~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ext4/super.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  linux/fs/ext4/super.c
  4  *
  5  * Copyright (C) 1992, 1993, 1994, 1995
  6  * Remy Card (card@masi.ibp.fr)
  7  * Laboratoire MASI - Institut Blaise Pascal
  8  * Universite Pierre et Marie Curie (Paris VI)
  9  *
 10  *  from
 11  *
 12  *  linux/fs/minix/inode.c
 13  *
 14  *  Copyright (C) 1991, 1992  Linus Torvalds
 15  *
 16  *  Big-endian to little-endian byte-swapping/bitmaps by
 17  *        David S. Miller (davem@caip.rutgers.edu), 1995
 18  */
 19 
 20 #include <linux/module.h>
 21 #include <linux/string.h>
 22 #include <linux/fs.h>
 23 #include <linux/time.h>
 24 #include <linux/vmalloc.h>
 25 #include <linux/slab.h>
 26 #include <linux/init.h>
 27 #include <linux/blkdev.h>
 28 #include <linux/backing-dev.h>
 29 #include <linux/parser.h>
 30 #include <linux/buffer_head.h>
 31 #include <linux/exportfs.h>
 32 #include <linux/vfs.h>
 33 #include <linux/random.h>
 34 #include <linux/mount.h>
 35 #include <linux/namei.h>
 36 #include <linux/quotaops.h>
 37 #include <linux/seq_file.h>
 38 #include <linux/ctype.h>
 39 #include <linux/log2.h>
 40 #include <linux/crc16.h>
 41 #include <linux/dax.h>
 42 #include <linux/uaccess.h>
 43 #include <linux/iversion.h>
 44 #include <linux/unicode.h>
 45 #include <linux/part_stat.h>
 46 #include <linux/kthread.h>
 47 #include <linux/freezer.h>
 48 #include <linux/fsnotify.h>
 49 #include <linux/fs_context.h>
 50 #include <linux/fs_parser.h>
 51 
 52 #include "ext4.h"
 53 #include "ext4_extents.h"       /* Needed for trace points definition */
 54 #include "ext4_jbd2.h"
 55 #include "xattr.h"
 56 #include "acl.h"
 57 #include "mballoc.h"
 58 #include "fsmap.h"
 59 
 60 #define CREATE_TRACE_POINTS
 61 #include <trace/events/ext4.h>
 62 
 63 static struct ext4_lazy_init *ext4_li_info;
 64 static DEFINE_MUTEX(ext4_li_mtx);
 65 static struct ratelimit_state ext4_mount_msg_ratelimit;
 66 
 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
 68                              unsigned long journal_devnum);
 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
 70 static void ext4_update_super(struct super_block *sb);
 71 static int ext4_commit_super(struct super_block *sb);
 72 static int ext4_mark_recovery_complete(struct super_block *sb,
 73                                         struct ext4_super_block *es);
 74 static int ext4_clear_journal_err(struct super_block *sb,
 75                                   struct ext4_super_block *es);
 76 static int ext4_sync_fs(struct super_block *sb, int wait);
 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
 78 static int ext4_unfreeze(struct super_block *sb);
 79 static int ext4_freeze(struct super_block *sb);
 80 static inline int ext2_feature_set_ok(struct super_block *sb);
 81 static inline int ext3_feature_set_ok(struct super_block *sb);
 82 static void ext4_destroy_lazyinit_thread(void);
 83 static void ext4_unregister_li_request(struct super_block *sb);
 84 static void ext4_clear_request_list(void);
 85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
 86                                             unsigned int journal_inum);
 87 static int ext4_validate_options(struct fs_context *fc);
 88 static int ext4_check_opt_consistency(struct fs_context *fc,
 89                                       struct super_block *sb);
 90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
 92 static int ext4_get_tree(struct fs_context *fc);
 93 static int ext4_reconfigure(struct fs_context *fc);
 94 static void ext4_fc_free(struct fs_context *fc);
 95 static int ext4_init_fs_context(struct fs_context *fc);
 96 static void ext4_kill_sb(struct super_block *sb);
 97 static const struct fs_parameter_spec ext4_param_specs[];
 98 
 99 /*
100  * Lock ordering
101  *
102  * page fault path:
103  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104  *   -> page lock -> i_data_sem (rw)
105  *
106  * buffered write path:
107  * sb_start_write -> i_mutex -> mmap_lock
108  * sb_start_write -> i_mutex -> transaction start -> page lock ->
109  *   i_data_sem (rw)
110  *
111  * truncate:
112  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113  *   page lock
114  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115  *   i_data_sem (rw)
116  *
117  * direct IO:
118  * sb_start_write -> i_mutex -> mmap_lock
119  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120  *
121  * writepages:
122  * transaction start -> page lock(s) -> i_data_sem (rw)
123  */
124 
125 static const struct fs_context_operations ext4_context_ops = {
126         .parse_param    = ext4_parse_param,
127         .get_tree       = ext4_get_tree,
128         .reconfigure    = ext4_reconfigure,
129         .free           = ext4_fc_free,
130 };
131 
132 
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135         .owner                  = THIS_MODULE,
136         .name                   = "ext2",
137         .init_fs_context        = ext4_init_fs_context,
138         .parameters             = ext4_param_specs,
139         .kill_sb                = ext4_kill_sb,
140         .fs_flags               = FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148 
149 
150 static struct file_system_type ext3_fs_type = {
151         .owner                  = THIS_MODULE,
152         .name                   = "ext3",
153         .init_fs_context        = ext4_init_fs_context,
154         .parameters             = ext4_param_specs,
155         .kill_sb                = ext4_kill_sb,
156         .fs_flags               = FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161 
162 
163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164                                   bh_end_io_t *end_io)
165 {
166         /*
167          * buffer's verified bit is no longer valid after reading from
168          * disk again due to write out error, clear it to make sure we
169          * recheck the buffer contents.
170          */
171         clear_buffer_verified(bh);
172 
173         bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
174         get_bh(bh);
175         submit_bh(REQ_OP_READ | op_flags, bh);
176 }
177 
178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
179                          bh_end_io_t *end_io)
180 {
181         BUG_ON(!buffer_locked(bh));
182 
183         if (ext4_buffer_uptodate(bh)) {
184                 unlock_buffer(bh);
185                 return;
186         }
187         __ext4_read_bh(bh, op_flags, end_io);
188 }
189 
190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
191 {
192         BUG_ON(!buffer_locked(bh));
193 
194         if (ext4_buffer_uptodate(bh)) {
195                 unlock_buffer(bh);
196                 return 0;
197         }
198 
199         __ext4_read_bh(bh, op_flags, end_io);
200 
201         wait_on_buffer(bh);
202         if (buffer_uptodate(bh))
203                 return 0;
204         return -EIO;
205 }
206 
207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
208 {
209         lock_buffer(bh);
210         if (!wait) {
211                 ext4_read_bh_nowait(bh, op_flags, NULL);
212                 return 0;
213         }
214         return ext4_read_bh(bh, op_flags, NULL);
215 }
216 
217 /*
218  * This works like __bread_gfp() except it uses ERR_PTR for error
219  * returns.  Currently with sb_bread it's impossible to distinguish
220  * between ENOMEM and EIO situations (since both result in a NULL
221  * return.
222  */
223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
224                                                sector_t block,
225                                                blk_opf_t op_flags, gfp_t gfp)
226 {
227         struct buffer_head *bh;
228         int ret;
229 
230         bh = sb_getblk_gfp(sb, block, gfp);
231         if (bh == NULL)
232                 return ERR_PTR(-ENOMEM);
233         if (ext4_buffer_uptodate(bh))
234                 return bh;
235 
236         ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
237         if (ret) {
238                 put_bh(bh);
239                 return ERR_PTR(ret);
240         }
241         return bh;
242 }
243 
244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
245                                    blk_opf_t op_flags)
246 {
247         gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
248                         ~__GFP_FS) | __GFP_MOVABLE;
249 
250         return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
251 }
252 
253 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
254                                             sector_t block)
255 {
256         gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
257                         ~__GFP_FS);
258 
259         return __ext4_sb_bread_gfp(sb, block, 0, gfp);
260 }
261 
262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
263 {
264         struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
265                         sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
266 
267         if (likely(bh)) {
268                 if (trylock_buffer(bh))
269                         ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
270                 brelse(bh);
271         }
272 }
273 
274 static int ext4_verify_csum_type(struct super_block *sb,
275                                  struct ext4_super_block *es)
276 {
277         if (!ext4_has_feature_metadata_csum(sb))
278                 return 1;
279 
280         return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
281 }
282 
283 __le32 ext4_superblock_csum(struct super_block *sb,
284                             struct ext4_super_block *es)
285 {
286         struct ext4_sb_info *sbi = EXT4_SB(sb);
287         int offset = offsetof(struct ext4_super_block, s_checksum);
288         __u32 csum;
289 
290         csum = ext4_chksum(sbi, ~0, (char *)es, offset);
291 
292         return cpu_to_le32(csum);
293 }
294 
295 static int ext4_superblock_csum_verify(struct super_block *sb,
296                                        struct ext4_super_block *es)
297 {
298         if (!ext4_has_metadata_csum(sb))
299                 return 1;
300 
301         return es->s_checksum == ext4_superblock_csum(sb, es);
302 }
303 
304 void ext4_superblock_csum_set(struct super_block *sb)
305 {
306         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
307 
308         if (!ext4_has_metadata_csum(sb))
309                 return;
310 
311         es->s_checksum = ext4_superblock_csum(sb, es);
312 }
313 
314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
315                                struct ext4_group_desc *bg)
316 {
317         return le32_to_cpu(bg->bg_block_bitmap_lo) |
318                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319                  (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
320 }
321 
322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
323                                struct ext4_group_desc *bg)
324 {
325         return le32_to_cpu(bg->bg_inode_bitmap_lo) |
326                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
328 }
329 
330 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
331                               struct ext4_group_desc *bg)
332 {
333         return le32_to_cpu(bg->bg_inode_table_lo) |
334                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
336 }
337 
338 __u32 ext4_free_group_clusters(struct super_block *sb,
339                                struct ext4_group_desc *bg)
340 {
341         return le16_to_cpu(bg->bg_free_blocks_count_lo) |
342                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343                  (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
344 }
345 
346 __u32 ext4_free_inodes_count(struct super_block *sb,
347                               struct ext4_group_desc *bg)
348 {
349         return le16_to_cpu(bg->bg_free_inodes_count_lo) |
350                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351                  (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
352 }
353 
354 __u32 ext4_used_dirs_count(struct super_block *sb,
355                               struct ext4_group_desc *bg)
356 {
357         return le16_to_cpu(bg->bg_used_dirs_count_lo) |
358                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359                  (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
360 }
361 
362 __u32 ext4_itable_unused_count(struct super_block *sb,
363                               struct ext4_group_desc *bg)
364 {
365         return le16_to_cpu(bg->bg_itable_unused_lo) |
366                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
367                  (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
368 }
369 
370 void ext4_block_bitmap_set(struct super_block *sb,
371                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
372 {
373         bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
374         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375                 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
376 }
377 
378 void ext4_inode_bitmap_set(struct super_block *sb,
379                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
380 {
381         bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
382         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383                 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
384 }
385 
386 void ext4_inode_table_set(struct super_block *sb,
387                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
388 {
389         bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
390         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391                 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
392 }
393 
394 void ext4_free_group_clusters_set(struct super_block *sb,
395                                   struct ext4_group_desc *bg, __u32 count)
396 {
397         bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
398         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399                 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
400 }
401 
402 void ext4_free_inodes_set(struct super_block *sb,
403                           struct ext4_group_desc *bg, __u32 count)
404 {
405         bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
406         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407                 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
408 }
409 
410 void ext4_used_dirs_set(struct super_block *sb,
411                           struct ext4_group_desc *bg, __u32 count)
412 {
413         bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
414         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415                 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
416 }
417 
418 void ext4_itable_unused_set(struct super_block *sb,
419                           struct ext4_group_desc *bg, __u32 count)
420 {
421         bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
422         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
423                 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
424 }
425 
426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
427 {
428         now = clamp_val(now, 0, (1ull << 40) - 1);
429 
430         *lo = cpu_to_le32(lower_32_bits(now));
431         *hi = upper_32_bits(now);
432 }
433 
434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
435 {
436         return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
437 }
438 #define ext4_update_tstamp(es, tstamp) \
439         __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
440                              ktime_get_real_seconds())
441 #define ext4_get_tstamp(es, tstamp) \
442         __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
443 
444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
446 
447 /*
448  * The ext4_maybe_update_superblock() function checks and updates the
449  * superblock if needed.
450  *
451  * This function is designed to update the on-disk superblock only under
452  * certain conditions to prevent excessive disk writes and unnecessary
453  * waking of the disk from sleep. The superblock will be updated if:
454  * 1. More than an hour has passed since the last superblock update, and
455  * 2. More than 16MB have been written since the last superblock update.
456  *
457  * @sb: The superblock
458  */
459 static void ext4_maybe_update_superblock(struct super_block *sb)
460 {
461         struct ext4_sb_info *sbi = EXT4_SB(sb);
462         struct ext4_super_block *es = sbi->s_es;
463         journal_t *journal = sbi->s_journal;
464         time64_t now;
465         __u64 last_update;
466         __u64 lifetime_write_kbytes;
467         __u64 diff_size;
468 
469         if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
470             !journal || (journal->j_flags & JBD2_UNMOUNT))
471                 return;
472 
473         now = ktime_get_real_seconds();
474         last_update = ext4_get_tstamp(es, s_wtime);
475 
476         if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
477                 return;
478 
479         lifetime_write_kbytes = sbi->s_kbytes_written +
480                 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
481                   sbi->s_sectors_written_start) >> 1);
482 
483         /* Get the number of kilobytes not written to disk to account
484          * for statistics and compare with a multiple of 16 MB. This
485          * is used to determine when the next superblock commit should
486          * occur (i.e. not more often than once per 16MB if there was
487          * less written in an hour).
488          */
489         diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
490 
491         if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
492                 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
493 }
494 
495 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
496 {
497         struct super_block              *sb = journal->j_private;
498         struct ext4_sb_info             *sbi = EXT4_SB(sb);
499         int                             error = is_journal_aborted(journal);
500         struct ext4_journal_cb_entry    *jce;
501 
502         BUG_ON(txn->t_state == T_FINISHED);
503 
504         ext4_process_freed_data(sb, txn->t_tid);
505         ext4_maybe_update_superblock(sb);
506 
507         spin_lock(&sbi->s_md_lock);
508         while (!list_empty(&txn->t_private_list)) {
509                 jce = list_entry(txn->t_private_list.next,
510                                  struct ext4_journal_cb_entry, jce_list);
511                 list_del_init(&jce->jce_list);
512                 spin_unlock(&sbi->s_md_lock);
513                 jce->jce_func(sb, jce, error);
514                 spin_lock(&sbi->s_md_lock);
515         }
516         spin_unlock(&sbi->s_md_lock);
517 }
518 
519 /*
520  * This writepage callback for write_cache_pages()
521  * takes care of a few cases after page cleaning.
522  *
523  * write_cache_pages() already checks for dirty pages
524  * and calls clear_page_dirty_for_io(), which we want,
525  * to write protect the pages.
526  *
527  * However, we may have to redirty a page (see below.)
528  */
529 static int ext4_journalled_writepage_callback(struct folio *folio,
530                                               struct writeback_control *wbc,
531                                               void *data)
532 {
533         transaction_t *transaction = (transaction_t *) data;
534         struct buffer_head *bh, *head;
535         struct journal_head *jh;
536 
537         bh = head = folio_buffers(folio);
538         do {
539                 /*
540                  * We have to redirty a page in these cases:
541                  * 1) If buffer is dirty, it means the page was dirty because it
542                  * contains a buffer that needs checkpointing. So the dirty bit
543                  * needs to be preserved so that checkpointing writes the buffer
544                  * properly.
545                  * 2) If buffer is not part of the committing transaction
546                  * (we may have just accidentally come across this buffer because
547                  * inode range tracking is not exact) or if the currently running
548                  * transaction already contains this buffer as well, dirty bit
549                  * needs to be preserved so that the buffer gets writeprotected
550                  * properly on running transaction's commit.
551                  */
552                 jh = bh2jh(bh);
553                 if (buffer_dirty(bh) ||
554                     (jh && (jh->b_transaction != transaction ||
555                             jh->b_next_transaction))) {
556                         folio_redirty_for_writepage(wbc, folio);
557                         goto out;
558                 }
559         } while ((bh = bh->b_this_page) != head);
560 
561 out:
562         return AOP_WRITEPAGE_ACTIVATE;
563 }
564 
565 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
566 {
567         struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
568         struct writeback_control wbc = {
569                 .sync_mode =  WB_SYNC_ALL,
570                 .nr_to_write = LONG_MAX,
571                 .range_start = jinode->i_dirty_start,
572                 .range_end = jinode->i_dirty_end,
573         };
574 
575         return write_cache_pages(mapping, &wbc,
576                                  ext4_journalled_writepage_callback,
577                                  jinode->i_transaction);
578 }
579 
580 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
581 {
582         int ret;
583 
584         if (ext4_should_journal_data(jinode->i_vfs_inode))
585                 ret = ext4_journalled_submit_inode_data_buffers(jinode);
586         else
587                 ret = ext4_normal_submit_inode_data_buffers(jinode);
588         return ret;
589 }
590 
591 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
592 {
593         int ret = 0;
594 
595         if (!ext4_should_journal_data(jinode->i_vfs_inode))
596                 ret = jbd2_journal_finish_inode_data_buffers(jinode);
597 
598         return ret;
599 }
600 
601 static bool system_going_down(void)
602 {
603         return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
604                 || system_state == SYSTEM_RESTART;
605 }
606 
607 struct ext4_err_translation {
608         int code;
609         int errno;
610 };
611 
612 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
613 
614 static struct ext4_err_translation err_translation[] = {
615         EXT4_ERR_TRANSLATE(EIO),
616         EXT4_ERR_TRANSLATE(ENOMEM),
617         EXT4_ERR_TRANSLATE(EFSBADCRC),
618         EXT4_ERR_TRANSLATE(EFSCORRUPTED),
619         EXT4_ERR_TRANSLATE(ENOSPC),
620         EXT4_ERR_TRANSLATE(ENOKEY),
621         EXT4_ERR_TRANSLATE(EROFS),
622         EXT4_ERR_TRANSLATE(EFBIG),
623         EXT4_ERR_TRANSLATE(EEXIST),
624         EXT4_ERR_TRANSLATE(ERANGE),
625         EXT4_ERR_TRANSLATE(EOVERFLOW),
626         EXT4_ERR_TRANSLATE(EBUSY),
627         EXT4_ERR_TRANSLATE(ENOTDIR),
628         EXT4_ERR_TRANSLATE(ENOTEMPTY),
629         EXT4_ERR_TRANSLATE(ESHUTDOWN),
630         EXT4_ERR_TRANSLATE(EFAULT),
631 };
632 
633 static int ext4_errno_to_code(int errno)
634 {
635         int i;
636 
637         for (i = 0; i < ARRAY_SIZE(err_translation); i++)
638                 if (err_translation[i].errno == errno)
639                         return err_translation[i].code;
640         return EXT4_ERR_UNKNOWN;
641 }
642 
643 static void save_error_info(struct super_block *sb, int error,
644                             __u32 ino, __u64 block,
645                             const char *func, unsigned int line)
646 {
647         struct ext4_sb_info *sbi = EXT4_SB(sb);
648 
649         /* We default to EFSCORRUPTED error... */
650         if (error == 0)
651                 error = EFSCORRUPTED;
652 
653         spin_lock(&sbi->s_error_lock);
654         sbi->s_add_error_count++;
655         sbi->s_last_error_code = error;
656         sbi->s_last_error_line = line;
657         sbi->s_last_error_ino = ino;
658         sbi->s_last_error_block = block;
659         sbi->s_last_error_func = func;
660         sbi->s_last_error_time = ktime_get_real_seconds();
661         if (!sbi->s_first_error_time) {
662                 sbi->s_first_error_code = error;
663                 sbi->s_first_error_line = line;
664                 sbi->s_first_error_ino = ino;
665                 sbi->s_first_error_block = block;
666                 sbi->s_first_error_func = func;
667                 sbi->s_first_error_time = sbi->s_last_error_time;
668         }
669         spin_unlock(&sbi->s_error_lock);
670 }
671 
672 /* Deal with the reporting of failure conditions on a filesystem such as
673  * inconsistencies detected or read IO failures.
674  *
675  * On ext2, we can store the error state of the filesystem in the
676  * superblock.  That is not possible on ext4, because we may have other
677  * write ordering constraints on the superblock which prevent us from
678  * writing it out straight away; and given that the journal is about to
679  * be aborted, we can't rely on the current, or future, transactions to
680  * write out the superblock safely.
681  *
682  * We'll just use the jbd2_journal_abort() error code to record an error in
683  * the journal instead.  On recovery, the journal will complain about
684  * that error until we've noted it down and cleared it.
685  *
686  * If force_ro is set, we unconditionally force the filesystem into an
687  * ABORT|READONLY state, unless the error response on the fs has been set to
688  * panic in which case we take the easy way out and panic immediately. This is
689  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
690  * at a critical moment in log management.
691  */
692 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
693                               __u32 ino, __u64 block,
694                               const char *func, unsigned int line)
695 {
696         journal_t *journal = EXT4_SB(sb)->s_journal;
697         bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
698 
699         EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
700         if (test_opt(sb, WARN_ON_ERROR))
701                 WARN_ON_ONCE(1);
702 
703         if (!continue_fs && !sb_rdonly(sb)) {
704                 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
705                 if (journal)
706                         jbd2_journal_abort(journal, -EIO);
707         }
708 
709         if (!bdev_read_only(sb->s_bdev)) {
710                 save_error_info(sb, error, ino, block, func, line);
711                 /*
712                  * In case the fs should keep running, we need to writeout
713                  * superblock through the journal. Due to lock ordering
714                  * constraints, it may not be safe to do it right here so we
715                  * defer superblock flushing to a workqueue.
716                  */
717                 if (continue_fs && journal)
718                         schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
719                 else
720                         ext4_commit_super(sb);
721         }
722 
723         /*
724          * We force ERRORS_RO behavior when system is rebooting. Otherwise we
725          * could panic during 'reboot -f' as the underlying device got already
726          * disabled.
727          */
728         if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
729                 panic("EXT4-fs (device %s): panic forced after error\n",
730                         sb->s_id);
731         }
732 
733         if (sb_rdonly(sb) || continue_fs)
734                 return;
735 
736         ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
737         /*
738          * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem
739          * modifications. We don't set SB_RDONLY because that requires
740          * sb->s_umount semaphore and setting it without proper remount
741          * procedure is confusing code such as freeze_super() leading to
742          * deadlocks and other problems.
743          */
744 }
745 
746 static void update_super_work(struct work_struct *work)
747 {
748         struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
749                                                 s_sb_upd_work);
750         journal_t *journal = sbi->s_journal;
751         handle_t *handle;
752 
753         /*
754          * If the journal is still running, we have to write out superblock
755          * through the journal to avoid collisions of other journalled sb
756          * updates.
757          *
758          * We use directly jbd2 functions here to avoid recursing back into
759          * ext4 error handling code during handling of previous errors.
760          */
761         if (!sb_rdonly(sbi->s_sb) && journal) {
762                 struct buffer_head *sbh = sbi->s_sbh;
763                 bool call_notify_err = false;
764 
765                 handle = jbd2_journal_start(journal, 1);
766                 if (IS_ERR(handle))
767                         goto write_directly;
768                 if (jbd2_journal_get_write_access(handle, sbh)) {
769                         jbd2_journal_stop(handle);
770                         goto write_directly;
771                 }
772 
773                 if (sbi->s_add_error_count > 0)
774                         call_notify_err = true;
775 
776                 ext4_update_super(sbi->s_sb);
777                 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
778                         ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
779                                  "superblock detected");
780                         clear_buffer_write_io_error(sbh);
781                         set_buffer_uptodate(sbh);
782                 }
783 
784                 if (jbd2_journal_dirty_metadata(handle, sbh)) {
785                         jbd2_journal_stop(handle);
786                         goto write_directly;
787                 }
788                 jbd2_journal_stop(handle);
789 
790                 if (call_notify_err)
791                         ext4_notify_error_sysfs(sbi);
792 
793                 return;
794         }
795 write_directly:
796         /*
797          * Write through journal failed. Write sb directly to get error info
798          * out and hope for the best.
799          */
800         ext4_commit_super(sbi->s_sb);
801         ext4_notify_error_sysfs(sbi);
802 }
803 
804 #define ext4_error_ratelimit(sb)                                        \
805                 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),     \
806                              "EXT4-fs error")
807 
808 void __ext4_error(struct super_block *sb, const char *function,
809                   unsigned int line, bool force_ro, int error, __u64 block,
810                   const char *fmt, ...)
811 {
812         struct va_format vaf;
813         va_list args;
814 
815         if (unlikely(ext4_forced_shutdown(sb)))
816                 return;
817 
818         trace_ext4_error(sb, function, line);
819         if (ext4_error_ratelimit(sb)) {
820                 va_start(args, fmt);
821                 vaf.fmt = fmt;
822                 vaf.va = &args;
823                 printk(KERN_CRIT
824                        "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
825                        sb->s_id, function, line, current->comm, &vaf);
826                 va_end(args);
827         }
828         fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
829 
830         ext4_handle_error(sb, force_ro, error, 0, block, function, line);
831 }
832 
833 void __ext4_error_inode(struct inode *inode, const char *function,
834                         unsigned int line, ext4_fsblk_t block, int error,
835                         const char *fmt, ...)
836 {
837         va_list args;
838         struct va_format vaf;
839 
840         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
841                 return;
842 
843         trace_ext4_error(inode->i_sb, function, line);
844         if (ext4_error_ratelimit(inode->i_sb)) {
845                 va_start(args, fmt);
846                 vaf.fmt = fmt;
847                 vaf.va = &args;
848                 if (block)
849                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
850                                "inode #%lu: block %llu: comm %s: %pV\n",
851                                inode->i_sb->s_id, function, line, inode->i_ino,
852                                block, current->comm, &vaf);
853                 else
854                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
855                                "inode #%lu: comm %s: %pV\n",
856                                inode->i_sb->s_id, function, line, inode->i_ino,
857                                current->comm, &vaf);
858                 va_end(args);
859         }
860         fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
861 
862         ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
863                           function, line);
864 }
865 
866 void __ext4_error_file(struct file *file, const char *function,
867                        unsigned int line, ext4_fsblk_t block,
868                        const char *fmt, ...)
869 {
870         va_list args;
871         struct va_format vaf;
872         struct inode *inode = file_inode(file);
873         char pathname[80], *path;
874 
875         if (unlikely(ext4_forced_shutdown(inode->i_sb)))
876                 return;
877 
878         trace_ext4_error(inode->i_sb, function, line);
879         if (ext4_error_ratelimit(inode->i_sb)) {
880                 path = file_path(file, pathname, sizeof(pathname));
881                 if (IS_ERR(path))
882                         path = "(unknown)";
883                 va_start(args, fmt);
884                 vaf.fmt = fmt;
885                 vaf.va = &args;
886                 if (block)
887                         printk(KERN_CRIT
888                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
889                                "block %llu: comm %s: path %s: %pV\n",
890                                inode->i_sb->s_id, function, line, inode->i_ino,
891                                block, current->comm, path, &vaf);
892                 else
893                         printk(KERN_CRIT
894                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
895                                "comm %s: path %s: %pV\n",
896                                inode->i_sb->s_id, function, line, inode->i_ino,
897                                current->comm, path, &vaf);
898                 va_end(args);
899         }
900         fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
901 
902         ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
903                           function, line);
904 }
905 
906 const char *ext4_decode_error(struct super_block *sb, int errno,
907                               char nbuf[16])
908 {
909         char *errstr = NULL;
910 
911         switch (errno) {
912         case -EFSCORRUPTED:
913                 errstr = "Corrupt filesystem";
914                 break;
915         case -EFSBADCRC:
916                 errstr = "Filesystem failed CRC";
917                 break;
918         case -EIO:
919                 errstr = "IO failure";
920                 break;
921         case -ENOMEM:
922                 errstr = "Out of memory";
923                 break;
924         case -EROFS:
925                 if (!sb || (EXT4_SB(sb)->s_journal &&
926                             EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
927                         errstr = "Journal has aborted";
928                 else
929                         errstr = "Readonly filesystem";
930                 break;
931         default:
932                 /* If the caller passed in an extra buffer for unknown
933                  * errors, textualise them now.  Else we just return
934                  * NULL. */
935                 if (nbuf) {
936                         /* Check for truncated error codes... */
937                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
938                                 errstr = nbuf;
939                 }
940                 break;
941         }
942 
943         return errstr;
944 }
945 
946 /* __ext4_std_error decodes expected errors from journaling functions
947  * automatically and invokes the appropriate error response.  */
948 
949 void __ext4_std_error(struct super_block *sb, const char *function,
950                       unsigned int line, int errno)
951 {
952         char nbuf[16];
953         const char *errstr;
954 
955         if (unlikely(ext4_forced_shutdown(sb)))
956                 return;
957 
958         /* Special case: if the error is EROFS, and we're not already
959          * inside a transaction, then there's really no point in logging
960          * an error. */
961         if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
962                 return;
963 
964         if (ext4_error_ratelimit(sb)) {
965                 errstr = ext4_decode_error(sb, errno, nbuf);
966                 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
967                        sb->s_id, function, line, errstr);
968         }
969         fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
970 
971         ext4_handle_error(sb, false, -errno, 0, 0, function, line);
972 }
973 
974 void __ext4_msg(struct super_block *sb,
975                 const char *prefix, const char *fmt, ...)
976 {
977         struct va_format vaf;
978         va_list args;
979 
980         if (sb) {
981                 atomic_inc(&EXT4_SB(sb)->s_msg_count);
982                 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
983                                   "EXT4-fs"))
984                         return;
985         }
986 
987         va_start(args, fmt);
988         vaf.fmt = fmt;
989         vaf.va = &args;
990         if (sb)
991                 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
992         else
993                 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
994         va_end(args);
995 }
996 
997 static int ext4_warning_ratelimit(struct super_block *sb)
998 {
999         atomic_inc(&EXT4_SB(sb)->s_warning_count);
1000         return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1001                             "EXT4-fs warning");
1002 }
1003 
1004 void __ext4_warning(struct super_block *sb, const char *function,
1005                     unsigned int line, const char *fmt, ...)
1006 {
1007         struct va_format vaf;
1008         va_list args;
1009 
1010         if (!ext4_warning_ratelimit(sb))
1011                 return;
1012 
1013         va_start(args, fmt);
1014         vaf.fmt = fmt;
1015         vaf.va = &args;
1016         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1017                sb->s_id, function, line, &vaf);
1018         va_end(args);
1019 }
1020 
1021 void __ext4_warning_inode(const struct inode *inode, const char *function,
1022                           unsigned int line, const char *fmt, ...)
1023 {
1024         struct va_format vaf;
1025         va_list args;
1026 
1027         if (!ext4_warning_ratelimit(inode->i_sb))
1028                 return;
1029 
1030         va_start(args, fmt);
1031         vaf.fmt = fmt;
1032         vaf.va = &args;
1033         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1034                "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1035                function, line, inode->i_ino, current->comm, &vaf);
1036         va_end(args);
1037 }
1038 
1039 void __ext4_grp_locked_error(const char *function, unsigned int line,
1040                              struct super_block *sb, ext4_group_t grp,
1041                              unsigned long ino, ext4_fsblk_t block,
1042                              const char *fmt, ...)
1043 __releases(bitlock)
1044 __acquires(bitlock)
1045 {
1046         struct va_format vaf;
1047         va_list args;
1048 
1049         if (unlikely(ext4_forced_shutdown(sb)))
1050                 return;
1051 
1052         trace_ext4_error(sb, function, line);
1053         if (ext4_error_ratelimit(sb)) {
1054                 va_start(args, fmt);
1055                 vaf.fmt = fmt;
1056                 vaf.va = &args;
1057                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1058                        sb->s_id, function, line, grp);
1059                 if (ino)
1060                         printk(KERN_CONT "inode %lu: ", ino);
1061                 if (block)
1062                         printk(KERN_CONT "block %llu:",
1063                                (unsigned long long) block);
1064                 printk(KERN_CONT "%pV\n", &vaf);
1065                 va_end(args);
1066         }
1067 
1068         if (test_opt(sb, ERRORS_CONT)) {
1069                 if (test_opt(sb, WARN_ON_ERROR))
1070                         WARN_ON_ONCE(1);
1071                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1072                 if (!bdev_read_only(sb->s_bdev)) {
1073                         save_error_info(sb, EFSCORRUPTED, ino, block, function,
1074                                         line);
1075                         schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1076                 }
1077                 return;
1078         }
1079         ext4_unlock_group(sb, grp);
1080         ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1081         /*
1082          * We only get here in the ERRORS_RO case; relocking the group
1083          * may be dangerous, but nothing bad will happen since the
1084          * filesystem will have already been marked read/only and the
1085          * journal has been aborted.  We return 1 as a hint to callers
1086          * who might what to use the return value from
1087          * ext4_grp_locked_error() to distinguish between the
1088          * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1089          * aggressively from the ext4 function in question, with a
1090          * more appropriate error code.
1091          */
1092         ext4_lock_group(sb, grp);
1093         return;
1094 }
1095 
1096 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1097                                      ext4_group_t group,
1098                                      unsigned int flags)
1099 {
1100         struct ext4_sb_info *sbi = EXT4_SB(sb);
1101         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1102         struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1103         int ret;
1104 
1105         if (!grp || !gdp)
1106                 return;
1107         if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1108                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1109                                             &grp->bb_state);
1110                 if (!ret)
1111                         percpu_counter_sub(&sbi->s_freeclusters_counter,
1112                                            grp->bb_free);
1113         }
1114 
1115         if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1116                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1117                                             &grp->bb_state);
1118                 if (!ret && gdp) {
1119                         int count;
1120 
1121                         count = ext4_free_inodes_count(sb, gdp);
1122                         percpu_counter_sub(&sbi->s_freeinodes_counter,
1123                                            count);
1124                 }
1125         }
1126 }
1127 
1128 void ext4_update_dynamic_rev(struct super_block *sb)
1129 {
1130         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1131 
1132         if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1133                 return;
1134 
1135         ext4_warning(sb,
1136                      "updating to rev %d because of new feature flag, "
1137                      "running e2fsck is recommended",
1138                      EXT4_DYNAMIC_REV);
1139 
1140         es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1141         es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1142         es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1143         /* leave es->s_feature_*compat flags alone */
1144         /* es->s_uuid will be set by e2fsck if empty */
1145 
1146         /*
1147          * The rest of the superblock fields should be zero, and if not it
1148          * means they are likely already in use, so leave them alone.  We
1149          * can leave it up to e2fsck to clean up any inconsistencies there.
1150          */
1151 }
1152 
1153 static inline struct inode *orphan_list_entry(struct list_head *l)
1154 {
1155         return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1156 }
1157 
1158 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1159 {
1160         struct list_head *l;
1161 
1162         ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1163                  le32_to_cpu(sbi->s_es->s_last_orphan));
1164 
1165         printk(KERN_ERR "sb_info orphan list:\n");
1166         list_for_each(l, &sbi->s_orphan) {
1167                 struct inode *inode = orphan_list_entry(l);
1168                 printk(KERN_ERR "  "
1169                        "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1170                        inode->i_sb->s_id, inode->i_ino, inode,
1171                        inode->i_mode, inode->i_nlink,
1172                        NEXT_ORPHAN(inode));
1173         }
1174 }
1175 
1176 #ifdef CONFIG_QUOTA
1177 static int ext4_quota_off(struct super_block *sb, int type);
1178 
1179 static inline void ext4_quotas_off(struct super_block *sb, int type)
1180 {
1181         BUG_ON(type > EXT4_MAXQUOTAS);
1182 
1183         /* Use our quota_off function to clear inode flags etc. */
1184         for (type--; type >= 0; type--)
1185                 ext4_quota_off(sb, type);
1186 }
1187 
1188 /*
1189  * This is a helper function which is used in the mount/remount
1190  * codepaths (which holds s_umount) to fetch the quota file name.
1191  */
1192 static inline char *get_qf_name(struct super_block *sb,
1193                                 struct ext4_sb_info *sbi,
1194                                 int type)
1195 {
1196         return rcu_dereference_protected(sbi->s_qf_names[type],
1197                                          lockdep_is_held(&sb->s_umount));
1198 }
1199 #else
1200 static inline void ext4_quotas_off(struct super_block *sb, int type)
1201 {
1202 }
1203 #endif
1204 
1205 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1206 {
1207         ext4_fsblk_t block;
1208         int err;
1209 
1210         block = ext4_count_free_clusters(sbi->s_sb);
1211         ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1212         err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1213                                   GFP_KERNEL);
1214         if (!err) {
1215                 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1216                 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1217                 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1218                                           GFP_KERNEL);
1219         }
1220         if (!err)
1221                 err = percpu_counter_init(&sbi->s_dirs_counter,
1222                                           ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1223         if (!err)
1224                 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1225                                           GFP_KERNEL);
1226         if (!err)
1227                 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1228                                           GFP_KERNEL);
1229         if (!err)
1230                 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1231 
1232         if (err)
1233                 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1234 
1235         return err;
1236 }
1237 
1238 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1239 {
1240         percpu_counter_destroy(&sbi->s_freeclusters_counter);
1241         percpu_counter_destroy(&sbi->s_freeinodes_counter);
1242         percpu_counter_destroy(&sbi->s_dirs_counter);
1243         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1244         percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1245         percpu_free_rwsem(&sbi->s_writepages_rwsem);
1246 }
1247 
1248 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1249 {
1250         struct buffer_head **group_desc;
1251         int i;
1252 
1253         rcu_read_lock();
1254         group_desc = rcu_dereference(sbi->s_group_desc);
1255         for (i = 0; i < sbi->s_gdb_count; i++)
1256                 brelse(group_desc[i]);
1257         kvfree(group_desc);
1258         rcu_read_unlock();
1259 }
1260 
1261 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1262 {
1263         struct flex_groups **flex_groups;
1264         int i;
1265 
1266         rcu_read_lock();
1267         flex_groups = rcu_dereference(sbi->s_flex_groups);
1268         if (flex_groups) {
1269                 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1270                         kvfree(flex_groups[i]);
1271                 kvfree(flex_groups);
1272         }
1273         rcu_read_unlock();
1274 }
1275 
1276 static void ext4_put_super(struct super_block *sb)
1277 {
1278         struct ext4_sb_info *sbi = EXT4_SB(sb);
1279         struct ext4_super_block *es = sbi->s_es;
1280         int aborted = 0;
1281         int err;
1282 
1283         /*
1284          * Unregister sysfs before destroying jbd2 journal.
1285          * Since we could still access attr_journal_task attribute via sysfs
1286          * path which could have sbi->s_journal->j_task as NULL
1287          * Unregister sysfs before flush sbi->s_sb_upd_work.
1288          * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1289          * read metadata verify failed then will queue error work.
1290          * update_super_work will call start_this_handle may trigger
1291          * BUG_ON.
1292          */
1293         ext4_unregister_sysfs(sb);
1294 
1295         if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1296                 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1297                          &sb->s_uuid);
1298 
1299         ext4_unregister_li_request(sb);
1300         ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1301 
1302         flush_work(&sbi->s_sb_upd_work);
1303         destroy_workqueue(sbi->rsv_conversion_wq);
1304         ext4_release_orphan_info(sb);
1305 
1306         if (sbi->s_journal) {
1307                 aborted = is_journal_aborted(sbi->s_journal);
1308                 err = jbd2_journal_destroy(sbi->s_journal);
1309                 sbi->s_journal = NULL;
1310                 if ((err < 0) && !aborted) {
1311                         ext4_abort(sb, -err, "Couldn't clean up the journal");
1312                 }
1313         }
1314 
1315         ext4_es_unregister_shrinker(sbi);
1316         timer_shutdown_sync(&sbi->s_err_report);
1317         ext4_release_system_zone(sb);
1318         ext4_mb_release(sb);
1319         ext4_ext_release(sb);
1320 
1321         if (!sb_rdonly(sb) && !aborted) {
1322                 ext4_clear_feature_journal_needs_recovery(sb);
1323                 ext4_clear_feature_orphan_present(sb);
1324                 es->s_state = cpu_to_le16(sbi->s_mount_state);
1325         }
1326         if (!sb_rdonly(sb))
1327                 ext4_commit_super(sb);
1328 
1329         ext4_group_desc_free(sbi);
1330         ext4_flex_groups_free(sbi);
1331 
1332         WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1333                      percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1334         ext4_percpu_param_destroy(sbi);
1335 #ifdef CONFIG_QUOTA
1336         for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1337                 kfree(get_qf_name(sb, sbi, i));
1338 #endif
1339 
1340         /* Debugging code just in case the in-memory inode orphan list
1341          * isn't empty.  The on-disk one can be non-empty if we've
1342          * detected an error and taken the fs readonly, but the
1343          * in-memory list had better be clean by this point. */
1344         if (!list_empty(&sbi->s_orphan))
1345                 dump_orphan_list(sb, sbi);
1346         ASSERT(list_empty(&sbi->s_orphan));
1347 
1348         sync_blockdev(sb->s_bdev);
1349         invalidate_bdev(sb->s_bdev);
1350         if (sbi->s_journal_bdev_file) {
1351                 /*
1352                  * Invalidate the journal device's buffers.  We don't want them
1353                  * floating about in memory - the physical journal device may
1354                  * hotswapped, and it breaks the `ro-after' testing code.
1355                  */
1356                 sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1357                 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1358         }
1359 
1360         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1361         sbi->s_ea_inode_cache = NULL;
1362 
1363         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1364         sbi->s_ea_block_cache = NULL;
1365 
1366         ext4_stop_mmpd(sbi);
1367 
1368         brelse(sbi->s_sbh);
1369         sb->s_fs_info = NULL;
1370         /*
1371          * Now that we are completely done shutting down the
1372          * superblock, we need to actually destroy the kobject.
1373          */
1374         kobject_put(&sbi->s_kobj);
1375         wait_for_completion(&sbi->s_kobj_unregister);
1376         if (sbi->s_chksum_driver)
1377                 crypto_free_shash(sbi->s_chksum_driver);
1378         kfree(sbi->s_blockgroup_lock);
1379         fs_put_dax(sbi->s_daxdev, NULL);
1380         fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1381 #if IS_ENABLED(CONFIG_UNICODE)
1382         utf8_unload(sb->s_encoding);
1383 #endif
1384         kfree(sbi);
1385 }
1386 
1387 static struct kmem_cache *ext4_inode_cachep;
1388 
1389 /*
1390  * Called inside transaction, so use GFP_NOFS
1391  */
1392 static struct inode *ext4_alloc_inode(struct super_block *sb)
1393 {
1394         struct ext4_inode_info *ei;
1395 
1396         ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1397         if (!ei)
1398                 return NULL;
1399 
1400         inode_set_iversion(&ei->vfs_inode, 1);
1401         ei->i_flags = 0;
1402         spin_lock_init(&ei->i_raw_lock);
1403         ei->i_prealloc_node = RB_ROOT;
1404         atomic_set(&ei->i_prealloc_active, 0);
1405         rwlock_init(&ei->i_prealloc_lock);
1406         ext4_es_init_tree(&ei->i_es_tree);
1407         rwlock_init(&ei->i_es_lock);
1408         INIT_LIST_HEAD(&ei->i_es_list);
1409         ei->i_es_all_nr = 0;
1410         ei->i_es_shk_nr = 0;
1411         ei->i_es_shrink_lblk = 0;
1412         ei->i_reserved_data_blocks = 0;
1413         spin_lock_init(&(ei->i_block_reservation_lock));
1414         ext4_init_pending_tree(&ei->i_pending_tree);
1415 #ifdef CONFIG_QUOTA
1416         ei->i_reserved_quota = 0;
1417         memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1418 #endif
1419         ei->jinode = NULL;
1420         INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1421         spin_lock_init(&ei->i_completed_io_lock);
1422         ei->i_sync_tid = 0;
1423         ei->i_datasync_tid = 0;
1424         atomic_set(&ei->i_unwritten, 0);
1425         INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1426         ext4_fc_init_inode(&ei->vfs_inode);
1427         mutex_init(&ei->i_fc_lock);
1428         return &ei->vfs_inode;
1429 }
1430 
1431 static int ext4_drop_inode(struct inode *inode)
1432 {
1433         int drop = generic_drop_inode(inode);
1434 
1435         if (!drop)
1436                 drop = fscrypt_drop_inode(inode);
1437 
1438         trace_ext4_drop_inode(inode, drop);
1439         return drop;
1440 }
1441 
1442 static void ext4_free_in_core_inode(struct inode *inode)
1443 {
1444         fscrypt_free_inode(inode);
1445         if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1446                 pr_warn("%s: inode %ld still in fc list",
1447                         __func__, inode->i_ino);
1448         }
1449         kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1450 }
1451 
1452 static void ext4_destroy_inode(struct inode *inode)
1453 {
1454         if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1455                 ext4_msg(inode->i_sb, KERN_ERR,
1456                          "Inode %lu (%p): orphan list check failed!",
1457                          inode->i_ino, EXT4_I(inode));
1458                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1459                                 EXT4_I(inode), sizeof(struct ext4_inode_info),
1460                                 true);
1461                 dump_stack();
1462         }
1463 
1464         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1465             WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1466                 ext4_msg(inode->i_sb, KERN_ERR,
1467                          "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1468                          inode->i_ino, EXT4_I(inode),
1469                          EXT4_I(inode)->i_reserved_data_blocks);
1470 }
1471 
1472 static void ext4_shutdown(struct super_block *sb)
1473 {
1474        ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1475 }
1476 
1477 static void init_once(void *foo)
1478 {
1479         struct ext4_inode_info *ei = foo;
1480 
1481         INIT_LIST_HEAD(&ei->i_orphan);
1482         init_rwsem(&ei->xattr_sem);
1483         init_rwsem(&ei->i_data_sem);
1484         inode_init_once(&ei->vfs_inode);
1485         ext4_fc_init_inode(&ei->vfs_inode);
1486 }
1487 
1488 static int __init init_inodecache(void)
1489 {
1490         ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1491                                 sizeof(struct ext4_inode_info), 0,
1492                                 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1493                                 offsetof(struct ext4_inode_info, i_data),
1494                                 sizeof_field(struct ext4_inode_info, i_data),
1495                                 init_once);
1496         if (ext4_inode_cachep == NULL)
1497                 return -ENOMEM;
1498         return 0;
1499 }
1500 
1501 static void destroy_inodecache(void)
1502 {
1503         /*
1504          * Make sure all delayed rcu free inodes are flushed before we
1505          * destroy cache.
1506          */
1507         rcu_barrier();
1508         kmem_cache_destroy(ext4_inode_cachep);
1509 }
1510 
1511 void ext4_clear_inode(struct inode *inode)
1512 {
1513         ext4_fc_del(inode);
1514         invalidate_inode_buffers(inode);
1515         clear_inode(inode);
1516         ext4_discard_preallocations(inode);
1517         ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1518         dquot_drop(inode);
1519         if (EXT4_I(inode)->jinode) {
1520                 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1521                                                EXT4_I(inode)->jinode);
1522                 jbd2_free_inode(EXT4_I(inode)->jinode);
1523                 EXT4_I(inode)->jinode = NULL;
1524         }
1525         fscrypt_put_encryption_info(inode);
1526         fsverity_cleanup_inode(inode);
1527 }
1528 
1529 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1530                                         u64 ino, u32 generation)
1531 {
1532         struct inode *inode;
1533 
1534         /*
1535          * Currently we don't know the generation for parent directory, so
1536          * a generation of 0 means "accept any"
1537          */
1538         inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1539         if (IS_ERR(inode))
1540                 return ERR_CAST(inode);
1541         if (generation && inode->i_generation != generation) {
1542                 iput(inode);
1543                 return ERR_PTR(-ESTALE);
1544         }
1545 
1546         return inode;
1547 }
1548 
1549 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1550                                         int fh_len, int fh_type)
1551 {
1552         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1553                                     ext4_nfs_get_inode);
1554 }
1555 
1556 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1557                                         int fh_len, int fh_type)
1558 {
1559         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1560                                     ext4_nfs_get_inode);
1561 }
1562 
1563 static int ext4_nfs_commit_metadata(struct inode *inode)
1564 {
1565         struct writeback_control wbc = {
1566                 .sync_mode = WB_SYNC_ALL
1567         };
1568 
1569         trace_ext4_nfs_commit_metadata(inode);
1570         return ext4_write_inode(inode, &wbc);
1571 }
1572 
1573 #ifdef CONFIG_QUOTA
1574 static const char * const quotatypes[] = INITQFNAMES;
1575 #define QTYPE2NAME(t) (quotatypes[t])
1576 
1577 static int ext4_write_dquot(struct dquot *dquot);
1578 static int ext4_acquire_dquot(struct dquot *dquot);
1579 static int ext4_release_dquot(struct dquot *dquot);
1580 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1581 static int ext4_write_info(struct super_block *sb, int type);
1582 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1583                          const struct path *path);
1584 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1585                                size_t len, loff_t off);
1586 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1587                                 const char *data, size_t len, loff_t off);
1588 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1589                              unsigned int flags);
1590 
1591 static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1592 {
1593         return EXT4_I(inode)->i_dquot;
1594 }
1595 
1596 static const struct dquot_operations ext4_quota_operations = {
1597         .get_reserved_space     = ext4_get_reserved_space,
1598         .write_dquot            = ext4_write_dquot,
1599         .acquire_dquot          = ext4_acquire_dquot,
1600         .release_dquot          = ext4_release_dquot,
1601         .mark_dirty             = ext4_mark_dquot_dirty,
1602         .write_info             = ext4_write_info,
1603         .alloc_dquot            = dquot_alloc,
1604         .destroy_dquot          = dquot_destroy,
1605         .get_projid             = ext4_get_projid,
1606         .get_inode_usage        = ext4_get_inode_usage,
1607         .get_next_id            = dquot_get_next_id,
1608 };
1609 
1610 static const struct quotactl_ops ext4_qctl_operations = {
1611         .quota_on       = ext4_quota_on,
1612         .quota_off      = ext4_quota_off,
1613         .quota_sync     = dquot_quota_sync,
1614         .get_state      = dquot_get_state,
1615         .set_info       = dquot_set_dqinfo,
1616         .get_dqblk      = dquot_get_dqblk,
1617         .set_dqblk      = dquot_set_dqblk,
1618         .get_nextdqblk  = dquot_get_next_dqblk,
1619 };
1620 #endif
1621 
1622 static const struct super_operations ext4_sops = {
1623         .alloc_inode    = ext4_alloc_inode,
1624         .free_inode     = ext4_free_in_core_inode,
1625         .destroy_inode  = ext4_destroy_inode,
1626         .write_inode    = ext4_write_inode,
1627         .dirty_inode    = ext4_dirty_inode,
1628         .drop_inode     = ext4_drop_inode,
1629         .evict_inode    = ext4_evict_inode,
1630         .put_super      = ext4_put_super,
1631         .sync_fs        = ext4_sync_fs,
1632         .freeze_fs      = ext4_freeze,
1633         .unfreeze_fs    = ext4_unfreeze,
1634         .statfs         = ext4_statfs,
1635         .show_options   = ext4_show_options,
1636         .shutdown       = ext4_shutdown,
1637 #ifdef CONFIG_QUOTA
1638         .quota_read     = ext4_quota_read,
1639         .quota_write    = ext4_quota_write,
1640         .get_dquots     = ext4_get_dquots,
1641 #endif
1642 };
1643 
1644 static const struct export_operations ext4_export_ops = {
1645         .encode_fh = generic_encode_ino32_fh,
1646         .fh_to_dentry = ext4_fh_to_dentry,
1647         .fh_to_parent = ext4_fh_to_parent,
1648         .get_parent = ext4_get_parent,
1649         .commit_metadata = ext4_nfs_commit_metadata,
1650 };
1651 
1652 enum {
1653         Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1654         Opt_resgid, Opt_resuid, Opt_sb,
1655         Opt_nouid32, Opt_debug, Opt_removed,
1656         Opt_user_xattr, Opt_acl,
1657         Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1658         Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1659         Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1660         Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1661         Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1662         Opt_inlinecrypt,
1663         Opt_usrjquota, Opt_grpjquota, Opt_quota,
1664         Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1665         Opt_usrquota, Opt_grpquota, Opt_prjquota,
1666         Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1667         Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1668         Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1669         Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1670         Opt_inode_readahead_blks, Opt_journal_ioprio,
1671         Opt_dioread_nolock, Opt_dioread_lock,
1672         Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1673         Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1674         Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1675         Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1676 #ifdef CONFIG_EXT4_DEBUG
1677         Opt_fc_debug_max_replay, Opt_fc_debug_force
1678 #endif
1679 };
1680 
1681 static const struct constant_table ext4_param_errors[] = {
1682         {"continue",    EXT4_MOUNT_ERRORS_CONT},
1683         {"panic",       EXT4_MOUNT_ERRORS_PANIC},
1684         {"remount-ro",  EXT4_MOUNT_ERRORS_RO},
1685         {}
1686 };
1687 
1688 static const struct constant_table ext4_param_data[] = {
1689         {"journal",     EXT4_MOUNT_JOURNAL_DATA},
1690         {"ordered",     EXT4_MOUNT_ORDERED_DATA},
1691         {"writeback",   EXT4_MOUNT_WRITEBACK_DATA},
1692         {}
1693 };
1694 
1695 static const struct constant_table ext4_param_data_err[] = {
1696         {"abort",       Opt_data_err_abort},
1697         {"ignore",      Opt_data_err_ignore},
1698         {}
1699 };
1700 
1701 static const struct constant_table ext4_param_jqfmt[] = {
1702         {"vfsold",      QFMT_VFS_OLD},
1703         {"vfsv0",       QFMT_VFS_V0},
1704         {"vfsv1",       QFMT_VFS_V1},
1705         {}
1706 };
1707 
1708 static const struct constant_table ext4_param_dax[] = {
1709         {"always",      Opt_dax_always},
1710         {"inode",       Opt_dax_inode},
1711         {"never",       Opt_dax_never},
1712         {}
1713 };
1714 
1715 /*
1716  * Mount option specification
1717  * We don't use fsparam_flag_no because of the way we set the
1718  * options and the way we show them in _ext4_show_options(). To
1719  * keep the changes to a minimum, let's keep the negative options
1720  * separate for now.
1721  */
1722 static const struct fs_parameter_spec ext4_param_specs[] = {
1723         fsparam_flag    ("bsddf",               Opt_bsd_df),
1724         fsparam_flag    ("minixdf",             Opt_minix_df),
1725         fsparam_flag    ("grpid",               Opt_grpid),
1726         fsparam_flag    ("bsdgroups",           Opt_grpid),
1727         fsparam_flag    ("nogrpid",             Opt_nogrpid),
1728         fsparam_flag    ("sysvgroups",          Opt_nogrpid),
1729         fsparam_gid     ("resgid",              Opt_resgid),
1730         fsparam_uid     ("resuid",              Opt_resuid),
1731         fsparam_u32     ("sb",                  Opt_sb),
1732         fsparam_enum    ("errors",              Opt_errors, ext4_param_errors),
1733         fsparam_flag    ("nouid32",             Opt_nouid32),
1734         fsparam_flag    ("debug",               Opt_debug),
1735         fsparam_flag    ("oldalloc",            Opt_removed),
1736         fsparam_flag    ("orlov",               Opt_removed),
1737         fsparam_flag    ("user_xattr",          Opt_user_xattr),
1738         fsparam_flag    ("acl",                 Opt_acl),
1739         fsparam_flag    ("norecovery",          Opt_noload),
1740         fsparam_flag    ("noload",              Opt_noload),
1741         fsparam_flag    ("bh",                  Opt_removed),
1742         fsparam_flag    ("nobh",                Opt_removed),
1743         fsparam_u32     ("commit",              Opt_commit),
1744         fsparam_u32     ("min_batch_time",      Opt_min_batch_time),
1745         fsparam_u32     ("max_batch_time",      Opt_max_batch_time),
1746         fsparam_u32     ("journal_dev",         Opt_journal_dev),
1747         fsparam_bdev    ("journal_path",        Opt_journal_path),
1748         fsparam_flag    ("journal_checksum",    Opt_journal_checksum),
1749         fsparam_flag    ("nojournal_checksum",  Opt_nojournal_checksum),
1750         fsparam_flag    ("journal_async_commit",Opt_journal_async_commit),
1751         fsparam_flag    ("abort",               Opt_abort),
1752         fsparam_enum    ("data",                Opt_data, ext4_param_data),
1753         fsparam_enum    ("data_err",            Opt_data_err,
1754                                                 ext4_param_data_err),
1755         fsparam_string_empty
1756                         ("usrjquota",           Opt_usrjquota),
1757         fsparam_string_empty
1758                         ("grpjquota",           Opt_grpjquota),
1759         fsparam_enum    ("jqfmt",               Opt_jqfmt, ext4_param_jqfmt),
1760         fsparam_flag    ("grpquota",            Opt_grpquota),
1761         fsparam_flag    ("quota",               Opt_quota),
1762         fsparam_flag    ("noquota",             Opt_noquota),
1763         fsparam_flag    ("usrquota",            Opt_usrquota),
1764         fsparam_flag    ("prjquota",            Opt_prjquota),
1765         fsparam_flag    ("barrier",             Opt_barrier),
1766         fsparam_u32     ("barrier",             Opt_barrier),
1767         fsparam_flag    ("nobarrier",           Opt_nobarrier),
1768         fsparam_flag    ("i_version",           Opt_removed),
1769         fsparam_flag    ("dax",                 Opt_dax),
1770         fsparam_enum    ("dax",                 Opt_dax_type, ext4_param_dax),
1771         fsparam_u32     ("stripe",              Opt_stripe),
1772         fsparam_flag    ("delalloc",            Opt_delalloc),
1773         fsparam_flag    ("nodelalloc",          Opt_nodelalloc),
1774         fsparam_flag    ("warn_on_error",       Opt_warn_on_error),
1775         fsparam_flag    ("nowarn_on_error",     Opt_nowarn_on_error),
1776         fsparam_u32     ("debug_want_extra_isize",
1777                                                 Opt_debug_want_extra_isize),
1778         fsparam_flag    ("mblk_io_submit",      Opt_removed),
1779         fsparam_flag    ("nomblk_io_submit",    Opt_removed),
1780         fsparam_flag    ("block_validity",      Opt_block_validity),
1781         fsparam_flag    ("noblock_validity",    Opt_noblock_validity),
1782         fsparam_u32     ("inode_readahead_blks",
1783                                                 Opt_inode_readahead_blks),
1784         fsparam_u32     ("journal_ioprio",      Opt_journal_ioprio),
1785         fsparam_u32     ("auto_da_alloc",       Opt_auto_da_alloc),
1786         fsparam_flag    ("auto_da_alloc",       Opt_auto_da_alloc),
1787         fsparam_flag    ("noauto_da_alloc",     Opt_noauto_da_alloc),
1788         fsparam_flag    ("dioread_nolock",      Opt_dioread_nolock),
1789         fsparam_flag    ("nodioread_nolock",    Opt_dioread_lock),
1790         fsparam_flag    ("dioread_lock",        Opt_dioread_lock),
1791         fsparam_flag    ("discard",             Opt_discard),
1792         fsparam_flag    ("nodiscard",           Opt_nodiscard),
1793         fsparam_u32     ("init_itable",         Opt_init_itable),
1794         fsparam_flag    ("init_itable",         Opt_init_itable),
1795         fsparam_flag    ("noinit_itable",       Opt_noinit_itable),
1796 #ifdef CONFIG_EXT4_DEBUG
1797         fsparam_flag    ("fc_debug_force",      Opt_fc_debug_force),
1798         fsparam_u32     ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1799 #endif
1800         fsparam_u32     ("max_dir_size_kb",     Opt_max_dir_size_kb),
1801         fsparam_flag    ("test_dummy_encryption",
1802                                                 Opt_test_dummy_encryption),
1803         fsparam_string  ("test_dummy_encryption",
1804                                                 Opt_test_dummy_encryption),
1805         fsparam_flag    ("inlinecrypt",         Opt_inlinecrypt),
1806         fsparam_flag    ("nombcache",           Opt_nombcache),
1807         fsparam_flag    ("no_mbcache",          Opt_nombcache), /* for backward compatibility */
1808         fsparam_flag    ("prefetch_block_bitmaps",
1809                                                 Opt_removed),
1810         fsparam_flag    ("no_prefetch_block_bitmaps",
1811                                                 Opt_no_prefetch_block_bitmaps),
1812         fsparam_s32     ("mb_optimize_scan",    Opt_mb_optimize_scan),
1813         fsparam_string  ("check",               Opt_removed),   /* mount option from ext2/3 */
1814         fsparam_flag    ("nocheck",             Opt_removed),   /* mount option from ext2/3 */
1815         fsparam_flag    ("reservation",         Opt_removed),   /* mount option from ext2/3 */
1816         fsparam_flag    ("noreservation",       Opt_removed),   /* mount option from ext2/3 */
1817         fsparam_u32     ("journal",             Opt_removed),   /* mount option from ext2/3 */
1818         {}
1819 };
1820 
1821 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1822 
1823 #define MOPT_SET        0x0001
1824 #define MOPT_CLEAR      0x0002
1825 #define MOPT_NOSUPPORT  0x0004
1826 #define MOPT_EXPLICIT   0x0008
1827 #ifdef CONFIG_QUOTA
1828 #define MOPT_Q          0
1829 #define MOPT_QFMT       0x0010
1830 #else
1831 #define MOPT_Q          MOPT_NOSUPPORT
1832 #define MOPT_QFMT       MOPT_NOSUPPORT
1833 #endif
1834 #define MOPT_NO_EXT2    0x0020
1835 #define MOPT_NO_EXT3    0x0040
1836 #define MOPT_EXT4_ONLY  (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1837 #define MOPT_SKIP       0x0080
1838 #define MOPT_2          0x0100
1839 
1840 static const struct mount_opts {
1841         int     token;
1842         int     mount_opt;
1843         int     flags;
1844 } ext4_mount_opts[] = {
1845         {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1846         {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1847         {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1848         {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1849         {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1850         {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1851         {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1852          MOPT_EXT4_ONLY | MOPT_SET},
1853         {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1854          MOPT_EXT4_ONLY | MOPT_CLEAR},
1855         {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1856         {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1857         {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1858          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1859         {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1860          MOPT_EXT4_ONLY | MOPT_CLEAR},
1861         {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1862         {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1863         {Opt_commit, 0, MOPT_NO_EXT2},
1864         {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1865          MOPT_EXT4_ONLY | MOPT_CLEAR},
1866         {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1867          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1868         {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1869                                     EXT4_MOUNT_JOURNAL_CHECKSUM),
1870          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1871         {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1872         {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1873         {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1874         {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1875         {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1876         {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1877         {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1878         {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1879         {Opt_journal_dev, 0, MOPT_NO_EXT2},
1880         {Opt_journal_path, 0, MOPT_NO_EXT2},
1881         {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1882         {Opt_data, 0, MOPT_NO_EXT2},
1883         {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1884 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1885         {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1886 #else
1887         {Opt_acl, 0, MOPT_NOSUPPORT},
1888 #endif
1889         {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1890         {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1891         {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1892         {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1893                                                         MOPT_SET | MOPT_Q},
1894         {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1895                                                         MOPT_SET | MOPT_Q},
1896         {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1897                                                         MOPT_SET | MOPT_Q},
1898         {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1899                        EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1900                                                         MOPT_CLEAR | MOPT_Q},
1901         {Opt_usrjquota, 0, MOPT_Q},
1902         {Opt_grpjquota, 0, MOPT_Q},
1903         {Opt_jqfmt, 0, MOPT_QFMT},
1904         {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1905         {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1906          MOPT_SET},
1907 #ifdef CONFIG_EXT4_DEBUG
1908         {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1909          MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1910 #endif
1911         {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1912         {Opt_err, 0, 0}
1913 };
1914 
1915 #if IS_ENABLED(CONFIG_UNICODE)
1916 static const struct ext4_sb_encodings {
1917         __u16 magic;
1918         char *name;
1919         unsigned int version;
1920 } ext4_sb_encoding_map[] = {
1921         {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1922 };
1923 
1924 static const struct ext4_sb_encodings *
1925 ext4_sb_read_encoding(const struct ext4_super_block *es)
1926 {
1927         __u16 magic = le16_to_cpu(es->s_encoding);
1928         int i;
1929 
1930         for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1931                 if (magic == ext4_sb_encoding_map[i].magic)
1932                         return &ext4_sb_encoding_map[i];
1933 
1934         return NULL;
1935 }
1936 #endif
1937 
1938 #define EXT4_SPEC_JQUOTA                        (1 <<  0)
1939 #define EXT4_SPEC_JQFMT                         (1 <<  1)
1940 #define EXT4_SPEC_DATAJ                         (1 <<  2)
1941 #define EXT4_SPEC_SB_BLOCK                      (1 <<  3)
1942 #define EXT4_SPEC_JOURNAL_DEV                   (1 <<  4)
1943 #define EXT4_SPEC_JOURNAL_IOPRIO                (1 <<  5)
1944 #define EXT4_SPEC_s_want_extra_isize            (1 <<  7)
1945 #define EXT4_SPEC_s_max_batch_time              (1 <<  8)
1946 #define EXT4_SPEC_s_min_batch_time              (1 <<  9)
1947 #define EXT4_SPEC_s_inode_readahead_blks        (1 << 10)
1948 #define EXT4_SPEC_s_li_wait_mult                (1 << 11)
1949 #define EXT4_SPEC_s_max_dir_size_kb             (1 << 12)
1950 #define EXT4_SPEC_s_stripe                      (1 << 13)
1951 #define EXT4_SPEC_s_resuid                      (1 << 14)
1952 #define EXT4_SPEC_s_resgid                      (1 << 15)
1953 #define EXT4_SPEC_s_commit_interval             (1 << 16)
1954 #define EXT4_SPEC_s_fc_debug_max_replay         (1 << 17)
1955 #define EXT4_SPEC_s_sb_block                    (1 << 18)
1956 #define EXT4_SPEC_mb_optimize_scan              (1 << 19)
1957 
1958 struct ext4_fs_context {
1959         char            *s_qf_names[EXT4_MAXQUOTAS];
1960         struct fscrypt_dummy_policy dummy_enc_policy;
1961         int             s_jquota_fmt;   /* Format of quota to use */
1962 #ifdef CONFIG_EXT4_DEBUG
1963         int s_fc_debug_max_replay;
1964 #endif
1965         unsigned short  qname_spec;
1966         unsigned long   vals_s_flags;   /* Bits to set in s_flags */
1967         unsigned long   mask_s_flags;   /* Bits changed in s_flags */
1968         unsigned long   journal_devnum;
1969         unsigned long   s_commit_interval;
1970         unsigned long   s_stripe;
1971         unsigned int    s_inode_readahead_blks;
1972         unsigned int    s_want_extra_isize;
1973         unsigned int    s_li_wait_mult;
1974         unsigned int    s_max_dir_size_kb;
1975         unsigned int    journal_ioprio;
1976         unsigned int    vals_s_mount_opt;
1977         unsigned int    mask_s_mount_opt;
1978         unsigned int    vals_s_mount_opt2;
1979         unsigned int    mask_s_mount_opt2;
1980         unsigned int    opt_flags;      /* MOPT flags */
1981         unsigned int    spec;
1982         u32             s_max_batch_time;
1983         u32             s_min_batch_time;
1984         kuid_t          s_resuid;
1985         kgid_t          s_resgid;
1986         ext4_fsblk_t    s_sb_block;
1987 };
1988 
1989 static void ext4_fc_free(struct fs_context *fc)
1990 {
1991         struct ext4_fs_context *ctx = fc->fs_private;
1992         int i;
1993 
1994         if (!ctx)
1995                 return;
1996 
1997         for (i = 0; i < EXT4_MAXQUOTAS; i++)
1998                 kfree(ctx->s_qf_names[i]);
1999 
2000         fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2001         kfree(ctx);
2002 }
2003 
2004 int ext4_init_fs_context(struct fs_context *fc)
2005 {
2006         struct ext4_fs_context *ctx;
2007 
2008         ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2009         if (!ctx)
2010                 return -ENOMEM;
2011 
2012         fc->fs_private = ctx;
2013         fc->ops = &ext4_context_ops;
2014 
2015         return 0;
2016 }
2017 
2018 #ifdef CONFIG_QUOTA
2019 /*
2020  * Note the name of the specified quota file.
2021  */
2022 static int note_qf_name(struct fs_context *fc, int qtype,
2023                        struct fs_parameter *param)
2024 {
2025         struct ext4_fs_context *ctx = fc->fs_private;
2026         char *qname;
2027 
2028         if (param->size < 1) {
2029                 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2030                 return -EINVAL;
2031         }
2032         if (strchr(param->string, '/')) {
2033                 ext4_msg(NULL, KERN_ERR,
2034                          "quotafile must be on filesystem root");
2035                 return -EINVAL;
2036         }
2037         if (ctx->s_qf_names[qtype]) {
2038                 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2039                         ext4_msg(NULL, KERN_ERR,
2040                                  "%s quota file already specified",
2041                                  QTYPE2NAME(qtype));
2042                         return -EINVAL;
2043                 }
2044                 return 0;
2045         }
2046 
2047         qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2048         if (!qname) {
2049                 ext4_msg(NULL, KERN_ERR,
2050                          "Not enough memory for storing quotafile name");
2051                 return -ENOMEM;
2052         }
2053         ctx->s_qf_names[qtype] = qname;
2054         ctx->qname_spec |= 1 << qtype;
2055         ctx->spec |= EXT4_SPEC_JQUOTA;
2056         return 0;
2057 }
2058 
2059 /*
2060  * Clear the name of the specified quota file.
2061  */
2062 static int unnote_qf_name(struct fs_context *fc, int qtype)
2063 {
2064         struct ext4_fs_context *ctx = fc->fs_private;
2065 
2066         kfree(ctx->s_qf_names[qtype]);
2067 
2068         ctx->s_qf_names[qtype] = NULL;
2069         ctx->qname_spec |= 1 << qtype;
2070         ctx->spec |= EXT4_SPEC_JQUOTA;
2071         return 0;
2072 }
2073 #endif
2074 
2075 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2076                                             struct ext4_fs_context *ctx)
2077 {
2078         int err;
2079 
2080         if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2081                 ext4_msg(NULL, KERN_WARNING,
2082                          "test_dummy_encryption option not supported");
2083                 return -EINVAL;
2084         }
2085         err = fscrypt_parse_test_dummy_encryption(param,
2086                                                   &ctx->dummy_enc_policy);
2087         if (err == -EINVAL) {
2088                 ext4_msg(NULL, KERN_WARNING,
2089                          "Value of option \"%s\" is unrecognized", param->key);
2090         } else if (err == -EEXIST) {
2091                 ext4_msg(NULL, KERN_WARNING,
2092                          "Conflicting test_dummy_encryption options");
2093                 return -EINVAL;
2094         }
2095         return err;
2096 }
2097 
2098 #define EXT4_SET_CTX(name)                                              \
2099 static inline void ctx_set_##name(struct ext4_fs_context *ctx,          \
2100                                   unsigned long flag)                   \
2101 {                                                                       \
2102         ctx->mask_s_##name |= flag;                                     \
2103         ctx->vals_s_##name |= flag;                                     \
2104 }
2105 
2106 #define EXT4_CLEAR_CTX(name)                                            \
2107 static inline void ctx_clear_##name(struct ext4_fs_context *ctx,        \
2108                                     unsigned long flag)                 \
2109 {                                                                       \
2110         ctx->mask_s_##name |= flag;                                     \
2111         ctx->vals_s_##name &= ~flag;                                    \
2112 }
2113 
2114 #define EXT4_TEST_CTX(name)                                             \
2115 static inline unsigned long                                             \
2116 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)        \
2117 {                                                                       \
2118         return (ctx->vals_s_##name & flag);                             \
2119 }
2120 
2121 EXT4_SET_CTX(flags); /* set only */
2122 EXT4_SET_CTX(mount_opt);
2123 EXT4_CLEAR_CTX(mount_opt);
2124 EXT4_TEST_CTX(mount_opt);
2125 EXT4_SET_CTX(mount_opt2);
2126 EXT4_CLEAR_CTX(mount_opt2);
2127 EXT4_TEST_CTX(mount_opt2);
2128 
2129 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2130 {
2131         struct ext4_fs_context *ctx = fc->fs_private;
2132         struct fs_parse_result result;
2133         const struct mount_opts *m;
2134         int is_remount;
2135         int token;
2136 
2137         token = fs_parse(fc, ext4_param_specs, param, &result);
2138         if (token < 0)
2139                 return token;
2140         is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2141 
2142         for (m = ext4_mount_opts; m->token != Opt_err; m++)
2143                 if (token == m->token)
2144                         break;
2145 
2146         ctx->opt_flags |= m->flags;
2147 
2148         if (m->flags & MOPT_EXPLICIT) {
2149                 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2150                         ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2151                 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2152                         ctx_set_mount_opt2(ctx,
2153                                        EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2154                 } else
2155                         return -EINVAL;
2156         }
2157 
2158         if (m->flags & MOPT_NOSUPPORT) {
2159                 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2160                          param->key);
2161                 return 0;
2162         }
2163 
2164         switch (token) {
2165 #ifdef CONFIG_QUOTA
2166         case Opt_usrjquota:
2167                 if (!*param->string)
2168                         return unnote_qf_name(fc, USRQUOTA);
2169                 else
2170                         return note_qf_name(fc, USRQUOTA, param);
2171         case Opt_grpjquota:
2172                 if (!*param->string)
2173                         return unnote_qf_name(fc, GRPQUOTA);
2174                 else
2175                         return note_qf_name(fc, GRPQUOTA, param);
2176 #endif
2177         case Opt_sb:
2178                 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2179                         ext4_msg(NULL, KERN_WARNING,
2180                                  "Ignoring %s option on remount", param->key);
2181                 } else {
2182                         ctx->s_sb_block = result.uint_32;
2183                         ctx->spec |= EXT4_SPEC_s_sb_block;
2184                 }
2185                 return 0;
2186         case Opt_removed:
2187                 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2188                          param->key);
2189                 return 0;
2190         case Opt_inlinecrypt:
2191 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2192                 ctx_set_flags(ctx, SB_INLINECRYPT);
2193 #else
2194                 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2195 #endif
2196                 return 0;
2197         case Opt_errors:
2198                 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2199                 ctx_set_mount_opt(ctx, result.uint_32);
2200                 return 0;
2201 #ifdef CONFIG_QUOTA
2202         case Opt_jqfmt:
2203                 ctx->s_jquota_fmt = result.uint_32;
2204                 ctx->spec |= EXT4_SPEC_JQFMT;
2205                 return 0;
2206 #endif
2207         case Opt_data:
2208                 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2209                 ctx_set_mount_opt(ctx, result.uint_32);
2210                 ctx->spec |= EXT4_SPEC_DATAJ;
2211                 return 0;
2212         case Opt_commit:
2213                 if (result.uint_32 == 0)
2214                         result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2215                 else if (result.uint_32 > INT_MAX / HZ) {
2216                         ext4_msg(NULL, KERN_ERR,
2217                                  "Invalid commit interval %d, "
2218                                  "must be smaller than %d",
2219                                  result.uint_32, INT_MAX / HZ);
2220                         return -EINVAL;
2221                 }
2222                 ctx->s_commit_interval = HZ * result.uint_32;
2223                 ctx->spec |= EXT4_SPEC_s_commit_interval;
2224                 return 0;
2225         case Opt_debug_want_extra_isize:
2226                 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2227                         ext4_msg(NULL, KERN_ERR,
2228                                  "Invalid want_extra_isize %d", result.uint_32);
2229                         return -EINVAL;
2230                 }
2231                 ctx->s_want_extra_isize = result.uint_32;
2232                 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2233                 return 0;
2234         case Opt_max_batch_time:
2235                 ctx->s_max_batch_time = result.uint_32;
2236                 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2237                 return 0;
2238         case Opt_min_batch_time:
2239                 ctx->s_min_batch_time = result.uint_32;
2240                 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2241                 return 0;
2242         case Opt_inode_readahead_blks:
2243                 if (result.uint_32 &&
2244                     (result.uint_32 > (1 << 30) ||
2245                      !is_power_of_2(result.uint_32))) {
2246                         ext4_msg(NULL, KERN_ERR,
2247                                  "EXT4-fs: inode_readahead_blks must be "
2248                                  "0 or a power of 2 smaller than 2^31");
2249                         return -EINVAL;
2250                 }
2251                 ctx->s_inode_readahead_blks = result.uint_32;
2252                 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2253                 return 0;
2254         case Opt_init_itable:
2255                 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2256                 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2257                 if (param->type == fs_value_is_string)
2258                         ctx->s_li_wait_mult = result.uint_32;
2259                 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2260                 return 0;
2261         case Opt_max_dir_size_kb:
2262                 ctx->s_max_dir_size_kb = result.uint_32;
2263                 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2264                 return 0;
2265 #ifdef CONFIG_EXT4_DEBUG
2266         case Opt_fc_debug_max_replay:
2267                 ctx->s_fc_debug_max_replay = result.uint_32;
2268                 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2269                 return 0;
2270 #endif
2271         case Opt_stripe:
2272                 ctx->s_stripe = result.uint_32;
2273                 ctx->spec |= EXT4_SPEC_s_stripe;
2274                 return 0;
2275         case Opt_resuid:
2276                 ctx->s_resuid = result.uid;
2277                 ctx->spec |= EXT4_SPEC_s_resuid;
2278                 return 0;
2279         case Opt_resgid:
2280                 ctx->s_resgid = result.gid;
2281                 ctx->spec |= EXT4_SPEC_s_resgid;
2282                 return 0;
2283         case Opt_journal_dev:
2284                 if (is_remount) {
2285                         ext4_msg(NULL, KERN_ERR,
2286                                  "Cannot specify journal on remount");
2287                         return -EINVAL;
2288                 }
2289                 ctx->journal_devnum = result.uint_32;
2290                 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2291                 return 0;
2292         case Opt_journal_path:
2293         {
2294                 struct inode *journal_inode;
2295                 struct path path;
2296                 int error;
2297 
2298                 if (is_remount) {
2299                         ext4_msg(NULL, KERN_ERR,
2300                                  "Cannot specify journal on remount");
2301                         return -EINVAL;
2302                 }
2303 
2304                 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2305                 if (error) {
2306                         ext4_msg(NULL, KERN_ERR, "error: could not find "
2307                                  "journal device path");
2308                         return -EINVAL;
2309                 }
2310 
2311                 journal_inode = d_inode(path.dentry);
2312                 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2313                 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2314                 path_put(&path);
2315                 return 0;
2316         }
2317         case Opt_journal_ioprio:
2318                 if (result.uint_32 > 7) {
2319                         ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2320                                  " (must be 0-7)");
2321                         return -EINVAL;
2322                 }
2323                 ctx->journal_ioprio =
2324                         IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2325                 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2326                 return 0;
2327         case Opt_test_dummy_encryption:
2328                 return ext4_parse_test_dummy_encryption(param, ctx);
2329         case Opt_dax:
2330         case Opt_dax_type:
2331 #ifdef CONFIG_FS_DAX
2332         {
2333                 int type = (token == Opt_dax) ?
2334                            Opt_dax : result.uint_32;
2335 
2336                 switch (type) {
2337                 case Opt_dax:
2338                 case Opt_dax_always:
2339                         ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2340                         ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2341                         break;
2342                 case Opt_dax_never:
2343                         ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2344                         ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2345                         break;
2346                 case Opt_dax_inode:
2347                         ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2348                         ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2349                         /* Strictly for printing options */
2350                         ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2351                         break;
2352                 }
2353                 return 0;
2354         }
2355 #else
2356                 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2357                 return -EINVAL;
2358 #endif
2359         case Opt_data_err:
2360                 if (result.uint_32 == Opt_data_err_abort)
2361                         ctx_set_mount_opt(ctx, m->mount_opt);
2362                 else if (result.uint_32 == Opt_data_err_ignore)
2363                         ctx_clear_mount_opt(ctx, m->mount_opt);
2364                 return 0;
2365         case Opt_mb_optimize_scan:
2366                 if (result.int_32 == 1) {
2367                         ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2368                         ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2369                 } else if (result.int_32 == 0) {
2370                         ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2371                         ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2372                 } else {
2373                         ext4_msg(NULL, KERN_WARNING,
2374                                  "mb_optimize_scan should be set to 0 or 1.");
2375                         return -EINVAL;
2376                 }
2377                 return 0;
2378         }
2379 
2380         /*
2381          * At this point we should only be getting options requiring MOPT_SET,
2382          * or MOPT_CLEAR. Anything else is a bug
2383          */
2384         if (m->token == Opt_err) {
2385                 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2386                          param->key);
2387                 WARN_ON(1);
2388                 return -EINVAL;
2389         }
2390 
2391         else {
2392                 unsigned int set = 0;
2393 
2394                 if ((param->type == fs_value_is_flag) ||
2395                     result.uint_32 > 0)
2396                         set = 1;
2397 
2398                 if (m->flags & MOPT_CLEAR)
2399                         set = !set;
2400                 else if (unlikely(!(m->flags & MOPT_SET))) {
2401                         ext4_msg(NULL, KERN_WARNING,
2402                                  "buggy handling of option %s",
2403                                  param->key);
2404                         WARN_ON(1);
2405                         return -EINVAL;
2406                 }
2407                 if (m->flags & MOPT_2) {
2408                         if (set != 0)
2409                                 ctx_set_mount_opt2(ctx, m->mount_opt);
2410                         else
2411                                 ctx_clear_mount_opt2(ctx, m->mount_opt);
2412                 } else {
2413                         if (set != 0)
2414                                 ctx_set_mount_opt(ctx, m->mount_opt);
2415                         else
2416                                 ctx_clear_mount_opt(ctx, m->mount_opt);
2417                 }
2418         }
2419 
2420         return 0;
2421 }
2422 
2423 static int parse_options(struct fs_context *fc, char *options)
2424 {
2425         struct fs_parameter param;
2426         int ret;
2427         char *key;
2428 
2429         if (!options)
2430                 return 0;
2431 
2432         while ((key = strsep(&options, ",")) != NULL) {
2433                 if (*key) {
2434                         size_t v_len = 0;
2435                         char *value = strchr(key, '=');
2436 
2437                         param.type = fs_value_is_flag;
2438                         param.string = NULL;
2439 
2440                         if (value) {
2441                                 if (value == key)
2442                                         continue;
2443 
2444                                 *value++ = 0;
2445                                 v_len = strlen(value);
2446                                 param.string = kmemdup_nul(value, v_len,
2447                                                            GFP_KERNEL);
2448                                 if (!param.string)
2449                                         return -ENOMEM;
2450                                 param.type = fs_value_is_string;
2451                         }
2452 
2453                         param.key = key;
2454                         param.size = v_len;
2455 
2456                         ret = ext4_parse_param(fc, &param);
2457                         kfree(param.string);
2458                         if (ret < 0)
2459                                 return ret;
2460                 }
2461         }
2462 
2463         ret = ext4_validate_options(fc);
2464         if (ret < 0)
2465                 return ret;
2466 
2467         return 0;
2468 }
2469 
2470 static int parse_apply_sb_mount_options(struct super_block *sb,
2471                                         struct ext4_fs_context *m_ctx)
2472 {
2473         struct ext4_sb_info *sbi = EXT4_SB(sb);
2474         char *s_mount_opts = NULL;
2475         struct ext4_fs_context *s_ctx = NULL;
2476         struct fs_context *fc = NULL;
2477         int ret = -ENOMEM;
2478 
2479         if (!sbi->s_es->s_mount_opts[0])
2480                 return 0;
2481 
2482         s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2483                                 sizeof(sbi->s_es->s_mount_opts),
2484                                 GFP_KERNEL);
2485         if (!s_mount_opts)
2486                 return ret;
2487 
2488         fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2489         if (!fc)
2490                 goto out_free;
2491 
2492         s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2493         if (!s_ctx)
2494                 goto out_free;
2495 
2496         fc->fs_private = s_ctx;
2497         fc->s_fs_info = sbi;
2498 
2499         ret = parse_options(fc, s_mount_opts);
2500         if (ret < 0)
2501                 goto parse_failed;
2502 
2503         ret = ext4_check_opt_consistency(fc, sb);
2504         if (ret < 0) {
2505 parse_failed:
2506                 ext4_msg(sb, KERN_WARNING,
2507                          "failed to parse options in superblock: %s",
2508                          s_mount_opts);
2509                 ret = 0;
2510                 goto out_free;
2511         }
2512 
2513         if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2514                 m_ctx->journal_devnum = s_ctx->journal_devnum;
2515         if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2516                 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2517 
2518         ext4_apply_options(fc, sb);
2519         ret = 0;
2520 
2521 out_free:
2522         if (fc) {
2523                 ext4_fc_free(fc);
2524                 kfree(fc);
2525         }
2526         kfree(s_mount_opts);
2527         return ret;
2528 }
2529 
2530 static void ext4_apply_quota_options(struct fs_context *fc,
2531                                      struct super_block *sb)
2532 {
2533 #ifdef CONFIG_QUOTA
2534         bool quota_feature = ext4_has_feature_quota(sb);
2535         struct ext4_fs_context *ctx = fc->fs_private;
2536         struct ext4_sb_info *sbi = EXT4_SB(sb);
2537         char *qname;
2538         int i;
2539 
2540         if (quota_feature)
2541                 return;
2542 
2543         if (ctx->spec & EXT4_SPEC_JQUOTA) {
2544                 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2545                         if (!(ctx->qname_spec & (1 << i)))
2546                                 continue;
2547 
2548                         qname = ctx->s_qf_names[i]; /* May be NULL */
2549                         if (qname)
2550                                 set_opt(sb, QUOTA);
2551                         ctx->s_qf_names[i] = NULL;
2552                         qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2553                                                 lockdep_is_held(&sb->s_umount));
2554                         if (qname)
2555                                 kfree_rcu_mightsleep(qname);
2556                 }
2557         }
2558 
2559         if (ctx->spec & EXT4_SPEC_JQFMT)
2560                 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2561 #endif
2562 }
2563 
2564 /*
2565  * Check quota settings consistency.
2566  */
2567 static int ext4_check_quota_consistency(struct fs_context *fc,
2568                                         struct super_block *sb)
2569 {
2570 #ifdef CONFIG_QUOTA
2571         struct ext4_fs_context *ctx = fc->fs_private;
2572         struct ext4_sb_info *sbi = EXT4_SB(sb);
2573         bool quota_feature = ext4_has_feature_quota(sb);
2574         bool quota_loaded = sb_any_quota_loaded(sb);
2575         bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2576         int quota_flags, i;
2577 
2578         /*
2579          * We do the test below only for project quotas. 'usrquota' and
2580          * 'grpquota' mount options are allowed even without quota feature
2581          * to support legacy quotas in quota files.
2582          */
2583         if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2584             !ext4_has_feature_project(sb)) {
2585                 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2586                          "Cannot enable project quota enforcement.");
2587                 return -EINVAL;
2588         }
2589 
2590         quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2591                       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2592         if (quota_loaded &&
2593             ctx->mask_s_mount_opt & quota_flags &&
2594             !ctx_test_mount_opt(ctx, quota_flags))
2595                 goto err_quota_change;
2596 
2597         if (ctx->spec & EXT4_SPEC_JQUOTA) {
2598 
2599                 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2600                         if (!(ctx->qname_spec & (1 << i)))
2601                                 continue;
2602 
2603                         if (quota_loaded &&
2604                             !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2605                                 goto err_jquota_change;
2606 
2607                         if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2608                             strcmp(get_qf_name(sb, sbi, i),
2609                                    ctx->s_qf_names[i]) != 0)
2610                                 goto err_jquota_specified;
2611                 }
2612 
2613                 if (quota_feature) {
2614                         ext4_msg(NULL, KERN_INFO,
2615                                  "Journaled quota options ignored when "
2616                                  "QUOTA feature is enabled");
2617                         return 0;
2618                 }
2619         }
2620 
2621         if (ctx->spec & EXT4_SPEC_JQFMT) {
2622                 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2623                         goto err_jquota_change;
2624                 if (quota_feature) {
2625                         ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2626                                  "ignored when QUOTA feature is enabled");
2627                         return 0;
2628                 }
2629         }
2630 
2631         /* Make sure we don't mix old and new quota format */
2632         usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2633                        ctx->s_qf_names[USRQUOTA]);
2634         grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2635                        ctx->s_qf_names[GRPQUOTA]);
2636 
2637         usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2638                     test_opt(sb, USRQUOTA));
2639 
2640         grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2641                     test_opt(sb, GRPQUOTA));
2642 
2643         if (usr_qf_name) {
2644                 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2645                 usrquota = false;
2646         }
2647         if (grp_qf_name) {
2648                 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2649                 grpquota = false;
2650         }
2651 
2652         if (usr_qf_name || grp_qf_name) {
2653                 if (usrquota || grpquota) {
2654                         ext4_msg(NULL, KERN_ERR, "old and new quota "
2655                                  "format mixing");
2656                         return -EINVAL;
2657                 }
2658 
2659                 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2660                         ext4_msg(NULL, KERN_ERR, "journaled quota format "
2661                                  "not specified");
2662                         return -EINVAL;
2663                 }
2664         }
2665 
2666         return 0;
2667 
2668 err_quota_change:
2669         ext4_msg(NULL, KERN_ERR,
2670                  "Cannot change quota options when quota turned on");
2671         return -EINVAL;
2672 err_jquota_change:
2673         ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2674                  "options when quota turned on");
2675         return -EINVAL;
2676 err_jquota_specified:
2677         ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2678                  QTYPE2NAME(i));
2679         return -EINVAL;
2680 #else
2681         return 0;
2682 #endif
2683 }
2684 
2685 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2686                                             struct super_block *sb)
2687 {
2688         const struct ext4_fs_context *ctx = fc->fs_private;
2689         const struct ext4_sb_info *sbi = EXT4_SB(sb);
2690 
2691         if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2692                 return 0;
2693 
2694         if (!ext4_has_feature_encrypt(sb)) {
2695                 ext4_msg(NULL, KERN_WARNING,
2696                          "test_dummy_encryption requires encrypt feature");
2697                 return -EINVAL;
2698         }
2699         /*
2700          * This mount option is just for testing, and it's not worthwhile to
2701          * implement the extra complexity (e.g. RCU protection) that would be
2702          * needed to allow it to be set or changed during remount.  We do allow
2703          * it to be specified during remount, but only if there is no change.
2704          */
2705         if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2706                 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2707                                                  &ctx->dummy_enc_policy))
2708                         return 0;
2709                 ext4_msg(NULL, KERN_WARNING,
2710                          "Can't set or change test_dummy_encryption on remount");
2711                 return -EINVAL;
2712         }
2713         /* Also make sure s_mount_opts didn't contain a conflicting value. */
2714         if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2715                 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2716                                                  &ctx->dummy_enc_policy))
2717                         return 0;
2718                 ext4_msg(NULL, KERN_WARNING,
2719                          "Conflicting test_dummy_encryption options");
2720                 return -EINVAL;
2721         }
2722         return 0;
2723 }
2724 
2725 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2726                                              struct super_block *sb)
2727 {
2728         if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2729             /* if already set, it was already verified to be the same */
2730             fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2731                 return;
2732         EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2733         memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2734         ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2735 }
2736 
2737 static int ext4_check_opt_consistency(struct fs_context *fc,
2738                                       struct super_block *sb)
2739 {
2740         struct ext4_fs_context *ctx = fc->fs_private;
2741         struct ext4_sb_info *sbi = fc->s_fs_info;
2742         int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2743         int err;
2744 
2745         if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2746                 ext4_msg(NULL, KERN_ERR,
2747                          "Mount option(s) incompatible with ext2");
2748                 return -EINVAL;
2749         }
2750         if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2751                 ext4_msg(NULL, KERN_ERR,
2752                          "Mount option(s) incompatible with ext3");
2753                 return -EINVAL;
2754         }
2755 
2756         if (ctx->s_want_extra_isize >
2757             (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2758                 ext4_msg(NULL, KERN_ERR,
2759                          "Invalid want_extra_isize %d",
2760                          ctx->s_want_extra_isize);
2761                 return -EINVAL;
2762         }
2763 
2764         err = ext4_check_test_dummy_encryption(fc, sb);
2765         if (err)
2766                 return err;
2767 
2768         if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2769                 if (!sbi->s_journal) {
2770                         ext4_msg(NULL, KERN_WARNING,
2771                                  "Remounting file system with no journal "
2772                                  "so ignoring journalled data option");
2773                         ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2774                 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2775                            test_opt(sb, DATA_FLAGS)) {
2776                         ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2777                                  "on remount");
2778                         return -EINVAL;
2779                 }
2780         }
2781 
2782         if (is_remount) {
2783                 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2784                     (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2785                         ext4_msg(NULL, KERN_ERR, "can't mount with "
2786                                  "both data=journal and dax");
2787                         return -EINVAL;
2788                 }
2789 
2790                 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2791                     (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2792                      (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2793 fail_dax_change_remount:
2794                         ext4_msg(NULL, KERN_ERR, "can't change "
2795                                  "dax mount option while remounting");
2796                         return -EINVAL;
2797                 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2798                          (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2799                           (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2800                         goto fail_dax_change_remount;
2801                 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2802                            ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2803                             (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2804                             !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2805                         goto fail_dax_change_remount;
2806                 }
2807         }
2808 
2809         return ext4_check_quota_consistency(fc, sb);
2810 }
2811 
2812 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2813 {
2814         struct ext4_fs_context *ctx = fc->fs_private;
2815         struct ext4_sb_info *sbi = fc->s_fs_info;
2816 
2817         sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2818         sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2819         sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2820         sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2821         sb->s_flags &= ~ctx->mask_s_flags;
2822         sb->s_flags |= ctx->vals_s_flags;
2823 
2824 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2825         APPLY(s_commit_interval);
2826         APPLY(s_stripe);
2827         APPLY(s_max_batch_time);
2828         APPLY(s_min_batch_time);
2829         APPLY(s_want_extra_isize);
2830         APPLY(s_inode_readahead_blks);
2831         APPLY(s_max_dir_size_kb);
2832         APPLY(s_li_wait_mult);
2833         APPLY(s_resgid);
2834         APPLY(s_resuid);
2835 
2836 #ifdef CONFIG_EXT4_DEBUG
2837         APPLY(s_fc_debug_max_replay);
2838 #endif
2839 
2840         ext4_apply_quota_options(fc, sb);
2841         ext4_apply_test_dummy_encryption(ctx, sb);
2842 }
2843 
2844 
2845 static int ext4_validate_options(struct fs_context *fc)
2846 {
2847 #ifdef CONFIG_QUOTA
2848         struct ext4_fs_context *ctx = fc->fs_private;
2849         char *usr_qf_name, *grp_qf_name;
2850 
2851         usr_qf_name = ctx->s_qf_names[USRQUOTA];
2852         grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2853 
2854         if (usr_qf_name || grp_qf_name) {
2855                 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2856                         ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2857 
2858                 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2859                         ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2860 
2861                 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2862                     ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2863                         ext4_msg(NULL, KERN_ERR, "old and new quota "
2864                                  "format mixing");
2865                         return -EINVAL;
2866                 }
2867         }
2868 #endif
2869         return 1;
2870 }
2871 
2872 static inline void ext4_show_quota_options(struct seq_file *seq,
2873                                            struct super_block *sb)
2874 {
2875 #if defined(CONFIG_QUOTA)
2876         struct ext4_sb_info *sbi = EXT4_SB(sb);
2877         char *usr_qf_name, *grp_qf_name;
2878 
2879         if (sbi->s_jquota_fmt) {
2880                 char *fmtname = "";
2881 
2882                 switch (sbi->s_jquota_fmt) {
2883                 case QFMT_VFS_OLD:
2884                         fmtname = "vfsold";
2885                         break;
2886                 case QFMT_VFS_V0:
2887                         fmtname = "vfsv0";
2888                         break;
2889                 case QFMT_VFS_V1:
2890                         fmtname = "vfsv1";
2891                         break;
2892                 }
2893                 seq_printf(seq, ",jqfmt=%s", fmtname);
2894         }
2895 
2896         rcu_read_lock();
2897         usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2898         grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2899         if (usr_qf_name)
2900                 seq_show_option(seq, "usrjquota", usr_qf_name);
2901         if (grp_qf_name)
2902                 seq_show_option(seq, "grpjquota", grp_qf_name);
2903         rcu_read_unlock();
2904 #endif
2905 }
2906 
2907 static const char *token2str(int token)
2908 {
2909         const struct fs_parameter_spec *spec;
2910 
2911         for (spec = ext4_param_specs; spec->name != NULL; spec++)
2912                 if (spec->opt == token && !spec->type)
2913                         break;
2914         return spec->name;
2915 }
2916 
2917 /*
2918  * Show an option if
2919  *  - it's set to a non-default value OR
2920  *  - if the per-sb default is different from the global default
2921  */
2922 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2923                               int nodefs)
2924 {
2925         struct ext4_sb_info *sbi = EXT4_SB(sb);
2926         struct ext4_super_block *es = sbi->s_es;
2927         int def_errors;
2928         const struct mount_opts *m;
2929         char sep = nodefs ? '\n' : ',';
2930 
2931 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2932 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2933 
2934         if (sbi->s_sb_block != 1)
2935                 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2936 
2937         for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2938                 int want_set = m->flags & MOPT_SET;
2939                 int opt_2 = m->flags & MOPT_2;
2940                 unsigned int mount_opt, def_mount_opt;
2941 
2942                 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2943                     m->flags & MOPT_SKIP)
2944                         continue;
2945 
2946                 if (opt_2) {
2947                         mount_opt = sbi->s_mount_opt2;
2948                         def_mount_opt = sbi->s_def_mount_opt2;
2949                 } else {
2950                         mount_opt = sbi->s_mount_opt;
2951                         def_mount_opt = sbi->s_def_mount_opt;
2952                 }
2953                 /* skip if same as the default */
2954                 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2955                         continue;
2956                 /* select Opt_noFoo vs Opt_Foo */
2957                 if ((want_set &&
2958                      (mount_opt & m->mount_opt) != m->mount_opt) ||
2959                     (!want_set && (mount_opt & m->mount_opt)))
2960                         continue;
2961                 SEQ_OPTS_PRINT("%s", token2str(m->token));
2962         }
2963 
2964         if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2965             le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2966                 SEQ_OPTS_PRINT("resuid=%u",
2967                                 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2968         if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2969             le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2970                 SEQ_OPTS_PRINT("resgid=%u",
2971                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2972         def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2973         if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2974                 SEQ_OPTS_PUTS("errors=remount-ro");
2975         if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2976                 SEQ_OPTS_PUTS("errors=continue");
2977         if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2978                 SEQ_OPTS_PUTS("errors=panic");
2979         if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2980                 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2981         if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2982                 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2983         if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2984                 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2985         if (nodefs || sbi->s_stripe)
2986                 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2987         if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2988                         (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2989                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2990                         SEQ_OPTS_PUTS("data=journal");
2991                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2992                         SEQ_OPTS_PUTS("data=ordered");
2993                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2994                         SEQ_OPTS_PUTS("data=writeback");
2995         }
2996         if (nodefs ||
2997             sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2998                 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2999                                sbi->s_inode_readahead_blks);
3000 
3001         if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3002                        (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3003                 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3004         if (nodefs || sbi->s_max_dir_size_kb)
3005                 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3006         if (test_opt(sb, DATA_ERR_ABORT))
3007                 SEQ_OPTS_PUTS("data_err=abort");
3008 
3009         fscrypt_show_test_dummy_encryption(seq, sep, sb);
3010 
3011         if (sb->s_flags & SB_INLINECRYPT)
3012                 SEQ_OPTS_PUTS("inlinecrypt");
3013 
3014         if (test_opt(sb, DAX_ALWAYS)) {
3015                 if (IS_EXT2_SB(sb))
3016                         SEQ_OPTS_PUTS("dax");
3017                 else
3018                         SEQ_OPTS_PUTS("dax=always");
3019         } else if (test_opt2(sb, DAX_NEVER)) {
3020                 SEQ_OPTS_PUTS("dax=never");
3021         } else if (test_opt2(sb, DAX_INODE)) {
3022                 SEQ_OPTS_PUTS("dax=inode");
3023         }
3024 
3025         if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3026                         !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3027                 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3028         } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3029                         test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3030                 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3031         }
3032 
3033         ext4_show_quota_options(seq, sb);
3034         return 0;
3035 }
3036 
3037 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3038 {
3039         return _ext4_show_options(seq, root->d_sb, 0);
3040 }
3041 
3042 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3043 {
3044         struct super_block *sb = seq->private;
3045         int rc;
3046 
3047         seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3048         rc = _ext4_show_options(seq, sb, 1);
3049         seq_puts(seq, "\n");
3050         return rc;
3051 }
3052 
3053 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3054                             int read_only)
3055 {
3056         struct ext4_sb_info *sbi = EXT4_SB(sb);
3057         int err = 0;
3058 
3059         if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3060                 ext4_msg(sb, KERN_ERR, "revision level too high, "
3061                          "forcing read-only mode");
3062                 err = -EROFS;
3063                 goto done;
3064         }
3065         if (read_only)
3066                 goto done;
3067         if (!(sbi->s_mount_state & EXT4_VALID_FS))
3068                 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3069                          "running e2fsck is recommended");
3070         else if (sbi->s_mount_state & EXT4_ERROR_FS)
3071                 ext4_msg(sb, KERN_WARNING,
3072                          "warning: mounting fs with errors, "
3073                          "running e2fsck is recommended");
3074         else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3075                  le16_to_cpu(es->s_mnt_count) >=
3076                  (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3077                 ext4_msg(sb, KERN_WARNING,
3078                          "warning: maximal mount count reached, "
3079                          "running e2fsck is recommended");
3080         else if (le32_to_cpu(es->s_checkinterval) &&
3081                  (ext4_get_tstamp(es, s_lastcheck) +
3082                   le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3083                 ext4_msg(sb, KERN_WARNING,
3084                          "warning: checktime reached, "
3085                          "running e2fsck is recommended");
3086         if (!sbi->s_journal)
3087                 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3088         if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3089                 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3090         le16_add_cpu(&es->s_mnt_count, 1);
3091         ext4_update_tstamp(es, s_mtime);
3092         if (sbi->s_journal) {
3093                 ext4_set_feature_journal_needs_recovery(sb);
3094                 if (ext4_has_feature_orphan_file(sb))
3095                         ext4_set_feature_orphan_present(sb);
3096         }
3097 
3098         err = ext4_commit_super(sb);
3099 done:
3100         if (test_opt(sb, DEBUG))
3101                 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3102                                 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3103                         sb->s_blocksize,
3104                         sbi->s_groups_count,
3105                         EXT4_BLOCKS_PER_GROUP(sb),
3106                         EXT4_INODES_PER_GROUP(sb),
3107                         sbi->s_mount_opt, sbi->s_mount_opt2);
3108         return err;
3109 }
3110 
3111 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3112 {
3113         struct ext4_sb_info *sbi = EXT4_SB(sb);
3114         struct flex_groups **old_groups, **new_groups;
3115         int size, i, j;
3116 
3117         if (!sbi->s_log_groups_per_flex)
3118                 return 0;
3119 
3120         size = ext4_flex_group(sbi, ngroup - 1) + 1;
3121         if (size <= sbi->s_flex_groups_allocated)
3122                 return 0;
3123 
3124         new_groups = kvzalloc(roundup_pow_of_two(size *
3125                               sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3126         if (!new_groups) {
3127                 ext4_msg(sb, KERN_ERR,
3128                          "not enough memory for %d flex group pointers", size);
3129                 return -ENOMEM;
3130         }
3131         for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3132                 new_groups[i] = kvzalloc(roundup_pow_of_two(
3133                                          sizeof(struct flex_groups)),
3134                                          GFP_KERNEL);
3135                 if (!new_groups[i]) {
3136                         for (j = sbi->s_flex_groups_allocated; j < i; j++)
3137                                 kvfree(new_groups[j]);
3138                         kvfree(new_groups);
3139                         ext4_msg(sb, KERN_ERR,
3140                                  "not enough memory for %d flex groups", size);
3141                         return -ENOMEM;
3142                 }
3143         }
3144         rcu_read_lock();
3145         old_groups = rcu_dereference(sbi->s_flex_groups);
3146         if (old_groups)
3147                 memcpy(new_groups, old_groups,
3148                        (sbi->s_flex_groups_allocated *
3149                         sizeof(struct flex_groups *)));
3150         rcu_read_unlock();
3151         rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3152         sbi->s_flex_groups_allocated = size;
3153         if (old_groups)
3154                 ext4_kvfree_array_rcu(old_groups);
3155         return 0;
3156 }
3157 
3158 static int ext4_fill_flex_info(struct super_block *sb)
3159 {
3160         struct ext4_sb_info *sbi = EXT4_SB(sb);
3161         struct ext4_group_desc *gdp = NULL;
3162         struct flex_groups *fg;
3163         ext4_group_t flex_group;
3164         int i, err;
3165 
3166         sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3167         if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3168                 sbi->s_log_groups_per_flex = 0;
3169                 return 1;
3170         }
3171 
3172         err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3173         if (err)
3174                 goto failed;
3175 
3176         for (i = 0; i < sbi->s_groups_count; i++) {
3177                 gdp = ext4_get_group_desc(sb, i, NULL);
3178 
3179                 flex_group = ext4_flex_group(sbi, i);
3180                 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3181                 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3182                 atomic64_add(ext4_free_group_clusters(sb, gdp),
3183                              &fg->free_clusters);
3184                 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3185         }
3186 
3187         return 1;
3188 failed:
3189         return 0;
3190 }
3191 
3192 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3193                                    struct ext4_group_desc *gdp)
3194 {
3195         int offset = offsetof(struct ext4_group_desc, bg_checksum);
3196         __u16 crc = 0;
3197         __le32 le_group = cpu_to_le32(block_group);
3198         struct ext4_sb_info *sbi = EXT4_SB(sb);
3199 
3200         if (ext4_has_metadata_csum(sbi->s_sb)) {
3201                 /* Use new metadata_csum algorithm */
3202                 __u32 csum32;
3203                 __u16 dummy_csum = 0;
3204 
3205                 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3206                                      sizeof(le_group));
3207                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3208                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3209                                      sizeof(dummy_csum));
3210                 offset += sizeof(dummy_csum);
3211                 if (offset < sbi->s_desc_size)
3212                         csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3213                                              sbi->s_desc_size - offset);
3214 
3215                 crc = csum32 & 0xFFFF;
3216                 goto out;
3217         }
3218 
3219         /* old crc16 code */
3220         if (!ext4_has_feature_gdt_csum(sb))
3221                 return 0;
3222 
3223         crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3224         crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3225         crc = crc16(crc, (__u8 *)gdp, offset);
3226         offset += sizeof(gdp->bg_checksum); /* skip checksum */
3227         /* for checksum of struct ext4_group_desc do the rest...*/
3228         if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3229                 crc = crc16(crc, (__u8 *)gdp + offset,
3230                             sbi->s_desc_size - offset);
3231 
3232 out:
3233         return cpu_to_le16(crc);
3234 }
3235 
3236 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3237                                 struct ext4_group_desc *gdp)
3238 {
3239         if (ext4_has_group_desc_csum(sb) &&
3240             (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3241                 return 0;
3242 
3243         return 1;
3244 }
3245 
3246 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3247                               struct ext4_group_desc *gdp)
3248 {
3249         if (!ext4_has_group_desc_csum(sb))
3250                 return;
3251         gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3252 }
3253 
3254 /* Called at mount-time, super-block is locked */
3255 static int ext4_check_descriptors(struct super_block *sb,
3256                                   ext4_fsblk_t sb_block,
3257                                   ext4_group_t *first_not_zeroed)
3258 {
3259         struct ext4_sb_info *sbi = EXT4_SB(sb);
3260         ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3261         ext4_fsblk_t last_block;
3262         ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3263         ext4_fsblk_t block_bitmap;
3264         ext4_fsblk_t inode_bitmap;
3265         ext4_fsblk_t inode_table;
3266         int flexbg_flag = 0;
3267         ext4_group_t i, grp = sbi->s_groups_count;
3268 
3269         if (ext4_has_feature_flex_bg(sb))
3270                 flexbg_flag = 1;
3271 
3272         ext4_debug("Checking group descriptors");
3273 
3274         for (i = 0; i < sbi->s_groups_count; i++) {
3275                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3276 
3277                 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3278                         last_block = ext4_blocks_count(sbi->s_es) - 1;
3279                 else
3280                         last_block = first_block +
3281                                 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3282 
3283                 if ((grp == sbi->s_groups_count) &&
3284                    !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3285                         grp = i;
3286 
3287                 block_bitmap = ext4_block_bitmap(sb, gdp);
3288                 if (block_bitmap == sb_block) {
3289                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3290                                  "Block bitmap for group %u overlaps "
3291                                  "superblock", i);
3292                         if (!sb_rdonly(sb))
3293                                 return 0;
3294                 }
3295                 if (block_bitmap >= sb_block + 1 &&
3296                     block_bitmap <= last_bg_block) {
3297                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3298                                  "Block bitmap for group %u overlaps "
3299                                  "block group descriptors", i);
3300                         if (!sb_rdonly(sb))
3301                                 return 0;
3302                 }
3303                 if (block_bitmap < first_block || block_bitmap > last_block) {
3304                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3305                                "Block bitmap for group %u not in group "
3306                                "(block %llu)!", i, block_bitmap);
3307                         return 0;
3308                 }
3309                 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3310                 if (inode_bitmap == sb_block) {
3311                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3312                                  "Inode bitmap for group %u overlaps "
3313                                  "superblock", i);
3314                         if (!sb_rdonly(sb))
3315                                 return 0;
3316                 }
3317                 if (inode_bitmap >= sb_block + 1 &&
3318                     inode_bitmap <= last_bg_block) {
3319                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3320                                  "Inode bitmap for group %u overlaps "
3321                                  "block group descriptors", i);
3322                         if (!sb_rdonly(sb))
3323                                 return 0;
3324                 }
3325                 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3326                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3327                                "Inode bitmap for group %u not in group "
3328                                "(block %llu)!", i, inode_bitmap);
3329                         return 0;
3330                 }
3331                 inode_table = ext4_inode_table(sb, gdp);
3332                 if (inode_table == sb_block) {
3333                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3334                                  "Inode table for group %u overlaps "
3335                                  "superblock", i);
3336                         if (!sb_rdonly(sb))
3337                                 return 0;
3338                 }
3339                 if (inode_table >= sb_block + 1 &&
3340                     inode_table <= last_bg_block) {
3341                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3342                                  "Inode table for group %u overlaps "
3343                                  "block group descriptors", i);
3344                         if (!sb_rdonly(sb))
3345                                 return 0;
3346                 }
3347                 if (inode_table < first_block ||
3348                     inode_table + sbi->s_itb_per_group - 1 > last_block) {
3349                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3350                                "Inode table for group %u not in group "
3351                                "(block %llu)!", i, inode_table);
3352                         return 0;
3353                 }
3354                 ext4_lock_group(sb, i);
3355                 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3356                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3357                                  "Checksum for group %u failed (%u!=%u)",
3358                                  i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3359                                      gdp)), le16_to_cpu(gdp->bg_checksum));
3360                         if (!sb_rdonly(sb)) {
3361                                 ext4_unlock_group(sb, i);
3362                                 return 0;
3363                         }
3364                 }
3365                 ext4_unlock_group(sb, i);
3366                 if (!flexbg_flag)
3367                         first_block += EXT4_BLOCKS_PER_GROUP(sb);
3368         }
3369         if (NULL != first_not_zeroed)
3370                 *first_not_zeroed = grp;
3371         return 1;
3372 }
3373 
3374 /*
3375  * Maximal extent format file size.
3376  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3377  * extent format containers, within a sector_t, and within i_blocks
3378  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3379  * so that won't be a limiting factor.
3380  *
3381  * However there is other limiting factor. We do store extents in the form
3382  * of starting block and length, hence the resulting length of the extent
3383  * covering maximum file size must fit into on-disk format containers as
3384  * well. Given that length is always by 1 unit bigger than max unit (because
3385  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3386  *
3387  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3388  */
3389 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3390 {
3391         loff_t res;
3392         loff_t upper_limit = MAX_LFS_FILESIZE;
3393 
3394         BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3395 
3396         if (!has_huge_files) {
3397                 upper_limit = (1LL << 32) - 1;
3398 
3399                 /* total blocks in file system block size */
3400                 upper_limit >>= (blkbits - 9);
3401                 upper_limit <<= blkbits;
3402         }
3403 
3404         /*
3405          * 32-bit extent-start container, ee_block. We lower the maxbytes
3406          * by one fs block, so ee_len can cover the extent of maximum file
3407          * size
3408          */
3409         res = (1LL << 32) - 1;
3410         res <<= blkbits;
3411 
3412         /* Sanity check against vm- & vfs- imposed limits */
3413         if (res > upper_limit)
3414                 res = upper_limit;
3415 
3416         return res;
3417 }
3418 
3419 /*
3420  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3421  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3422  * We need to be 1 filesystem block less than the 2^48 sector limit.
3423  */
3424 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3425 {
3426         loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3427         int meta_blocks;
3428         unsigned int ppb = 1 << (bits - 2);
3429 
3430         /*
3431          * This is calculated to be the largest file size for a dense, block
3432          * mapped file such that the file's total number of 512-byte sectors,
3433          * including data and all indirect blocks, does not exceed (2^48 - 1).
3434          *
3435          * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3436          * number of 512-byte sectors of the file.
3437          */
3438         if (!has_huge_files) {
3439                 /*
3440                  * !has_huge_files or implies that the inode i_block field
3441                  * represents total file blocks in 2^32 512-byte sectors ==
3442                  * size of vfs inode i_blocks * 8
3443                  */
3444                 upper_limit = (1LL << 32) - 1;
3445 
3446                 /* total blocks in file system block size */
3447                 upper_limit >>= (bits - 9);
3448 
3449         } else {
3450                 /*
3451                  * We use 48 bit ext4_inode i_blocks
3452                  * With EXT4_HUGE_FILE_FL set the i_blocks
3453                  * represent total number of blocks in
3454                  * file system block size
3455                  */
3456                 upper_limit = (1LL << 48) - 1;
3457 
3458         }
3459 
3460         /* Compute how many blocks we can address by block tree */
3461         res += ppb;
3462         res += ppb * ppb;
3463         res += ((loff_t)ppb) * ppb * ppb;
3464         /* Compute how many metadata blocks are needed */
3465         meta_blocks = 1;
3466         meta_blocks += 1 + ppb;
3467         meta_blocks += 1 + ppb + ppb * ppb;
3468         /* Does block tree limit file size? */
3469         if (res + meta_blocks <= upper_limit)
3470                 goto check_lfs;
3471 
3472         res = upper_limit;
3473         /* How many metadata blocks are needed for addressing upper_limit? */
3474         upper_limit -= EXT4_NDIR_BLOCKS;
3475         /* indirect blocks */
3476         meta_blocks = 1;
3477         upper_limit -= ppb;
3478         /* double indirect blocks */
3479         if (upper_limit < ppb * ppb) {
3480                 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3481                 res -= meta_blocks;
3482                 goto check_lfs;
3483         }
3484         meta_blocks += 1 + ppb;
3485         upper_limit -= ppb * ppb;
3486         /* tripple indirect blocks for the rest */
3487         meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3488                 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3489         res -= meta_blocks;
3490 check_lfs:
3491         res <<= bits;
3492         if (res > MAX_LFS_FILESIZE)
3493                 res = MAX_LFS_FILESIZE;
3494 
3495         return res;
3496 }
3497 
3498 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3499                                    ext4_fsblk_t logical_sb_block, int nr)
3500 {
3501         struct ext4_sb_info *sbi = EXT4_SB(sb);
3502         ext4_group_t bg, first_meta_bg;
3503         int has_super = 0;
3504 
3505         first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3506 
3507         if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3508                 return logical_sb_block + nr + 1;
3509         bg = sbi->s_desc_per_block * nr;
3510         if (ext4_bg_has_super(sb, bg))
3511                 has_super = 1;
3512 
3513         /*
3514          * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3515          * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3516          * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3517          * compensate.
3518          */
3519         if (sb->s_blocksize == 1024 && nr == 0 &&
3520             le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3521                 has_super++;
3522 
3523         return (has_super + ext4_group_first_block_no(sb, bg));
3524 }
3525 
3526 /**
3527  * ext4_get_stripe_size: Get the stripe size.
3528  * @sbi: In memory super block info
3529  *
3530  * If we have specified it via mount option, then
3531  * use the mount option value. If the value specified at mount time is
3532  * greater than the blocks per group use the super block value.
3533  * If the super block value is greater than blocks per group return 0.
3534  * Allocator needs it be less than blocks per group.
3535  *
3536  */
3537 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3538 {
3539         unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3540         unsigned long stripe_width =
3541                         le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3542         int ret;
3543 
3544         if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3545                 ret = sbi->s_stripe;
3546         else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3547                 ret = stripe_width;
3548         else if (stride && stride <= sbi->s_blocks_per_group)
3549                 ret = stride;
3550         else
3551                 ret = 0;
3552 
3553         /*
3554          * If the stripe width is 1, this makes no sense and
3555          * we set it to 0 to turn off stripe handling code.
3556          */
3557         if (ret <= 1)
3558                 ret = 0;
3559 
3560         return ret;
3561 }
3562 
3563 /*
3564  * Check whether this filesystem can be mounted based on
3565  * the features present and the RDONLY/RDWR mount requested.
3566  * Returns 1 if this filesystem can be mounted as requested,
3567  * 0 if it cannot be.
3568  */
3569 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3570 {
3571         if (ext4_has_unknown_ext4_incompat_features(sb)) {
3572                 ext4_msg(sb, KERN_ERR,
3573                         "Couldn't mount because of "
3574                         "unsupported optional features (%x)",
3575                         (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3576                         ~EXT4_FEATURE_INCOMPAT_SUPP));
3577                 return 0;
3578         }
3579 
3580         if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3581                 ext4_msg(sb, KERN_ERR,
3582                          "Filesystem with casefold feature cannot be "
3583                          "mounted without CONFIG_UNICODE");
3584                 return 0;
3585         }
3586 
3587         if (readonly)
3588                 return 1;
3589 
3590         if (ext4_has_feature_readonly(sb)) {
3591                 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3592                 sb->s_flags |= SB_RDONLY;
3593                 return 1;
3594         }
3595 
3596         /* Check that feature set is OK for a read-write mount */
3597         if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3598                 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3599                          "unsupported optional features (%x)",
3600                          (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3601                                 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3602                 return 0;
3603         }
3604         if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3605                 ext4_msg(sb, KERN_ERR,
3606                          "Can't support bigalloc feature without "
3607                          "extents feature\n");
3608                 return 0;
3609         }
3610 
3611 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3612         if (!readonly && (ext4_has_feature_quota(sb) ||
3613                           ext4_has_feature_project(sb))) {
3614                 ext4_msg(sb, KERN_ERR,
3615                          "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3616                 return 0;
3617         }
3618 #endif  /* CONFIG_QUOTA */
3619         return 1;
3620 }
3621 
3622 /*
3623  * This function is called once a day if we have errors logged
3624  * on the file system
3625  */
3626 static void print_daily_error_info(struct timer_list *t)
3627 {
3628         struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3629         struct super_block *sb = sbi->s_sb;
3630         struct ext4_super_block *es = sbi->s_es;
3631 
3632         if (es->s_error_count)
3633                 /* fsck newer than v1.41.13 is needed to clean this condition. */
3634                 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3635                          le32_to_cpu(es->s_error_count));
3636         if (es->s_first_error_time) {
3637                 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3638                        sb->s_id,
3639                        ext4_get_tstamp(es, s_first_error_time),
3640                        (int) sizeof(es->s_first_error_func),
3641                        es->s_first_error_func,
3642                        le32_to_cpu(es->s_first_error_line));
3643                 if (es->s_first_error_ino)
3644                         printk(KERN_CONT ": inode %u",
3645                                le32_to_cpu(es->s_first_error_ino));
3646                 if (es->s_first_error_block)
3647                         printk(KERN_CONT ": block %llu", (unsigned long long)
3648                                le64_to_cpu(es->s_first_error_block));
3649                 printk(KERN_CONT "\n");
3650         }
3651         if (es->s_last_error_time) {
3652                 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3653                        sb->s_id,
3654                        ext4_get_tstamp(es, s_last_error_time),
3655                        (int) sizeof(es->s_last_error_func),
3656                        es->s_last_error_func,
3657                        le32_to_cpu(es->s_last_error_line));
3658                 if (es->s_last_error_ino)
3659                         printk(KERN_CONT ": inode %u",
3660                                le32_to_cpu(es->s_last_error_ino));
3661                 if (es->s_last_error_block)
3662                         printk(KERN_CONT ": block %llu", (unsigned long long)
3663                                le64_to_cpu(es->s_last_error_block));
3664                 printk(KERN_CONT "\n");
3665         }
3666         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3667 }
3668 
3669 /* Find next suitable group and run ext4_init_inode_table */
3670 static int ext4_run_li_request(struct ext4_li_request *elr)
3671 {
3672         struct ext4_group_desc *gdp = NULL;
3673         struct super_block *sb = elr->lr_super;
3674         ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3675         ext4_group_t group = elr->lr_next_group;
3676         unsigned int prefetch_ios = 0;
3677         int ret = 0;
3678         int nr = EXT4_SB(sb)->s_mb_prefetch;
3679         u64 start_time;
3680 
3681         if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3682                 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3683                 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3684                 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3685                 if (group >= elr->lr_next_group) {
3686                         ret = 1;
3687                         if (elr->lr_first_not_zeroed != ngroups &&
3688                             !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3689                                 elr->lr_next_group = elr->lr_first_not_zeroed;
3690                                 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3691                                 ret = 0;
3692                         }
3693                 }
3694                 return ret;
3695         }
3696 
3697         for (; group < ngroups; group++) {
3698                 gdp = ext4_get_group_desc(sb, group, NULL);
3699                 if (!gdp) {
3700                         ret = 1;
3701                         break;
3702                 }
3703 
3704                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3705                         break;
3706         }
3707 
3708         if (group >= ngroups)
3709                 ret = 1;
3710 
3711         if (!ret) {
3712                 start_time = ktime_get_real_ns();
3713                 ret = ext4_init_inode_table(sb, group,
3714                                             elr->lr_timeout ? 0 : 1);
3715                 trace_ext4_lazy_itable_init(sb, group);
3716                 if (elr->lr_timeout == 0) {
3717                         elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3718                                 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3719                 }
3720                 elr->lr_next_sched = jiffies + elr->lr_timeout;
3721                 elr->lr_next_group = group + 1;
3722         }
3723         return ret;
3724 }
3725 
3726 /*
3727  * Remove lr_request from the list_request and free the
3728  * request structure. Should be called with li_list_mtx held
3729  */
3730 static void ext4_remove_li_request(struct ext4_li_request *elr)
3731 {
3732         if (!elr)
3733                 return;
3734 
3735         list_del(&elr->lr_request);
3736         EXT4_SB(elr->lr_super)->s_li_request = NULL;
3737         kfree(elr);
3738 }
3739 
3740 static void ext4_unregister_li_request(struct super_block *sb)
3741 {
3742         mutex_lock(&ext4_li_mtx);
3743         if (!ext4_li_info) {
3744                 mutex_unlock(&ext4_li_mtx);
3745                 return;
3746         }
3747 
3748         mutex_lock(&ext4_li_info->li_list_mtx);
3749         ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3750         mutex_unlock(&ext4_li_info->li_list_mtx);
3751         mutex_unlock(&ext4_li_mtx);
3752 }
3753 
3754 static struct task_struct *ext4_lazyinit_task;
3755 
3756 /*
3757  * This is the function where ext4lazyinit thread lives. It walks
3758  * through the request list searching for next scheduled filesystem.
3759  * When such a fs is found, run the lazy initialization request
3760  * (ext4_rn_li_request) and keep track of the time spend in this
3761  * function. Based on that time we compute next schedule time of
3762  * the request. When walking through the list is complete, compute
3763  * next waking time and put itself into sleep.
3764  */
3765 static int ext4_lazyinit_thread(void *arg)
3766 {
3767         struct ext4_lazy_init *eli = arg;
3768         struct list_head *pos, *n;
3769         struct ext4_li_request *elr;
3770         unsigned long next_wakeup, cur;
3771 
3772         BUG_ON(NULL == eli);
3773         set_freezable();
3774 
3775 cont_thread:
3776         while (true) {
3777                 next_wakeup = MAX_JIFFY_OFFSET;
3778 
3779                 mutex_lock(&eli->li_list_mtx);
3780                 if (list_empty(&eli->li_request_list)) {
3781                         mutex_unlock(&eli->li_list_mtx);
3782                         goto exit_thread;
3783                 }
3784                 list_for_each_safe(pos, n, &eli->li_request_list) {
3785                         int err = 0;
3786                         int progress = 0;
3787                         elr = list_entry(pos, struct ext4_li_request,
3788                                          lr_request);
3789 
3790                         if (time_before(jiffies, elr->lr_next_sched)) {
3791                                 if (time_before(elr->lr_next_sched, next_wakeup))
3792                                         next_wakeup = elr->lr_next_sched;
3793                                 continue;
3794                         }
3795                         if (down_read_trylock(&elr->lr_super->s_umount)) {
3796                                 if (sb_start_write_trylock(elr->lr_super)) {
3797                                         progress = 1;
3798                                         /*
3799                                          * We hold sb->s_umount, sb can not
3800                                          * be removed from the list, it is
3801                                          * now safe to drop li_list_mtx
3802                                          */
3803                                         mutex_unlock(&eli->li_list_mtx);
3804                                         err = ext4_run_li_request(elr);
3805                                         sb_end_write(elr->lr_super);
3806                                         mutex_lock(&eli->li_list_mtx);
3807                                         n = pos->next;
3808                                 }
3809                                 up_read((&elr->lr_super->s_umount));
3810                         }
3811                         /* error, remove the lazy_init job */
3812                         if (err) {
3813                                 ext4_remove_li_request(elr);
3814                                 continue;
3815                         }
3816                         if (!progress) {
3817                                 elr->lr_next_sched = jiffies +
3818                                         get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3819                         }
3820                         if (time_before(elr->lr_next_sched, next_wakeup))
3821                                 next_wakeup = elr->lr_next_sched;
3822                 }
3823                 mutex_unlock(&eli->li_list_mtx);
3824 
3825                 try_to_freeze();
3826 
3827                 cur = jiffies;
3828                 if ((time_after_eq(cur, next_wakeup)) ||
3829                     (MAX_JIFFY_OFFSET == next_wakeup)) {
3830                         cond_resched();
3831                         continue;
3832                 }
3833 
3834                 schedule_timeout_interruptible(next_wakeup - cur);
3835 
3836                 if (kthread_should_stop()) {
3837                         ext4_clear_request_list();
3838                         goto exit_thread;
3839                 }
3840         }
3841 
3842 exit_thread:
3843         /*
3844          * It looks like the request list is empty, but we need
3845          * to check it under the li_list_mtx lock, to prevent any
3846          * additions into it, and of course we should lock ext4_li_mtx
3847          * to atomically free the list and ext4_li_info, because at
3848          * this point another ext4 filesystem could be registering
3849          * new one.
3850          */
3851         mutex_lock(&ext4_li_mtx);
3852         mutex_lock(&eli->li_list_mtx);
3853         if (!list_empty(&eli->li_request_list)) {
3854                 mutex_unlock(&eli->li_list_mtx);
3855                 mutex_unlock(&ext4_li_mtx);
3856                 goto cont_thread;
3857         }
3858         mutex_unlock(&eli->li_list_mtx);
3859         kfree(ext4_li_info);
3860         ext4_li_info = NULL;
3861         mutex_unlock(&ext4_li_mtx);
3862 
3863         return 0;
3864 }
3865 
3866 static void ext4_clear_request_list(void)
3867 {
3868         struct list_head *pos, *n;
3869         struct ext4_li_request *elr;
3870 
3871         mutex_lock(&ext4_li_info->li_list_mtx);
3872         list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3873                 elr = list_entry(pos, struct ext4_li_request,
3874                                  lr_request);
3875                 ext4_remove_li_request(elr);
3876         }
3877         mutex_unlock(&ext4_li_info->li_list_mtx);
3878 }
3879 
3880 static int ext4_run_lazyinit_thread(void)
3881 {
3882         ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3883                                          ext4_li_info, "ext4lazyinit");
3884         if (IS_ERR(ext4_lazyinit_task)) {
3885                 int err = PTR_ERR(ext4_lazyinit_task);
3886                 ext4_clear_request_list();
3887                 kfree(ext4_li_info);
3888                 ext4_li_info = NULL;
3889                 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3890                                  "initialization thread\n",
3891                                  err);
3892                 return err;
3893         }
3894         ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3895         return 0;
3896 }
3897 
3898 /*
3899  * Check whether it make sense to run itable init. thread or not.
3900  * If there is at least one uninitialized inode table, return
3901  * corresponding group number, else the loop goes through all
3902  * groups and return total number of groups.
3903  */
3904 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3905 {
3906         ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3907         struct ext4_group_desc *gdp = NULL;
3908 
3909         if (!ext4_has_group_desc_csum(sb))
3910                 return ngroups;
3911 
3912         for (group = 0; group < ngroups; group++) {
3913                 gdp = ext4_get_group_desc(sb, group, NULL);
3914                 if (!gdp)
3915                         continue;
3916 
3917                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3918                         break;
3919         }
3920 
3921         return group;
3922 }
3923 
3924 static int ext4_li_info_new(void)
3925 {
3926         struct ext4_lazy_init *eli = NULL;
3927 
3928         eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3929         if (!eli)
3930                 return -ENOMEM;
3931 
3932         INIT_LIST_HEAD(&eli->li_request_list);
3933         mutex_init(&eli->li_list_mtx);
3934 
3935         eli->li_state |= EXT4_LAZYINIT_QUIT;
3936 
3937         ext4_li_info = eli;
3938 
3939         return 0;
3940 }
3941 
3942 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3943                                             ext4_group_t start)
3944 {
3945         struct ext4_li_request *elr;
3946 
3947         elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3948         if (!elr)
3949                 return NULL;
3950 
3951         elr->lr_super = sb;
3952         elr->lr_first_not_zeroed = start;
3953         if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3954                 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3955                 elr->lr_next_group = start;
3956         } else {
3957                 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3958         }
3959 
3960         /*
3961          * Randomize first schedule time of the request to
3962          * spread the inode table initialization requests
3963          * better.
3964          */
3965         elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3966         return elr;
3967 }
3968 
3969 int ext4_register_li_request(struct super_block *sb,
3970                              ext4_group_t first_not_zeroed)
3971 {
3972         struct ext4_sb_info *sbi = EXT4_SB(sb);
3973         struct ext4_li_request *elr = NULL;
3974         ext4_group_t ngroups = sbi->s_groups_count;
3975         int ret = 0;
3976 
3977         mutex_lock(&ext4_li_mtx);
3978         if (sbi->s_li_request != NULL) {
3979                 /*
3980                  * Reset timeout so it can be computed again, because
3981                  * s_li_wait_mult might have changed.
3982                  */
3983                 sbi->s_li_request->lr_timeout = 0;
3984                 goto out;
3985         }
3986 
3987         if (sb_rdonly(sb) ||
3988             (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3989              (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
3990                 goto out;
3991 
3992         elr = ext4_li_request_new(sb, first_not_zeroed);
3993         if (!elr) {
3994                 ret = -ENOMEM;
3995                 goto out;
3996         }
3997 
3998         if (NULL == ext4_li_info) {
3999                 ret = ext4_li_info_new();
4000                 if (ret)
4001                         goto out;
4002         }
4003 
4004         mutex_lock(&ext4_li_info->li_list_mtx);
4005         list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4006         mutex_unlock(&ext4_li_info->li_list_mtx);
4007 
4008         sbi->s_li_request = elr;
4009         /*
4010          * set elr to NULL here since it has been inserted to
4011          * the request_list and the removal and free of it is
4012          * handled by ext4_clear_request_list from now on.
4013          */
4014         elr = NULL;
4015 
4016         if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4017                 ret = ext4_run_lazyinit_thread();
4018                 if (ret)
4019                         goto out;
4020         }
4021 out:
4022         mutex_unlock(&ext4_li_mtx);
4023         if (ret)
4024                 kfree(elr);
4025         return ret;
4026 }
4027 
4028 /*
4029  * We do not need to lock anything since this is called on
4030  * module unload.
4031  */
4032 static void ext4_destroy_lazyinit_thread(void)
4033 {
4034         /*
4035          * If thread exited earlier
4036          * there's nothing to be done.
4037          */
4038         if (!ext4_li_info || !ext4_lazyinit_task)
4039                 return;
4040 
4041         kthread_stop(ext4_lazyinit_task);
4042 }
4043 
4044 static int set_journal_csum_feature_set(struct super_block *sb)
4045 {
4046         int ret = 1;
4047         int compat, incompat;
4048         struct ext4_sb_info *sbi = EXT4_SB(sb);
4049 
4050         if (ext4_has_metadata_csum(sb)) {
4051                 /* journal checksum v3 */
4052                 compat = 0;
4053                 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4054         } else {
4055                 /* journal checksum v1 */
4056                 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4057                 incompat = 0;
4058         }
4059 
4060         jbd2_journal_clear_features(sbi->s_journal,
4061                         JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4062                         JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4063                         JBD2_FEATURE_INCOMPAT_CSUM_V2);
4064         if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4065                 ret = jbd2_journal_set_features(sbi->s_journal,
4066                                 compat, 0,
4067                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4068                                 incompat);
4069         } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4070                 ret = jbd2_journal_set_features(sbi->s_journal,
4071                                 compat, 0,
4072                                 incompat);
4073                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4074                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4075         } else {
4076                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4077                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4078         }
4079 
4080         return ret;
4081 }
4082 
4083 /*
4084  * Note: calculating the overhead so we can be compatible with
4085  * historical BSD practice is quite difficult in the face of
4086  * clusters/bigalloc.  This is because multiple metadata blocks from
4087  * different block group can end up in the same allocation cluster.
4088  * Calculating the exact overhead in the face of clustered allocation
4089  * requires either O(all block bitmaps) in memory or O(number of block
4090  * groups**2) in time.  We will still calculate the superblock for
4091  * older file systems --- and if we come across with a bigalloc file
4092  * system with zero in s_overhead_clusters the estimate will be close to
4093  * correct especially for very large cluster sizes --- but for newer
4094  * file systems, it's better to calculate this figure once at mkfs
4095  * time, and store it in the superblock.  If the superblock value is
4096  * present (even for non-bigalloc file systems), we will use it.
4097  */
4098 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4099                           char *buf)
4100 {
4101         struct ext4_sb_info     *sbi = EXT4_SB(sb);
4102         struct ext4_group_desc  *gdp;
4103         ext4_fsblk_t            first_block, last_block, b;
4104         ext4_group_t            i, ngroups = ext4_get_groups_count(sb);
4105         int                     s, j, count = 0;
4106         int                     has_super = ext4_bg_has_super(sb, grp);
4107 
4108         if (!ext4_has_feature_bigalloc(sb))
4109                 return (has_super + ext4_bg_num_gdb(sb, grp) +
4110                         (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4111                         sbi->s_itb_per_group + 2);
4112 
4113         first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4114                 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4115         last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4116         for (i = 0; i < ngroups; i++) {
4117                 gdp = ext4_get_group_desc(sb, i, NULL);
4118                 b = ext4_block_bitmap(sb, gdp);
4119                 if (b >= first_block && b <= last_block) {
4120                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4121                         count++;
4122                 }
4123                 b = ext4_inode_bitmap(sb, gdp);
4124                 if (b >= first_block && b <= last_block) {
4125                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4126                         count++;
4127                 }
4128                 b = ext4_inode_table(sb, gdp);
4129                 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4130                         for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4131                                 int c = EXT4_B2C(sbi, b - first_block);
4132                                 ext4_set_bit(c, buf);
4133                                 count++;
4134                         }
4135                 if (i != grp)
4136                         continue;
4137                 s = 0;
4138                 if (ext4_bg_has_super(sb, grp)) {
4139                         ext4_set_bit(s++, buf);
4140                         count++;
4141                 }
4142                 j = ext4_bg_num_gdb(sb, grp);
4143                 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4144                         ext4_error(sb, "Invalid number of block group "
4145                                    "descriptor blocks: %d", j);
4146                         j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4147                 }
4148                 count += j;
4149                 for (; j > 0; j--)
4150                         ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4151         }
4152         if (!count)
4153                 return 0;
4154         return EXT4_CLUSTERS_PER_GROUP(sb) -
4155                 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4156 }
4157 
4158 /*
4159  * Compute the overhead and stash it in sbi->s_overhead
4160  */
4161 int ext4_calculate_overhead(struct super_block *sb)
4162 {
4163         struct ext4_sb_info *sbi = EXT4_SB(sb);
4164         struct ext4_super_block *es = sbi->s_es;
4165         struct inode *j_inode;
4166         unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4167         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4168         ext4_fsblk_t overhead = 0;
4169         char *buf = (char *) get_zeroed_page(GFP_NOFS);
4170 
4171         if (!buf)
4172                 return -ENOMEM;
4173 
4174         /*
4175          * Compute the overhead (FS structures).  This is constant
4176          * for a given filesystem unless the number of block groups
4177          * changes so we cache the previous value until it does.
4178          */
4179 
4180         /*
4181          * All of the blocks before first_data_block are overhead
4182          */
4183         overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4184 
4185         /*
4186          * Add the overhead found in each block group
4187          */
4188         for (i = 0; i < ngroups; i++) {
4189                 int blks;
4190 
4191                 blks = count_overhead(sb, i, buf);
4192                 overhead += blks;
4193                 if (blks)
4194                         memset(buf, 0, PAGE_SIZE);
4195                 cond_resched();
4196         }
4197 
4198         /*
4199          * Add the internal journal blocks whether the journal has been
4200          * loaded or not
4201          */
4202         if (sbi->s_journal && !sbi->s_journal_bdev_file)
4203                 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4204         else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4205                 /* j_inum for internal journal is non-zero */
4206                 j_inode = ext4_get_journal_inode(sb, j_inum);
4207                 if (!IS_ERR(j_inode)) {
4208                         j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4209                         overhead += EXT4_NUM_B2C(sbi, j_blocks);
4210                         iput(j_inode);
4211                 } else {
4212                         ext4_msg(sb, KERN_ERR, "can't get journal size");
4213                 }
4214         }
4215         sbi->s_overhead = overhead;
4216         smp_wmb();
4217         free_page((unsigned long) buf);
4218         return 0;
4219 }
4220 
4221 static void ext4_set_resv_clusters(struct super_block *sb)
4222 {
4223         ext4_fsblk_t resv_clusters;
4224         struct ext4_sb_info *sbi = EXT4_SB(sb);
4225 
4226         /*
4227          * There's no need to reserve anything when we aren't using extents.
4228          * The space estimates are exact, there are no unwritten extents,
4229          * hole punching doesn't need new metadata... This is needed especially
4230          * to keep ext2/3 backward compatibility.
4231          */
4232         if (!ext4_has_feature_extents(sb))
4233                 return;
4234         /*
4235          * By default we reserve 2% or 4096 clusters, whichever is smaller.
4236          * This should cover the situations where we can not afford to run
4237          * out of space like for example punch hole, or converting
4238          * unwritten extents in delalloc path. In most cases such
4239          * allocation would require 1, or 2 blocks, higher numbers are
4240          * very rare.
4241          */
4242         resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4243                          sbi->s_cluster_bits);
4244 
4245         do_div(resv_clusters, 50);
4246         resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4247 
4248         atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4249 }
4250 
4251 static const char *ext4_quota_mode(struct super_block *sb)
4252 {
4253 #ifdef CONFIG_QUOTA
4254         if (!ext4_quota_capable(sb))
4255                 return "none";
4256 
4257         if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4258                 return "journalled";
4259         else
4260                 return "writeback";
4261 #else
4262         return "disabled";
4263 #endif
4264 }
4265 
4266 static void ext4_setup_csum_trigger(struct super_block *sb,
4267                                     enum ext4_journal_trigger_type type,
4268                                     void (*trigger)(
4269                                         struct jbd2_buffer_trigger_type *type,
4270                                         struct buffer_head *bh,
4271                                         void *mapped_data,
4272                                         size_t size))
4273 {
4274         struct ext4_sb_info *sbi = EXT4_SB(sb);
4275 
4276         sbi->s_journal_triggers[type].sb = sb;
4277         sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4278 }
4279 
4280 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4281 {
4282         if (!sbi)
4283                 return;
4284 
4285         kfree(sbi->s_blockgroup_lock);
4286         fs_put_dax(sbi->s_daxdev, NULL);
4287         kfree(sbi);
4288 }
4289 
4290 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4291 {
4292         struct ext4_sb_info *sbi;
4293 
4294         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4295         if (!sbi)
4296                 return NULL;
4297 
4298         sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4299                                            NULL, NULL);
4300 
4301         sbi->s_blockgroup_lock =
4302                 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4303 
4304         if (!sbi->s_blockgroup_lock)
4305                 goto err_out;
4306 
4307         sb->s_fs_info = sbi;
4308         sbi->s_sb = sb;
4309         return sbi;
4310 err_out:
4311         fs_put_dax(sbi->s_daxdev, NULL);
4312         kfree(sbi);
4313         return NULL;
4314 }
4315 
4316 static void ext4_set_def_opts(struct super_block *sb,
4317                               struct ext4_super_block *es)
4318 {
4319         unsigned long def_mount_opts;
4320 
4321         /* Set defaults before we parse the mount options */
4322         def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4323         set_opt(sb, INIT_INODE_TABLE);
4324         if (def_mount_opts & EXT4_DEFM_DEBUG)
4325                 set_opt(sb, DEBUG);
4326         if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4327                 set_opt(sb, GRPID);
4328         if (def_mount_opts & EXT4_DEFM_UID16)
4329                 set_opt(sb, NO_UID32);
4330         /* xattr user namespace & acls are now defaulted on */
4331         set_opt(sb, XATTR_USER);
4332 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4333         set_opt(sb, POSIX_ACL);
4334 #endif
4335         if (ext4_has_feature_fast_commit(sb))
4336                 set_opt2(sb, JOURNAL_FAST_COMMIT);
4337         /* don't forget to enable journal_csum when metadata_csum is enabled. */
4338         if (ext4_has_metadata_csum(sb))
4339                 set_opt(sb, JOURNAL_CHECKSUM);
4340 
4341         if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4342                 set_opt(sb, JOURNAL_DATA);
4343         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4344                 set_opt(sb, ORDERED_DATA);
4345         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4346                 set_opt(sb, WRITEBACK_DATA);
4347 
4348         if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4349                 set_opt(sb, ERRORS_PANIC);
4350         else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4351                 set_opt(sb, ERRORS_CONT);
4352         else
4353                 set_opt(sb, ERRORS_RO);
4354         /* block_validity enabled by default; disable with noblock_validity */
4355         set_opt(sb, BLOCK_VALIDITY);
4356         if (def_mount_opts & EXT4_DEFM_DISCARD)
4357                 set_opt(sb, DISCARD);
4358 
4359         if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4360                 set_opt(sb, BARRIER);
4361 
4362         /*
4363          * enable delayed allocation by default
4364          * Use -o nodelalloc to turn it off
4365          */
4366         if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4367             ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4368                 set_opt(sb, DELALLOC);
4369 
4370         if (sb->s_blocksize <= PAGE_SIZE)
4371                 set_opt(sb, DIOREAD_NOLOCK);
4372 }
4373 
4374 static int ext4_handle_clustersize(struct super_block *sb)
4375 {
4376         struct ext4_sb_info *sbi = EXT4_SB(sb);
4377         struct ext4_super_block *es = sbi->s_es;
4378         int clustersize;
4379 
4380         /* Handle clustersize */
4381         clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4382         if (ext4_has_feature_bigalloc(sb)) {
4383                 if (clustersize < sb->s_blocksize) {
4384                         ext4_msg(sb, KERN_ERR,
4385                                  "cluster size (%d) smaller than "
4386                                  "block size (%lu)", clustersize, sb->s_blocksize);
4387                         return -EINVAL;
4388                 }
4389                 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4390                         le32_to_cpu(es->s_log_block_size);
4391         } else {
4392                 if (clustersize != sb->s_blocksize) {
4393                         ext4_msg(sb, KERN_ERR,
4394                                  "fragment/cluster size (%d) != "
4395                                  "block size (%lu)", clustersize, sb->s_blocksize);
4396                         return -EINVAL;
4397                 }
4398                 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4399                         ext4_msg(sb, KERN_ERR,
4400                                  "#blocks per group too big: %lu",
4401                                  sbi->s_blocks_per_group);
4402                         return -EINVAL;
4403                 }
4404                 sbi->s_cluster_bits = 0;
4405         }
4406         sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4407         if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4408                 ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4409                          sbi->s_clusters_per_group);
4410                 return -EINVAL;
4411         }
4412         if (sbi->s_blocks_per_group !=
4413             (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4414                 ext4_msg(sb, KERN_ERR,
4415                          "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4416                          sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4417                 return -EINVAL;
4418         }
4419         sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4420 
4421         /* Do we have standard group size of clustersize * 8 blocks ? */
4422         if (sbi->s_blocks_per_group == clustersize << 3)
4423                 set_opt2(sb, STD_GROUP_SIZE);
4424 
4425         return 0;
4426 }
4427 
4428 static void ext4_fast_commit_init(struct super_block *sb)
4429 {
4430         struct ext4_sb_info *sbi = EXT4_SB(sb);
4431 
4432         /* Initialize fast commit stuff */
4433         atomic_set(&sbi->s_fc_subtid, 0);
4434         INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4435         INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4436         INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4437         INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4438         sbi->s_fc_bytes = 0;
4439         ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4440         sbi->s_fc_ineligible_tid = 0;
4441         spin_lock_init(&sbi->s_fc_lock);
4442         memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4443         sbi->s_fc_replay_state.fc_regions = NULL;
4444         sbi->s_fc_replay_state.fc_regions_size = 0;
4445         sbi->s_fc_replay_state.fc_regions_used = 0;
4446         sbi->s_fc_replay_state.fc_regions_valid = 0;
4447         sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4448         sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4449         sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4450 }
4451 
4452 static int ext4_inode_info_init(struct super_block *sb,
4453                                 struct ext4_super_block *es)
4454 {
4455         struct ext4_sb_info *sbi = EXT4_SB(sb);
4456 
4457         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4458                 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4459                 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4460         } else {
4461                 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4462                 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4463                 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4464                         ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4465                                  sbi->s_first_ino);
4466                         return -EINVAL;
4467                 }
4468                 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4469                     (!is_power_of_2(sbi->s_inode_size)) ||
4470                     (sbi->s_inode_size > sb->s_blocksize)) {
4471                         ext4_msg(sb, KERN_ERR,
4472                                "unsupported inode size: %d",
4473                                sbi->s_inode_size);
4474                         ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4475                         return -EINVAL;
4476                 }
4477                 /*
4478                  * i_atime_extra is the last extra field available for
4479                  * [acm]times in struct ext4_inode. Checking for that
4480                  * field should suffice to ensure we have extra space
4481                  * for all three.
4482                  */
4483                 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4484                         sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4485                         sb->s_time_gran = 1;
4486                         sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4487                 } else {
4488                         sb->s_time_gran = NSEC_PER_SEC;
4489                         sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4490                 }
4491                 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4492         }
4493 
4494         if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4495                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4496                         EXT4_GOOD_OLD_INODE_SIZE;
4497                 if (ext4_has_feature_extra_isize(sb)) {
4498                         unsigned v, max = (sbi->s_inode_size -
4499                                            EXT4_GOOD_OLD_INODE_SIZE);
4500 
4501                         v = le16_to_cpu(es->s_want_extra_isize);
4502                         if (v > max) {
4503                                 ext4_msg(sb, KERN_ERR,
4504                                          "bad s_want_extra_isize: %d", v);
4505                                 return -EINVAL;
4506                         }
4507                         if (sbi->s_want_extra_isize < v)
4508                                 sbi->s_want_extra_isize = v;
4509 
4510                         v = le16_to_cpu(es->s_min_extra_isize);
4511                         if (v > max) {
4512                                 ext4_msg(sb, KERN_ERR,
4513                                          "bad s_min_extra_isize: %d", v);
4514                                 return -EINVAL;
4515                         }
4516                         if (sbi->s_want_extra_isize < v)
4517                                 sbi->s_want_extra_isize = v;
4518                 }
4519         }
4520 
4521         return 0;
4522 }
4523 
4524 #if IS_ENABLED(CONFIG_UNICODE)
4525 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4526 {
4527         const struct ext4_sb_encodings *encoding_info;
4528         struct unicode_map *encoding;
4529         __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4530 
4531         if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4532                 return 0;
4533 
4534         encoding_info = ext4_sb_read_encoding(es);
4535         if (!encoding_info) {
4536                 ext4_msg(sb, KERN_ERR,
4537                         "Encoding requested by superblock is unknown");
4538                 return -EINVAL;
4539         }
4540 
4541         encoding = utf8_load(encoding_info->version);
4542         if (IS_ERR(encoding)) {
4543                 ext4_msg(sb, KERN_ERR,
4544                         "can't mount with superblock charset: %s-%u.%u.%u "
4545                         "not supported by the kernel. flags: 0x%x.",
4546                         encoding_info->name,
4547                         unicode_major(encoding_info->version),
4548                         unicode_minor(encoding_info->version),
4549                         unicode_rev(encoding_info->version),
4550                         encoding_flags);
4551                 return -EINVAL;
4552         }
4553         ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4554                 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4555                 unicode_major(encoding_info->version),
4556                 unicode_minor(encoding_info->version),
4557                 unicode_rev(encoding_info->version),
4558                 encoding_flags);
4559 
4560         sb->s_encoding = encoding;
4561         sb->s_encoding_flags = encoding_flags;
4562 
4563         return 0;
4564 }
4565 #else
4566 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4567 {
4568         return 0;
4569 }
4570 #endif
4571 
4572 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4573 {
4574         struct ext4_sb_info *sbi = EXT4_SB(sb);
4575 
4576         /* Warn if metadata_csum and gdt_csum are both set. */
4577         if (ext4_has_feature_metadata_csum(sb) &&
4578             ext4_has_feature_gdt_csum(sb))
4579                 ext4_warning(sb, "metadata_csum and uninit_bg are "
4580                              "redundant flags; please run fsck.");
4581 
4582         /* Check for a known checksum algorithm */
4583         if (!ext4_verify_csum_type(sb, es)) {
4584                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4585                          "unknown checksum algorithm.");
4586                 return -EINVAL;
4587         }
4588         ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4589                                 ext4_orphan_file_block_trigger);
4590 
4591         /* Load the checksum driver */
4592         sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4593         if (IS_ERR(sbi->s_chksum_driver)) {
4594                 int ret = PTR_ERR(sbi->s_chksum_driver);
4595                 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4596                 sbi->s_chksum_driver = NULL;
4597                 return ret;
4598         }
4599 
4600         /* Check superblock checksum */
4601         if (!ext4_superblock_csum_verify(sb, es)) {
4602                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4603                          "invalid superblock checksum.  Run e2fsck?");
4604                 return -EFSBADCRC;
4605         }
4606 
4607         /* Precompute checksum seed for all metadata */
4608         if (ext4_has_feature_csum_seed(sb))
4609                 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4610         else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4611                 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4612                                                sizeof(es->s_uuid));
4613         return 0;
4614 }
4615 
4616 static int ext4_check_feature_compatibility(struct super_block *sb,
4617                                             struct ext4_super_block *es,
4618                                             int silent)
4619 {
4620         struct ext4_sb_info *sbi = EXT4_SB(sb);
4621 
4622         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4623             (ext4_has_compat_features(sb) ||
4624              ext4_has_ro_compat_features(sb) ||
4625              ext4_has_incompat_features(sb)))
4626                 ext4_msg(sb, KERN_WARNING,
4627                        "feature flags set on rev 0 fs, "
4628                        "running e2fsck is recommended");
4629 
4630         if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4631                 set_opt2(sb, HURD_COMPAT);
4632                 if (ext4_has_feature_64bit(sb)) {
4633                         ext4_msg(sb, KERN_ERR,
4634                                  "The Hurd can't support 64-bit file systems");
4635                         return -EINVAL;
4636                 }
4637 
4638                 /*
4639                  * ea_inode feature uses l_i_version field which is not
4640                  * available in HURD_COMPAT mode.
4641                  */
4642                 if (ext4_has_feature_ea_inode(sb)) {
4643                         ext4_msg(sb, KERN_ERR,
4644                                  "ea_inode feature is not supported for Hurd");
4645                         return -EINVAL;
4646                 }
4647         }
4648 
4649         if (IS_EXT2_SB(sb)) {
4650                 if (ext2_feature_set_ok(sb))
4651                         ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4652                                  "using the ext4 subsystem");
4653                 else {
4654                         /*
4655                          * If we're probing be silent, if this looks like
4656                          * it's actually an ext[34] filesystem.
4657                          */
4658                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4659                                 return -EINVAL;
4660                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4661                                  "to feature incompatibilities");
4662                         return -EINVAL;
4663                 }
4664         }
4665 
4666         if (IS_EXT3_SB(sb)) {
4667                 if (ext3_feature_set_ok(sb))
4668                         ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4669                                  "using the ext4 subsystem");
4670                 else {
4671                         /*
4672                          * If we're probing be silent, if this looks like
4673                          * it's actually an ext4 filesystem.
4674                          */
4675                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4676                                 return -EINVAL;
4677                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4678                                  "to feature incompatibilities");
4679                         return -EINVAL;
4680                 }
4681         }
4682 
4683         /*
4684          * Check feature flags regardless of the revision level, since we
4685          * previously didn't change the revision level when setting the flags,
4686          * so there is a chance incompat flags are set on a rev 0 filesystem.
4687          */
4688         if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4689                 return -EINVAL;
4690 
4691         if (sbi->s_daxdev) {
4692                 if (sb->s_blocksize == PAGE_SIZE)
4693                         set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4694                 else
4695                         ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4696         }
4697 
4698         if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4699                 if (ext4_has_feature_inline_data(sb)) {
4700                         ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4701                                         " that may contain inline data");
4702                         return -EINVAL;
4703                 }
4704                 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4705                         ext4_msg(sb, KERN_ERR,
4706                                 "DAX unsupported by block device.");
4707                         return -EINVAL;
4708                 }
4709         }
4710 
4711         if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4712                 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4713                          es->s_encryption_level);
4714                 return -EINVAL;
4715         }
4716 
4717         return 0;
4718 }
4719 
4720 static int ext4_check_geometry(struct super_block *sb,
4721                                struct ext4_super_block *es)
4722 {
4723         struct ext4_sb_info *sbi = EXT4_SB(sb);
4724         __u64 blocks_count;
4725         int err;
4726 
4727         if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4728                 ext4_msg(sb, KERN_ERR,
4729                          "Number of reserved GDT blocks insanely large: %d",
4730                          le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4731                 return -EINVAL;
4732         }
4733         /*
4734          * Test whether we have more sectors than will fit in sector_t,
4735          * and whether the max offset is addressable by the page cache.
4736          */
4737         err = generic_check_addressable(sb->s_blocksize_bits,
4738                                         ext4_blocks_count(es));
4739         if (err) {
4740                 ext4_msg(sb, KERN_ERR, "filesystem"
4741                          " too large to mount safely on this system");
4742                 return err;
4743         }
4744 
4745         /* check blocks count against device size */
4746         blocks_count = sb_bdev_nr_blocks(sb);
4747         if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4748                 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4749                        "exceeds size of device (%llu blocks)",
4750                        ext4_blocks_count(es), blocks_count);
4751                 return -EINVAL;
4752         }
4753 
4754         /*
4755          * It makes no sense for the first data block to be beyond the end
4756          * of the filesystem.
4757          */
4758         if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4759                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4760                          "block %u is beyond end of filesystem (%llu)",
4761                          le32_to_cpu(es->s_first_data_block),
4762                          ext4_blocks_count(es));
4763                 return -EINVAL;
4764         }
4765         if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4766             (sbi->s_cluster_ratio == 1)) {
4767                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4768                          "block is 0 with a 1k block and cluster size");
4769                 return -EINVAL;
4770         }
4771 
4772         blocks_count = (ext4_blocks_count(es) -
4773                         le32_to_cpu(es->s_first_data_block) +
4774                         EXT4_BLOCKS_PER_GROUP(sb) - 1);
4775         do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4776         if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4777                 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4778                        "(block count %llu, first data block %u, "
4779                        "blocks per group %lu)", blocks_count,
4780                        ext4_blocks_count(es),
4781                        le32_to_cpu(es->s_first_data_block),
4782                        EXT4_BLOCKS_PER_GROUP(sb));
4783                 return -EINVAL;
4784         }
4785         sbi->s_groups_count = blocks_count;
4786         sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4787                         (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4788         if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4789             le32_to_cpu(es->s_inodes_count)) {
4790                 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4791                          le32_to_cpu(es->s_inodes_count),
4792                          ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4793                 return -EINVAL;
4794         }
4795 
4796         return 0;
4797 }
4798 
4799 static int ext4_group_desc_init(struct super_block *sb,
4800                                 struct ext4_super_block *es,
4801                                 ext4_fsblk_t logical_sb_block,
4802                                 ext4_group_t *first_not_zeroed)
4803 {
4804         struct ext4_sb_info *sbi = EXT4_SB(sb);
4805         unsigned int db_count;
4806         ext4_fsblk_t block;
4807         int i;
4808 
4809         db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4810                    EXT4_DESC_PER_BLOCK(sb);
4811         if (ext4_has_feature_meta_bg(sb)) {
4812                 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4813                         ext4_msg(sb, KERN_WARNING,
4814                                  "first meta block group too large: %u "
4815                                  "(group descriptor block count %u)",
4816                                  le32_to_cpu(es->s_first_meta_bg), db_count);
4817                         return -EINVAL;
4818                 }
4819         }
4820         rcu_assign_pointer(sbi->s_group_desc,
4821                            kvmalloc_array(db_count,
4822                                           sizeof(struct buffer_head *),
4823                                           GFP_KERNEL));
4824         if (sbi->s_group_desc == NULL) {
4825                 ext4_msg(sb, KERN_ERR, "not enough memory");
4826                 return -ENOMEM;
4827         }
4828 
4829         bgl_lock_init(sbi->s_blockgroup_lock);
4830 
4831         /* Pre-read the descriptors into the buffer cache */
4832         for (i = 0; i < db_count; i++) {
4833                 block = descriptor_loc(sb, logical_sb_block, i);
4834                 ext4_sb_breadahead_unmovable(sb, block);
4835         }
4836 
4837         for (i = 0; i < db_count; i++) {
4838                 struct buffer_head *bh;
4839 
4840                 block = descriptor_loc(sb, logical_sb_block, i);
4841                 bh = ext4_sb_bread_unmovable(sb, block);
4842                 if (IS_ERR(bh)) {
4843                         ext4_msg(sb, KERN_ERR,
4844                                "can't read group descriptor %d", i);
4845                         sbi->s_gdb_count = i;
4846                         return PTR_ERR(bh);
4847                 }
4848                 rcu_read_lock();
4849                 rcu_dereference(sbi->s_group_desc)[i] = bh;
4850                 rcu_read_unlock();
4851         }
4852         sbi->s_gdb_count = db_count;
4853         if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4854                 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4855                 return -EFSCORRUPTED;
4856         }
4857 
4858         return 0;
4859 }
4860 
4861 static int ext4_load_and_init_journal(struct super_block *sb,
4862                                       struct ext4_super_block *es,
4863                                       struct ext4_fs_context *ctx)
4864 {
4865         struct ext4_sb_info *sbi = EXT4_SB(sb);
4866         int err;
4867 
4868         err = ext4_load_journal(sb, es, ctx->journal_devnum);
4869         if (err)
4870                 return err;
4871 
4872         if (ext4_has_feature_64bit(sb) &&
4873             !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4874                                        JBD2_FEATURE_INCOMPAT_64BIT)) {
4875                 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4876                 goto out;
4877         }
4878 
4879         if (!set_journal_csum_feature_set(sb)) {
4880                 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4881                          "feature set");
4882                 goto out;
4883         }
4884 
4885         if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4886                 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4887                                           JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4888                 ext4_msg(sb, KERN_ERR,
4889                         "Failed to set fast commit journal feature");
4890                 goto out;
4891         }
4892 
4893         /* We have now updated the journal if required, so we can
4894          * validate the data journaling mode. */
4895         switch (test_opt(sb, DATA_FLAGS)) {
4896         case 0:
4897                 /* No mode set, assume a default based on the journal
4898                  * capabilities: ORDERED_DATA if the journal can
4899                  * cope, else JOURNAL_DATA
4900                  */
4901                 if (jbd2_journal_check_available_features
4902                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4903                         set_opt(sb, ORDERED_DATA);
4904                         sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4905                 } else {
4906                         set_opt(sb, JOURNAL_DATA);
4907                         sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4908                 }
4909                 break;
4910 
4911         case EXT4_MOUNT_ORDERED_DATA:
4912         case EXT4_MOUNT_WRITEBACK_DATA:
4913                 if (!jbd2_journal_check_available_features
4914                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4915                         ext4_msg(sb, KERN_ERR, "Journal does not support "
4916                                "requested data journaling mode");
4917                         goto out;
4918                 }
4919                 break;
4920         default:
4921                 break;
4922         }
4923 
4924         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4925             test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4926                 ext4_msg(sb, KERN_ERR, "can't mount with "
4927                         "journal_async_commit in data=ordered mode");
4928                 goto out;
4929         }
4930 
4931         set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4932 
4933         sbi->s_journal->j_submit_inode_data_buffers =
4934                 ext4_journal_submit_inode_data_buffers;
4935         sbi->s_journal->j_finish_inode_data_buffers =
4936                 ext4_journal_finish_inode_data_buffers;
4937 
4938         return 0;
4939 
4940 out:
4941         /* flush s_sb_upd_work before destroying the journal. */
4942         flush_work(&sbi->s_sb_upd_work);
4943         jbd2_journal_destroy(sbi->s_journal);
4944         sbi->s_journal = NULL;
4945         return -EINVAL;
4946 }
4947 
4948 static int ext4_check_journal_data_mode(struct super_block *sb)
4949 {
4950         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4951                 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4952                             "data=journal disables delayed allocation, "
4953                             "dioread_nolock, O_DIRECT and fast_commit support!\n");
4954                 /* can't mount with both data=journal and dioread_nolock. */
4955                 clear_opt(sb, DIOREAD_NOLOCK);
4956                 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4957                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4958                         ext4_msg(sb, KERN_ERR, "can't mount with "
4959                                  "both data=journal and delalloc");
4960                         return -EINVAL;
4961                 }
4962                 if (test_opt(sb, DAX_ALWAYS)) {
4963                         ext4_msg(sb, KERN_ERR, "can't mount with "
4964                                  "both data=journal and dax");
4965                         return -EINVAL;
4966                 }
4967                 if (ext4_has_feature_encrypt(sb)) {
4968                         ext4_msg(sb, KERN_WARNING,
4969                                  "encrypted files will use data=ordered "
4970                                  "instead of data journaling mode");
4971                 }
4972                 if (test_opt(sb, DELALLOC))
4973                         clear_opt(sb, DELALLOC);
4974         } else {
4975                 sb->s_iflags |= SB_I_CGROUPWB;
4976         }
4977 
4978         return 0;
4979 }
4980 
4981 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
4982                            int silent)
4983 {
4984         struct ext4_sb_info *sbi = EXT4_SB(sb);
4985         struct ext4_super_block *es;
4986         ext4_fsblk_t logical_sb_block;
4987         unsigned long offset = 0;
4988         struct buffer_head *bh;
4989         int ret = -EINVAL;
4990         int blocksize;
4991 
4992         blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4993         if (!blocksize) {
4994                 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4995                 return -EINVAL;
4996         }
4997 
4998         /*
4999          * The ext4 superblock will not be buffer aligned for other than 1kB
5000          * block sizes.  We need to calculate the offset from buffer start.
5001          */
5002         if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5003                 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5004                 offset = do_div(logical_sb_block, blocksize);
5005         } else {
5006                 logical_sb_block = sbi->s_sb_block;
5007         }
5008 
5009         bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5010         if (IS_ERR(bh)) {
5011                 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5012                 return PTR_ERR(bh);
5013         }
5014         /*
5015          * Note: s_es must be initialized as soon as possible because
5016          *       some ext4 macro-instructions depend on its value
5017          */
5018         es = (struct ext4_super_block *) (bh->b_data + offset);
5019         sbi->s_es = es;
5020         sb->s_magic = le16_to_cpu(es->s_magic);
5021         if (sb->s_magic != EXT4_SUPER_MAGIC) {
5022                 if (!silent)
5023                         ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5024                 goto out;
5025         }
5026 
5027         if (le32_to_cpu(es->s_log_block_size) >
5028             (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5029                 ext4_msg(sb, KERN_ERR,
5030                          "Invalid log block size: %u",
5031                          le32_to_cpu(es->s_log_block_size));
5032                 goto out;
5033         }
5034         if (le32_to_cpu(es->s_log_cluster_size) >
5035             (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5036                 ext4_msg(sb, KERN_ERR,
5037                          "Invalid log cluster size: %u",
5038                          le32_to_cpu(es->s_log_cluster_size));
5039                 goto out;
5040         }
5041 
5042         blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5043 
5044         /*
5045          * If the default block size is not the same as the real block size,
5046          * we need to reload it.
5047          */
5048         if (sb->s_blocksize == blocksize) {
5049                 *lsb = logical_sb_block;
5050                 sbi->s_sbh = bh;
5051                 return 0;
5052         }
5053 
5054         /*
5055          * bh must be released before kill_bdev(), otherwise
5056          * it won't be freed and its page also. kill_bdev()
5057          * is called by sb_set_blocksize().
5058          */
5059         brelse(bh);
5060         /* Validate the filesystem blocksize */
5061         if (!sb_set_blocksize(sb, blocksize)) {
5062                 ext4_msg(sb, KERN_ERR, "bad block size %d",
5063                                 blocksize);
5064                 bh = NULL;
5065                 goto out;
5066         }
5067 
5068         logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5069         offset = do_div(logical_sb_block, blocksize);
5070         bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5071         if (IS_ERR(bh)) {
5072                 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5073                 ret = PTR_ERR(bh);
5074                 bh = NULL;
5075                 goto out;
5076         }
5077         es = (struct ext4_super_block *)(bh->b_data + offset);
5078         sbi->s_es = es;
5079         if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5080                 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5081                 goto out;
5082         }
5083         *lsb = logical_sb_block;
5084         sbi->s_sbh = bh;
5085         return 0;
5086 out:
5087         brelse(bh);
5088         return ret;
5089 }
5090 
5091 static int ext4_hash_info_init(struct super_block *sb)
5092 {
5093         struct ext4_sb_info *sbi = EXT4_SB(sb);
5094         struct ext4_super_block *es = sbi->s_es;
5095         unsigned int i;
5096 
5097         sbi->s_def_hash_version = es->s_def_hash_version;
5098 
5099         if (sbi->s_def_hash_version > DX_HASH_LAST) {
5100                 ext4_msg(sb, KERN_ERR,
5101                          "Invalid default hash set in the superblock");
5102                 return -EINVAL;
5103         } else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5104                 ext4_msg(sb, KERN_ERR,
5105                          "SIPHASH is not a valid default hash value");
5106                 return -EINVAL;
5107         }
5108 
5109         for (i = 0; i < 4; i++)
5110                 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5111 
5112         if (ext4_has_feature_dir_index(sb)) {
5113                 i = le32_to_cpu(es->s_flags);
5114                 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5115                         sbi->s_hash_unsigned = 3;
5116                 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5117 #ifdef __CHAR_UNSIGNED__
5118                         if (!sb_rdonly(sb))
5119                                 es->s_flags |=
5120                                         cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5121                         sbi->s_hash_unsigned = 3;
5122 #else
5123                         if (!sb_rdonly(sb))
5124                                 es->s_flags |=
5125                                         cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5126 #endif
5127                 }
5128         }
5129         return 0;
5130 }
5131 
5132 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5133 {
5134         struct ext4_sb_info *sbi = EXT4_SB(sb);
5135         struct ext4_super_block *es = sbi->s_es;
5136         int has_huge_files;
5137 
5138         has_huge_files = ext4_has_feature_huge_file(sb);
5139         sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5140                                                       has_huge_files);
5141         sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5142 
5143         sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5144         if (ext4_has_feature_64bit(sb)) {
5145                 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5146                     sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5147                     !is_power_of_2(sbi->s_desc_size)) {
5148                         ext4_msg(sb, KERN_ERR,
5149                                "unsupported descriptor size %lu",
5150                                sbi->s_desc_size);
5151                         return -EINVAL;
5152                 }
5153         } else
5154                 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5155 
5156         sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5157         sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5158 
5159         sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5160         if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5161                 if (!silent)
5162                         ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5163                 return -EINVAL;
5164         }
5165         if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5166             sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5167                 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5168                          sbi->s_inodes_per_group);
5169                 return -EINVAL;
5170         }
5171         sbi->s_itb_per_group = sbi->s_inodes_per_group /
5172                                         sbi->s_inodes_per_block;
5173         sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5174         sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5175         sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5176         sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5177 
5178         return 0;
5179 }
5180 
5181 /*
5182  * It's hard to get stripe aligned blocks if stripe is not aligned with
5183  * cluster, just disable stripe and alert user to simplify code and avoid
5184  * stripe aligned allocation which will rarely succeed.
5185  */
5186 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5187 {
5188         struct ext4_sb_info *sbi = EXT4_SB(sb);
5189         return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5190                 stripe % sbi->s_cluster_ratio != 0);
5191 }
5192 
5193 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5194 {
5195         struct ext4_super_block *es = NULL;
5196         struct ext4_sb_info *sbi = EXT4_SB(sb);
5197         ext4_fsblk_t logical_sb_block;
5198         struct inode *root;
5199         int needs_recovery;
5200         int err;
5201         ext4_group_t first_not_zeroed;
5202         struct ext4_fs_context *ctx = fc->fs_private;
5203         int silent = fc->sb_flags & SB_SILENT;
5204 
5205         /* Set defaults for the variables that will be set during parsing */
5206         if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5207                 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5208 
5209         sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5210         sbi->s_sectors_written_start =
5211                 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5212 
5213         err = ext4_load_super(sb, &logical_sb_block, silent);
5214         if (err)
5215                 goto out_fail;
5216 
5217         es = sbi->s_es;
5218         sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5219 
5220         err = ext4_init_metadata_csum(sb, es);
5221         if (err)
5222                 goto failed_mount;
5223 
5224         ext4_set_def_opts(sb, es);
5225 
5226         sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5227         sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5228         sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5229         sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5230         sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5231 
5232         /*
5233          * set default s_li_wait_mult for lazyinit, for the case there is
5234          * no mount option specified.
5235          */
5236         sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5237 
5238         err = ext4_inode_info_init(sb, es);
5239         if (err)
5240                 goto failed_mount;
5241 
5242         err = parse_apply_sb_mount_options(sb, ctx);
5243         if (err < 0)
5244                 goto failed_mount;
5245 
5246         sbi->s_def_mount_opt = sbi->s_mount_opt;
5247         sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5248 
5249         err = ext4_check_opt_consistency(fc, sb);
5250         if (err < 0)
5251                 goto failed_mount;
5252 
5253         ext4_apply_options(fc, sb);
5254 
5255         err = ext4_encoding_init(sb, es);
5256         if (err)
5257                 goto failed_mount;
5258 
5259         err = ext4_check_journal_data_mode(sb);
5260         if (err)
5261                 goto failed_mount;
5262 
5263         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5264                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5265 
5266         /* i_version is always enabled now */
5267         sb->s_flags |= SB_I_VERSION;
5268 
5269         err = ext4_check_feature_compatibility(sb, es, silent);
5270         if (err)
5271                 goto failed_mount;
5272 
5273         err = ext4_block_group_meta_init(sb, silent);
5274         if (err)
5275                 goto failed_mount;
5276 
5277         err = ext4_hash_info_init(sb);
5278         if (err)
5279                 goto failed_mount;
5280 
5281         err = ext4_handle_clustersize(sb);
5282         if (err)
5283                 goto failed_mount;
5284 
5285         err = ext4_check_geometry(sb, es);
5286         if (err)
5287                 goto failed_mount;
5288 
5289         timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5290         spin_lock_init(&sbi->s_error_lock);
5291         INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5292 
5293         err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5294         if (err)
5295                 goto failed_mount3;
5296 
5297         err = ext4_es_register_shrinker(sbi);
5298         if (err)
5299                 goto failed_mount3;
5300 
5301         sbi->s_stripe = ext4_get_stripe_size(sbi);
5302         if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5303                 ext4_msg(sb, KERN_WARNING,
5304                          "stripe (%lu) is not aligned with cluster size (%u), "
5305                          "stripe is disabled",
5306                          sbi->s_stripe, sbi->s_cluster_ratio);
5307                 sbi->s_stripe = 0;
5308         }
5309         sbi->s_extent_max_zeroout_kb = 32;
5310 
5311         /*
5312          * set up enough so that it can read an inode
5313          */
5314         sb->s_op = &ext4_sops;
5315         sb->s_export_op = &ext4_export_ops;
5316         sb->s_xattr = ext4_xattr_handlers;
5317 #ifdef CONFIG_FS_ENCRYPTION
5318         sb->s_cop = &ext4_cryptops;
5319 #endif
5320 #ifdef CONFIG_FS_VERITY
5321         sb->s_vop = &ext4_verityops;
5322 #endif
5323 #ifdef CONFIG_QUOTA
5324         sb->dq_op = &ext4_quota_operations;
5325         if (ext4_has_feature_quota(sb))
5326                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5327         else
5328                 sb->s_qcop = &ext4_qctl_operations;
5329         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5330 #endif
5331         super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5332         super_set_sysfs_name_bdev(sb);
5333 
5334         INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5335         mutex_init(&sbi->s_orphan_lock);
5336 
5337         spin_lock_init(&sbi->s_bdev_wb_lock);
5338 
5339         ext4_fast_commit_init(sb);
5340 
5341         sb->s_root = NULL;
5342 
5343         needs_recovery = (es->s_last_orphan != 0 ||
5344                           ext4_has_feature_orphan_present(sb) ||
5345                           ext4_has_feature_journal_needs_recovery(sb));
5346 
5347         if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5348                 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5349                 if (err)
5350                         goto failed_mount3a;
5351         }
5352 
5353         err = -EINVAL;
5354         /*
5355          * The first inode we look at is the journal inode.  Don't try
5356          * root first: it may be modified in the journal!
5357          */
5358         if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5359                 err = ext4_load_and_init_journal(sb, es, ctx);
5360                 if (err)
5361                         goto failed_mount3a;
5362         } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5363                    ext4_has_feature_journal_needs_recovery(sb)) {
5364                 ext4_msg(sb, KERN_ERR, "required journal recovery "
5365                        "suppressed and not mounted read-only");
5366                 goto failed_mount3a;
5367         } else {
5368                 /* Nojournal mode, all journal mount options are illegal */
5369                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5370                         ext4_msg(sb, KERN_ERR, "can't mount with "
5371                                  "journal_async_commit, fs mounted w/o journal");
5372                         goto failed_mount3a;
5373                 }
5374 
5375                 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5376                         ext4_msg(sb, KERN_ERR, "can't mount with "
5377                                  "journal_checksum, fs mounted w/o journal");
5378                         goto failed_mount3a;
5379                 }
5380                 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5381                         ext4_msg(sb, KERN_ERR, "can't mount with "
5382                                  "commit=%lu, fs mounted w/o journal",
5383                                  sbi->s_commit_interval / HZ);
5384                         goto failed_mount3a;
5385                 }
5386                 if (EXT4_MOUNT_DATA_FLAGS &
5387                     (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5388                         ext4_msg(sb, KERN_ERR, "can't mount with "
5389                                  "data=, fs mounted w/o journal");
5390                         goto failed_mount3a;
5391                 }
5392                 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5393                 clear_opt(sb, JOURNAL_CHECKSUM);
5394                 clear_opt(sb, DATA_FLAGS);
5395                 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5396                 sbi->s_journal = NULL;
5397                 needs_recovery = 0;
5398         }
5399 
5400         if (!test_opt(sb, NO_MBCACHE)) {
5401                 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5402                 if (!sbi->s_ea_block_cache) {
5403                         ext4_msg(sb, KERN_ERR,
5404                                  "Failed to create ea_block_cache");
5405                         err = -EINVAL;
5406                         goto failed_mount_wq;
5407                 }
5408 
5409                 if (ext4_has_feature_ea_inode(sb)) {
5410                         sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5411                         if (!sbi->s_ea_inode_cache) {
5412                                 ext4_msg(sb, KERN_ERR,
5413                                          "Failed to create ea_inode_cache");
5414                                 err = -EINVAL;
5415                                 goto failed_mount_wq;
5416                         }
5417                 }
5418         }
5419 
5420         /*
5421          * Get the # of file system overhead blocks from the
5422          * superblock if present.
5423          */
5424         sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5425         /* ignore the precalculated value if it is ridiculous */
5426         if (sbi->s_overhead > ext4_blocks_count(es))
5427                 sbi->s_overhead = 0;
5428         /*
5429          * If the bigalloc feature is not enabled recalculating the
5430          * overhead doesn't take long, so we might as well just redo
5431          * it to make sure we are using the correct value.
5432          */
5433         if (!ext4_has_feature_bigalloc(sb))
5434                 sbi->s_overhead = 0;
5435         if (sbi->s_overhead == 0) {
5436                 err = ext4_calculate_overhead(sb);
5437                 if (err)
5438                         goto failed_mount_wq;
5439         }
5440 
5441         /*
5442          * The maximum number of concurrent works can be high and
5443          * concurrency isn't really necessary.  Limit it to 1.
5444          */
5445         EXT4_SB(sb)->rsv_conversion_wq =
5446                 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5447         if (!EXT4_SB(sb)->rsv_conversion_wq) {
5448                 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5449                 err = -ENOMEM;
5450                 goto failed_mount4;
5451         }
5452 
5453         /*
5454          * The jbd2_journal_load will have done any necessary log recovery,
5455          * so we can safely mount the rest of the filesystem now.
5456          */
5457 
5458         root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5459         if (IS_ERR(root)) {
5460                 ext4_msg(sb, KERN_ERR, "get root inode failed");
5461                 err = PTR_ERR(root);
5462                 root = NULL;
5463                 goto failed_mount4;
5464         }
5465         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5466                 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5467                 iput(root);
5468                 err = -EFSCORRUPTED;
5469                 goto failed_mount4;
5470         }
5471 
5472         generic_set_sb_d_ops(sb);
5473         sb->s_root = d_make_root(root);
5474         if (!sb->s_root) {
5475                 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5476                 err = -ENOMEM;
5477                 goto failed_mount4;
5478         }
5479 
5480         err = ext4_setup_super(sb, es, sb_rdonly(sb));
5481         if (err == -EROFS) {
5482                 sb->s_flags |= SB_RDONLY;
5483         } else if (err)
5484                 goto failed_mount4a;
5485 
5486         ext4_set_resv_clusters(sb);
5487 
5488         if (test_opt(sb, BLOCK_VALIDITY)) {
5489                 err = ext4_setup_system_zone(sb);
5490                 if (err) {
5491                         ext4_msg(sb, KERN_ERR, "failed to initialize system "
5492                                  "zone (%d)", err);
5493                         goto failed_mount4a;
5494                 }
5495         }
5496         ext4_fc_replay_cleanup(sb);
5497 
5498         ext4_ext_init(sb);
5499 
5500         /*
5501          * Enable optimize_scan if number of groups is > threshold. This can be
5502          * turned off by passing "mb_optimize_scan=0". This can also be
5503          * turned on forcefully by passing "mb_optimize_scan=1".
5504          */
5505         if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5506                 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5507                         set_opt2(sb, MB_OPTIMIZE_SCAN);
5508                 else
5509                         clear_opt2(sb, MB_OPTIMIZE_SCAN);
5510         }
5511 
5512         err = ext4_mb_init(sb);
5513         if (err) {
5514                 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5515                          err);
5516                 goto failed_mount5;
5517         }
5518 
5519         /*
5520          * We can only set up the journal commit callback once
5521          * mballoc is initialized
5522          */
5523         if (sbi->s_journal)
5524                 sbi->s_journal->j_commit_callback =
5525                         ext4_journal_commit_callback;
5526 
5527         err = ext4_percpu_param_init(sbi);
5528         if (err)
5529                 goto failed_mount6;
5530 
5531         if (ext4_has_feature_flex_bg(sb))
5532                 if (!ext4_fill_flex_info(sb)) {
5533                         ext4_msg(sb, KERN_ERR,
5534                                "unable to initialize "
5535                                "flex_bg meta info!");
5536                         err = -ENOMEM;
5537                         goto failed_mount6;
5538                 }
5539 
5540         err = ext4_register_li_request(sb, first_not_zeroed);
5541         if (err)
5542                 goto failed_mount6;
5543 
5544         err = ext4_init_orphan_info(sb);
5545         if (err)
5546                 goto failed_mount7;
5547 #ifdef CONFIG_QUOTA
5548         /* Enable quota usage during mount. */
5549         if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5550                 err = ext4_enable_quotas(sb);
5551                 if (err)
5552                         goto failed_mount8;
5553         }
5554 #endif  /* CONFIG_QUOTA */
5555 
5556         /*
5557          * Save the original bdev mapping's wb_err value which could be
5558          * used to detect the metadata async write error.
5559          */
5560         errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5561                                  &sbi->s_bdev_wb_err);
5562         EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5563         ext4_orphan_cleanup(sb, es);
5564         EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5565         /*
5566          * Update the checksum after updating free space/inode counters and
5567          * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5568          * checksum in the buffer cache until it is written out and
5569          * e2fsprogs programs trying to open a file system immediately
5570          * after it is mounted can fail.
5571          */
5572         ext4_superblock_csum_set(sb);
5573         if (needs_recovery) {
5574                 ext4_msg(sb, KERN_INFO, "recovery complete");
5575                 err = ext4_mark_recovery_complete(sb, es);
5576                 if (err)
5577                         goto failed_mount9;
5578         }
5579 
5580         if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5581                 ext4_msg(sb, KERN_WARNING,
5582                          "mounting with \"discard\" option, but the device does not support discard");
5583 
5584         if (es->s_error_count)
5585                 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5586 
5587         /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5588         ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5589         ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5590         ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5591         atomic_set(&sbi->s_warning_count, 0);
5592         atomic_set(&sbi->s_msg_count, 0);
5593 
5594         /* Register sysfs after all initializations are complete. */
5595         err = ext4_register_sysfs(sb);
5596         if (err)
5597                 goto failed_mount9;
5598 
5599         return 0;
5600 
5601 failed_mount9:
5602         ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5603 failed_mount8: __maybe_unused
5604         ext4_release_orphan_info(sb);
5605 failed_mount7:
5606         ext4_unregister_li_request(sb);
5607 failed_mount6:
5608         ext4_mb_release(sb);
5609         ext4_flex_groups_free(sbi);
5610         ext4_percpu_param_destroy(sbi);
5611 failed_mount5:
5612         ext4_ext_release(sb);
5613         ext4_release_system_zone(sb);
5614 failed_mount4a:
5615         dput(sb->s_root);
5616         sb->s_root = NULL;
5617 failed_mount4:
5618         ext4_msg(sb, KERN_ERR, "mount failed");
5619         if (EXT4_SB(sb)->rsv_conversion_wq)
5620                 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5621 failed_mount_wq:
5622         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5623         sbi->s_ea_inode_cache = NULL;
5624 
5625         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5626         sbi->s_ea_block_cache = NULL;
5627 
5628         if (sbi->s_journal) {
5629                 /* flush s_sb_upd_work before journal destroy. */
5630                 flush_work(&sbi->s_sb_upd_work);
5631                 jbd2_journal_destroy(sbi->s_journal);
5632                 sbi->s_journal = NULL;
5633         }
5634 failed_mount3a:
5635         ext4_es_unregister_shrinker(sbi);
5636 failed_mount3:
5637         /* flush s_sb_upd_work before sbi destroy */
5638         flush_work(&sbi->s_sb_upd_work);
5639         ext4_stop_mmpd(sbi);
5640         del_timer_sync(&sbi->s_err_report);
5641         ext4_group_desc_free(sbi);
5642 failed_mount:
5643         if (sbi->s_chksum_driver)
5644                 crypto_free_shash(sbi->s_chksum_driver);
5645 
5646 #if IS_ENABLED(CONFIG_UNICODE)
5647         utf8_unload(sb->s_encoding);
5648 #endif
5649 
5650 #ifdef CONFIG_QUOTA
5651         for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5652                 kfree(get_qf_name(sb, sbi, i));
5653 #endif
5654         fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5655         brelse(sbi->s_sbh);
5656         if (sbi->s_journal_bdev_file) {
5657                 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5658                 bdev_fput(sbi->s_journal_bdev_file);
5659         }
5660 out_fail:
5661         invalidate_bdev(sb->s_bdev);
5662         sb->s_fs_info = NULL;
5663         return err;
5664 }
5665 
5666 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5667 {
5668         struct ext4_fs_context *ctx = fc->fs_private;
5669         struct ext4_sb_info *sbi;
5670         const char *descr;
5671         int ret;
5672 
5673         sbi = ext4_alloc_sbi(sb);
5674         if (!sbi)
5675                 return -ENOMEM;
5676 
5677         fc->s_fs_info = sbi;
5678 
5679         /* Cleanup superblock name */
5680         strreplace(sb->s_id, '/', '!');
5681 
5682         sbi->s_sb_block = 1;    /* Default super block location */
5683         if (ctx->spec & EXT4_SPEC_s_sb_block)
5684                 sbi->s_sb_block = ctx->s_sb_block;
5685 
5686         ret = __ext4_fill_super(fc, sb);
5687         if (ret < 0)
5688                 goto free_sbi;
5689 
5690         if (sbi->s_journal) {
5691                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5692                         descr = " journalled data mode";
5693                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5694                         descr = " ordered data mode";
5695                 else
5696                         descr = " writeback data mode";
5697         } else
5698                 descr = "out journal";
5699 
5700         if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5701                 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5702                          "Quota mode: %s.", &sb->s_uuid,
5703                          sb_rdonly(sb) ? "ro" : "r/w", descr,
5704                          ext4_quota_mode(sb));
5705 
5706         /* Update the s_overhead_clusters if necessary */
5707         ext4_update_overhead(sb, false);
5708         return 0;
5709 
5710 free_sbi:
5711         ext4_free_sbi(sbi);
5712         fc->s_fs_info = NULL;
5713         return ret;
5714 }
5715 
5716 static int ext4_get_tree(struct fs_context *fc)
5717 {
5718         return get_tree_bdev(fc, ext4_fill_super);
5719 }
5720 
5721 /*
5722  * Setup any per-fs journal parameters now.  We'll do this both on
5723  * initial mount, once the journal has been initialised but before we've
5724  * done any recovery; and again on any subsequent remount.
5725  */
5726 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5727 {
5728         struct ext4_sb_info *sbi = EXT4_SB(sb);
5729 
5730         journal->j_commit_interval = sbi->s_commit_interval;
5731         journal->j_min_batch_time = sbi->s_min_batch_time;
5732         journal->j_max_batch_time = sbi->s_max_batch_time;
5733         ext4_fc_init(sb, journal);
5734 
5735         write_lock(&journal->j_state_lock);
5736         if (test_opt(sb, BARRIER))
5737                 journal->j_flags |= JBD2_BARRIER;
5738         else
5739                 journal->j_flags &= ~JBD2_BARRIER;
5740         if (test_opt(sb, DATA_ERR_ABORT))
5741                 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5742         else
5743                 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5744         /*
5745          * Always enable journal cycle record option, letting the journal
5746          * records log transactions continuously between each mount.
5747          */
5748         journal->j_flags |= JBD2_CYCLE_RECORD;
5749         write_unlock(&journal->j_state_lock);
5750 }
5751 
5752 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5753                                              unsigned int journal_inum)
5754 {
5755         struct inode *journal_inode;
5756 
5757         /*
5758          * Test for the existence of a valid inode on disk.  Bad things
5759          * happen if we iget() an unused inode, as the subsequent iput()
5760          * will try to delete it.
5761          */
5762         journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5763         if (IS_ERR(journal_inode)) {
5764                 ext4_msg(sb, KERN_ERR, "no journal found");
5765                 return ERR_CAST(journal_inode);
5766         }
5767         if (!journal_inode->i_nlink) {
5768                 make_bad_inode(journal_inode);
5769                 iput(journal_inode);
5770                 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5771                 return ERR_PTR(-EFSCORRUPTED);
5772         }
5773         if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5774                 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5775                 iput(journal_inode);
5776                 return ERR_PTR(-EFSCORRUPTED);
5777         }
5778 
5779         ext4_debug("Journal inode found at %p: %lld bytes\n",
5780                   journal_inode, journal_inode->i_size);
5781         return journal_inode;
5782 }
5783 
5784 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5785 {
5786         struct ext4_map_blocks map;
5787         int ret;
5788 
5789         if (journal->j_inode == NULL)
5790                 return 0;
5791 
5792         map.m_lblk = *block;
5793         map.m_len = 1;
5794         ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5795         if (ret <= 0) {
5796                 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5797                          "journal bmap failed: block %llu ret %d\n",
5798                          *block, ret);
5799                 jbd2_journal_abort(journal, ret ? ret : -EIO);
5800                 return ret;
5801         }
5802         *block = map.m_pblk;
5803         return 0;
5804 }
5805 
5806 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5807                                           unsigned int journal_inum)
5808 {
5809         struct inode *journal_inode;
5810         journal_t *journal;
5811 
5812         journal_inode = ext4_get_journal_inode(sb, journal_inum);
5813         if (IS_ERR(journal_inode))
5814                 return ERR_CAST(journal_inode);
5815 
5816         journal = jbd2_journal_init_inode(journal_inode);
5817         if (IS_ERR(journal)) {
5818                 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5819                 iput(journal_inode);
5820                 return ERR_CAST(journal);
5821         }
5822         journal->j_private = sb;
5823         journal->j_bmap = ext4_journal_bmap;
5824         ext4_init_journal_params(sb, journal);
5825         return journal;
5826 }
5827 
5828 static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5829                                         dev_t j_dev, ext4_fsblk_t *j_start,
5830                                         ext4_fsblk_t *j_len)
5831 {
5832         struct buffer_head *bh;
5833         struct block_device *bdev;
5834         struct file *bdev_file;
5835         int hblock, blocksize;
5836         ext4_fsblk_t sb_block;
5837         unsigned long offset;
5838         struct ext4_super_block *es;
5839         int errno;
5840 
5841         bdev_file = bdev_file_open_by_dev(j_dev,
5842                 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5843                 sb, &fs_holder_ops);
5844         if (IS_ERR(bdev_file)) {
5845                 ext4_msg(sb, KERN_ERR,
5846                          "failed to open journal device unknown-block(%u,%u) %ld",
5847                          MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5848                 return bdev_file;
5849         }
5850 
5851         bdev = file_bdev(bdev_file);
5852         blocksize = sb->s_blocksize;
5853         hblock = bdev_logical_block_size(bdev);
5854         if (blocksize < hblock) {
5855                 ext4_msg(sb, KERN_ERR,
5856                         "blocksize too small for journal device");
5857                 errno = -EINVAL;
5858                 goto out_bdev;
5859         }
5860 
5861         sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5862         offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5863         set_blocksize(bdev_file, blocksize);
5864         bh = __bread(bdev, sb_block, blocksize);
5865         if (!bh) {
5866                 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5867                        "external journal");
5868                 errno = -EINVAL;
5869                 goto out_bdev;
5870         }
5871 
5872         es = (struct ext4_super_block *) (bh->b_data + offset);
5873         if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5874             !(le32_to_cpu(es->s_feature_incompat) &
5875               EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5876                 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5877                 errno = -EFSCORRUPTED;
5878                 goto out_bh;
5879         }
5880 
5881         if ((le32_to_cpu(es->s_feature_ro_compat) &
5882              EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5883             es->s_checksum != ext4_superblock_csum(sb, es)) {
5884                 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5885                 errno = -EFSCORRUPTED;
5886                 goto out_bh;
5887         }
5888 
5889         if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5890                 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5891                 errno = -EFSCORRUPTED;
5892                 goto out_bh;
5893         }
5894 
5895         *j_start = sb_block + 1;
5896         *j_len = ext4_blocks_count(es);
5897         brelse(bh);
5898         return bdev_file;
5899 
5900 out_bh:
5901         brelse(bh);
5902 out_bdev:
5903         bdev_fput(bdev_file);
5904         return ERR_PTR(errno);
5905 }
5906 
5907 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5908                                         dev_t j_dev)
5909 {
5910         journal_t *journal;
5911         ext4_fsblk_t j_start;
5912         ext4_fsblk_t j_len;
5913         struct file *bdev_file;
5914         int errno = 0;
5915 
5916         bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5917         if (IS_ERR(bdev_file))
5918                 return ERR_CAST(bdev_file);
5919 
5920         journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5921                                         j_len, sb->s_blocksize);
5922         if (IS_ERR(journal)) {
5923                 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5924                 errno = PTR_ERR(journal);
5925                 goto out_bdev;
5926         }
5927         if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5928                 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5929                                         "user (unsupported) - %d",
5930                         be32_to_cpu(journal->j_superblock->s_nr_users));
5931                 errno = -EINVAL;
5932                 goto out_journal;
5933         }
5934         journal->j_private = sb;
5935         EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5936         ext4_init_journal_params(sb, journal);
5937         return journal;
5938 
5939 out_journal:
5940         jbd2_journal_destroy(journal);
5941 out_bdev:
5942         bdev_fput(bdev_file);
5943         return ERR_PTR(errno);
5944 }
5945 
5946 static int ext4_load_journal(struct super_block *sb,
5947                              struct ext4_super_block *es,
5948                              unsigned long journal_devnum)
5949 {
5950         journal_t *journal;
5951         unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5952         dev_t journal_dev;
5953         int err = 0;
5954         int really_read_only;
5955         int journal_dev_ro;
5956 
5957         if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5958                 return -EFSCORRUPTED;
5959 
5960         if (journal_devnum &&
5961             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5962                 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5963                         "numbers have changed");
5964                 journal_dev = new_decode_dev(journal_devnum);
5965         } else
5966                 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5967 
5968         if (journal_inum && journal_dev) {
5969                 ext4_msg(sb, KERN_ERR,
5970                          "filesystem has both journal inode and journal device!");
5971                 return -EINVAL;
5972         }
5973 
5974         if (journal_inum) {
5975                 journal = ext4_open_inode_journal(sb, journal_inum);
5976                 if (IS_ERR(journal))
5977                         return PTR_ERR(journal);
5978         } else {
5979                 journal = ext4_open_dev_journal(sb, journal_dev);
5980                 if (IS_ERR(journal))
5981                         return PTR_ERR(journal);
5982         }
5983 
5984         journal_dev_ro = bdev_read_only(journal->j_dev);
5985         really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5986 
5987         if (journal_dev_ro && !sb_rdonly(sb)) {
5988                 ext4_msg(sb, KERN_ERR,
5989                          "journal device read-only, try mounting with '-o ro'");
5990                 err = -EROFS;
5991                 goto err_out;
5992         }
5993 
5994         /*
5995          * Are we loading a blank journal or performing recovery after a
5996          * crash?  For recovery, we need to check in advance whether we
5997          * can get read-write access to the device.
5998          */
5999         if (ext4_has_feature_journal_needs_recovery(sb)) {
6000                 if (sb_rdonly(sb)) {
6001                         ext4_msg(sb, KERN_INFO, "INFO: recovery "
6002                                         "required on readonly filesystem");
6003                         if (really_read_only) {
6004                                 ext4_msg(sb, KERN_ERR, "write access "
6005                                         "unavailable, cannot proceed "
6006                                         "(try mounting with noload)");
6007                                 err = -EROFS;
6008                                 goto err_out;
6009                         }
6010                         ext4_msg(sb, KERN_INFO, "write access will "
6011                                "be enabled during recovery");
6012                 }
6013         }
6014 
6015         if (!(journal->j_flags & JBD2_BARRIER))
6016                 ext4_msg(sb, KERN_INFO, "barriers disabled");
6017 
6018         if (!ext4_has_feature_journal_needs_recovery(sb))
6019                 err = jbd2_journal_wipe(journal, !really_read_only);
6020         if (!err) {
6021                 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6022                 __le16 orig_state;
6023                 bool changed = false;
6024 
6025                 if (save)
6026                         memcpy(save, ((char *) es) +
6027                                EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6028                 err = jbd2_journal_load(journal);
6029                 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6030                                    save, EXT4_S_ERR_LEN)) {
6031                         memcpy(((char *) es) + EXT4_S_ERR_START,
6032                                save, EXT4_S_ERR_LEN);
6033                         changed = true;
6034                 }
6035                 kfree(save);
6036                 orig_state = es->s_state;
6037                 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6038                                            EXT4_ERROR_FS);
6039                 if (orig_state != es->s_state)
6040                         changed = true;
6041                 /* Write out restored error information to the superblock */
6042                 if (changed && !really_read_only) {
6043                         int err2;
6044                         err2 = ext4_commit_super(sb);
6045                         err = err ? : err2;
6046                 }
6047         }
6048 
6049         if (err) {
6050                 ext4_msg(sb, KERN_ERR, "error loading journal");
6051                 goto err_out;
6052         }
6053 
6054         EXT4_SB(sb)->s_journal = journal;
6055         err = ext4_clear_journal_err(sb, es);
6056         if (err) {
6057                 EXT4_SB(sb)->s_journal = NULL;
6058                 jbd2_journal_destroy(journal);
6059                 return err;
6060         }
6061 
6062         if (!really_read_only && journal_devnum &&
6063             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6064                 es->s_journal_dev = cpu_to_le32(journal_devnum);
6065                 ext4_commit_super(sb);
6066         }
6067         if (!really_read_only && journal_inum &&
6068             journal_inum != le32_to_cpu(es->s_journal_inum)) {
6069                 es->s_journal_inum = cpu_to_le32(journal_inum);
6070                 ext4_commit_super(sb);
6071         }
6072 
6073         return 0;
6074 
6075 err_out:
6076         jbd2_journal_destroy(journal);
6077         return err;
6078 }
6079 
6080 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6081 static void ext4_update_super(struct super_block *sb)
6082 {
6083         struct ext4_sb_info *sbi = EXT4_SB(sb);
6084         struct ext4_super_block *es = sbi->s_es;
6085         struct buffer_head *sbh = sbi->s_sbh;
6086 
6087         lock_buffer(sbh);
6088         /*
6089          * If the file system is mounted read-only, don't update the
6090          * superblock write time.  This avoids updating the superblock
6091          * write time when we are mounting the root file system
6092          * read/only but we need to replay the journal; at that point,
6093          * for people who are east of GMT and who make their clock
6094          * tick in localtime for Windows bug-for-bug compatibility,
6095          * the clock is set in the future, and this will cause e2fsck
6096          * to complain and force a full file system check.
6097          */
6098         if (!sb_rdonly(sb))
6099                 ext4_update_tstamp(es, s_wtime);
6100         es->s_kbytes_written =
6101                 cpu_to_le64(sbi->s_kbytes_written +
6102                     ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6103                       sbi->s_sectors_written_start) >> 1));
6104         if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6105                 ext4_free_blocks_count_set(es,
6106                         EXT4_C2B(sbi, percpu_counter_sum_positive(
6107                                 &sbi->s_freeclusters_counter)));
6108         if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6109                 es->s_free_inodes_count =
6110                         cpu_to_le32(percpu_counter_sum_positive(
6111                                 &sbi->s_freeinodes_counter));
6112         /* Copy error information to the on-disk superblock */
6113         spin_lock(&sbi->s_error_lock);
6114         if (sbi->s_add_error_count > 0) {
6115                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6116                 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6117                         __ext4_update_tstamp(&es->s_first_error_time,
6118                                              &es->s_first_error_time_hi,
6119                                              sbi->s_first_error_time);
6120                         strtomem_pad(es->s_first_error_func,
6121                                      sbi->s_first_error_func, 0);
6122                         es->s_first_error_line =
6123                                 cpu_to_le32(sbi->s_first_error_line);
6124                         es->s_first_error_ino =
6125                                 cpu_to_le32(sbi->s_first_error_ino);
6126                         es->s_first_error_block =
6127                                 cpu_to_le64(sbi->s_first_error_block);
6128                         es->s_first_error_errcode =
6129                                 ext4_errno_to_code(sbi->s_first_error_code);
6130                 }
6131                 __ext4_update_tstamp(&es->s_last_error_time,
6132                                      &es->s_last_error_time_hi,
6133                                      sbi->s_last_error_time);
6134                 strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6135                 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6136                 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6137                 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6138                 es->s_last_error_errcode =
6139                                 ext4_errno_to_code(sbi->s_last_error_code);
6140                 /*
6141                  * Start the daily error reporting function if it hasn't been
6142                  * started already
6143                  */
6144                 if (!es->s_error_count)
6145                         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6146                 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6147                 sbi->s_add_error_count = 0;
6148         }
6149         spin_unlock(&sbi->s_error_lock);
6150 
6151         ext4_superblock_csum_set(sb);
6152         unlock_buffer(sbh);
6153 }
6154 
6155 static int ext4_commit_super(struct super_block *sb)
6156 {
6157         struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6158 
6159         if (!sbh)
6160                 return -EINVAL;
6161 
6162         ext4_update_super(sb);
6163 
6164         lock_buffer(sbh);
6165         /* Buffer got discarded which means block device got invalidated */
6166         if (!buffer_mapped(sbh)) {
6167                 unlock_buffer(sbh);
6168                 return -EIO;
6169         }
6170 
6171         if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6172                 /*
6173                  * Oh, dear.  A previous attempt to write the
6174                  * superblock failed.  This could happen because the
6175                  * USB device was yanked out.  Or it could happen to
6176                  * be a transient write error and maybe the block will
6177                  * be remapped.  Nothing we can do but to retry the
6178                  * write and hope for the best.
6179                  */
6180                 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6181                        "superblock detected");
6182                 clear_buffer_write_io_error(sbh);
6183                 set_buffer_uptodate(sbh);
6184         }
6185         get_bh(sbh);
6186         /* Clear potential dirty bit if it was journalled update */
6187         clear_buffer_dirty(sbh);
6188         sbh->b_end_io = end_buffer_write_sync;
6189         submit_bh(REQ_OP_WRITE | REQ_SYNC |
6190                   (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6191         wait_on_buffer(sbh);
6192         if (buffer_write_io_error(sbh)) {
6193                 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6194                        "superblock");
6195                 clear_buffer_write_io_error(sbh);
6196                 set_buffer_uptodate(sbh);
6197                 return -EIO;
6198         }
6199         return 0;
6200 }
6201 
6202 /*
6203  * Have we just finished recovery?  If so, and if we are mounting (or
6204  * remounting) the filesystem readonly, then we will end up with a
6205  * consistent fs on disk.  Record that fact.
6206  */
6207 static int ext4_mark_recovery_complete(struct super_block *sb,
6208                                        struct ext4_super_block *es)
6209 {
6210         int err;
6211         journal_t *journal = EXT4_SB(sb)->s_journal;
6212 
6213         if (!ext4_has_feature_journal(sb)) {
6214                 if (journal != NULL) {
6215                         ext4_error(sb, "Journal got removed while the fs was "
6216                                    "mounted!");
6217                         return -EFSCORRUPTED;
6218                 }
6219                 return 0;
6220         }
6221         jbd2_journal_lock_updates(journal);
6222         err = jbd2_journal_flush(journal, 0);
6223         if (err < 0)
6224                 goto out;
6225 
6226         if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6227             ext4_has_feature_orphan_present(sb))) {
6228                 if (!ext4_orphan_file_empty(sb)) {
6229                         ext4_error(sb, "Orphan file not empty on read-only fs.");
6230                         err = -EFSCORRUPTED;
6231                         goto out;
6232                 }
6233                 ext4_clear_feature_journal_needs_recovery(sb);
6234                 ext4_clear_feature_orphan_present(sb);
6235                 ext4_commit_super(sb);
6236         }
6237 out:
6238         jbd2_journal_unlock_updates(journal);
6239         return err;
6240 }
6241 
6242 /*
6243  * If we are mounting (or read-write remounting) a filesystem whose journal
6244  * has recorded an error from a previous lifetime, move that error to the
6245  * main filesystem now.
6246  */
6247 static int ext4_clear_journal_err(struct super_block *sb,
6248                                    struct ext4_super_block *es)
6249 {
6250         journal_t *journal;
6251         int j_errno;
6252         const char *errstr;
6253 
6254         if (!ext4_has_feature_journal(sb)) {
6255                 ext4_error(sb, "Journal got removed while the fs was mounted!");
6256                 return -EFSCORRUPTED;
6257         }
6258 
6259         journal = EXT4_SB(sb)->s_journal;
6260 
6261         /*
6262          * Now check for any error status which may have been recorded in the
6263          * journal by a prior ext4_error() or ext4_abort()
6264          */
6265 
6266         j_errno = jbd2_journal_errno(journal);
6267         if (j_errno) {
6268                 char nbuf[16];
6269 
6270                 errstr = ext4_decode_error(sb, j_errno, nbuf);
6271                 ext4_warning(sb, "Filesystem error recorded "
6272                              "from previous mount: %s", errstr);
6273 
6274                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6275                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6276                 j_errno = ext4_commit_super(sb);
6277                 if (j_errno)
6278                         return j_errno;
6279                 ext4_warning(sb, "Marked fs in need of filesystem check.");
6280 
6281                 jbd2_journal_clear_err(journal);
6282                 jbd2_journal_update_sb_errno(journal);
6283         }
6284         return 0;
6285 }
6286 
6287 /*
6288  * Force the running and committing transactions to commit,
6289  * and wait on the commit.
6290  */
6291 int ext4_force_commit(struct super_block *sb)
6292 {
6293         return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6294 }
6295 
6296 static int ext4_sync_fs(struct super_block *sb, int wait)
6297 {
6298         int ret = 0;
6299         tid_t target;
6300         bool needs_barrier = false;
6301         struct ext4_sb_info *sbi = EXT4_SB(sb);
6302 
6303         if (unlikely(ext4_forced_shutdown(sb)))
6304                 return 0;
6305 
6306         trace_ext4_sync_fs(sb, wait);
6307         flush_workqueue(sbi->rsv_conversion_wq);
6308         /*
6309          * Writeback quota in non-journalled quota case - journalled quota has
6310          * no dirty dquots
6311          */
6312         dquot_writeback_dquots(sb, -1);
6313         /*
6314          * Data writeback is possible w/o journal transaction, so barrier must
6315          * being sent at the end of the function. But we can skip it if
6316          * transaction_commit will do it for us.
6317          */
6318         if (sbi->s_journal) {
6319                 target = jbd2_get_latest_transaction(sbi->s_journal);
6320                 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6321                     !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6322                         needs_barrier = true;
6323 
6324                 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6325                         if (wait)
6326                                 ret = jbd2_log_wait_commit(sbi->s_journal,
6327                                                            target);
6328                 }
6329         } else if (wait && test_opt(sb, BARRIER))
6330                 needs_barrier = true;
6331         if (needs_barrier) {
6332                 int err;
6333                 err = blkdev_issue_flush(sb->s_bdev);
6334                 if (!ret)
6335                         ret = err;
6336         }
6337 
6338         return ret;
6339 }
6340 
6341 /*
6342  * LVM calls this function before a (read-only) snapshot is created.  This
6343  * gives us a chance to flush the journal completely and mark the fs clean.
6344  *
6345  * Note that only this function cannot bring a filesystem to be in a clean
6346  * state independently. It relies on upper layer to stop all data & metadata
6347  * modifications.
6348  */
6349 static int ext4_freeze(struct super_block *sb)
6350 {
6351         int error = 0;
6352         journal_t *journal = EXT4_SB(sb)->s_journal;
6353 
6354         if (journal) {
6355                 /* Now we set up the journal barrier. */
6356                 jbd2_journal_lock_updates(journal);
6357 
6358                 /*
6359                  * Don't clear the needs_recovery flag if we failed to
6360                  * flush the journal.
6361                  */
6362                 error = jbd2_journal_flush(journal, 0);
6363                 if (error < 0)
6364                         goto out;
6365 
6366                 /* Journal blocked and flushed, clear needs_recovery flag. */
6367                 ext4_clear_feature_journal_needs_recovery(sb);
6368                 if (ext4_orphan_file_empty(sb))
6369                         ext4_clear_feature_orphan_present(sb);
6370         }
6371 
6372         error = ext4_commit_super(sb);
6373 out:
6374         if (journal)
6375                 /* we rely on upper layer to stop further updates */
6376                 jbd2_journal_unlock_updates(journal);
6377         return error;
6378 }
6379 
6380 /*
6381  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6382  * flag here, even though the filesystem is not technically dirty yet.
6383  */
6384 static int ext4_unfreeze(struct super_block *sb)
6385 {
6386         if (ext4_forced_shutdown(sb))
6387                 return 0;
6388 
6389         if (EXT4_SB(sb)->s_journal) {
6390                 /* Reset the needs_recovery flag before the fs is unlocked. */
6391                 ext4_set_feature_journal_needs_recovery(sb);
6392                 if (ext4_has_feature_orphan_file(sb))
6393                         ext4_set_feature_orphan_present(sb);
6394         }
6395 
6396         ext4_commit_super(sb);
6397         return 0;
6398 }
6399 
6400 /*
6401  * Structure to save mount options for ext4_remount's benefit
6402  */
6403 struct ext4_mount_options {
6404         unsigned long s_mount_opt;
6405         unsigned long s_mount_opt2;
6406         kuid_t s_resuid;
6407         kgid_t s_resgid;
6408         unsigned long s_commit_interval;
6409         u32 s_min_batch_time, s_max_batch_time;
6410 #ifdef CONFIG_QUOTA
6411         int s_jquota_fmt;
6412         char *s_qf_names[EXT4_MAXQUOTAS];
6413 #endif
6414 };
6415 
6416 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6417 {
6418         struct ext4_fs_context *ctx = fc->fs_private;
6419         struct ext4_super_block *es;
6420         struct ext4_sb_info *sbi = EXT4_SB(sb);
6421         unsigned long old_sb_flags;
6422         struct ext4_mount_options old_opts;
6423         ext4_group_t g;
6424         int err = 0;
6425         int alloc_ctx;
6426 #ifdef CONFIG_QUOTA
6427         int enable_quota = 0;
6428         int i, j;
6429         char *to_free[EXT4_MAXQUOTAS];
6430 #endif
6431 
6432 
6433         /* Store the original options */
6434         old_sb_flags = sb->s_flags;
6435         old_opts.s_mount_opt = sbi->s_mount_opt;
6436         old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6437         old_opts.s_resuid = sbi->s_resuid;
6438         old_opts.s_resgid = sbi->s_resgid;
6439         old_opts.s_commit_interval = sbi->s_commit_interval;
6440         old_opts.s_min_batch_time = sbi->s_min_batch_time;
6441         old_opts.s_max_batch_time = sbi->s_max_batch_time;
6442 #ifdef CONFIG_QUOTA
6443         old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6444         for (i = 0; i < EXT4_MAXQUOTAS; i++)
6445                 if (sbi->s_qf_names[i]) {
6446                         char *qf_name = get_qf_name(sb, sbi, i);
6447 
6448                         old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6449                         if (!old_opts.s_qf_names[i]) {
6450                                 for (j = 0; j < i; j++)
6451                                         kfree(old_opts.s_qf_names[j]);
6452                                 return -ENOMEM;
6453                         }
6454                 } else
6455                         old_opts.s_qf_names[i] = NULL;
6456 #endif
6457         if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6458                 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6459                         ctx->journal_ioprio =
6460                                 sbi->s_journal->j_task->io_context->ioprio;
6461                 else
6462                         ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6463 
6464         }
6465 
6466         if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6467             ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6468                 ext4_msg(sb, KERN_WARNING,
6469                          "stripe (%lu) is not aligned with cluster size (%u), "
6470                          "stripe is disabled",
6471                          ctx->s_stripe, sbi->s_cluster_ratio);
6472                 ctx->s_stripe = 0;
6473         }
6474 
6475         /*
6476          * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6477          * two calls to ext4_should_dioread_nolock() to return inconsistent
6478          * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6479          * here s_writepages_rwsem to avoid race between writepages ops and
6480          * remount.
6481          */
6482         alloc_ctx = ext4_writepages_down_write(sb);
6483         ext4_apply_options(fc, sb);
6484         ext4_writepages_up_write(sb, alloc_ctx);
6485 
6486         if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6487             test_opt(sb, JOURNAL_CHECKSUM)) {
6488                 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6489                          "during remount not supported; ignoring");
6490                 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6491         }
6492 
6493         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6494                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6495                         ext4_msg(sb, KERN_ERR, "can't mount with "
6496                                  "both data=journal and delalloc");
6497                         err = -EINVAL;
6498                         goto restore_opts;
6499                 }
6500                 if (test_opt(sb, DIOREAD_NOLOCK)) {
6501                         ext4_msg(sb, KERN_ERR, "can't mount with "
6502                                  "both data=journal and dioread_nolock");
6503                         err = -EINVAL;
6504                         goto restore_opts;
6505                 }
6506         } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6507                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6508                         ext4_msg(sb, KERN_ERR, "can't mount with "
6509                                 "journal_async_commit in data=ordered mode");
6510                         err = -EINVAL;
6511                         goto restore_opts;
6512                 }
6513         }
6514 
6515         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6516                 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6517                 err = -EINVAL;
6518                 goto restore_opts;
6519         }
6520 
6521         if (test_opt2(sb, ABORT))
6522                 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6523 
6524         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6525                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6526 
6527         es = sbi->s_es;
6528 
6529         if (sbi->s_journal) {
6530                 ext4_init_journal_params(sb, sbi->s_journal);
6531                 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6532         }
6533 
6534         /* Flush outstanding errors before changing fs state */
6535         flush_work(&sbi->s_sb_upd_work);
6536 
6537         if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6538                 if (ext4_forced_shutdown(sb)) {
6539                         err = -EROFS;
6540                         goto restore_opts;
6541                 }
6542 
6543                 if (fc->sb_flags & SB_RDONLY) {
6544                         err = sync_filesystem(sb);
6545                         if (err < 0)
6546                                 goto restore_opts;
6547                         err = dquot_suspend(sb, -1);
6548                         if (err < 0)
6549                                 goto restore_opts;
6550 
6551                         /*
6552                          * First of all, the unconditional stuff we have to do
6553                          * to disable replay of the journal when we next remount
6554                          */
6555                         sb->s_flags |= SB_RDONLY;
6556 
6557                         /*
6558                          * OK, test if we are remounting a valid rw partition
6559                          * readonly, and if so set the rdonly flag and then
6560                          * mark the partition as valid again.
6561                          */
6562                         if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6563                             (sbi->s_mount_state & EXT4_VALID_FS))
6564                                 es->s_state = cpu_to_le16(sbi->s_mount_state);
6565 
6566                         if (sbi->s_journal) {
6567                                 /*
6568                                  * We let remount-ro finish even if marking fs
6569                                  * as clean failed...
6570                                  */
6571                                 ext4_mark_recovery_complete(sb, es);
6572                         }
6573                 } else {
6574                         /* Make sure we can mount this feature set readwrite */
6575                         if (ext4_has_feature_readonly(sb) ||
6576                             !ext4_feature_set_ok(sb, 0)) {
6577                                 err = -EROFS;
6578                                 goto restore_opts;
6579                         }
6580                         /*
6581                          * Make sure the group descriptor checksums
6582                          * are sane.  If they aren't, refuse to remount r/w.
6583                          */
6584                         for (g = 0; g < sbi->s_groups_count; g++) {
6585                                 struct ext4_group_desc *gdp =
6586                                         ext4_get_group_desc(sb, g, NULL);
6587 
6588                                 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6589                                         ext4_msg(sb, KERN_ERR,
6590                "ext4_remount: Checksum for group %u failed (%u!=%u)",
6591                 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6592                                                le16_to_cpu(gdp->bg_checksum));
6593                                         err = -EFSBADCRC;
6594                                         goto restore_opts;
6595                                 }
6596                         }
6597 
6598                         /*
6599                          * If we have an unprocessed orphan list hanging
6600                          * around from a previously readonly bdev mount,
6601                          * require a full umount/remount for now.
6602                          */
6603                         if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6604                                 ext4_msg(sb, KERN_WARNING, "Couldn't "
6605                                        "remount RDWR because of unprocessed "
6606                                        "orphan inode list.  Please "
6607                                        "umount/remount instead");
6608                                 err = -EINVAL;
6609                                 goto restore_opts;
6610                         }
6611 
6612                         /*
6613                          * Mounting a RDONLY partition read-write, so reread
6614                          * and store the current valid flag.  (It may have
6615                          * been changed by e2fsck since we originally mounted
6616                          * the partition.)
6617                          */
6618                         if (sbi->s_journal) {
6619                                 err = ext4_clear_journal_err(sb, es);
6620                                 if (err)
6621                                         goto restore_opts;
6622                         }
6623                         sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6624                                               ~EXT4_FC_REPLAY);
6625 
6626                         err = ext4_setup_super(sb, es, 0);
6627                         if (err)
6628                                 goto restore_opts;
6629 
6630                         sb->s_flags &= ~SB_RDONLY;
6631                         if (ext4_has_feature_mmp(sb)) {
6632                                 err = ext4_multi_mount_protect(sb,
6633                                                 le64_to_cpu(es->s_mmp_block));
6634                                 if (err)
6635                                         goto restore_opts;
6636                         }
6637 #ifdef CONFIG_QUOTA
6638                         enable_quota = 1;
6639 #endif
6640                 }
6641         }
6642 
6643         /*
6644          * Handle creation of system zone data early because it can fail.
6645          * Releasing of existing data is done when we are sure remount will
6646          * succeed.
6647          */
6648         if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6649                 err = ext4_setup_system_zone(sb);
6650                 if (err)
6651                         goto restore_opts;
6652         }
6653 
6654         if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6655                 err = ext4_commit_super(sb);
6656                 if (err)
6657                         goto restore_opts;
6658         }
6659 
6660 #ifdef CONFIG_QUOTA
6661         if (enable_quota) {
6662                 if (sb_any_quota_suspended(sb))
6663                         dquot_resume(sb, -1);
6664                 else if (ext4_has_feature_quota(sb)) {
6665                         err = ext4_enable_quotas(sb);
6666                         if (err)
6667                                 goto restore_opts;
6668                 }
6669         }
6670         /* Release old quota file names */
6671         for (i = 0; i < EXT4_MAXQUOTAS; i++)
6672                 kfree(old_opts.s_qf_names[i]);
6673 #endif
6674         if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6675                 ext4_release_system_zone(sb);
6676 
6677         /*
6678          * Reinitialize lazy itable initialization thread based on
6679          * current settings
6680          */
6681         if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6682                 ext4_unregister_li_request(sb);
6683         else {
6684                 ext4_group_t first_not_zeroed;
6685                 first_not_zeroed = ext4_has_uninit_itable(sb);
6686                 ext4_register_li_request(sb, first_not_zeroed);
6687         }
6688 
6689         if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6690                 ext4_stop_mmpd(sbi);
6691 
6692         return 0;
6693 
6694 restore_opts:
6695         /*
6696          * If there was a failing r/w to ro transition, we may need to
6697          * re-enable quota
6698          */
6699         if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6700             sb_any_quota_suspended(sb))
6701                 dquot_resume(sb, -1);
6702 
6703         alloc_ctx = ext4_writepages_down_write(sb);
6704         sb->s_flags = old_sb_flags;
6705         sbi->s_mount_opt = old_opts.s_mount_opt;
6706         sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6707         sbi->s_resuid = old_opts.s_resuid;
6708         sbi->s_resgid = old_opts.s_resgid;
6709         sbi->s_commit_interval = old_opts.s_commit_interval;
6710         sbi->s_min_batch_time = old_opts.s_min_batch_time;
6711         sbi->s_max_batch_time = old_opts.s_max_batch_time;
6712         ext4_writepages_up_write(sb, alloc_ctx);
6713 
6714         if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6715                 ext4_release_system_zone(sb);
6716 #ifdef CONFIG_QUOTA
6717         sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6718         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6719                 to_free[i] = get_qf_name(sb, sbi, i);
6720                 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6721         }
6722         synchronize_rcu();
6723         for (i = 0; i < EXT4_MAXQUOTAS; i++)
6724                 kfree(to_free[i]);
6725 #endif
6726         if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6727                 ext4_stop_mmpd(sbi);
6728         return err;
6729 }
6730 
6731 static int ext4_reconfigure(struct fs_context *fc)
6732 {
6733         struct super_block *sb = fc->root->d_sb;
6734         int ret;
6735 
6736         fc->s_fs_info = EXT4_SB(sb);
6737 
6738         ret = ext4_check_opt_consistency(fc, sb);
6739         if (ret < 0)
6740                 return ret;
6741 
6742         ret = __ext4_remount(fc, sb);
6743         if (ret < 0)
6744                 return ret;
6745 
6746         ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6747                  &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6748                  ext4_quota_mode(sb));
6749 
6750         return 0;
6751 }
6752 
6753 #ifdef CONFIG_QUOTA
6754 static int ext4_statfs_project(struct super_block *sb,
6755                                kprojid_t projid, struct kstatfs *buf)
6756 {
6757         struct kqid qid;
6758         struct dquot *dquot;
6759         u64 limit;
6760         u64 curblock;
6761 
6762         qid = make_kqid_projid(projid);
6763         dquot = dqget(sb, qid);
6764         if (IS_ERR(dquot))
6765                 return PTR_ERR(dquot);
6766         spin_lock(&dquot->dq_dqb_lock);
6767 
6768         limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6769                              dquot->dq_dqb.dqb_bhardlimit);
6770         limit >>= sb->s_blocksize_bits;
6771 
6772         if (limit && buf->f_blocks > limit) {
6773                 curblock = (dquot->dq_dqb.dqb_curspace +
6774                             dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6775                 buf->f_blocks = limit;
6776                 buf->f_bfree = buf->f_bavail =
6777                         (buf->f_blocks > curblock) ?
6778                          (buf->f_blocks - curblock) : 0;
6779         }
6780 
6781         limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6782                              dquot->dq_dqb.dqb_ihardlimit);
6783         if (limit && buf->f_files > limit) {
6784                 buf->f_files = limit;
6785                 buf->f_ffree =
6786                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6787                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6788         }
6789 
6790         spin_unlock(&dquot->dq_dqb_lock);
6791         dqput(dquot);
6792         return 0;
6793 }
6794 #endif
6795 
6796 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6797 {
6798         struct super_block *sb = dentry->d_sb;
6799         struct ext4_sb_info *sbi = EXT4_SB(sb);
6800         struct ext4_super_block *es = sbi->s_es;
6801         ext4_fsblk_t overhead = 0, resv_blocks;
6802         s64 bfree;
6803         resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6804 
6805         if (!test_opt(sb, MINIX_DF))
6806                 overhead = sbi->s_overhead;
6807 
6808         buf->f_type = EXT4_SUPER_MAGIC;
6809         buf->f_bsize = sb->s_blocksize;
6810         buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6811         bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6812                 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6813         /* prevent underflow in case that few free space is available */
6814         buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6815         buf->f_bavail = buf->f_bfree -
6816                         (ext4_r_blocks_count(es) + resv_blocks);
6817         if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6818                 buf->f_bavail = 0;
6819         buf->f_files = le32_to_cpu(es->s_inodes_count);
6820         buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6821         buf->f_namelen = EXT4_NAME_LEN;
6822         buf->f_fsid = uuid_to_fsid(es->s_uuid);
6823 
6824 #ifdef CONFIG_QUOTA
6825         if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6826             sb_has_quota_limits_enabled(sb, PRJQUOTA))
6827                 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6828 #endif
6829         return 0;
6830 }
6831 
6832 
6833 #ifdef CONFIG_QUOTA
6834 
6835 /*
6836  * Helper functions so that transaction is started before we acquire dqio_sem
6837  * to keep correct lock ordering of transaction > dqio_sem
6838  */
6839 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6840 {
6841         return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6842 }
6843 
6844 static int ext4_write_dquot(struct dquot *dquot)
6845 {
6846         int ret, err;
6847         handle_t *handle;
6848         struct inode *inode;
6849 
6850         inode = dquot_to_inode(dquot);
6851         handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6852                                     EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6853         if (IS_ERR(handle))
6854                 return PTR_ERR(handle);
6855         ret = dquot_commit(dquot);
6856         if (ret < 0)
6857                 ext4_error_err(dquot->dq_sb, -ret,
6858                                "Failed to commit dquot type %d",
6859                                dquot->dq_id.type);
6860         err = ext4_journal_stop(handle);
6861         if (!ret)
6862                 ret = err;
6863         return ret;
6864 }
6865 
6866 static int ext4_acquire_dquot(struct dquot *dquot)
6867 {
6868         int ret, err;
6869         handle_t *handle;
6870 
6871         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6872                                     EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6873         if (IS_ERR(handle))
6874                 return PTR_ERR(handle);
6875         ret = dquot_acquire(dquot);
6876         if (ret < 0)
6877                 ext4_error_err(dquot->dq_sb, -ret,
6878                               "Failed to acquire dquot type %d",
6879                               dquot->dq_id.type);
6880         err = ext4_journal_stop(handle);
6881         if (!ret)
6882                 ret = err;
6883         return ret;
6884 }
6885 
6886 static int ext4_release_dquot(struct dquot *dquot)
6887 {
6888         int ret, err;
6889         handle_t *handle;
6890 
6891         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6892                                     EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6893         if (IS_ERR(handle)) {
6894                 /* Release dquot anyway to avoid endless cycle in dqput() */
6895                 dquot_release(dquot);
6896                 return PTR_ERR(handle);
6897         }
6898         ret = dquot_release(dquot);
6899         if (ret < 0)
6900                 ext4_error_err(dquot->dq_sb, -ret,
6901                                "Failed to release dquot type %d",
6902                                dquot->dq_id.type);
6903         err = ext4_journal_stop(handle);
6904         if (!ret)
6905                 ret = err;
6906         return ret;
6907 }
6908 
6909 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6910 {
6911         struct super_block *sb = dquot->dq_sb;
6912 
6913         if (ext4_is_quota_journalled(sb)) {
6914                 dquot_mark_dquot_dirty(dquot);
6915                 return ext4_write_dquot(dquot);
6916         } else {
6917                 return dquot_mark_dquot_dirty(dquot);
6918         }
6919 }
6920 
6921 static int ext4_write_info(struct super_block *sb, int type)
6922 {
6923         int ret, err;
6924         handle_t *handle;
6925 
6926         /* Data block + inode block */
6927         handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6928         if (IS_ERR(handle))
6929                 return PTR_ERR(handle);
6930         ret = dquot_commit_info(sb, type);
6931         err = ext4_journal_stop(handle);
6932         if (!ret)
6933                 ret = err;
6934         return ret;
6935 }
6936 
6937 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6938 {
6939         struct ext4_inode_info *ei = EXT4_I(inode);
6940 
6941         /* The first argument of lockdep_set_subclass has to be
6942          * *exactly* the same as the argument to init_rwsem() --- in
6943          * this case, in init_once() --- or lockdep gets unhappy
6944          * because the name of the lock is set using the
6945          * stringification of the argument to init_rwsem().
6946          */
6947         (void) ei;      /* shut up clang warning if !CONFIG_LOCKDEP */
6948         lockdep_set_subclass(&ei->i_data_sem, subclass);
6949 }
6950 
6951 /*
6952  * Standard function to be called on quota_on
6953  */
6954 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6955                          const struct path *path)
6956 {
6957         int err;
6958 
6959         if (!test_opt(sb, QUOTA))
6960                 return -EINVAL;
6961 
6962         /* Quotafile not on the same filesystem? */
6963         if (path->dentry->d_sb != sb)
6964                 return -EXDEV;
6965 
6966         /* Quota already enabled for this file? */
6967         if (IS_NOQUOTA(d_inode(path->dentry)))
6968                 return -EBUSY;
6969 
6970         /* Journaling quota? */
6971         if (EXT4_SB(sb)->s_qf_names[type]) {
6972                 /* Quotafile not in fs root? */
6973                 if (path->dentry->d_parent != sb->s_root)
6974                         ext4_msg(sb, KERN_WARNING,
6975                                 "Quota file not on filesystem root. "
6976                                 "Journaled quota will not work");
6977                 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6978         } else {
6979                 /*
6980                  * Clear the flag just in case mount options changed since
6981                  * last time.
6982                  */
6983                 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6984         }
6985 
6986         lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6987         err = dquot_quota_on(sb, type, format_id, path);
6988         if (!err) {
6989                 struct inode *inode = d_inode(path->dentry);
6990                 handle_t *handle;
6991 
6992                 /*
6993                  * Set inode flags to prevent userspace from messing with quota
6994                  * files. If this fails, we return success anyway since quotas
6995                  * are already enabled and this is not a hard failure.
6996                  */
6997                 inode_lock(inode);
6998                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6999                 if (IS_ERR(handle))
7000                         goto unlock_inode;
7001                 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7002                 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7003                                 S_NOATIME | S_IMMUTABLE);
7004                 err = ext4_mark_inode_dirty(handle, inode);
7005                 ext4_journal_stop(handle);
7006         unlock_inode:
7007                 inode_unlock(inode);
7008                 if (err)
7009                         dquot_quota_off(sb, type);
7010         }
7011         if (err)
7012                 lockdep_set_quota_inode(path->dentry->d_inode,
7013                                              I_DATA_SEM_NORMAL);
7014         return err;
7015 }
7016 
7017 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7018 {
7019         switch (type) {
7020         case USRQUOTA:
7021                 return qf_inum == EXT4_USR_QUOTA_INO;
7022         case GRPQUOTA:
7023                 return qf_inum == EXT4_GRP_QUOTA_INO;
7024         case PRJQUOTA:
7025                 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7026         default:
7027                 BUG();
7028         }
7029 }
7030 
7031 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7032                              unsigned int flags)
7033 {
7034         int err;
7035         struct inode *qf_inode;
7036         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7037                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7038                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7039                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7040         };
7041 
7042         BUG_ON(!ext4_has_feature_quota(sb));
7043 
7044         if (!qf_inums[type])
7045                 return -EPERM;
7046 
7047         if (!ext4_check_quota_inum(type, qf_inums[type])) {
7048                 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7049                                 qf_inums[type], type);
7050                 return -EUCLEAN;
7051         }
7052 
7053         qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7054         if (IS_ERR(qf_inode)) {
7055                 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7056                                 qf_inums[type], type);
7057                 return PTR_ERR(qf_inode);
7058         }
7059 
7060         /* Don't account quota for quota files to avoid recursion */
7061         qf_inode->i_flags |= S_NOQUOTA;
7062         lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7063         err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7064         if (err)
7065                 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7066         iput(qf_inode);
7067 
7068         return err;
7069 }
7070 
7071 /* Enable usage tracking for all quota types. */
7072 int ext4_enable_quotas(struct super_block *sb)
7073 {
7074         int type, err = 0;
7075         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7076                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7077                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7078                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7079         };
7080         bool quota_mopt[EXT4_MAXQUOTAS] = {
7081                 test_opt(sb, USRQUOTA),
7082                 test_opt(sb, GRPQUOTA),
7083                 test_opt(sb, PRJQUOTA),
7084         };
7085 
7086         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7087         for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7088                 if (qf_inums[type]) {
7089                         err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7090                                 DQUOT_USAGE_ENABLED |
7091                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7092                         if (err) {
7093                                 ext4_warning(sb,
7094                                         "Failed to enable quota tracking "
7095                                         "(type=%d, err=%d, ino=%lu). "
7096                                         "Please run e2fsck to fix.", type,
7097                                         err, qf_inums[type]);
7098 
7099                                 ext4_quotas_off(sb, type);
7100                                 return err;
7101                         }
7102                 }
7103         }
7104         return 0;
7105 }
7106 
7107 static int ext4_quota_off(struct super_block *sb, int type)
7108 {
7109         struct inode *inode = sb_dqopt(sb)->files[type];
7110         handle_t *handle;
7111         int err;
7112 
7113         /* Force all delayed allocation blocks to be allocated.
7114          * Caller already holds s_umount sem */
7115         if (test_opt(sb, DELALLOC))
7116                 sync_filesystem(sb);
7117 
7118         if (!inode || !igrab(inode))
7119                 goto out;
7120 
7121         err = dquot_quota_off(sb, type);
7122         if (err || ext4_has_feature_quota(sb))
7123                 goto out_put;
7124         /*
7125          * When the filesystem was remounted read-only first, we cannot cleanup
7126          * inode flags here. Bad luck but people should be using QUOTA feature
7127          * these days anyway.
7128          */
7129         if (sb_rdonly(sb))
7130                 goto out_put;
7131 
7132         inode_lock(inode);
7133         /*
7134          * Update modification times of quota files when userspace can
7135          * start looking at them. If we fail, we return success anyway since
7136          * this is not a hard failure and quotas are already disabled.
7137          */
7138         handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7139         if (IS_ERR(handle)) {
7140                 err = PTR_ERR(handle);
7141                 goto out_unlock;
7142         }
7143         EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7144         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7145         inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7146         err = ext4_mark_inode_dirty(handle, inode);
7147         ext4_journal_stop(handle);
7148 out_unlock:
7149         inode_unlock(inode);
7150 out_put:
7151         lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7152         iput(inode);
7153         return err;
7154 out:
7155         return dquot_quota_off(sb, type);
7156 }
7157 
7158 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7159  * acquiring the locks... As quota files are never truncated and quota code
7160  * itself serializes the operations (and no one else should touch the files)
7161  * we don't have to be afraid of races */
7162 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7163                                size_t len, loff_t off)
7164 {
7165         struct inode *inode = sb_dqopt(sb)->files[type];
7166         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7167         int offset = off & (sb->s_blocksize - 1);
7168         int tocopy;
7169         size_t toread;
7170         struct buffer_head *bh;
7171         loff_t i_size = i_size_read(inode);
7172 
7173         if (off > i_size)
7174                 return 0;
7175         if (off+len > i_size)
7176                 len = i_size-off;
7177         toread = len;
7178         while (toread > 0) {
7179                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7180                 bh = ext4_bread(NULL, inode, blk, 0);
7181                 if (IS_ERR(bh))
7182                         return PTR_ERR(bh);
7183                 if (!bh)        /* A hole? */
7184                         memset(data, 0, tocopy);
7185                 else
7186                         memcpy(data, bh->b_data+offset, tocopy);
7187                 brelse(bh);
7188                 offset = 0;
7189                 toread -= tocopy;
7190                 data += tocopy;
7191                 blk++;
7192         }
7193         return len;
7194 }
7195 
7196 /* Write to quotafile (we know the transaction is already started and has
7197  * enough credits) */
7198 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7199                                 const char *data, size_t len, loff_t off)
7200 {
7201         struct inode *inode = sb_dqopt(sb)->files[type];
7202         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7203         int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7204         int retries = 0;
7205         struct buffer_head *bh;
7206         handle_t *handle = journal_current_handle();
7207 
7208         if (!handle) {
7209                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7210                         " cancelled because transaction is not started",
7211                         (unsigned long long)off, (unsigned long long)len);
7212                 return -EIO;
7213         }
7214         /*
7215          * Since we account only one data block in transaction credits,
7216          * then it is impossible to cross a block boundary.
7217          */
7218         if (sb->s_blocksize - offset < len) {
7219                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7220                         " cancelled because not block aligned",
7221                         (unsigned long long)off, (unsigned long long)len);
7222                 return -EIO;
7223         }
7224 
7225         do {
7226                 bh = ext4_bread(handle, inode, blk,
7227                                 EXT4_GET_BLOCKS_CREATE |
7228                                 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7229         } while (PTR_ERR(bh) == -ENOSPC &&
7230                  ext4_should_retry_alloc(inode->i_sb, &retries));
7231         if (IS_ERR(bh))
7232                 return PTR_ERR(bh);
7233         if (!bh)
7234                 goto out;
7235         BUFFER_TRACE(bh, "get write access");
7236         err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7237         if (err) {
7238                 brelse(bh);
7239                 return err;
7240         }
7241         lock_buffer(bh);
7242         memcpy(bh->b_data+offset, data, len);
7243         flush_dcache_page(bh->b_page);
7244         unlock_buffer(bh);
7245         err = ext4_handle_dirty_metadata(handle, NULL, bh);
7246         brelse(bh);
7247 out:
7248         if (inode->i_size < off + len) {
7249                 i_size_write(inode, off + len);
7250                 EXT4_I(inode)->i_disksize = inode->i_size;
7251                 err2 = ext4_mark_inode_dirty(handle, inode);
7252                 if (unlikely(err2 && !err))
7253                         err = err2;
7254         }
7255         return err ? err : len;
7256 }
7257 #endif
7258 
7259 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7260 static inline void register_as_ext2(void)
7261 {
7262         int err = register_filesystem(&ext2_fs_type);
7263         if (err)
7264                 printk(KERN_WARNING
7265                        "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7266 }
7267 
7268 static inline void unregister_as_ext2(void)
7269 {
7270         unregister_filesystem(&ext2_fs_type);
7271 }
7272 
7273 static inline int ext2_feature_set_ok(struct super_block *sb)
7274 {
7275         if (ext4_has_unknown_ext2_incompat_features(sb))
7276                 return 0;
7277         if (sb_rdonly(sb))
7278                 return 1;
7279         if (ext4_has_unknown_ext2_ro_compat_features(sb))
7280                 return 0;
7281         return 1;
7282 }
7283 #else
7284 static inline void register_as_ext2(void) { }
7285 static inline void unregister_as_ext2(void) { }
7286 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7287 #endif
7288 
7289 static inline void register_as_ext3(void)
7290 {
7291         int err = register_filesystem(&ext3_fs_type);
7292         if (err)
7293                 printk(KERN_WARNING
7294                        "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7295 }
7296 
7297 static inline void unregister_as_ext3(void)
7298 {
7299         unregister_filesystem(&ext3_fs_type);
7300 }
7301 
7302 static inline int ext3_feature_set_ok(struct super_block *sb)
7303 {
7304         if (ext4_has_unknown_ext3_incompat_features(sb))
7305                 return 0;
7306         if (!ext4_has_feature_journal(sb))
7307                 return 0;
7308         if (sb_rdonly(sb))
7309                 return 1;
7310         if (ext4_has_unknown_ext3_ro_compat_features(sb))
7311                 return 0;
7312         return 1;
7313 }
7314 
7315 static void ext4_kill_sb(struct super_block *sb)
7316 {
7317         struct ext4_sb_info *sbi = EXT4_SB(sb);
7318         struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7319 
7320         kill_block_super(sb);
7321 
7322         if (bdev_file)
7323                 bdev_fput(bdev_file);
7324 }
7325 
7326 static struct file_system_type ext4_fs_type = {
7327         .owner                  = THIS_MODULE,
7328         .name                   = "ext4",
7329         .init_fs_context        = ext4_init_fs_context,
7330         .parameters             = ext4_param_specs,
7331         .kill_sb                = ext4_kill_sb,
7332         .fs_flags               = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7333 };
7334 MODULE_ALIAS_FS("ext4");
7335 
7336 /* Shared across all ext4 file systems */
7337 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7338 
7339 static int __init ext4_init_fs(void)
7340 {
7341         int i, err;
7342 
7343         ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7344         ext4_li_info = NULL;
7345 
7346         /* Build-time check for flags consistency */
7347         ext4_check_flag_values();
7348 
7349         for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7350                 init_waitqueue_head(&ext4__ioend_wq[i]);
7351 
7352         err = ext4_init_es();
7353         if (err)
7354                 return err;
7355 
7356         err = ext4_init_pending();
7357         if (err)
7358                 goto out7;
7359 
7360         err = ext4_init_post_read_processing();
7361         if (err)
7362                 goto out6;
7363 
7364         err = ext4_init_pageio();
7365         if (err)
7366                 goto out5;
7367 
7368         err = ext4_init_system_zone();
7369         if (err)
7370                 goto out4;
7371 
7372         err = ext4_init_sysfs();
7373         if (err)
7374                 goto out3;
7375 
7376         err = ext4_init_mballoc();
7377         if (err)
7378                 goto out2;
7379         err = init_inodecache();
7380         if (err)
7381                 goto out1;
7382 
7383         err = ext4_fc_init_dentry_cache();
7384         if (err)
7385                 goto out05;
7386 
7387         register_as_ext3();
7388         register_as_ext2();
7389         err = register_filesystem(&ext4_fs_type);
7390         if (err)
7391                 goto out;
7392 
7393         return 0;
7394 out:
7395         unregister_as_ext2();
7396         unregister_as_ext3();
7397         ext4_fc_destroy_dentry_cache();
7398 out05:
7399         destroy_inodecache();
7400 out1:
7401         ext4_exit_mballoc();
7402 out2:
7403         ext4_exit_sysfs();
7404 out3:
7405         ext4_exit_system_zone();
7406 out4:
7407         ext4_exit_pageio();
7408 out5:
7409         ext4_exit_post_read_processing();
7410 out6:
7411         ext4_exit_pending();
7412 out7:
7413         ext4_exit_es();
7414 
7415         return err;
7416 }
7417 
7418 static void __exit ext4_exit_fs(void)
7419 {
7420         ext4_destroy_lazyinit_thread();
7421         unregister_as_ext2();
7422         unregister_as_ext3();
7423         unregister_filesystem(&ext4_fs_type);
7424         ext4_fc_destroy_dentry_cache();
7425         destroy_inodecache();
7426         ext4_exit_mballoc();
7427         ext4_exit_sysfs();
7428         ext4_exit_system_zone();
7429         ext4_exit_pageio();
7430         ext4_exit_post_read_processing();
7431         ext4_exit_es();
7432         ext4_exit_pending();
7433 }
7434 
7435 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7436 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7437 MODULE_LICENSE("GPL");
7438 MODULE_SOFTDEP("pre: crc32c");
7439 module_init(ext4_init_fs)
7440 module_exit(ext4_exit_fs)
7441 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php