1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/page-io.c 4 * 5 * This contains the new page_io functions for ext4 6 * 7 * Written by Theodore Ts'o, 2010. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/time.h> 12 #include <linux/highuid.h> 13 #include <linux/pagemap.h> 14 #include <linux/quotaops.h> 15 #include <linux/string.h> 16 #include <linux/buffer_head.h> 17 #include <linux/writeback.h> 18 #include <linux/pagevec.h> 19 #include <linux/mpage.h> 20 #include <linux/namei.h> 21 #include <linux/uio.h> 22 #include <linux/bio.h> 23 #include <linux/workqueue.h> 24 #include <linux/kernel.h> 25 #include <linux/slab.h> 26 #include <linux/mm.h> 27 #include <linux/sched/mm.h> 28 29 #include "ext4_jbd2.h" 30 #include "xattr.h" 31 #include "acl.h" 32 33 static struct kmem_cache *io_end_cachep; 34 static struct kmem_cache *io_end_vec_cachep; 35 36 int __init ext4_init_pageio(void) 37 { 38 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT); 39 if (io_end_cachep == NULL) 40 return -ENOMEM; 41 42 io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0); 43 if (io_end_vec_cachep == NULL) { 44 kmem_cache_destroy(io_end_cachep); 45 return -ENOMEM; 46 } 47 return 0; 48 } 49 50 void ext4_exit_pageio(void) 51 { 52 kmem_cache_destroy(io_end_cachep); 53 kmem_cache_destroy(io_end_vec_cachep); 54 } 55 56 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end) 57 { 58 struct ext4_io_end_vec *io_end_vec; 59 60 io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS); 61 if (!io_end_vec) 62 return ERR_PTR(-ENOMEM); 63 INIT_LIST_HEAD(&io_end_vec->list); 64 list_add_tail(&io_end_vec->list, &io_end->list_vec); 65 return io_end_vec; 66 } 67 68 static void ext4_free_io_end_vec(ext4_io_end_t *io_end) 69 { 70 struct ext4_io_end_vec *io_end_vec, *tmp; 71 72 if (list_empty(&io_end->list_vec)) 73 return; 74 list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) { 75 list_del(&io_end_vec->list); 76 kmem_cache_free(io_end_vec_cachep, io_end_vec); 77 } 78 } 79 80 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end) 81 { 82 BUG_ON(list_empty(&io_end->list_vec)); 83 return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list); 84 } 85 86 /* 87 * Print an buffer I/O error compatible with the fs/buffer.c. This 88 * provides compatibility with dmesg scrapers that look for a specific 89 * buffer I/O error message. We really need a unified error reporting 90 * structure to userspace ala Digital Unix's uerf system, but it's 91 * probably not going to happen in my lifetime, due to LKML politics... 92 */ 93 static void buffer_io_error(struct buffer_head *bh) 94 { 95 printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n", 96 bh->b_bdev, 97 (unsigned long long)bh->b_blocknr); 98 } 99 100 static void ext4_finish_bio(struct bio *bio) 101 { 102 struct folio_iter fi; 103 104 bio_for_each_folio_all(fi, bio) { 105 struct folio *folio = fi.folio; 106 struct folio *io_folio = NULL; 107 struct buffer_head *bh, *head; 108 size_t bio_start = fi.offset; 109 size_t bio_end = bio_start + fi.length; 110 unsigned under_io = 0; 111 unsigned long flags; 112 113 if (fscrypt_is_bounce_folio(folio)) { 114 io_folio = folio; 115 folio = fscrypt_pagecache_folio(folio); 116 } 117 118 if (bio->bi_status) { 119 int err = blk_status_to_errno(bio->bi_status); 120 mapping_set_error(folio->mapping, err); 121 } 122 bh = head = folio_buffers(folio); 123 /* 124 * We check all buffers in the folio under b_uptodate_lock 125 * to avoid races with other end io clearing async_write flags 126 */ 127 spin_lock_irqsave(&head->b_uptodate_lock, flags); 128 do { 129 if (bh_offset(bh) < bio_start || 130 bh_offset(bh) + bh->b_size > bio_end) { 131 if (buffer_async_write(bh)) 132 under_io++; 133 continue; 134 } 135 clear_buffer_async_write(bh); 136 if (bio->bi_status) { 137 set_buffer_write_io_error(bh); 138 buffer_io_error(bh); 139 } 140 } while ((bh = bh->b_this_page) != head); 141 spin_unlock_irqrestore(&head->b_uptodate_lock, flags); 142 if (!under_io) { 143 fscrypt_free_bounce_page(&io_folio->page); 144 folio_end_writeback(folio); 145 } 146 } 147 } 148 149 static void ext4_release_io_end(ext4_io_end_t *io_end) 150 { 151 struct bio *bio, *next_bio; 152 153 BUG_ON(!list_empty(&io_end->list)); 154 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 155 WARN_ON(io_end->handle); 156 157 for (bio = io_end->bio; bio; bio = next_bio) { 158 next_bio = bio->bi_private; 159 ext4_finish_bio(bio); 160 bio_put(bio); 161 } 162 ext4_free_io_end_vec(io_end); 163 kmem_cache_free(io_end_cachep, io_end); 164 } 165 166 /* 167 * Check a range of space and convert unwritten extents to written. Note that 168 * we are protected from truncate touching same part of extent tree by the 169 * fact that truncate code waits for all DIO to finish (thus exclusion from 170 * direct IO is achieved) and also waits for PageWriteback bits. Thus we 171 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are 172 * completed (happens from ext4_free_ioend()). 173 */ 174 static int ext4_end_io_end(ext4_io_end_t *io_end) 175 { 176 struct inode *inode = io_end->inode; 177 handle_t *handle = io_end->handle; 178 int ret = 0; 179 180 ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p," 181 "list->prev 0x%p\n", 182 io_end, inode->i_ino, io_end->list.next, io_end->list.prev); 183 184 io_end->handle = NULL; /* Following call will use up the handle */ 185 ret = ext4_convert_unwritten_io_end_vec(handle, io_end); 186 if (ret < 0 && !ext4_forced_shutdown(inode->i_sb)) { 187 ext4_msg(inode->i_sb, KERN_EMERG, 188 "failed to convert unwritten extents to written " 189 "extents -- potential data loss! " 190 "(inode %lu, error %d)", inode->i_ino, ret); 191 } 192 ext4_clear_io_unwritten_flag(io_end); 193 ext4_release_io_end(io_end); 194 return ret; 195 } 196 197 static void dump_completed_IO(struct inode *inode, struct list_head *head) 198 { 199 #ifdef EXT4FS_DEBUG 200 struct list_head *cur, *before, *after; 201 ext4_io_end_t *io_end, *io_end0, *io_end1; 202 203 if (list_empty(head)) 204 return; 205 206 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino); 207 list_for_each_entry(io_end, head, list) { 208 cur = &io_end->list; 209 before = cur->prev; 210 io_end0 = container_of(before, ext4_io_end_t, list); 211 after = cur->next; 212 io_end1 = container_of(after, ext4_io_end_t, list); 213 214 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 215 io_end, inode->i_ino, io_end0, io_end1); 216 } 217 #endif 218 } 219 220 /* Add the io_end to per-inode completed end_io list. */ 221 static void ext4_add_complete_io(ext4_io_end_t *io_end) 222 { 223 struct ext4_inode_info *ei = EXT4_I(io_end->inode); 224 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb); 225 struct workqueue_struct *wq; 226 unsigned long flags; 227 228 /* Only reserved conversions from writeback should enter here */ 229 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 230 WARN_ON(!io_end->handle && sbi->s_journal); 231 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 232 wq = sbi->rsv_conversion_wq; 233 if (list_empty(&ei->i_rsv_conversion_list)) 234 queue_work(wq, &ei->i_rsv_conversion_work); 235 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list); 236 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 237 } 238 239 static int ext4_do_flush_completed_IO(struct inode *inode, 240 struct list_head *head) 241 { 242 ext4_io_end_t *io_end; 243 struct list_head unwritten; 244 unsigned long flags; 245 struct ext4_inode_info *ei = EXT4_I(inode); 246 int err, ret = 0; 247 248 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 249 dump_completed_IO(inode, head); 250 list_replace_init(head, &unwritten); 251 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 252 253 while (!list_empty(&unwritten)) { 254 io_end = list_entry(unwritten.next, ext4_io_end_t, list); 255 BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 256 list_del_init(&io_end->list); 257 258 err = ext4_end_io_end(io_end); 259 if (unlikely(!ret && err)) 260 ret = err; 261 } 262 return ret; 263 } 264 265 /* 266 * work on completed IO, to convert unwritten extents to extents 267 */ 268 void ext4_end_io_rsv_work(struct work_struct *work) 269 { 270 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info, 271 i_rsv_conversion_work); 272 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list); 273 } 274 275 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags) 276 { 277 ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags); 278 279 if (io_end) { 280 io_end->inode = inode; 281 INIT_LIST_HEAD(&io_end->list); 282 INIT_LIST_HEAD(&io_end->list_vec); 283 refcount_set(&io_end->count, 1); 284 } 285 return io_end; 286 } 287 288 void ext4_put_io_end_defer(ext4_io_end_t *io_end) 289 { 290 if (refcount_dec_and_test(&io_end->count)) { 291 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || 292 list_empty(&io_end->list_vec)) { 293 ext4_release_io_end(io_end); 294 return; 295 } 296 ext4_add_complete_io(io_end); 297 } 298 } 299 300 int ext4_put_io_end(ext4_io_end_t *io_end) 301 { 302 int err = 0; 303 304 if (refcount_dec_and_test(&io_end->count)) { 305 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 306 err = ext4_convert_unwritten_io_end_vec(io_end->handle, 307 io_end); 308 io_end->handle = NULL; 309 ext4_clear_io_unwritten_flag(io_end); 310 } 311 ext4_release_io_end(io_end); 312 } 313 return err; 314 } 315 316 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end) 317 { 318 refcount_inc(&io_end->count); 319 return io_end; 320 } 321 322 /* BIO completion function for page writeback */ 323 static void ext4_end_bio(struct bio *bio) 324 { 325 ext4_io_end_t *io_end = bio->bi_private; 326 sector_t bi_sector = bio->bi_iter.bi_sector; 327 328 if (WARN_ONCE(!io_end, "io_end is NULL: %pg: sector %Lu len %u err %d\n", 329 bio->bi_bdev, 330 (long long) bio->bi_iter.bi_sector, 331 (unsigned) bio_sectors(bio), 332 bio->bi_status)) { 333 ext4_finish_bio(bio); 334 bio_put(bio); 335 return; 336 } 337 bio->bi_end_io = NULL; 338 339 if (bio->bi_status) { 340 struct inode *inode = io_end->inode; 341 342 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu " 343 "starting block %llu)", 344 bio->bi_status, inode->i_ino, 345 (unsigned long long) 346 bi_sector >> (inode->i_blkbits - 9)); 347 mapping_set_error(inode->i_mapping, 348 blk_status_to_errno(bio->bi_status)); 349 } 350 351 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 352 /* 353 * Link bio into list hanging from io_end. We have to do it 354 * atomically as bio completions can be racing against each 355 * other. 356 */ 357 bio->bi_private = xchg(&io_end->bio, bio); 358 ext4_put_io_end_defer(io_end); 359 } else { 360 /* 361 * Drop io_end reference early. Inode can get freed once 362 * we finish the bio. 363 */ 364 ext4_put_io_end_defer(io_end); 365 ext4_finish_bio(bio); 366 bio_put(bio); 367 } 368 } 369 370 void ext4_io_submit(struct ext4_io_submit *io) 371 { 372 struct bio *bio = io->io_bio; 373 374 if (bio) { 375 if (io->io_wbc->sync_mode == WB_SYNC_ALL) 376 io->io_bio->bi_opf |= REQ_SYNC; 377 submit_bio(io->io_bio); 378 } 379 io->io_bio = NULL; 380 } 381 382 void ext4_io_submit_init(struct ext4_io_submit *io, 383 struct writeback_control *wbc) 384 { 385 io->io_wbc = wbc; 386 io->io_bio = NULL; 387 io->io_end = NULL; 388 } 389 390 static void io_submit_init_bio(struct ext4_io_submit *io, 391 struct buffer_head *bh) 392 { 393 struct bio *bio; 394 395 /* 396 * bio_alloc will _always_ be able to allocate a bio if 397 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset(). 398 */ 399 bio = bio_alloc(bh->b_bdev, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOIO); 400 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 401 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 402 bio->bi_end_io = ext4_end_bio; 403 bio->bi_private = ext4_get_io_end(io->io_end); 404 io->io_bio = bio; 405 io->io_next_block = bh->b_blocknr; 406 wbc_init_bio(io->io_wbc, bio); 407 } 408 409 static void io_submit_add_bh(struct ext4_io_submit *io, 410 struct inode *inode, 411 struct folio *folio, 412 struct folio *io_folio, 413 struct buffer_head *bh) 414 { 415 if (io->io_bio && (bh->b_blocknr != io->io_next_block || 416 !fscrypt_mergeable_bio_bh(io->io_bio, bh))) { 417 submit_and_retry: 418 ext4_io_submit(io); 419 } 420 if (io->io_bio == NULL) 421 io_submit_init_bio(io, bh); 422 if (!bio_add_folio(io->io_bio, io_folio, bh->b_size, bh_offset(bh))) 423 goto submit_and_retry; 424 wbc_account_cgroup_owner(io->io_wbc, &folio->page, bh->b_size); 425 io->io_next_block++; 426 } 427 428 int ext4_bio_write_folio(struct ext4_io_submit *io, struct folio *folio, 429 size_t len) 430 { 431 struct folio *io_folio = folio; 432 struct inode *inode = folio->mapping->host; 433 unsigned block_start; 434 struct buffer_head *bh, *head; 435 int ret = 0; 436 int nr_to_submit = 0; 437 struct writeback_control *wbc = io->io_wbc; 438 bool keep_towrite = false; 439 440 BUG_ON(!folio_test_locked(folio)); 441 BUG_ON(folio_test_writeback(folio)); 442 443 /* 444 * Comments copied from block_write_full_folio: 445 * 446 * The folio straddles i_size. It must be zeroed out on each and every 447 * writepage invocation because it may be mmapped. "A file is mapped 448 * in multiples of the page size. For a file that is not a multiple of 449 * the page size, the remaining memory is zeroed when mapped, and 450 * writes to that region are not written out to the file." 451 */ 452 if (len < folio_size(folio)) 453 folio_zero_segment(folio, len, folio_size(folio)); 454 /* 455 * In the first loop we prepare and mark buffers to submit. We have to 456 * mark all buffers in the folio before submitting so that 457 * folio_end_writeback() cannot be called from ext4_end_bio() when IO 458 * on the first buffer finishes and we are still working on submitting 459 * the second buffer. 460 */ 461 bh = head = folio_buffers(folio); 462 do { 463 block_start = bh_offset(bh); 464 if (block_start >= len) { 465 clear_buffer_dirty(bh); 466 set_buffer_uptodate(bh); 467 continue; 468 } 469 if (!buffer_dirty(bh) || buffer_delay(bh) || 470 !buffer_mapped(bh) || buffer_unwritten(bh)) { 471 /* A hole? We can safely clear the dirty bit */ 472 if (!buffer_mapped(bh)) 473 clear_buffer_dirty(bh); 474 /* 475 * Keeping dirty some buffer we cannot write? Make sure 476 * to redirty the folio and keep TOWRITE tag so that 477 * racing WB_SYNC_ALL writeback does not skip the folio. 478 * This happens e.g. when doing writeout for 479 * transaction commit or when journalled data is not 480 * yet committed. 481 */ 482 if (buffer_dirty(bh) || 483 (buffer_jbd(bh) && buffer_jbddirty(bh))) { 484 if (!folio_test_dirty(folio)) 485 folio_redirty_for_writepage(wbc, folio); 486 keep_towrite = true; 487 } 488 continue; 489 } 490 if (buffer_new(bh)) 491 clear_buffer_new(bh); 492 set_buffer_async_write(bh); 493 clear_buffer_dirty(bh); 494 nr_to_submit++; 495 } while ((bh = bh->b_this_page) != head); 496 497 /* Nothing to submit? Just unlock the folio... */ 498 if (!nr_to_submit) 499 return 0; 500 501 bh = head = folio_buffers(folio); 502 503 /* 504 * If any blocks are being written to an encrypted file, encrypt them 505 * into a bounce page. For simplicity, just encrypt until the last 506 * block which might be needed. This may cause some unneeded blocks 507 * (e.g. holes) to be unnecessarily encrypted, but this is rare and 508 * can't happen in the common case of blocksize == PAGE_SIZE. 509 */ 510 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 511 gfp_t gfp_flags = GFP_NOFS; 512 unsigned int enc_bytes = round_up(len, i_blocksize(inode)); 513 struct page *bounce_page; 514 515 /* 516 * Since bounce page allocation uses a mempool, we can only use 517 * a waiting mask (i.e. request guaranteed allocation) on the 518 * first page of the bio. Otherwise it can deadlock. 519 */ 520 if (io->io_bio) 521 gfp_flags = GFP_NOWAIT | __GFP_NOWARN; 522 retry_encrypt: 523 bounce_page = fscrypt_encrypt_pagecache_blocks(&folio->page, 524 enc_bytes, 0, gfp_flags); 525 if (IS_ERR(bounce_page)) { 526 ret = PTR_ERR(bounce_page); 527 if (ret == -ENOMEM && 528 (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) { 529 gfp_t new_gfp_flags = GFP_NOFS; 530 if (io->io_bio) 531 ext4_io_submit(io); 532 else 533 new_gfp_flags |= __GFP_NOFAIL; 534 memalloc_retry_wait(gfp_flags); 535 gfp_flags = new_gfp_flags; 536 goto retry_encrypt; 537 } 538 539 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret); 540 folio_redirty_for_writepage(wbc, folio); 541 do { 542 if (buffer_async_write(bh)) { 543 clear_buffer_async_write(bh); 544 set_buffer_dirty(bh); 545 } 546 bh = bh->b_this_page; 547 } while (bh != head); 548 549 return ret; 550 } 551 io_folio = page_folio(bounce_page); 552 } 553 554 __folio_start_writeback(folio, keep_towrite); 555 556 /* Now submit buffers to write */ 557 do { 558 if (!buffer_async_write(bh)) 559 continue; 560 io_submit_add_bh(io, inode, folio, io_folio, bh); 561 } while ((bh = bh->b_this_page) != head); 562 563 return 0; 564 } 565
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.