~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ext4/mballoc.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
  4  * Written by Alex Tomas <alex@clusterfs.com>
  5  */
  6 
  7 
  8 /*
  9  * mballoc.c contains the multiblocks allocation routines
 10  */
 11 
 12 #include "ext4_jbd2.h"
 13 #include "mballoc.h"
 14 #include <linux/log2.h>
 15 #include <linux/module.h>
 16 #include <linux/slab.h>
 17 #include <linux/nospec.h>
 18 #include <linux/backing-dev.h>
 19 #include <linux/freezer.h>
 20 #include <trace/events/ext4.h>
 21 #include <kunit/static_stub.h>
 22 
 23 /*
 24  * MUSTDO:
 25  *   - test ext4_ext_search_left() and ext4_ext_search_right()
 26  *   - search for metadata in few groups
 27  *
 28  * TODO v4:
 29  *   - normalization should take into account whether file is still open
 30  *   - discard preallocations if no free space left (policy?)
 31  *   - don't normalize tails
 32  *   - quota
 33  *   - reservation for superuser
 34  *
 35  * TODO v3:
 36  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
 37  *   - track min/max extents in each group for better group selection
 38  *   - mb_mark_used() may allocate chunk right after splitting buddy
 39  *   - tree of groups sorted by number of free blocks
 40  *   - error handling
 41  */
 42 
 43 /*
 44  * The allocation request involve request for multiple number of blocks
 45  * near to the goal(block) value specified.
 46  *
 47  * During initialization phase of the allocator we decide to use the
 48  * group preallocation or inode preallocation depending on the size of
 49  * the file. The size of the file could be the resulting file size we
 50  * would have after allocation, or the current file size, which ever
 51  * is larger. If the size is less than sbi->s_mb_stream_request we
 52  * select to use the group preallocation. The default value of
 53  * s_mb_stream_request is 16 blocks. This can also be tuned via
 54  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
 55  * terms of number of blocks.
 56  *
 57  * The main motivation for having small file use group preallocation is to
 58  * ensure that we have small files closer together on the disk.
 59  *
 60  * First stage the allocator looks at the inode prealloc list,
 61  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
 62  * spaces for this particular inode. The inode prealloc space is
 63  * represented as:
 64  *
 65  * pa_lstart -> the logical start block for this prealloc space
 66  * pa_pstart -> the physical start block for this prealloc space
 67  * pa_len    -> length for this prealloc space (in clusters)
 68  * pa_free   ->  free space available in this prealloc space (in clusters)
 69  *
 70  * The inode preallocation space is used looking at the _logical_ start
 71  * block. If only the logical file block falls within the range of prealloc
 72  * space we will consume the particular prealloc space. This makes sure that
 73  * we have contiguous physical blocks representing the file blocks
 74  *
 75  * The important thing to be noted in case of inode prealloc space is that
 76  * we don't modify the values associated to inode prealloc space except
 77  * pa_free.
 78  *
 79  * If we are not able to find blocks in the inode prealloc space and if we
 80  * have the group allocation flag set then we look at the locality group
 81  * prealloc space. These are per CPU prealloc list represented as
 82  *
 83  * ext4_sb_info.s_locality_groups[smp_processor_id()]
 84  *
 85  * The reason for having a per cpu locality group is to reduce the contention
 86  * between CPUs. It is possible to get scheduled at this point.
 87  *
 88  * The locality group prealloc space is used looking at whether we have
 89  * enough free space (pa_free) within the prealloc space.
 90  *
 91  * If we can't allocate blocks via inode prealloc or/and locality group
 92  * prealloc then we look at the buddy cache. The buddy cache is represented
 93  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
 94  * mapped to the buddy and bitmap information regarding different
 95  * groups. The buddy information is attached to buddy cache inode so that
 96  * we can access them through the page cache. The information regarding
 97  * each group is loaded via ext4_mb_load_buddy.  The information involve
 98  * block bitmap and buddy information. The information are stored in the
 99  * inode as:
100  *
101  *  {                        page                        }
102  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103  *
104  *
105  * one block each for bitmap and buddy information.  So for each group we
106  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107  * blocksize) blocks.  So it can have information regarding groups_per_page
108  * which is blocks_per_page/2
109  *
110  * The buddy cache inode is not stored on disk. The inode is thrown
111  * away when the filesystem is unmounted.
112  *
113  * We look for count number of blocks in the buddy cache. If we were able
114  * to locate that many free blocks we return with additional information
115  * regarding rest of the contiguous physical block available
116  *
117  * Before allocating blocks via buddy cache we normalize the request
118  * blocks. This ensure we ask for more blocks that we needed. The extra
119  * blocks that we get after allocation is added to the respective prealloc
120  * list. In case of inode preallocation we follow a list of heuristics
121  * based on file size. This can be found in ext4_mb_normalize_request. If
122  * we are doing a group prealloc we try to normalize the request to
123  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
124  * dependent on the cluster size; for non-bigalloc file systems, it is
125  * 512 blocks. This can be tuned via
126  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * smallest multiple of the stripe value (sbi->s_stripe) which is
130  * greater than the default mb_group_prealloc.
131  *
132  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133  * structures in two data structures:
134  *
135  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
136  *
137  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
138  *
139  *    This is an array of lists where the index in the array represents the
140  *    largest free order in the buddy bitmap of the participating group infos of
141  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142  *    number of buddy bitmap orders possible) number of lists. Group-infos are
143  *    placed in appropriate lists.
144  *
145  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
146  *
147  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
148  *
149  *    This is an array of lists where in the i-th list there are groups with
150  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
151  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152  *    Note that we don't bother with a special list for completely empty groups
153  *    so we only have MB_NUM_ORDERS(sb) lists.
154  *
155  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
156  * structures to decide the order in which groups are to be traversed for
157  * fulfilling an allocation request.
158  *
159  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
160  * >= the order of the request. We directly look at the largest free order list
161  * in the data structure (1) above where largest_free_order = order of the
162  * request. If that list is empty, we look at remaining list in the increasing
163  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
164  * lookup in O(1) time.
165  *
166  * At CR_GOAL_LEN_FAST, we only consider groups where
167  * average fragment size > request size. So, we lookup a group which has average
168  * fragment size just above or equal to request size using our average fragment
169  * size group lists (data structure 2) in O(1) time.
170  *
171  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
172  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
173  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
174  * fragment size > goal length. So before falling to the slower
175  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
176  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
177  * enough average fragment size. This increases the chances of finding a
178  * suitable block group in O(1) time and results in faster allocation at the
179  * cost of reduced size of allocation.
180  *
181  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
182  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
183  * CR_GOAL_LEN_FAST phase.
184  *
185  * The regular allocator (using the buddy cache) supports a few tunables.
186  *
187  * /sys/fs/ext4/<partition>/mb_min_to_scan
188  * /sys/fs/ext4/<partition>/mb_max_to_scan
189  * /sys/fs/ext4/<partition>/mb_order2_req
190  * /sys/fs/ext4/<partition>/mb_linear_limit
191  *
192  * The regular allocator uses buddy scan only if the request len is power of
193  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
194  * value of s_mb_order2_reqs can be tuned via
195  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
196  * stripe size (sbi->s_stripe), we try to search for contiguous block in
197  * stripe size. This should result in better allocation on RAID setups. If
198  * not, we search in the specific group using bitmap for best extents. The
199  * tunable min_to_scan and max_to_scan control the behaviour here.
200  * min_to_scan indicate how long the mballoc __must__ look for a best
201  * extent and max_to_scan indicates how long the mballoc __can__ look for a
202  * best extent in the found extents. Searching for the blocks starts with
203  * the group specified as the goal value in allocation context via
204  * ac_g_ex. Each group is first checked based on the criteria whether it
205  * can be used for allocation. ext4_mb_good_group explains how the groups are
206  * checked.
207  *
208  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
209  * get traversed linearly. That may result in subsequent allocations being not
210  * close to each other. And so, the underlying device may get filled up in a
211  * non-linear fashion. While that may not matter on non-rotational devices, for
212  * rotational devices that may result in higher seek times. "mb_linear_limit"
213  * tells mballoc how many groups mballoc should search linearly before
214  * performing consulting above data structures for more efficient lookups. For
215  * non rotational devices, this value defaults to 0 and for rotational devices
216  * this is set to MB_DEFAULT_LINEAR_LIMIT.
217  *
218  * Both the prealloc space are getting populated as above. So for the first
219  * request we will hit the buddy cache which will result in this prealloc
220  * space getting filled. The prealloc space is then later used for the
221  * subsequent request.
222  */
223 
224 /*
225  * mballoc operates on the following data:
226  *  - on-disk bitmap
227  *  - in-core buddy (actually includes buddy and bitmap)
228  *  - preallocation descriptors (PAs)
229  *
230  * there are two types of preallocations:
231  *  - inode
232  *    assiged to specific inode and can be used for this inode only.
233  *    it describes part of inode's space preallocated to specific
234  *    physical blocks. any block from that preallocated can be used
235  *    independent. the descriptor just tracks number of blocks left
236  *    unused. so, before taking some block from descriptor, one must
237  *    make sure corresponded logical block isn't allocated yet. this
238  *    also means that freeing any block within descriptor's range
239  *    must discard all preallocated blocks.
240  *  - locality group
241  *    assigned to specific locality group which does not translate to
242  *    permanent set of inodes: inode can join and leave group. space
243  *    from this type of preallocation can be used for any inode. thus
244  *    it's consumed from the beginning to the end.
245  *
246  * relation between them can be expressed as:
247  *    in-core buddy = on-disk bitmap + preallocation descriptors
248  *
249  * this mean blocks mballoc considers used are:
250  *  - allocated blocks (persistent)
251  *  - preallocated blocks (non-persistent)
252  *
253  * consistency in mballoc world means that at any time a block is either
254  * free or used in ALL structures. notice: "any time" should not be read
255  * literally -- time is discrete and delimited by locks.
256  *
257  *  to keep it simple, we don't use block numbers, instead we count number of
258  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
259  *
260  * all operations can be expressed as:
261  *  - init buddy:                       buddy = on-disk + PAs
262  *  - new PA:                           buddy += N; PA = N
263  *  - use inode PA:                     on-disk += N; PA -= N
264  *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
265  *  - use locality group PA             on-disk += N; PA -= N
266  *  - discard locality group PA         buddy -= PA; PA = 0
267  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
268  *        is used in real operation because we can't know actual used
269  *        bits from PA, only from on-disk bitmap
270  *
271  * if we follow this strict logic, then all operations above should be atomic.
272  * given some of them can block, we'd have to use something like semaphores
273  * killing performance on high-end SMP hardware. let's try to relax it using
274  * the following knowledge:
275  *  1) if buddy is referenced, it's already initialized
276  *  2) while block is used in buddy and the buddy is referenced,
277  *     nobody can re-allocate that block
278  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
279  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
280  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
281  *     block
282  *
283  * so, now we're building a concurrency table:
284  *  - init buddy vs.
285  *    - new PA
286  *      blocks for PA are allocated in the buddy, buddy must be referenced
287  *      until PA is linked to allocation group to avoid concurrent buddy init
288  *    - use inode PA
289  *      we need to make sure that either on-disk bitmap or PA has uptodate data
290  *      given (3) we care that PA-=N operation doesn't interfere with init
291  *    - discard inode PA
292  *      the simplest way would be to have buddy initialized by the discard
293  *    - use locality group PA
294  *      again PA-=N must be serialized with init
295  *    - discard locality group PA
296  *      the simplest way would be to have buddy initialized by the discard
297  *  - new PA vs.
298  *    - use inode PA
299  *      i_data_sem serializes them
300  *    - discard inode PA
301  *      discard process must wait until PA isn't used by another process
302  *    - use locality group PA
303  *      some mutex should serialize them
304  *    - discard locality group PA
305  *      discard process must wait until PA isn't used by another process
306  *  - use inode PA
307  *    - use inode PA
308  *      i_data_sem or another mutex should serializes them
309  *    - discard inode PA
310  *      discard process must wait until PA isn't used by another process
311  *    - use locality group PA
312  *      nothing wrong here -- they're different PAs covering different blocks
313  *    - discard locality group PA
314  *      discard process must wait until PA isn't used by another process
315  *
316  * now we're ready to make few consequences:
317  *  - PA is referenced and while it is no discard is possible
318  *  - PA is referenced until block isn't marked in on-disk bitmap
319  *  - PA changes only after on-disk bitmap
320  *  - discard must not compete with init. either init is done before
321  *    any discard or they're serialized somehow
322  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
323  *
324  * a special case when we've used PA to emptiness. no need to modify buddy
325  * in this case, but we should care about concurrent init
326  *
327  */
328 
329  /*
330  * Logic in few words:
331  *
332  *  - allocation:
333  *    load group
334  *    find blocks
335  *    mark bits in on-disk bitmap
336  *    release group
337  *
338  *  - use preallocation:
339  *    find proper PA (per-inode or group)
340  *    load group
341  *    mark bits in on-disk bitmap
342  *    release group
343  *    release PA
344  *
345  *  - free:
346  *    load group
347  *    mark bits in on-disk bitmap
348  *    release group
349  *
350  *  - discard preallocations in group:
351  *    mark PAs deleted
352  *    move them onto local list
353  *    load on-disk bitmap
354  *    load group
355  *    remove PA from object (inode or locality group)
356  *    mark free blocks in-core
357  *
358  *  - discard inode's preallocations:
359  */
360 
361 /*
362  * Locking rules
363  *
364  * Locks:
365  *  - bitlock on a group        (group)
366  *  - object (inode/locality)   (object)
367  *  - per-pa lock               (pa)
368  *  - cr_power2_aligned lists lock      (cr_power2_aligned)
369  *  - cr_goal_len_fast lists lock       (cr_goal_len_fast)
370  *
371  * Paths:
372  *  - new pa
373  *    object
374  *    group
375  *
376  *  - find and use pa:
377  *    pa
378  *
379  *  - release consumed pa:
380  *    pa
381  *    group
382  *    object
383  *
384  *  - generate in-core bitmap:
385  *    group
386  *        pa
387  *
388  *  - discard all for given object (inode, locality group):
389  *    object
390  *        pa
391  *    group
392  *
393  *  - discard all for given group:
394  *    group
395  *        pa
396  *    group
397  *        object
398  *
399  *  - allocation path (ext4_mb_regular_allocator)
400  *    group
401  *    cr_power2_aligned/cr_goal_len_fast
402  */
403 static struct kmem_cache *ext4_pspace_cachep;
404 static struct kmem_cache *ext4_ac_cachep;
405 static struct kmem_cache *ext4_free_data_cachep;
406 
407 /* We create slab caches for groupinfo data structures based on the
408  * superblock block size.  There will be one per mounted filesystem for
409  * each unique s_blocksize_bits */
410 #define NR_GRPINFO_CACHES 8
411 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
412 
413 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
414         "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
415         "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
416         "ext4_groupinfo_64k", "ext4_groupinfo_128k"
417 };
418 
419 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
420                                         ext4_group_t group);
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422 
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424                                ext4_group_t group, enum criteria cr);
425 
426 static int ext4_try_to_trim_range(struct super_block *sb,
427                 struct ext4_buddy *e4b, ext4_grpblk_t start,
428                 ext4_grpblk_t max, ext4_grpblk_t minblocks);
429 
430 /*
431  * The algorithm using this percpu seq counter goes below:
432  * 1. We sample the percpu discard_pa_seq counter before trying for block
433  *    allocation in ext4_mb_new_blocks().
434  * 2. We increment this percpu discard_pa_seq counter when we either allocate
435  *    or free these blocks i.e. while marking those blocks as used/free in
436  *    mb_mark_used()/mb_free_blocks().
437  * 3. We also increment this percpu seq counter when we successfully identify
438  *    that the bb_prealloc_list is not empty and hence proceed for discarding
439  *    of those PAs inside ext4_mb_discard_group_preallocations().
440  *
441  * Now to make sure that the regular fast path of block allocation is not
442  * affected, as a small optimization we only sample the percpu seq counter
443  * on that cpu. Only when the block allocation fails and when freed blocks
444  * found were 0, that is when we sample percpu seq counter for all cpus using
445  * below function ext4_get_discard_pa_seq_sum(). This happens after making
446  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447  */
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
449 static inline u64 ext4_get_discard_pa_seq_sum(void)
450 {
451         int __cpu;
452         u64 __seq = 0;
453 
454         for_each_possible_cpu(__cpu)
455                 __seq += per_cpu(discard_pa_seq, __cpu);
456         return __seq;
457 }
458 
459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460 {
461 #if BITS_PER_LONG == 64
462         *bit += ((unsigned long) addr & 7UL) << 3;
463         addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465         *bit += ((unsigned long) addr & 3UL) << 3;
466         addr = (void *) ((unsigned long) addr & ~3UL);
467 #else
468 #error "how many bits you are?!"
469 #endif
470         return addr;
471 }
472 
473 static inline int mb_test_bit(int bit, void *addr)
474 {
475         /*
476          * ext4_test_bit on architecture like powerpc
477          * needs unsigned long aligned address
478          */
479         addr = mb_correct_addr_and_bit(&bit, addr);
480         return ext4_test_bit(bit, addr);
481 }
482 
483 static inline void mb_set_bit(int bit, void *addr)
484 {
485         addr = mb_correct_addr_and_bit(&bit, addr);
486         ext4_set_bit(bit, addr);
487 }
488 
489 static inline void mb_clear_bit(int bit, void *addr)
490 {
491         addr = mb_correct_addr_and_bit(&bit, addr);
492         ext4_clear_bit(bit, addr);
493 }
494 
495 static inline int mb_test_and_clear_bit(int bit, void *addr)
496 {
497         addr = mb_correct_addr_and_bit(&bit, addr);
498         return ext4_test_and_clear_bit(bit, addr);
499 }
500 
501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502 {
503         int fix = 0, ret, tmpmax;
504         addr = mb_correct_addr_and_bit(&fix, addr);
505         tmpmax = max + fix;
506         start += fix;
507 
508         ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509         if (ret > max)
510                 return max;
511         return ret;
512 }
513 
514 static inline int mb_find_next_bit(void *addr, int max, int start)
515 {
516         int fix = 0, ret, tmpmax;
517         addr = mb_correct_addr_and_bit(&fix, addr);
518         tmpmax = max + fix;
519         start += fix;
520 
521         ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522         if (ret > max)
523                 return max;
524         return ret;
525 }
526 
527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528 {
529         char *bb;
530 
531         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532         BUG_ON(max == NULL);
533 
534         if (order > e4b->bd_blkbits + 1) {
535                 *max = 0;
536                 return NULL;
537         }
538 
539         /* at order 0 we see each particular block */
540         if (order == 0) {
541                 *max = 1 << (e4b->bd_blkbits + 3);
542                 return e4b->bd_bitmap;
543         }
544 
545         bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546         *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547 
548         return bb;
549 }
550 
551 #ifdef DOUBLE_CHECK
552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553                            int first, int count)
554 {
555         int i;
556         struct super_block *sb = e4b->bd_sb;
557 
558         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559                 return;
560         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561         for (i = 0; i < count; i++) {
562                 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563                         ext4_fsblk_t blocknr;
564 
565                         blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566                         blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
568                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
569                         ext4_grp_locked_error(sb, e4b->bd_group,
570                                               inode ? inode->i_ino : 0,
571                                               blocknr,
572                                               "freeing block already freed "
573                                               "(bit %u)",
574                                               first + i);
575                 }
576                 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577         }
578 }
579 
580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581 {
582         int i;
583 
584         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585                 return;
586         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587         for (i = 0; i < count; i++) {
588                 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589                 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590         }
591 }
592 
593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594 {
595         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596                 return;
597         if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598                 unsigned char *b1, *b2;
599                 int i;
600                 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601                 b2 = (unsigned char *) bitmap;
602                 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603                         if (b1[i] != b2[i]) {
604                                 ext4_msg(e4b->bd_sb, KERN_ERR,
605                                          "corruption in group %u "
606                                          "at byte %u(%u): %x in copy != %x "
607                                          "on disk/prealloc",
608                                          e4b->bd_group, i, i * 8, b1[i], b2[i]);
609                                 BUG();
610                         }
611                 }
612         }
613 }
614 
615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616                         struct ext4_group_info *grp, ext4_group_t group)
617 {
618         struct buffer_head *bh;
619 
620         grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621         if (!grp->bb_bitmap)
622                 return;
623 
624         bh = ext4_read_block_bitmap(sb, group);
625         if (IS_ERR_OR_NULL(bh)) {
626                 kfree(grp->bb_bitmap);
627                 grp->bb_bitmap = NULL;
628                 return;
629         }
630 
631         memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632         put_bh(bh);
633 }
634 
635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636 {
637         kfree(grp->bb_bitmap);
638 }
639 
640 #else
641 static inline void mb_free_blocks_double(struct inode *inode,
642                                 struct ext4_buddy *e4b, int first, int count)
643 {
644         return;
645 }
646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647                                                 int first, int count)
648 {
649         return;
650 }
651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652 {
653         return;
654 }
655 
656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657                         struct ext4_group_info *grp, ext4_group_t group)
658 {
659         return;
660 }
661 
662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663 {
664         return;
665 }
666 #endif
667 
668 #ifdef AGGRESSIVE_CHECK
669 
670 #define MB_CHECK_ASSERT(assert)                                         \
671 do {                                                                    \
672         if (!(assert)) {                                                \
673                 printk(KERN_EMERG                                       \
674                         "Assertion failure in %s() at %s:%d: \"%s\"\n", \
675                         function, file, line, # assert);                \
676                 BUG();                                                  \
677         }                                                               \
678 } while (0)
679 
680 static void __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681                                 const char *function, int line)
682 {
683         struct super_block *sb = e4b->bd_sb;
684         int order = e4b->bd_blkbits + 1;
685         int max;
686         int max2;
687         int i;
688         int j;
689         int k;
690         int count;
691         struct ext4_group_info *grp;
692         int fragments = 0;
693         int fstart;
694         struct list_head *cur;
695         void *buddy;
696         void *buddy2;
697 
698         if (e4b->bd_info->bb_check_counter++ % 10)
699                 return;
700 
701         while (order > 1) {
702                 buddy = mb_find_buddy(e4b, order, &max);
703                 MB_CHECK_ASSERT(buddy);
704                 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705                 MB_CHECK_ASSERT(buddy2);
706                 MB_CHECK_ASSERT(buddy != buddy2);
707                 MB_CHECK_ASSERT(max * 2 == max2);
708 
709                 count = 0;
710                 for (i = 0; i < max; i++) {
711 
712                         if (mb_test_bit(i, buddy)) {
713                                 /* only single bit in buddy2 may be 0 */
714                                 if (!mb_test_bit(i << 1, buddy2)) {
715                                         MB_CHECK_ASSERT(
716                                                 mb_test_bit((i<<1)+1, buddy2));
717                                 }
718                                 continue;
719                         }
720 
721                         /* both bits in buddy2 must be 1 */
722                         MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723                         MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724 
725                         for (j = 0; j < (1 << order); j++) {
726                                 k = (i * (1 << order)) + j;
727                                 MB_CHECK_ASSERT(
728                                         !mb_test_bit(k, e4b->bd_bitmap));
729                         }
730                         count++;
731                 }
732                 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733                 order--;
734         }
735 
736         fstart = -1;
737         buddy = mb_find_buddy(e4b, 0, &max);
738         for (i = 0; i < max; i++) {
739                 if (!mb_test_bit(i, buddy)) {
740                         MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741                         if (fstart == -1) {
742                                 fragments++;
743                                 fstart = i;
744                         }
745                         continue;
746                 }
747                 fstart = -1;
748                 /* check used bits only */
749                 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750                         buddy2 = mb_find_buddy(e4b, j, &max2);
751                         k = i >> j;
752                         MB_CHECK_ASSERT(k < max2);
753                         MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754                 }
755         }
756         MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757         MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758 
759         grp = ext4_get_group_info(sb, e4b->bd_group);
760         if (!grp)
761                 return;
762         list_for_each(cur, &grp->bb_prealloc_list) {
763                 ext4_group_t groupnr;
764                 struct ext4_prealloc_space *pa;
765                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767                 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768                 for (i = 0; i < pa->pa_len; i++)
769                         MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770         }
771 }
772 #undef MB_CHECK_ASSERT
773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
774                                         __FILE__, __func__, __LINE__)
775 #else
776 #define mb_check_buddy(e4b)
777 #endif
778 
779 /*
780  * Divide blocks started from @first with length @len into
781  * smaller chunks with power of 2 blocks.
782  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783  * then increase bb_counters[] for corresponded chunk size.
784  */
785 static void ext4_mb_mark_free_simple(struct super_block *sb,
786                                 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787                                         struct ext4_group_info *grp)
788 {
789         struct ext4_sb_info *sbi = EXT4_SB(sb);
790         ext4_grpblk_t min;
791         ext4_grpblk_t max;
792         ext4_grpblk_t chunk;
793         unsigned int border;
794 
795         BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
796 
797         border = 2 << sb->s_blocksize_bits;
798 
799         while (len > 0) {
800                 /* find how many blocks can be covered since this position */
801                 max = ffs(first | border) - 1;
802 
803                 /* find how many blocks of power 2 we need to mark */
804                 min = fls(len) - 1;
805 
806                 if (max < min)
807                         min = max;
808                 chunk = 1 << min;
809 
810                 /* mark multiblock chunks only */
811                 grp->bb_counters[min]++;
812                 if (min > 0)
813                         mb_clear_bit(first >> min,
814                                      buddy + sbi->s_mb_offsets[min]);
815 
816                 len -= chunk;
817                 first += chunk;
818         }
819 }
820 
821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
822 {
823         int order;
824 
825         /*
826          * We don't bother with a special lists groups with only 1 block free
827          * extents and for completely empty groups.
828          */
829         order = fls(len) - 2;
830         if (order < 0)
831                 return 0;
832         if (order == MB_NUM_ORDERS(sb))
833                 order--;
834         if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb)))
835                 order = MB_NUM_ORDERS(sb) - 1;
836         return order;
837 }
838 
839 /* Move group to appropriate avg_fragment_size list */
840 static void
841 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
842 {
843         struct ext4_sb_info *sbi = EXT4_SB(sb);
844         int new_order;
845 
846         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
847                 return;
848 
849         new_order = mb_avg_fragment_size_order(sb,
850                                         grp->bb_free / grp->bb_fragments);
851         if (new_order == grp->bb_avg_fragment_size_order)
852                 return;
853 
854         if (grp->bb_avg_fragment_size_order != -1) {
855                 write_lock(&sbi->s_mb_avg_fragment_size_locks[
856                                         grp->bb_avg_fragment_size_order]);
857                 list_del(&grp->bb_avg_fragment_size_node);
858                 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
859                                         grp->bb_avg_fragment_size_order]);
860         }
861         grp->bb_avg_fragment_size_order = new_order;
862         write_lock(&sbi->s_mb_avg_fragment_size_locks[
863                                         grp->bb_avg_fragment_size_order]);
864         list_add_tail(&grp->bb_avg_fragment_size_node,
865                 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
866         write_unlock(&sbi->s_mb_avg_fragment_size_locks[
867                                         grp->bb_avg_fragment_size_order]);
868 }
869 
870 /*
871  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
872  * cr level needs an update.
873  */
874 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
875                         enum criteria *new_cr, ext4_group_t *group)
876 {
877         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
878         struct ext4_group_info *iter;
879         int i;
880 
881         if (ac->ac_status == AC_STATUS_FOUND)
882                 return;
883 
884         if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
885                 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
886 
887         for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
888                 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
889                         continue;
890                 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
891                 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
892                         read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
893                         continue;
894                 }
895                 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
896                                     bb_largest_free_order_node) {
897                         if (sbi->s_mb_stats)
898                                 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
899                         if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
900                                 *group = iter->bb_group;
901                                 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
902                                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
903                                 return;
904                         }
905                 }
906                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
907         }
908 
909         /* Increment cr and search again if no group is found */
910         *new_cr = CR_GOAL_LEN_FAST;
911 }
912 
913 /*
914  * Find a suitable group of given order from the average fragments list.
915  */
916 static struct ext4_group_info *
917 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
918 {
919         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
920         struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
921         rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
922         struct ext4_group_info *grp = NULL, *iter;
923         enum criteria cr = ac->ac_criteria;
924 
925         if (list_empty(frag_list))
926                 return NULL;
927         read_lock(frag_list_lock);
928         if (list_empty(frag_list)) {
929                 read_unlock(frag_list_lock);
930                 return NULL;
931         }
932         list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
933                 if (sbi->s_mb_stats)
934                         atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
935                 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
936                         grp = iter;
937                         break;
938                 }
939         }
940         read_unlock(frag_list_lock);
941         return grp;
942 }
943 
944 /*
945  * Choose next group by traversing average fragment size list of suitable
946  * order. Updates *new_cr if cr level needs an update.
947  */
948 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
949                 enum criteria *new_cr, ext4_group_t *group)
950 {
951         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
952         struct ext4_group_info *grp = NULL;
953         int i;
954 
955         if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
956                 if (sbi->s_mb_stats)
957                         atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
958         }
959 
960         for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
961              i < MB_NUM_ORDERS(ac->ac_sb); i++) {
962                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
963                 if (grp) {
964                         *group = grp->bb_group;
965                         ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
966                         return;
967                 }
968         }
969 
970         /*
971          * CR_BEST_AVAIL_LEN works based on the concept that we have
972          * a larger normalized goal len request which can be trimmed to
973          * a smaller goal len such that it can still satisfy original
974          * request len. However, allocation request for non-regular
975          * files never gets normalized.
976          * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
977          */
978         if (ac->ac_flags & EXT4_MB_HINT_DATA)
979                 *new_cr = CR_BEST_AVAIL_LEN;
980         else
981                 *new_cr = CR_GOAL_LEN_SLOW;
982 }
983 
984 /*
985  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
986  * order we have and proactively trim the goal request length to that order to
987  * find a suitable group faster.
988  *
989  * This optimizes allocation speed at the cost of slightly reduced
990  * preallocations. However, we make sure that we don't trim the request too
991  * much and fall to CR_GOAL_LEN_SLOW in that case.
992  */
993 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
994                 enum criteria *new_cr, ext4_group_t *group)
995 {
996         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
997         struct ext4_group_info *grp = NULL;
998         int i, order, min_order;
999         unsigned long num_stripe_clusters = 0;
1000 
1001         if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1002                 if (sbi->s_mb_stats)
1003                         atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1004         }
1005 
1006         /*
1007          * mb_avg_fragment_size_order() returns order in a way that makes
1008          * retrieving back the length using (1 << order) inaccurate. Hence, use
1009          * fls() instead since we need to know the actual length while modifying
1010          * goal length.
1011          */
1012         order = fls(ac->ac_g_ex.fe_len) - 1;
1013         if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb)))
1014                 order = MB_NUM_ORDERS(ac->ac_sb);
1015         min_order = order - sbi->s_mb_best_avail_max_trim_order;
1016         if (min_order < 0)
1017                 min_order = 0;
1018 
1019         if (sbi->s_stripe > 0) {
1020                 /*
1021                  * We are assuming that stripe size is always a multiple of
1022                  * cluster ratio otherwise __ext4_fill_super exists early.
1023                  */
1024                 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1025                 if (1 << min_order < num_stripe_clusters)
1026                         /*
1027                          * We consider 1 order less because later we round
1028                          * up the goal len to num_stripe_clusters
1029                          */
1030                         min_order = fls(num_stripe_clusters) - 1;
1031         }
1032 
1033         if (1 << min_order < ac->ac_o_ex.fe_len)
1034                 min_order = fls(ac->ac_o_ex.fe_len);
1035 
1036         for (i = order; i >= min_order; i--) {
1037                 int frag_order;
1038                 /*
1039                  * Scale down goal len to make sure we find something
1040                  * in the free fragments list. Basically, reduce
1041                  * preallocations.
1042                  */
1043                 ac->ac_g_ex.fe_len = 1 << i;
1044 
1045                 if (num_stripe_clusters > 0) {
1046                         /*
1047                          * Try to round up the adjusted goal length to
1048                          * stripe size (in cluster units) multiple for
1049                          * efficiency.
1050                          */
1051                         ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1052                                                      num_stripe_clusters);
1053                 }
1054 
1055                 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1056                                                         ac->ac_g_ex.fe_len);
1057 
1058                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1059                 if (grp) {
1060                         *group = grp->bb_group;
1061                         ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1062                         return;
1063                 }
1064         }
1065 
1066         /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1067         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1068         *new_cr = CR_GOAL_LEN_SLOW;
1069 }
1070 
1071 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1072 {
1073         if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1074                 return 0;
1075         if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1076                 return 0;
1077         if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1078                 return 0;
1079         return 1;
1080 }
1081 
1082 /*
1083  * Return next linear group for allocation.
1084  */
1085 static ext4_group_t
1086 next_linear_group(ext4_group_t group, ext4_group_t ngroups)
1087 {
1088         /*
1089          * Artificially restricted ngroups for non-extent
1090          * files makes group > ngroups possible on first loop.
1091          */
1092         return group + 1 >= ngroups ? 0 : group + 1;
1093 }
1094 
1095 /*
1096  * ext4_mb_choose_next_group: choose next group for allocation.
1097  *
1098  * @ac        Allocation Context
1099  * @new_cr    This is an output parameter. If the there is no good group
1100  *            available at current CR level, this field is updated to indicate
1101  *            the new cr level that should be used.
1102  * @group     This is an input / output parameter. As an input it indicates the
1103  *            next group that the allocator intends to use for allocation. As
1104  *            output, this field indicates the next group that should be used as
1105  *            determined by the optimization functions.
1106  * @ngroups   Total number of groups
1107  */
1108 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1109                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1110 {
1111         *new_cr = ac->ac_criteria;
1112 
1113         if (!should_optimize_scan(ac)) {
1114                 *group = next_linear_group(*group, ngroups);
1115                 return;
1116         }
1117 
1118         /*
1119          * Optimized scanning can return non adjacent groups which can cause
1120          * seek overhead for rotational disks. So try few linear groups before
1121          * trying optimized scan.
1122          */
1123         if (ac->ac_groups_linear_remaining) {
1124                 *group = next_linear_group(*group, ngroups);
1125                 ac->ac_groups_linear_remaining--;
1126                 return;
1127         }
1128 
1129         if (*new_cr == CR_POWER2_ALIGNED) {
1130                 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group);
1131         } else if (*new_cr == CR_GOAL_LEN_FAST) {
1132                 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group);
1133         } else if (*new_cr == CR_BEST_AVAIL_LEN) {
1134                 ext4_mb_choose_next_group_best_avail(ac, new_cr, group);
1135         } else {
1136                 /*
1137                  * TODO: For CR_GOAL_LEN_SLOW, we can arrange groups in an
1138                  * rb tree sorted by bb_free. But until that happens, we should
1139                  * never come here.
1140                  */
1141                 WARN_ON(1);
1142         }
1143 }
1144 
1145 /*
1146  * Cache the order of the largest free extent we have available in this block
1147  * group.
1148  */
1149 static void
1150 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1151 {
1152         struct ext4_sb_info *sbi = EXT4_SB(sb);
1153         int i;
1154 
1155         for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1156                 if (grp->bb_counters[i] > 0)
1157                         break;
1158         /* No need to move between order lists? */
1159         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1160             i == grp->bb_largest_free_order) {
1161                 grp->bb_largest_free_order = i;
1162                 return;
1163         }
1164 
1165         if (grp->bb_largest_free_order >= 0) {
1166                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1167                                               grp->bb_largest_free_order]);
1168                 list_del_init(&grp->bb_largest_free_order_node);
1169                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1170                                               grp->bb_largest_free_order]);
1171         }
1172         grp->bb_largest_free_order = i;
1173         if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1174                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1175                                               grp->bb_largest_free_order]);
1176                 list_add_tail(&grp->bb_largest_free_order_node,
1177                       &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1178                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1179                                               grp->bb_largest_free_order]);
1180         }
1181 }
1182 
1183 static noinline_for_stack
1184 void ext4_mb_generate_buddy(struct super_block *sb,
1185                             void *buddy, void *bitmap, ext4_group_t group,
1186                             struct ext4_group_info *grp)
1187 {
1188         struct ext4_sb_info *sbi = EXT4_SB(sb);
1189         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1190         ext4_grpblk_t i = 0;
1191         ext4_grpblk_t first;
1192         ext4_grpblk_t len;
1193         unsigned free = 0;
1194         unsigned fragments = 0;
1195         unsigned long long period = get_cycles();
1196 
1197         /* initialize buddy from bitmap which is aggregation
1198          * of on-disk bitmap and preallocations */
1199         i = mb_find_next_zero_bit(bitmap, max, 0);
1200         grp->bb_first_free = i;
1201         while (i < max) {
1202                 fragments++;
1203                 first = i;
1204                 i = mb_find_next_bit(bitmap, max, i);
1205                 len = i - first;
1206                 free += len;
1207                 if (len > 1)
1208                         ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1209                 else
1210                         grp->bb_counters[0]++;
1211                 if (i < max)
1212                         i = mb_find_next_zero_bit(bitmap, max, i);
1213         }
1214         grp->bb_fragments = fragments;
1215 
1216         if (free != grp->bb_free) {
1217                 ext4_grp_locked_error(sb, group, 0, 0,
1218                                       "block bitmap and bg descriptor "
1219                                       "inconsistent: %u vs %u free clusters",
1220                                       free, grp->bb_free);
1221                 /*
1222                  * If we intend to continue, we consider group descriptor
1223                  * corrupt and update bb_free using bitmap value
1224                  */
1225                 grp->bb_free = free;
1226                 ext4_mark_group_bitmap_corrupted(sb, group,
1227                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1228         }
1229         mb_set_largest_free_order(sb, grp);
1230         mb_update_avg_fragment_size(sb, grp);
1231 
1232         clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1233 
1234         period = get_cycles() - period;
1235         atomic_inc(&sbi->s_mb_buddies_generated);
1236         atomic64_add(period, &sbi->s_mb_generation_time);
1237 }
1238 
1239 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1240 {
1241         int count;
1242         int order = 1;
1243         void *buddy;
1244 
1245         while ((buddy = mb_find_buddy(e4b, order++, &count)))
1246                 mb_set_bits(buddy, 0, count);
1247 
1248         e4b->bd_info->bb_fragments = 0;
1249         memset(e4b->bd_info->bb_counters, 0,
1250                 sizeof(*e4b->bd_info->bb_counters) *
1251                 (e4b->bd_sb->s_blocksize_bits + 2));
1252 
1253         ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1254                 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1255 }
1256 
1257 /* The buddy information is attached the buddy cache inode
1258  * for convenience. The information regarding each group
1259  * is loaded via ext4_mb_load_buddy. The information involve
1260  * block bitmap and buddy information. The information are
1261  * stored in the inode as
1262  *
1263  * {                        page                        }
1264  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1265  *
1266  *
1267  * one block each for bitmap and buddy information.
1268  * So for each group we take up 2 blocks. A page can
1269  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1270  * So it can have information regarding groups_per_page which
1271  * is blocks_per_page/2
1272  *
1273  * Locking note:  This routine takes the block group lock of all groups
1274  * for this page; do not hold this lock when calling this routine!
1275  */
1276 
1277 static int ext4_mb_init_cache(struct folio *folio, char *incore, gfp_t gfp)
1278 {
1279         ext4_group_t ngroups;
1280         unsigned int blocksize;
1281         int blocks_per_page;
1282         int groups_per_page;
1283         int err = 0;
1284         int i;
1285         ext4_group_t first_group, group;
1286         int first_block;
1287         struct super_block *sb;
1288         struct buffer_head *bhs;
1289         struct buffer_head **bh = NULL;
1290         struct inode *inode;
1291         char *data;
1292         char *bitmap;
1293         struct ext4_group_info *grinfo;
1294 
1295         inode = folio->mapping->host;
1296         sb = inode->i_sb;
1297         ngroups = ext4_get_groups_count(sb);
1298         blocksize = i_blocksize(inode);
1299         blocks_per_page = PAGE_SIZE / blocksize;
1300 
1301         mb_debug(sb, "init folio %lu\n", folio->index);
1302 
1303         groups_per_page = blocks_per_page >> 1;
1304         if (groups_per_page == 0)
1305                 groups_per_page = 1;
1306 
1307         /* allocate buffer_heads to read bitmaps */
1308         if (groups_per_page > 1) {
1309                 i = sizeof(struct buffer_head *) * groups_per_page;
1310                 bh = kzalloc(i, gfp);
1311                 if (bh == NULL)
1312                         return -ENOMEM;
1313         } else
1314                 bh = &bhs;
1315 
1316         first_group = folio->index * blocks_per_page / 2;
1317 
1318         /* read all groups the folio covers into the cache */
1319         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1320                 if (group >= ngroups)
1321                         break;
1322 
1323                 grinfo = ext4_get_group_info(sb, group);
1324                 if (!grinfo)
1325                         continue;
1326                 /*
1327                  * If page is uptodate then we came here after online resize
1328                  * which added some new uninitialized group info structs, so
1329                  * we must skip all initialized uptodate buddies on the folio,
1330                  * which may be currently in use by an allocating task.
1331                  */
1332                 if (folio_test_uptodate(folio) &&
1333                                 !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1334                         bh[i] = NULL;
1335                         continue;
1336                 }
1337                 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1338                 if (IS_ERR(bh[i])) {
1339                         err = PTR_ERR(bh[i]);
1340                         bh[i] = NULL;
1341                         goto out;
1342                 }
1343                 mb_debug(sb, "read bitmap for group %u\n", group);
1344         }
1345 
1346         /* wait for I/O completion */
1347         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1348                 int err2;
1349 
1350                 if (!bh[i])
1351                         continue;
1352                 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1353                 if (!err)
1354                         err = err2;
1355         }
1356 
1357         first_block = folio->index * blocks_per_page;
1358         for (i = 0; i < blocks_per_page; i++) {
1359                 group = (first_block + i) >> 1;
1360                 if (group >= ngroups)
1361                         break;
1362 
1363                 if (!bh[group - first_group])
1364                         /* skip initialized uptodate buddy */
1365                         continue;
1366 
1367                 if (!buffer_verified(bh[group - first_group]))
1368                         /* Skip faulty bitmaps */
1369                         continue;
1370                 err = 0;
1371 
1372                 /*
1373                  * data carry information regarding this
1374                  * particular group in the format specified
1375                  * above
1376                  *
1377                  */
1378                 data = folio_address(folio) + (i * blocksize);
1379                 bitmap = bh[group - first_group]->b_data;
1380 
1381                 /*
1382                  * We place the buddy block and bitmap block
1383                  * close together
1384                  */
1385                 grinfo = ext4_get_group_info(sb, group);
1386                 if (!grinfo) {
1387                         err = -EFSCORRUPTED;
1388                         goto out;
1389                 }
1390                 if ((first_block + i) & 1) {
1391                         /* this is block of buddy */
1392                         BUG_ON(incore == NULL);
1393                         mb_debug(sb, "put buddy for group %u in folio %lu/%x\n",
1394                                 group, folio->index, i * blocksize);
1395                         trace_ext4_mb_buddy_bitmap_load(sb, group);
1396                         grinfo->bb_fragments = 0;
1397                         memset(grinfo->bb_counters, 0,
1398                                sizeof(*grinfo->bb_counters) *
1399                                (MB_NUM_ORDERS(sb)));
1400                         /*
1401                          * incore got set to the group block bitmap below
1402                          */
1403                         ext4_lock_group(sb, group);
1404                         /* init the buddy */
1405                         memset(data, 0xff, blocksize);
1406                         ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1407                         ext4_unlock_group(sb, group);
1408                         incore = NULL;
1409                 } else {
1410                         /* this is block of bitmap */
1411                         BUG_ON(incore != NULL);
1412                         mb_debug(sb, "put bitmap for group %u in folio %lu/%x\n",
1413                                 group, folio->index, i * blocksize);
1414                         trace_ext4_mb_bitmap_load(sb, group);
1415 
1416                         /* see comments in ext4_mb_put_pa() */
1417                         ext4_lock_group(sb, group);
1418                         memcpy(data, bitmap, blocksize);
1419 
1420                         /* mark all preallocated blks used in in-core bitmap */
1421                         ext4_mb_generate_from_pa(sb, data, group);
1422                         WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1423                         ext4_unlock_group(sb, group);
1424 
1425                         /* set incore so that the buddy information can be
1426                          * generated using this
1427                          */
1428                         incore = data;
1429                 }
1430         }
1431         folio_mark_uptodate(folio);
1432 
1433 out:
1434         if (bh) {
1435                 for (i = 0; i < groups_per_page; i++)
1436                         brelse(bh[i]);
1437                 if (bh != &bhs)
1438                         kfree(bh);
1439         }
1440         return err;
1441 }
1442 
1443 /*
1444  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1445  * on the same buddy page doesn't happen whild holding the buddy page lock.
1446  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1447  * are on the same page e4b->bd_buddy_folio is NULL and return value is 0.
1448  */
1449 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1450                 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1451 {
1452         struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1453         int block, pnum, poff;
1454         int blocks_per_page;
1455         struct folio *folio;
1456 
1457         e4b->bd_buddy_folio = NULL;
1458         e4b->bd_bitmap_folio = NULL;
1459 
1460         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1461         /*
1462          * the buddy cache inode stores the block bitmap
1463          * and buddy information in consecutive blocks.
1464          * So for each group we need two blocks.
1465          */
1466         block = group * 2;
1467         pnum = block / blocks_per_page;
1468         poff = block % blocks_per_page;
1469         folio = __filemap_get_folio(inode->i_mapping, pnum,
1470                         FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1471         if (IS_ERR(folio))
1472                 return PTR_ERR(folio);
1473         BUG_ON(folio->mapping != inode->i_mapping);
1474         e4b->bd_bitmap_folio = folio;
1475         e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize);
1476 
1477         if (blocks_per_page >= 2) {
1478                 /* buddy and bitmap are on the same page */
1479                 return 0;
1480         }
1481 
1482         /* blocks_per_page == 1, hence we need another page for the buddy */
1483         folio = __filemap_get_folio(inode->i_mapping, block + 1,
1484                         FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1485         if (IS_ERR(folio))
1486                 return PTR_ERR(folio);
1487         BUG_ON(folio->mapping != inode->i_mapping);
1488         e4b->bd_buddy_folio = folio;
1489         return 0;
1490 }
1491 
1492 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1493 {
1494         if (e4b->bd_bitmap_folio) {
1495                 folio_unlock(e4b->bd_bitmap_folio);
1496                 folio_put(e4b->bd_bitmap_folio);
1497         }
1498         if (e4b->bd_buddy_folio) {
1499                 folio_unlock(e4b->bd_buddy_folio);
1500                 folio_put(e4b->bd_buddy_folio);
1501         }
1502 }
1503 
1504 /*
1505  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1506  * block group lock of all groups for this page; do not hold the BG lock when
1507  * calling this routine!
1508  */
1509 static noinline_for_stack
1510 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1511 {
1512 
1513         struct ext4_group_info *this_grp;
1514         struct ext4_buddy e4b;
1515         struct folio *folio;
1516         int ret = 0;
1517 
1518         might_sleep();
1519         mb_debug(sb, "init group %u\n", group);
1520         this_grp = ext4_get_group_info(sb, group);
1521         if (!this_grp)
1522                 return -EFSCORRUPTED;
1523 
1524         /*
1525          * This ensures that we don't reinit the buddy cache
1526          * page which map to the group from which we are already
1527          * allocating. If we are looking at the buddy cache we would
1528          * have taken a reference using ext4_mb_load_buddy and that
1529          * would have pinned buddy page to page cache.
1530          * The call to ext4_mb_get_buddy_page_lock will mark the
1531          * page accessed.
1532          */
1533         ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1534         if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1535                 /*
1536                  * somebody initialized the group
1537                  * return without doing anything
1538                  */
1539                 goto err;
1540         }
1541 
1542         folio = e4b.bd_bitmap_folio;
1543         ret = ext4_mb_init_cache(folio, NULL, gfp);
1544         if (ret)
1545                 goto err;
1546         if (!folio_test_uptodate(folio)) {
1547                 ret = -EIO;
1548                 goto err;
1549         }
1550 
1551         if (e4b.bd_buddy_folio == NULL) {
1552                 /*
1553                  * If both the bitmap and buddy are in
1554                  * the same page we don't need to force
1555                  * init the buddy
1556                  */
1557                 ret = 0;
1558                 goto err;
1559         }
1560         /* init buddy cache */
1561         folio = e4b.bd_buddy_folio;
1562         ret = ext4_mb_init_cache(folio, e4b.bd_bitmap, gfp);
1563         if (ret)
1564                 goto err;
1565         if (!folio_test_uptodate(folio)) {
1566                 ret = -EIO;
1567                 goto err;
1568         }
1569 err:
1570         ext4_mb_put_buddy_page_lock(&e4b);
1571         return ret;
1572 }
1573 
1574 /*
1575  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1576  * block group lock of all groups for this page; do not hold the BG lock when
1577  * calling this routine!
1578  */
1579 static noinline_for_stack int
1580 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1581                        struct ext4_buddy *e4b, gfp_t gfp)
1582 {
1583         int blocks_per_page;
1584         int block;
1585         int pnum;
1586         int poff;
1587         struct folio *folio;
1588         int ret;
1589         struct ext4_group_info *grp;
1590         struct ext4_sb_info *sbi = EXT4_SB(sb);
1591         struct inode *inode = sbi->s_buddy_cache;
1592 
1593         might_sleep();
1594         mb_debug(sb, "load group %u\n", group);
1595 
1596         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1597         grp = ext4_get_group_info(sb, group);
1598         if (!grp)
1599                 return -EFSCORRUPTED;
1600 
1601         e4b->bd_blkbits = sb->s_blocksize_bits;
1602         e4b->bd_info = grp;
1603         e4b->bd_sb = sb;
1604         e4b->bd_group = group;
1605         e4b->bd_buddy_folio = NULL;
1606         e4b->bd_bitmap_folio = NULL;
1607 
1608         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1609                 /*
1610                  * we need full data about the group
1611                  * to make a good selection
1612                  */
1613                 ret = ext4_mb_init_group(sb, group, gfp);
1614                 if (ret)
1615                         return ret;
1616         }
1617 
1618         /*
1619          * the buddy cache inode stores the block bitmap
1620          * and buddy information in consecutive blocks.
1621          * So for each group we need two blocks.
1622          */
1623         block = group * 2;
1624         pnum = block / blocks_per_page;
1625         poff = block % blocks_per_page;
1626 
1627         /* Avoid locking the folio in the fast path ... */
1628         folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1629         if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1630                 if (!IS_ERR(folio))
1631                         /*
1632                          * drop the folio reference and try
1633                          * to get the folio with lock. If we
1634                          * are not uptodate that implies
1635                          * somebody just created the folio but
1636                          * is yet to initialize it. So
1637                          * wait for it to initialize.
1638                          */
1639                         folio_put(folio);
1640                 folio = __filemap_get_folio(inode->i_mapping, pnum,
1641                                 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1642                 if (!IS_ERR(folio)) {
1643                         if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1644         "ext4: bitmap's mapping != inode->i_mapping\n")) {
1645                                 /* should never happen */
1646                                 folio_unlock(folio);
1647                                 ret = -EINVAL;
1648                                 goto err;
1649                         }
1650                         if (!folio_test_uptodate(folio)) {
1651                                 ret = ext4_mb_init_cache(folio, NULL, gfp);
1652                                 if (ret) {
1653                                         folio_unlock(folio);
1654                                         goto err;
1655                                 }
1656                                 mb_cmp_bitmaps(e4b, folio_address(folio) +
1657                                                (poff * sb->s_blocksize));
1658                         }
1659                         folio_unlock(folio);
1660                 }
1661         }
1662         if (IS_ERR(folio)) {
1663                 ret = PTR_ERR(folio);
1664                 goto err;
1665         }
1666         if (!folio_test_uptodate(folio)) {
1667                 ret = -EIO;
1668                 goto err;
1669         }
1670 
1671         /* Folios marked accessed already */
1672         e4b->bd_bitmap_folio = folio;
1673         e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize);
1674 
1675         block++;
1676         pnum = block / blocks_per_page;
1677         poff = block % blocks_per_page;
1678 
1679         folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1680         if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1681                 if (!IS_ERR(folio))
1682                         folio_put(folio);
1683                 folio = __filemap_get_folio(inode->i_mapping, pnum,
1684                                 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1685                 if (!IS_ERR(folio)) {
1686                         if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1687         "ext4: buddy bitmap's mapping != inode->i_mapping\n")) {
1688                                 /* should never happen */
1689                                 folio_unlock(folio);
1690                                 ret = -EINVAL;
1691                                 goto err;
1692                         }
1693                         if (!folio_test_uptodate(folio)) {
1694                                 ret = ext4_mb_init_cache(folio, e4b->bd_bitmap,
1695                                                          gfp);
1696                                 if (ret) {
1697                                         folio_unlock(folio);
1698                                         goto err;
1699                                 }
1700                         }
1701                         folio_unlock(folio);
1702                 }
1703         }
1704         if (IS_ERR(folio)) {
1705                 ret = PTR_ERR(folio);
1706                 goto err;
1707         }
1708         if (!folio_test_uptodate(folio)) {
1709                 ret = -EIO;
1710                 goto err;
1711         }
1712 
1713         /* Folios marked accessed already */
1714         e4b->bd_buddy_folio = folio;
1715         e4b->bd_buddy = folio_address(folio) + (poff * sb->s_blocksize);
1716 
1717         return 0;
1718 
1719 err:
1720         if (!IS_ERR_OR_NULL(folio))
1721                 folio_put(folio);
1722         if (e4b->bd_bitmap_folio)
1723                 folio_put(e4b->bd_bitmap_folio);
1724 
1725         e4b->bd_buddy = NULL;
1726         e4b->bd_bitmap = NULL;
1727         return ret;
1728 }
1729 
1730 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1731                               struct ext4_buddy *e4b)
1732 {
1733         return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1734 }
1735 
1736 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1737 {
1738         if (e4b->bd_bitmap_folio)
1739                 folio_put(e4b->bd_bitmap_folio);
1740         if (e4b->bd_buddy_folio)
1741                 folio_put(e4b->bd_buddy_folio);
1742 }
1743 
1744 
1745 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1746 {
1747         int order = 1, max;
1748         void *bb;
1749 
1750         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1751         BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1752 
1753         while (order <= e4b->bd_blkbits + 1) {
1754                 bb = mb_find_buddy(e4b, order, &max);
1755                 if (!mb_test_bit(block >> order, bb)) {
1756                         /* this block is part of buddy of order 'order' */
1757                         return order;
1758                 }
1759                 order++;
1760         }
1761         return 0;
1762 }
1763 
1764 static void mb_clear_bits(void *bm, int cur, int len)
1765 {
1766         __u32 *addr;
1767 
1768         len = cur + len;
1769         while (cur < len) {
1770                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1771                         /* fast path: clear whole word at once */
1772                         addr = bm + (cur >> 3);
1773                         *addr = 0;
1774                         cur += 32;
1775                         continue;
1776                 }
1777                 mb_clear_bit(cur, bm);
1778                 cur++;
1779         }
1780 }
1781 
1782 /* clear bits in given range
1783  * will return first found zero bit if any, -1 otherwise
1784  */
1785 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1786 {
1787         __u32 *addr;
1788         int zero_bit = -1;
1789 
1790         len = cur + len;
1791         while (cur < len) {
1792                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1793                         /* fast path: clear whole word at once */
1794                         addr = bm + (cur >> 3);
1795                         if (*addr != (__u32)(-1) && zero_bit == -1)
1796                                 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1797                         *addr = 0;
1798                         cur += 32;
1799                         continue;
1800                 }
1801                 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1802                         zero_bit = cur;
1803                 cur++;
1804         }
1805 
1806         return zero_bit;
1807 }
1808 
1809 void mb_set_bits(void *bm, int cur, int len)
1810 {
1811         __u32 *addr;
1812 
1813         len = cur + len;
1814         while (cur < len) {
1815                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1816                         /* fast path: set whole word at once */
1817                         addr = bm + (cur >> 3);
1818                         *addr = 0xffffffff;
1819                         cur += 32;
1820                         continue;
1821                 }
1822                 mb_set_bit(cur, bm);
1823                 cur++;
1824         }
1825 }
1826 
1827 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1828 {
1829         if (mb_test_bit(*bit + side, bitmap)) {
1830                 mb_clear_bit(*bit, bitmap);
1831                 (*bit) -= side;
1832                 return 1;
1833         }
1834         else {
1835                 (*bit) += side;
1836                 mb_set_bit(*bit, bitmap);
1837                 return -1;
1838         }
1839 }
1840 
1841 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1842 {
1843         int max;
1844         int order = 1;
1845         void *buddy = mb_find_buddy(e4b, order, &max);
1846 
1847         while (buddy) {
1848                 void *buddy2;
1849 
1850                 /* Bits in range [first; last] are known to be set since
1851                  * corresponding blocks were allocated. Bits in range
1852                  * (first; last) will stay set because they form buddies on
1853                  * upper layer. We just deal with borders if they don't
1854                  * align with upper layer and then go up.
1855                  * Releasing entire group is all about clearing
1856                  * single bit of highest order buddy.
1857                  */
1858 
1859                 /* Example:
1860                  * ---------------------------------
1861                  * |   1   |   1   |   1   |   1   |
1862                  * ---------------------------------
1863                  * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1864                  * ---------------------------------
1865                  *   0   1   2   3   4   5   6   7
1866                  *      \_____________________/
1867                  *
1868                  * Neither [1] nor [6] is aligned to above layer.
1869                  * Left neighbour [0] is free, so mark it busy,
1870                  * decrease bb_counters and extend range to
1871                  * [0; 6]
1872                  * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1873                  * mark [6] free, increase bb_counters and shrink range to
1874                  * [0; 5].
1875                  * Then shift range to [0; 2], go up and do the same.
1876                  */
1877 
1878 
1879                 if (first & 1)
1880                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1881                 if (!(last & 1))
1882                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1883                 if (first > last)
1884                         break;
1885                 order++;
1886 
1887                 buddy2 = mb_find_buddy(e4b, order, &max);
1888                 if (!buddy2) {
1889                         mb_clear_bits(buddy, first, last - first + 1);
1890                         e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1891                         break;
1892                 }
1893                 first >>= 1;
1894                 last >>= 1;
1895                 buddy = buddy2;
1896         }
1897 }
1898 
1899 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1900                            int first, int count)
1901 {
1902         int left_is_free = 0;
1903         int right_is_free = 0;
1904         int block;
1905         int last = first + count - 1;
1906         struct super_block *sb = e4b->bd_sb;
1907 
1908         if (WARN_ON(count == 0))
1909                 return;
1910         BUG_ON(last >= (sb->s_blocksize << 3));
1911         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1912         /* Don't bother if the block group is corrupt. */
1913         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1914                 return;
1915 
1916         mb_check_buddy(e4b);
1917         mb_free_blocks_double(inode, e4b, first, count);
1918 
1919         /* access memory sequentially: check left neighbour,
1920          * clear range and then check right neighbour
1921          */
1922         if (first != 0)
1923                 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1924         block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1925         if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1926                 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1927 
1928         if (unlikely(block != -1)) {
1929                 struct ext4_sb_info *sbi = EXT4_SB(sb);
1930                 ext4_fsblk_t blocknr;
1931 
1932                 /*
1933                  * Fastcommit replay can free already freed blocks which
1934                  * corrupts allocation info. Regenerate it.
1935                  */
1936                 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1937                         mb_regenerate_buddy(e4b);
1938                         goto check;
1939                 }
1940 
1941                 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1942                 blocknr += EXT4_C2B(sbi, block);
1943                 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1944                                 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1945                 ext4_grp_locked_error(sb, e4b->bd_group,
1946                                       inode ? inode->i_ino : 0, blocknr,
1947                                       "freeing already freed block (bit %u); block bitmap corrupt.",
1948                                       block);
1949                 return;
1950         }
1951 
1952         this_cpu_inc(discard_pa_seq);
1953         e4b->bd_info->bb_free += count;
1954         if (first < e4b->bd_info->bb_first_free)
1955                 e4b->bd_info->bb_first_free = first;
1956 
1957         /* let's maintain fragments counter */
1958         if (left_is_free && right_is_free)
1959                 e4b->bd_info->bb_fragments--;
1960         else if (!left_is_free && !right_is_free)
1961                 e4b->bd_info->bb_fragments++;
1962 
1963         /* buddy[0] == bd_bitmap is a special case, so handle
1964          * it right away and let mb_buddy_mark_free stay free of
1965          * zero order checks.
1966          * Check if neighbours are to be coaleasced,
1967          * adjust bitmap bb_counters and borders appropriately.
1968          */
1969         if (first & 1) {
1970                 first += !left_is_free;
1971                 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1972         }
1973         if (!(last & 1)) {
1974                 last -= !right_is_free;
1975                 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1976         }
1977 
1978         if (first <= last)
1979                 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1980 
1981         mb_set_largest_free_order(sb, e4b->bd_info);
1982         mb_update_avg_fragment_size(sb, e4b->bd_info);
1983 check:
1984         mb_check_buddy(e4b);
1985 }
1986 
1987 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1988                                 int needed, struct ext4_free_extent *ex)
1989 {
1990         int max, order, next;
1991         void *buddy;
1992 
1993         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1994         BUG_ON(ex == NULL);
1995 
1996         buddy = mb_find_buddy(e4b, 0, &max);
1997         BUG_ON(buddy == NULL);
1998         BUG_ON(block >= max);
1999         if (mb_test_bit(block, buddy)) {
2000                 ex->fe_len = 0;
2001                 ex->fe_start = 0;
2002                 ex->fe_group = 0;
2003                 return 0;
2004         }
2005 
2006         /* find actual order */
2007         order = mb_find_order_for_block(e4b, block);
2008 
2009         ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
2010         ex->fe_start = block;
2011         ex->fe_group = e4b->bd_group;
2012 
2013         block = block >> order;
2014 
2015         while (needed > ex->fe_len &&
2016                mb_find_buddy(e4b, order, &max)) {
2017 
2018                 if (block + 1 >= max)
2019                         break;
2020 
2021                 next = (block + 1) * (1 << order);
2022                 if (mb_test_bit(next, e4b->bd_bitmap))
2023                         break;
2024 
2025                 order = mb_find_order_for_block(e4b, next);
2026 
2027                 block = next >> order;
2028                 ex->fe_len += 1 << order;
2029         }
2030 
2031         if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2032                 /* Should never happen! (but apparently sometimes does?!?) */
2033                 WARN_ON(1);
2034                 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2035                         "corruption or bug in mb_find_extent "
2036                         "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2037                         block, order, needed, ex->fe_group, ex->fe_start,
2038                         ex->fe_len, ex->fe_logical);
2039                 ex->fe_len = 0;
2040                 ex->fe_start = 0;
2041                 ex->fe_group = 0;
2042         }
2043         return ex->fe_len;
2044 }
2045 
2046 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2047 {
2048         int ord;
2049         int mlen = 0;
2050         int max = 0;
2051         int start = ex->fe_start;
2052         int len = ex->fe_len;
2053         unsigned ret = 0;
2054         int len0 = len;
2055         void *buddy;
2056         int ord_start, ord_end;
2057 
2058         BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2059         BUG_ON(e4b->bd_group != ex->fe_group);
2060         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2061         mb_check_buddy(e4b);
2062         mb_mark_used_double(e4b, start, len);
2063 
2064         this_cpu_inc(discard_pa_seq);
2065         e4b->bd_info->bb_free -= len;
2066         if (e4b->bd_info->bb_first_free == start)
2067                 e4b->bd_info->bb_first_free += len;
2068 
2069         /* let's maintain fragments counter */
2070         if (start != 0)
2071                 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2072         if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2073                 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2074         if (mlen && max)
2075                 e4b->bd_info->bb_fragments++;
2076         else if (!mlen && !max)
2077                 e4b->bd_info->bb_fragments--;
2078 
2079         /* let's maintain buddy itself */
2080         while (len) {
2081                 ord = mb_find_order_for_block(e4b, start);
2082 
2083                 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2084                         /* the whole chunk may be allocated at once! */
2085                         mlen = 1 << ord;
2086                         buddy = mb_find_buddy(e4b, ord, &max);
2087                         BUG_ON((start >> ord) >= max);
2088                         mb_set_bit(start >> ord, buddy);
2089                         e4b->bd_info->bb_counters[ord]--;
2090                         start += mlen;
2091                         len -= mlen;
2092                         BUG_ON(len < 0);
2093                         continue;
2094                 }
2095 
2096                 /* store for history */
2097                 if (ret == 0)
2098                         ret = len | (ord << 16);
2099 
2100                 BUG_ON(ord <= 0);
2101                 buddy = mb_find_buddy(e4b, ord, &max);
2102                 mb_set_bit(start >> ord, buddy);
2103                 e4b->bd_info->bb_counters[ord]--;
2104 
2105                 ord_start = (start >> ord) << ord;
2106                 ord_end = ord_start + (1 << ord);
2107                 /* first chunk */
2108                 if (start > ord_start)
2109                         ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2110                                                  ord_start, start - ord_start,
2111                                                  e4b->bd_info);
2112 
2113                 /* last chunk */
2114                 if (start + len < ord_end) {
2115                         ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2116                                                  start + len,
2117                                                  ord_end - (start + len),
2118                                                  e4b->bd_info);
2119                         break;
2120                 }
2121                 len = start + len - ord_end;
2122                 start = ord_end;
2123         }
2124         mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2125 
2126         mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2127         mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2128         mb_check_buddy(e4b);
2129 
2130         return ret;
2131 }
2132 
2133 /*
2134  * Must be called under group lock!
2135  */
2136 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2137                                         struct ext4_buddy *e4b)
2138 {
2139         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2140         int ret;
2141 
2142         BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2143         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2144 
2145         ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2146         ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2147         ret = mb_mark_used(e4b, &ac->ac_b_ex);
2148 
2149         /* preallocation can change ac_b_ex, thus we store actually
2150          * allocated blocks for history */
2151         ac->ac_f_ex = ac->ac_b_ex;
2152 
2153         ac->ac_status = AC_STATUS_FOUND;
2154         ac->ac_tail = ret & 0xffff;
2155         ac->ac_buddy = ret >> 16;
2156 
2157         /*
2158          * take the page reference. We want the page to be pinned
2159          * so that we don't get a ext4_mb_init_cache_call for this
2160          * group until we update the bitmap. That would mean we
2161          * double allocate blocks. The reference is dropped
2162          * in ext4_mb_release_context
2163          */
2164         ac->ac_bitmap_folio = e4b->bd_bitmap_folio;
2165         folio_get(ac->ac_bitmap_folio);
2166         ac->ac_buddy_folio = e4b->bd_buddy_folio;
2167         folio_get(ac->ac_buddy_folio);
2168         /* store last allocated for subsequent stream allocation */
2169         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2170                 spin_lock(&sbi->s_md_lock);
2171                 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2172                 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2173                 spin_unlock(&sbi->s_md_lock);
2174         }
2175         /*
2176          * As we've just preallocated more space than
2177          * user requested originally, we store allocated
2178          * space in a special descriptor.
2179          */
2180         if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2181                 ext4_mb_new_preallocation(ac);
2182 
2183 }
2184 
2185 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2186                                         struct ext4_buddy *e4b,
2187                                         int finish_group)
2188 {
2189         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2190         struct ext4_free_extent *bex = &ac->ac_b_ex;
2191         struct ext4_free_extent *gex = &ac->ac_g_ex;
2192 
2193         if (ac->ac_status == AC_STATUS_FOUND)
2194                 return;
2195         /*
2196          * We don't want to scan for a whole year
2197          */
2198         if (ac->ac_found > sbi->s_mb_max_to_scan &&
2199                         !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2200                 ac->ac_status = AC_STATUS_BREAK;
2201                 return;
2202         }
2203 
2204         /*
2205          * Haven't found good chunk so far, let's continue
2206          */
2207         if (bex->fe_len < gex->fe_len)
2208                 return;
2209 
2210         if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2211                 ext4_mb_use_best_found(ac, e4b);
2212 }
2213 
2214 /*
2215  * The routine checks whether found extent is good enough. If it is,
2216  * then the extent gets marked used and flag is set to the context
2217  * to stop scanning. Otherwise, the extent is compared with the
2218  * previous found extent and if new one is better, then it's stored
2219  * in the context. Later, the best found extent will be used, if
2220  * mballoc can't find good enough extent.
2221  *
2222  * The algorithm used is roughly as follows:
2223  *
2224  * * If free extent found is exactly as big as goal, then
2225  *   stop the scan and use it immediately
2226  *
2227  * * If free extent found is smaller than goal, then keep retrying
2228  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2229  *   that stop scanning and use whatever we have.
2230  *
2231  * * If free extent found is bigger than goal, then keep retrying
2232  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2233  *   stopping the scan and using the extent.
2234  *
2235  *
2236  * FIXME: real allocation policy is to be designed yet!
2237  */
2238 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2239                                         struct ext4_free_extent *ex,
2240                                         struct ext4_buddy *e4b)
2241 {
2242         struct ext4_free_extent *bex = &ac->ac_b_ex;
2243         struct ext4_free_extent *gex = &ac->ac_g_ex;
2244 
2245         BUG_ON(ex->fe_len <= 0);
2246         BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2247         BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2248         BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2249 
2250         ac->ac_found++;
2251         ac->ac_cX_found[ac->ac_criteria]++;
2252 
2253         /*
2254          * The special case - take what you catch first
2255          */
2256         if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2257                 *bex = *ex;
2258                 ext4_mb_use_best_found(ac, e4b);
2259                 return;
2260         }
2261 
2262         /*
2263          * Let's check whether the chuck is good enough
2264          */
2265         if (ex->fe_len == gex->fe_len) {
2266                 *bex = *ex;
2267                 ext4_mb_use_best_found(ac, e4b);
2268                 return;
2269         }
2270 
2271         /*
2272          * If this is first found extent, just store it in the context
2273          */
2274         if (bex->fe_len == 0) {
2275                 *bex = *ex;
2276                 return;
2277         }
2278 
2279         /*
2280          * If new found extent is better, store it in the context
2281          */
2282         if (bex->fe_len < gex->fe_len) {
2283                 /* if the request isn't satisfied, any found extent
2284                  * larger than previous best one is better */
2285                 if (ex->fe_len > bex->fe_len)
2286                         *bex = *ex;
2287         } else if (ex->fe_len > gex->fe_len) {
2288                 /* if the request is satisfied, then we try to find
2289                  * an extent that still satisfy the request, but is
2290                  * smaller than previous one */
2291                 if (ex->fe_len < bex->fe_len)
2292                         *bex = *ex;
2293         }
2294 
2295         ext4_mb_check_limits(ac, e4b, 0);
2296 }
2297 
2298 static noinline_for_stack
2299 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2300                                         struct ext4_buddy *e4b)
2301 {
2302         struct ext4_free_extent ex = ac->ac_b_ex;
2303         ext4_group_t group = ex.fe_group;
2304         int max;
2305         int err;
2306 
2307         BUG_ON(ex.fe_len <= 0);
2308         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2309         if (err)
2310                 return;
2311 
2312         ext4_lock_group(ac->ac_sb, group);
2313         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2314                 goto out;
2315 
2316         max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2317 
2318         if (max > 0) {
2319                 ac->ac_b_ex = ex;
2320                 ext4_mb_use_best_found(ac, e4b);
2321         }
2322 
2323 out:
2324         ext4_unlock_group(ac->ac_sb, group);
2325         ext4_mb_unload_buddy(e4b);
2326 }
2327 
2328 static noinline_for_stack
2329 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2330                                 struct ext4_buddy *e4b)
2331 {
2332         ext4_group_t group = ac->ac_g_ex.fe_group;
2333         int max;
2334         int err;
2335         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2336         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2337         struct ext4_free_extent ex;
2338 
2339         if (!grp)
2340                 return -EFSCORRUPTED;
2341         if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2342                 return 0;
2343         if (grp->bb_free == 0)
2344                 return 0;
2345 
2346         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2347         if (err)
2348                 return err;
2349 
2350         ext4_lock_group(ac->ac_sb, group);
2351         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2352                 goto out;
2353 
2354         max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2355                              ac->ac_g_ex.fe_len, &ex);
2356         ex.fe_logical = 0xDEADFA11; /* debug value */
2357 
2358         if (max >= ac->ac_g_ex.fe_len &&
2359             ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2360                 ext4_fsblk_t start;
2361 
2362                 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2363                 /* use do_div to get remainder (would be 64-bit modulo) */
2364                 if (do_div(start, sbi->s_stripe) == 0) {
2365                         ac->ac_found++;
2366                         ac->ac_b_ex = ex;
2367                         ext4_mb_use_best_found(ac, e4b);
2368                 }
2369         } else if (max >= ac->ac_g_ex.fe_len) {
2370                 BUG_ON(ex.fe_len <= 0);
2371                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2372                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2373                 ac->ac_found++;
2374                 ac->ac_b_ex = ex;
2375                 ext4_mb_use_best_found(ac, e4b);
2376         } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2377                 /* Sometimes, caller may want to merge even small
2378                  * number of blocks to an existing extent */
2379                 BUG_ON(ex.fe_len <= 0);
2380                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2381                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2382                 ac->ac_found++;
2383                 ac->ac_b_ex = ex;
2384                 ext4_mb_use_best_found(ac, e4b);
2385         }
2386 out:
2387         ext4_unlock_group(ac->ac_sb, group);
2388         ext4_mb_unload_buddy(e4b);
2389 
2390         return 0;
2391 }
2392 
2393 /*
2394  * The routine scans buddy structures (not bitmap!) from given order
2395  * to max order and tries to find big enough chunk to satisfy the req
2396  */
2397 static noinline_for_stack
2398 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2399                                         struct ext4_buddy *e4b)
2400 {
2401         struct super_block *sb = ac->ac_sb;
2402         struct ext4_group_info *grp = e4b->bd_info;
2403         void *buddy;
2404         int i;
2405         int k;
2406         int max;
2407 
2408         BUG_ON(ac->ac_2order <= 0);
2409         for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2410                 if (grp->bb_counters[i] == 0)
2411                         continue;
2412 
2413                 buddy = mb_find_buddy(e4b, i, &max);
2414                 if (WARN_RATELIMIT(buddy == NULL,
2415                          "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2416                         continue;
2417 
2418                 k = mb_find_next_zero_bit(buddy, max, 0);
2419                 if (k >= max) {
2420                         ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2421                                         e4b->bd_group,
2422                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2423                         ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2424                                 "%d free clusters of order %d. But found 0",
2425                                 grp->bb_counters[i], i);
2426                         break;
2427                 }
2428                 ac->ac_found++;
2429                 ac->ac_cX_found[ac->ac_criteria]++;
2430 
2431                 ac->ac_b_ex.fe_len = 1 << i;
2432                 ac->ac_b_ex.fe_start = k << i;
2433                 ac->ac_b_ex.fe_group = e4b->bd_group;
2434 
2435                 ext4_mb_use_best_found(ac, e4b);
2436 
2437                 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2438 
2439                 if (EXT4_SB(sb)->s_mb_stats)
2440                         atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2441 
2442                 break;
2443         }
2444 }
2445 
2446 /*
2447  * The routine scans the group and measures all found extents.
2448  * In order to optimize scanning, caller must pass number of
2449  * free blocks in the group, so the routine can know upper limit.
2450  */
2451 static noinline_for_stack
2452 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2453                                         struct ext4_buddy *e4b)
2454 {
2455         struct super_block *sb = ac->ac_sb;
2456         void *bitmap = e4b->bd_bitmap;
2457         struct ext4_free_extent ex;
2458         int i, j, freelen;
2459         int free;
2460 
2461         free = e4b->bd_info->bb_free;
2462         if (WARN_ON(free <= 0))
2463                 return;
2464 
2465         i = e4b->bd_info->bb_first_free;
2466 
2467         while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2468                 i = mb_find_next_zero_bit(bitmap,
2469                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2470                 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2471                         /*
2472                          * IF we have corrupt bitmap, we won't find any
2473                          * free blocks even though group info says we
2474                          * have free blocks
2475                          */
2476                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2477                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2478                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2479                                         "%d free clusters as per "
2480                                         "group info. But bitmap says 0",
2481                                         free);
2482                         break;
2483                 }
2484 
2485                 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2486                         /*
2487                          * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2488                          * sure that this group will have a large enough
2489                          * continuous free extent, so skip over the smaller free
2490                          * extents
2491                          */
2492                         j = mb_find_next_bit(bitmap,
2493                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2494                         freelen = j - i;
2495 
2496                         if (freelen < ac->ac_g_ex.fe_len) {
2497                                 i = j;
2498                                 free -= freelen;
2499                                 continue;
2500                         }
2501                 }
2502 
2503                 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2504                 if (WARN_ON(ex.fe_len <= 0))
2505                         break;
2506                 if (free < ex.fe_len) {
2507                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2508                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2509                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2510                                         "%d free clusters as per "
2511                                         "group info. But got %d blocks",
2512                                         free, ex.fe_len);
2513                         /*
2514                          * The number of free blocks differs. This mostly
2515                          * indicate that the bitmap is corrupt. So exit
2516                          * without claiming the space.
2517                          */
2518                         break;
2519                 }
2520                 ex.fe_logical = 0xDEADC0DE; /* debug value */
2521                 ext4_mb_measure_extent(ac, &ex, e4b);
2522 
2523                 i += ex.fe_len;
2524                 free -= ex.fe_len;
2525         }
2526 
2527         ext4_mb_check_limits(ac, e4b, 1);
2528 }
2529 
2530 /*
2531  * This is a special case for storages like raid5
2532  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2533  */
2534 static noinline_for_stack
2535 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2536                                  struct ext4_buddy *e4b)
2537 {
2538         struct super_block *sb = ac->ac_sb;
2539         struct ext4_sb_info *sbi = EXT4_SB(sb);
2540         void *bitmap = e4b->bd_bitmap;
2541         struct ext4_free_extent ex;
2542         ext4_fsblk_t first_group_block;
2543         ext4_fsblk_t a;
2544         ext4_grpblk_t i, stripe;
2545         int max;
2546 
2547         BUG_ON(sbi->s_stripe == 0);
2548 
2549         /* find first stripe-aligned block in group */
2550         first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2551 
2552         a = first_group_block + sbi->s_stripe - 1;
2553         do_div(a, sbi->s_stripe);
2554         i = (a * sbi->s_stripe) - first_group_block;
2555 
2556         stripe = EXT4_B2C(sbi, sbi->s_stripe);
2557         i = EXT4_B2C(sbi, i);
2558         while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2559                 if (!mb_test_bit(i, bitmap)) {
2560                         max = mb_find_extent(e4b, i, stripe, &ex);
2561                         if (max >= stripe) {
2562                                 ac->ac_found++;
2563                                 ac->ac_cX_found[ac->ac_criteria]++;
2564                                 ex.fe_logical = 0xDEADF00D; /* debug value */
2565                                 ac->ac_b_ex = ex;
2566                                 ext4_mb_use_best_found(ac, e4b);
2567                                 break;
2568                         }
2569                 }
2570                 i += stripe;
2571         }
2572 }
2573 
2574 /*
2575  * This is also called BEFORE we load the buddy bitmap.
2576  * Returns either 1 or 0 indicating that the group is either suitable
2577  * for the allocation or not.
2578  */
2579 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2580                                 ext4_group_t group, enum criteria cr)
2581 {
2582         ext4_grpblk_t free, fragments;
2583         int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2584         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2585 
2586         BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2587 
2588         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2589                 return false;
2590 
2591         free = grp->bb_free;
2592         if (free == 0)
2593                 return false;
2594 
2595         fragments = grp->bb_fragments;
2596         if (fragments == 0)
2597                 return false;
2598 
2599         switch (cr) {
2600         case CR_POWER2_ALIGNED:
2601                 BUG_ON(ac->ac_2order == 0);
2602 
2603                 /* Avoid using the first bg of a flexgroup for data files */
2604                 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2605                     (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2606                     ((group % flex_size) == 0))
2607                         return false;
2608 
2609                 if (free < ac->ac_g_ex.fe_len)
2610                         return false;
2611 
2612                 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2613                         return true;
2614 
2615                 if (grp->bb_largest_free_order < ac->ac_2order)
2616                         return false;
2617 
2618                 return true;
2619         case CR_GOAL_LEN_FAST:
2620         case CR_BEST_AVAIL_LEN:
2621                 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2622                         return true;
2623                 break;
2624         case CR_GOAL_LEN_SLOW:
2625                 if (free >= ac->ac_g_ex.fe_len)
2626                         return true;
2627                 break;
2628         case CR_ANY_FREE:
2629                 return true;
2630         default:
2631                 BUG();
2632         }
2633 
2634         return false;
2635 }
2636 
2637 /*
2638  * This could return negative error code if something goes wrong
2639  * during ext4_mb_init_group(). This should not be called with
2640  * ext4_lock_group() held.
2641  *
2642  * Note: because we are conditionally operating with the group lock in
2643  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2644  * function using __acquire and __release.  This means we need to be
2645  * super careful before messing with the error path handling via "goto
2646  * out"!
2647  */
2648 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2649                                      ext4_group_t group, enum criteria cr)
2650 {
2651         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2652         struct super_block *sb = ac->ac_sb;
2653         struct ext4_sb_info *sbi = EXT4_SB(sb);
2654         bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2655         ext4_grpblk_t free;
2656         int ret = 0;
2657 
2658         if (!grp)
2659                 return -EFSCORRUPTED;
2660         if (sbi->s_mb_stats)
2661                 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2662         if (should_lock) {
2663                 ext4_lock_group(sb, group);
2664                 __release(ext4_group_lock_ptr(sb, group));
2665         }
2666         free = grp->bb_free;
2667         if (free == 0)
2668                 goto out;
2669         /*
2670          * In all criterias except CR_ANY_FREE we try to avoid groups that
2671          * can't possibly satisfy the full goal request due to insufficient
2672          * free blocks.
2673          */
2674         if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2675                 goto out;
2676         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2677                 goto out;
2678         if (should_lock) {
2679                 __acquire(ext4_group_lock_ptr(sb, group));
2680                 ext4_unlock_group(sb, group);
2681         }
2682 
2683         /* We only do this if the grp has never been initialized */
2684         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2685                 struct ext4_group_desc *gdp =
2686                         ext4_get_group_desc(sb, group, NULL);
2687                 int ret;
2688 
2689                 /*
2690                  * CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2691                  * search to find large good chunks almost for free. If buddy
2692                  * data is not ready, then this optimization makes no sense. But
2693                  * we never skip the first block group in a flex_bg, since this
2694                  * gets used for metadata block allocation, and we want to make
2695                  * sure we locate metadata blocks in the first block group in
2696                  * the flex_bg if possible.
2697                  */
2698                 if (!ext4_mb_cr_expensive(cr) &&
2699                     (!sbi->s_log_groups_per_flex ||
2700                      ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2701                     !(ext4_has_group_desc_csum(sb) &&
2702                       (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2703                         return 0;
2704                 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2705                 if (ret)
2706                         return ret;
2707         }
2708 
2709         if (should_lock) {
2710                 ext4_lock_group(sb, group);
2711                 __release(ext4_group_lock_ptr(sb, group));
2712         }
2713         ret = ext4_mb_good_group(ac, group, cr);
2714 out:
2715         if (should_lock) {
2716                 __acquire(ext4_group_lock_ptr(sb, group));
2717                 ext4_unlock_group(sb, group);
2718         }
2719         return ret;
2720 }
2721 
2722 /*
2723  * Start prefetching @nr block bitmaps starting at @group.
2724  * Return the next group which needs to be prefetched.
2725  */
2726 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2727                               unsigned int nr, int *cnt)
2728 {
2729         ext4_group_t ngroups = ext4_get_groups_count(sb);
2730         struct buffer_head *bh;
2731         struct blk_plug plug;
2732 
2733         blk_start_plug(&plug);
2734         while (nr-- > 0) {
2735                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2736                                                                   NULL);
2737                 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2738 
2739                 /*
2740                  * Prefetch block groups with free blocks; but don't
2741                  * bother if it is marked uninitialized on disk, since
2742                  * it won't require I/O to read.  Also only try to
2743                  * prefetch once, so we avoid getblk() call, which can
2744                  * be expensive.
2745                  */
2746                 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2747                     EXT4_MB_GRP_NEED_INIT(grp) &&
2748                     ext4_free_group_clusters(sb, gdp) > 0 ) {
2749                         bh = ext4_read_block_bitmap_nowait(sb, group, true);
2750                         if (bh && !IS_ERR(bh)) {
2751                                 if (!buffer_uptodate(bh) && cnt)
2752                                         (*cnt)++;
2753                                 brelse(bh);
2754                         }
2755                 }
2756                 if (++group >= ngroups)
2757                         group = 0;
2758         }
2759         blk_finish_plug(&plug);
2760         return group;
2761 }
2762 
2763 /*
2764  * Prefetching reads the block bitmap into the buffer cache; but we
2765  * need to make sure that the buddy bitmap in the page cache has been
2766  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2767  * is not yet completed, or indeed if it was not initiated by
2768  * ext4_mb_prefetch did not start the I/O.
2769  *
2770  * TODO: We should actually kick off the buddy bitmap setup in a work
2771  * queue when the buffer I/O is completed, so that we don't block
2772  * waiting for the block allocation bitmap read to finish when
2773  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2774  */
2775 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2776                            unsigned int nr)
2777 {
2778         struct ext4_group_desc *gdp;
2779         struct ext4_group_info *grp;
2780 
2781         while (nr-- > 0) {
2782                 if (!group)
2783                         group = ext4_get_groups_count(sb);
2784                 group--;
2785                 gdp = ext4_get_group_desc(sb, group, NULL);
2786                 grp = ext4_get_group_info(sb, group);
2787 
2788                 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2789                     ext4_free_group_clusters(sb, gdp) > 0) {
2790                         if (ext4_mb_init_group(sb, group, GFP_NOFS))
2791                                 break;
2792                 }
2793         }
2794 }
2795 
2796 static noinline_for_stack int
2797 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2798 {
2799         ext4_group_t prefetch_grp = 0, ngroups, group, i;
2800         enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2801         int err = 0, first_err = 0;
2802         unsigned int nr = 0, prefetch_ios = 0;
2803         struct ext4_sb_info *sbi;
2804         struct super_block *sb;
2805         struct ext4_buddy e4b;
2806         int lost;
2807 
2808         sb = ac->ac_sb;
2809         sbi = EXT4_SB(sb);
2810         ngroups = ext4_get_groups_count(sb);
2811         /* non-extent files are limited to low blocks/groups */
2812         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2813                 ngroups = sbi->s_blockfile_groups;
2814 
2815         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2816 
2817         /* first, try the goal */
2818         err = ext4_mb_find_by_goal(ac, &e4b);
2819         if (err || ac->ac_status == AC_STATUS_FOUND)
2820                 goto out;
2821 
2822         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2823                 goto out;
2824 
2825         /*
2826          * ac->ac_2order is set only if the fe_len is a power of 2
2827          * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2828          * so that we try exact allocation using buddy.
2829          */
2830         i = fls(ac->ac_g_ex.fe_len);
2831         ac->ac_2order = 0;
2832         /*
2833          * We search using buddy data only if the order of the request
2834          * is greater than equal to the sbi_s_mb_order2_reqs
2835          * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2836          * We also support searching for power-of-two requests only for
2837          * requests upto maximum buddy size we have constructed.
2838          */
2839         if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2840                 if (is_power_of_2(ac->ac_g_ex.fe_len))
2841                         ac->ac_2order = array_index_nospec(i - 1,
2842                                                            MB_NUM_ORDERS(sb));
2843         }
2844 
2845         /* if stream allocation is enabled, use global goal */
2846         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2847                 /* TBD: may be hot point */
2848                 spin_lock(&sbi->s_md_lock);
2849                 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2850                 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2851                 spin_unlock(&sbi->s_md_lock);
2852         }
2853 
2854         /*
2855          * Let's just scan groups to find more-less suitable blocks We
2856          * start with CR_GOAL_LEN_FAST, unless it is power of 2
2857          * aligned, in which case let's do that faster approach first.
2858          */
2859         if (ac->ac_2order)
2860                 cr = CR_POWER2_ALIGNED;
2861 repeat:
2862         for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2863                 ac->ac_criteria = cr;
2864                 /*
2865                  * searching for the right group start
2866                  * from the goal value specified
2867                  */
2868                 group = ac->ac_g_ex.fe_group;
2869                 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2870                 prefetch_grp = group;
2871                 nr = 0;
2872 
2873                 for (i = 0, new_cr = cr; i < ngroups; i++,
2874                      ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2875                         int ret = 0;
2876 
2877                         cond_resched();
2878                         if (new_cr != cr) {
2879                                 cr = new_cr;
2880                                 goto repeat;
2881                         }
2882 
2883                         /*
2884                          * Batch reads of the block allocation bitmaps
2885                          * to get multiple READs in flight; limit
2886                          * prefetching at inexpensive CR, otherwise mballoc
2887                          * can spend a lot of time loading imperfect groups
2888                          */
2889                         if ((prefetch_grp == group) &&
2890                             (ext4_mb_cr_expensive(cr) ||
2891                              prefetch_ios < sbi->s_mb_prefetch_limit)) {
2892                                 nr = sbi->s_mb_prefetch;
2893                                 if (ext4_has_feature_flex_bg(sb)) {
2894                                         nr = 1 << sbi->s_log_groups_per_flex;
2895                                         nr -= group & (nr - 1);
2896                                         nr = min(nr, sbi->s_mb_prefetch);
2897                                 }
2898                                 prefetch_grp = ext4_mb_prefetch(sb, group,
2899                                                         nr, &prefetch_ios);
2900                         }
2901 
2902                         /* This now checks without needing the buddy page */
2903                         ret = ext4_mb_good_group_nolock(ac, group, cr);
2904                         if (ret <= 0) {
2905                                 if (!first_err)
2906                                         first_err = ret;
2907                                 continue;
2908                         }
2909 
2910                         err = ext4_mb_load_buddy(sb, group, &e4b);
2911                         if (err)
2912                                 goto out;
2913 
2914                         ext4_lock_group(sb, group);
2915 
2916                         /*
2917                          * We need to check again after locking the
2918                          * block group
2919                          */
2920                         ret = ext4_mb_good_group(ac, group, cr);
2921                         if (ret == 0) {
2922                                 ext4_unlock_group(sb, group);
2923                                 ext4_mb_unload_buddy(&e4b);
2924                                 continue;
2925                         }
2926 
2927                         ac->ac_groups_scanned++;
2928                         if (cr == CR_POWER2_ALIGNED)
2929                                 ext4_mb_simple_scan_group(ac, &e4b);
2930                         else {
2931                                 bool is_stripe_aligned = sbi->s_stripe &&
2932                                         !(ac->ac_g_ex.fe_len %
2933                                           EXT4_B2C(sbi, sbi->s_stripe));
2934 
2935                                 if ((cr == CR_GOAL_LEN_FAST ||
2936                                      cr == CR_BEST_AVAIL_LEN) &&
2937                                     is_stripe_aligned)
2938                                         ext4_mb_scan_aligned(ac, &e4b);
2939 
2940                                 if (ac->ac_status == AC_STATUS_CONTINUE)
2941                                         ext4_mb_complex_scan_group(ac, &e4b);
2942                         }
2943 
2944                         ext4_unlock_group(sb, group);
2945                         ext4_mb_unload_buddy(&e4b);
2946 
2947                         if (ac->ac_status != AC_STATUS_CONTINUE)
2948                                 break;
2949                 }
2950                 /* Processed all groups and haven't found blocks */
2951                 if (sbi->s_mb_stats && i == ngroups)
2952                         atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2953 
2954                 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2955                         /* Reset goal length to original goal length before
2956                          * falling into CR_GOAL_LEN_SLOW */
2957                         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2958         }
2959 
2960         if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2961             !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2962                 /*
2963                  * We've been searching too long. Let's try to allocate
2964                  * the best chunk we've found so far
2965                  */
2966                 ext4_mb_try_best_found(ac, &e4b);
2967                 if (ac->ac_status != AC_STATUS_FOUND) {
2968                         /*
2969                          * Someone more lucky has already allocated it.
2970                          * The only thing we can do is just take first
2971                          * found block(s)
2972                          */
2973                         lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2974                         mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2975                                  ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2976                                  ac->ac_b_ex.fe_len, lost);
2977 
2978                         ac->ac_b_ex.fe_group = 0;
2979                         ac->ac_b_ex.fe_start = 0;
2980                         ac->ac_b_ex.fe_len = 0;
2981                         ac->ac_status = AC_STATUS_CONTINUE;
2982                         ac->ac_flags |= EXT4_MB_HINT_FIRST;
2983                         cr = CR_ANY_FREE;
2984                         goto repeat;
2985                 }
2986         }
2987 
2988         if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2989                 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2990 out:
2991         if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2992                 err = first_err;
2993 
2994         mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2995                  ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2996                  ac->ac_flags, cr, err);
2997 
2998         if (nr)
2999                 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
3000 
3001         return err;
3002 }
3003 
3004 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
3005 {
3006         struct super_block *sb = pde_data(file_inode(seq->file));
3007         ext4_group_t group;
3008 
3009         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3010                 return NULL;
3011         group = *pos + 1;
3012         return (void *) ((unsigned long) group);
3013 }
3014 
3015 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3016 {
3017         struct super_block *sb = pde_data(file_inode(seq->file));
3018         ext4_group_t group;
3019 
3020         ++*pos;
3021         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3022                 return NULL;
3023         group = *pos + 1;
3024         return (void *) ((unsigned long) group);
3025 }
3026 
3027 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3028 {
3029         struct super_block *sb = pde_data(file_inode(seq->file));
3030         ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3031         int i, err;
3032         char nbuf[16];
3033         struct ext4_buddy e4b;
3034         struct ext4_group_info *grinfo;
3035         unsigned char blocksize_bits = min_t(unsigned char,
3036                                              sb->s_blocksize_bits,
3037                                              EXT4_MAX_BLOCK_LOG_SIZE);
3038         struct sg {
3039                 struct ext4_group_info info;
3040                 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3041         } sg;
3042 
3043         group--;
3044         if (group == 0)
3045                 seq_puts(seq, "#group: free  frags first ["
3046                               " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3047                               " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3048 
3049         i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3050                 sizeof(struct ext4_group_info);
3051 
3052         grinfo = ext4_get_group_info(sb, group);
3053         if (!grinfo)
3054                 return 0;
3055         /* Load the group info in memory only if not already loaded. */
3056         if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3057                 err = ext4_mb_load_buddy(sb, group, &e4b);
3058                 if (err) {
3059                         seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf));
3060                         return 0;
3061                 }
3062                 ext4_mb_unload_buddy(&e4b);
3063         }
3064 
3065         /*
3066          * We care only about free space counters in the group info and
3067          * these are safe to access even after the buddy has been unloaded
3068          */
3069         memcpy(&sg, grinfo, i);
3070         seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3071                         sg.info.bb_fragments, sg.info.bb_first_free);
3072         for (i = 0; i <= 13; i++)
3073                 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3074                                 sg.info.bb_counters[i] : 0);
3075         seq_puts(seq, " ]");
3076         if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info))
3077                 seq_puts(seq, " Block bitmap corrupted!");
3078         seq_puts(seq, "\n");
3079 
3080         return 0;
3081 }
3082 
3083 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3084 {
3085 }
3086 
3087 const struct seq_operations ext4_mb_seq_groups_ops = {
3088         .start  = ext4_mb_seq_groups_start,
3089         .next   = ext4_mb_seq_groups_next,
3090         .stop   = ext4_mb_seq_groups_stop,
3091         .show   = ext4_mb_seq_groups_show,
3092 };
3093 
3094 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3095 {
3096         struct super_block *sb = seq->private;
3097         struct ext4_sb_info *sbi = EXT4_SB(sb);
3098 
3099         seq_puts(seq, "mballoc:\n");
3100         if (!sbi->s_mb_stats) {
3101                 seq_puts(seq, "\tmb stats collection turned off.\n");
3102                 seq_puts(
3103                         seq,
3104                         "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3105                 return 0;
3106         }
3107         seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3108         seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3109 
3110         seq_printf(seq, "\tgroups_scanned: %u\n",
3111                    atomic_read(&sbi->s_bal_groups_scanned));
3112 
3113         /* CR_POWER2_ALIGNED stats */
3114         seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3115         seq_printf(seq, "\t\thits: %llu\n",
3116                    atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3117         seq_printf(
3118                 seq, "\t\tgroups_considered: %llu\n",
3119                 atomic64_read(
3120                         &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3121         seq_printf(seq, "\t\textents_scanned: %u\n",
3122                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3123         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3124                    atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3125         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3126                    atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3127 
3128         /* CR_GOAL_LEN_FAST stats */
3129         seq_puts(seq, "\tcr_goal_fast_stats:\n");
3130         seq_printf(seq, "\t\thits: %llu\n",
3131                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3132         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3133                    atomic64_read(
3134                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3135         seq_printf(seq, "\t\textents_scanned: %u\n",
3136                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3137         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3138                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3139         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3140                    atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3141 
3142         /* CR_BEST_AVAIL_LEN stats */
3143         seq_puts(seq, "\tcr_best_avail_stats:\n");
3144         seq_printf(seq, "\t\thits: %llu\n",
3145                    atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3146         seq_printf(
3147                 seq, "\t\tgroups_considered: %llu\n",
3148                 atomic64_read(
3149                         &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3150         seq_printf(seq, "\t\textents_scanned: %u\n",
3151                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3152         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3153                    atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3154         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3155                    atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3156 
3157         /* CR_GOAL_LEN_SLOW stats */
3158         seq_puts(seq, "\tcr_goal_slow_stats:\n");
3159         seq_printf(seq, "\t\thits: %llu\n",
3160                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3161         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3162                    atomic64_read(
3163                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3164         seq_printf(seq, "\t\textents_scanned: %u\n",
3165                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3166         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3167                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3168 
3169         /* CR_ANY_FREE stats */
3170         seq_puts(seq, "\tcr_any_free_stats:\n");
3171         seq_printf(seq, "\t\thits: %llu\n",
3172                    atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3173         seq_printf(
3174                 seq, "\t\tgroups_considered: %llu\n",
3175                 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3176         seq_printf(seq, "\t\textents_scanned: %u\n",
3177                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3178         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3179                    atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3180 
3181         /* Aggregates */
3182         seq_printf(seq, "\textents_scanned: %u\n",
3183                    atomic_read(&sbi->s_bal_ex_scanned));
3184         seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3185         seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3186                    atomic_read(&sbi->s_bal_len_goals));
3187         seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3188         seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3189         seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3190         seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3191                    atomic_read(&sbi->s_mb_buddies_generated),
3192                    ext4_get_groups_count(sb));
3193         seq_printf(seq, "\tbuddies_time_used: %llu\n",
3194                    atomic64_read(&sbi->s_mb_generation_time));
3195         seq_printf(seq, "\tpreallocated: %u\n",
3196                    atomic_read(&sbi->s_mb_preallocated));
3197         seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3198         return 0;
3199 }
3200 
3201 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3202 {
3203         struct super_block *sb = pde_data(file_inode(seq->file));
3204         unsigned long position;
3205 
3206         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3207                 return NULL;
3208         position = *pos + 1;
3209         return (void *) ((unsigned long) position);
3210 }
3211 
3212 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3213 {
3214         struct super_block *sb = pde_data(file_inode(seq->file));
3215         unsigned long position;
3216 
3217         ++*pos;
3218         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3219                 return NULL;
3220         position = *pos + 1;
3221         return (void *) ((unsigned long) position);
3222 }
3223 
3224 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3225 {
3226         struct super_block *sb = pde_data(file_inode(seq->file));
3227         struct ext4_sb_info *sbi = EXT4_SB(sb);
3228         unsigned long position = ((unsigned long) v);
3229         struct ext4_group_info *grp;
3230         unsigned int count;
3231 
3232         position--;
3233         if (position >= MB_NUM_ORDERS(sb)) {
3234                 position -= MB_NUM_ORDERS(sb);
3235                 if (position == 0)
3236                         seq_puts(seq, "avg_fragment_size_lists:\n");
3237 
3238                 count = 0;
3239                 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3240                 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3241                                     bb_avg_fragment_size_node)
3242                         count++;
3243                 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3244                 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3245                                         (unsigned int)position, count);
3246                 return 0;
3247         }
3248 
3249         if (position == 0) {
3250                 seq_printf(seq, "optimize_scan: %d\n",
3251                            test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3252                 seq_puts(seq, "max_free_order_lists:\n");
3253         }
3254         count = 0;
3255         read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3256         list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3257                             bb_largest_free_order_node)
3258                 count++;
3259         read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3260         seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3261                    (unsigned int)position, count);
3262 
3263         return 0;
3264 }
3265 
3266 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3267 {
3268 }
3269 
3270 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3271         .start  = ext4_mb_seq_structs_summary_start,
3272         .next   = ext4_mb_seq_structs_summary_next,
3273         .stop   = ext4_mb_seq_structs_summary_stop,
3274         .show   = ext4_mb_seq_structs_summary_show,
3275 };
3276 
3277 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3278 {
3279         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3280         struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3281 
3282         BUG_ON(!cachep);
3283         return cachep;
3284 }
3285 
3286 /*
3287  * Allocate the top-level s_group_info array for the specified number
3288  * of groups
3289  */
3290 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3291 {
3292         struct ext4_sb_info *sbi = EXT4_SB(sb);
3293         unsigned size;
3294         struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3295 
3296         size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3297                 EXT4_DESC_PER_BLOCK_BITS(sb);
3298         if (size <= sbi->s_group_info_size)
3299                 return 0;
3300 
3301         size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3302         new_groupinfo = kvzalloc(size, GFP_KERNEL);
3303         if (!new_groupinfo) {
3304                 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3305                 return -ENOMEM;
3306         }
3307         rcu_read_lock();
3308         old_groupinfo = rcu_dereference(sbi->s_group_info);
3309         if (old_groupinfo)
3310                 memcpy(new_groupinfo, old_groupinfo,
3311                        sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3312         rcu_read_unlock();
3313         rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3314         sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3315         if (old_groupinfo)
3316                 ext4_kvfree_array_rcu(old_groupinfo);
3317         ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3318                    sbi->s_group_info_size);
3319         return 0;
3320 }
3321 
3322 /* Create and initialize ext4_group_info data for the given group. */
3323 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3324                           struct ext4_group_desc *desc)
3325 {
3326         int i;
3327         int metalen = 0;
3328         int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3329         struct ext4_sb_info *sbi = EXT4_SB(sb);
3330         struct ext4_group_info **meta_group_info;
3331         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3332 
3333         /*
3334          * First check if this group is the first of a reserved block.
3335          * If it's true, we have to allocate a new table of pointers
3336          * to ext4_group_info structures
3337          */
3338         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3339                 metalen = sizeof(*meta_group_info) <<
3340                         EXT4_DESC_PER_BLOCK_BITS(sb);
3341                 meta_group_info = kmalloc(metalen, GFP_NOFS);
3342                 if (meta_group_info == NULL) {
3343                         ext4_msg(sb, KERN_ERR, "can't allocate mem "
3344                                  "for a buddy group");
3345                         return -ENOMEM;
3346                 }
3347                 rcu_read_lock();
3348                 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3349                 rcu_read_unlock();
3350         }
3351 
3352         meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3353         i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3354 
3355         meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3356         if (meta_group_info[i] == NULL) {
3357                 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3358                 goto exit_group_info;
3359         }
3360         set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3361                 &(meta_group_info[i]->bb_state));
3362 
3363         /*
3364          * initialize bb_free to be able to skip
3365          * empty groups without initialization
3366          */
3367         if (ext4_has_group_desc_csum(sb) &&
3368             (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3369                 meta_group_info[i]->bb_free =
3370                         ext4_free_clusters_after_init(sb, group, desc);
3371         } else {
3372                 meta_group_info[i]->bb_free =
3373                         ext4_free_group_clusters(sb, desc);
3374         }
3375 
3376         INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3377         init_rwsem(&meta_group_info[i]->alloc_sem);
3378         meta_group_info[i]->bb_free_root = RB_ROOT;
3379         INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3380         INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3381         meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3382         meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3383         meta_group_info[i]->bb_group = group;
3384 
3385         mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3386         return 0;
3387 
3388 exit_group_info:
3389         /* If a meta_group_info table has been allocated, release it now */
3390         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3391                 struct ext4_group_info ***group_info;
3392 
3393                 rcu_read_lock();
3394                 group_info = rcu_dereference(sbi->s_group_info);
3395                 kfree(group_info[idx]);
3396                 group_info[idx] = NULL;
3397                 rcu_read_unlock();
3398         }
3399         return -ENOMEM;
3400 } /* ext4_mb_add_groupinfo */
3401 
3402 static int ext4_mb_init_backend(struct super_block *sb)
3403 {
3404         ext4_group_t ngroups = ext4_get_groups_count(sb);
3405         ext4_group_t i;
3406         struct ext4_sb_info *sbi = EXT4_SB(sb);
3407         int err;
3408         struct ext4_group_desc *desc;
3409         struct ext4_group_info ***group_info;
3410         struct kmem_cache *cachep;
3411 
3412         err = ext4_mb_alloc_groupinfo(sb, ngroups);
3413         if (err)
3414                 return err;
3415 
3416         sbi->s_buddy_cache = new_inode(sb);
3417         if (sbi->s_buddy_cache == NULL) {
3418                 ext4_msg(sb, KERN_ERR, "can't get new inode");
3419                 goto err_freesgi;
3420         }
3421         /* To avoid potentially colliding with an valid on-disk inode number,
3422          * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3423          * not in the inode hash, so it should never be found by iget(), but
3424          * this will avoid confusion if it ever shows up during debugging. */
3425         sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3426         EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3427         for (i = 0; i < ngroups; i++) {
3428                 cond_resched();
3429                 desc = ext4_get_group_desc(sb, i, NULL);
3430                 if (desc == NULL) {
3431                         ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3432                         goto err_freebuddy;
3433                 }
3434                 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3435                         goto err_freebuddy;
3436         }
3437 
3438         if (ext4_has_feature_flex_bg(sb)) {
3439                 /* a single flex group is supposed to be read by a single IO.
3440                  * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3441                  * unsigned integer, so the maximum shift is 32.
3442                  */
3443                 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3444                         ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3445                         goto err_freebuddy;
3446                 }
3447                 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3448                         BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3449                 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3450         } else {
3451                 sbi->s_mb_prefetch = 32;
3452         }
3453         if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3454                 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3455         /*
3456          * now many real IOs to prefetch within a single allocation at
3457          * CR_POWER2_ALIGNED. Given CR_POWER2_ALIGNED is an CPU-related
3458          * optimization we shouldn't try to load too many groups, at some point
3459          * we should start to use what we've got in memory.
3460          * with an average random access time 5ms, it'd take a second to get
3461          * 200 groups (* N with flex_bg), so let's make this limit 4
3462          */
3463         sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3464         if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3465                 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3466 
3467         return 0;
3468 
3469 err_freebuddy:
3470         cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3471         while (i-- > 0) {
3472                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3473 
3474                 if (grp)
3475                         kmem_cache_free(cachep, grp);
3476         }
3477         i = sbi->s_group_info_size;
3478         rcu_read_lock();
3479         group_info = rcu_dereference(sbi->s_group_info);
3480         while (i-- > 0)
3481                 kfree(group_info[i]);
3482         rcu_read_unlock();
3483         iput(sbi->s_buddy_cache);
3484 err_freesgi:
3485         rcu_read_lock();
3486         kvfree(rcu_dereference(sbi->s_group_info));
3487         rcu_read_unlock();
3488         return -ENOMEM;
3489 }
3490 
3491 static void ext4_groupinfo_destroy_slabs(void)
3492 {
3493         int i;
3494 
3495         for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3496                 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3497                 ext4_groupinfo_caches[i] = NULL;
3498         }
3499 }
3500 
3501 static int ext4_groupinfo_create_slab(size_t size)
3502 {
3503         static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3504         int slab_size;
3505         int blocksize_bits = order_base_2(size);
3506         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3507         struct kmem_cache *cachep;
3508 
3509         if (cache_index >= NR_GRPINFO_CACHES)
3510                 return -EINVAL;
3511 
3512         if (unlikely(cache_index < 0))
3513                 cache_index = 0;
3514 
3515         mutex_lock(&ext4_grpinfo_slab_create_mutex);
3516         if (ext4_groupinfo_caches[cache_index]) {
3517                 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3518                 return 0;       /* Already created */
3519         }
3520 
3521         slab_size = offsetof(struct ext4_group_info,
3522                                 bb_counters[blocksize_bits + 2]);
3523 
3524         cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3525                                         slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3526                                         NULL);
3527 
3528         ext4_groupinfo_caches[cache_index] = cachep;
3529 
3530         mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3531         if (!cachep) {
3532                 printk(KERN_EMERG
3533                        "EXT4-fs: no memory for groupinfo slab cache\n");
3534                 return -ENOMEM;
3535         }
3536 
3537         return 0;
3538 }
3539 
3540 static void ext4_discard_work(struct work_struct *work)
3541 {
3542         struct ext4_sb_info *sbi = container_of(work,
3543                         struct ext4_sb_info, s_discard_work);
3544         struct super_block *sb = sbi->s_sb;
3545         struct ext4_free_data *fd, *nfd;
3546         struct ext4_buddy e4b;
3547         LIST_HEAD(discard_list);
3548         ext4_group_t grp, load_grp;
3549         int err = 0;
3550 
3551         spin_lock(&sbi->s_md_lock);
3552         list_splice_init(&sbi->s_discard_list, &discard_list);
3553         spin_unlock(&sbi->s_md_lock);
3554 
3555         load_grp = UINT_MAX;
3556         list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3557                 /*
3558                  * If filesystem is umounting or no memory or suffering
3559                  * from no space, give up the discard
3560                  */
3561                 if ((sb->s_flags & SB_ACTIVE) && !err &&
3562                     !atomic_read(&sbi->s_retry_alloc_pending)) {
3563                         grp = fd->efd_group;
3564                         if (grp != load_grp) {
3565                                 if (load_grp != UINT_MAX)
3566                                         ext4_mb_unload_buddy(&e4b);
3567 
3568                                 err = ext4_mb_load_buddy(sb, grp, &e4b);
3569                                 if (err) {
3570                                         kmem_cache_free(ext4_free_data_cachep, fd);
3571                                         load_grp = UINT_MAX;
3572                                         continue;
3573                                 } else {
3574                                         load_grp = grp;
3575                                 }
3576                         }
3577 
3578                         ext4_lock_group(sb, grp);
3579                         ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3580                                                 fd->efd_start_cluster + fd->efd_count - 1, 1);
3581                         ext4_unlock_group(sb, grp);
3582                 }
3583                 kmem_cache_free(ext4_free_data_cachep, fd);
3584         }
3585 
3586         if (load_grp != UINT_MAX)
3587                 ext4_mb_unload_buddy(&e4b);
3588 }
3589 
3590 int ext4_mb_init(struct super_block *sb)
3591 {
3592         struct ext4_sb_info *sbi = EXT4_SB(sb);
3593         unsigned i, j;
3594         unsigned offset, offset_incr;
3595         unsigned max;
3596         int ret;
3597 
3598         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3599 
3600         sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3601         if (sbi->s_mb_offsets == NULL) {
3602                 ret = -ENOMEM;
3603                 goto out;
3604         }
3605 
3606         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3607         sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3608         if (sbi->s_mb_maxs == NULL) {
3609                 ret = -ENOMEM;
3610                 goto out;
3611         }
3612 
3613         ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3614         if (ret < 0)
3615                 goto out;
3616 
3617         /* order 0 is regular bitmap */
3618         sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3619         sbi->s_mb_offsets[0] = 0;
3620 
3621         i = 1;
3622         offset = 0;
3623         offset_incr = 1 << (sb->s_blocksize_bits - 1);
3624         max = sb->s_blocksize << 2;
3625         do {
3626                 sbi->s_mb_offsets[i] = offset;
3627                 sbi->s_mb_maxs[i] = max;
3628                 offset += offset_incr;
3629                 offset_incr = offset_incr >> 1;
3630                 max = max >> 1;
3631                 i++;
3632         } while (i < MB_NUM_ORDERS(sb));
3633 
3634         sbi->s_mb_avg_fragment_size =
3635                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3636                         GFP_KERNEL);
3637         if (!sbi->s_mb_avg_fragment_size) {
3638                 ret = -ENOMEM;
3639                 goto out;
3640         }
3641         sbi->s_mb_avg_fragment_size_locks =
3642                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3643                         GFP_KERNEL);
3644         if (!sbi->s_mb_avg_fragment_size_locks) {
3645                 ret = -ENOMEM;
3646                 goto out;
3647         }
3648         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3649                 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3650                 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3651         }
3652         sbi->s_mb_largest_free_orders =
3653                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3654                         GFP_KERNEL);
3655         if (!sbi->s_mb_largest_free_orders) {
3656                 ret = -ENOMEM;
3657                 goto out;
3658         }
3659         sbi->s_mb_largest_free_orders_locks =
3660                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3661                         GFP_KERNEL);
3662         if (!sbi->s_mb_largest_free_orders_locks) {
3663                 ret = -ENOMEM;
3664                 goto out;
3665         }
3666         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3667                 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3668                 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3669         }
3670 
3671         spin_lock_init(&sbi->s_md_lock);
3672         sbi->s_mb_free_pending = 0;
3673         INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3674         INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3675         INIT_LIST_HEAD(&sbi->s_discard_list);
3676         INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3677         atomic_set(&sbi->s_retry_alloc_pending, 0);
3678 
3679         sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3680         sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3681         sbi->s_mb_stats = MB_DEFAULT_STATS;
3682         sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3683         sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3684         sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3685 
3686         /*
3687          * The default group preallocation is 512, which for 4k block
3688          * sizes translates to 2 megabytes.  However for bigalloc file
3689          * systems, this is probably too big (i.e, if the cluster size
3690          * is 1 megabyte, then group preallocation size becomes half a
3691          * gigabyte!).  As a default, we will keep a two megabyte
3692          * group pralloc size for cluster sizes up to 64k, and after
3693          * that, we will force a minimum group preallocation size of
3694          * 32 clusters.  This translates to 8 megs when the cluster
3695          * size is 256k, and 32 megs when the cluster size is 1 meg,
3696          * which seems reasonable as a default.
3697          */
3698         sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3699                                        sbi->s_cluster_bits, 32);
3700         /*
3701          * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3702          * to the lowest multiple of s_stripe which is bigger than
3703          * the s_mb_group_prealloc as determined above. We want
3704          * the preallocation size to be an exact multiple of the
3705          * RAID stripe size so that preallocations don't fragment
3706          * the stripes.
3707          */
3708         if (sbi->s_stripe > 1) {
3709                 sbi->s_mb_group_prealloc = roundup(
3710                         sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3711         }
3712 
3713         sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3714         if (sbi->s_locality_groups == NULL) {
3715                 ret = -ENOMEM;
3716                 goto out;
3717         }
3718         for_each_possible_cpu(i) {
3719                 struct ext4_locality_group *lg;
3720                 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3721                 mutex_init(&lg->lg_mutex);
3722                 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3723                         INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3724                 spin_lock_init(&lg->lg_prealloc_lock);
3725         }
3726 
3727         if (bdev_nonrot(sb->s_bdev))
3728                 sbi->s_mb_max_linear_groups = 0;
3729         else
3730                 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3731         /* init file for buddy data */
3732         ret = ext4_mb_init_backend(sb);
3733         if (ret != 0)
3734                 goto out_free_locality_groups;
3735 
3736         return 0;
3737 
3738 out_free_locality_groups:
3739         free_percpu(sbi->s_locality_groups);
3740         sbi->s_locality_groups = NULL;
3741 out:
3742         kfree(sbi->s_mb_avg_fragment_size);
3743         kfree(sbi->s_mb_avg_fragment_size_locks);
3744         kfree(sbi->s_mb_largest_free_orders);
3745         kfree(sbi->s_mb_largest_free_orders_locks);
3746         kfree(sbi->s_mb_offsets);
3747         sbi->s_mb_offsets = NULL;
3748         kfree(sbi->s_mb_maxs);
3749         sbi->s_mb_maxs = NULL;
3750         return ret;
3751 }
3752 
3753 /* need to called with the ext4 group lock held */
3754 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3755 {
3756         struct ext4_prealloc_space *pa;
3757         struct list_head *cur, *tmp;
3758         int count = 0;
3759 
3760         list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3761                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3762                 list_del(&pa->pa_group_list);
3763                 count++;
3764                 kmem_cache_free(ext4_pspace_cachep, pa);
3765         }
3766         return count;
3767 }
3768 
3769 void ext4_mb_release(struct super_block *sb)
3770 {
3771         ext4_group_t ngroups = ext4_get_groups_count(sb);
3772         ext4_group_t i;
3773         int num_meta_group_infos;
3774         struct ext4_group_info *grinfo, ***group_info;
3775         struct ext4_sb_info *sbi = EXT4_SB(sb);
3776         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3777         int count;
3778 
3779         if (test_opt(sb, DISCARD)) {
3780                 /*
3781                  * wait the discard work to drain all of ext4_free_data
3782                  */
3783                 flush_work(&sbi->s_discard_work);
3784                 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3785         }
3786 
3787         if (sbi->s_group_info) {
3788                 for (i = 0; i < ngroups; i++) {
3789                         cond_resched();
3790                         grinfo = ext4_get_group_info(sb, i);
3791                         if (!grinfo)
3792                                 continue;
3793                         mb_group_bb_bitmap_free(grinfo);
3794                         ext4_lock_group(sb, i);
3795                         count = ext4_mb_cleanup_pa(grinfo);
3796                         if (count)
3797                                 mb_debug(sb, "mballoc: %d PAs left\n",
3798                                          count);
3799                         ext4_unlock_group(sb, i);
3800                         kmem_cache_free(cachep, grinfo);
3801                 }
3802                 num_meta_group_infos = (ngroups +
3803                                 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3804                         EXT4_DESC_PER_BLOCK_BITS(sb);
3805                 rcu_read_lock();
3806                 group_info = rcu_dereference(sbi->s_group_info);
3807                 for (i = 0; i < num_meta_group_infos; i++)
3808                         kfree(group_info[i]);
3809                 kvfree(group_info);
3810                 rcu_read_unlock();
3811         }
3812         kfree(sbi->s_mb_avg_fragment_size);
3813         kfree(sbi->s_mb_avg_fragment_size_locks);
3814         kfree(sbi->s_mb_largest_free_orders);
3815         kfree(sbi->s_mb_largest_free_orders_locks);
3816         kfree(sbi->s_mb_offsets);
3817         kfree(sbi->s_mb_maxs);
3818         iput(sbi->s_buddy_cache);
3819         if (sbi->s_mb_stats) {
3820                 ext4_msg(sb, KERN_INFO,
3821                        "mballoc: %u blocks %u reqs (%u success)",
3822                                 atomic_read(&sbi->s_bal_allocated),
3823                                 atomic_read(&sbi->s_bal_reqs),
3824                                 atomic_read(&sbi->s_bal_success));
3825                 ext4_msg(sb, KERN_INFO,
3826                       "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3827                                 "%u 2^N hits, %u breaks, %u lost",
3828                                 atomic_read(&sbi->s_bal_ex_scanned),
3829                                 atomic_read(&sbi->s_bal_groups_scanned),
3830                                 atomic_read(&sbi->s_bal_goals),
3831                                 atomic_read(&sbi->s_bal_2orders),
3832                                 atomic_read(&sbi->s_bal_breaks),
3833                                 atomic_read(&sbi->s_mb_lost_chunks));
3834                 ext4_msg(sb, KERN_INFO,
3835                        "mballoc: %u generated and it took %llu",
3836                                 atomic_read(&sbi->s_mb_buddies_generated),
3837                                 atomic64_read(&sbi->s_mb_generation_time));
3838                 ext4_msg(sb, KERN_INFO,
3839                        "mballoc: %u preallocated, %u discarded",
3840                                 atomic_read(&sbi->s_mb_preallocated),
3841                                 atomic_read(&sbi->s_mb_discarded));
3842         }
3843 
3844         free_percpu(sbi->s_locality_groups);
3845 }
3846 
3847 static inline int ext4_issue_discard(struct super_block *sb,
3848                 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
3849 {
3850         ext4_fsblk_t discard_block;
3851 
3852         discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3853                          ext4_group_first_block_no(sb, block_group));
3854         count = EXT4_C2B(EXT4_SB(sb), count);
3855         trace_ext4_discard_blocks(sb,
3856                         (unsigned long long) discard_block, count);
3857 
3858         return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3859 }
3860 
3861 static void ext4_free_data_in_buddy(struct super_block *sb,
3862                                     struct ext4_free_data *entry)
3863 {
3864         struct ext4_buddy e4b;
3865         struct ext4_group_info *db;
3866         int err, count = 0;
3867 
3868         mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3869                  entry->efd_count, entry->efd_group, entry);
3870 
3871         err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3872         /* we expect to find existing buddy because it's pinned */
3873         BUG_ON(err != 0);
3874 
3875         spin_lock(&EXT4_SB(sb)->s_md_lock);
3876         EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3877         spin_unlock(&EXT4_SB(sb)->s_md_lock);
3878 
3879         db = e4b.bd_info;
3880         /* there are blocks to put in buddy to make them really free */
3881         count += entry->efd_count;
3882         ext4_lock_group(sb, entry->efd_group);
3883         /* Take it out of per group rb tree */
3884         rb_erase(&entry->efd_node, &(db->bb_free_root));
3885         mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3886 
3887         /*
3888          * Clear the trimmed flag for the group so that the next
3889          * ext4_trim_fs can trim it.
3890          */
3891         EXT4_MB_GRP_CLEAR_TRIMMED(db);
3892 
3893         if (!db->bb_free_root.rb_node) {
3894                 /* No more items in the per group rb tree
3895                  * balance refcounts from ext4_mb_free_metadata()
3896                  */
3897                 folio_put(e4b.bd_buddy_folio);
3898                 folio_put(e4b.bd_bitmap_folio);
3899         }
3900         ext4_unlock_group(sb, entry->efd_group);
3901         ext4_mb_unload_buddy(&e4b);
3902 
3903         mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3904 }
3905 
3906 /*
3907  * This function is called by the jbd2 layer once the commit has finished,
3908  * so we know we can free the blocks that were released with that commit.
3909  */
3910 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3911 {
3912         struct ext4_sb_info *sbi = EXT4_SB(sb);
3913         struct ext4_free_data *entry, *tmp;
3914         LIST_HEAD(freed_data_list);
3915         struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3916         bool wake;
3917 
3918         list_replace_init(s_freed_head, &freed_data_list);
3919 
3920         list_for_each_entry(entry, &freed_data_list, efd_list)
3921                 ext4_free_data_in_buddy(sb, entry);
3922 
3923         if (test_opt(sb, DISCARD)) {
3924                 spin_lock(&sbi->s_md_lock);
3925                 wake = list_empty(&sbi->s_discard_list);
3926                 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3927                 spin_unlock(&sbi->s_md_lock);
3928                 if (wake)
3929                         queue_work(system_unbound_wq, &sbi->s_discard_work);
3930         } else {
3931                 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3932                         kmem_cache_free(ext4_free_data_cachep, entry);
3933         }
3934 }
3935 
3936 int __init ext4_init_mballoc(void)
3937 {
3938         ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3939                                         SLAB_RECLAIM_ACCOUNT);
3940         if (ext4_pspace_cachep == NULL)
3941                 goto out;
3942 
3943         ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3944                                     SLAB_RECLAIM_ACCOUNT);
3945         if (ext4_ac_cachep == NULL)
3946                 goto out_pa_free;
3947 
3948         ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3949                                            SLAB_RECLAIM_ACCOUNT);
3950         if (ext4_free_data_cachep == NULL)
3951                 goto out_ac_free;
3952 
3953         return 0;
3954 
3955 out_ac_free:
3956         kmem_cache_destroy(ext4_ac_cachep);
3957 out_pa_free:
3958         kmem_cache_destroy(ext4_pspace_cachep);
3959 out:
3960         return -ENOMEM;
3961 }
3962 
3963 void ext4_exit_mballoc(void)
3964 {
3965         /*
3966          * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3967          * before destroying the slab cache.
3968          */
3969         rcu_barrier();
3970         kmem_cache_destroy(ext4_pspace_cachep);
3971         kmem_cache_destroy(ext4_ac_cachep);
3972         kmem_cache_destroy(ext4_free_data_cachep);
3973         ext4_groupinfo_destroy_slabs();
3974 }
3975 
3976 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
3977 #define EXT4_MB_SYNC_UPDATE 0x0002
3978 static int
3979 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
3980                      ext4_group_t group, ext4_grpblk_t blkoff,
3981                      ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
3982 {
3983         struct ext4_sb_info *sbi = EXT4_SB(sb);
3984         struct buffer_head *bitmap_bh = NULL;
3985         struct ext4_group_desc *gdp;
3986         struct buffer_head *gdp_bh;
3987         int err;
3988         unsigned int i, already, changed = len;
3989 
3990         KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
3991                                    handle, sb, state, group, blkoff, len,
3992                                    flags, ret_changed);
3993 
3994         if (ret_changed)
3995                 *ret_changed = 0;
3996         bitmap_bh = ext4_read_block_bitmap(sb, group);
3997         if (IS_ERR(bitmap_bh))
3998                 return PTR_ERR(bitmap_bh);
3999 
4000         if (handle) {
4001                 BUFFER_TRACE(bitmap_bh, "getting write access");
4002                 err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
4003                                                     EXT4_JTR_NONE);
4004                 if (err)
4005                         goto out_err;
4006         }
4007 
4008         err = -EIO;
4009         gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4010         if (!gdp)
4011                 goto out_err;
4012 
4013         if (handle) {
4014                 BUFFER_TRACE(gdp_bh, "get_write_access");
4015                 err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4016                                                     EXT4_JTR_NONE);
4017                 if (err)
4018                         goto out_err;
4019         }
4020 
4021         ext4_lock_group(sb, group);
4022         if (ext4_has_group_desc_csum(sb) &&
4023             (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4024                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4025                 ext4_free_group_clusters_set(sb, gdp,
4026                         ext4_free_clusters_after_init(sb, group, gdp));
4027         }
4028 
4029         if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4030                 already = 0;
4031                 for (i = 0; i < len; i++)
4032                         if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4033                                         state)
4034                                 already++;
4035                 changed = len - already;
4036         }
4037 
4038         if (state) {
4039                 mb_set_bits(bitmap_bh->b_data, blkoff, len);
4040                 ext4_free_group_clusters_set(sb, gdp,
4041                         ext4_free_group_clusters(sb, gdp) - changed);
4042         } else {
4043                 mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4044                 ext4_free_group_clusters_set(sb, gdp,
4045                         ext4_free_group_clusters(sb, gdp) + changed);
4046         }
4047 
4048         ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4049         ext4_group_desc_csum_set(sb, group, gdp);
4050         ext4_unlock_group(sb, group);
4051         if (ret_changed)
4052                 *ret_changed = changed;
4053 
4054         if (sbi->s_log_groups_per_flex) {
4055                 ext4_group_t flex_group = ext4_flex_group(sbi, group);
4056                 struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4057                                            s_flex_groups, flex_group);
4058 
4059                 if (state)
4060                         atomic64_sub(changed, &fg->free_clusters);
4061                 else
4062                         atomic64_add(changed, &fg->free_clusters);
4063         }
4064 
4065         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4066         if (err)
4067                 goto out_err;
4068         err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4069         if (err)
4070                 goto out_err;
4071 
4072         if (flags & EXT4_MB_SYNC_UPDATE) {
4073                 sync_dirty_buffer(bitmap_bh);
4074                 sync_dirty_buffer(gdp_bh);
4075         }
4076 
4077 out_err:
4078         brelse(bitmap_bh);
4079         return err;
4080 }
4081 
4082 /*
4083  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4084  * Returns 0 if success or error code
4085  */
4086 static noinline_for_stack int
4087 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4088                                 handle_t *handle, unsigned int reserv_clstrs)
4089 {
4090         struct ext4_group_desc *gdp;
4091         struct ext4_sb_info *sbi;
4092         struct super_block *sb;
4093         ext4_fsblk_t block;
4094         int err, len;
4095         int flags = 0;
4096         ext4_grpblk_t changed;
4097 
4098         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4099         BUG_ON(ac->ac_b_ex.fe_len <= 0);
4100 
4101         sb = ac->ac_sb;
4102         sbi = EXT4_SB(sb);
4103 
4104         gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4105         if (!gdp)
4106                 return -EIO;
4107         ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4108                         ext4_free_group_clusters(sb, gdp));
4109 
4110         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4111         len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4112         if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4113                 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4114                            "fs metadata", block, block+len);
4115                 /* File system mounted not to panic on error
4116                  * Fix the bitmap and return EFSCORRUPTED
4117                  * We leak some of the blocks here.
4118                  */
4119                 err = ext4_mb_mark_context(handle, sb, true,
4120                                            ac->ac_b_ex.fe_group,
4121                                            ac->ac_b_ex.fe_start,
4122                                            ac->ac_b_ex.fe_len,
4123                                            0, NULL);
4124                 if (!err)
4125                         err = -EFSCORRUPTED;
4126                 return err;
4127         }
4128 
4129 #ifdef AGGRESSIVE_CHECK
4130         flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4131 #endif
4132         err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4133                                    ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4134                                    flags, &changed);
4135 
4136         if (err && changed == 0)
4137                 return err;
4138 
4139 #ifdef AGGRESSIVE_CHECK
4140         BUG_ON(changed != ac->ac_b_ex.fe_len);
4141 #endif
4142         percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4143         /*
4144          * Now reduce the dirty block count also. Should not go negative
4145          */
4146         if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4147                 /* release all the reserved blocks if non delalloc */
4148                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4149                                    reserv_clstrs);
4150 
4151         return err;
4152 }
4153 
4154 /*
4155  * Idempotent helper for Ext4 fast commit replay path to set the state of
4156  * blocks in bitmaps and update counters.
4157  */
4158 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4159                      int len, bool state)
4160 {
4161         struct ext4_sb_info *sbi = EXT4_SB(sb);
4162         ext4_group_t group;
4163         ext4_grpblk_t blkoff;
4164         int err = 0;
4165         unsigned int clen, thisgrp_len;
4166 
4167         while (len > 0) {
4168                 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4169 
4170                 /*
4171                  * Check to see if we are freeing blocks across a group
4172                  * boundary.
4173                  * In case of flex_bg, this can happen that (block, len) may
4174                  * span across more than one group. In that case we need to
4175                  * get the corresponding group metadata to work with.
4176                  * For this we have goto again loop.
4177                  */
4178                 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4179                         EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4180                 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4181 
4182                 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4183                         ext4_error(sb, "Marking blocks in system zone - "
4184                                    "Block = %llu, len = %u",
4185                                    block, thisgrp_len);
4186                         break;
4187                 }
4188 
4189                 err = ext4_mb_mark_context(NULL, sb, state,
4190                                            group, blkoff, clen,
4191                                            EXT4_MB_BITMAP_MARKED_CHECK |
4192                                            EXT4_MB_SYNC_UPDATE,
4193                                            NULL);
4194                 if (err)
4195                         break;
4196 
4197                 block += thisgrp_len;
4198                 len -= thisgrp_len;
4199                 BUG_ON(len < 0);
4200         }
4201 }
4202 
4203 /*
4204  * here we normalize request for locality group
4205  * Group request are normalized to s_mb_group_prealloc, which goes to
4206  * s_strip if we set the same via mount option.
4207  * s_mb_group_prealloc can be configured via
4208  * /sys/fs/ext4/<partition>/mb_group_prealloc
4209  *
4210  * XXX: should we try to preallocate more than the group has now?
4211  */
4212 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4213 {
4214         struct super_block *sb = ac->ac_sb;
4215         struct ext4_locality_group *lg = ac->ac_lg;
4216 
4217         BUG_ON(lg == NULL);
4218         ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4219         mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4220 }
4221 
4222 /*
4223  * This function returns the next element to look at during inode
4224  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4225  * (ei->i_prealloc_lock)
4226  *
4227  * new_start    The start of the range we want to compare
4228  * cur_start    The existing start that we are comparing against
4229  * node The node of the rb_tree
4230  */
4231 static inline struct rb_node*
4232 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4233 {
4234         if (new_start < cur_start)
4235                 return node->rb_left;
4236         else
4237                 return node->rb_right;
4238 }
4239 
4240 static inline void
4241 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4242                           ext4_lblk_t start, loff_t end)
4243 {
4244         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4245         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4246         struct ext4_prealloc_space *tmp_pa;
4247         ext4_lblk_t tmp_pa_start;
4248         loff_t tmp_pa_end;
4249         struct rb_node *iter;
4250 
4251         read_lock(&ei->i_prealloc_lock);
4252         for (iter = ei->i_prealloc_node.rb_node; iter;
4253              iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4254                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4255                                   pa_node.inode_node);
4256                 tmp_pa_start = tmp_pa->pa_lstart;
4257                 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4258 
4259                 spin_lock(&tmp_pa->pa_lock);
4260                 if (tmp_pa->pa_deleted == 0)
4261                         BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4262                 spin_unlock(&tmp_pa->pa_lock);
4263         }
4264         read_unlock(&ei->i_prealloc_lock);
4265 }
4266 
4267 /*
4268  * Given an allocation context "ac" and a range "start", "end", check
4269  * and adjust boundaries if the range overlaps with any of the existing
4270  * preallocatoins stored in the corresponding inode of the allocation context.
4271  *
4272  * Parameters:
4273  *      ac                      allocation context
4274  *      start                   start of the new range
4275  *      end                     end of the new range
4276  */
4277 static inline void
4278 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4279                           ext4_lblk_t *start, loff_t *end)
4280 {
4281         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4282         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4283         struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4284         struct rb_node *iter;
4285         ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4286         loff_t new_end, tmp_pa_end, left_pa_end = -1;
4287 
4288         new_start = *start;
4289         new_end = *end;
4290 
4291         /*
4292          * Adjust the normalized range so that it doesn't overlap with any
4293          * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4294          * so it doesn't change underneath us.
4295          */
4296         read_lock(&ei->i_prealloc_lock);
4297 
4298         /* Step 1: find any one immediate neighboring PA of the normalized range */
4299         for (iter = ei->i_prealloc_node.rb_node; iter;
4300              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4301                                             tmp_pa_start, iter)) {
4302                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4303                                   pa_node.inode_node);
4304                 tmp_pa_start = tmp_pa->pa_lstart;
4305                 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4306 
4307                 /* PA must not overlap original request */
4308                 spin_lock(&tmp_pa->pa_lock);
4309                 if (tmp_pa->pa_deleted == 0)
4310                         BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4311                                  ac->ac_o_ex.fe_logical < tmp_pa_start));
4312                 spin_unlock(&tmp_pa->pa_lock);
4313         }
4314 
4315         /*
4316          * Step 2: check if the found PA is left or right neighbor and
4317          * get the other neighbor
4318          */
4319         if (tmp_pa) {
4320                 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4321                         struct rb_node *tmp;
4322 
4323                         left_pa = tmp_pa;
4324                         tmp = rb_next(&left_pa->pa_node.inode_node);
4325                         if (tmp) {
4326                                 right_pa = rb_entry(tmp,
4327                                                     struct ext4_prealloc_space,
4328                                                     pa_node.inode_node);
4329                         }
4330                 } else {
4331                         struct rb_node *tmp;
4332 
4333                         right_pa = tmp_pa;
4334                         tmp = rb_prev(&right_pa->pa_node.inode_node);
4335                         if (tmp) {
4336                                 left_pa = rb_entry(tmp,
4337                                                    struct ext4_prealloc_space,
4338                                                    pa_node.inode_node);
4339                         }
4340                 }
4341         }
4342 
4343         /* Step 3: get the non deleted neighbors */
4344         if (left_pa) {
4345                 for (iter = &left_pa->pa_node.inode_node;;
4346                      iter = rb_prev(iter)) {
4347                         if (!iter) {
4348                                 left_pa = NULL;
4349                                 break;
4350                         }
4351 
4352                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4353                                           pa_node.inode_node);
4354                         left_pa = tmp_pa;
4355                         spin_lock(&tmp_pa->pa_lock);
4356                         if (tmp_pa->pa_deleted == 0) {
4357                                 spin_unlock(&tmp_pa->pa_lock);
4358                                 break;
4359                         }
4360                         spin_unlock(&tmp_pa->pa_lock);
4361                 }
4362         }
4363 
4364         if (right_pa) {
4365                 for (iter = &right_pa->pa_node.inode_node;;
4366                      iter = rb_next(iter)) {
4367                         if (!iter) {
4368                                 right_pa = NULL;
4369                                 break;
4370                         }
4371 
4372                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4373                                           pa_node.inode_node);
4374                         right_pa = tmp_pa;
4375                         spin_lock(&tmp_pa->pa_lock);
4376                         if (tmp_pa->pa_deleted == 0) {
4377                                 spin_unlock(&tmp_pa->pa_lock);
4378                                 break;
4379                         }
4380                         spin_unlock(&tmp_pa->pa_lock);
4381                 }
4382         }
4383 
4384         if (left_pa) {
4385                 left_pa_end = pa_logical_end(sbi, left_pa);
4386                 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4387         }
4388 
4389         if (right_pa) {
4390                 right_pa_start = right_pa->pa_lstart;
4391                 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4392         }
4393 
4394         /* Step 4: trim our normalized range to not overlap with the neighbors */
4395         if (left_pa) {
4396                 if (left_pa_end > new_start)
4397                         new_start = left_pa_end;
4398         }
4399 
4400         if (right_pa) {
4401                 if (right_pa_start < new_end)
4402                         new_end = right_pa_start;
4403         }
4404         read_unlock(&ei->i_prealloc_lock);
4405 
4406         /* XXX: extra loop to check we really don't overlap preallocations */
4407         ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4408 
4409         *start = new_start;
4410         *end = new_end;
4411 }
4412 
4413 /*
4414  * Normalization means making request better in terms of
4415  * size and alignment
4416  */
4417 static noinline_for_stack void
4418 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4419                                 struct ext4_allocation_request *ar)
4420 {
4421         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4422         struct ext4_super_block *es = sbi->s_es;
4423         int bsbits, max;
4424         loff_t size, start_off, end;
4425         loff_t orig_size __maybe_unused;
4426         ext4_lblk_t start;
4427 
4428         /* do normalize only data requests, metadata requests
4429            do not need preallocation */
4430         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4431                 return;
4432 
4433         /* sometime caller may want exact blocks */
4434         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4435                 return;
4436 
4437         /* caller may indicate that preallocation isn't
4438          * required (it's a tail, for example) */
4439         if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4440                 return;
4441 
4442         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4443                 ext4_mb_normalize_group_request(ac);
4444                 return ;
4445         }
4446 
4447         bsbits = ac->ac_sb->s_blocksize_bits;
4448 
4449         /* first, let's learn actual file size
4450          * given current request is allocated */
4451         size = extent_logical_end(sbi, &ac->ac_o_ex);
4452         size = size << bsbits;
4453         if (size < i_size_read(ac->ac_inode))
4454                 size = i_size_read(ac->ac_inode);
4455         orig_size = size;
4456 
4457         /* max size of free chunks */
4458         max = 2 << bsbits;
4459 
4460 #define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
4461                 (req <= (size) || max <= (chunk_size))
4462 
4463         /* first, try to predict filesize */
4464         /* XXX: should this table be tunable? */
4465         start_off = 0;
4466         if (size <= 16 * 1024) {
4467                 size = 16 * 1024;
4468         } else if (size <= 32 * 1024) {
4469                 size = 32 * 1024;
4470         } else if (size <= 64 * 1024) {
4471                 size = 64 * 1024;
4472         } else if (size <= 128 * 1024) {
4473                 size = 128 * 1024;
4474         } else if (size <= 256 * 1024) {
4475                 size = 256 * 1024;
4476         } else if (size <= 512 * 1024) {
4477                 size = 512 * 1024;
4478         } else if (size <= 1024 * 1024) {
4479                 size = 1024 * 1024;
4480         } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4481                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4482                                                 (21 - bsbits)) << 21;
4483                 size = 2 * 1024 * 1024;
4484         } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4485                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4486                                                         (22 - bsbits)) << 22;
4487                 size = 4 * 1024 * 1024;
4488         } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4489                                         (8<<20)>>bsbits, max, 8 * 1024)) {
4490                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4491                                                         (23 - bsbits)) << 23;
4492                 size = 8 * 1024 * 1024;
4493         } else {
4494                 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4495                 size      = (loff_t) EXT4_C2B(sbi,
4496                                               ac->ac_o_ex.fe_len) << bsbits;
4497         }
4498         size = size >> bsbits;
4499         start = start_off >> bsbits;
4500 
4501         /*
4502          * For tiny groups (smaller than 8MB) the chosen allocation
4503          * alignment may be larger than group size. Make sure the
4504          * alignment does not move allocation to a different group which
4505          * makes mballoc fail assertions later.
4506          */
4507         start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4508                         (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4509 
4510         /* avoid unnecessary preallocation that may trigger assertions */
4511         if (start + size > EXT_MAX_BLOCKS)
4512                 size = EXT_MAX_BLOCKS - start;
4513 
4514         /* don't cover already allocated blocks in selected range */
4515         if (ar->pleft && start <= ar->lleft) {
4516                 size -= ar->lleft + 1 - start;
4517                 start = ar->lleft + 1;
4518         }
4519         if (ar->pright && start + size - 1 >= ar->lright)
4520                 size -= start + size - ar->lright;
4521 
4522         /*
4523          * Trim allocation request for filesystems with artificially small
4524          * groups.
4525          */
4526         if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4527                 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4528 
4529         end = start + size;
4530 
4531         ext4_mb_pa_adjust_overlap(ac, &start, &end);
4532 
4533         size = end - start;
4534 
4535         /*
4536          * In this function "start" and "size" are normalized for better
4537          * alignment and length such that we could preallocate more blocks.
4538          * This normalization is done such that original request of
4539          * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4540          * "size" boundaries.
4541          * (Note fe_len can be relaxed since FS block allocation API does not
4542          * provide gurantee on number of contiguous blocks allocation since that
4543          * depends upon free space left, etc).
4544          * In case of inode pa, later we use the allocated blocks
4545          * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4546          * range of goal/best blocks [start, size] to put it at the
4547          * ac_o_ex.fe_logical extent of this inode.
4548          * (See ext4_mb_use_inode_pa() for more details)
4549          */
4550         if (start + size <= ac->ac_o_ex.fe_logical ||
4551                         start > ac->ac_o_ex.fe_logical) {
4552                 ext4_msg(ac->ac_sb, KERN_ERR,
4553                          "start %lu, size %lu, fe_logical %lu",
4554                          (unsigned long) start, (unsigned long) size,
4555                          (unsigned long) ac->ac_o_ex.fe_logical);
4556                 BUG();
4557         }
4558         BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4559 
4560         /* now prepare goal request */
4561 
4562         /* XXX: is it better to align blocks WRT to logical
4563          * placement or satisfy big request as is */
4564         ac->ac_g_ex.fe_logical = start;
4565         ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4566         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4567 
4568         /* define goal start in order to merge */
4569         if (ar->pright && (ar->lright == (start + size)) &&
4570             ar->pright >= size &&
4571             ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4572                 /* merge to the right */
4573                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4574                                                 &ac->ac_g_ex.fe_group,
4575                                                 &ac->ac_g_ex.fe_start);
4576                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4577         }
4578         if (ar->pleft && (ar->lleft + 1 == start) &&
4579             ar->pleft + 1 < ext4_blocks_count(es)) {
4580                 /* merge to the left */
4581                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4582                                                 &ac->ac_g_ex.fe_group,
4583                                                 &ac->ac_g_ex.fe_start);
4584                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4585         }
4586 
4587         mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4588                  orig_size, start);
4589 }
4590 
4591 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4592 {
4593         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4594 
4595         if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4596                 atomic_inc(&sbi->s_bal_reqs);
4597                 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4598                 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4599                         atomic_inc(&sbi->s_bal_success);
4600 
4601                 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4602                 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4603                         atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4604                 }
4605 
4606                 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4607                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4608                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4609                         atomic_inc(&sbi->s_bal_goals);
4610                 /* did we allocate as much as normalizer originally wanted? */
4611                 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4612                         atomic_inc(&sbi->s_bal_len_goals);
4613 
4614                 if (ac->ac_found > sbi->s_mb_max_to_scan)
4615                         atomic_inc(&sbi->s_bal_breaks);
4616         }
4617 
4618         if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4619                 trace_ext4_mballoc_alloc(ac);
4620         else
4621                 trace_ext4_mballoc_prealloc(ac);
4622 }
4623 
4624 /*
4625  * Called on failure; free up any blocks from the inode PA for this
4626  * context.  We don't need this for MB_GROUP_PA because we only change
4627  * pa_free in ext4_mb_release_context(), but on failure, we've already
4628  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4629  */
4630 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4631 {
4632         struct ext4_prealloc_space *pa = ac->ac_pa;
4633         struct ext4_buddy e4b;
4634         int err;
4635 
4636         if (pa == NULL) {
4637                 if (ac->ac_f_ex.fe_len == 0)
4638                         return;
4639                 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4640                 if (WARN_RATELIMIT(err,
4641                                    "ext4: mb_load_buddy failed (%d)", err))
4642                         /*
4643                          * This should never happen since we pin the
4644                          * pages in the ext4_allocation_context so
4645                          * ext4_mb_load_buddy() should never fail.
4646                          */
4647                         return;
4648                 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4649                 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4650                                ac->ac_f_ex.fe_len);
4651                 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4652                 ext4_mb_unload_buddy(&e4b);
4653                 return;
4654         }
4655         if (pa->pa_type == MB_INODE_PA) {
4656                 spin_lock(&pa->pa_lock);
4657                 pa->pa_free += ac->ac_b_ex.fe_len;
4658                 spin_unlock(&pa->pa_lock);
4659         }
4660 }
4661 
4662 /*
4663  * use blocks preallocated to inode
4664  */
4665 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4666                                 struct ext4_prealloc_space *pa)
4667 {
4668         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4669         ext4_fsblk_t start;
4670         ext4_fsblk_t end;
4671         int len;
4672 
4673         /* found preallocated blocks, use them */
4674         start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4675         end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4676                   start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4677         len = EXT4_NUM_B2C(sbi, end - start);
4678         ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4679                                         &ac->ac_b_ex.fe_start);
4680         ac->ac_b_ex.fe_len = len;
4681         ac->ac_status = AC_STATUS_FOUND;
4682         ac->ac_pa = pa;
4683 
4684         BUG_ON(start < pa->pa_pstart);
4685         BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4686         BUG_ON(pa->pa_free < len);
4687         BUG_ON(ac->ac_b_ex.fe_len <= 0);
4688         pa->pa_free -= len;
4689 
4690         mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4691 }
4692 
4693 /*
4694  * use blocks preallocated to locality group
4695  */
4696 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4697                                 struct ext4_prealloc_space *pa)
4698 {
4699         unsigned int len = ac->ac_o_ex.fe_len;
4700 
4701         ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4702                                         &ac->ac_b_ex.fe_group,
4703                                         &ac->ac_b_ex.fe_start);
4704         ac->ac_b_ex.fe_len = len;
4705         ac->ac_status = AC_STATUS_FOUND;
4706         ac->ac_pa = pa;
4707 
4708         /* we don't correct pa_pstart or pa_len here to avoid
4709          * possible race when the group is being loaded concurrently
4710          * instead we correct pa later, after blocks are marked
4711          * in on-disk bitmap -- see ext4_mb_release_context()
4712          * Other CPUs are prevented from allocating from this pa by lg_mutex
4713          */
4714         mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4715                  pa->pa_lstart, len, pa);
4716 }
4717 
4718 /*
4719  * Return the prealloc space that have minimal distance
4720  * from the goal block. @cpa is the prealloc
4721  * space that is having currently known minimal distance
4722  * from the goal block.
4723  */
4724 static struct ext4_prealloc_space *
4725 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4726                         struct ext4_prealloc_space *pa,
4727                         struct ext4_prealloc_space *cpa)
4728 {
4729         ext4_fsblk_t cur_distance, new_distance;
4730 
4731         if (cpa == NULL) {
4732                 atomic_inc(&pa->pa_count);
4733                 return pa;
4734         }
4735         cur_distance = abs(goal_block - cpa->pa_pstart);
4736         new_distance = abs(goal_block - pa->pa_pstart);
4737 
4738         if (cur_distance <= new_distance)
4739                 return cpa;
4740 
4741         /* drop the previous reference */
4742         atomic_dec(&cpa->pa_count);
4743         atomic_inc(&pa->pa_count);
4744         return pa;
4745 }
4746 
4747 /*
4748  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4749  */
4750 static bool
4751 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4752                       struct ext4_prealloc_space *pa)
4753 {
4754         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4755         ext4_fsblk_t start;
4756 
4757         if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4758                 return true;
4759 
4760         /*
4761          * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4762          * in ext4_mb_normalize_request and will keep same with ac_o_ex
4763          * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4764          * consistent with ext4_mb_find_by_goal.
4765          */
4766         start = pa->pa_pstart +
4767                 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4768         if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4769                 return false;
4770 
4771         if (ac->ac_g_ex.fe_len > pa->pa_len -
4772             EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4773                 return false;
4774 
4775         return true;
4776 }
4777 
4778 /*
4779  * search goal blocks in preallocated space
4780  */
4781 static noinline_for_stack bool
4782 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4783 {
4784         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4785         int order, i;
4786         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4787         struct ext4_locality_group *lg;
4788         struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4789         struct rb_node *iter;
4790         ext4_fsblk_t goal_block;
4791 
4792         /* only data can be preallocated */
4793         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4794                 return false;
4795 
4796         /*
4797          * first, try per-file preallocation by searching the inode pa rbtree.
4798          *
4799          * Here, we can't do a direct traversal of the tree because
4800          * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4801          * deleted and that can cause direct traversal to skip some entries.
4802          */
4803         read_lock(&ei->i_prealloc_lock);
4804 
4805         if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4806                 goto try_group_pa;
4807         }
4808 
4809         /*
4810          * Step 1: Find a pa with logical start immediately adjacent to the
4811          * original logical start. This could be on the left or right.
4812          *
4813          * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4814          */
4815         for (iter = ei->i_prealloc_node.rb_node; iter;
4816              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4817                                             tmp_pa->pa_lstart, iter)) {
4818                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4819                                   pa_node.inode_node);
4820         }
4821 
4822         /*
4823          * Step 2: The adjacent pa might be to the right of logical start, find
4824          * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4825          * logical start is towards the left of original request's logical start
4826          */
4827         if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4828                 struct rb_node *tmp;
4829                 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4830 
4831                 if (tmp) {
4832                         tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4833                                             pa_node.inode_node);
4834                 } else {
4835                         /*
4836                          * If there is no adjacent pa to the left then finding
4837                          * an overlapping pa is not possible hence stop searching
4838                          * inode pa tree
4839                          */
4840                         goto try_group_pa;
4841                 }
4842         }
4843 
4844         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4845 
4846         /*
4847          * Step 3: If the left adjacent pa is deleted, keep moving left to find
4848          * the first non deleted adjacent pa. After this step we should have a
4849          * valid tmp_pa which is guaranteed to be non deleted.
4850          */
4851         for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4852                 if (!iter) {
4853                         /*
4854                          * no non deleted left adjacent pa, so stop searching
4855                          * inode pa tree
4856                          */
4857                         goto try_group_pa;
4858                 }
4859                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4860                                   pa_node.inode_node);
4861                 spin_lock(&tmp_pa->pa_lock);
4862                 if (tmp_pa->pa_deleted == 0) {
4863                         /*
4864                          * We will keep holding the pa_lock from
4865                          * this point on because we don't want group discard
4866                          * to delete this pa underneath us. Since group
4867                          * discard is anyways an ENOSPC operation it
4868                          * should be okay for it to wait a few more cycles.
4869                          */
4870                         break;
4871                 } else {
4872                         spin_unlock(&tmp_pa->pa_lock);
4873                 }
4874         }
4875 
4876         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4877         BUG_ON(tmp_pa->pa_deleted == 1);
4878 
4879         /*
4880          * Step 4: We now have the non deleted left adjacent pa. Only this
4881          * pa can possibly satisfy the request hence check if it overlaps
4882          * original logical start and stop searching if it doesn't.
4883          */
4884         if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4885                 spin_unlock(&tmp_pa->pa_lock);
4886                 goto try_group_pa;
4887         }
4888 
4889         /* non-extent files can't have physical blocks past 2^32 */
4890         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4891             (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4892              EXT4_MAX_BLOCK_FILE_PHYS)) {
4893                 /*
4894                  * Since PAs don't overlap, we won't find any other PA to
4895                  * satisfy this.
4896                  */
4897                 spin_unlock(&tmp_pa->pa_lock);
4898                 goto try_group_pa;
4899         }
4900 
4901         if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4902                 atomic_inc(&tmp_pa->pa_count);
4903                 ext4_mb_use_inode_pa(ac, tmp_pa);
4904                 spin_unlock(&tmp_pa->pa_lock);
4905                 read_unlock(&ei->i_prealloc_lock);
4906                 return true;
4907         } else {
4908                 /*
4909                  * We found a valid overlapping pa but couldn't use it because
4910                  * it had no free blocks. This should ideally never happen
4911                  * because:
4912                  *
4913                  * 1. When a new inode pa is added to rbtree it must have
4914                  *    pa_free > 0 since otherwise we won't actually need
4915                  *    preallocation.
4916                  *
4917                  * 2. An inode pa that is in the rbtree can only have it's
4918                  *    pa_free become zero when another thread calls:
4919                  *      ext4_mb_new_blocks
4920                  *       ext4_mb_use_preallocated
4921                  *        ext4_mb_use_inode_pa
4922                  *
4923                  * 3. Further, after the above calls make pa_free == 0, we will
4924                  *    immediately remove it from the rbtree in:
4925                  *      ext4_mb_new_blocks
4926                  *       ext4_mb_release_context
4927                  *        ext4_mb_put_pa
4928                  *
4929                  * 4. Since the pa_free becoming 0 and pa_free getting removed
4930                  * from tree both happen in ext4_mb_new_blocks, which is always
4931                  * called with i_data_sem held for data allocations, we can be
4932                  * sure that another process will never see a pa in rbtree with
4933                  * pa_free == 0.
4934                  */
4935                 WARN_ON_ONCE(tmp_pa->pa_free == 0);
4936         }
4937         spin_unlock(&tmp_pa->pa_lock);
4938 try_group_pa:
4939         read_unlock(&ei->i_prealloc_lock);
4940 
4941         /* can we use group allocation? */
4942         if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4943                 return false;
4944 
4945         /* inode may have no locality group for some reason */
4946         lg = ac->ac_lg;
4947         if (lg == NULL)
4948                 return false;
4949         order  = fls(ac->ac_o_ex.fe_len) - 1;
4950         if (order > PREALLOC_TB_SIZE - 1)
4951                 /* The max size of hash table is PREALLOC_TB_SIZE */
4952                 order = PREALLOC_TB_SIZE - 1;
4953 
4954         goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4955         /*
4956          * search for the prealloc space that is having
4957          * minimal distance from the goal block.
4958          */
4959         for (i = order; i < PREALLOC_TB_SIZE; i++) {
4960                 rcu_read_lock();
4961                 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4962                                         pa_node.lg_list) {
4963                         spin_lock(&tmp_pa->pa_lock);
4964                         if (tmp_pa->pa_deleted == 0 &&
4965                                         tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4966 
4967                                 cpa = ext4_mb_check_group_pa(goal_block,
4968                                                                 tmp_pa, cpa);
4969                         }
4970                         spin_unlock(&tmp_pa->pa_lock);
4971                 }
4972                 rcu_read_unlock();
4973         }
4974         if (cpa) {
4975                 ext4_mb_use_group_pa(ac, cpa);
4976                 return true;
4977         }
4978         return false;
4979 }
4980 
4981 /*
4982  * the function goes through all preallocation in this group and marks them
4983  * used in in-core bitmap. buddy must be generated from this bitmap
4984  * Need to be called with ext4 group lock held
4985  */
4986 static noinline_for_stack
4987 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4988                                         ext4_group_t group)
4989 {
4990         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4991         struct ext4_prealloc_space *pa;
4992         struct list_head *cur;
4993         ext4_group_t groupnr;
4994         ext4_grpblk_t start;
4995         int preallocated = 0;
4996         int len;
4997 
4998         if (!grp)
4999                 return;
5000 
5001         /* all form of preallocation discards first load group,
5002          * so the only competing code is preallocation use.
5003          * we don't need any locking here
5004          * notice we do NOT ignore preallocations with pa_deleted
5005          * otherwise we could leave used blocks available for
5006          * allocation in buddy when concurrent ext4_mb_put_pa()
5007          * is dropping preallocation
5008          */
5009         list_for_each(cur, &grp->bb_prealloc_list) {
5010                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5011                 spin_lock(&pa->pa_lock);
5012                 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5013                                              &groupnr, &start);
5014                 len = pa->pa_len;
5015                 spin_unlock(&pa->pa_lock);
5016                 if (unlikely(len == 0))
5017                         continue;
5018                 BUG_ON(groupnr != group);
5019                 mb_set_bits(bitmap, start, len);
5020                 preallocated += len;
5021         }
5022         mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5023 }
5024 
5025 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5026                                     struct ext4_prealloc_space *pa)
5027 {
5028         struct ext4_inode_info *ei;
5029 
5030         if (pa->pa_deleted) {
5031                 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5032                              pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5033                              pa->pa_len);
5034                 return;
5035         }
5036 
5037         pa->pa_deleted = 1;
5038 
5039         if (pa->pa_type == MB_INODE_PA) {
5040                 ei = EXT4_I(pa->pa_inode);
5041                 atomic_dec(&ei->i_prealloc_active);
5042         }
5043 }
5044 
5045 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5046 {
5047         BUG_ON(!pa);
5048         BUG_ON(atomic_read(&pa->pa_count));
5049         BUG_ON(pa->pa_deleted == 0);
5050         kmem_cache_free(ext4_pspace_cachep, pa);
5051 }
5052 
5053 static void ext4_mb_pa_callback(struct rcu_head *head)
5054 {
5055         struct ext4_prealloc_space *pa;
5056 
5057         pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5058         ext4_mb_pa_free(pa);
5059 }
5060 
5061 /*
5062  * drops a reference to preallocated space descriptor
5063  * if this was the last reference and the space is consumed
5064  */
5065 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5066                         struct super_block *sb, struct ext4_prealloc_space *pa)
5067 {
5068         ext4_group_t grp;
5069         ext4_fsblk_t grp_blk;
5070         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5071 
5072         /* in this short window concurrent discard can set pa_deleted */
5073         spin_lock(&pa->pa_lock);
5074         if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5075                 spin_unlock(&pa->pa_lock);
5076                 return;
5077         }
5078 
5079         if (pa->pa_deleted == 1) {
5080                 spin_unlock(&pa->pa_lock);
5081                 return;
5082         }
5083 
5084         ext4_mb_mark_pa_deleted(sb, pa);
5085         spin_unlock(&pa->pa_lock);
5086 
5087         grp_blk = pa->pa_pstart;
5088         /*
5089          * If doing group-based preallocation, pa_pstart may be in the
5090          * next group when pa is used up
5091          */
5092         if (pa->pa_type == MB_GROUP_PA)
5093                 grp_blk--;
5094 
5095         grp = ext4_get_group_number(sb, grp_blk);
5096 
5097         /*
5098          * possible race:
5099          *
5100          *  P1 (buddy init)                     P2 (regular allocation)
5101          *                                      find block B in PA
5102          *  copy on-disk bitmap to buddy
5103          *                                      mark B in on-disk bitmap
5104          *                                      drop PA from group
5105          *  mark all PAs in buddy
5106          *
5107          * thus, P1 initializes buddy with B available. to prevent this
5108          * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5109          * against that pair
5110          */
5111         ext4_lock_group(sb, grp);
5112         list_del(&pa->pa_group_list);
5113         ext4_unlock_group(sb, grp);
5114 
5115         if (pa->pa_type == MB_INODE_PA) {
5116                 write_lock(pa->pa_node_lock.inode_lock);
5117                 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5118                 write_unlock(pa->pa_node_lock.inode_lock);
5119                 ext4_mb_pa_free(pa);
5120         } else {
5121                 spin_lock(pa->pa_node_lock.lg_lock);
5122                 list_del_rcu(&pa->pa_node.lg_list);
5123                 spin_unlock(pa->pa_node_lock.lg_lock);
5124                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5125         }
5126 }
5127 
5128 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5129 {
5130         struct rb_node **iter = &root->rb_node, *parent = NULL;
5131         struct ext4_prealloc_space *iter_pa, *new_pa;
5132         ext4_lblk_t iter_start, new_start;
5133 
5134         while (*iter) {
5135                 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5136                                    pa_node.inode_node);
5137                 new_pa = rb_entry(new, struct ext4_prealloc_space,
5138                                    pa_node.inode_node);
5139                 iter_start = iter_pa->pa_lstart;
5140                 new_start = new_pa->pa_lstart;
5141 
5142                 parent = *iter;
5143                 if (new_start < iter_start)
5144                         iter = &((*iter)->rb_left);
5145                 else
5146                         iter = &((*iter)->rb_right);
5147         }
5148 
5149         rb_link_node(new, parent, iter);
5150         rb_insert_color(new, root);
5151 }
5152 
5153 /*
5154  * creates new preallocated space for given inode
5155  */
5156 static noinline_for_stack void
5157 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5158 {
5159         struct super_block *sb = ac->ac_sb;
5160         struct ext4_sb_info *sbi = EXT4_SB(sb);
5161         struct ext4_prealloc_space *pa;
5162         struct ext4_group_info *grp;
5163         struct ext4_inode_info *ei;
5164 
5165         /* preallocate only when found space is larger then requested */
5166         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5167         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5168         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5169         BUG_ON(ac->ac_pa == NULL);
5170 
5171         pa = ac->ac_pa;
5172 
5173         if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5174                 struct ext4_free_extent ex = {
5175                         .fe_logical = ac->ac_g_ex.fe_logical,
5176                         .fe_len = ac->ac_orig_goal_len,
5177                 };
5178                 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5179                 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
5180 
5181                 /*
5182                  * We can't allocate as much as normalizer wants, so we try
5183                  * to get proper lstart to cover the original request, except
5184                  * when the goal doesn't cover the original request as below:
5185                  *
5186                  * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
5187                  * best_ex:0/200(200) -> adjusted: 1848/2048(200)
5188                  */
5189                 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5190                 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5191 
5192                 /*
5193                  * Use the below logic for adjusting best extent as it keeps
5194                  * fragmentation in check while ensuring logical range of best
5195                  * extent doesn't overflow out of goal extent:
5196                  *
5197                  * 1. Check if best ex can be kept at end of goal (before
5198                  *    cr_best_avail trimmed it) and still cover original start
5199                  * 2. Else, check if best ex can be kept at start of goal and
5200                  *    still cover original end
5201                  * 3. Else, keep the best ex at start of original request.
5202                  */
5203                 ex.fe_len = ac->ac_b_ex.fe_len;
5204 
5205                 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5206                 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5207                         goto adjust_bex;
5208 
5209                 ex.fe_logical = ac->ac_g_ex.fe_logical;
5210                 if (o_ex_end <= extent_logical_end(sbi, &ex))
5211                         goto adjust_bex;
5212 
5213                 ex.fe_logical = ac->ac_o_ex.fe_logical;
5214 adjust_bex:
5215                 ac->ac_b_ex.fe_logical = ex.fe_logical;
5216 
5217                 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5218                 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5219         }
5220 
5221         pa->pa_lstart = ac->ac_b_ex.fe_logical;
5222         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5223         pa->pa_len = ac->ac_b_ex.fe_len;
5224         pa->pa_free = pa->pa_len;
5225         spin_lock_init(&pa->pa_lock);
5226         INIT_LIST_HEAD(&pa->pa_group_list);
5227         pa->pa_deleted = 0;
5228         pa->pa_type = MB_INODE_PA;
5229 
5230         mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5231                  pa->pa_len, pa->pa_lstart);
5232         trace_ext4_mb_new_inode_pa(ac, pa);
5233 
5234         atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5235         ext4_mb_use_inode_pa(ac, pa);
5236 
5237         ei = EXT4_I(ac->ac_inode);
5238         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5239         if (!grp)
5240                 return;
5241 
5242         pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5243         pa->pa_inode = ac->ac_inode;
5244 
5245         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5246 
5247         write_lock(pa->pa_node_lock.inode_lock);
5248         ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5249         write_unlock(pa->pa_node_lock.inode_lock);
5250         atomic_inc(&ei->i_prealloc_active);
5251 }
5252 
5253 /*
5254  * creates new preallocated space for locality group inodes belongs to
5255  */
5256 static noinline_for_stack void
5257 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5258 {
5259         struct super_block *sb = ac->ac_sb;
5260         struct ext4_locality_group *lg;
5261         struct ext4_prealloc_space *pa;
5262         struct ext4_group_info *grp;
5263 
5264         /* preallocate only when found space is larger then requested */
5265         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5266         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5267         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5268         BUG_ON(ac->ac_pa == NULL);
5269 
5270         pa = ac->ac_pa;
5271 
5272         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5273         pa->pa_lstart = pa->pa_pstart;
5274         pa->pa_len = ac->ac_b_ex.fe_len;
5275         pa->pa_free = pa->pa_len;
5276         spin_lock_init(&pa->pa_lock);
5277         INIT_LIST_HEAD(&pa->pa_node.lg_list);
5278         INIT_LIST_HEAD(&pa->pa_group_list);
5279         pa->pa_deleted = 0;
5280         pa->pa_type = MB_GROUP_PA;
5281 
5282         mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5283                  pa->pa_len, pa->pa_lstart);
5284         trace_ext4_mb_new_group_pa(ac, pa);
5285 
5286         ext4_mb_use_group_pa(ac, pa);
5287         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5288 
5289         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5290         if (!grp)
5291                 return;
5292         lg = ac->ac_lg;
5293         BUG_ON(lg == NULL);
5294 
5295         pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5296         pa->pa_inode = NULL;
5297 
5298         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5299 
5300         /*
5301          * We will later add the new pa to the right bucket
5302          * after updating the pa_free in ext4_mb_release_context
5303          */
5304 }
5305 
5306 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5307 {
5308         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5309                 ext4_mb_new_group_pa(ac);
5310         else
5311                 ext4_mb_new_inode_pa(ac);
5312 }
5313 
5314 /*
5315  * finds all unused blocks in on-disk bitmap, frees them in
5316  * in-core bitmap and buddy.
5317  * @pa must be unlinked from inode and group lists, so that
5318  * nobody else can find/use it.
5319  * the caller MUST hold group/inode locks.
5320  * TODO: optimize the case when there are no in-core structures yet
5321  */
5322 static noinline_for_stack void
5323 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5324                         struct ext4_prealloc_space *pa)
5325 {
5326         struct super_block *sb = e4b->bd_sb;
5327         struct ext4_sb_info *sbi = EXT4_SB(sb);
5328         unsigned int end;
5329         unsigned int next;
5330         ext4_group_t group;
5331         ext4_grpblk_t bit;
5332         unsigned long long grp_blk_start;
5333         int free = 0;
5334 
5335         BUG_ON(pa->pa_deleted == 0);
5336         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5337         grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5338         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5339         end = bit + pa->pa_len;
5340 
5341         while (bit < end) {
5342                 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5343                 if (bit >= end)
5344                         break;
5345                 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5346                 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5347                          (unsigned) ext4_group_first_block_no(sb, group) + bit,
5348                          (unsigned) next - bit, (unsigned) group);
5349                 free += next - bit;
5350 
5351                 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5352                 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5353                                                     EXT4_C2B(sbi, bit)),
5354                                                next - bit);
5355                 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5356                 bit = next + 1;
5357         }
5358         if (free != pa->pa_free) {
5359                 ext4_msg(e4b->bd_sb, KERN_CRIT,
5360                          "pa %p: logic %lu, phys. %lu, len %d",
5361                          pa, (unsigned long) pa->pa_lstart,
5362                          (unsigned long) pa->pa_pstart,
5363                          pa->pa_len);
5364                 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5365                                         free, pa->pa_free);
5366                 /*
5367                  * pa is already deleted so we use the value obtained
5368                  * from the bitmap and continue.
5369                  */
5370         }
5371         atomic_add(free, &sbi->s_mb_discarded);
5372 }
5373 
5374 static noinline_for_stack void
5375 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5376                                 struct ext4_prealloc_space *pa)
5377 {
5378         struct super_block *sb = e4b->bd_sb;
5379         ext4_group_t group;
5380         ext4_grpblk_t bit;
5381 
5382         trace_ext4_mb_release_group_pa(sb, pa);
5383         BUG_ON(pa->pa_deleted == 0);
5384         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5385         if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5386                 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5387                              e4b->bd_group, group, pa->pa_pstart);
5388                 return;
5389         }
5390         mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5391         atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5392         trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5393 }
5394 
5395 /*
5396  * releases all preallocations in given group
5397  *
5398  * first, we need to decide discard policy:
5399  * - when do we discard
5400  *   1) ENOSPC
5401  * - how many do we discard
5402  *   1) how many requested
5403  */
5404 static noinline_for_stack int
5405 ext4_mb_discard_group_preallocations(struct super_block *sb,
5406                                      ext4_group_t group, int *busy)
5407 {
5408         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5409         struct buffer_head *bitmap_bh = NULL;
5410         struct ext4_prealloc_space *pa, *tmp;
5411         LIST_HEAD(list);
5412         struct ext4_buddy e4b;
5413         struct ext4_inode_info *ei;
5414         int err;
5415         int free = 0;
5416 
5417         if (!grp)
5418                 return 0;
5419         mb_debug(sb, "discard preallocation for group %u\n", group);
5420         if (list_empty(&grp->bb_prealloc_list))
5421                 goto out_dbg;
5422 
5423         bitmap_bh = ext4_read_block_bitmap(sb, group);
5424         if (IS_ERR(bitmap_bh)) {
5425                 err = PTR_ERR(bitmap_bh);
5426                 ext4_error_err(sb, -err,
5427                                "Error %d reading block bitmap for %u",
5428                                err, group);
5429                 goto out_dbg;
5430         }
5431 
5432         err = ext4_mb_load_buddy(sb, group, &e4b);
5433         if (err) {
5434                 ext4_warning(sb, "Error %d loading buddy information for %u",
5435                              err, group);
5436                 put_bh(bitmap_bh);
5437                 goto out_dbg;
5438         }
5439 
5440         ext4_lock_group(sb, group);
5441         list_for_each_entry_safe(pa, tmp,
5442                                 &grp->bb_prealloc_list, pa_group_list) {
5443                 spin_lock(&pa->pa_lock);
5444                 if (atomic_read(&pa->pa_count)) {
5445                         spin_unlock(&pa->pa_lock);
5446                         *busy = 1;
5447                         continue;
5448                 }
5449                 if (pa->pa_deleted) {
5450                         spin_unlock(&pa->pa_lock);
5451                         continue;
5452                 }
5453 
5454                 /* seems this one can be freed ... */
5455                 ext4_mb_mark_pa_deleted(sb, pa);
5456 
5457                 if (!free)
5458                         this_cpu_inc(discard_pa_seq);
5459 
5460                 /* we can trust pa_free ... */
5461                 free += pa->pa_free;
5462 
5463                 spin_unlock(&pa->pa_lock);
5464 
5465                 list_del(&pa->pa_group_list);
5466                 list_add(&pa->u.pa_tmp_list, &list);
5467         }
5468 
5469         /* now free all selected PAs */
5470         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5471 
5472                 /* remove from object (inode or locality group) */
5473                 if (pa->pa_type == MB_GROUP_PA) {
5474                         spin_lock(pa->pa_node_lock.lg_lock);
5475                         list_del_rcu(&pa->pa_node.lg_list);
5476                         spin_unlock(pa->pa_node_lock.lg_lock);
5477                 } else {
5478                         write_lock(pa->pa_node_lock.inode_lock);
5479                         ei = EXT4_I(pa->pa_inode);
5480                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5481                         write_unlock(pa->pa_node_lock.inode_lock);
5482                 }
5483 
5484                 list_del(&pa->u.pa_tmp_list);
5485 
5486                 if (pa->pa_type == MB_GROUP_PA) {
5487                         ext4_mb_release_group_pa(&e4b, pa);
5488                         call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5489                 } else {
5490                         ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5491                         ext4_mb_pa_free(pa);
5492                 }
5493         }
5494 
5495         ext4_unlock_group(sb, group);
5496         ext4_mb_unload_buddy(&e4b);
5497         put_bh(bitmap_bh);
5498 out_dbg:
5499         mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5500                  free, group, grp->bb_free);
5501         return free;
5502 }
5503 
5504 /*
5505  * releases all non-used preallocated blocks for given inode
5506  *
5507  * It's important to discard preallocations under i_data_sem
5508  * We don't want another block to be served from the prealloc
5509  * space when we are discarding the inode prealloc space.
5510  *
5511  * FIXME!! Make sure it is valid at all the call sites
5512  */
5513 void ext4_discard_preallocations(struct inode *inode)
5514 {
5515         struct ext4_inode_info *ei = EXT4_I(inode);
5516         struct super_block *sb = inode->i_sb;
5517         struct buffer_head *bitmap_bh = NULL;
5518         struct ext4_prealloc_space *pa, *tmp;
5519         ext4_group_t group = 0;
5520         LIST_HEAD(list);
5521         struct ext4_buddy e4b;
5522         struct rb_node *iter;
5523         int err;
5524 
5525         if (!S_ISREG(inode->i_mode))
5526                 return;
5527 
5528         if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5529                 return;
5530 
5531         mb_debug(sb, "discard preallocation for inode %lu\n",
5532                  inode->i_ino);
5533         trace_ext4_discard_preallocations(inode,
5534                         atomic_read(&ei->i_prealloc_active));
5535 
5536 repeat:
5537         /* first, collect all pa's in the inode */
5538         write_lock(&ei->i_prealloc_lock);
5539         for (iter = rb_first(&ei->i_prealloc_node); iter;
5540              iter = rb_next(iter)) {
5541                 pa = rb_entry(iter, struct ext4_prealloc_space,
5542                               pa_node.inode_node);
5543                 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5544 
5545                 spin_lock(&pa->pa_lock);
5546                 if (atomic_read(&pa->pa_count)) {
5547                         /* this shouldn't happen often - nobody should
5548                          * use preallocation while we're discarding it */
5549                         spin_unlock(&pa->pa_lock);
5550                         write_unlock(&ei->i_prealloc_lock);
5551                         ext4_msg(sb, KERN_ERR,
5552                                  "uh-oh! used pa while discarding");
5553                         WARN_ON(1);
5554                         schedule_timeout_uninterruptible(HZ);
5555                         goto repeat;
5556 
5557                 }
5558                 if (pa->pa_deleted == 0) {
5559                         ext4_mb_mark_pa_deleted(sb, pa);
5560                         spin_unlock(&pa->pa_lock);
5561                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5562                         list_add(&pa->u.pa_tmp_list, &list);
5563                         continue;
5564                 }
5565 
5566                 /* someone is deleting pa right now */
5567                 spin_unlock(&pa->pa_lock);
5568                 write_unlock(&ei->i_prealloc_lock);
5569 
5570                 /* we have to wait here because pa_deleted
5571                  * doesn't mean pa is already unlinked from
5572                  * the list. as we might be called from
5573                  * ->clear_inode() the inode will get freed
5574                  * and concurrent thread which is unlinking
5575                  * pa from inode's list may access already
5576                  * freed memory, bad-bad-bad */
5577 
5578                 /* XXX: if this happens too often, we can
5579                  * add a flag to force wait only in case
5580                  * of ->clear_inode(), but not in case of
5581                  * regular truncate */
5582                 schedule_timeout_uninterruptible(HZ);
5583                 goto repeat;
5584         }
5585         write_unlock(&ei->i_prealloc_lock);
5586 
5587         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5588                 BUG_ON(pa->pa_type != MB_INODE_PA);
5589                 group = ext4_get_group_number(sb, pa->pa_pstart);
5590 
5591                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5592                                              GFP_NOFS|__GFP_NOFAIL);
5593                 if (err) {
5594                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5595                                        err, group);
5596                         continue;
5597                 }
5598 
5599                 bitmap_bh = ext4_read_block_bitmap(sb, group);
5600                 if (IS_ERR(bitmap_bh)) {
5601                         err = PTR_ERR(bitmap_bh);
5602                         ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5603                                        err, group);
5604                         ext4_mb_unload_buddy(&e4b);
5605                         continue;
5606                 }
5607 
5608                 ext4_lock_group(sb, group);
5609                 list_del(&pa->pa_group_list);
5610                 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5611                 ext4_unlock_group(sb, group);
5612 
5613                 ext4_mb_unload_buddy(&e4b);
5614                 put_bh(bitmap_bh);
5615 
5616                 list_del(&pa->u.pa_tmp_list);
5617                 ext4_mb_pa_free(pa);
5618         }
5619 }
5620 
5621 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5622 {
5623         struct ext4_prealloc_space *pa;
5624 
5625         BUG_ON(ext4_pspace_cachep == NULL);
5626         pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5627         if (!pa)
5628                 return -ENOMEM;
5629         atomic_set(&pa->pa_count, 1);
5630         ac->ac_pa = pa;
5631         return 0;
5632 }
5633 
5634 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5635 {
5636         struct ext4_prealloc_space *pa = ac->ac_pa;
5637 
5638         BUG_ON(!pa);
5639         ac->ac_pa = NULL;
5640         WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5641         /*
5642          * current function is only called due to an error or due to
5643          * len of found blocks < len of requested blocks hence the PA has not
5644          * been added to grp->bb_prealloc_list. So we don't need to lock it
5645          */
5646         pa->pa_deleted = 1;
5647         ext4_mb_pa_free(pa);
5648 }
5649 
5650 #ifdef CONFIG_EXT4_DEBUG
5651 static inline void ext4_mb_show_pa(struct super_block *sb)
5652 {
5653         ext4_group_t i, ngroups;
5654 
5655         if (ext4_forced_shutdown(sb))
5656                 return;
5657 
5658         ngroups = ext4_get_groups_count(sb);
5659         mb_debug(sb, "groups: ");
5660         for (i = 0; i < ngroups; i++) {
5661                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5662                 struct ext4_prealloc_space *pa;
5663                 ext4_grpblk_t start;
5664                 struct list_head *cur;
5665 
5666                 if (!grp)
5667                         continue;
5668                 ext4_lock_group(sb, i);
5669                 list_for_each(cur, &grp->bb_prealloc_list) {
5670                         pa = list_entry(cur, struct ext4_prealloc_space,
5671                                         pa_group_list);
5672                         spin_lock(&pa->pa_lock);
5673                         ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5674                                                      NULL, &start);
5675                         spin_unlock(&pa->pa_lock);
5676                         mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5677                                  pa->pa_len);
5678                 }
5679                 ext4_unlock_group(sb, i);
5680                 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5681                          grp->bb_fragments);
5682         }
5683 }
5684 
5685 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5686 {
5687         struct super_block *sb = ac->ac_sb;
5688 
5689         if (ext4_forced_shutdown(sb))
5690                 return;
5691 
5692         mb_debug(sb, "Can't allocate:"
5693                         " Allocation context details:");
5694         mb_debug(sb, "status %u flags 0x%x",
5695                         ac->ac_status, ac->ac_flags);
5696         mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5697                         "goal %lu/%lu/%lu@%lu, "
5698                         "best %lu/%lu/%lu@%lu cr %d",
5699                         (unsigned long)ac->ac_o_ex.fe_group,
5700                         (unsigned long)ac->ac_o_ex.fe_start,
5701                         (unsigned long)ac->ac_o_ex.fe_len,
5702                         (unsigned long)ac->ac_o_ex.fe_logical,
5703                         (unsigned long)ac->ac_g_ex.fe_group,
5704                         (unsigned long)ac->ac_g_ex.fe_start,
5705                         (unsigned long)ac->ac_g_ex.fe_len,
5706                         (unsigned long)ac->ac_g_ex.fe_logical,
5707                         (unsigned long)ac->ac_b_ex.fe_group,
5708                         (unsigned long)ac->ac_b_ex.fe_start,
5709                         (unsigned long)ac->ac_b_ex.fe_len,
5710                         (unsigned long)ac->ac_b_ex.fe_logical,
5711                         (int)ac->ac_criteria);
5712         mb_debug(sb, "%u found", ac->ac_found);
5713         mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5714         if (ac->ac_pa)
5715                 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5716                          "group pa" : "inode pa");
5717         ext4_mb_show_pa(sb);
5718 }
5719 #else
5720 static inline void ext4_mb_show_pa(struct super_block *sb)
5721 {
5722 }
5723 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5724 {
5725         ext4_mb_show_pa(ac->ac_sb);
5726 }
5727 #endif
5728 
5729 /*
5730  * We use locality group preallocation for small size file. The size of the
5731  * file is determined by the current size or the resulting size after
5732  * allocation which ever is larger
5733  *
5734  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5735  */
5736 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5737 {
5738         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5739         int bsbits = ac->ac_sb->s_blocksize_bits;
5740         loff_t size, isize;
5741         bool inode_pa_eligible, group_pa_eligible;
5742 
5743         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5744                 return;
5745 
5746         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5747                 return;
5748 
5749         group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5750         inode_pa_eligible = true;
5751         size = extent_logical_end(sbi, &ac->ac_o_ex);
5752         isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5753                 >> bsbits;
5754 
5755         /* No point in using inode preallocation for closed files */
5756         if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5757             !inode_is_open_for_write(ac->ac_inode))
5758                 inode_pa_eligible = false;
5759 
5760         size = max(size, isize);
5761         /* Don't use group allocation for large files */
5762         if (size > sbi->s_mb_stream_request)
5763                 group_pa_eligible = false;
5764 
5765         if (!group_pa_eligible) {
5766                 if (inode_pa_eligible)
5767                         ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5768                 else
5769                         ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5770                 return;
5771         }
5772 
5773         BUG_ON(ac->ac_lg != NULL);
5774         /*
5775          * locality group prealloc space are per cpu. The reason for having
5776          * per cpu locality group is to reduce the contention between block
5777          * request from multiple CPUs.
5778          */
5779         ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5780 
5781         /* we're going to use group allocation */
5782         ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5783 
5784         /* serialize all allocations in the group */
5785         mutex_lock(&ac->ac_lg->lg_mutex);
5786 }
5787 
5788 static noinline_for_stack void
5789 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5790                                 struct ext4_allocation_request *ar)
5791 {
5792         struct super_block *sb = ar->inode->i_sb;
5793         struct ext4_sb_info *sbi = EXT4_SB(sb);
5794         struct ext4_super_block *es = sbi->s_es;
5795         ext4_group_t group;
5796         unsigned int len;
5797         ext4_fsblk_t goal;
5798         ext4_grpblk_t block;
5799 
5800         /* we can't allocate > group size */
5801         len = ar->len;
5802 
5803         /* just a dirty hack to filter too big requests  */
5804         if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5805                 len = EXT4_CLUSTERS_PER_GROUP(sb);
5806 
5807         /* start searching from the goal */
5808         goal = ar->goal;
5809         if (goal < le32_to_cpu(es->s_first_data_block) ||
5810                         goal >= ext4_blocks_count(es))
5811                 goal = le32_to_cpu(es->s_first_data_block);
5812         ext4_get_group_no_and_offset(sb, goal, &group, &block);
5813 
5814         /* set up allocation goals */
5815         ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5816         ac->ac_status = AC_STATUS_CONTINUE;
5817         ac->ac_sb = sb;
5818         ac->ac_inode = ar->inode;
5819         ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5820         ac->ac_o_ex.fe_group = group;
5821         ac->ac_o_ex.fe_start = block;
5822         ac->ac_o_ex.fe_len = len;
5823         ac->ac_g_ex = ac->ac_o_ex;
5824         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5825         ac->ac_flags = ar->flags;
5826 
5827         /* we have to define context: we'll work with a file or
5828          * locality group. this is a policy, actually */
5829         ext4_mb_group_or_file(ac);
5830 
5831         mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5832                         "left: %u/%u, right %u/%u to %swritable\n",
5833                         (unsigned) ar->len, (unsigned) ar->logical,
5834                         (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5835                         (unsigned) ar->lleft, (unsigned) ar->pleft,
5836                         (unsigned) ar->lright, (unsigned) ar->pright,
5837                         inode_is_open_for_write(ar->inode) ? "" : "non-");
5838 }
5839 
5840 static noinline_for_stack void
5841 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5842                                         struct ext4_locality_group *lg,
5843                                         int order, int total_entries)
5844 {
5845         ext4_group_t group = 0;
5846         struct ext4_buddy e4b;
5847         LIST_HEAD(discard_list);
5848         struct ext4_prealloc_space *pa, *tmp;
5849 
5850         mb_debug(sb, "discard locality group preallocation\n");
5851 
5852         spin_lock(&lg->lg_prealloc_lock);
5853         list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5854                                 pa_node.lg_list,
5855                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5856                 spin_lock(&pa->pa_lock);
5857                 if (atomic_read(&pa->pa_count)) {
5858                         /*
5859                          * This is the pa that we just used
5860                          * for block allocation. So don't
5861                          * free that
5862                          */
5863                         spin_unlock(&pa->pa_lock);
5864                         continue;
5865                 }
5866                 if (pa->pa_deleted) {
5867                         spin_unlock(&pa->pa_lock);
5868                         continue;
5869                 }
5870                 /* only lg prealloc space */
5871                 BUG_ON(pa->pa_type != MB_GROUP_PA);
5872 
5873                 /* seems this one can be freed ... */
5874                 ext4_mb_mark_pa_deleted(sb, pa);
5875                 spin_unlock(&pa->pa_lock);
5876 
5877                 list_del_rcu(&pa->pa_node.lg_list);
5878                 list_add(&pa->u.pa_tmp_list, &discard_list);
5879 
5880                 total_entries--;
5881                 if (total_entries <= 5) {
5882                         /*
5883                          * we want to keep only 5 entries
5884                          * allowing it to grow to 8. This
5885                          * mak sure we don't call discard
5886                          * soon for this list.
5887                          */
5888                         break;
5889                 }
5890         }
5891         spin_unlock(&lg->lg_prealloc_lock);
5892 
5893         list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5894                 int err;
5895 
5896                 group = ext4_get_group_number(sb, pa->pa_pstart);
5897                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5898                                              GFP_NOFS|__GFP_NOFAIL);
5899                 if (err) {
5900                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5901                                        err, group);
5902                         continue;
5903                 }
5904                 ext4_lock_group(sb, group);
5905                 list_del(&pa->pa_group_list);
5906                 ext4_mb_release_group_pa(&e4b, pa);
5907                 ext4_unlock_group(sb, group);
5908 
5909                 ext4_mb_unload_buddy(&e4b);
5910                 list_del(&pa->u.pa_tmp_list);
5911                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5912         }
5913 }
5914 
5915 /*
5916  * We have incremented pa_count. So it cannot be freed at this
5917  * point. Also we hold lg_mutex. So no parallel allocation is
5918  * possible from this lg. That means pa_free cannot be updated.
5919  *
5920  * A parallel ext4_mb_discard_group_preallocations is possible.
5921  * which can cause the lg_prealloc_list to be updated.
5922  */
5923 
5924 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5925 {
5926         int order, added = 0, lg_prealloc_count = 1;
5927         struct super_block *sb = ac->ac_sb;
5928         struct ext4_locality_group *lg = ac->ac_lg;
5929         struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5930 
5931         order = fls(pa->pa_free) - 1;
5932         if (order > PREALLOC_TB_SIZE - 1)
5933                 /* The max size of hash table is PREALLOC_TB_SIZE */
5934                 order = PREALLOC_TB_SIZE - 1;
5935         /* Add the prealloc space to lg */
5936         spin_lock(&lg->lg_prealloc_lock);
5937         list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5938                                 pa_node.lg_list,
5939                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5940                 spin_lock(&tmp_pa->pa_lock);
5941                 if (tmp_pa->pa_deleted) {
5942                         spin_unlock(&tmp_pa->pa_lock);
5943                         continue;
5944                 }
5945                 if (!added && pa->pa_free < tmp_pa->pa_free) {
5946                         /* Add to the tail of the previous entry */
5947                         list_add_tail_rcu(&pa->pa_node.lg_list,
5948                                                 &tmp_pa->pa_node.lg_list);
5949                         added = 1;
5950                         /*
5951                          * we want to count the total
5952                          * number of entries in the list
5953                          */
5954                 }
5955                 spin_unlock(&tmp_pa->pa_lock);
5956                 lg_prealloc_count++;
5957         }
5958         if (!added)
5959                 list_add_tail_rcu(&pa->pa_node.lg_list,
5960                                         &lg->lg_prealloc_list[order]);
5961         spin_unlock(&lg->lg_prealloc_lock);
5962 
5963         /* Now trim the list to be not more than 8 elements */
5964         if (lg_prealloc_count > 8)
5965                 ext4_mb_discard_lg_preallocations(sb, lg,
5966                                                   order, lg_prealloc_count);
5967 }
5968 
5969 /*
5970  * release all resource we used in allocation
5971  */
5972 static void ext4_mb_release_context(struct ext4_allocation_context *ac)
5973 {
5974         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5975         struct ext4_prealloc_space *pa = ac->ac_pa;
5976         if (pa) {
5977                 if (pa->pa_type == MB_GROUP_PA) {
5978                         /* see comment in ext4_mb_use_group_pa() */
5979                         spin_lock(&pa->pa_lock);
5980                         pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5981                         pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5982                         pa->pa_free -= ac->ac_b_ex.fe_len;
5983                         pa->pa_len -= ac->ac_b_ex.fe_len;
5984                         spin_unlock(&pa->pa_lock);
5985 
5986                         /*
5987                          * We want to add the pa to the right bucket.
5988                          * Remove it from the list and while adding
5989                          * make sure the list to which we are adding
5990                          * doesn't grow big.
5991                          */
5992                         if (likely(pa->pa_free)) {
5993                                 spin_lock(pa->pa_node_lock.lg_lock);
5994                                 list_del_rcu(&pa->pa_node.lg_list);
5995                                 spin_unlock(pa->pa_node_lock.lg_lock);
5996                                 ext4_mb_add_n_trim(ac);
5997                         }
5998                 }
5999 
6000                 ext4_mb_put_pa(ac, ac->ac_sb, pa);
6001         }
6002         if (ac->ac_bitmap_folio)
6003                 folio_put(ac->ac_bitmap_folio);
6004         if (ac->ac_buddy_folio)
6005                 folio_put(ac->ac_buddy_folio);
6006         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6007                 mutex_unlock(&ac->ac_lg->lg_mutex);
6008         ext4_mb_collect_stats(ac);
6009 }
6010 
6011 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6012 {
6013         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6014         int ret;
6015         int freed = 0, busy = 0;
6016         int retry = 0;
6017 
6018         trace_ext4_mb_discard_preallocations(sb, needed);
6019 
6020         if (needed == 0)
6021                 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6022  repeat:
6023         for (i = 0; i < ngroups && needed > 0; i++) {
6024                 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6025                 freed += ret;
6026                 needed -= ret;
6027                 cond_resched();
6028         }
6029 
6030         if (needed > 0 && busy && ++retry < 3) {
6031                 busy = 0;
6032                 goto repeat;
6033         }
6034 
6035         return freed;
6036 }
6037 
6038 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6039                         struct ext4_allocation_context *ac, u64 *seq)
6040 {
6041         int freed;
6042         u64 seq_retry = 0;
6043         bool ret = false;
6044 
6045         freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6046         if (freed) {
6047                 ret = true;
6048                 goto out_dbg;
6049         }
6050         seq_retry = ext4_get_discard_pa_seq_sum();
6051         if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6052                 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6053                 *seq = seq_retry;
6054                 ret = true;
6055         }
6056 
6057 out_dbg:
6058         mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6059         return ret;
6060 }
6061 
6062 /*
6063  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6064  * linearly starting at the goal block and also excludes the blocks which
6065  * are going to be in use after fast commit replay.
6066  */
6067 static ext4_fsblk_t
6068 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6069 {
6070         struct buffer_head *bitmap_bh;
6071         struct super_block *sb = ar->inode->i_sb;
6072         struct ext4_sb_info *sbi = EXT4_SB(sb);
6073         ext4_group_t group, nr;
6074         ext4_grpblk_t blkoff;
6075         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6076         ext4_grpblk_t i = 0;
6077         ext4_fsblk_t goal, block;
6078         struct ext4_super_block *es = sbi->s_es;
6079 
6080         goal = ar->goal;
6081         if (goal < le32_to_cpu(es->s_first_data_block) ||
6082                         goal >= ext4_blocks_count(es))
6083                 goal = le32_to_cpu(es->s_first_data_block);
6084 
6085         ar->len = 0;
6086         ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6087         for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6088                 bitmap_bh = ext4_read_block_bitmap(sb, group);
6089                 if (IS_ERR(bitmap_bh)) {
6090                         *errp = PTR_ERR(bitmap_bh);
6091                         pr_warn("Failed to read block bitmap\n");
6092                         return 0;
6093                 }
6094 
6095                 while (1) {
6096                         i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6097                                                 blkoff);
6098                         if (i >= max)
6099                                 break;
6100                         if (ext4_fc_replay_check_excluded(sb,
6101                                 ext4_group_first_block_no(sb, group) +
6102                                 EXT4_C2B(sbi, i))) {
6103                                 blkoff = i + 1;
6104                         } else
6105                                 break;
6106                 }
6107                 brelse(bitmap_bh);
6108                 if (i < max)
6109                         break;
6110 
6111                 if (++group >= ext4_get_groups_count(sb))
6112                         group = 0;
6113 
6114                 blkoff = 0;
6115         }
6116 
6117         if (i >= max) {
6118                 *errp = -ENOSPC;
6119                 return 0;
6120         }
6121 
6122         block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6123         ext4_mb_mark_bb(sb, block, 1, true);
6124         ar->len = 1;
6125 
6126         *errp = 0;
6127         return block;
6128 }
6129 
6130 /*
6131  * Main entry point into mballoc to allocate blocks
6132  * it tries to use preallocation first, then falls back
6133  * to usual allocation
6134  */
6135 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6136                                 struct ext4_allocation_request *ar, int *errp)
6137 {
6138         struct ext4_allocation_context *ac = NULL;
6139         struct ext4_sb_info *sbi;
6140         struct super_block *sb;
6141         ext4_fsblk_t block = 0;
6142         unsigned int inquota = 0;
6143         unsigned int reserv_clstrs = 0;
6144         int retries = 0;
6145         u64 seq;
6146 
6147         might_sleep();
6148         sb = ar->inode->i_sb;
6149         sbi = EXT4_SB(sb);
6150 
6151         trace_ext4_request_blocks(ar);
6152         if (sbi->s_mount_state & EXT4_FC_REPLAY)
6153                 return ext4_mb_new_blocks_simple(ar, errp);
6154 
6155         /* Allow to use superuser reservation for quota file */
6156         if (ext4_is_quota_file(ar->inode))
6157                 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6158 
6159         if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6160                 /* Without delayed allocation we need to verify
6161                  * there is enough free blocks to do block allocation
6162                  * and verify allocation doesn't exceed the quota limits.
6163                  */
6164                 while (ar->len &&
6165                         ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6166 
6167                         /* let others to free the space */
6168                         cond_resched();
6169                         ar->len = ar->len >> 1;
6170                 }
6171                 if (!ar->len) {
6172                         ext4_mb_show_pa(sb);
6173                         *errp = -ENOSPC;
6174                         return 0;
6175                 }
6176                 reserv_clstrs = ar->len;
6177                 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6178                         dquot_alloc_block_nofail(ar->inode,
6179                                                  EXT4_C2B(sbi, ar->len));
6180                 } else {
6181                         while (ar->len &&
6182                                 dquot_alloc_block(ar->inode,
6183                                                   EXT4_C2B(sbi, ar->len))) {
6184 
6185                                 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6186                                 ar->len--;
6187                         }
6188                 }
6189                 inquota = ar->len;
6190                 if (ar->len == 0) {
6191                         *errp = -EDQUOT;
6192                         goto out;
6193                 }
6194         }
6195 
6196         ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6197         if (!ac) {
6198                 ar->len = 0;
6199                 *errp = -ENOMEM;
6200                 goto out;
6201         }
6202 
6203         ext4_mb_initialize_context(ac, ar);
6204 
6205         ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6206         seq = this_cpu_read(discard_pa_seq);
6207         if (!ext4_mb_use_preallocated(ac)) {
6208                 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6209                 ext4_mb_normalize_request(ac, ar);
6210 
6211                 *errp = ext4_mb_pa_alloc(ac);
6212                 if (*errp)
6213                         goto errout;
6214 repeat:
6215                 /* allocate space in core */
6216                 *errp = ext4_mb_regular_allocator(ac);
6217                 /*
6218                  * pa allocated above is added to grp->bb_prealloc_list only
6219                  * when we were able to allocate some block i.e. when
6220                  * ac->ac_status == AC_STATUS_FOUND.
6221                  * And error from above mean ac->ac_status != AC_STATUS_FOUND
6222                  * So we have to free this pa here itself.
6223                  */
6224                 if (*errp) {
6225                         ext4_mb_pa_put_free(ac);
6226                         ext4_discard_allocated_blocks(ac);
6227                         goto errout;
6228                 }
6229                 if (ac->ac_status == AC_STATUS_FOUND &&
6230                         ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6231                         ext4_mb_pa_put_free(ac);
6232         }
6233         if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6234                 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6235                 if (*errp) {
6236                         ext4_discard_allocated_blocks(ac);
6237                         goto errout;
6238                 } else {
6239                         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6240                         ar->len = ac->ac_b_ex.fe_len;
6241                 }
6242         } else {
6243                 if (++retries < 3 &&
6244                     ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6245                         goto repeat;
6246                 /*
6247                  * If block allocation fails then the pa allocated above
6248                  * needs to be freed here itself.
6249                  */
6250                 ext4_mb_pa_put_free(ac);
6251                 *errp = -ENOSPC;
6252         }
6253 
6254         if (*errp) {
6255 errout:
6256                 ac->ac_b_ex.fe_len = 0;
6257                 ar->len = 0;
6258                 ext4_mb_show_ac(ac);
6259         }
6260         ext4_mb_release_context(ac);
6261         kmem_cache_free(ext4_ac_cachep, ac);
6262 out:
6263         if (inquota && ar->len < inquota)
6264                 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6265         if (!ar->len) {
6266                 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6267                         /* release all the reserved blocks if non delalloc */
6268                         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6269                                                 reserv_clstrs);
6270         }
6271 
6272         trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6273 
6274         return block;
6275 }
6276 
6277 /*
6278  * We can merge two free data extents only if the physical blocks
6279  * are contiguous, AND the extents were freed by the same transaction,
6280  * AND the blocks are associated with the same group.
6281  */
6282 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6283                                         struct ext4_free_data *entry,
6284                                         struct ext4_free_data *new_entry,
6285                                         struct rb_root *entry_rb_root)
6286 {
6287         if ((entry->efd_tid != new_entry->efd_tid) ||
6288             (entry->efd_group != new_entry->efd_group))
6289                 return;
6290         if (entry->efd_start_cluster + entry->efd_count ==
6291             new_entry->efd_start_cluster) {
6292                 new_entry->efd_start_cluster = entry->efd_start_cluster;
6293                 new_entry->efd_count += entry->efd_count;
6294         } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6295                    entry->efd_start_cluster) {
6296                 new_entry->efd_count += entry->efd_count;
6297         } else
6298                 return;
6299         spin_lock(&sbi->s_md_lock);
6300         list_del(&entry->efd_list);
6301         spin_unlock(&sbi->s_md_lock);
6302         rb_erase(&entry->efd_node, entry_rb_root);
6303         kmem_cache_free(ext4_free_data_cachep, entry);
6304 }
6305 
6306 static noinline_for_stack void
6307 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6308                       struct ext4_free_data *new_entry)
6309 {
6310         ext4_group_t group = e4b->bd_group;
6311         ext4_grpblk_t cluster;
6312         ext4_grpblk_t clusters = new_entry->efd_count;
6313         struct ext4_free_data *entry;
6314         struct ext4_group_info *db = e4b->bd_info;
6315         struct super_block *sb = e4b->bd_sb;
6316         struct ext4_sb_info *sbi = EXT4_SB(sb);
6317         struct rb_node **n = &db->bb_free_root.rb_node, *node;
6318         struct rb_node *parent = NULL, *new_node;
6319 
6320         BUG_ON(!ext4_handle_valid(handle));
6321         BUG_ON(e4b->bd_bitmap_folio == NULL);
6322         BUG_ON(e4b->bd_buddy_folio == NULL);
6323 
6324         new_node = &new_entry->efd_node;
6325         cluster = new_entry->efd_start_cluster;
6326 
6327         if (!*n) {
6328                 /* first free block exent. We need to
6329                    protect buddy cache from being freed,
6330                  * otherwise we'll refresh it from
6331                  * on-disk bitmap and lose not-yet-available
6332                  * blocks */
6333                 folio_get(e4b->bd_buddy_folio);
6334                 folio_get(e4b->bd_bitmap_folio);
6335         }
6336         while (*n) {
6337                 parent = *n;
6338                 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6339                 if (cluster < entry->efd_start_cluster)
6340                         n = &(*n)->rb_left;
6341                 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6342                         n = &(*n)->rb_right;
6343                 else {
6344                         ext4_grp_locked_error(sb, group, 0,
6345                                 ext4_group_first_block_no(sb, group) +
6346                                 EXT4_C2B(sbi, cluster),
6347                                 "Block already on to-be-freed list");
6348                         kmem_cache_free(ext4_free_data_cachep, new_entry);
6349                         return;
6350                 }
6351         }
6352 
6353         rb_link_node(new_node, parent, n);
6354         rb_insert_color(new_node, &db->bb_free_root);
6355 
6356         /* Now try to see the extent can be merged to left and right */
6357         node = rb_prev(new_node);
6358         if (node) {
6359                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6360                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6361                                             &(db->bb_free_root));
6362         }
6363 
6364         node = rb_next(new_node);
6365         if (node) {
6366                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6367                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6368                                             &(db->bb_free_root));
6369         }
6370 
6371         spin_lock(&sbi->s_md_lock);
6372         list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6373         sbi->s_mb_free_pending += clusters;
6374         spin_unlock(&sbi->s_md_lock);
6375 }
6376 
6377 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6378                                         unsigned long count)
6379 {
6380         struct super_block *sb = inode->i_sb;
6381         ext4_group_t group;
6382         ext4_grpblk_t blkoff;
6383 
6384         ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6385         ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6386                              EXT4_MB_BITMAP_MARKED_CHECK |
6387                              EXT4_MB_SYNC_UPDATE,
6388                              NULL);
6389 }
6390 
6391 /**
6392  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6393  *                      Used by ext4_free_blocks()
6394  * @handle:             handle for this transaction
6395  * @inode:              inode
6396  * @block:              starting physical block to be freed
6397  * @count:              number of blocks to be freed
6398  * @flags:              flags used by ext4_free_blocks
6399  */
6400 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6401                                ext4_fsblk_t block, unsigned long count,
6402                                int flags)
6403 {
6404         struct super_block *sb = inode->i_sb;
6405         struct ext4_group_info *grp;
6406         unsigned int overflow;
6407         ext4_grpblk_t bit;
6408         ext4_group_t block_group;
6409         struct ext4_sb_info *sbi;
6410         struct ext4_buddy e4b;
6411         unsigned int count_clusters;
6412         int err = 0;
6413         int mark_flags = 0;
6414         ext4_grpblk_t changed;
6415 
6416         sbi = EXT4_SB(sb);
6417 
6418         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6419             !ext4_inode_block_valid(inode, block, count)) {
6420                 ext4_error(sb, "Freeing blocks in system zone - "
6421                            "Block = %llu, count = %lu", block, count);
6422                 /* err = 0. ext4_std_error should be a no op */
6423                 goto error_out;
6424         }
6425         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6426 
6427 do_more:
6428         overflow = 0;
6429         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6430 
6431         grp = ext4_get_group_info(sb, block_group);
6432         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6433                 return;
6434 
6435         /*
6436          * Check to see if we are freeing blocks across a group
6437          * boundary.
6438          */
6439         if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6440                 overflow = EXT4_C2B(sbi, bit) + count -
6441                         EXT4_BLOCKS_PER_GROUP(sb);
6442                 count -= overflow;
6443                 /* The range changed so it's no longer validated */
6444                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6445         }
6446         count_clusters = EXT4_NUM_B2C(sbi, count);
6447         trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6448 
6449         /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6450         err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6451                                      GFP_NOFS|__GFP_NOFAIL);
6452         if (err)
6453                 goto error_out;
6454 
6455         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6456             !ext4_inode_block_valid(inode, block, count)) {
6457                 ext4_error(sb, "Freeing blocks in system zone - "
6458                            "Block = %llu, count = %lu", block, count);
6459                 /* err = 0. ext4_std_error should be a no op */
6460                 goto error_clean;
6461         }
6462 
6463 #ifdef AGGRESSIVE_CHECK
6464         mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6465 #endif
6466         err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6467                                    count_clusters, mark_flags, &changed);
6468 
6469 
6470         if (err && changed == 0)
6471                 goto error_clean;
6472 
6473 #ifdef AGGRESSIVE_CHECK
6474         BUG_ON(changed != count_clusters);
6475 #endif
6476 
6477         /*
6478          * We need to make sure we don't reuse the freed block until after the
6479          * transaction is committed. We make an exception if the inode is to be
6480          * written in writeback mode since writeback mode has weak data
6481          * consistency guarantees.
6482          */
6483         if (ext4_handle_valid(handle) &&
6484             ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6485              !ext4_should_writeback_data(inode))) {
6486                 struct ext4_free_data *new_entry;
6487                 /*
6488                  * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6489                  * to fail.
6490                  */
6491                 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6492                                 GFP_NOFS|__GFP_NOFAIL);
6493                 new_entry->efd_start_cluster = bit;
6494                 new_entry->efd_group = block_group;
6495                 new_entry->efd_count = count_clusters;
6496                 new_entry->efd_tid = handle->h_transaction->t_tid;
6497 
6498                 ext4_lock_group(sb, block_group);
6499                 ext4_mb_free_metadata(handle, &e4b, new_entry);
6500         } else {
6501                 if (test_opt(sb, DISCARD)) {
6502                         err = ext4_issue_discard(sb, block_group, bit,
6503                                                  count_clusters);
6504                         /*
6505                          * Ignore EOPNOTSUPP error. This is consistent with
6506                          * what happens when using journal.
6507                          */
6508                         if (err == -EOPNOTSUPP)
6509                                 err = 0;
6510                         if (err)
6511                                 ext4_msg(sb, KERN_WARNING, "discard request in"
6512                                          " group:%u block:%d count:%lu failed"
6513                                          " with %d", block_group, bit, count,
6514                                          err);
6515                 }
6516 
6517                 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6518 
6519                 ext4_lock_group(sb, block_group);
6520                 mb_free_blocks(inode, &e4b, bit, count_clusters);
6521         }
6522 
6523         ext4_unlock_group(sb, block_group);
6524 
6525         /*
6526          * on a bigalloc file system, defer the s_freeclusters_counter
6527          * update to the caller (ext4_remove_space and friends) so they
6528          * can determine if a cluster freed here should be rereserved
6529          */
6530         if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6531                 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6532                         dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6533                 percpu_counter_add(&sbi->s_freeclusters_counter,
6534                                    count_clusters);
6535         }
6536 
6537         if (overflow && !err) {
6538                 block += count;
6539                 count = overflow;
6540                 ext4_mb_unload_buddy(&e4b);
6541                 /* The range changed so it's no longer validated */
6542                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6543                 goto do_more;
6544         }
6545 
6546 error_clean:
6547         ext4_mb_unload_buddy(&e4b);
6548 error_out:
6549         ext4_std_error(sb, err);
6550 }
6551 
6552 /**
6553  * ext4_free_blocks() -- Free given blocks and update quota
6554  * @handle:             handle for this transaction
6555  * @inode:              inode
6556  * @bh:                 optional buffer of the block to be freed
6557  * @block:              starting physical block to be freed
6558  * @count:              number of blocks to be freed
6559  * @flags:              flags used by ext4_free_blocks
6560  */
6561 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6562                       struct buffer_head *bh, ext4_fsblk_t block,
6563                       unsigned long count, int flags)
6564 {
6565         struct super_block *sb = inode->i_sb;
6566         unsigned int overflow;
6567         struct ext4_sb_info *sbi;
6568 
6569         sbi = EXT4_SB(sb);
6570 
6571         if (bh) {
6572                 if (block)
6573                         BUG_ON(block != bh->b_blocknr);
6574                 else
6575                         block = bh->b_blocknr;
6576         }
6577 
6578         if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6579                 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6580                 return;
6581         }
6582 
6583         might_sleep();
6584 
6585         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6586             !ext4_inode_block_valid(inode, block, count)) {
6587                 ext4_error(sb, "Freeing blocks not in datazone - "
6588                            "block = %llu, count = %lu", block, count);
6589                 return;
6590         }
6591         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6592 
6593         ext4_debug("freeing block %llu\n", block);
6594         trace_ext4_free_blocks(inode, block, count, flags);
6595 
6596         if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6597                 BUG_ON(count > 1);
6598 
6599                 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6600                             inode, bh, block);
6601         }
6602 
6603         /*
6604          * If the extent to be freed does not begin on a cluster
6605          * boundary, we need to deal with partial clusters at the
6606          * beginning and end of the extent.  Normally we will free
6607          * blocks at the beginning or the end unless we are explicitly
6608          * requested to avoid doing so.
6609          */
6610         overflow = EXT4_PBLK_COFF(sbi, block);
6611         if (overflow) {
6612                 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6613                         overflow = sbi->s_cluster_ratio - overflow;
6614                         block += overflow;
6615                         if (count > overflow)
6616                                 count -= overflow;
6617                         else
6618                                 return;
6619                 } else {
6620                         block -= overflow;
6621                         count += overflow;
6622                 }
6623                 /* The range changed so it's no longer validated */
6624                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6625         }
6626         overflow = EXT4_LBLK_COFF(sbi, count);
6627         if (overflow) {
6628                 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6629                         if (count > overflow)
6630                                 count -= overflow;
6631                         else
6632                                 return;
6633                 } else
6634                         count += sbi->s_cluster_ratio - overflow;
6635                 /* The range changed so it's no longer validated */
6636                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6637         }
6638 
6639         if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6640                 int i;
6641                 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6642 
6643                 for (i = 0; i < count; i++) {
6644                         cond_resched();
6645                         if (is_metadata)
6646                                 bh = sb_find_get_block(inode->i_sb, block + i);
6647                         ext4_forget(handle, is_metadata, inode, bh, block + i);
6648                 }
6649         }
6650 
6651         ext4_mb_clear_bb(handle, inode, block, count, flags);
6652 }
6653 
6654 /**
6655  * ext4_group_add_blocks() -- Add given blocks to an existing group
6656  * @handle:                     handle to this transaction
6657  * @sb:                         super block
6658  * @block:                      start physical block to add to the block group
6659  * @count:                      number of blocks to free
6660  *
6661  * This marks the blocks as free in the bitmap and buddy.
6662  */
6663 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6664                          ext4_fsblk_t block, unsigned long count)
6665 {
6666         ext4_group_t block_group;
6667         ext4_grpblk_t bit;
6668         struct ext4_sb_info *sbi = EXT4_SB(sb);
6669         struct ext4_buddy e4b;
6670         int err = 0;
6671         ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6672         ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6673         unsigned long cluster_count = last_cluster - first_cluster + 1;
6674         ext4_grpblk_t changed;
6675 
6676         ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6677 
6678         if (cluster_count == 0)
6679                 return 0;
6680 
6681         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6682         /*
6683          * Check to see if we are freeing blocks across a group
6684          * boundary.
6685          */
6686         if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6687                 ext4_warning(sb, "too many blocks added to group %u",
6688                              block_group);
6689                 err = -EINVAL;
6690                 goto error_out;
6691         }
6692 
6693         err = ext4_mb_load_buddy(sb, block_group, &e4b);
6694         if (err)
6695                 goto error_out;
6696 
6697         if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6698                 ext4_error(sb, "Adding blocks in system zones - "
6699                            "Block = %llu, count = %lu",
6700                            block, count);
6701                 err = -EINVAL;
6702                 goto error_clean;
6703         }
6704 
6705         err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6706                                    cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6707                                    &changed);
6708         if (err && changed == 0)
6709                 goto error_clean;
6710 
6711         if (changed != cluster_count)
6712                 ext4_error(sb, "bit already cleared in group %u", block_group);
6713 
6714         ext4_lock_group(sb, block_group);
6715         mb_free_blocks(NULL, &e4b, bit, cluster_count);
6716         ext4_unlock_group(sb, block_group);
6717         percpu_counter_add(&sbi->s_freeclusters_counter,
6718                            changed);
6719 
6720 error_clean:
6721         ext4_mb_unload_buddy(&e4b);
6722 error_out:
6723         ext4_std_error(sb, err);
6724         return err;
6725 }
6726 
6727 /**
6728  * ext4_trim_extent -- function to TRIM one single free extent in the group
6729  * @sb:         super block for the file system
6730  * @start:      starting block of the free extent in the alloc. group
6731  * @count:      number of blocks to TRIM
6732  * @e4b:        ext4 buddy for the group
6733  *
6734  * Trim "count" blocks starting at "start" in the "group". To assure that no
6735  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6736  * be called with under the group lock.
6737  */
6738 static int ext4_trim_extent(struct super_block *sb,
6739                 int start, int count, struct ext4_buddy *e4b)
6740 __releases(bitlock)
6741 __acquires(bitlock)
6742 {
6743         struct ext4_free_extent ex;
6744         ext4_group_t group = e4b->bd_group;
6745         int ret = 0;
6746 
6747         trace_ext4_trim_extent(sb, group, start, count);
6748 
6749         assert_spin_locked(ext4_group_lock_ptr(sb, group));
6750 
6751         ex.fe_start = start;
6752         ex.fe_group = group;
6753         ex.fe_len = count;
6754 
6755         /*
6756          * Mark blocks used, so no one can reuse them while
6757          * being trimmed.
6758          */
6759         mb_mark_used(e4b, &ex);
6760         ext4_unlock_group(sb, group);
6761         ret = ext4_issue_discard(sb, group, start, count);
6762         ext4_lock_group(sb, group);
6763         mb_free_blocks(NULL, e4b, start, ex.fe_len);
6764         return ret;
6765 }
6766 
6767 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6768                                            ext4_group_t grp)
6769 {
6770         unsigned long nr_clusters_in_group;
6771 
6772         if (grp < (ext4_get_groups_count(sb) - 1))
6773                 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6774         else
6775                 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6776                                         ext4_group_first_block_no(sb, grp))
6777                                        >> EXT4_CLUSTER_BITS(sb);
6778 
6779         return nr_clusters_in_group - 1;
6780 }
6781 
6782 static bool ext4_trim_interrupted(void)
6783 {
6784         return fatal_signal_pending(current) || freezing(current);
6785 }
6786 
6787 static int ext4_try_to_trim_range(struct super_block *sb,
6788                 struct ext4_buddy *e4b, ext4_grpblk_t start,
6789                 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6790 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6791 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6792 {
6793         ext4_grpblk_t next, count, free_count, last, origin_start;
6794         bool set_trimmed = false;
6795         void *bitmap;
6796 
6797         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6798                 return 0;
6799 
6800         last = ext4_last_grp_cluster(sb, e4b->bd_group);
6801         bitmap = e4b->bd_bitmap;
6802         if (start == 0 && max >= last)
6803                 set_trimmed = true;
6804         origin_start = start;
6805         start = max(e4b->bd_info->bb_first_free, start);
6806         count = 0;
6807         free_count = 0;
6808 
6809         while (start <= max) {
6810                 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6811                 if (start > max)
6812                         break;
6813 
6814                 next = mb_find_next_bit(bitmap, last + 1, start);
6815                 if (origin_start == 0 && next >= last)
6816                         set_trimmed = true;
6817 
6818                 if ((next - start) >= minblocks) {
6819                         int ret = ext4_trim_extent(sb, start, next - start, e4b);
6820 
6821                         if (ret && ret != -EOPNOTSUPP)
6822                                 return count;
6823                         count += next - start;
6824                 }
6825                 free_count += next - start;
6826                 start = next + 1;
6827 
6828                 if (ext4_trim_interrupted())
6829                         return count;
6830 
6831                 if (need_resched()) {
6832                         ext4_unlock_group(sb, e4b->bd_group);
6833                         cond_resched();
6834                         ext4_lock_group(sb, e4b->bd_group);
6835                 }
6836 
6837                 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6838                         break;
6839         }
6840 
6841         if (set_trimmed)
6842                 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6843 
6844         return count;
6845 }
6846 
6847 /**
6848  * ext4_trim_all_free -- function to trim all free space in alloc. group
6849  * @sb:                 super block for file system
6850  * @group:              group to be trimmed
6851  * @start:              first group block to examine
6852  * @max:                last group block to examine
6853  * @minblocks:          minimum extent block count
6854  *
6855  * ext4_trim_all_free walks through group's block bitmap searching for free
6856  * extents. When the free extent is found, mark it as used in group buddy
6857  * bitmap. Then issue a TRIM command on this extent and free the extent in
6858  * the group buddy bitmap.
6859  */
6860 static ext4_grpblk_t
6861 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6862                    ext4_grpblk_t start, ext4_grpblk_t max,
6863                    ext4_grpblk_t minblocks)
6864 {
6865         struct ext4_buddy e4b;
6866         int ret;
6867 
6868         trace_ext4_trim_all_free(sb, group, start, max);
6869 
6870         ret = ext4_mb_load_buddy(sb, group, &e4b);
6871         if (ret) {
6872                 ext4_warning(sb, "Error %d loading buddy information for %u",
6873                              ret, group);
6874                 return ret;
6875         }
6876 
6877         ext4_lock_group(sb, group);
6878 
6879         if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6880             minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6881                 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6882         else
6883                 ret = 0;
6884 
6885         ext4_unlock_group(sb, group);
6886         ext4_mb_unload_buddy(&e4b);
6887 
6888         ext4_debug("trimmed %d blocks in the group %d\n",
6889                 ret, group);
6890 
6891         return ret;
6892 }
6893 
6894 /**
6895  * ext4_trim_fs() -- trim ioctl handle function
6896  * @sb:                 superblock for filesystem
6897  * @range:              fstrim_range structure
6898  *
6899  * start:       First Byte to trim
6900  * len:         number of Bytes to trim from start
6901  * minlen:      minimum extent length in Bytes
6902  * ext4_trim_fs goes through all allocation groups containing Bytes from
6903  * start to start+len. For each such a group ext4_trim_all_free function
6904  * is invoked to trim all free space.
6905  */
6906 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6907 {
6908         unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6909         struct ext4_group_info *grp;
6910         ext4_group_t group, first_group, last_group;
6911         ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6912         uint64_t start, end, minlen, trimmed = 0;
6913         ext4_fsblk_t first_data_blk =
6914                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6915         ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6916         int ret = 0;
6917 
6918         start = range->start >> sb->s_blocksize_bits;
6919         end = start + (range->len >> sb->s_blocksize_bits) - 1;
6920         minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6921                               range->minlen >> sb->s_blocksize_bits);
6922 
6923         if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6924             start >= max_blks ||
6925             range->len < sb->s_blocksize)
6926                 return -EINVAL;
6927         /* No point to try to trim less than discard granularity */
6928         if (range->minlen < discard_granularity) {
6929                 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6930                                 discard_granularity >> sb->s_blocksize_bits);
6931                 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6932                         goto out;
6933         }
6934         if (end >= max_blks - 1)
6935                 end = max_blks - 1;
6936         if (end <= first_data_blk)
6937                 goto out;
6938         if (start < first_data_blk)
6939                 start = first_data_blk;
6940 
6941         /* Determine first and last group to examine based on start and end */
6942         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6943                                      &first_group, &first_cluster);
6944         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6945                                      &last_group, &last_cluster);
6946 
6947         /* end now represents the last cluster to discard in this group */
6948         end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6949 
6950         for (group = first_group; group <= last_group; group++) {
6951                 if (ext4_trim_interrupted())
6952                         break;
6953                 grp = ext4_get_group_info(sb, group);
6954                 if (!grp)
6955                         continue;
6956                 /* We only do this if the grp has never been initialized */
6957                 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6958                         ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6959                         if (ret)
6960                                 break;
6961                 }
6962 
6963                 /*
6964                  * For all the groups except the last one, last cluster will
6965                  * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6966                  * change it for the last group, note that last_cluster is
6967                  * already computed earlier by ext4_get_group_no_and_offset()
6968                  */
6969                 if (group == last_group)
6970                         end = last_cluster;
6971                 if (grp->bb_free >= minlen) {
6972                         cnt = ext4_trim_all_free(sb, group, first_cluster,
6973                                                  end, minlen);
6974                         if (cnt < 0) {
6975                                 ret = cnt;
6976                                 break;
6977                         }
6978                         trimmed += cnt;
6979                 }
6980 
6981                 /*
6982                  * For every group except the first one, we are sure
6983                  * that the first cluster to discard will be cluster #0.
6984                  */
6985                 first_cluster = 0;
6986         }
6987 
6988         if (!ret)
6989                 EXT4_SB(sb)->s_last_trim_minblks = minlen;
6990 
6991 out:
6992         range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6993         return ret;
6994 }
6995 
6996 /* Iterate all the free extents in the group. */
6997 int
6998 ext4_mballoc_query_range(
6999         struct super_block              *sb,
7000         ext4_group_t                    group,
7001         ext4_grpblk_t                   start,
7002         ext4_grpblk_t                   end,
7003         ext4_mballoc_query_range_fn     formatter,
7004         void                            *priv)
7005 {
7006         void                            *bitmap;
7007         ext4_grpblk_t                   next;
7008         struct ext4_buddy               e4b;
7009         int                             error;
7010 
7011         error = ext4_mb_load_buddy(sb, group, &e4b);
7012         if (error)
7013                 return error;
7014         bitmap = e4b.bd_bitmap;
7015 
7016         ext4_lock_group(sb, group);
7017 
7018         start = max(e4b.bd_info->bb_first_free, start);
7019         if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7020                 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7021 
7022         while (start <= end) {
7023                 start = mb_find_next_zero_bit(bitmap, end + 1, start);
7024                 if (start > end)
7025                         break;
7026                 next = mb_find_next_bit(bitmap, end + 1, start);
7027 
7028                 ext4_unlock_group(sb, group);
7029                 error = formatter(sb, group, start, next - start, priv);
7030                 if (error)
7031                         goto out_unload;
7032                 ext4_lock_group(sb, group);
7033 
7034                 start = next + 1;
7035         }
7036 
7037         ext4_unlock_group(sb, group);
7038 out_unload:
7039         ext4_mb_unload_buddy(&e4b);
7040 
7041         return error;
7042 }
7043 
7044 #ifdef CONFIG_EXT4_KUNIT_TESTS
7045 #include "mballoc-test.c"
7046 #endif
7047 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php