ret = ext4_do_writepages(&mpd); 2843 /* 2844 * For data=journal writeback we could have come across pages marked 2845 * for delayed dirtying (PageChecked) which were just added to the 2846 * running transaction. Try once more to get them to stable storage. 2847 */ 2848 if (!ret && mpd.journalled_more_data) 2849 ret = ext4_do_writepages(&mpd); 2850 ext4_writepages_up_read(sb, alloc_ctx); 2851 2852 return ret; 2853 } 2854 2855 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2856 { 2857 struct writeback_control wbc = { 2858 .sync_mode = WB_SYNC_ALL, 2859 .nr_to_write = LONG_MAX, 2860 .range_start = jinode->i_dirty_start, 2861 .range_end = jinode->i_dirty_end, 2862 }; 2863 struct mpage_da_data mpd = { 2864 .inode = jinode->i_vfs_inode, 2865 .wbc = &wbc, 2866 .can_map = 0, 2867 }; 2868 return ext4_do_writepages(&mpd); 2869 } 2870 2871 static int ext4_dax_writepages(struct address_space *mapping, 2872 struct writeback_control *wbc) 2873 { 2874 int ret; 2875 long nr_to_write = wbc->nr_to_write; 2876 struct inode *inode = mapping->host; 2877 int alloc_ctx; 2878 2879 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2880 return -EIO; 2881 2882 alloc_ctx = ext4_writepages_down_read(inode->i_sb); 2883 trace_ext4_writepages(inode, wbc); 2884 2885 ret = dax_writeback_mapping_range(mapping, 2886 EXT4_SB(inode->i_sb)->s_daxdev, wbc); 2887 trace_ext4_writepages_result(inode, wbc, ret, 2888 nr_to_write - wbc->nr_to_write); 2889 ext4_writepages_up_read(inode->i_sb, alloc_ctx); 2890 return ret; 2891 } 2892 2893 static int ext4_nonda_switch(struct super_block *sb) 2894 { 2895 s64 free_clusters, dirty_clusters; 2896 struct ext4_sb_info *sbi = EXT4_SB(sb); 2897 2898 /* 2899 * switch to non delalloc mode if we are running low 2900 * on free block. The free block accounting via percpu 2901 * counters can get slightly wrong with percpu_counter_batch getting 2902 * accumulated on each CPU without updating global counters 2903 * Delalloc need an accurate free block accounting. So switch 2904 * to non delalloc when we are near to error range. 2905 */ 2906 free_clusters = 2907 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2908 dirty_clusters = 2909 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2910 /* 2911 * Start pushing delalloc when 1/2 of free blocks are dirty. 2912 */ 2913 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2914 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2915 2916 if (2 * free_clusters < 3 * dirty_clusters || 2917 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2918 /* 2919 * free block count is less than 150% of dirty blocks 2920 * or free blocks is less than watermark 2921 */ 2922 return 1; 2923 } 2924 return 0; 2925 } 2926 2927 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2928 loff_t pos, unsigned len, 2929 struct page **pagep, void **fsdata) 2930 { 2931 int ret, retries = 0; 2932 struct folio *folio; 2933 pgoff_t index; 2934 struct inode *inode = mapping->host; 2935 2936 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 2937 return -EIO; 2938 2939 index = pos >> PAGE_SHIFT; 2940 2941 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2942 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2943 return ext4_write_begin(file, mapping, pos, 2944 len, pagep, fsdata); 2945 } 2946 *fsdata = (void *)0; 2947 trace_ext4_da_write_begin(inode, pos, len); 2948 2949 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2950 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2951 pagep, fsdata); 2952 if (ret < 0) 2953 return ret; 2954 if (ret == 1) 2955 return 0; 2956 } 2957 2958 retry: 2959 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2960 mapping_gfp_mask(mapping)); 2961 if (IS_ERR(folio)) 2962 return PTR_ERR(folio); 2963 2964 #ifdef CONFIG_FS_ENCRYPTION 2965 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep); 2966 #else 2967 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep); 2968 #endif 2969 if (ret < 0) { 2970 folio_unlock(folio); 2971 folio_put(folio); 2972 /* 2973 * block_write_begin may have instantiated a few blocks 2974 * outside i_size. Trim these off again. Don't need 2975 * i_size_read because we hold inode lock. 2976 */ 2977 if (pos + len > inode->i_size) 2978 ext4_truncate_failed_write(inode); 2979 2980 if (ret == -ENOSPC && 2981 ext4_should_retry_alloc(inode->i_sb, &retries)) 2982 goto retry; 2983 return ret; 2984 } 2985 2986 *pagep = &folio->page; 2987 return ret; 2988 } 2989 2990 /* 2991 * Check if we should update i_disksize 2992 * when write to the end of file but not require block allocation 2993 */ 2994 static int ext4_da_should_update_i_disksize(struct folio *folio, 2995 unsigned long offset) 2996 { 2997 struct buffer_head *bh; 2998 struct inode *inode = folio->mapping->host; 2999 unsigned int idx; 3000 int i; 3001 3002 bh = folio_buffers(folio); 3003 idx = offset >> inode->i_blkbits; 3004 3005 for (i = 0; i < idx; i++) 3006 bh = bh->b_this_page; 3007 3008 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3009 return 0; 3010 return 1; 3011 } 3012 3013 static int ext4_da_do_write_end(struct address_space *mapping, 3014 loff_t pos, unsigned len, unsigned copied, 3015 struct folio *folio) 3016 { 3017 struct inode *inode = mapping->host; 3018 loff_t old_size = inode->i_size; 3019 bool disksize_changed = false; 3020 loff_t new_i_size; 3021 3022 if (unlikely(!folio_buffers(folio))) { 3023 folio_unlock(folio); 3024 folio_put(folio); 3025 return -EIO; 3026 } 3027 /* 3028 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES 3029 * flag, which all that's needed to trigger page writeback. 3030 */ 3031 copied = block_write_end(NULL, mapping, pos, len, copied, 3032 &folio->page, NULL); 3033 new_i_size = pos + copied; 3034 3035 /* 3036 * It's important to update i_size while still holding folio lock, 3037 * because folio writeout could otherwise come in and zero beyond 3038 * i_size. 3039 * 3040 * Since we are holding inode lock, we are sure i_disksize <= 3041 * i_size. We also know that if i_disksize < i_size, there are 3042 * delalloc writes pending in the range up to i_size. If the end of 3043 * the current write is <= i_size, there's no need to touch 3044 * i_disksize since writeback will push i_disksize up to i_size 3045 * eventually. If the end of the current write is > i_size and 3046 * inside an allocated block which ext4_da_should_update_i_disksize() 3047 * checked, we need to update i_disksize here as certain 3048 * ext4_writepages() paths not allocating blocks and update i_disksize. 3049 */ 3050 if (new_i_size > inode->i_size) { 3051 unsigned long end; 3052 3053 i_size_write(inode, new_i_size); 3054 end = (new_i_size - 1) & (PAGE_SIZE - 1); 3055 if (copied && ext4_da_should_update_i_disksize(folio, end)) { 3056 ext4_update_i_disksize(inode, new_i_size); 3057 disksize_changed = true; 3058 } 3059 } 3060 3061 folio_unlock(folio); 3062 folio_put(folio); 3063 3064 if (old_size < pos) 3065 pagecache_isize_extended(inode, old_size, pos); 3066 3067 if (disksize_changed) { 3068 handle_t *handle; 3069 3070 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 3071 if (IS_ERR(handle)) 3072 return PTR_ERR(handle); 3073 ext4_mark_inode_dirty(handle, inode); 3074 ext4_journal_stop(handle); 3075 } 3076 3077 return copied; 3078 } 3079 3080 static int ext4_da_write_end(struct file *file, 3081 struct address_space *mapping, 3082 loff_t pos, unsigned len, unsigned copied, 3083 struct page *page, void *fsdata) 3084 { 3085 struct inode *inode = mapping->host; 3086 int write_mode = (int)(unsigned long)fsdata; 3087 struct folio *folio = page_folio(page); 3088 3089 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3090 return ext4_write_end(file, mapping, pos, 3091 len, copied, &folio->page, fsdata); 3092 3093 trace_ext4_da_write_end(inode, pos, len, copied); 3094 3095 if (write_mode != CONVERT_INLINE_DATA && 3096 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3097 ext4_has_inline_data(inode)) 3098 return ext4_write_inline_data_end(inode, pos, len, copied, 3099 folio); 3100 3101 if (unlikely(copied < len) && !folio_test_uptodate(folio)) 3102 copied = 0; 3103 3104 return ext4_da_do_write_end(mapping, pos, len, copied, folio); 3105 } 3106 3107 /* 3108 * Force all delayed allocation blocks to be allocated for a given inode. 3109 */ 3110 int ext4_alloc_da_blocks(struct inode *inode) 3111 { 3112 trace_ext4_alloc_da_blocks(inode); 3113 3114 if (!EXT4_I(inode)->i_reserved_data_blocks) 3115 return 0; 3116 3117 /* 3118 * We do something simple for now. The filemap_flush() will 3119 * also start triggering a write of the data blocks, which is 3120 * not strictly speaking necessary (and for users of 3121 * laptop_mode, not even desirable). However, to do otherwise 3122 * would require replicating code paths in: 3123 * 3124 * ext4_writepages() -> 3125 * write_cache_pages() ---> (via passed in callback function) 3126 * __mpage_da_writepage() --> 3127 * mpage_add_bh_to_extent() 3128 * mpage_da_map_blocks() 3129 * 3130 * The problem is that write_cache_pages(), located in 3131 * mm/page-writeback.c, marks pages clean in preparation for 3132 * doing I/O, which is not desirable if we're not planning on 3133 * doing I/O at all. 3134 * 3135 * We could call write_cache_pages(), and then redirty all of 3136 * the pages by calling redirty_page_for_writepage() but that 3137 * would be ugly in the extreme. So instead we would need to 3138 * replicate parts of the code in the above functions, 3139 * simplifying them because we wouldn't actually intend to 3140 * write out the pages, but rather only collect contiguous 3141 * logical block extents, call the multi-block allocator, and 3142 * then update the buffer heads with the block allocations. 3143 * 3144 * For now, though, we'll cheat by calling filemap_flush(), 3145 * which will map the blocks, and start the I/O, but not 3146 * actually wait for the I/O to complete. 3147 */ 3148 return filemap_flush(inode->i_mapping); 3149 } 3150 3151 /* 3152 * bmap() is special. It gets used by applications such as lilo and by 3153 * the swapper to find the on-disk block of a specific piece of data. 3154 * 3155 * Naturally, this is dangerous if the block concerned is still in the 3156 * journal. If somebody makes a swapfile on an ext4 data-journaling 3157 * filesystem and enables swap, then they may get a nasty shock when the 3158 * data getting swapped to that swapfile suddenly gets overwritten by 3159 * the original zero's written out previously to the journal and 3160 * awaiting writeback in the kernel's buffer cache. 3161 * 3162 * So, if we see any bmap calls here on a modified, data-journaled file, 3163 * take extra steps to flush any blocks which might be in the cache. 3164 */ 3165 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3166 { 3167 struct inode *inode = mapping->host; 3168 sector_t ret = 0; 3169 3170 inode_lock_shared(inode); 3171 /* 3172 * We can get here for an inline file via the FIBMAP ioctl 3173 */ 3174 if (ext4_has_inline_data(inode)) 3175 goto out; 3176 3177 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3178 (test_opt(inode->i_sb, DELALLOC) || 3179 ext4_should_journal_data(inode))) { 3180 /* 3181 * With delalloc or journalled data we want to sync the file so 3182 * that we can make sure we allocate blocks for file and data 3183 * is in place for the user to see it 3184 */ 3185 filemap_write_and_wait(mapping); 3186 } 3187 3188 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3189 3190 out: 3191 inode_unlock_shared(inode); 3192 return ret; 3193 } 3194 3195 static int ext4_read_folio(struct file *file, struct folio *folio) 3196 { 3197 int ret = -EAGAIN; 3198 struct inode *inode = folio->mapping->host; 3199 3200 trace_ext4_read_folio(inode, folio); 3201 3202 if (ext4_has_inline_data(inode)) 3203 ret = ext4_readpage_inline(inode, folio); 3204 3205 if (ret == -EAGAIN) 3206 return ext4_mpage_readpages(inode, NULL, folio); 3207 3208 return ret; 3209 } 3210 3211 static void ext4_readahead(struct readahead_control *rac) 3212 { 3213 struct inode *inode = rac->mapping->host; 3214 3215 /* If the file has inline data, no need to do readahead. */ 3216 if (ext4_has_inline_data(inode)) 3217 return; 3218 3219 ext4_mpage_readpages(inode, rac, NULL); 3220 } 3221 3222 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3223 size_t length) 3224 { 3225 trace_ext4_invalidate_folio(folio, offset, length); 3226 3227 /* No journalling happens on data buffers when this function is used */ 3228 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3229 3230 block_invalidate_folio(folio, offset, length); 3231 } 3232 3233 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3234 size_t offset, size_t length) 3235 { 3236 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3237 3238 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3239 3240 /* 3241 * If it's a full truncate we just forget about the pending dirtying 3242 */ 3243 if (offset == 0 && length == folio_size(folio)) 3244 folio_clear_checked(folio); 3245 3246 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3247 } 3248 3249 /* Wrapper for aops... */ 3250 static void ext4_journalled_invalidate_folio(struct folio *folio, 3251 size_t offset, 3252 size_t length) 3253 { 3254 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3255 } 3256 3257 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3258 { 3259 struct inode *inode = folio->mapping->host; 3260 journal_t *journal = EXT4_JOURNAL(inode); 3261 3262 trace_ext4_release_folio(inode, folio); 3263 3264 /* Page has dirty journalled data -> cannot release */ 3265 if (folio_test_checked(folio)) 3266 return false; 3267 if (journal) 3268 return jbd2_journal_try_to_free_buffers(journal, folio); 3269 else 3270 return try_to_free_buffers(folio); 3271 } 3272 3273 static bool ext4_inode_datasync_dirty(struct inode *inode) 3274 { 3275 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3276 3277 if (journal) { 3278 if (jbd2_transaction_committed(journal, 3279 EXT4_I(inode)->i_datasync_tid)) 3280 return false; 3281 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3282 return !list_empty(&EXT4_I(inode)->i_fc_list); 3283 return true; 3284 } 3285 3286 /* Any metadata buffers to write? */ 3287 if (!list_empty(&inode->i_mapping->i_private_list)) 3288 return true; 3289 return inode->i_state & I_DIRTY_DATASYNC; 3290 } 3291 3292 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3293 struct ext4_map_blocks *map, loff_t offset, 3294 loff_t length, unsigned int flags) 3295 { 3296 u8 blkbits = inode->i_blkbits; 3297 3298 /* 3299 * Writes that span EOF might trigger an I/O size update on completion, 3300 * so consider them to be dirty for the purpose of O_DSYNC, even if 3301 * there is no other metadata changes being made or are pending. 3302 */ 3303 iomap->flags = 0; 3304 if (ext4_inode_datasync_dirty(inode) || 3305 offset + length > i_size_read(inode)) 3306 iomap->flags |= IOMAP_F_DIRTY; 3307 3308 if (map->m_flags & EXT4_MAP_NEW) 3309 iomap->flags |= IOMAP_F_NEW; 3310 3311 if (flags & IOMAP_DAX) 3312 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3313 else 3314 iomap->bdev = inode->i_sb->s_bdev; 3315 iomap->offset = (u64) map->m_lblk << blkbits; 3316 iomap->length = (u64) map->m_len << blkbits; 3317 3318 if ((map->m_flags & EXT4_MAP_MAPPED) && 3319 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3320 iomap->flags |= IOMAP_F_MERGED; 3321 3322 /* 3323 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3324 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3325 * set. In order for any allocated unwritten extents to be converted 3326 * into written extents correctly within the ->end_io() handler, we 3327 * need to ensure that the iomap->type is set appropriately. Hence, the 3328 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3329 * been set first. 3330 */ 3331 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3332 iomap->type = IOMAP_UNWRITTEN; 3333 iomap->addr = (u64) map->m_pblk << blkbits; 3334 if (flags & IOMAP_DAX) 3335 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3336 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3337 iomap->type = IOMAP_MAPPED; 3338 iomap->addr = (u64) map->m_pblk << blkbits; 3339 if (flags & IOMAP_DAX) 3340 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3341 } else if (map->m_flags & EXT4_MAP_DELAYED) { 3342 iomap->type = IOMAP_DELALLOC; 3343 iomap->addr = IOMAP_NULL_ADDR; 3344 } else { 3345 iomap->type = IOMAP_HOLE; 3346 iomap->addr = IOMAP_NULL_ADDR; 3347 } 3348 } 3349 3350 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3351 unsigned int flags) 3352 { 3353 handle_t *handle; 3354 u8 blkbits = inode->i_blkbits; 3355 int ret, dio_credits, m_flags = 0, retries = 0; 3356 3357 /* 3358 * Trim the mapping request to the maximum value that we can map at 3359 * once for direct I/O. 3360 */ 3361 if (map->m_len > DIO_MAX_BLOCKS) 3362 map->m_len = DIO_MAX_BLOCKS; 3363 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3364 3365 retry: 3366 /* 3367 * Either we allocate blocks and then don't get an unwritten extent, so 3368 * in that case we have reserved enough credits. Or, the blocks are 3369 * already allocated and unwritten. In that case, the extent conversion 3370 * fits into the credits as well. 3371 */ 3372 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3373 if (IS_ERR(handle)) 3374 return PTR_ERR(handle); 3375 3376 /* 3377 * DAX and direct I/O are the only two operations that are currently 3378 * supported with IOMAP_WRITE. 3379 */ 3380 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3381 if (flags & IOMAP_DAX) 3382 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3383 /* 3384 * We use i_size instead of i_disksize here because delalloc writeback 3385 * can complete at any point during the I/O and subsequently push the 3386 * i_disksize out to i_size. This could be beyond where direct I/O is 3387 * happening and thus expose allocated blocks to direct I/O reads. 3388 */ 3389 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3390 m_flags = EXT4_GET_BLOCKS_CREATE; 3391 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3392 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3393 3394 ret = ext4_map_blocks(handle, inode, map, m_flags); 3395 3396 /* 3397 * We cannot fill holes in indirect tree based inodes as that could 3398 * expose stale data in the case of a crash. Use the magic error code 3399 * to fallback to buffered I/O. 3400 */ 3401 if (!m_flags && !ret) 3402 ret = -ENOTBLK; 3403 3404 ext4_journal_stop(handle); 3405 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3406 goto retry; 3407 3408 return ret; 3409 } 3410 3411 3412 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3413 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3414 { 3415 int ret; 3416 struct ext4_map_blocks map; 3417 u8 blkbits = inode->i_blkbits; 3418 3419 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3420 return -EINVAL; 3421 3422 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3423 return -ERANGE; 3424 3425 /* 3426 * Calculate the first and last logical blocks respectively. 3427 */ 3428 map.m_lblk = offset >> blkbits; 3429 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3430 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3431 3432 if (flags & IOMAP_WRITE) { 3433 /* 3434 * We check here if the blocks are already allocated, then we 3435 * don't need to start a journal txn and we can directly return 3436 * the mapping information. This could boost performance 3437 * especially in multi-threaded overwrite requests. 3438 */ 3439 if (offset + length <= i_size_read(inode)) { 3440 ret = ext4_map_blocks(NULL, inode, &map, 0); 3441 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3442 goto out; 3443 } 3444 ret = ext4_iomap_alloc(inode, &map, flags); 3445 } else { 3446 ret = ext4_map_blocks(NULL, inode, &map, 0); 3447 } 3448 3449 if (ret < 0) 3450 return ret; 3451 out: 3452 /* 3453 * When inline encryption is enabled, sometimes I/O to an encrypted file 3454 * has to be broken up to guarantee DUN contiguity. Handle this by 3455 * limiting the length of the mapping returned. 3456 */ 3457 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3458 3459 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3460 3461 return 0; 3462 } 3463 3464 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3465 loff_t length, unsigned flags, struct iomap *iomap, 3466 struct iomap *srcmap) 3467 { 3468 int ret; 3469 3470 /* 3471 * Even for writes we don't need to allocate blocks, so just pretend 3472 * we are reading to save overhead of starting a transaction. 3473 */ 3474 flags &= ~IOMAP_WRITE; 3475 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3476 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); 3477 return ret; 3478 } 3479 3480 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3481 ssize_t written, unsigned flags, struct iomap *iomap) 3482 { 3483 /* 3484 * Check to see whether an error occurred while writing out the data to 3485 * the allocated blocks. If so, return the magic error code so that we 3486 * fallback to buffered I/O and attempt to complete the remainder of 3487 * the I/O. Any blocks that may have been allocated in preparation for 3488 * the direct I/O will be reused during buffered I/O. 3489 */ 3490 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3491 return -ENOTBLK; 3492 3493 return 0; 3494 } 3495 3496 const struct iomap_ops ext4_iomap_ops = { 3497 .iomap_begin = ext4_iomap_begin, 3498 .iomap_end = ext4_iomap_end, 3499 }; 3500 3501 const struct iomap_ops ext4_iomap_overwrite_ops = { 3502 .iomap_begin = ext4_iomap_overwrite_begin, 3503 .iomap_end = ext4_iomap_end, 3504 }; 3505 3506 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3507 loff_t length, unsigned int flags, 3508 struct iomap *iomap, struct iomap *srcmap) 3509 { 3510 int ret; 3511 struct ext4_map_blocks map; 3512 u8 blkbits = inode->i_blkbits; 3513 3514 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3515 return -EINVAL; 3516 3517 if (ext4_has_inline_data(inode)) { 3518 ret = ext4_inline_data_iomap(inode, iomap); 3519 if (ret != -EAGAIN) { 3520 if (ret == 0 && offset >= iomap->length) 3521 ret = -ENOENT; 3522 return ret; 3523 } 3524 } 3525 3526 /* 3527 * Calculate the first and last logical block respectively. 3528 */ 3529 map.m_lblk = offset >> blkbits; 3530 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3531 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3532 3533 /* 3534 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3535 * So handle it here itself instead of querying ext4_map_blocks(). 3536 * Since ext4_map_blocks() will warn about it and will return 3537 * -EIO error. 3538 */ 3539 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3540 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3541 3542 if (offset >= sbi->s_bitmap_maxbytes) { 3543 map.m_flags = 0; 3544 goto set_iomap; 3545 } 3546 } 3547 3548 ret = ext4_map_blocks(NULL, inode, &map, 0); 3549 if (ret < 0) 3550 return ret; 3551 set_iomap: 3552 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3553 3554 return 0; 3555 } 3556 3557 const struct iomap_ops ext4_iomap_report_ops = { 3558 .iomap_begin = ext4_iomap_begin_report, 3559 }; 3560 3561 /* 3562 * For data=journal mode, folio should be marked dirty only when it was 3563 * writeably mapped. When that happens, it was already attached to the 3564 * transaction and marked as jbddirty (we take care of this in 3565 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3566 * so we should have nothing to do here, except for the case when someone 3567 * had the page pinned and dirtied the page through this pin (e.g. by doing 3568 * direct IO to it). In that case we'd need to attach buffers here to the 3569 * transaction but we cannot due to lock ordering. We cannot just dirty the 3570 * folio and leave attached buffers clean, because the buffers' dirty state is 3571 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3572 * the journalling code will explode. So what we do is to mark the folio 3573 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3574 * to the transaction appropriately. 3575 */ 3576 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3577 struct folio *folio) 3578 { 3579 WARN_ON_ONCE(!folio_buffers(folio)); 3580 if (folio_maybe_dma_pinned(folio)) 3581 folio_set_checked(folio); 3582 return filemap_dirty_folio(mapping, folio); 3583 } 3584 3585 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3586 { 3587 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3588 WARN_ON_ONCE(!folio_buffers(folio)); 3589 return block_dirty_folio(mapping, folio); 3590 } 3591 3592 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3593 struct file *file, sector_t *span) 3594 { 3595 return iomap_swapfile_activate(sis, file, span, 3596 &ext4_iomap_report_ops); 3597 } 3598 3599 static const struct address_space_operations ext4_aops = { 3600 .read_folio = ext4_read_folio, 3601 .readahead = ext4_readahead, 3602 .writepages = ext4_writepages, 3603 .write_begin = ext4_write_begin, 3604 .write_end = ext4_write_end, 3605 .dirty_folio = ext4_dirty_folio, 3606 .bmap = ext4_bmap, 3607 .invalidate_folio = ext4_invalidate_folio, 3608 .release_folio = ext4_release_folio, 3609 .migrate_folio = buffer_migrate_folio, 3610 .is_partially_uptodate = block_is_partially_uptodate, 3611 .error_remove_folio = generic_error_remove_folio, 3612 .swap_activate = ext4_iomap_swap_activate, 3613 }; 3614 3615 static const struct address_space_operations ext4_journalled_aops = { 3616 .read_folio = ext4_read_folio, 3617 .readahead = ext4_readahead, 3618 .writepages = ext4_writepages, 3619 .write_begin = ext4_write_begin, 3620 .write_end = ext4_journalled_write_end, 3621 .dirty_folio = ext4_journalled_dirty_folio, 3622 .bmap = ext4_bmap, 3623 .invalidate_folio = ext4_journalled_invalidate_folio, 3624 .release_folio = ext4_release_folio, 3625 .migrate_folio = buffer_migrate_folio_norefs, 3626 .is_partially_uptodate = block_is_partially_uptodate, 3627 .error_remove_folio = generic_error_remove_folio, 3628 .swap_activate = ext4_iomap_swap_activate, 3629 }; 3630 3631 static const struct address_space_operations ext4_da_aops = { 3632 .read_folio = ext4_read_folio, 3633 .readahead = ext4_readahead, 3634 .writepages = ext4_writepages, 3635 .write_begin = ext4_da_write_begin, 3636 .write_end = ext4_da_write_end, 3637 .dirty_folio = ext4_dirty_folio, 3638 .bmap = ext4_bmap, 3639 .invalidate_folio = ext4_invalidate_folio, 3640 .release_folio = ext4_release_folio, 3641 .migrate_folio = buffer_migrate_folio, 3642 .is_partially_uptodate = block_is_partially_uptodate, 3643 .error_remove_folio = generic_error_remove_folio, 3644 .swap_activate = ext4_iomap_swap_activate, 3645 }; 3646 3647 static const struct address_space_operations ext4_dax_aops = { 3648 .writepages = ext4_dax_writepages, 3649 .dirty_folio = noop_dirty_folio, 3650 .bmap = ext4_bmap, 3651 .swap_activate = ext4_iomap_swap_activate, 3652 }; 3653 3654 void ext4_set_aops(struct inode *inode) 3655 { 3656 switch (ext4_inode_journal_mode(inode)) { 3657 case EXT4_INODE_ORDERED_DATA_MODE: 3658 case EXT4_INODE_WRITEBACK_DATA_MODE: 3659 break; 3660 case EXT4_INODE_JOURNAL_DATA_MODE: 3661 inode->i_mapping->a_ops = &ext4_journalled_aops; 3662 return; 3663 default: 3664 BUG(); 3665 } 3666 if (IS_DAX(inode)) 3667 inode->i_mapping->a_ops = &ext4_dax_aops; 3668 else if (test_opt(inode->i_sb, DELALLOC)) 3669 inode->i_mapping->a_ops = &ext4_da_aops; 3670 else 3671 inode->i_mapping->a_ops = &ext4_aops; 3672 } 3673 3674 /* 3675 * Here we can't skip an unwritten buffer even though it usually reads zero 3676 * because it might have data in pagecache (eg, if called from ext4_zero_range, 3677 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a 3678 * racing writeback can come later and flush the stale pagecache to disk. 3679 */ 3680 static int __ext4_block_zero_page_range(handle_t *handle, 3681 struct address_space *mapping, loff_t from, loff_t length) 3682 { 3683 ext4_fsblk_t index = from >> PAGE_SHIFT; 3684 unsigned offset = from & (PAGE_SIZE-1); 3685 unsigned blocksize, pos; 3686 ext4_lblk_t iblock; 3687 struct inode *inode = mapping->host; 3688 struct buffer_head *bh; 3689 struct folio *folio; 3690 int err = 0; 3691 3692 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3693 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3694 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3695 if (IS_ERR(folio)) 3696 return PTR_ERR(folio); 3697 3698 blocksize = inode->i_sb->s_blocksize; 3699 3700 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3701 3702 bh = folio_buffers(folio); 3703 if (!bh) 3704 bh = create_empty_buffers(folio, blocksize, 0); 3705 3706 /* Find the buffer that contains "offset" */ 3707 pos = blocksize; 3708 while (offset >= pos) { 3709 bh = bh->b_this_page; 3710 iblock++; 3711 pos += blocksize; 3712 } 3713 if (buffer_freed(bh)) { 3714 BUFFER_TRACE(bh, "freed: skip"); 3715 goto unlock; 3716 } 3717 if (!buffer_mapped(bh)) { 3718 BUFFER_TRACE(bh, "unmapped"); 3719 ext4_get_block(inode, iblock, bh, 0); 3720 /* unmapped? It's a hole - nothing to do */ 3721 if (!buffer_mapped(bh)) { 3722 BUFFER_TRACE(bh, "still unmapped"); 3723 goto unlock; 3724 } 3725 } 3726 3727 /* Ok, it's mapped. Make sure it's up-to-date */ 3728 if (folio_test_uptodate(folio)) 3729 set_buffer_uptodate(bh); 3730 3731 if (!buffer_uptodate(bh)) { 3732 err = ext4_read_bh_lock(bh, 0, true); 3733 if (err) 3734 goto unlock; 3735 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3736 /* We expect the key to be set. */ 3737 BUG_ON(!fscrypt_has_encryption_key(inode)); 3738 err = fscrypt_decrypt_pagecache_blocks(folio, 3739 blocksize, 3740 bh_offset(bh)); 3741 if (err) { 3742 clear_buffer_uptodate(bh); 3743 goto unlock; 3744 } 3745 } 3746 } 3747 if (ext4_should_journal_data(inode)) { 3748 BUFFER_TRACE(bh, "get write access"); 3749 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3750 EXT4_JTR_NONE); 3751 if (err) 3752 goto unlock; 3753 } 3754 folio_zero_range(folio, offset, length); 3755 BUFFER_TRACE(bh, "zeroed end of block"); 3756 3757 if (ext4_should_journal_data(inode)) { 3758 err = ext4_dirty_journalled_data(handle, bh); 3759 } else { 3760 err = 0; 3761 mark_buffer_dirty(bh); 3762 if (ext4_should_order_data(inode)) 3763 err = ext4_jbd2_inode_add_write(handle, inode, from, 3764 length); 3765 } 3766 3767 unlock: 3768 folio_unlock(folio); 3769 folio_put(folio); 3770 return err; 3771 } 3772 3773 /* 3774 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3775 * starting from file offset 'from'. The range to be zero'd must 3776 * be contained with in one block. If the specified range exceeds 3777 * the end of the block it will be shortened to end of the block 3778 * that corresponds to 'from' 3779 */ 3780 static int ext4_block_zero_page_range(handle_t *handle, 3781 struct address_space *mapping, loff_t from, loff_t length) 3782 { 3783 struct inode *inode = mapping->host; 3784 unsigned offset = from & (PAGE_SIZE-1); 3785 unsigned blocksize = inode->i_sb->s_blocksize; 3786 unsigned max = blocksize - (offset & (blocksize - 1)); 3787 3788 /* 3789 * correct length if it does not fall between 3790 * 'from' and the end of the block 3791 */ 3792 if (length > max || length < 0) 3793 length = max; 3794 3795 if (IS_DAX(inode)) { 3796 return dax_zero_range(inode, from, length, NULL, 3797 &ext4_iomap_ops); 3798 } 3799 return __ext4_block_zero_page_range(handle, mapping, from, length); 3800 } 3801 3802 /* 3803 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3804 * up to the end of the block which corresponds to `from'. 3805 * This required during truncate. We need to physically zero the tail end 3806 * of that block so it doesn't yield old data if the file is later grown. 3807 */ 3808 static int ext4_block_truncate_page(handle_t *handle, 3809 struct address_space *mapping, loff_t from) 3810 { 3811 unsigned offset = from & (PAGE_SIZE-1); 3812 unsigned length; 3813 unsigned blocksize; 3814 struct inode *inode = mapping->host; 3815 3816 /* If we are processing an encrypted inode during orphan list handling */ 3817 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3818 return 0; 3819 3820 blocksize = inode->i_sb->s_blocksize; 3821 length = blocksize - (offset & (blocksize - 1)); 3822 3823 return ext4_block_zero_page_range(handle, mapping, from, length); 3824 } 3825 3826 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3827 loff_t lstart, loff_t length) 3828 { 3829 struct super_block *sb = inode->i_sb; 3830 struct address_space *mapping = inode->i_mapping; 3831 unsigned partial_start, partial_end; 3832 ext4_fsblk_t start, end; 3833 loff_t byte_end = (lstart + length - 1); 3834 int err = 0; 3835 3836 partial_start = lstart & (sb->s_blocksize - 1); 3837 partial_end = byte_end & (sb->s_blocksize - 1); 3838 3839 start = lstart >> sb->s_blocksize_bits; 3840 end = byte_end >> sb->s_blocksize_bits; 3841 3842 /* Handle partial zero within the single block */ 3843 if (start == end && 3844 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3845 err = ext4_block_zero_page_range(handle, mapping, 3846 lstart, length); 3847 return err; 3848 } 3849 /* Handle partial zero out on the start of the range */ 3850 if (partial_start) { 3851 err = ext4_block_zero_page_range(handle, mapping, 3852 lstart, sb->s_blocksize); 3853 if (err) 3854 return err; 3855 } 3856 /* Handle partial zero out on the end of the range */ 3857 if (partial_end != sb->s_blocksize - 1) 3858 err = ext4_block_zero_page_range(handle, mapping, 3859 byte_end - partial_end, 3860 partial_end + 1); 3861 return err; 3862 } 3863 3864 int ext4_can_truncate(struct inode *inode) 3865 { 3866 if (S_ISREG(inode->i_mode)) 3867 return 1; 3868 if (S_ISDIR(inode->i_mode)) 3869 return 1; 3870 if (S_ISLNK(inode->i_mode)) 3871 return !ext4_inode_is_fast_symlink(inode); 3872 return 0; 3873 } 3874 3875 /* 3876 * We have to make sure i_disksize gets properly updated before we truncate 3877 * page cache due to hole punching or zero range. Otherwise i_disksize update 3878 * can get lost as it may have been postponed to submission of writeback but 3879 * that will never happen after we truncate page cache. 3880 */ 3881 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3882 loff_t len) 3883 { 3884 handle_t *handle; 3885 int ret; 3886 3887 loff_t size = i_size_read(inode); 3888 3889 WARN_ON(!inode_is_locked(inode)); 3890 if (offset > size || offset + len < size) 3891 return 0; 3892 3893 if (EXT4_I(inode)->i_disksize >= size) 3894 return 0; 3895 3896 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3897 if (IS_ERR(handle)) 3898 return PTR_ERR(handle); 3899 ext4_update_i_disksize(inode, size); 3900 ret = ext4_mark_inode_dirty(handle, inode); 3901 ext4_journal_stop(handle); 3902 3903 return ret; 3904 } 3905 3906 static void ext4_wait_dax_page(struct inode *inode) 3907 { 3908 filemap_invalidate_unlock(inode->i_mapping); 3909 schedule(); 3910 filemap_invalidate_lock(inode->i_mapping); 3911 } 3912 3913 int ext4_break_layouts(struct inode *inode) 3914 { 3915 struct page *page; 3916 int error; 3917 3918 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3919 return -EINVAL; 3920 3921 do { 3922 page = dax_layout_busy_page(inode->i_mapping); 3923 if (!page) 3924 return 0; 3925 3926 error = ___wait_var_event(&page->_refcount, 3927 atomic_read(&page->_refcount) == 1, 3928 TASK_INTERRUPTIBLE, 0, 0, 3929 ext4_wait_dax_page(inode)); 3930 } while (error == 0); 3931 3932 return error; 3933 } 3934 3935 /* 3936 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3937 * associated with the given offset and length 3938 * 3939 * @inode: File inode 3940 * @offset: The offset where the hole will begin 3941 * @len: The length of the hole 3942 * 3943 * Returns: 0 on success or negative on failure 3944 */ 3945 3946 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3947 { 3948 struct inode *inode = file_inode(file); 3949 struct super_block *sb = inode->i_sb; 3950 ext4_lblk_t first_block, stop_block; 3951 struct address_space *mapping = inode->i_mapping; 3952 loff_t first_block_offset, last_block_offset, max_length; 3953 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3954 handle_t *handle; 3955 unsigned int credits; 3956 int ret = 0, ret2 = 0; 3957 3958 trace_ext4_punch_hole(inode, offset, length, 0); 3959 3960 /* 3961 * Write out all dirty pages to avoid race conditions 3962 * Then release them. 3963 */ 3964 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3965 ret = filemap_write_and_wait_range(mapping, offset, 3966 offset + length - 1); 3967 if (ret) 3968 return ret; 3969 } 3970 3971 inode_lock(inode); 3972 3973 /* No need to punch hole beyond i_size */ 3974 if (offset >= inode->i_size) 3975 goto out_mutex; 3976 3977 /* 3978 * If the hole extends beyond i_size, set the hole 3979 * to end after the page that contains i_size 3980 */ 3981 if (offset + length > inode->i_size) { 3982 length = inode->i_size + 3983 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3984 offset; 3985 } 3986 3987 /* 3988 * For punch hole the length + offset needs to be within one block 3989 * before last range. Adjust the length if it goes beyond that limit. 3990 */ 3991 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3992 if (offset + length > max_length) 3993 length = max_length - offset; 3994 3995 if (offset & (sb->s_blocksize - 1) || 3996 (offset + length) & (sb->s_blocksize - 1)) { 3997 /* 3998 * Attach jinode to inode for jbd2 if we do any zeroing of 3999 * partial block 4000 */ 4001 ret = ext4_inode_attach_jinode(inode); 4002 if (ret < 0) 4003 goto out_mutex; 4004 4005 } 4006 4007 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 4008 inode_dio_wait(inode); 4009 4010 ret = file_modified(file); 4011 if (ret) 4012 goto out_mutex; 4013 4014 /* 4015 * Prevent page faults from reinstantiating pages we have released from 4016 * page cache. 4017 */ 4018 filemap_invalidate_lock(mapping); 4019 4020 ret = ext4_break_layouts(inode); 4021 if (ret) 4022 goto out_dio; 4023 4024 first_block_offset = round_up(offset, sb->s_blocksize); 4025 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4026 4027 /* Now release the pages and zero block aligned part of pages*/ 4028 if (last_block_offset > first_block_offset) { 4029 ret = ext4_update_disksize_before_punch(inode, offset, length); 4030 if (ret) 4031 goto out_dio; 4032 truncate_pagecache_range(inode, first_block_offset, 4033 last_block_offset); 4034 } 4035 4036 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4037 credits = ext4_writepage_trans_blocks(inode); 4038 else 4039 credits = ext4_blocks_for_truncate(inode); 4040 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4041 if (IS_ERR(handle)) { 4042 ret = PTR_ERR(handle); 4043 ext4_std_error(sb, ret); 4044 goto out_dio; 4045 } 4046 4047 ret = ext4_zero_partial_blocks(handle, inode, offset, 4048 length); 4049 if (ret) 4050 goto out_stop; 4051 4052 first_block = (offset + sb->s_blocksize - 1) >> 4053 EXT4_BLOCK_SIZE_BITS(sb); 4054 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4055 4056 /* If there are blocks to remove, do it */ 4057 if (stop_block > first_block) { 4058 ext4_lblk_t hole_len = stop_block - first_block; 4059 4060 down_write(&EXT4_I(inode)->i_data_sem); 4061 ext4_discard_preallocations(inode); 4062 4063 ext4_es_remove_extent(inode, first_block, hole_len); 4064 4065 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4066 ret = ext4_ext_remove_space(inode, first_block, 4067 stop_block - 1); 4068 else 4069 ret = ext4_ind_remove_space(handle, inode, first_block, 4070 stop_block); 4071 4072 ext4_es_insert_extent(inode, first_block, hole_len, ~0, 4073 EXTENT_STATUS_HOLE); 4074 up_write(&EXT4_I(inode)->i_data_sem); 4075 } 4076 ext4_fc_track_range(handle, inode, first_block, stop_block); 4077 if (IS_SYNC(inode)) 4078 ext4_handle_sync(handle); 4079 4080 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4081 ret2 = ext4_mark_inode_dirty(handle, inode); 4082 if (unlikely(ret2)) 4083 ret = ret2; 4084 if (ret >= 0) 4085 ext4_update_inode_fsync_trans(handle, inode, 1); 4086 out_stop: 4087 ext4_journal_stop(handle); 4088 out_dio: 4089 filemap_invalidate_unlock(mapping); 4090 out_mutex: 4091 inode_unlock(inode); 4092 return ret; 4093 } 4094 4095 int ext4_inode_attach_jinode(struct inode *inode) 4096 { 4097 struct ext4_inode_info *ei = EXT4_I(inode); 4098 struct jbd2_inode *jinode; 4099 4100 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4101 return 0; 4102 4103 jinode = jbd2_alloc_inode(GFP_KERNEL); 4104 spin_lock(&inode->i_lock); 4105 if (!ei->jinode) { 4106 if (!jinode) { 4107 spin_unlock(&inode->i_lock); 4108 return -ENOMEM; 4109 } 4110 ei->jinode = jinode; 4111 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4112 jinode = NULL; 4113 } 4114 spin_unlock(&inode->i_lock); 4115 if (unlikely(jinode != NULL)) 4116 jbd2_free_inode(jinode); 4117 return 0; 4118 } 4119 4120 /* 4121 * ext4_truncate() 4122 * 4123 * We block out ext4_get_block() block instantiations across the entire 4124 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4125 * simultaneously on behalf of the same inode. 4126 * 4127 * As we work through the truncate and commit bits of it to the journal there 4128 * is one core, guiding principle: the file's tree must always be consistent on 4129 * disk. We must be able to restart the truncate after a crash. 4130 * 4131 * The file's tree may be transiently inconsistent in memory (although it 4132 * probably isn't), but whenever we close off and commit a journal transaction, 4133 * the contents of (the filesystem + the journal) must be consistent and 4134 * restartable. It's pretty simple, really: bottom up, right to left (although 4135 * left-to-right works OK too). 4136 * 4137 * Note that at recovery time, journal replay occurs *before* the restart of 4138 * truncate against the orphan inode list. 4139 * 4140 * The committed inode has the new, desired i_size (which is the same as 4141 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4142 * that this inode's truncate did not complete and it will again call 4143 * ext4_truncate() to have another go. So there will be instantiated blocks 4144 * to the right of the truncation point in a crashed ext4 filesystem. But 4145 * that's fine - as long as they are linked from the inode, the post-crash 4146 * ext4_truncate() run will find them and release them. 4147 */ 4148 int ext4_truncate(struct inode *inode) 4149 { 4150 struct ext4_inode_info *ei = EXT4_I(inode); 4151 unsigned int credits; 4152 int err = 0, err2; 4153 handle_t *handle; 4154 struct address_space *mapping = inode->i_mapping; 4155 4156 /* 4157 * There is a possibility that we're either freeing the inode 4158 * or it's a completely new inode. In those cases we might not 4159 * have i_rwsem locked because it's not necessary. 4160 */ 4161 if (!(inode->i_state & (I_NEW|I_FREEING))) 4162 WARN_ON(!inode_is_locked(inode)); 4163 trace_ext4_truncate_enter(inode); 4164 4165 if (!ext4_can_truncate(inode)) 4166 goto out_trace; 4167 4168 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4169 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4170 4171 if (ext4_has_inline_data(inode)) { 4172 int has_inline = 1; 4173 4174 err = ext4_inline_data_truncate(inode, &has_inline); 4175 if (err || has_inline) 4176 goto out_trace; 4177 } 4178 4179 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4180 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4181 err = ext4_inode_attach_jinode(inode); 4182 if (err) 4183 goto out_trace; 4184 } 4185 4186 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4187 credits = ext4_writepage_trans_blocks(inode); 4188 else 4189 credits = ext4_blocks_for_truncate(inode); 4190 4191 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4192 if (IS_ERR(handle)) { 4193 err = PTR_ERR(handle); 4194 goto out_trace; 4195 } 4196 4197 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4198 ext4_block_truncate_page(handle, mapping, inode->i_size); 4199 4200 /* 4201 * We add the inode to the orphan list, so that if this 4202 * truncate spans multiple transactions, and we crash, we will 4203 * resume the truncate when the filesystem recovers. It also 4204 * marks the inode dirty, to catch the new size. 4205 * 4206 * Implication: the file must always be in a sane, consistent 4207 * truncatable state while each transaction commits. 4208 */ 4209 err = ext4_orphan_add(handle, inode); 4210 if (err) 4211 goto out_stop; 4212 4213 down_write(&EXT4_I(inode)->i_data_sem); 4214 4215 ext4_discard_preallocations(inode); 4216 4217 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4218 err = ext4_ext_truncate(handle, inode); 4219 else 4220 ext4_ind_truncate(handle, inode); 4221 4222 up_write(&ei->i_data_sem); 4223 if (err) 4224 goto out_stop; 4225 4226 if (IS_SYNC(inode)) 4227 ext4_handle_sync(handle); 4228 4229 out_stop: 4230 /* 4231 * If this was a simple ftruncate() and the file will remain alive, 4232 * then we need to clear up the orphan record which we created above. 4233 * However, if this was a real unlink then we were called by 4234 * ext4_evict_inode(), and we allow that function to clean up the 4235 * orphan info for us. 4236 */ 4237 if (inode->i_nlink) 4238 ext4_orphan_del(handle, inode); 4239 4240 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 4241 err2 = ext4_mark_inode_dirty(handle, inode); 4242 if (unlikely(err2 && !err)) 4243 err = err2; 4244 ext4_journal_stop(handle); 4245 4246 out_trace: 4247 trace_ext4_truncate_exit(inode); 4248 return err; 4249 } 4250 4251 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4252 { 4253 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4254 return inode_peek_iversion_raw(inode); 4255 else 4256 return inode_peek_iversion(inode); 4257 } 4258 4259 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4260 struct ext4_inode_info *ei) 4261 { 4262 struct inode *inode = &(ei->vfs_inode); 4263 u64 i_blocks = READ_ONCE(inode->i_blocks); 4264 struct super_block *sb = inode->i_sb; 4265 4266 if (i_blocks <= ~0U) { 4267 /* 4268 * i_blocks can be represented in a 32 bit variable 4269 * as multiple of 512 bytes 4270 */ 4271 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4272 raw_inode->i_blocks_high = 0; 4273 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4274 return 0; 4275 } 4276 4277 /* 4278 * This should never happen since sb->s_maxbytes should not have 4279 * allowed this, sb->s_maxbytes was set according to the huge_file 4280 * feature in ext4_fill_super(). 4281 */ 4282 if (!ext4_has_feature_huge_file(sb)) 4283 return -EFSCORRUPTED; 4284 4285 if (i_blocks <= 0xffffffffffffULL) { 4286 /* 4287 * i_blocks can be represented in a 48 bit variable 4288 * as multiple of 512 bytes 4289 */ 4290 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4291 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4292 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4293 } else { 4294 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4295 /* i_block is stored in file system block size */ 4296 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4297 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4298 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4299 } 4300 return 0; 4301 } 4302 4303 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4304 { 4305 struct ext4_inode_info *ei = EXT4_I(inode); 4306 uid_t i_uid; 4307 gid_t i_gid; 4308 projid_t i_projid; 4309 int block; 4310 int err; 4311 4312 err = ext4_inode_blocks_set(raw_inode, ei); 4313 4314 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4315 i_uid = i_uid_read(inode); 4316 i_gid = i_gid_read(inode); 4317 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4318 if (!(test_opt(inode->i_sb, NO_UID32))) { 4319 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4320 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4321 /* 4322 * Fix up interoperability with old kernels. Otherwise, 4323 * old inodes get re-used with the upper 16 bits of the 4324 * uid/gid intact. 4325 */ 4326 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4327 raw_inode->i_uid_high = 0; 4328 raw_inode->i_gid_high = 0; 4329 } else { 4330 raw_inode->i_uid_high = 4331 cpu_to_le16(high_16_bits(i_uid)); 4332 raw_inode->i_gid_high = 4333 cpu_to_le16(high_16_bits(i_gid)); 4334 } 4335 } else { 4336 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4337 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4338 raw_inode->i_uid_high = 0; 4339 raw_inode->i_gid_high = 0; 4340 } 4341 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4342 4343 EXT4_INODE_SET_CTIME(inode, raw_inode); 4344 EXT4_INODE_SET_MTIME(inode, raw_inode); 4345 EXT4_INODE_SET_ATIME(inode, raw_inode); 4346 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4347 4348 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4349 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4350 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4351 raw_inode->i_file_acl_high = 4352 cpu_to_le16(ei->i_file_acl >> 32); 4353 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4354 ext4_isize_set(raw_inode, ei->i_disksize); 4355 4356 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4357 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4358 if (old_valid_dev(inode->i_rdev)) { 4359 raw_inode->i_block[0] = 4360 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4361 raw_inode->i_block[1] = 0; 4362 } else { 4363 raw_inode->i_block[0] = 0; 4364 raw_inode->i_block[1] = 4365 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4366 raw_inode->i_block[2] = 0; 4367 } 4368 } else if (!ext4_has_inline_data(inode)) { 4369 for (block = 0; block < EXT4_N_BLOCKS; block++) 4370 raw_inode->i_block[block] = ei->i_data[block]; 4371 } 4372 4373 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4374 u64 ivers = ext4_inode_peek_iversion(inode); 4375 4376 raw_inode->i_disk_version = cpu_to_le32(ivers); 4377 if (ei->i_extra_isize) { 4378 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4379 raw_inode->i_version_hi = 4380 cpu_to_le32(ivers >> 32); 4381 raw_inode->i_extra_isize = 4382 cpu_to_le16(ei->i_extra_isize); 4383 } 4384 } 4385 4386 if (i_projid != EXT4_DEF_PROJID && 4387 !ext4_has_feature_project(inode->i_sb)) 4388 err = err ?: -EFSCORRUPTED; 4389 4390 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4391 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4392 raw_inode->i_projid = cpu_to_le32(i_projid); 4393 4394 ext4_inode_csum_set(inode, raw_inode, ei); 4395 return err; 4396 } 4397 4398 /* 4399 * ext4_get_inode_loc returns with an extra refcount against the inode's 4400 * underlying buffer_head on success. If we pass 'inode' and it does not 4401 * have in-inode xattr, we have all inode data in memory that is needed 4402 * to recreate the on-disk version of this inode. 4403 */ 4404 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4405 struct inode *inode, struct ext4_iloc *iloc, 4406 ext4_fsblk_t *ret_block) 4407 { 4408 struct ext4_group_desc *gdp; 4409 struct buffer_head *bh; 4410 ext4_fsblk_t block; 4411 struct blk_plug plug; 4412 int inodes_per_block, inode_offset; 4413 4414 iloc->bh = NULL; 4415 if (ino < EXT4_ROOT_INO || 4416 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4417 return -EFSCORRUPTED; 4418 4419 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4420 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4421 if (!gdp) 4422 return -EIO; 4423 4424 /* 4425 * Figure out the offset within the block group inode table 4426 */ 4427 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4428 inode_offset = ((ino - 1) % 4429 EXT4_INODES_PER_GROUP(sb)); 4430 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4431 4432 block = ext4_inode_table(sb, gdp); 4433 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4434 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4435 ext4_error(sb, "Invalid inode table block %llu in " 4436 "block_group %u", block, iloc->block_group); 4437 return -EFSCORRUPTED; 4438 } 4439 block += (inode_offset / inodes_per_block); 4440 4441 bh = sb_getblk(sb, block); 4442 if (unlikely(!bh)) 4443 return -ENOMEM; 4444 if (ext4_buffer_uptodate(bh)) 4445 goto has_buffer; 4446 4447 lock_buffer(bh); 4448 if (ext4_buffer_uptodate(bh)) { 4449 /* Someone brought it uptodate while we waited */ 4450 unlock_buffer(bh); 4451 goto has_buffer; 4452 } 4453 4454 /* 4455 * If we have all information of the inode in memory and this 4456 * is the only valid inode in the block, we need not read the 4457 * block. 4458 */ 4459 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4460 struct buffer_head *bitmap_bh; 4461 int i, start; 4462 4463 start = inode_offset & ~(inodes_per_block - 1); 4464 4465 /* Is the inode bitmap in cache? */ 4466 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4467 if (unlikely(!bitmap_bh)) 4468 goto make_io; 4469 4470 /* 4471 * If the inode bitmap isn't in cache then the 4472 * optimisation may end up performing two reads instead 4473 * of one, so skip it. 4474 */ 4475 if (!buffer_uptodate(bitmap_bh)) { 4476 brelse(bitmap_bh); 4477 goto make_io; 4478 } 4479 for (i = start; i < start + inodes_per_block; i++) { 4480 if (i == inode_offset) 4481 continue; 4482 if (ext4_test_bit(i, bitmap_bh->b_data)) 4483 break; 4484 } 4485 brelse(bitmap_bh); 4486 if (i == start + inodes_per_block) { 4487 struct ext4_inode *raw_inode = 4488 (struct ext4_inode *) (bh->b_data + iloc->offset); 4489 4490 /* all other inodes are free, so skip I/O */ 4491 memset(bh->b_data, 0, bh->b_size); 4492 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4493 ext4_fill_raw_inode(inode, raw_inode); 4494 set_buffer_uptodate(bh); 4495 unlock_buffer(bh); 4496 goto has_buffer; 4497 } 4498 } 4499 4500 make_io: 4501 /* 4502 * If we need to do any I/O, try to pre-readahead extra 4503 * blocks from the inode table. 4504 */ 4505 blk_start_plug(&plug); 4506 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4507 ext4_fsblk_t b, end, table; 4508 unsigned num; 4509 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4510 4511 table = ext4_inode_table(sb, gdp); 4512 /* s_inode_readahead_blks is always a power of 2 */ 4513 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4514 if (table > b) 4515 b = table; 4516 end = b + ra_blks; 4517 num = EXT4_INODES_PER_GROUP(sb); 4518 if (ext4_has_group_desc_csum(sb)) 4519 num -= ext4_itable_unused_count(sb, gdp); 4520 table += num / inodes_per_block; 4521 if (end > table) 4522 end = table; 4523 while (b <= end) 4524 ext4_sb_breadahead_unmovable(sb, b++); 4525 } 4526 4527 /* 4528 * There are other valid inodes in the buffer, this inode 4529 * has in-inode xattrs, or we don't have this inode in memory. 4530 * Read the block from disk. 4531 */ 4532 trace_ext4_load_inode(sb, ino); 4533 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4534 blk_finish_plug(&plug); 4535 wait_on_buffer(bh); 4536 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4537 if (!buffer_uptodate(bh)) { 4538 if (ret_block) 4539 *ret_block = block; 4540 brelse(bh); 4541 return -EIO; 4542 } 4543 has_buffer: 4544 iloc->bh = bh; 4545 return 0; 4546 } 4547 4548 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4549 struct ext4_iloc *iloc) 4550 { 4551 ext4_fsblk_t err_blk = 0; 4552 int ret; 4553 4554 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4555 &err_blk); 4556 4557 if (ret == -EIO) 4558 ext4_error_inode_block(inode, err_blk, EIO, 4559 "unable to read itable block"); 4560 4561 return ret; 4562 } 4563 4564 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4565 { 4566 ext4_fsblk_t err_blk = 0; 4567 int ret; 4568 4569 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4570 &err_blk); 4571 4572 if (ret == -EIO) 4573 ext4_error_inode_block(inode, err_blk, EIO, 4574 "unable to read itable block"); 4575 4576 return ret; 4577 } 4578 4579 4580 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4581 struct ext4_iloc *iloc) 4582 { 4583 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4584 } 4585 4586 static bool ext4_should_enable_dax(struct inode *inode) 4587 { 4588 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4589 4590 if (test_opt2(inode->i_sb, DAX_NEVER)) 4591 return false; 4592 if (!S_ISREG(inode->i_mode)) 4593 return false; 4594 if (ext4_should_journal_data(inode)) 4595 return false; 4596 if (ext4_has_inline_data(inode)) 4597 return false; 4598 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4599 return false; 4600 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4601 return false; 4602 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4603 return false; 4604 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4605 return true; 4606 4607 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4608 } 4609 4610 void ext4_set_inode_flags(struct inode *inode, bool init) 4611 { 4612 unsigned int flags = EXT4_I(inode)->i_flags; 4613 unsigned int new_fl = 0; 4614 4615 WARN_ON_ONCE(IS_DAX(inode) && init); 4616 4617 if (flags & EXT4_SYNC_FL) 4618 new_fl |= S_SYNC; 4619 if (flags & EXT4_APPEND_FL) 4620 new_fl |= S_APPEND; 4621 if (flags & EXT4_IMMUTABLE_FL) 4622 new_fl |= S_IMMUTABLE; 4623 if (flags & EXT4_NOATIME_FL) 4624 new_fl |= S_NOATIME; 4625 if (flags & EXT4_DIRSYNC_FL) 4626 new_fl |= S_DIRSYNC; 4627 4628 /* Because of the way inode_set_flags() works we must preserve S_DAX 4629 * here if already set. */ 4630 new_fl |= (inode->i_flags & S_DAX); 4631 if (init && ext4_should_enable_dax(inode)) 4632 new_fl |= S_DAX; 4633 4634 if (flags & EXT4_ENCRYPT_FL) 4635 new_fl |= S_ENCRYPTED; 4636 if (flags & EXT4_CASEFOLD_FL) 4637 new_fl |= S_CASEFOLD; 4638 if (flags & EXT4_VERITY_FL) 4639 new_fl |= S_VERITY; 4640 inode_set_flags(inode, new_fl, 4641 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4642 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4643 } 4644 4645 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4646 struct ext4_inode_info *ei) 4647 { 4648 blkcnt_t i_blocks ; 4649 struct inode *inode = &(ei->vfs_inode); 4650 struct super_block *sb = inode->i_sb; 4651 4652 if (ext4_has_feature_huge_file(sb)) { 4653 /* we are using combined 48 bit field */ 4654 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4655 le32_to_cpu(raw_inode->i_blocks_lo); 4656 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4657 /* i_blocks represent file system block size */ 4658 return i_blocks << (inode->i_blkbits - 9); 4659 } else { 4660 return i_blocks; 4661 } 4662 } else { 4663 return le32_to_cpu(raw_inode->i_blocks_lo); 4664 } 4665 } 4666 4667 static inline int ext4_iget_extra_inode(struct inode *inode, 4668 struct ext4_inode *raw_inode, 4669 struct ext4_inode_info *ei) 4670 { 4671 __le32 *magic = (void *)raw_inode + 4672 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4673 4674 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4675 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4676 int err; 4677 4678 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4679 err = ext4_find_inline_data_nolock(inode); 4680 if (!err && ext4_has_inline_data(inode)) 4681 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4682 return err; 4683 } else 4684 EXT4_I(inode)->i_inline_off = 0; 4685 return 0; 4686 } 4687 4688 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4689 { 4690 if (!ext4_has_feature_project(inode->i_sb)) 4691 return -EOPNOTSUPP; 4692 *projid = EXT4_I(inode)->i_projid; 4693 return 0; 4694 } 4695 4696 /* 4697 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4698 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4699 * set. 4700 */ 4701 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4702 { 4703 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4704 inode_set_iversion_raw(inode, val); 4705 else 4706 inode_set_iversion_queried(inode, val); 4707 } 4708 4709 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags) 4710 4711 { 4712 if (flags & EXT4_IGET_EA_INODE) { 4713 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4714 return "missing EA_INODE flag"; 4715 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 4716 EXT4_I(inode)->i_file_acl) 4717 return "ea_inode with extended attributes"; 4718 } else { 4719 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4720 return "unexpected EA_INODE flag"; 4721 } 4722 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) 4723 return "unexpected bad inode w/o EXT4_IGET_BAD"; 4724 return NULL; 4725 } 4726 4727 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4728 ext4_iget_flags flags, const char *function, 4729 unsigned int line) 4730 { 4731 struct ext4_iloc iloc; 4732 struct ext4_inode *raw_inode; 4733 struct ext4_inode_info *ei; 4734 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4735 struct inode *inode; 4736 const char *err_str; 4737 journal_t *journal = EXT4_SB(sb)->s_journal; 4738 long ret; 4739 loff_t size; 4740 int block; 4741 uid_t i_uid; 4742 gid_t i_gid; 4743 projid_t i_projid; 4744 4745 if ((!(flags & EXT4_IGET_SPECIAL) && 4746 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4747 ino == le32_to_cpu(es->s_usr_quota_inum) || 4748 ino == le32_to_cpu(es->s_grp_quota_inum) || 4749 ino == le32_to_cpu(es->s_prj_quota_inum) || 4750 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4751 (ino < EXT4_ROOT_INO) || 4752 (ino > le32_to_cpu(es->s_inodes_count))) { 4753 if (flags & EXT4_IGET_HANDLE) 4754 return ERR_PTR(-ESTALE); 4755 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4756 "inode #%lu: comm %s: iget: illegal inode #", 4757 ino, current->comm); 4758 return ERR_PTR(-EFSCORRUPTED); 4759 } 4760 4761 inode = iget_locked(sb, ino); 4762 if (!inode) 4763 return ERR_PTR(-ENOMEM); 4764 if (!(inode->i_state & I_NEW)) { 4765 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 4766 ext4_error_inode(inode, function, line, 0, err_str); 4767 iput(inode); 4768 return ERR_PTR(-EFSCORRUPTED); 4769 } 4770 return inode; 4771 } 4772 4773 ei = EXT4_I(inode); 4774 iloc.bh = NULL; 4775 4776 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4777 if (ret < 0) 4778 goto bad_inode; 4779 raw_inode = ext4_raw_inode(&iloc); 4780 4781 if ((flags & EXT4_IGET_HANDLE) && 4782 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4783 ret = -ESTALE; 4784 goto bad_inode; 4785 } 4786 4787 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4788 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4789 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4790 EXT4_INODE_SIZE(inode->i_sb) || 4791 (ei->i_extra_isize & 3)) { 4792 ext4_error_inode(inode, function, line, 0, 4793 "iget: bad extra_isize %u " 4794 "(inode size %u)", 4795 ei->i_extra_isize, 4796 EXT4_INODE_SIZE(inode->i_sb)); 4797 ret = -EFSCORRUPTED; 4798 goto bad_inode; 4799 } 4800 } else 4801 ei->i_extra_isize = 0; 4802 4803 /* Precompute checksum seed for inode metadata */ 4804 if (ext4_has_metadata_csum(sb)) { 4805 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4806 __u32 csum; 4807 __le32 inum = cpu_to_le32(inode->i_ino); 4808 __le32 gen = raw_inode->i_generation; 4809 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4810 sizeof(inum)); 4811 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4812 sizeof(gen)); 4813 } 4814 4815 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4816 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4817 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4818 ext4_error_inode_err(inode, function, line, 0, 4819 EFSBADCRC, "iget: checksum invalid"); 4820 ret = -EFSBADCRC; 4821 goto bad_inode; 4822 } 4823 4824 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4825 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4826 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4827 if (ext4_has_feature_project(sb) && 4828 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4829 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4830 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4831 else 4832 i_projid = EXT4_DEF_PROJID; 4833 4834 if (!(test_opt(inode->i_sb, NO_UID32))) { 4835 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4836 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4837 } 4838 i_uid_write(inode, i_uid); 4839 i_gid_write(inode, i_gid); 4840 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4841 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4842 4843 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4844 ei->i_inline_off = 0; 4845 ei->i_dir_start_lookup = 0; 4846 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4847 /* We now have enough fields to check if the inode was active or not. 4848 * This is needed because nfsd might try to access dead inodes 4849 * the test is that same one that e2fsck uses 4850 * NeilBrown 1999oct15 4851 */ 4852 if (inode->i_nlink == 0) { 4853 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4854 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4855 ino != EXT4_BOOT_LOADER_INO) { 4856 /* this inode is deleted or unallocated */ 4857 if (flags & EXT4_IGET_SPECIAL) { 4858 ext4_error_inode(inode, function, line, 0, 4859 "iget: special inode unallocated"); 4860 ret = -EFSCORRUPTED; 4861 } else 4862 ret = -ESTALE; 4863 goto bad_inode; 4864 } 4865 /* The only unlinked inodes we let through here have 4866 * valid i_mode and are being read by the orphan 4867 * recovery code: that's fine, we're about to complete 4868 * the process of deleting those. 4869 * OR it is the EXT4_BOOT_LOADER_INO which is 4870 * not initialized on a new filesystem. */ 4871 } 4872 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4873 ext4_set_inode_flags(inode, true); 4874 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4875 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4876 if (ext4_has_feature_64bit(sb)) 4877 ei->i_file_acl |= 4878 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4879 inode->i_size = ext4_isize(sb, raw_inode); 4880 if ((size = i_size_read(inode)) < 0) { 4881 ext4_error_inode(inode, function, line, 0, 4882 "iget: bad i_size value: %lld", size); 4883 ret = -EFSCORRUPTED; 4884 goto bad_inode; 4885 } 4886 /* 4887 * If dir_index is not enabled but there's dir with INDEX flag set, 4888 * we'd normally treat htree data as empty space. But with metadata 4889 * checksumming that corrupts checksums so forbid that. 4890 */ 4891 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4892 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4893 ext4_error_inode(inode, function, line, 0, 4894 "iget: Dir with htree data on filesystem without dir_index feature."); 4895 ret = -EFSCORRUPTED; 4896 goto bad_inode; 4897 } 4898 ei->i_disksize = inode->i_size; 4899 #ifdef CONFIG_QUOTA 4900 ei->i_reserved_quota = 0; 4901 #endif 4902 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4903 ei->i_block_group = iloc.block_group; 4904 ei->i_last_alloc_group = ~0; 4905 /* 4906 * NOTE! The in-memory inode i_data array is in little-endian order 4907 * even on big-endian machines: we do NOT byteswap the block numbers! 4908 */ 4909 for (block = 0; block < EXT4_N_BLOCKS; block++) 4910 ei->i_data[block] = raw_inode->i_block[block]; 4911 INIT_LIST_HEAD(&ei->i_orphan); 4912 ext4_fc_init_inode(&ei->vfs_inode); 4913 4914 /* 4915 * Set transaction id's of transactions that have to be committed 4916 * to finish f[data]sync. We set them to currently running transaction 4917 * as we cannot be sure that the inode or some of its metadata isn't 4918 * part of the transaction - the inode could have been reclaimed and 4919 * now it is reread from disk. 4920 */ 4921 if (journal) { 4922 transaction_t *transaction; 4923 tid_t tid; 4924 4925 read_lock(&journal->j_state_lock); 4926 if (journal->j_running_transaction) 4927 transaction = journal->j_running_transaction; 4928 else 4929 transaction = journal->j_committing_transaction; 4930 if (transaction) 4931 tid = transaction->t_tid; 4932 else 4933 tid = journal->j_commit_sequence; 4934 read_unlock(&journal->j_state_lock); 4935 ei->i_sync_tid = tid; 4936 ei->i_datasync_tid = tid; 4937 } 4938 4939 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4940 if (ei->i_extra_isize == 0) { 4941 /* The extra space is currently unused. Use it. */ 4942 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4943 ei->i_extra_isize = sizeof(struct ext4_inode) - 4944 EXT4_GOOD_OLD_INODE_SIZE; 4945 } else { 4946 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4947 if (ret) 4948 goto bad_inode; 4949 } 4950 } 4951 4952 EXT4_INODE_GET_CTIME(inode, raw_inode); 4953 EXT4_INODE_GET_ATIME(inode, raw_inode); 4954 EXT4_INODE_GET_MTIME(inode, raw_inode); 4955 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4956 4957 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4958 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4959 4960 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4961 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4962 ivers |= 4963 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4964 } 4965 ext4_inode_set_iversion_queried(inode, ivers); 4966 } 4967 4968 ret = 0; 4969 if (ei->i_file_acl && 4970 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4971 ext4_error_inode(inode, function, line, 0, 4972 "iget: bad extended attribute block %llu", 4973 ei->i_file_acl); 4974 ret = -EFSCORRUPTED; 4975 goto bad_inode; 4976 } else if (!ext4_has_inline_data(inode)) { 4977 /* validate the block references in the inode */ 4978 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4979 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4980 (S_ISLNK(inode->i_mode) && 4981 !ext4_inode_is_fast_symlink(inode)))) { 4982 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4983 ret = ext4_ext_check_inode(inode); 4984 else 4985 ret = ext4_ind_check_inode(inode); 4986 } 4987 } 4988 if (ret) 4989 goto bad_inode; 4990 4991 if (S_ISREG(inode->i_mode)) { 4992 inode->i_op = &ext4_file_inode_operations; 4993 inode->i_fop = &ext4_file_operations; 4994 ext4_set_aops(inode); 4995 } else if (S_ISDIR(inode->i_mode)) { 4996 inode->i_op = &ext4_dir_inode_operations; 4997 inode->i_fop = &ext4_dir_operations; 4998 } else if (S_ISLNK(inode->i_mode)) { 4999 /* VFS does not allow setting these so must be corruption */ 5000 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5001 ext4_error_inode(inode, function, line, 0, 5002 "iget: immutable or append flags " 5003 "not allowed on symlinks"); 5004 ret = -EFSCORRUPTED; 5005 goto bad_inode; 5006 } 5007 if (IS_ENCRYPTED(inode)) { 5008 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5009 } else if (ext4_inode_is_fast_symlink(inode)) { 5010 inode->i_link = (char *)ei->i_data; 5011 inode->i_op = &ext4_fast_symlink_inode_operations; 5012 nd_terminate_link(ei->i_data, inode->i_size, 5013 sizeof(ei->i_data) - 1); 5014 } else { 5015 inode->i_op = &ext4_symlink_inode_operations; 5016 } 5017 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5018 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5019 inode->i_op = &ext4_special_inode_operations; 5020 if (raw_inode->i_block[0]) 5021 init_special_inode(inode, inode->i_mode, 5022 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5023 else 5024 init_special_inode(inode, inode->i_mode, 5025 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5026 } else if (ino == EXT4_BOOT_LOADER_INO) { 5027 make_bad_inode(inode); 5028 } else { 5029 ret = -EFSCORRUPTED; 5030 ext4_error_inode(inode, function, line, 0, 5031 "iget: bogus i_mode (%o)", inode->i_mode); 5032 goto bad_inode; 5033 } 5034 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) { 5035 ext4_error_inode(inode, function, line, 0, 5036 "casefold flag without casefold feature"); 5037 ret = -EFSCORRUPTED; 5038 goto bad_inode; 5039 } 5040 if ((err_str = check_igot_inode(inode, flags)) != NULL) { 5041 ext4_error_inode(inode, function, line, 0, err_str); 5042 ret = -EFSCORRUPTED; 5043 goto bad_inode; 5044 } 5045 5046 brelse(iloc.bh); 5047 unlock_new_inode(inode); 5048 return inode; 5049 5050 bad_inode: 5051 brelse(iloc.bh); 5052 iget_failed(inode); 5053 return ERR_PTR(ret); 5054 } 5055 5056 static void __ext4_update_other_inode_time(struct super_block *sb, 5057 unsigned long orig_ino, 5058 unsigned long ino, 5059 struct ext4_inode *raw_inode) 5060 { 5061 struct inode *inode; 5062 5063 inode = find_inode_by_ino_rcu(sb, ino); 5064 if (!inode) 5065 return; 5066 5067 if (!inode_is_dirtytime_only(inode)) 5068 return; 5069 5070 spin_lock(&inode->i_lock); 5071 if (inode_is_dirtytime_only(inode)) { 5072 struct ext4_inode_info *ei = EXT4_I(inode); 5073 5074 inode->i_state &= ~I_DIRTY_TIME; 5075 spin_unlock(&inode->i_lock); 5076 5077 spin_lock(&ei->i_raw_lock); 5078 EXT4_INODE_SET_CTIME(inode, raw_inode); 5079 EXT4_INODE_SET_MTIME(inode, raw_inode); 5080 EXT4_INODE_SET_ATIME(inode, raw_inode); 5081 ext4_inode_csum_set(inode, raw_inode, ei); 5082 spin_unlock(&ei->i_raw_lock); 5083 trace_ext4_other_inode_update_time(inode, orig_ino); 5084 return; 5085 } 5086 spin_unlock(&inode->i_lock); 5087 } 5088 5089 /* 5090 * Opportunistically update the other time fields for other inodes in 5091 * the same inode table block. 5092 */ 5093 static void ext4_update_other_inodes_time(struct super_block *sb, 5094 unsigned long orig_ino, char *buf) 5095 { 5096 unsigned long ino; 5097 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5098 int inode_size = EXT4_INODE_SIZE(sb); 5099 5100 /* 5101 * Calculate the first inode in the inode table block. Inode 5102 * numbers are one-based. That is, the first inode in a block 5103 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5104 */ 5105 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5106 rcu_read_lock(); 5107 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5108 if (ino == orig_ino) 5109 continue; 5110 __ext4_update_other_inode_time(sb, orig_ino, ino, 5111 (struct ext4_inode *)buf); 5112 } 5113 rcu_read_unlock(); 5114 } 5115 5116 /* 5117 * Post the struct inode info into an on-disk inode location in the 5118 * buffer-cache. This gobbles the caller's reference to the 5119 * buffer_head in the inode location struct. 5120 * 5121 * The caller must have write access to iloc->bh. 5122 */ 5123 static int ext4_do_update_inode(handle_t *handle, 5124 struct inode *inode, 5125 struct ext4_iloc *iloc) 5126 { 5127 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5128 struct ext4_inode_info *ei = EXT4_I(inode); 5129 struct buffer_head *bh = iloc->bh; 5130 struct super_block *sb = inode->i_sb; 5131 int err; 5132 int need_datasync = 0, set_large_file = 0; 5133 5134 spin_lock(&ei->i_raw_lock); 5135 5136 /* 5137 * For fields not tracked in the in-memory inode, initialise them 5138 * to zero for new inodes. 5139 */ 5140 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5141 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5142 5143 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5144 need_datasync = 1; 5145 if (ei->i_disksize > 0x7fffffffULL) { 5146 if (!ext4_has_feature_large_file(sb) || 5147 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5148 set_large_file = 1; 5149 } 5150 5151 err = ext4_fill_raw_inode(inode, raw_inode); 5152 spin_unlock(&ei->i_raw_lock); 5153 if (err) { 5154 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5155 goto out_brelse; 5156 } 5157 5158 if (inode->i_sb->s_flags & SB_LAZYTIME) 5159 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5160 bh->b_data); 5161 5162 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5163 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5164 if (err) 5165 goto out_error; 5166 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5167 if (set_large_file) { 5168 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5169 err = ext4_journal_get_write_access(handle, sb, 5170 EXT4_SB(sb)->s_sbh, 5171 EXT4_JTR_NONE); 5172 if (err) 5173 goto out_error; 5174 lock_buffer(EXT4_SB(sb)->s_sbh); 5175 ext4_set_feature_large_file(sb); 5176 ext4_superblock_csum_set(sb); 5177 unlock_buffer(EXT4_SB(sb)->s_sbh); 5178 ext4_handle_sync(handle); 5179 err = ext4_handle_dirty_metadata(handle, NULL, 5180 EXT4_SB(sb)->s_sbh); 5181 } 5182 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5183 out_error: 5184 ext4_std_error(inode->i_sb, err); 5185 out_brelse: 5186 brelse(bh); 5187 return err; 5188 } 5189 5190 /* 5191 * ext4_write_inode() 5192 * 5193 * We are called from a few places: 5194 * 5195 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5196 * Here, there will be no transaction running. We wait for any running 5197 * transaction to commit. 5198 * 5199 * - Within flush work (sys_sync(), kupdate and such). 5200 * We wait on commit, if told to. 5201 * 5202 * - Within iput_final() -> write_inode_now() 5203 * We wait on commit, if told to. 5204 * 5205 * In all cases it is actually safe for us to return without doing anything, 5206 * because the inode has been copied into a raw inode buffer in 5207 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5208 * writeback. 5209 * 5210 * Note that we are absolutely dependent upon all inode dirtiers doing the 5211 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5212 * which we are interested. 5213 * 5214 * It would be a bug for them to not do this. The code: 5215 * 5216 * mark_inode_dirty(inode) 5217 * stuff(); 5218 * inode->i_size = expr; 5219 * 5220 * is in error because write_inode() could occur while `stuff()' is running, 5221 * and the new i_size will be lost. Plus the inode will no longer be on the 5222 * superblock's dirty inode list. 5223 */ 5224 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5225 { 5226 int err; 5227 5228 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 5229 return 0; 5230 5231 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5232 return -EIO; 5233 5234 if (EXT4_SB(inode->i_sb)->s_journal) { 5235 if (ext4_journal_current_handle()) { 5236 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5237 dump_stack(); 5238 return -EIO; 5239 } 5240 5241 /* 5242 * No need to force transaction in WB_SYNC_NONE mode. Also 5243 * ext4_sync_fs() will force the commit after everything is 5244 * written. 5245 */ 5246 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5247 return 0; 5248 5249 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5250 EXT4_I(inode)->i_sync_tid); 5251 } else { 5252 struct ext4_iloc iloc; 5253 5254 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5255 if (err) 5256 return err; 5257 /* 5258 * sync(2) will flush the whole buffer cache. No need to do 5259 * it here separately for each inode. 5260 */ 5261 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5262 sync_dirty_buffer(iloc.bh); 5263 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5264 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5265 "IO error syncing inode"); 5266 err = -EIO; 5267 } 5268 brelse(iloc.bh); 5269 } 5270 return err; 5271 } 5272 5273 /* 5274 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5275 * buffers that are attached to a folio straddling i_size and are undergoing 5276 * commit. In that case we have to wait for commit to finish and try again. 5277 */ 5278 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5279 { 5280 unsigned offset; 5281 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5282 tid_t commit_tid; 5283 int ret; 5284 bool has_transaction; 5285 5286 offset = inode->i_size & (PAGE_SIZE - 1); 5287 /* 5288 * If the folio is fully truncated, we don't need to wait for any commit 5289 * (and we even should not as __ext4_journalled_invalidate_folio() may 5290 * strip all buffers from the folio but keep the folio dirty which can then 5291 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5292 * buffers). Also we don't need to wait for any commit if all buffers in 5293 * the folio remain valid. This is most beneficial for the common case of 5294 * blocksize == PAGESIZE. 5295 */ 5296 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5297 return; 5298 while (1) { 5299 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5300 inode->i_size >> PAGE_SHIFT); 5301 if (IS_ERR(folio)) 5302 return; 5303 ret = __ext4_journalled_invalidate_folio(folio, offset, 5304 folio_size(folio) - offset); 5305 folio_unlock(folio); 5306 folio_put(folio); 5307 if (ret != -EBUSY) 5308 return; 5309 has_transaction = false; 5310 read_lock(&journal->j_state_lock); 5311 if (journal->j_committing_transaction) { 5312 commit_tid = journal->j_committing_transaction->t_tid; 5313 has_transaction = true; 5314 } 5315 read_unlock(&journal->j_state_lock); 5316 if (has_transaction) 5317 jbd2_log_wait_commit(journal, commit_tid); 5318 } 5319 } 5320 5321 /* 5322 * ext4_setattr() 5323 * 5324 * Called from notify_change. 5325 * 5326 * We want to trap VFS attempts to truncate the file as soon as 5327 * possible. In particular, we want to make sure that when the VFS 5328 * shrinks i_size, we put the inode on the orphan list and modify 5329 * i_disksize immediately, so that during the subsequent flushing of 5330 * dirty pages and freeing of disk blocks, we can guarantee that any 5331 * commit will leave the blocks being flushed in an unused state on 5332 * disk. (On recovery, the inode will get truncated and the blocks will 5333 * be freed, so we have a strong guarantee that no future commit will 5334 * leave these blocks visible to the user.) 5335 * 5336 * Another thing we have to assure is that if we are in ordered mode 5337 * and inode is still attached to the committing transaction, we must 5338 * we start writeout of all the dirty pages which are being truncated. 5339 * This way we are sure that all the data written in the previous 5340 * transaction are already on disk (truncate waits for pages under 5341 * writeback). 5342 * 5343 * Called with inode->i_rwsem down. 5344 */ 5345 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5346 struct iattr *attr) 5347 { 5348 struct inode *inode = d_inode(dentry); 5349 int error, rc = 0; 5350 int orphan = 0; 5351 const unsigned int ia_valid = attr->ia_valid; 5352 bool inc_ivers = true; 5353 5354 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5355 return -EIO; 5356 5357 if (unlikely(IS_IMMUTABLE(inode))) 5358 return -EPERM; 5359 5360 if (unlikely(IS_APPEND(inode) && 5361 (ia_valid & (ATTR_MODE | ATTR_UID | 5362 ATTR_GID | ATTR_TIMES_SET)))) 5363 return -EPERM; 5364 5365 error = setattr_prepare(idmap, dentry, attr); 5366 if (error) 5367 return error; 5368 5369 error = fscrypt_prepare_setattr(dentry, attr); 5370 if (error) 5371 return error; 5372 5373 error = fsverity_prepare_setattr(dentry, attr); 5374 if (error) 5375 return error; 5376 5377 if (is_quota_modification(idmap, inode, attr)) { 5378 error = dquot_initialize(inode); 5379 if (error) 5380 return error; 5381 } 5382 5383 if (i_uid_needs_update(idmap, attr, inode) || 5384 i_gid_needs_update(idmap, attr, inode)) { 5385 handle_t *handle; 5386 5387 /* (user+group)*(old+new) structure, inode write (sb, 5388 * inode block, ? - but truncate inode update has it) */ 5389 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5390 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5391 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5392 if (IS_ERR(handle)) { 5393 error = PTR_ERR(handle); 5394 goto err_out; 5395 } 5396 5397 /* dquot_transfer() calls back ext4_get_inode_usage() which 5398 * counts xattr inode references. 5399 */ 5400 down_read(&EXT4_I(inode)->xattr_sem); 5401 error = dquot_transfer(idmap, inode, attr); 5402 up_read(&EXT4_I(inode)->xattr_sem); 5403 5404 if (error) { 5405 ext4_journal_stop(handle); 5406 return error; 5407 } 5408 /* Update corresponding info in inode so that everything is in 5409 * one transaction */ 5410 i_uid_update(idmap, attr, inode); 5411 i_gid_update(idmap, attr, inode); 5412 error = ext4_mark_inode_dirty(handle, inode); 5413 ext4_journal_stop(handle); 5414 if (unlikely(error)) { 5415 return error; 5416 } 5417 } 5418 5419 if (attr->ia_valid & ATTR_SIZE) { 5420 handle_t *handle; 5421 loff_t oldsize = inode->i_size; 5422 loff_t old_disksize; 5423 int shrink = (attr->ia_size < inode->i_size); 5424 5425 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5426 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5427 5428 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5429 return -EFBIG; 5430 } 5431 } 5432 if (!S_ISREG(inode->i_mode)) { 5433 return -EINVAL; 5434 } 5435 5436 if (attr->ia_size == inode->i_size) 5437 inc_ivers = false; 5438 5439 if (shrink) { 5440 if (ext4_should_order_data(inode)) { 5441 error = ext4_begin_ordered_truncate(inode, 5442 attr->ia_size); 5443 if (error) 5444 goto err_out; 5445 } 5446 /* 5447 * Blocks are going to be removed from the inode. Wait 5448 * for dio in flight. 5449 */ 5450 inode_dio_wait(inode); 5451 } 5452 5453 filemap_invalidate_lock(inode->i_mapping); 5454 5455 rc = ext4_break_layouts(inode); 5456 if (rc) { 5457 filemap_invalidate_unlock(inode->i_mapping); 5458 goto err_out; 5459 } 5460 5461 if (attr->ia_size != inode->i_size) { 5462 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5463 if (IS_ERR(handle)) { 5464 error = PTR_ERR(handle); 5465 goto out_mmap_sem; 5466 } 5467 if (ext4_handle_valid(handle) && shrink) { 5468 error = ext4_orphan_add(handle, inode); 5469 orphan = 1; 5470 } 5471 /* 5472 * Update c/mtime on truncate up, ext4_truncate() will 5473 * update c/mtime in shrink case below 5474 */ 5475 if (!shrink) 5476 inode_set_mtime_to_ts(inode, 5477 inode_set_ctime_current(inode)); 5478 5479 if (shrink) 5480 ext4_fc_track_range(handle, inode, 5481 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5482 inode->i_sb->s_blocksize_bits, 5483 EXT_MAX_BLOCKS - 1); 5484 else 5485 ext4_fc_track_range( 5486 handle, inode, 5487 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5488 inode->i_sb->s_blocksize_bits, 5489 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5490 inode->i_sb->s_blocksize_bits); 5491 5492 down_write(&EXT4_I(inode)->i_data_sem); 5493 old_disksize = EXT4_I(inode)->i_disksize; 5494 EXT4_I(inode)->i_disksize = attr->ia_size; 5495 rc = ext4_mark_inode_dirty(handle, inode); 5496 if (!error) 5497 error = rc; 5498 /* 5499 * We have to update i_size under i_data_sem together 5500 * with i_disksize to avoid races with writeback code 5501 * running ext4_wb_update_i_disksize(). 5502 */ 5503 if (!error) 5504 i_size_write(inode, attr->ia_size); 5505 else 5506 EXT4_I(inode)->i_disksize = old_disksize; 5507 up_write(&EXT4_I(inode)->i_data_sem); 5508 ext4_journal_stop(handle); 5509 if (error) 5510 goto out_mmap_sem; 5511 if (!shrink) { 5512 pagecache_isize_extended(inode, oldsize, 5513 inode->i_size); 5514 } else if (ext4_should_journal_data(inode)) { 5515 ext4_wait_for_tail_page_commit(inode); 5516 } 5517 } 5518 5519 /* 5520 * Truncate pagecache after we've waited for commit 5521 * in data=journal mode to make pages freeable. 5522 */ 5523 truncate_pagecache(inode, inode->i_size); 5524 /* 5525 * Call ext4_truncate() even if i_size didn't change to 5526 * truncate possible preallocated blocks. 5527 */ 5528 if (attr->ia_size <= oldsize) { 5529 rc = ext4_truncate(inode); 5530 if (rc) 5531 error = rc; 5532 } 5533 out_mmap_sem: 5534 filemap_invalidate_unlock(inode->i_mapping); 5535 } 5536 5537 if (!error) { 5538 if (inc_ivers) 5539 inode_inc_iversion(inode); 5540 setattr_copy(idmap, inode, attr); 5541 mark_inode_dirty(inode); 5542 } 5543 5544 /* 5545 * If the call to ext4_truncate failed to get a transaction handle at 5546 * all, we need to clean up the in-core orphan list manually. 5547 */ 5548 if (orphan && inode->i_nlink) 5549 ext4_orphan_del(NULL, inode); 5550 5551 if (!error && (ia_valid & ATTR_MODE)) 5552 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5553 5554 err_out: 5555 if (error) 5556 ext4_std_error(inode->i_sb, error); 5557 if (!error) 5558 error = rc; 5559 return error; 5560 } 5561 5562 u32 ext4_dio_alignment(struct inode *inode) 5563 { 5564 if (fsverity_active(inode)) 5565 return 0; 5566 if (ext4_should_journal_data(inode)) 5567 return 0; 5568 if (ext4_has_inline_data(inode)) 5569 return 0; 5570 if (IS_ENCRYPTED(inode)) { 5571 if (!fscrypt_dio_supported(inode)) 5572 return 0; 5573 return i_blocksize(inode); 5574 } 5575 return 1; /* use the iomap defaults */ 5576 } 5577 5578 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5579 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5580 { 5581 struct inode *inode = d_inode(path->dentry); 5582 struct ext4_inode *raw_inode; 5583 struct ext4_inode_info *ei = EXT4_I(inode); 5584 unsigned int flags; 5585 5586 if ((request_mask & STATX_BTIME) && 5587 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5588 stat->result_mask |= STATX_BTIME; 5589 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5590 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5591 } 5592 5593 /* 5594 * Return the DIO alignment restrictions if requested. We only return 5595 * this information when requested, since on encrypted files it might 5596 * take a fair bit of work to get if the file wasn't opened recently. 5597 */ 5598 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5599 u32 dio_align = ext4_dio_alignment(inode); 5600 5601 stat->result_mask |= STATX_DIOALIGN; 5602 if (dio_align == 1) { 5603 struct block_device *bdev = inode->i_sb->s_bdev; 5604 5605 /* iomap defaults */ 5606 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5607 stat->dio_offset_align = bdev_logical_block_size(bdev); 5608 } else { 5609 stat->dio_mem_align = dio_align; 5610 stat->dio_offset_align = dio_align; 5611 } 5612 } 5613 5614 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5615 if (flags & EXT4_APPEND_FL) 5616 stat->attributes |= STATX_ATTR_APPEND; 5617 if (flags & EXT4_COMPR_FL) 5618 stat->attributes |= STATX_ATTR_COMPRESSED; 5619 if (flags & EXT4_ENCRYPT_FL) 5620 stat->attributes |= STATX_ATTR_ENCRYPTED; 5621 if (flags & EXT4_IMMUTABLE_FL) 5622 stat->attributes |= STATX_ATTR_IMMUTABLE; 5623 if (flags & EXT4_NODUMP_FL) 5624 stat->attributes |= STATX_ATTR_NODUMP; 5625 if (flags & EXT4_VERITY_FL) 5626 stat->attributes |= STATX_ATTR_VERITY; 5627 5628 stat->attributes_mask |= (STATX_ATTR_APPEND | 5629 STATX_ATTR_COMPRESSED | 5630 STATX_ATTR_ENCRYPTED | 5631 STATX_ATTR_IMMUTABLE | 5632 STATX_ATTR_NODUMP | 5633 STATX_ATTR_VERITY); 5634 5635 generic_fillattr(idmap, request_mask, inode, stat); 5636 return 0; 5637 } 5638 5639 int ext4_file_getattr(struct mnt_idmap *idmap, 5640 const struct path *path, struct kstat *stat, 5641 u32 request_mask, unsigned int query_flags) 5642 { 5643 struct inode *inode = d_inode(path->dentry); 5644 u64 delalloc_blocks; 5645 5646 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5647 5648 /* 5649 * If there is inline data in the inode, the inode will normally not 5650 * have data blocks allocated (it may have an external xattr block). 5651 * Report at least one sector for such files, so tools like tar, rsync, 5652 * others don't incorrectly think the file is completely sparse. 5653 */ 5654 if (unlikely(ext4_has_inline_data(inode))) 5655 stat->blocks += (stat->size + 511) >> 9; 5656 5657 /* 5658 * We can't update i_blocks if the block allocation is delayed 5659 * otherwise in the case of system crash before the real block 5660 * allocation is done, we will have i_blocks inconsistent with 5661 * on-disk file blocks. 5662 * We always keep i_blocks updated together with real 5663 * allocation. But to not confuse with user, stat 5664 * will return the blocks that include the delayed allocation 5665 * blocks for this file. 5666 */ 5667 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5668 EXT4_I(inode)->i_reserved_data_blocks); 5669 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5670 return 0; 5671 } 5672 5673 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5674 int pextents) 5675 { 5676 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5677 return ext4_ind_trans_blocks(inode, lblocks); 5678 return ext4_ext_index_trans_blocks(inode, pextents); 5679 } 5680 5681 /* 5682 * Account for index blocks, block groups bitmaps and block group 5683 * descriptor blocks if modify datablocks and index blocks 5684 * worse case, the indexs blocks spread over different block groups 5685 * 5686 * If datablocks are discontiguous, they are possible to spread over 5687 * different block groups too. If they are contiguous, with flexbg, 5688 * they could still across block group boundary. 5689 * 5690 * Also account for superblock, inode, quota and xattr blocks 5691 */ 5692 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5693 int pextents) 5694 { 5695 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5696 int gdpblocks; 5697 int idxblocks; 5698 int ret; 5699 5700 /* 5701 * How many index blocks need to touch to map @lblocks logical blocks 5702 * to @pextents physical extents? 5703 */ 5704 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5705 5706 ret = idxblocks; 5707 5708 /* 5709 * Now let's see how many group bitmaps and group descriptors need 5710 * to account 5711 */ 5712 groups = idxblocks + pextents; 5713 gdpblocks = groups; 5714 if (groups > ngroups) 5715 groups = ngroups; 5716 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5717 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5718 5719 /* bitmaps and block group descriptor blocks */ 5720 ret += groups + gdpblocks; 5721 5722 /* Blocks for super block, inode, quota and xattr blocks */ 5723 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5724 5725 return ret; 5726 } 5727 5728 /* 5729 * Calculate the total number of credits to reserve to fit 5730 * the modification of a single pages into a single transaction, 5731 * which may include multiple chunks of block allocations. 5732 * 5733 * This could be called via ext4_write_begin() 5734 * 5735 * We need to consider the worse case, when 5736 * one new block per extent. 5737 */ 5738 int ext4_writepage_trans_blocks(struct inode *inode) 5739 { 5740 int bpp = ext4_journal_blocks_per_page(inode); 5741 int ret; 5742 5743 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5744 5745 /* Account for data blocks for journalled mode */ 5746 if (ext4_should_journal_data(inode)) 5747 ret += bpp; 5748 return ret; 5749 } 5750 5751 /* 5752 * Calculate the journal credits for a chunk of data modification. 5753 * 5754 * This is called from DIO, fallocate or whoever calling 5755 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5756 * 5757 * journal buffers for data blocks are not included here, as DIO 5758 * and fallocate do no need to journal data buffers. 5759 */ 5760 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5761 { 5762 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5763 } 5764 5765 /* 5766 * The caller must have previously called ext4_reserve_inode_write(). 5767 * Give this, we know that the caller already has write access to iloc->bh. 5768 */ 5769 int ext4_mark_iloc_dirty(handle_t *handle, 5770 struct inode *inode, struct ext4_iloc *iloc) 5771 { 5772 int err = 0; 5773 5774 if (unlikely(ext4_forced_shutdown(inode->i_sb))) { 5775 put_bh(iloc->bh); 5776 return -EIO; 5777 } 5778 ext4_fc_track_inode(handle, inode); 5779 5780 /* the do_update_inode consumes one bh->b_count */ 5781 get_bh(iloc->bh); 5782 5783 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5784 err = ext4_do_update_inode(handle, inode, iloc); 5785 put_bh(iloc->bh); 5786 return err; 5787 } 5788 5789 /* 5790 * On success, We end up with an outstanding reference count against 5791 * iloc->bh. This _must_ be cleaned up later. 5792 */ 5793 5794 int 5795 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5796 struct ext4_iloc *iloc) 5797 { 5798 int err; 5799 5800 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 5801 return -EIO; 5802 5803 err = ext4_get_inode_loc(inode, iloc); 5804 if (!err) { 5805 BUFFER_TRACE(iloc->bh, "get_write_access"); 5806 err = ext4_journal_get_write_access(handle, inode->i_sb, 5807 iloc->bh, EXT4_JTR_NONE); 5808 if (err) { 5809 brelse(iloc->bh); 5810 iloc->bh = NULL; 5811 } 5812 } 5813 ext4_std_error(inode->i_sb, err); 5814 return err; 5815 } 5816 5817 static int __ext4_expand_extra_isize(struct inode *inode, 5818 unsigned int new_extra_isize, 5819 struct ext4_iloc *iloc, 5820 handle_t *handle, int *no_expand) 5821 { 5822 struct ext4_inode *raw_inode; 5823 struct ext4_xattr_ibody_header *header; 5824 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5825 struct ext4_inode_info *ei = EXT4_I(inode); 5826 int error; 5827 5828 /* this was checked at iget time, but double check for good measure */ 5829 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5830 (ei->i_extra_isize & 3)) { 5831 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5832 ei->i_extra_isize, 5833 EXT4_INODE_SIZE(inode->i_sb)); 5834 return -EFSCORRUPTED; 5835 } 5836 if ((new_extra_isize < ei->i_extra_isize) || 5837 (new_extra_isize < 4) || 5838 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5839 return -EINVAL; /* Should never happen */ 5840 5841 raw_inode = ext4_raw_inode(iloc); 5842 5843 header = IHDR(inode, raw_inode); 5844 5845 /* No extended attributes present */ 5846 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5847 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5848 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5849 EXT4_I(inode)->i_extra_isize, 0, 5850 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5851 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5852 return 0; 5853 } 5854 5855 /* 5856 * We may need to allocate external xattr block so we need quotas 5857 * initialized. Here we can be called with various locks held so we 5858 * cannot affort to initialize quotas ourselves. So just bail. 5859 */ 5860 if (dquot_initialize_needed(inode)) 5861 return -EAGAIN; 5862 5863 /* try to expand with EAs present */ 5864 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5865 raw_inode, handle); 5866 if (error) { 5867 /* 5868 * Inode size expansion failed; don't try again 5869 */ 5870 *no_expand = 1; 5871 } 5872 5873 return error; 5874 } 5875 5876 /* 5877 * Expand an inode by new_extra_isize bytes. 5878 * Returns 0 on success or negative error number on failure. 5879 */ 5880 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5881 unsigned int new_extra_isize, 5882 struct ext4_iloc iloc, 5883 handle_t *handle) 5884 { 5885 int no_expand; 5886 int error; 5887 5888 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5889 return -EOVERFLOW; 5890 5891 /* 5892 * In nojournal mode, we can immediately attempt to expand 5893 * the inode. When journaled, we first need to obtain extra 5894 * buffer credits since we may write into the EA block 5895 * with this same handle. If journal_extend fails, then it will 5896 * only result in a minor loss of functionality for that inode. 5897 * If this is felt to be critical, then e2fsck should be run to 5898 * force a large enough s_min_extra_isize. 5899 */ 5900 if (ext4_journal_extend(handle, 5901 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5902 return -ENOSPC; 5903 5904 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5905 return -EBUSY; 5906 5907 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5908 handle, &no_expand); 5909 ext4_write_unlock_xattr(inode, &no_expand); 5910 5911 return error; 5912 } 5913 5914 int ext4_expand_extra_isize(struct inode *inode, 5915 unsigned int new_extra_isize, 5916 struct ext4_iloc *iloc) 5917 { 5918 handle_t *handle; 5919 int no_expand; 5920 int error, rc; 5921 5922 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5923 brelse(iloc->bh); 5924 return -EOVERFLOW; 5925 } 5926 5927 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5928 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5929 if (IS_ERR(handle)) { 5930 error = PTR_ERR(handle); 5931 brelse(iloc->bh); 5932 return error; 5933 } 5934 5935 ext4_write_lock_xattr(inode, &no_expand); 5936 5937 BUFFER_TRACE(iloc->bh, "get_write_access"); 5938 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5939 EXT4_JTR_NONE); 5940 if (error) { 5941 brelse(iloc->bh); 5942 goto out_unlock; 5943 } 5944 5945 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5946 handle, &no_expand); 5947 5948 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5949 if (!error) 5950 error = rc; 5951 5952 out_unlock: 5953 ext4_write_unlock_xattr(inode, &no_expand); 5954 ext4_journal_stop(handle); 5955 return error; 5956 } 5957 5958 /* 5959 * What we do here is to mark the in-core inode as clean with respect to inode 5960 * dirtiness (it may still be data-dirty). 5961 * This means that the in-core inode may be reaped by prune_icache 5962 * without having to perform any I/O. This is a very good thing, 5963 * because *any* task may call prune_icache - even ones which 5964 * have a transaction open against a different journal. 5965 * 5966 * Is this cheating? Not really. Sure, we haven't written the 5967 * inode out, but prune_icache isn't a user-visible syncing function. 5968 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5969 * we start and wait on commits. 5970 */ 5971 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5972 const char *func, unsigned int line) 5973 { 5974 struct ext4_iloc iloc; 5975 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5976 int err; 5977 5978 might_sleep(); 5979 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5980 err = ext4_reserve_inode_write(handle, inode, &iloc); 5981 if (err) 5982 goto out; 5983 5984 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5985 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5986 iloc, handle); 5987 5988 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5989 out: 5990 if (unlikely(err)) 5991 ext4_error_inode_err(inode, func, line, 0, err, 5992 "mark_inode_dirty error"); 5993 return err; 5994 } 5995 5996 /* 5997 * ext4_dirty_inode() is called from __mark_inode_dirty() 5998 * 5999 * We're really interested in the case where a file is being extended. 6000 * i_size has been changed by generic_commit_write() and we thus need 6001 * to include the updated inode in the current transaction. 6002 * 6003 * Also, dquot_alloc_block() will always dirty the inode when blocks 6004 * are allocated to the file. 6005 * 6006 * If the inode is marked synchronous, we don't honour that here - doing 6007 * so would cause a commit on atime updates, which we don't bother doing. 6008 * We handle synchronous inodes at the highest possible level. 6009 */ 6010 void ext4_dirty_inode(struct inode *inode, int flags) 6011 { 6012 handle_t *handle; 6013 6014 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6015 if (IS_ERR(handle)) 6016 return; 6017 ext4_mark_inode_dirty(handle, inode); 6018 ext4_journal_stop(handle); 6019 } 6020 6021 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6022 { 6023 journal_t *journal; 6024 handle_t *handle; 6025 int err; 6026 int alloc_ctx; 6027 6028 /* 6029 * We have to be very careful here: changing a data block's 6030 * journaling status dynamically is dangerous. If we write a 6031 * data block to the journal, change the status and then delete 6032 * that block, we risk forgetting to revoke the old log record 6033 * from the journal and so a subsequent replay can corrupt data. 6034 * So, first we make sure that the journal is empty and that 6035 * nobody is changing anything. 6036 */ 6037 6038 journal = EXT4_JOURNAL(inode); 6039 if (!journal) 6040 return 0; 6041 if (is_journal_aborted(journal)) 6042 return -EROFS; 6043 6044 /* Wait for all existing dio workers */ 6045 inode_dio_wait(inode); 6046 6047 /* 6048 * Before flushing the journal and switching inode's aops, we have 6049 * to flush all dirty data the inode has. There can be outstanding 6050 * delayed allocations, there can be unwritten extents created by 6051 * fallocate or buffered writes in dioread_nolock mode covered by 6052 * dirty data which can be converted only after flushing the dirty 6053 * data (and journalled aops don't know how to handle these cases). 6054 */ 6055 if (val) { 6056 filemap_invalidate_lock(inode->i_mapping); 6057 err = filemap_write_and_wait(inode->i_mapping); 6058 if (err < 0) { 6059 filemap_invalidate_unlock(inode->i_mapping); 6060 return err; 6061 } 6062 } 6063 6064 alloc_ctx = ext4_writepages_down_write(inode->i_sb); 6065 jbd2_journal_lock_updates(journal); 6066 6067 /* 6068 * OK, there are no updates running now, and all cached data is 6069 * synced to disk. We are now in a completely consistent state 6070 * which doesn't have anything in the journal, and we know that 6071 * no filesystem updates are running, so it is safe to modify 6072 * the inode's in-core data-journaling state flag now. 6073 */ 6074 6075 if (val) 6076 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6077 else { 6078 err = jbd2_journal_flush(journal, 0); 6079 if (err < 0) { 6080 jbd2_journal_unlock_updates(journal); 6081 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6082 return err; 6083 } 6084 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6085 } 6086 ext4_set_aops(inode); 6087 6088 jbd2_journal_unlock_updates(journal); 6089 ext4_writepages_up_write(inode->i_sb, alloc_ctx); 6090 6091 if (val) 6092 filemap_invalidate_unlock(inode->i_mapping); 6093 6094 /* Finally we can mark the inode as dirty. */ 6095 6096 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6097 if (IS_ERR(handle)) 6098 return PTR_ERR(handle); 6099 6100 ext4_fc_mark_ineligible(inode->i_sb, 6101 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6102 err = ext4_mark_inode_dirty(handle, inode); 6103 ext4_handle_sync(handle); 6104 ext4_journal_stop(handle); 6105 ext4_std_error(inode->i_sb, err); 6106 6107 return err; 6108 } 6109 6110 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6111 struct buffer_head *bh) 6112 { 6113 return !buffer_mapped(bh); 6114 } 6115 6116 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6117 { 6118 struct vm_area_struct *vma = vmf->vma; 6119 struct folio *folio = page_folio(vmf->page); 6120 loff_t size; 6121 unsigned long len; 6122 int err; 6123 vm_fault_t ret; 6124 struct file *file = vma->vm_file; 6125 struct inode *inode = file_inode(file); 6126 struct address_space *mapping = inode->i_mapping; 6127 handle_t *handle; 6128 get_block_t *get_block; 6129 int retries = 0; 6130 6131 if (unlikely(IS_IMMUTABLE(inode))) 6132 return VM_FAULT_SIGBUS; 6133 6134 sb_start_pagefault(inode->i_sb); 6135 file_update_time(vma->vm_file); 6136 6137 filemap_invalidate_lock_shared(mapping); 6138 6139 err = ext4_convert_inline_data(inode); 6140 if (err) 6141 goto out_ret; 6142 6143 /* 6144 * On data journalling we skip straight to the transaction handle: 6145 * there's no delalloc; page truncated will be checked later; the 6146 * early return w/ all buffers mapped (calculates size/len) can't 6147 * be used; and there's no dioread_nolock, so only ext4_get_block. 6148 */ 6149 if (ext4_should_journal_data(inode)) 6150 goto retry_alloc; 6151 6152 /* Delalloc case is easy... */ 6153 if (test_opt(inode->i_sb, DELALLOC) && 6154 !ext4_nonda_switch(inode->i_sb)) { 6155 do { 6156 err = block_page_mkwrite(vma, vmf, 6157 ext4_da_get_block_prep); 6158 } while (err == -ENOSPC && 6159 ext4_should_retry_alloc(inode->i_sb, &retries)); 6160 goto out_ret; 6161 } 6162 6163 folio_lock(folio); 6164 size = i_size_read(inode); 6165 /* Page got truncated from under us? */ 6166 if (folio->mapping != mapping || folio_pos(folio) > size) { 6167 folio_unlock(folio); 6168 ret = VM_FAULT_NOPAGE; 6169 goto out; 6170 } 6171 6172 len = folio_size(folio); 6173 if (folio_pos(folio) + len > size) 6174 len = size - folio_pos(folio); 6175 /* 6176 * Return if we have all the buffers mapped. This avoids the need to do 6177 * journal_start/journal_stop which can block and take a long time 6178 * 6179 * This cannot be done for data journalling, as we have to add the 6180 * inode to the transaction's list to writeprotect pages on commit. 6181 */ 6182 if (folio_buffers(folio)) { 6183 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6184 0, len, NULL, 6185 ext4_bh_unmapped)) { 6186 /* Wait so that we don't change page under IO */ 6187 folio_wait_stable(folio); 6188 ret = VM_FAULT_LOCKED; 6189 goto out; 6190 } 6191 } 6192 folio_unlock(folio); 6193 /* OK, we need to fill the hole... */ 6194 if (ext4_should_dioread_nolock(inode)) 6195 get_block = ext4_get_block_unwritten; 6196 else 6197 get_block = ext4_get_block; 6198 retry_alloc: 6199 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6200 ext4_writepage_trans_blocks(inode)); 6201 if (IS_ERR(handle)) { 6202 ret = VM_FAULT_SIGBUS; 6203 goto out; 6204 } 6205 /* 6206 * Data journalling can't use block_page_mkwrite() because it 6207 * will set_buffer_dirty() before do_journal_get_write_access() 6208 * thus might hit warning messages for dirty metadata buffers. 6209 */ 6210 if (!ext4_should_journal_data(inode)) { 6211 err = block_page_mkwrite(vma, vmf, get_block); 6212 } else { 6213 folio_lock(folio); 6214 size = i_size_read(inode); 6215 /* Page got truncated from under us? */ 6216 if (folio->mapping != mapping || folio_pos(folio) > size) { 6217 ret = VM_FAULT_NOPAGE; 6218 goto out_error; 6219 } 6220 6221 len = folio_size(folio); 6222 if (folio_pos(folio) + len > size) 6223 len = size - folio_pos(folio); 6224 6225 err = __block_write_begin(&folio->page, 0, len, ext4_get_block); 6226 if (!err) { 6227 ret = VM_FAULT_SIGBUS; 6228 if (ext4_journal_folio_buffers(handle, folio, len)) 6229 goto out_error; 6230 } else { 6231 folio_unlock(folio); 6232 } 6233 } 6234 ext4_journal_stop(handle); 6235 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6236 goto retry_alloc; 6237 out_ret: 6238 ret = vmf_fs_error(err); 6239 out: 6240 filemap_invalidate_unlock_shared(mapping); 6241 sb_end_pagefault(inode->i_sb); 6242 return ret; 6243 out_error: 6244 folio_unlock(folio); 6245 ext4_journal_stop(handle); 6246 goto out; 6247 } 6248
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.