1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/uaccess.h> 43 #include <linux/iversion.h> 44 #include <linux/unicode.h> 45 #include <linux/part_stat.h> 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 #include <linux/fsnotify.h> 49 #include <linux/fs_context.h> 50 #include <linux/fs_parser.h> 51 52 #include "ext4.h" 53 #include "ext4_extents.h" /* Needed for trace points definition */ 54 #include "ext4_jbd2.h" 55 #include "xattr.h" 56 #include "acl.h" 57 #include "mballoc.h" 58 #include "fsmap.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/ext4.h> 62 63 static struct ext4_lazy_init *ext4_li_info; 64 static DEFINE_MUTEX(ext4_li_mtx); 65 static struct ratelimit_state ext4_mount_msg_ratelimit; 66 67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 68 unsigned long journal_devnum); 69 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 70 static void ext4_update_super(struct super_block *sb); 71 static int ext4_commit_super(struct super_block *sb); 72 static int ext4_mark_recovery_complete(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_clear_journal_err(struct super_block *sb, 75 struct ext4_super_block *es); 76 static int ext4_sync_fs(struct super_block *sb, int wait); 77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 78 static int ext4_unfreeze(struct super_block *sb); 79 static int ext4_freeze(struct super_block *sb); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 static int ext4_validate_options(struct fs_context *fc); 88 static int ext4_check_opt_consistency(struct fs_context *fc, 89 struct super_block *sb); 90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb); 91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param); 92 static int ext4_get_tree(struct fs_context *fc); 93 static int ext4_reconfigure(struct fs_context *fc); 94 static void ext4_fc_free(struct fs_context *fc); 95 static int ext4_init_fs_context(struct fs_context *fc); 96 static void ext4_kill_sb(struct super_block *sb); 97 static const struct fs_parameter_spec ext4_param_specs[]; 98 99 /* 100 * Lock ordering 101 * 102 * page fault path: 103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 104 * -> page lock -> i_data_sem (rw) 105 * 106 * buffered write path: 107 * sb_start_write -> i_mutex -> mmap_lock 108 * sb_start_write -> i_mutex -> transaction start -> page lock -> 109 * i_data_sem (rw) 110 * 111 * truncate: 112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 113 * page lock 114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 115 * i_data_sem (rw) 116 * 117 * direct IO: 118 * sb_start_write -> i_mutex -> mmap_lock 119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 120 * 121 * writepages: 122 * transaction start -> page lock(s) -> i_data_sem (rw) 123 */ 124 125 static const struct fs_context_operations ext4_context_ops = { 126 .parse_param = ext4_parse_param, 127 .get_tree = ext4_get_tree, 128 .reconfigure = ext4_reconfigure, 129 .free = ext4_fc_free, 130 }; 131 132 133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 134 static struct file_system_type ext2_fs_type = { 135 .owner = THIS_MODULE, 136 .name = "ext2", 137 .init_fs_context = ext4_init_fs_context, 138 .parameters = ext4_param_specs, 139 .kill_sb = ext4_kill_sb, 140 .fs_flags = FS_REQUIRES_DEV, 141 }; 142 MODULE_ALIAS_FS("ext2"); 143 MODULE_ALIAS("ext2"); 144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type) 145 #else 146 #define IS_EXT2_SB(sb) (0) 147 #endif 148 149 150 static struct file_system_type ext3_fs_type = { 151 .owner = THIS_MODULE, 152 .name = "ext3", 153 .init_fs_context = ext4_init_fs_context, 154 .parameters = ext4_param_specs, 155 .kill_sb = ext4_kill_sb, 156 .fs_flags = FS_REQUIRES_DEV, 157 }; 158 MODULE_ALIAS_FS("ext3"); 159 MODULE_ALIAS("ext3"); 160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type) 161 162 163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, 164 bh_end_io_t *end_io) 165 { 166 /* 167 * buffer's verified bit is no longer valid after reading from 168 * disk again due to write out error, clear it to make sure we 169 * recheck the buffer contents. 170 */ 171 clear_buffer_verified(bh); 172 173 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 174 get_bh(bh); 175 submit_bh(REQ_OP_READ | op_flags, bh); 176 } 177 178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags, 179 bh_end_io_t *end_io) 180 { 181 BUG_ON(!buffer_locked(bh)); 182 183 if (ext4_buffer_uptodate(bh)) { 184 unlock_buffer(bh); 185 return; 186 } 187 __ext4_read_bh(bh, op_flags, end_io); 188 } 189 190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io) 191 { 192 BUG_ON(!buffer_locked(bh)); 193 194 if (ext4_buffer_uptodate(bh)) { 195 unlock_buffer(bh); 196 return 0; 197 } 198 199 __ext4_read_bh(bh, op_flags, end_io); 200 201 wait_on_buffer(bh); 202 if (buffer_uptodate(bh)) 203 return 0; 204 return -EIO; 205 } 206 207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 208 { 209 lock_buffer(bh); 210 if (!wait) { 211 ext4_read_bh_nowait(bh, op_flags, NULL); 212 return 0; 213 } 214 return ext4_read_bh(bh, op_flags, NULL); 215 } 216 217 /* 218 * This works like __bread_gfp() except it uses ERR_PTR for error 219 * returns. Currently with sb_bread it's impossible to distinguish 220 * between ENOMEM and EIO situations (since both result in a NULL 221 * return. 222 */ 223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 224 sector_t block, 225 blk_opf_t op_flags, gfp_t gfp) 226 { 227 struct buffer_head *bh; 228 int ret; 229 230 bh = sb_getblk_gfp(sb, block, gfp); 231 if (bh == NULL) 232 return ERR_PTR(-ENOMEM); 233 if (ext4_buffer_uptodate(bh)) 234 return bh; 235 236 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 237 if (ret) { 238 put_bh(bh); 239 return ERR_PTR(ret); 240 } 241 return bh; 242 } 243 244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 245 blk_opf_t op_flags) 246 { 247 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping, 248 ~__GFP_FS) | __GFP_MOVABLE; 249 250 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp); 251 } 252 253 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 254 sector_t block) 255 { 256 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping, 257 ~__GFP_FS); 258 259 return __ext4_sb_bread_gfp(sb, block, 0, gfp); 260 } 261 262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 263 { 264 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block, 265 sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN); 266 267 if (likely(bh)) { 268 if (trylock_buffer(bh)) 269 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL); 270 brelse(bh); 271 } 272 } 273 274 static int ext4_verify_csum_type(struct super_block *sb, 275 struct ext4_super_block *es) 276 { 277 if (!ext4_has_feature_metadata_csum(sb)) 278 return 1; 279 280 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 281 } 282 283 __le32 ext4_superblock_csum(struct super_block *sb, 284 struct ext4_super_block *es) 285 { 286 struct ext4_sb_info *sbi = EXT4_SB(sb); 287 int offset = offsetof(struct ext4_super_block, s_checksum); 288 __u32 csum; 289 290 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 291 292 return cpu_to_le32(csum); 293 } 294 295 static int ext4_superblock_csum_verify(struct super_block *sb, 296 struct ext4_super_block *es) 297 { 298 if (!ext4_has_metadata_csum(sb)) 299 return 1; 300 301 return es->s_checksum == ext4_superblock_csum(sb, es); 302 } 303 304 void ext4_superblock_csum_set(struct super_block *sb) 305 { 306 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 307 308 if (!ext4_has_metadata_csum(sb)) 309 return; 310 311 es->s_checksum = ext4_superblock_csum(sb, es); 312 } 313 314 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 315 struct ext4_group_desc *bg) 316 { 317 return le32_to_cpu(bg->bg_block_bitmap_lo) | 318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 319 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 320 } 321 322 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 323 struct ext4_group_desc *bg) 324 { 325 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 328 } 329 330 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 331 struct ext4_group_desc *bg) 332 { 333 return le32_to_cpu(bg->bg_inode_table_lo) | 334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 335 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 336 } 337 338 __u32 ext4_free_group_clusters(struct super_block *sb, 339 struct ext4_group_desc *bg) 340 { 341 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 343 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 344 } 345 346 __u32 ext4_free_inodes_count(struct super_block *sb, 347 struct ext4_group_desc *bg) 348 { 349 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 351 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 352 } 353 354 __u32 ext4_used_dirs_count(struct super_block *sb, 355 struct ext4_group_desc *bg) 356 { 357 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 359 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 360 } 361 362 __u32 ext4_itable_unused_count(struct super_block *sb, 363 struct ext4_group_desc *bg) 364 { 365 return le16_to_cpu(bg->bg_itable_unused_lo) | 366 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 367 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 368 } 369 370 void ext4_block_bitmap_set(struct super_block *sb, 371 struct ext4_group_desc *bg, ext4_fsblk_t blk) 372 { 373 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 375 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 376 } 377 378 void ext4_inode_bitmap_set(struct super_block *sb, 379 struct ext4_group_desc *bg, ext4_fsblk_t blk) 380 { 381 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 383 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 384 } 385 386 void ext4_inode_table_set(struct super_block *sb, 387 struct ext4_group_desc *bg, ext4_fsblk_t blk) 388 { 389 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 391 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 392 } 393 394 void ext4_free_group_clusters_set(struct super_block *sb, 395 struct ext4_group_desc *bg, __u32 count) 396 { 397 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 399 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 400 } 401 402 void ext4_free_inodes_set(struct super_block *sb, 403 struct ext4_group_desc *bg, __u32 count) 404 { 405 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 407 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 408 } 409 410 void ext4_used_dirs_set(struct super_block *sb, 411 struct ext4_group_desc *bg, __u32 count) 412 { 413 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 415 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 416 } 417 418 void ext4_itable_unused_set(struct super_block *sb, 419 struct ext4_group_desc *bg, __u32 count) 420 { 421 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 422 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 423 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 424 } 425 426 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 427 { 428 now = clamp_val(now, 0, (1ull << 40) - 1); 429 430 *lo = cpu_to_le32(lower_32_bits(now)); 431 *hi = upper_32_bits(now); 432 } 433 434 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 435 { 436 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 437 } 438 #define ext4_update_tstamp(es, tstamp) \ 439 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 440 ktime_get_real_seconds()) 441 #define ext4_get_tstamp(es, tstamp) \ 442 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 443 444 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */ 445 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */ 446 447 /* 448 * The ext4_maybe_update_superblock() function checks and updates the 449 * superblock if needed. 450 * 451 * This function is designed to update the on-disk superblock only under 452 * certain conditions to prevent excessive disk writes and unnecessary 453 * waking of the disk from sleep. The superblock will be updated if: 454 * 1. More than an hour has passed since the last superblock update, and 455 * 2. More than 16MB have been written since the last superblock update. 456 * 457 * @sb: The superblock 458 */ 459 static void ext4_maybe_update_superblock(struct super_block *sb) 460 { 461 struct ext4_sb_info *sbi = EXT4_SB(sb); 462 struct ext4_super_block *es = sbi->s_es; 463 journal_t *journal = sbi->s_journal; 464 time64_t now; 465 __u64 last_update; 466 __u64 lifetime_write_kbytes; 467 __u64 diff_size; 468 469 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) || 470 !journal || (journal->j_flags & JBD2_UNMOUNT)) 471 return; 472 473 now = ktime_get_real_seconds(); 474 last_update = ext4_get_tstamp(es, s_wtime); 475 476 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC)) 477 return; 478 479 lifetime_write_kbytes = sbi->s_kbytes_written + 480 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 481 sbi->s_sectors_written_start) >> 1); 482 483 /* Get the number of kilobytes not written to disk to account 484 * for statistics and compare with a multiple of 16 MB. This 485 * is used to determine when the next superblock commit should 486 * occur (i.e. not more often than once per 16MB if there was 487 * less written in an hour). 488 */ 489 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written); 490 491 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB) 492 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 493 } 494 495 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 496 { 497 struct super_block *sb = journal->j_private; 498 struct ext4_sb_info *sbi = EXT4_SB(sb); 499 int error = is_journal_aborted(journal); 500 struct ext4_journal_cb_entry *jce; 501 502 BUG_ON(txn->t_state == T_FINISHED); 503 504 ext4_process_freed_data(sb, txn->t_tid); 505 ext4_maybe_update_superblock(sb); 506 507 spin_lock(&sbi->s_md_lock); 508 while (!list_empty(&txn->t_private_list)) { 509 jce = list_entry(txn->t_private_list.next, 510 struct ext4_journal_cb_entry, jce_list); 511 list_del_init(&jce->jce_list); 512 spin_unlock(&sbi->s_md_lock); 513 jce->jce_func(sb, jce, error); 514 spin_lock(&sbi->s_md_lock); 515 } 516 spin_unlock(&sbi->s_md_lock); 517 } 518 519 /* 520 * This writepage callback for write_cache_pages() 521 * takes care of a few cases after page cleaning. 522 * 523 * write_cache_pages() already checks for dirty pages 524 * and calls clear_page_dirty_for_io(), which we want, 525 * to write protect the pages. 526 * 527 * However, we may have to redirty a page (see below.) 528 */ 529 static int ext4_journalled_writepage_callback(struct folio *folio, 530 struct writeback_control *wbc, 531 void *data) 532 { 533 transaction_t *transaction = (transaction_t *) data; 534 struct buffer_head *bh, *head; 535 struct journal_head *jh; 536 537 bh = head = folio_buffers(folio); 538 do { 539 /* 540 * We have to redirty a page in these cases: 541 * 1) If buffer is dirty, it means the page was dirty because it 542 * contains a buffer that needs checkpointing. So the dirty bit 543 * needs to be preserved so that checkpointing writes the buffer 544 * properly. 545 * 2) If buffer is not part of the committing transaction 546 * (we may have just accidentally come across this buffer because 547 * inode range tracking is not exact) or if the currently running 548 * transaction already contains this buffer as well, dirty bit 549 * needs to be preserved so that the buffer gets writeprotected 550 * properly on running transaction's commit. 551 */ 552 jh = bh2jh(bh); 553 if (buffer_dirty(bh) || 554 (jh && (jh->b_transaction != transaction || 555 jh->b_next_transaction))) { 556 folio_redirty_for_writepage(wbc, folio); 557 goto out; 558 } 559 } while ((bh = bh->b_this_page) != head); 560 561 out: 562 return AOP_WRITEPAGE_ACTIVATE; 563 } 564 565 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 566 { 567 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 568 struct writeback_control wbc = { 569 .sync_mode = WB_SYNC_ALL, 570 .nr_to_write = LONG_MAX, 571 .range_start = jinode->i_dirty_start, 572 .range_end = jinode->i_dirty_end, 573 }; 574 575 return write_cache_pages(mapping, &wbc, 576 ext4_journalled_writepage_callback, 577 jinode->i_transaction); 578 } 579 580 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 581 { 582 int ret; 583 584 if (ext4_should_journal_data(jinode->i_vfs_inode)) 585 ret = ext4_journalled_submit_inode_data_buffers(jinode); 586 else 587 ret = ext4_normal_submit_inode_data_buffers(jinode); 588 return ret; 589 } 590 591 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 592 { 593 int ret = 0; 594 595 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 596 ret = jbd2_journal_finish_inode_data_buffers(jinode); 597 598 return ret; 599 } 600 601 static bool system_going_down(void) 602 { 603 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 604 || system_state == SYSTEM_RESTART; 605 } 606 607 struct ext4_err_translation { 608 int code; 609 int errno; 610 }; 611 612 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 613 614 static struct ext4_err_translation err_translation[] = { 615 EXT4_ERR_TRANSLATE(EIO), 616 EXT4_ERR_TRANSLATE(ENOMEM), 617 EXT4_ERR_TRANSLATE(EFSBADCRC), 618 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 619 EXT4_ERR_TRANSLATE(ENOSPC), 620 EXT4_ERR_TRANSLATE(ENOKEY), 621 EXT4_ERR_TRANSLATE(EROFS), 622 EXT4_ERR_TRANSLATE(EFBIG), 623 EXT4_ERR_TRANSLATE(EEXIST), 624 EXT4_ERR_TRANSLATE(ERANGE), 625 EXT4_ERR_TRANSLATE(EOVERFLOW), 626 EXT4_ERR_TRANSLATE(EBUSY), 627 EXT4_ERR_TRANSLATE(ENOTDIR), 628 EXT4_ERR_TRANSLATE(ENOTEMPTY), 629 EXT4_ERR_TRANSLATE(ESHUTDOWN), 630 EXT4_ERR_TRANSLATE(EFAULT), 631 }; 632 633 static int ext4_errno_to_code(int errno) 634 { 635 int i; 636 637 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 638 if (err_translation[i].errno == errno) 639 return err_translation[i].code; 640 return EXT4_ERR_UNKNOWN; 641 } 642 643 static void save_error_info(struct super_block *sb, int error, 644 __u32 ino, __u64 block, 645 const char *func, unsigned int line) 646 { 647 struct ext4_sb_info *sbi = EXT4_SB(sb); 648 649 /* We default to EFSCORRUPTED error... */ 650 if (error == 0) 651 error = EFSCORRUPTED; 652 653 spin_lock(&sbi->s_error_lock); 654 sbi->s_add_error_count++; 655 sbi->s_last_error_code = error; 656 sbi->s_last_error_line = line; 657 sbi->s_last_error_ino = ino; 658 sbi->s_last_error_block = block; 659 sbi->s_last_error_func = func; 660 sbi->s_last_error_time = ktime_get_real_seconds(); 661 if (!sbi->s_first_error_time) { 662 sbi->s_first_error_code = error; 663 sbi->s_first_error_line = line; 664 sbi->s_first_error_ino = ino; 665 sbi->s_first_error_block = block; 666 sbi->s_first_error_func = func; 667 sbi->s_first_error_time = sbi->s_last_error_time; 668 } 669 spin_unlock(&sbi->s_error_lock); 670 } 671 672 /* Deal with the reporting of failure conditions on a filesystem such as 673 * inconsistencies detected or read IO failures. 674 * 675 * On ext2, we can store the error state of the filesystem in the 676 * superblock. That is not possible on ext4, because we may have other 677 * write ordering constraints on the superblock which prevent us from 678 * writing it out straight away; and given that the journal is about to 679 * be aborted, we can't rely on the current, or future, transactions to 680 * write out the superblock safely. 681 * 682 * We'll just use the jbd2_journal_abort() error code to record an error in 683 * the journal instead. On recovery, the journal will complain about 684 * that error until we've noted it down and cleared it. 685 * 686 * If force_ro is set, we unconditionally force the filesystem into an 687 * ABORT|READONLY state, unless the error response on the fs has been set to 688 * panic in which case we take the easy way out and panic immediately. This is 689 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 690 * at a critical moment in log management. 691 */ 692 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 693 __u32 ino, __u64 block, 694 const char *func, unsigned int line) 695 { 696 journal_t *journal = EXT4_SB(sb)->s_journal; 697 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 698 699 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 700 if (test_opt(sb, WARN_ON_ERROR)) 701 WARN_ON_ONCE(1); 702 703 if (!continue_fs && !sb_rdonly(sb)) { 704 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags); 705 if (journal) 706 jbd2_journal_abort(journal, -EIO); 707 } 708 709 if (!bdev_read_only(sb->s_bdev)) { 710 save_error_info(sb, error, ino, block, func, line); 711 /* 712 * In case the fs should keep running, we need to writeout 713 * superblock through the journal. Due to lock ordering 714 * constraints, it may not be safe to do it right here so we 715 * defer superblock flushing to a workqueue. 716 */ 717 if (continue_fs && journal) 718 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 719 else 720 ext4_commit_super(sb); 721 } 722 723 /* 724 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 725 * could panic during 'reboot -f' as the underlying device got already 726 * disabled. 727 */ 728 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 729 panic("EXT4-fs (device %s): panic forced after error\n", 730 sb->s_id); 731 } 732 733 if (sb_rdonly(sb) || continue_fs) 734 return; 735 736 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 737 /* 738 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem 739 * modifications. We don't set SB_RDONLY because that requires 740 * sb->s_umount semaphore and setting it without proper remount 741 * procedure is confusing code such as freeze_super() leading to 742 * deadlocks and other problems. 743 */ 744 } 745 746 static void update_super_work(struct work_struct *work) 747 { 748 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 749 s_sb_upd_work); 750 journal_t *journal = sbi->s_journal; 751 handle_t *handle; 752 753 /* 754 * If the journal is still running, we have to write out superblock 755 * through the journal to avoid collisions of other journalled sb 756 * updates. 757 * 758 * We use directly jbd2 functions here to avoid recursing back into 759 * ext4 error handling code during handling of previous errors. 760 */ 761 if (!sb_rdonly(sbi->s_sb) && journal) { 762 struct buffer_head *sbh = sbi->s_sbh; 763 bool call_notify_err = false; 764 765 handle = jbd2_journal_start(journal, 1); 766 if (IS_ERR(handle)) 767 goto write_directly; 768 if (jbd2_journal_get_write_access(handle, sbh)) { 769 jbd2_journal_stop(handle); 770 goto write_directly; 771 } 772 773 if (sbi->s_add_error_count > 0) 774 call_notify_err = true; 775 776 ext4_update_super(sbi->s_sb); 777 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 778 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 779 "superblock detected"); 780 clear_buffer_write_io_error(sbh); 781 set_buffer_uptodate(sbh); 782 } 783 784 if (jbd2_journal_dirty_metadata(handle, sbh)) { 785 jbd2_journal_stop(handle); 786 goto write_directly; 787 } 788 jbd2_journal_stop(handle); 789 790 if (call_notify_err) 791 ext4_notify_error_sysfs(sbi); 792 793 return; 794 } 795 write_directly: 796 /* 797 * Write through journal failed. Write sb directly to get error info 798 * out and hope for the best. 799 */ 800 ext4_commit_super(sbi->s_sb); 801 ext4_notify_error_sysfs(sbi); 802 } 803 804 #define ext4_error_ratelimit(sb) \ 805 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 806 "EXT4-fs error") 807 808 void __ext4_error(struct super_block *sb, const char *function, 809 unsigned int line, bool force_ro, int error, __u64 block, 810 const char *fmt, ...) 811 { 812 struct va_format vaf; 813 va_list args; 814 815 if (unlikely(ext4_forced_shutdown(sb))) 816 return; 817 818 trace_ext4_error(sb, function, line); 819 if (ext4_error_ratelimit(sb)) { 820 va_start(args, fmt); 821 vaf.fmt = fmt; 822 vaf.va = &args; 823 printk(KERN_CRIT 824 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 825 sb->s_id, function, line, current->comm, &vaf); 826 va_end(args); 827 } 828 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED); 829 830 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 831 } 832 833 void __ext4_error_inode(struct inode *inode, const char *function, 834 unsigned int line, ext4_fsblk_t block, int error, 835 const char *fmt, ...) 836 { 837 va_list args; 838 struct va_format vaf; 839 840 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 841 return; 842 843 trace_ext4_error(inode->i_sb, function, line); 844 if (ext4_error_ratelimit(inode->i_sb)) { 845 va_start(args, fmt); 846 vaf.fmt = fmt; 847 vaf.va = &args; 848 if (block) 849 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 850 "inode #%lu: block %llu: comm %s: %pV\n", 851 inode->i_sb->s_id, function, line, inode->i_ino, 852 block, current->comm, &vaf); 853 else 854 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 855 "inode #%lu: comm %s: %pV\n", 856 inode->i_sb->s_id, function, line, inode->i_ino, 857 current->comm, &vaf); 858 va_end(args); 859 } 860 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED); 861 862 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 863 function, line); 864 } 865 866 void __ext4_error_file(struct file *file, const char *function, 867 unsigned int line, ext4_fsblk_t block, 868 const char *fmt, ...) 869 { 870 va_list args; 871 struct va_format vaf; 872 struct inode *inode = file_inode(file); 873 char pathname[80], *path; 874 875 if (unlikely(ext4_forced_shutdown(inode->i_sb))) 876 return; 877 878 trace_ext4_error(inode->i_sb, function, line); 879 if (ext4_error_ratelimit(inode->i_sb)) { 880 path = file_path(file, pathname, sizeof(pathname)); 881 if (IS_ERR(path)) 882 path = "(unknown)"; 883 va_start(args, fmt); 884 vaf.fmt = fmt; 885 vaf.va = &args; 886 if (block) 887 printk(KERN_CRIT 888 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 889 "block %llu: comm %s: path %s: %pV\n", 890 inode->i_sb->s_id, function, line, inode->i_ino, 891 block, current->comm, path, &vaf); 892 else 893 printk(KERN_CRIT 894 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 895 "comm %s: path %s: %pV\n", 896 inode->i_sb->s_id, function, line, inode->i_ino, 897 current->comm, path, &vaf); 898 va_end(args); 899 } 900 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED); 901 902 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 903 function, line); 904 } 905 906 const char *ext4_decode_error(struct super_block *sb, int errno, 907 char nbuf[16]) 908 { 909 char *errstr = NULL; 910 911 switch (errno) { 912 case -EFSCORRUPTED: 913 errstr = "Corrupt filesystem"; 914 break; 915 case -EFSBADCRC: 916 errstr = "Filesystem failed CRC"; 917 break; 918 case -EIO: 919 errstr = "IO failure"; 920 break; 921 case -ENOMEM: 922 errstr = "Out of memory"; 923 break; 924 case -EROFS: 925 if (!sb || (EXT4_SB(sb)->s_journal && 926 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 927 errstr = "Journal has aborted"; 928 else 929 errstr = "Readonly filesystem"; 930 break; 931 default: 932 /* If the caller passed in an extra buffer for unknown 933 * errors, textualise them now. Else we just return 934 * NULL. */ 935 if (nbuf) { 936 /* Check for truncated error codes... */ 937 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 938 errstr = nbuf; 939 } 940 break; 941 } 942 943 return errstr; 944 } 945 946 /* __ext4_std_error decodes expected errors from journaling functions 947 * automatically and invokes the appropriate error response. */ 948 949 void __ext4_std_error(struct super_block *sb, const char *function, 950 unsigned int line, int errno) 951 { 952 char nbuf[16]; 953 const char *errstr; 954 955 if (unlikely(ext4_forced_shutdown(sb))) 956 return; 957 958 /* Special case: if the error is EROFS, and we're not already 959 * inside a transaction, then there's really no point in logging 960 * an error. */ 961 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 962 return; 963 964 if (ext4_error_ratelimit(sb)) { 965 errstr = ext4_decode_error(sb, errno, nbuf); 966 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 967 sb->s_id, function, line, errstr); 968 } 969 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED); 970 971 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 972 } 973 974 void __ext4_msg(struct super_block *sb, 975 const char *prefix, const char *fmt, ...) 976 { 977 struct va_format vaf; 978 va_list args; 979 980 if (sb) { 981 atomic_inc(&EXT4_SB(sb)->s_msg_count); 982 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), 983 "EXT4-fs")) 984 return; 985 } 986 987 va_start(args, fmt); 988 vaf.fmt = fmt; 989 vaf.va = &args; 990 if (sb) 991 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 992 else 993 printk("%sEXT4-fs: %pV\n", prefix, &vaf); 994 va_end(args); 995 } 996 997 static int ext4_warning_ratelimit(struct super_block *sb) 998 { 999 atomic_inc(&EXT4_SB(sb)->s_warning_count); 1000 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 1001 "EXT4-fs warning"); 1002 } 1003 1004 void __ext4_warning(struct super_block *sb, const char *function, 1005 unsigned int line, const char *fmt, ...) 1006 { 1007 struct va_format vaf; 1008 va_list args; 1009 1010 if (!ext4_warning_ratelimit(sb)) 1011 return; 1012 1013 va_start(args, fmt); 1014 vaf.fmt = fmt; 1015 vaf.va = &args; 1016 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 1017 sb->s_id, function, line, &vaf); 1018 va_end(args); 1019 } 1020 1021 void __ext4_warning_inode(const struct inode *inode, const char *function, 1022 unsigned int line, const char *fmt, ...) 1023 { 1024 struct va_format vaf; 1025 va_list args; 1026 1027 if (!ext4_warning_ratelimit(inode->i_sb)) 1028 return; 1029 1030 va_start(args, fmt); 1031 vaf.fmt = fmt; 1032 vaf.va = &args; 1033 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 1034 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 1035 function, line, inode->i_ino, current->comm, &vaf); 1036 va_end(args); 1037 } 1038 1039 void __ext4_grp_locked_error(const char *function, unsigned int line, 1040 struct super_block *sb, ext4_group_t grp, 1041 unsigned long ino, ext4_fsblk_t block, 1042 const char *fmt, ...) 1043 __releases(bitlock) 1044 __acquires(bitlock) 1045 { 1046 struct va_format vaf; 1047 va_list args; 1048 1049 if (unlikely(ext4_forced_shutdown(sb))) 1050 return; 1051 1052 trace_ext4_error(sb, function, line); 1053 if (ext4_error_ratelimit(sb)) { 1054 va_start(args, fmt); 1055 vaf.fmt = fmt; 1056 vaf.va = &args; 1057 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1058 sb->s_id, function, line, grp); 1059 if (ino) 1060 printk(KERN_CONT "inode %lu: ", ino); 1061 if (block) 1062 printk(KERN_CONT "block %llu:", 1063 (unsigned long long) block); 1064 printk(KERN_CONT "%pV\n", &vaf); 1065 va_end(args); 1066 } 1067 1068 if (test_opt(sb, ERRORS_CONT)) { 1069 if (test_opt(sb, WARN_ON_ERROR)) 1070 WARN_ON_ONCE(1); 1071 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 1072 if (!bdev_read_only(sb->s_bdev)) { 1073 save_error_info(sb, EFSCORRUPTED, ino, block, function, 1074 line); 1075 schedule_work(&EXT4_SB(sb)->s_sb_upd_work); 1076 } 1077 return; 1078 } 1079 ext4_unlock_group(sb, grp); 1080 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1081 /* 1082 * We only get here in the ERRORS_RO case; relocking the group 1083 * may be dangerous, but nothing bad will happen since the 1084 * filesystem will have already been marked read/only and the 1085 * journal has been aborted. We return 1 as a hint to callers 1086 * who might what to use the return value from 1087 * ext4_grp_locked_error() to distinguish between the 1088 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1089 * aggressively from the ext4 function in question, with a 1090 * more appropriate error code. 1091 */ 1092 ext4_lock_group(sb, grp); 1093 return; 1094 } 1095 1096 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1097 ext4_group_t group, 1098 unsigned int flags) 1099 { 1100 struct ext4_sb_info *sbi = EXT4_SB(sb); 1101 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1102 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1103 int ret; 1104 1105 if (!grp || !gdp) 1106 return; 1107 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1108 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1109 &grp->bb_state); 1110 if (!ret) 1111 percpu_counter_sub(&sbi->s_freeclusters_counter, 1112 grp->bb_free); 1113 } 1114 1115 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1116 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1117 &grp->bb_state); 1118 if (!ret && gdp) { 1119 int count; 1120 1121 count = ext4_free_inodes_count(sb, gdp); 1122 percpu_counter_sub(&sbi->s_freeinodes_counter, 1123 count); 1124 } 1125 } 1126 } 1127 1128 void ext4_update_dynamic_rev(struct super_block *sb) 1129 { 1130 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1131 1132 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1133 return; 1134 1135 ext4_warning(sb, 1136 "updating to rev %d because of new feature flag, " 1137 "running e2fsck is recommended", 1138 EXT4_DYNAMIC_REV); 1139 1140 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1141 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1142 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1143 /* leave es->s_feature_*compat flags alone */ 1144 /* es->s_uuid will be set by e2fsck if empty */ 1145 1146 /* 1147 * The rest of the superblock fields should be zero, and if not it 1148 * means they are likely already in use, so leave them alone. We 1149 * can leave it up to e2fsck to clean up any inconsistencies there. 1150 */ 1151 } 1152 1153 static inline struct inode *orphan_list_entry(struct list_head *l) 1154 { 1155 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1156 } 1157 1158 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1159 { 1160 struct list_head *l; 1161 1162 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1163 le32_to_cpu(sbi->s_es->s_last_orphan)); 1164 1165 printk(KERN_ERR "sb_info orphan list:\n"); 1166 list_for_each(l, &sbi->s_orphan) { 1167 struct inode *inode = orphan_list_entry(l); 1168 printk(KERN_ERR " " 1169 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1170 inode->i_sb->s_id, inode->i_ino, inode, 1171 inode->i_mode, inode->i_nlink, 1172 NEXT_ORPHAN(inode)); 1173 } 1174 } 1175 1176 #ifdef CONFIG_QUOTA 1177 static int ext4_quota_off(struct super_block *sb, int type); 1178 1179 static inline void ext4_quotas_off(struct super_block *sb, int type) 1180 { 1181 BUG_ON(type > EXT4_MAXQUOTAS); 1182 1183 /* Use our quota_off function to clear inode flags etc. */ 1184 for (type--; type >= 0; type--) 1185 ext4_quota_off(sb, type); 1186 } 1187 1188 /* 1189 * This is a helper function which is used in the mount/remount 1190 * codepaths (which holds s_umount) to fetch the quota file name. 1191 */ 1192 static inline char *get_qf_name(struct super_block *sb, 1193 struct ext4_sb_info *sbi, 1194 int type) 1195 { 1196 return rcu_dereference_protected(sbi->s_qf_names[type], 1197 lockdep_is_held(&sb->s_umount)); 1198 } 1199 #else 1200 static inline void ext4_quotas_off(struct super_block *sb, int type) 1201 { 1202 } 1203 #endif 1204 1205 static int ext4_percpu_param_init(struct ext4_sb_info *sbi) 1206 { 1207 ext4_fsblk_t block; 1208 int err; 1209 1210 block = ext4_count_free_clusters(sbi->s_sb); 1211 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block)); 1212 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 1213 GFP_KERNEL); 1214 if (!err) { 1215 unsigned long freei = ext4_count_free_inodes(sbi->s_sb); 1216 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 1217 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 1218 GFP_KERNEL); 1219 } 1220 if (!err) 1221 err = percpu_counter_init(&sbi->s_dirs_counter, 1222 ext4_count_dirs(sbi->s_sb), GFP_KERNEL); 1223 if (!err) 1224 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 1225 GFP_KERNEL); 1226 if (!err) 1227 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 1228 GFP_KERNEL); 1229 if (!err) 1230 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 1231 1232 if (err) 1233 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory"); 1234 1235 return err; 1236 } 1237 1238 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi) 1239 { 1240 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1241 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1242 percpu_counter_destroy(&sbi->s_dirs_counter); 1243 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1244 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1245 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1246 } 1247 1248 static void ext4_group_desc_free(struct ext4_sb_info *sbi) 1249 { 1250 struct buffer_head **group_desc; 1251 int i; 1252 1253 rcu_read_lock(); 1254 group_desc = rcu_dereference(sbi->s_group_desc); 1255 for (i = 0; i < sbi->s_gdb_count; i++) 1256 brelse(group_desc[i]); 1257 kvfree(group_desc); 1258 rcu_read_unlock(); 1259 } 1260 1261 static void ext4_flex_groups_free(struct ext4_sb_info *sbi) 1262 { 1263 struct flex_groups **flex_groups; 1264 int i; 1265 1266 rcu_read_lock(); 1267 flex_groups = rcu_dereference(sbi->s_flex_groups); 1268 if (flex_groups) { 1269 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1270 kvfree(flex_groups[i]); 1271 kvfree(flex_groups); 1272 } 1273 rcu_read_unlock(); 1274 } 1275 1276 static void ext4_put_super(struct super_block *sb) 1277 { 1278 struct ext4_sb_info *sbi = EXT4_SB(sb); 1279 struct ext4_super_block *es = sbi->s_es; 1280 int aborted = 0; 1281 int err; 1282 1283 /* 1284 * Unregister sysfs before destroying jbd2 journal. 1285 * Since we could still access attr_journal_task attribute via sysfs 1286 * path which could have sbi->s_journal->j_task as NULL 1287 * Unregister sysfs before flush sbi->s_sb_upd_work. 1288 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If 1289 * read metadata verify failed then will queue error work. 1290 * update_super_work will call start_this_handle may trigger 1291 * BUG_ON. 1292 */ 1293 ext4_unregister_sysfs(sb); 1294 1295 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount")) 1296 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.", 1297 &sb->s_uuid); 1298 1299 ext4_unregister_li_request(sb); 1300 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 1301 1302 flush_work(&sbi->s_sb_upd_work); 1303 destroy_workqueue(sbi->rsv_conversion_wq); 1304 ext4_release_orphan_info(sb); 1305 1306 if (sbi->s_journal) { 1307 aborted = is_journal_aborted(sbi->s_journal); 1308 err = jbd2_journal_destroy(sbi->s_journal); 1309 sbi->s_journal = NULL; 1310 if ((err < 0) && !aborted) { 1311 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1312 } 1313 } 1314 1315 ext4_es_unregister_shrinker(sbi); 1316 timer_shutdown_sync(&sbi->s_err_report); 1317 ext4_release_system_zone(sb); 1318 ext4_mb_release(sb); 1319 ext4_ext_release(sb); 1320 1321 if (!sb_rdonly(sb) && !aborted) { 1322 ext4_clear_feature_journal_needs_recovery(sb); 1323 ext4_clear_feature_orphan_present(sb); 1324 es->s_state = cpu_to_le16(sbi->s_mount_state); 1325 } 1326 if (!sb_rdonly(sb)) 1327 ext4_commit_super(sb); 1328 1329 ext4_group_desc_free(sbi); 1330 ext4_flex_groups_free(sbi); 1331 1332 WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) && 1333 percpu_counter_sum(&sbi->s_dirtyclusters_counter)); 1334 ext4_percpu_param_destroy(sbi); 1335 #ifdef CONFIG_QUOTA 1336 for (int i = 0; i < EXT4_MAXQUOTAS; i++) 1337 kfree(get_qf_name(sb, sbi, i)); 1338 #endif 1339 1340 /* Debugging code just in case the in-memory inode orphan list 1341 * isn't empty. The on-disk one can be non-empty if we've 1342 * detected an error and taken the fs readonly, but the 1343 * in-memory list had better be clean by this point. */ 1344 if (!list_empty(&sbi->s_orphan)) 1345 dump_orphan_list(sb, sbi); 1346 ASSERT(list_empty(&sbi->s_orphan)); 1347 1348 sync_blockdev(sb->s_bdev); 1349 invalidate_bdev(sb->s_bdev); 1350 if (sbi->s_journal_bdev_file) { 1351 /* 1352 * Invalidate the journal device's buffers. We don't want them 1353 * floating about in memory - the physical journal device may 1354 * hotswapped, and it breaks the `ro-after' testing code. 1355 */ 1356 sync_blockdev(file_bdev(sbi->s_journal_bdev_file)); 1357 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 1358 } 1359 1360 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1361 sbi->s_ea_inode_cache = NULL; 1362 1363 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1364 sbi->s_ea_block_cache = NULL; 1365 1366 ext4_stop_mmpd(sbi); 1367 1368 brelse(sbi->s_sbh); 1369 sb->s_fs_info = NULL; 1370 /* 1371 * Now that we are completely done shutting down the 1372 * superblock, we need to actually destroy the kobject. 1373 */ 1374 kobject_put(&sbi->s_kobj); 1375 wait_for_completion(&sbi->s_kobj_unregister); 1376 if (sbi->s_chksum_driver) 1377 crypto_free_shash(sbi->s_chksum_driver); 1378 kfree(sbi->s_blockgroup_lock); 1379 fs_put_dax(sbi->s_daxdev, NULL); 1380 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1381 #if IS_ENABLED(CONFIG_UNICODE) 1382 utf8_unload(sb->s_encoding); 1383 #endif 1384 kfree(sbi); 1385 } 1386 1387 static struct kmem_cache *ext4_inode_cachep; 1388 1389 /* 1390 * Called inside transaction, so use GFP_NOFS 1391 */ 1392 static struct inode *ext4_alloc_inode(struct super_block *sb) 1393 { 1394 struct ext4_inode_info *ei; 1395 1396 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS); 1397 if (!ei) 1398 return NULL; 1399 1400 inode_set_iversion(&ei->vfs_inode, 1); 1401 ei->i_flags = 0; 1402 spin_lock_init(&ei->i_raw_lock); 1403 ei->i_prealloc_node = RB_ROOT; 1404 atomic_set(&ei->i_prealloc_active, 0); 1405 rwlock_init(&ei->i_prealloc_lock); 1406 ext4_es_init_tree(&ei->i_es_tree); 1407 rwlock_init(&ei->i_es_lock); 1408 INIT_LIST_HEAD(&ei->i_es_list); 1409 ei->i_es_all_nr = 0; 1410 ei->i_es_shk_nr = 0; 1411 ei->i_es_shrink_lblk = 0; 1412 ei->i_reserved_data_blocks = 0; 1413 spin_lock_init(&(ei->i_block_reservation_lock)); 1414 ext4_init_pending_tree(&ei->i_pending_tree); 1415 #ifdef CONFIG_QUOTA 1416 ei->i_reserved_quota = 0; 1417 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1418 #endif 1419 ei->jinode = NULL; 1420 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1421 spin_lock_init(&ei->i_completed_io_lock); 1422 ei->i_sync_tid = 0; 1423 ei->i_datasync_tid = 0; 1424 atomic_set(&ei->i_unwritten, 0); 1425 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1426 ext4_fc_init_inode(&ei->vfs_inode); 1427 mutex_init(&ei->i_fc_lock); 1428 return &ei->vfs_inode; 1429 } 1430 1431 static int ext4_drop_inode(struct inode *inode) 1432 { 1433 int drop = generic_drop_inode(inode); 1434 1435 if (!drop) 1436 drop = fscrypt_drop_inode(inode); 1437 1438 trace_ext4_drop_inode(inode, drop); 1439 return drop; 1440 } 1441 1442 static void ext4_free_in_core_inode(struct inode *inode) 1443 { 1444 fscrypt_free_inode(inode); 1445 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1446 pr_warn("%s: inode %ld still in fc list", 1447 __func__, inode->i_ino); 1448 } 1449 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1450 } 1451 1452 static void ext4_destroy_inode(struct inode *inode) 1453 { 1454 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1455 ext4_msg(inode->i_sb, KERN_ERR, 1456 "Inode %lu (%p): orphan list check failed!", 1457 inode->i_ino, EXT4_I(inode)); 1458 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1459 EXT4_I(inode), sizeof(struct ext4_inode_info), 1460 true); 1461 dump_stack(); 1462 } 1463 1464 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) && 1465 WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks)) 1466 ext4_msg(inode->i_sb, KERN_ERR, 1467 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1468 inode->i_ino, EXT4_I(inode), 1469 EXT4_I(inode)->i_reserved_data_blocks); 1470 } 1471 1472 static void ext4_shutdown(struct super_block *sb) 1473 { 1474 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH); 1475 } 1476 1477 static void init_once(void *foo) 1478 { 1479 struct ext4_inode_info *ei = foo; 1480 1481 INIT_LIST_HEAD(&ei->i_orphan); 1482 init_rwsem(&ei->xattr_sem); 1483 init_rwsem(&ei->i_data_sem); 1484 inode_init_once(&ei->vfs_inode); 1485 ext4_fc_init_inode(&ei->vfs_inode); 1486 } 1487 1488 static int __init init_inodecache(void) 1489 { 1490 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1491 sizeof(struct ext4_inode_info), 0, 1492 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 1493 offsetof(struct ext4_inode_info, i_data), 1494 sizeof_field(struct ext4_inode_info, i_data), 1495 init_once); 1496 if (ext4_inode_cachep == NULL) 1497 return -ENOMEM; 1498 return 0; 1499 } 1500 1501 static void destroy_inodecache(void) 1502 { 1503 /* 1504 * Make sure all delayed rcu free inodes are flushed before we 1505 * destroy cache. 1506 */ 1507 rcu_barrier(); 1508 kmem_cache_destroy(ext4_inode_cachep); 1509 } 1510 1511 void ext4_clear_inode(struct inode *inode) 1512 { 1513 ext4_fc_del(inode); 1514 invalidate_inode_buffers(inode); 1515 clear_inode(inode); 1516 ext4_discard_preallocations(inode); 1517 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1518 dquot_drop(inode); 1519 if (EXT4_I(inode)->jinode) { 1520 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1521 EXT4_I(inode)->jinode); 1522 jbd2_free_inode(EXT4_I(inode)->jinode); 1523 EXT4_I(inode)->jinode = NULL; 1524 } 1525 fscrypt_put_encryption_info(inode); 1526 fsverity_cleanup_inode(inode); 1527 } 1528 1529 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1530 u64 ino, u32 generation) 1531 { 1532 struct inode *inode; 1533 1534 /* 1535 * Currently we don't know the generation for parent directory, so 1536 * a generation of 0 means "accept any" 1537 */ 1538 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1539 if (IS_ERR(inode)) 1540 return ERR_CAST(inode); 1541 if (generation && inode->i_generation != generation) { 1542 iput(inode); 1543 return ERR_PTR(-ESTALE); 1544 } 1545 1546 return inode; 1547 } 1548 1549 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1550 int fh_len, int fh_type) 1551 { 1552 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1553 ext4_nfs_get_inode); 1554 } 1555 1556 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1557 int fh_len, int fh_type) 1558 { 1559 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1560 ext4_nfs_get_inode); 1561 } 1562 1563 static int ext4_nfs_commit_metadata(struct inode *inode) 1564 { 1565 struct writeback_control wbc = { 1566 .sync_mode = WB_SYNC_ALL 1567 }; 1568 1569 trace_ext4_nfs_commit_metadata(inode); 1570 return ext4_write_inode(inode, &wbc); 1571 } 1572 1573 #ifdef CONFIG_QUOTA 1574 static const char * const quotatypes[] = INITQFNAMES; 1575 #define QTYPE2NAME(t) (quotatypes[t]) 1576 1577 static int ext4_write_dquot(struct dquot *dquot); 1578 static int ext4_acquire_dquot(struct dquot *dquot); 1579 static int ext4_release_dquot(struct dquot *dquot); 1580 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1581 static int ext4_write_info(struct super_block *sb, int type); 1582 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1583 const struct path *path); 1584 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1585 size_t len, loff_t off); 1586 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1587 const char *data, size_t len, loff_t off); 1588 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1589 unsigned int flags); 1590 1591 static struct dquot __rcu **ext4_get_dquots(struct inode *inode) 1592 { 1593 return EXT4_I(inode)->i_dquot; 1594 } 1595 1596 static const struct dquot_operations ext4_quota_operations = { 1597 .get_reserved_space = ext4_get_reserved_space, 1598 .write_dquot = ext4_write_dquot, 1599 .acquire_dquot = ext4_acquire_dquot, 1600 .release_dquot = ext4_release_dquot, 1601 .mark_dirty = ext4_mark_dquot_dirty, 1602 .write_info = ext4_write_info, 1603 .alloc_dquot = dquot_alloc, 1604 .destroy_dquot = dquot_destroy, 1605 .get_projid = ext4_get_projid, 1606 .get_inode_usage = ext4_get_inode_usage, 1607 .get_next_id = dquot_get_next_id, 1608 }; 1609 1610 static const struct quotactl_ops ext4_qctl_operations = { 1611 .quota_on = ext4_quota_on, 1612 .quota_off = ext4_quota_off, 1613 .quota_sync = dquot_quota_sync, 1614 .get_state = dquot_get_state, 1615 .set_info = dquot_set_dqinfo, 1616 .get_dqblk = dquot_get_dqblk, 1617 .set_dqblk = dquot_set_dqblk, 1618 .get_nextdqblk = dquot_get_next_dqblk, 1619 }; 1620 #endif 1621 1622 static const struct super_operations ext4_sops = { 1623 .alloc_inode = ext4_alloc_inode, 1624 .free_inode = ext4_free_in_core_inode, 1625 .destroy_inode = ext4_destroy_inode, 1626 .write_inode = ext4_write_inode, 1627 .dirty_inode = ext4_dirty_inode, 1628 .drop_inode = ext4_drop_inode, 1629 .evict_inode = ext4_evict_inode, 1630 .put_super = ext4_put_super, 1631 .sync_fs = ext4_sync_fs, 1632 .freeze_fs = ext4_freeze, 1633 .unfreeze_fs = ext4_unfreeze, 1634 .statfs = ext4_statfs, 1635 .show_options = ext4_show_options, 1636 .shutdown = ext4_shutdown, 1637 #ifdef CONFIG_QUOTA 1638 .quota_read = ext4_quota_read, 1639 .quota_write = ext4_quota_write, 1640 .get_dquots = ext4_get_dquots, 1641 #endif 1642 }; 1643 1644 static const struct export_operations ext4_export_ops = { 1645 .encode_fh = generic_encode_ino32_fh, 1646 .fh_to_dentry = ext4_fh_to_dentry, 1647 .fh_to_parent = ext4_fh_to_parent, 1648 .get_parent = ext4_get_parent, 1649 .commit_metadata = ext4_nfs_commit_metadata, 1650 }; 1651 1652 enum { 1653 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1654 Opt_resgid, Opt_resuid, Opt_sb, 1655 Opt_nouid32, Opt_debug, Opt_removed, 1656 Opt_user_xattr, Opt_acl, 1657 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1658 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1659 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1660 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1661 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1662 Opt_inlinecrypt, 1663 Opt_usrjquota, Opt_grpjquota, Opt_quota, 1664 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1665 Opt_usrquota, Opt_grpquota, Opt_prjquota, 1666 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1667 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1668 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize, 1669 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1670 Opt_inode_readahead_blks, Opt_journal_ioprio, 1671 Opt_dioread_nolock, Opt_dioread_lock, 1672 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1673 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1674 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1675 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type, 1676 #ifdef CONFIG_EXT4_DEBUG 1677 Opt_fc_debug_max_replay, Opt_fc_debug_force 1678 #endif 1679 }; 1680 1681 static const struct constant_table ext4_param_errors[] = { 1682 {"continue", EXT4_MOUNT_ERRORS_CONT}, 1683 {"panic", EXT4_MOUNT_ERRORS_PANIC}, 1684 {"remount-ro", EXT4_MOUNT_ERRORS_RO}, 1685 {} 1686 }; 1687 1688 static const struct constant_table ext4_param_data[] = { 1689 {"journal", EXT4_MOUNT_JOURNAL_DATA}, 1690 {"ordered", EXT4_MOUNT_ORDERED_DATA}, 1691 {"writeback", EXT4_MOUNT_WRITEBACK_DATA}, 1692 {} 1693 }; 1694 1695 static const struct constant_table ext4_param_data_err[] = { 1696 {"abort", Opt_data_err_abort}, 1697 {"ignore", Opt_data_err_ignore}, 1698 {} 1699 }; 1700 1701 static const struct constant_table ext4_param_jqfmt[] = { 1702 {"vfsold", QFMT_VFS_OLD}, 1703 {"vfsv0", QFMT_VFS_V0}, 1704 {"vfsv1", QFMT_VFS_V1}, 1705 {} 1706 }; 1707 1708 static const struct constant_table ext4_param_dax[] = { 1709 {"always", Opt_dax_always}, 1710 {"inode", Opt_dax_inode}, 1711 {"never", Opt_dax_never}, 1712 {} 1713 }; 1714 1715 /* 1716 * Mount option specification 1717 * We don't use fsparam_flag_no because of the way we set the 1718 * options and the way we show them in _ext4_show_options(). To 1719 * keep the changes to a minimum, let's keep the negative options 1720 * separate for now. 1721 */ 1722 static const struct fs_parameter_spec ext4_param_specs[] = { 1723 fsparam_flag ("bsddf", Opt_bsd_df), 1724 fsparam_flag ("minixdf", Opt_minix_df), 1725 fsparam_flag ("grpid", Opt_grpid), 1726 fsparam_flag ("bsdgroups", Opt_grpid), 1727 fsparam_flag ("nogrpid", Opt_nogrpid), 1728 fsparam_flag ("sysvgroups", Opt_nogrpid), 1729 fsparam_gid ("resgid", Opt_resgid), 1730 fsparam_uid ("resuid", Opt_resuid), 1731 fsparam_u32 ("sb", Opt_sb), 1732 fsparam_enum ("errors", Opt_errors, ext4_param_errors), 1733 fsparam_flag ("nouid32", Opt_nouid32), 1734 fsparam_flag ("debug", Opt_debug), 1735 fsparam_flag ("oldalloc", Opt_removed), 1736 fsparam_flag ("orlov", Opt_removed), 1737 fsparam_flag ("user_xattr", Opt_user_xattr), 1738 fsparam_flag ("acl", Opt_acl), 1739 fsparam_flag ("norecovery", Opt_noload), 1740 fsparam_flag ("noload", Opt_noload), 1741 fsparam_flag ("bh", Opt_removed), 1742 fsparam_flag ("nobh", Opt_removed), 1743 fsparam_u32 ("commit", Opt_commit), 1744 fsparam_u32 ("min_batch_time", Opt_min_batch_time), 1745 fsparam_u32 ("max_batch_time", Opt_max_batch_time), 1746 fsparam_u32 ("journal_dev", Opt_journal_dev), 1747 fsparam_bdev ("journal_path", Opt_journal_path), 1748 fsparam_flag ("journal_checksum", Opt_journal_checksum), 1749 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum), 1750 fsparam_flag ("journal_async_commit",Opt_journal_async_commit), 1751 fsparam_flag ("abort", Opt_abort), 1752 fsparam_enum ("data", Opt_data, ext4_param_data), 1753 fsparam_enum ("data_err", Opt_data_err, 1754 ext4_param_data_err), 1755 fsparam_string_empty 1756 ("usrjquota", Opt_usrjquota), 1757 fsparam_string_empty 1758 ("grpjquota", Opt_grpjquota), 1759 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt), 1760 fsparam_flag ("grpquota", Opt_grpquota), 1761 fsparam_flag ("quota", Opt_quota), 1762 fsparam_flag ("noquota", Opt_noquota), 1763 fsparam_flag ("usrquota", Opt_usrquota), 1764 fsparam_flag ("prjquota", Opt_prjquota), 1765 fsparam_flag ("barrier", Opt_barrier), 1766 fsparam_u32 ("barrier", Opt_barrier), 1767 fsparam_flag ("nobarrier", Opt_nobarrier), 1768 fsparam_flag ("i_version", Opt_removed), 1769 fsparam_flag ("dax", Opt_dax), 1770 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax), 1771 fsparam_u32 ("stripe", Opt_stripe), 1772 fsparam_flag ("delalloc", Opt_delalloc), 1773 fsparam_flag ("nodelalloc", Opt_nodelalloc), 1774 fsparam_flag ("warn_on_error", Opt_warn_on_error), 1775 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error), 1776 fsparam_u32 ("debug_want_extra_isize", 1777 Opt_debug_want_extra_isize), 1778 fsparam_flag ("mblk_io_submit", Opt_removed), 1779 fsparam_flag ("nomblk_io_submit", Opt_removed), 1780 fsparam_flag ("block_validity", Opt_block_validity), 1781 fsparam_flag ("noblock_validity", Opt_noblock_validity), 1782 fsparam_u32 ("inode_readahead_blks", 1783 Opt_inode_readahead_blks), 1784 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio), 1785 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc), 1786 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc), 1787 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc), 1788 fsparam_flag ("dioread_nolock", Opt_dioread_nolock), 1789 fsparam_flag ("nodioread_nolock", Opt_dioread_lock), 1790 fsparam_flag ("dioread_lock", Opt_dioread_lock), 1791 fsparam_flag ("discard", Opt_discard), 1792 fsparam_flag ("nodiscard", Opt_nodiscard), 1793 fsparam_u32 ("init_itable", Opt_init_itable), 1794 fsparam_flag ("init_itable", Opt_init_itable), 1795 fsparam_flag ("noinit_itable", Opt_noinit_itable), 1796 #ifdef CONFIG_EXT4_DEBUG 1797 fsparam_flag ("fc_debug_force", Opt_fc_debug_force), 1798 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay), 1799 #endif 1800 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb), 1801 fsparam_flag ("test_dummy_encryption", 1802 Opt_test_dummy_encryption), 1803 fsparam_string ("test_dummy_encryption", 1804 Opt_test_dummy_encryption), 1805 fsparam_flag ("inlinecrypt", Opt_inlinecrypt), 1806 fsparam_flag ("nombcache", Opt_nombcache), 1807 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */ 1808 fsparam_flag ("prefetch_block_bitmaps", 1809 Opt_removed), 1810 fsparam_flag ("no_prefetch_block_bitmaps", 1811 Opt_no_prefetch_block_bitmaps), 1812 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan), 1813 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */ 1814 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */ 1815 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */ 1816 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */ 1817 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */ 1818 {} 1819 }; 1820 1821 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1822 1823 #define MOPT_SET 0x0001 1824 #define MOPT_CLEAR 0x0002 1825 #define MOPT_NOSUPPORT 0x0004 1826 #define MOPT_EXPLICIT 0x0008 1827 #ifdef CONFIG_QUOTA 1828 #define MOPT_Q 0 1829 #define MOPT_QFMT 0x0010 1830 #else 1831 #define MOPT_Q MOPT_NOSUPPORT 1832 #define MOPT_QFMT MOPT_NOSUPPORT 1833 #endif 1834 #define MOPT_NO_EXT2 0x0020 1835 #define MOPT_NO_EXT3 0x0040 1836 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1837 #define MOPT_SKIP 0x0080 1838 #define MOPT_2 0x0100 1839 1840 static const struct mount_opts { 1841 int token; 1842 int mount_opt; 1843 int flags; 1844 } ext4_mount_opts[] = { 1845 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1846 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1847 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1848 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1849 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1850 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1851 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1852 MOPT_EXT4_ONLY | MOPT_SET}, 1853 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1854 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1855 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1856 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1857 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1858 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1859 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1860 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1861 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1862 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1863 {Opt_commit, 0, MOPT_NO_EXT2}, 1864 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1865 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1866 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1867 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1868 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1869 EXT4_MOUNT_JOURNAL_CHECKSUM), 1870 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1871 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1872 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2}, 1873 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1874 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1875 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1876 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1877 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1878 {Opt_dax_type, 0, MOPT_EXT4_ONLY}, 1879 {Opt_journal_dev, 0, MOPT_NO_EXT2}, 1880 {Opt_journal_path, 0, MOPT_NO_EXT2}, 1881 {Opt_journal_ioprio, 0, MOPT_NO_EXT2}, 1882 {Opt_data, 0, MOPT_NO_EXT2}, 1883 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1884 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1885 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1886 #else 1887 {Opt_acl, 0, MOPT_NOSUPPORT}, 1888 #endif 1889 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1890 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1891 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1892 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1893 MOPT_SET | MOPT_Q}, 1894 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1895 MOPT_SET | MOPT_Q}, 1896 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1897 MOPT_SET | MOPT_Q}, 1898 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1899 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1900 MOPT_CLEAR | MOPT_Q}, 1901 {Opt_usrjquota, 0, MOPT_Q}, 1902 {Opt_grpjquota, 0, MOPT_Q}, 1903 {Opt_jqfmt, 0, MOPT_QFMT}, 1904 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1905 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1906 MOPT_SET}, 1907 #ifdef CONFIG_EXT4_DEBUG 1908 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 1909 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 1910 #endif 1911 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2}, 1912 {Opt_err, 0, 0} 1913 }; 1914 1915 #if IS_ENABLED(CONFIG_UNICODE) 1916 static const struct ext4_sb_encodings { 1917 __u16 magic; 1918 char *name; 1919 unsigned int version; 1920 } ext4_sb_encoding_map[] = { 1921 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 1922 }; 1923 1924 static const struct ext4_sb_encodings * 1925 ext4_sb_read_encoding(const struct ext4_super_block *es) 1926 { 1927 __u16 magic = le16_to_cpu(es->s_encoding); 1928 int i; 1929 1930 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1931 if (magic == ext4_sb_encoding_map[i].magic) 1932 return &ext4_sb_encoding_map[i]; 1933 1934 return NULL; 1935 } 1936 #endif 1937 1938 #define EXT4_SPEC_JQUOTA (1 << 0) 1939 #define EXT4_SPEC_JQFMT (1 << 1) 1940 #define EXT4_SPEC_DATAJ (1 << 2) 1941 #define EXT4_SPEC_SB_BLOCK (1 << 3) 1942 #define EXT4_SPEC_JOURNAL_DEV (1 << 4) 1943 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5) 1944 #define EXT4_SPEC_s_want_extra_isize (1 << 7) 1945 #define EXT4_SPEC_s_max_batch_time (1 << 8) 1946 #define EXT4_SPEC_s_min_batch_time (1 << 9) 1947 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10) 1948 #define EXT4_SPEC_s_li_wait_mult (1 << 11) 1949 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12) 1950 #define EXT4_SPEC_s_stripe (1 << 13) 1951 #define EXT4_SPEC_s_resuid (1 << 14) 1952 #define EXT4_SPEC_s_resgid (1 << 15) 1953 #define EXT4_SPEC_s_commit_interval (1 << 16) 1954 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17) 1955 #define EXT4_SPEC_s_sb_block (1 << 18) 1956 #define EXT4_SPEC_mb_optimize_scan (1 << 19) 1957 1958 struct ext4_fs_context { 1959 char *s_qf_names[EXT4_MAXQUOTAS]; 1960 struct fscrypt_dummy_policy dummy_enc_policy; 1961 int s_jquota_fmt; /* Format of quota to use */ 1962 #ifdef CONFIG_EXT4_DEBUG 1963 int s_fc_debug_max_replay; 1964 #endif 1965 unsigned short qname_spec; 1966 unsigned long vals_s_flags; /* Bits to set in s_flags */ 1967 unsigned long mask_s_flags; /* Bits changed in s_flags */ 1968 unsigned long journal_devnum; 1969 unsigned long s_commit_interval; 1970 unsigned long s_stripe; 1971 unsigned int s_inode_readahead_blks; 1972 unsigned int s_want_extra_isize; 1973 unsigned int s_li_wait_mult; 1974 unsigned int s_max_dir_size_kb; 1975 unsigned int journal_ioprio; 1976 unsigned int vals_s_mount_opt; 1977 unsigned int mask_s_mount_opt; 1978 unsigned int vals_s_mount_opt2; 1979 unsigned int mask_s_mount_opt2; 1980 unsigned int opt_flags; /* MOPT flags */ 1981 unsigned int spec; 1982 u32 s_max_batch_time; 1983 u32 s_min_batch_time; 1984 kuid_t s_resuid; 1985 kgid_t s_resgid; 1986 ext4_fsblk_t s_sb_block; 1987 }; 1988 1989 static void ext4_fc_free(struct fs_context *fc) 1990 { 1991 struct ext4_fs_context *ctx = fc->fs_private; 1992 int i; 1993 1994 if (!ctx) 1995 return; 1996 1997 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1998 kfree(ctx->s_qf_names[i]); 1999 2000 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy); 2001 kfree(ctx); 2002 } 2003 2004 int ext4_init_fs_context(struct fs_context *fc) 2005 { 2006 struct ext4_fs_context *ctx; 2007 2008 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2009 if (!ctx) 2010 return -ENOMEM; 2011 2012 fc->fs_private = ctx; 2013 fc->ops = &ext4_context_ops; 2014 2015 return 0; 2016 } 2017 2018 #ifdef CONFIG_QUOTA 2019 /* 2020 * Note the name of the specified quota file. 2021 */ 2022 static int note_qf_name(struct fs_context *fc, int qtype, 2023 struct fs_parameter *param) 2024 { 2025 struct ext4_fs_context *ctx = fc->fs_private; 2026 char *qname; 2027 2028 if (param->size < 1) { 2029 ext4_msg(NULL, KERN_ERR, "Missing quota name"); 2030 return -EINVAL; 2031 } 2032 if (strchr(param->string, '/')) { 2033 ext4_msg(NULL, KERN_ERR, 2034 "quotafile must be on filesystem root"); 2035 return -EINVAL; 2036 } 2037 if (ctx->s_qf_names[qtype]) { 2038 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) { 2039 ext4_msg(NULL, KERN_ERR, 2040 "%s quota file already specified", 2041 QTYPE2NAME(qtype)); 2042 return -EINVAL; 2043 } 2044 return 0; 2045 } 2046 2047 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL); 2048 if (!qname) { 2049 ext4_msg(NULL, KERN_ERR, 2050 "Not enough memory for storing quotafile name"); 2051 return -ENOMEM; 2052 } 2053 ctx->s_qf_names[qtype] = qname; 2054 ctx->qname_spec |= 1 << qtype; 2055 ctx->spec |= EXT4_SPEC_JQUOTA; 2056 return 0; 2057 } 2058 2059 /* 2060 * Clear the name of the specified quota file. 2061 */ 2062 static int unnote_qf_name(struct fs_context *fc, int qtype) 2063 { 2064 struct ext4_fs_context *ctx = fc->fs_private; 2065 2066 kfree(ctx->s_qf_names[qtype]); 2067 2068 ctx->s_qf_names[qtype] = NULL; 2069 ctx->qname_spec |= 1 << qtype; 2070 ctx->spec |= EXT4_SPEC_JQUOTA; 2071 return 0; 2072 } 2073 #endif 2074 2075 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param, 2076 struct ext4_fs_context *ctx) 2077 { 2078 int err; 2079 2080 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 2081 ext4_msg(NULL, KERN_WARNING, 2082 "test_dummy_encryption option not supported"); 2083 return -EINVAL; 2084 } 2085 err = fscrypt_parse_test_dummy_encryption(param, 2086 &ctx->dummy_enc_policy); 2087 if (err == -EINVAL) { 2088 ext4_msg(NULL, KERN_WARNING, 2089 "Value of option \"%s\" is unrecognized", param->key); 2090 } else if (err == -EEXIST) { 2091 ext4_msg(NULL, KERN_WARNING, 2092 "Conflicting test_dummy_encryption options"); 2093 return -EINVAL; 2094 } 2095 return err; 2096 } 2097 2098 #define EXT4_SET_CTX(name) \ 2099 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \ 2100 unsigned long flag) \ 2101 { \ 2102 ctx->mask_s_##name |= flag; \ 2103 ctx->vals_s_##name |= flag; \ 2104 } 2105 2106 #define EXT4_CLEAR_CTX(name) \ 2107 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \ 2108 unsigned long flag) \ 2109 { \ 2110 ctx->mask_s_##name |= flag; \ 2111 ctx->vals_s_##name &= ~flag; \ 2112 } 2113 2114 #define EXT4_TEST_CTX(name) \ 2115 static inline unsigned long \ 2116 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \ 2117 { \ 2118 return (ctx->vals_s_##name & flag); \ 2119 } 2120 2121 EXT4_SET_CTX(flags); /* set only */ 2122 EXT4_SET_CTX(mount_opt); 2123 EXT4_CLEAR_CTX(mount_opt); 2124 EXT4_TEST_CTX(mount_opt); 2125 EXT4_SET_CTX(mount_opt2); 2126 EXT4_CLEAR_CTX(mount_opt2); 2127 EXT4_TEST_CTX(mount_opt2); 2128 2129 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param) 2130 { 2131 struct ext4_fs_context *ctx = fc->fs_private; 2132 struct fs_parse_result result; 2133 const struct mount_opts *m; 2134 int is_remount; 2135 int token; 2136 2137 token = fs_parse(fc, ext4_param_specs, param, &result); 2138 if (token < 0) 2139 return token; 2140 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2141 2142 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2143 if (token == m->token) 2144 break; 2145 2146 ctx->opt_flags |= m->flags; 2147 2148 if (m->flags & MOPT_EXPLICIT) { 2149 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2150 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC); 2151 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2152 ctx_set_mount_opt2(ctx, 2153 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM); 2154 } else 2155 return -EINVAL; 2156 } 2157 2158 if (m->flags & MOPT_NOSUPPORT) { 2159 ext4_msg(NULL, KERN_ERR, "%s option not supported", 2160 param->key); 2161 return 0; 2162 } 2163 2164 switch (token) { 2165 #ifdef CONFIG_QUOTA 2166 case Opt_usrjquota: 2167 if (!*param->string) 2168 return unnote_qf_name(fc, USRQUOTA); 2169 else 2170 return note_qf_name(fc, USRQUOTA, param); 2171 case Opt_grpjquota: 2172 if (!*param->string) 2173 return unnote_qf_name(fc, GRPQUOTA); 2174 else 2175 return note_qf_name(fc, GRPQUOTA, param); 2176 #endif 2177 case Opt_sb: 2178 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2179 ext4_msg(NULL, KERN_WARNING, 2180 "Ignoring %s option on remount", param->key); 2181 } else { 2182 ctx->s_sb_block = result.uint_32; 2183 ctx->spec |= EXT4_SPEC_s_sb_block; 2184 } 2185 return 0; 2186 case Opt_removed: 2187 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option", 2188 param->key); 2189 return 0; 2190 case Opt_inlinecrypt: 2191 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2192 ctx_set_flags(ctx, SB_INLINECRYPT); 2193 #else 2194 ext4_msg(NULL, KERN_ERR, "inline encryption not supported"); 2195 #endif 2196 return 0; 2197 case Opt_errors: 2198 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK); 2199 ctx_set_mount_opt(ctx, result.uint_32); 2200 return 0; 2201 #ifdef CONFIG_QUOTA 2202 case Opt_jqfmt: 2203 ctx->s_jquota_fmt = result.uint_32; 2204 ctx->spec |= EXT4_SPEC_JQFMT; 2205 return 0; 2206 #endif 2207 case Opt_data: 2208 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2209 ctx_set_mount_opt(ctx, result.uint_32); 2210 ctx->spec |= EXT4_SPEC_DATAJ; 2211 return 0; 2212 case Opt_commit: 2213 if (result.uint_32 == 0) 2214 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE; 2215 else if (result.uint_32 > INT_MAX / HZ) { 2216 ext4_msg(NULL, KERN_ERR, 2217 "Invalid commit interval %d, " 2218 "must be smaller than %d", 2219 result.uint_32, INT_MAX / HZ); 2220 return -EINVAL; 2221 } 2222 ctx->s_commit_interval = HZ * result.uint_32; 2223 ctx->spec |= EXT4_SPEC_s_commit_interval; 2224 return 0; 2225 case Opt_debug_want_extra_isize: 2226 if ((result.uint_32 & 1) || (result.uint_32 < 4)) { 2227 ext4_msg(NULL, KERN_ERR, 2228 "Invalid want_extra_isize %d", result.uint_32); 2229 return -EINVAL; 2230 } 2231 ctx->s_want_extra_isize = result.uint_32; 2232 ctx->spec |= EXT4_SPEC_s_want_extra_isize; 2233 return 0; 2234 case Opt_max_batch_time: 2235 ctx->s_max_batch_time = result.uint_32; 2236 ctx->spec |= EXT4_SPEC_s_max_batch_time; 2237 return 0; 2238 case Opt_min_batch_time: 2239 ctx->s_min_batch_time = result.uint_32; 2240 ctx->spec |= EXT4_SPEC_s_min_batch_time; 2241 return 0; 2242 case Opt_inode_readahead_blks: 2243 if (result.uint_32 && 2244 (result.uint_32 > (1 << 30) || 2245 !is_power_of_2(result.uint_32))) { 2246 ext4_msg(NULL, KERN_ERR, 2247 "EXT4-fs: inode_readahead_blks must be " 2248 "0 or a power of 2 smaller than 2^31"); 2249 return -EINVAL; 2250 } 2251 ctx->s_inode_readahead_blks = result.uint_32; 2252 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks; 2253 return 0; 2254 case Opt_init_itable: 2255 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE); 2256 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 2257 if (param->type == fs_value_is_string) 2258 ctx->s_li_wait_mult = result.uint_32; 2259 ctx->spec |= EXT4_SPEC_s_li_wait_mult; 2260 return 0; 2261 case Opt_max_dir_size_kb: 2262 ctx->s_max_dir_size_kb = result.uint_32; 2263 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb; 2264 return 0; 2265 #ifdef CONFIG_EXT4_DEBUG 2266 case Opt_fc_debug_max_replay: 2267 ctx->s_fc_debug_max_replay = result.uint_32; 2268 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay; 2269 return 0; 2270 #endif 2271 case Opt_stripe: 2272 ctx->s_stripe = result.uint_32; 2273 ctx->spec |= EXT4_SPEC_s_stripe; 2274 return 0; 2275 case Opt_resuid: 2276 ctx->s_resuid = result.uid; 2277 ctx->spec |= EXT4_SPEC_s_resuid; 2278 return 0; 2279 case Opt_resgid: 2280 ctx->s_resgid = result.gid; 2281 ctx->spec |= EXT4_SPEC_s_resgid; 2282 return 0; 2283 case Opt_journal_dev: 2284 if (is_remount) { 2285 ext4_msg(NULL, KERN_ERR, 2286 "Cannot specify journal on remount"); 2287 return -EINVAL; 2288 } 2289 ctx->journal_devnum = result.uint_32; 2290 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2291 return 0; 2292 case Opt_journal_path: 2293 { 2294 struct inode *journal_inode; 2295 struct path path; 2296 int error; 2297 2298 if (is_remount) { 2299 ext4_msg(NULL, KERN_ERR, 2300 "Cannot specify journal on remount"); 2301 return -EINVAL; 2302 } 2303 2304 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path); 2305 if (error) { 2306 ext4_msg(NULL, KERN_ERR, "error: could not find " 2307 "journal device path"); 2308 return -EINVAL; 2309 } 2310 2311 journal_inode = d_inode(path.dentry); 2312 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2313 ctx->spec |= EXT4_SPEC_JOURNAL_DEV; 2314 path_put(&path); 2315 return 0; 2316 } 2317 case Opt_journal_ioprio: 2318 if (result.uint_32 > 7) { 2319 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority" 2320 " (must be 0-7)"); 2321 return -EINVAL; 2322 } 2323 ctx->journal_ioprio = 2324 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32); 2325 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO; 2326 return 0; 2327 case Opt_test_dummy_encryption: 2328 return ext4_parse_test_dummy_encryption(param, ctx); 2329 case Opt_dax: 2330 case Opt_dax_type: 2331 #ifdef CONFIG_FS_DAX 2332 { 2333 int type = (token == Opt_dax) ? 2334 Opt_dax : result.uint_32; 2335 2336 switch (type) { 2337 case Opt_dax: 2338 case Opt_dax_always: 2339 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2340 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2341 break; 2342 case Opt_dax_never: 2343 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2344 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2345 break; 2346 case Opt_dax_inode: 2347 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS); 2348 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER); 2349 /* Strictly for printing options */ 2350 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE); 2351 break; 2352 } 2353 return 0; 2354 } 2355 #else 2356 ext4_msg(NULL, KERN_INFO, "dax option not supported"); 2357 return -EINVAL; 2358 #endif 2359 case Opt_data_err: 2360 if (result.uint_32 == Opt_data_err_abort) 2361 ctx_set_mount_opt(ctx, m->mount_opt); 2362 else if (result.uint_32 == Opt_data_err_ignore) 2363 ctx_clear_mount_opt(ctx, m->mount_opt); 2364 return 0; 2365 case Opt_mb_optimize_scan: 2366 if (result.int_32 == 1) { 2367 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2368 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2369 } else if (result.int_32 == 0) { 2370 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN); 2371 ctx->spec |= EXT4_SPEC_mb_optimize_scan; 2372 } else { 2373 ext4_msg(NULL, KERN_WARNING, 2374 "mb_optimize_scan should be set to 0 or 1."); 2375 return -EINVAL; 2376 } 2377 return 0; 2378 } 2379 2380 /* 2381 * At this point we should only be getting options requiring MOPT_SET, 2382 * or MOPT_CLEAR. Anything else is a bug 2383 */ 2384 if (m->token == Opt_err) { 2385 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s", 2386 param->key); 2387 WARN_ON(1); 2388 return -EINVAL; 2389 } 2390 2391 else { 2392 unsigned int set = 0; 2393 2394 if ((param->type == fs_value_is_flag) || 2395 result.uint_32 > 0) 2396 set = 1; 2397 2398 if (m->flags & MOPT_CLEAR) 2399 set = !set; 2400 else if (unlikely(!(m->flags & MOPT_SET))) { 2401 ext4_msg(NULL, KERN_WARNING, 2402 "buggy handling of option %s", 2403 param->key); 2404 WARN_ON(1); 2405 return -EINVAL; 2406 } 2407 if (m->flags & MOPT_2) { 2408 if (set != 0) 2409 ctx_set_mount_opt2(ctx, m->mount_opt); 2410 else 2411 ctx_clear_mount_opt2(ctx, m->mount_opt); 2412 } else { 2413 if (set != 0) 2414 ctx_set_mount_opt(ctx, m->mount_opt); 2415 else 2416 ctx_clear_mount_opt(ctx, m->mount_opt); 2417 } 2418 } 2419 2420 return 0; 2421 } 2422 2423 static int parse_options(struct fs_context *fc, char *options) 2424 { 2425 struct fs_parameter param; 2426 int ret; 2427 char *key; 2428 2429 if (!options) 2430 return 0; 2431 2432 while ((key = strsep(&options, ",")) != NULL) { 2433 if (*key) { 2434 size_t v_len = 0; 2435 char *value = strchr(key, '='); 2436 2437 param.type = fs_value_is_flag; 2438 param.string = NULL; 2439 2440 if (value) { 2441 if (value == key) 2442 continue; 2443 2444 *value++ = 0; 2445 v_len = strlen(value); 2446 param.string = kmemdup_nul(value, v_len, 2447 GFP_KERNEL); 2448 if (!param.string) 2449 return -ENOMEM; 2450 param.type = fs_value_is_string; 2451 } 2452 2453 param.key = key; 2454 param.size = v_len; 2455 2456 ret = ext4_parse_param(fc, ¶m); 2457 kfree(param.string); 2458 if (ret < 0) 2459 return ret; 2460 } 2461 } 2462 2463 ret = ext4_validate_options(fc); 2464 if (ret < 0) 2465 return ret; 2466 2467 return 0; 2468 } 2469 2470 static int parse_apply_sb_mount_options(struct super_block *sb, 2471 struct ext4_fs_context *m_ctx) 2472 { 2473 struct ext4_sb_info *sbi = EXT4_SB(sb); 2474 char *s_mount_opts = NULL; 2475 struct ext4_fs_context *s_ctx = NULL; 2476 struct fs_context *fc = NULL; 2477 int ret = -ENOMEM; 2478 2479 if (!sbi->s_es->s_mount_opts[0]) 2480 return 0; 2481 2482 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 2483 sizeof(sbi->s_es->s_mount_opts), 2484 GFP_KERNEL); 2485 if (!s_mount_opts) 2486 return ret; 2487 2488 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL); 2489 if (!fc) 2490 goto out_free; 2491 2492 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL); 2493 if (!s_ctx) 2494 goto out_free; 2495 2496 fc->fs_private = s_ctx; 2497 fc->s_fs_info = sbi; 2498 2499 ret = parse_options(fc, s_mount_opts); 2500 if (ret < 0) 2501 goto parse_failed; 2502 2503 ret = ext4_check_opt_consistency(fc, sb); 2504 if (ret < 0) { 2505 parse_failed: 2506 ext4_msg(sb, KERN_WARNING, 2507 "failed to parse options in superblock: %s", 2508 s_mount_opts); 2509 ret = 0; 2510 goto out_free; 2511 } 2512 2513 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV) 2514 m_ctx->journal_devnum = s_ctx->journal_devnum; 2515 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO) 2516 m_ctx->journal_ioprio = s_ctx->journal_ioprio; 2517 2518 ext4_apply_options(fc, sb); 2519 ret = 0; 2520 2521 out_free: 2522 if (fc) { 2523 ext4_fc_free(fc); 2524 kfree(fc); 2525 } 2526 kfree(s_mount_opts); 2527 return ret; 2528 } 2529 2530 static void ext4_apply_quota_options(struct fs_context *fc, 2531 struct super_block *sb) 2532 { 2533 #ifdef CONFIG_QUOTA 2534 bool quota_feature = ext4_has_feature_quota(sb); 2535 struct ext4_fs_context *ctx = fc->fs_private; 2536 struct ext4_sb_info *sbi = EXT4_SB(sb); 2537 char *qname; 2538 int i; 2539 2540 if (quota_feature) 2541 return; 2542 2543 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2544 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2545 if (!(ctx->qname_spec & (1 << i))) 2546 continue; 2547 2548 qname = ctx->s_qf_names[i]; /* May be NULL */ 2549 if (qname) 2550 set_opt(sb, QUOTA); 2551 ctx->s_qf_names[i] = NULL; 2552 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname, 2553 lockdep_is_held(&sb->s_umount)); 2554 if (qname) 2555 kfree_rcu_mightsleep(qname); 2556 } 2557 } 2558 2559 if (ctx->spec & EXT4_SPEC_JQFMT) 2560 sbi->s_jquota_fmt = ctx->s_jquota_fmt; 2561 #endif 2562 } 2563 2564 /* 2565 * Check quota settings consistency. 2566 */ 2567 static int ext4_check_quota_consistency(struct fs_context *fc, 2568 struct super_block *sb) 2569 { 2570 #ifdef CONFIG_QUOTA 2571 struct ext4_fs_context *ctx = fc->fs_private; 2572 struct ext4_sb_info *sbi = EXT4_SB(sb); 2573 bool quota_feature = ext4_has_feature_quota(sb); 2574 bool quota_loaded = sb_any_quota_loaded(sb); 2575 bool usr_qf_name, grp_qf_name, usrquota, grpquota; 2576 int quota_flags, i; 2577 2578 /* 2579 * We do the test below only for project quotas. 'usrquota' and 2580 * 'grpquota' mount options are allowed even without quota feature 2581 * to support legacy quotas in quota files. 2582 */ 2583 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) && 2584 !ext4_has_feature_project(sb)) { 2585 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. " 2586 "Cannot enable project quota enforcement."); 2587 return -EINVAL; 2588 } 2589 2590 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2591 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA; 2592 if (quota_loaded && 2593 ctx->mask_s_mount_opt & quota_flags && 2594 !ctx_test_mount_opt(ctx, quota_flags)) 2595 goto err_quota_change; 2596 2597 if (ctx->spec & EXT4_SPEC_JQUOTA) { 2598 2599 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2600 if (!(ctx->qname_spec & (1 << i))) 2601 continue; 2602 2603 if (quota_loaded && 2604 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i]) 2605 goto err_jquota_change; 2606 2607 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] && 2608 strcmp(get_qf_name(sb, sbi, i), 2609 ctx->s_qf_names[i]) != 0) 2610 goto err_jquota_specified; 2611 } 2612 2613 if (quota_feature) { 2614 ext4_msg(NULL, KERN_INFO, 2615 "Journaled quota options ignored when " 2616 "QUOTA feature is enabled"); 2617 return 0; 2618 } 2619 } 2620 2621 if (ctx->spec & EXT4_SPEC_JQFMT) { 2622 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded) 2623 goto err_jquota_change; 2624 if (quota_feature) { 2625 ext4_msg(NULL, KERN_INFO, "Quota format mount options " 2626 "ignored when QUOTA feature is enabled"); 2627 return 0; 2628 } 2629 } 2630 2631 /* Make sure we don't mix old and new quota format */ 2632 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) || 2633 ctx->s_qf_names[USRQUOTA]); 2634 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) || 2635 ctx->s_qf_names[GRPQUOTA]); 2636 2637 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2638 test_opt(sb, USRQUOTA)); 2639 2640 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) || 2641 test_opt(sb, GRPQUOTA)); 2642 2643 if (usr_qf_name) { 2644 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2645 usrquota = false; 2646 } 2647 if (grp_qf_name) { 2648 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2649 grpquota = false; 2650 } 2651 2652 if (usr_qf_name || grp_qf_name) { 2653 if (usrquota || grpquota) { 2654 ext4_msg(NULL, KERN_ERR, "old and new quota " 2655 "format mixing"); 2656 return -EINVAL; 2657 } 2658 2659 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) { 2660 ext4_msg(NULL, KERN_ERR, "journaled quota format " 2661 "not specified"); 2662 return -EINVAL; 2663 } 2664 } 2665 2666 return 0; 2667 2668 err_quota_change: 2669 ext4_msg(NULL, KERN_ERR, 2670 "Cannot change quota options when quota turned on"); 2671 return -EINVAL; 2672 err_jquota_change: 2673 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota " 2674 "options when quota turned on"); 2675 return -EINVAL; 2676 err_jquota_specified: 2677 ext4_msg(NULL, KERN_ERR, "%s quota file already specified", 2678 QTYPE2NAME(i)); 2679 return -EINVAL; 2680 #else 2681 return 0; 2682 #endif 2683 } 2684 2685 static int ext4_check_test_dummy_encryption(const struct fs_context *fc, 2686 struct super_block *sb) 2687 { 2688 const struct ext4_fs_context *ctx = fc->fs_private; 2689 const struct ext4_sb_info *sbi = EXT4_SB(sb); 2690 2691 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy)) 2692 return 0; 2693 2694 if (!ext4_has_feature_encrypt(sb)) { 2695 ext4_msg(NULL, KERN_WARNING, 2696 "test_dummy_encryption requires encrypt feature"); 2697 return -EINVAL; 2698 } 2699 /* 2700 * This mount option is just for testing, and it's not worthwhile to 2701 * implement the extra complexity (e.g. RCU protection) that would be 2702 * needed to allow it to be set or changed during remount. We do allow 2703 * it to be specified during remount, but only if there is no change. 2704 */ 2705 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) { 2706 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2707 &ctx->dummy_enc_policy)) 2708 return 0; 2709 ext4_msg(NULL, KERN_WARNING, 2710 "Can't set or change test_dummy_encryption on remount"); 2711 return -EINVAL; 2712 } 2713 /* Also make sure s_mount_opts didn't contain a conflicting value. */ 2714 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) { 2715 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy, 2716 &ctx->dummy_enc_policy)) 2717 return 0; 2718 ext4_msg(NULL, KERN_WARNING, 2719 "Conflicting test_dummy_encryption options"); 2720 return -EINVAL; 2721 } 2722 return 0; 2723 } 2724 2725 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx, 2726 struct super_block *sb) 2727 { 2728 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) || 2729 /* if already set, it was already verified to be the same */ 2730 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy)) 2731 return; 2732 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy; 2733 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy)); 2734 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2735 } 2736 2737 static int ext4_check_opt_consistency(struct fs_context *fc, 2738 struct super_block *sb) 2739 { 2740 struct ext4_fs_context *ctx = fc->fs_private; 2741 struct ext4_sb_info *sbi = fc->s_fs_info; 2742 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE; 2743 int err; 2744 2745 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2746 ext4_msg(NULL, KERN_ERR, 2747 "Mount option(s) incompatible with ext2"); 2748 return -EINVAL; 2749 } 2750 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2751 ext4_msg(NULL, KERN_ERR, 2752 "Mount option(s) incompatible with ext3"); 2753 return -EINVAL; 2754 } 2755 2756 if (ctx->s_want_extra_isize > 2757 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) { 2758 ext4_msg(NULL, KERN_ERR, 2759 "Invalid want_extra_isize %d", 2760 ctx->s_want_extra_isize); 2761 return -EINVAL; 2762 } 2763 2764 err = ext4_check_test_dummy_encryption(fc, sb); 2765 if (err) 2766 return err; 2767 2768 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) { 2769 if (!sbi->s_journal) { 2770 ext4_msg(NULL, KERN_WARNING, 2771 "Remounting file system with no journal " 2772 "so ignoring journalled data option"); 2773 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS); 2774 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) != 2775 test_opt(sb, DATA_FLAGS)) { 2776 ext4_msg(NULL, KERN_ERR, "Cannot change data mode " 2777 "on remount"); 2778 return -EINVAL; 2779 } 2780 } 2781 2782 if (is_remount) { 2783 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2784 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { 2785 ext4_msg(NULL, KERN_ERR, "can't mount with " 2786 "both data=journal and dax"); 2787 return -EINVAL; 2788 } 2789 2790 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) && 2791 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2792 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2793 fail_dax_change_remount: 2794 ext4_msg(NULL, KERN_ERR, "can't change " 2795 "dax mount option while remounting"); 2796 return -EINVAL; 2797 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) && 2798 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2799 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) { 2800 goto fail_dax_change_remount; 2801 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) && 2802 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2803 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2804 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) { 2805 goto fail_dax_change_remount; 2806 } 2807 } 2808 2809 return ext4_check_quota_consistency(fc, sb); 2810 } 2811 2812 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb) 2813 { 2814 struct ext4_fs_context *ctx = fc->fs_private; 2815 struct ext4_sb_info *sbi = fc->s_fs_info; 2816 2817 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt; 2818 sbi->s_mount_opt |= ctx->vals_s_mount_opt; 2819 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2; 2820 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2; 2821 sb->s_flags &= ~ctx->mask_s_flags; 2822 sb->s_flags |= ctx->vals_s_flags; 2823 2824 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; }) 2825 APPLY(s_commit_interval); 2826 APPLY(s_stripe); 2827 APPLY(s_max_batch_time); 2828 APPLY(s_min_batch_time); 2829 APPLY(s_want_extra_isize); 2830 APPLY(s_inode_readahead_blks); 2831 APPLY(s_max_dir_size_kb); 2832 APPLY(s_li_wait_mult); 2833 APPLY(s_resgid); 2834 APPLY(s_resuid); 2835 2836 #ifdef CONFIG_EXT4_DEBUG 2837 APPLY(s_fc_debug_max_replay); 2838 #endif 2839 2840 ext4_apply_quota_options(fc, sb); 2841 ext4_apply_test_dummy_encryption(ctx, sb); 2842 } 2843 2844 2845 static int ext4_validate_options(struct fs_context *fc) 2846 { 2847 #ifdef CONFIG_QUOTA 2848 struct ext4_fs_context *ctx = fc->fs_private; 2849 char *usr_qf_name, *grp_qf_name; 2850 2851 usr_qf_name = ctx->s_qf_names[USRQUOTA]; 2852 grp_qf_name = ctx->s_qf_names[GRPQUOTA]; 2853 2854 if (usr_qf_name || grp_qf_name) { 2855 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name) 2856 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA); 2857 2858 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name) 2859 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA); 2860 2861 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) || 2862 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) { 2863 ext4_msg(NULL, KERN_ERR, "old and new quota " 2864 "format mixing"); 2865 return -EINVAL; 2866 } 2867 } 2868 #endif 2869 return 1; 2870 } 2871 2872 static inline void ext4_show_quota_options(struct seq_file *seq, 2873 struct super_block *sb) 2874 { 2875 #if defined(CONFIG_QUOTA) 2876 struct ext4_sb_info *sbi = EXT4_SB(sb); 2877 char *usr_qf_name, *grp_qf_name; 2878 2879 if (sbi->s_jquota_fmt) { 2880 char *fmtname = ""; 2881 2882 switch (sbi->s_jquota_fmt) { 2883 case QFMT_VFS_OLD: 2884 fmtname = "vfsold"; 2885 break; 2886 case QFMT_VFS_V0: 2887 fmtname = "vfsv0"; 2888 break; 2889 case QFMT_VFS_V1: 2890 fmtname = "vfsv1"; 2891 break; 2892 } 2893 seq_printf(seq, ",jqfmt=%s", fmtname); 2894 } 2895 2896 rcu_read_lock(); 2897 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2898 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2899 if (usr_qf_name) 2900 seq_show_option(seq, "usrjquota", usr_qf_name); 2901 if (grp_qf_name) 2902 seq_show_option(seq, "grpjquota", grp_qf_name); 2903 rcu_read_unlock(); 2904 #endif 2905 } 2906 2907 static const char *token2str(int token) 2908 { 2909 const struct fs_parameter_spec *spec; 2910 2911 for (spec = ext4_param_specs; spec->name != NULL; spec++) 2912 if (spec->opt == token && !spec->type) 2913 break; 2914 return spec->name; 2915 } 2916 2917 /* 2918 * Show an option if 2919 * - it's set to a non-default value OR 2920 * - if the per-sb default is different from the global default 2921 */ 2922 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2923 int nodefs) 2924 { 2925 struct ext4_sb_info *sbi = EXT4_SB(sb); 2926 struct ext4_super_block *es = sbi->s_es; 2927 int def_errors; 2928 const struct mount_opts *m; 2929 char sep = nodefs ? '\n' : ','; 2930 2931 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2932 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2933 2934 if (sbi->s_sb_block != 1) 2935 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2936 2937 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2938 int want_set = m->flags & MOPT_SET; 2939 int opt_2 = m->flags & MOPT_2; 2940 unsigned int mount_opt, def_mount_opt; 2941 2942 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2943 m->flags & MOPT_SKIP) 2944 continue; 2945 2946 if (opt_2) { 2947 mount_opt = sbi->s_mount_opt2; 2948 def_mount_opt = sbi->s_def_mount_opt2; 2949 } else { 2950 mount_opt = sbi->s_mount_opt; 2951 def_mount_opt = sbi->s_def_mount_opt; 2952 } 2953 /* skip if same as the default */ 2954 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt))) 2955 continue; 2956 /* select Opt_noFoo vs Opt_Foo */ 2957 if ((want_set && 2958 (mount_opt & m->mount_opt) != m->mount_opt) || 2959 (!want_set && (mount_opt & m->mount_opt))) 2960 continue; 2961 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2962 } 2963 2964 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2965 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2966 SEQ_OPTS_PRINT("resuid=%u", 2967 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2968 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2969 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2970 SEQ_OPTS_PRINT("resgid=%u", 2971 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2972 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2973 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2974 SEQ_OPTS_PUTS("errors=remount-ro"); 2975 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2976 SEQ_OPTS_PUTS("errors=continue"); 2977 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2978 SEQ_OPTS_PUTS("errors=panic"); 2979 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2980 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2981 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2982 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2983 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2984 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2985 if (nodefs || sbi->s_stripe) 2986 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2987 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2988 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 2989 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2990 SEQ_OPTS_PUTS("data=journal"); 2991 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2992 SEQ_OPTS_PUTS("data=ordered"); 2993 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2994 SEQ_OPTS_PUTS("data=writeback"); 2995 } 2996 if (nodefs || 2997 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2998 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2999 sbi->s_inode_readahead_blks); 3000 3001 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 3002 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 3003 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 3004 if (nodefs || sbi->s_max_dir_size_kb) 3005 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 3006 if (test_opt(sb, DATA_ERR_ABORT)) 3007 SEQ_OPTS_PUTS("data_err=abort"); 3008 3009 fscrypt_show_test_dummy_encryption(seq, sep, sb); 3010 3011 if (sb->s_flags & SB_INLINECRYPT) 3012 SEQ_OPTS_PUTS("inlinecrypt"); 3013 3014 if (test_opt(sb, DAX_ALWAYS)) { 3015 if (IS_EXT2_SB(sb)) 3016 SEQ_OPTS_PUTS("dax"); 3017 else 3018 SEQ_OPTS_PUTS("dax=always"); 3019 } else if (test_opt2(sb, DAX_NEVER)) { 3020 SEQ_OPTS_PUTS("dax=never"); 3021 } else if (test_opt2(sb, DAX_INODE)) { 3022 SEQ_OPTS_PUTS("dax=inode"); 3023 } 3024 3025 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3026 !test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3027 SEQ_OPTS_PUTS("mb_optimize_scan=0"); 3028 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD && 3029 test_opt2(sb, MB_OPTIMIZE_SCAN)) { 3030 SEQ_OPTS_PUTS("mb_optimize_scan=1"); 3031 } 3032 3033 ext4_show_quota_options(seq, sb); 3034 return 0; 3035 } 3036 3037 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 3038 { 3039 return _ext4_show_options(seq, root->d_sb, 0); 3040 } 3041 3042 int ext4_seq_options_show(struct seq_file *seq, void *offset) 3043 { 3044 struct super_block *sb = seq->private; 3045 int rc; 3046 3047 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 3048 rc = _ext4_show_options(seq, sb, 1); 3049 seq_puts(seq, "\n"); 3050 return rc; 3051 } 3052 3053 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 3054 int read_only) 3055 { 3056 struct ext4_sb_info *sbi = EXT4_SB(sb); 3057 int err = 0; 3058 3059 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 3060 ext4_msg(sb, KERN_ERR, "revision level too high, " 3061 "forcing read-only mode"); 3062 err = -EROFS; 3063 goto done; 3064 } 3065 if (read_only) 3066 goto done; 3067 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 3068 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 3069 "running e2fsck is recommended"); 3070 else if (sbi->s_mount_state & EXT4_ERROR_FS) 3071 ext4_msg(sb, KERN_WARNING, 3072 "warning: mounting fs with errors, " 3073 "running e2fsck is recommended"); 3074 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 3075 le16_to_cpu(es->s_mnt_count) >= 3076 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 3077 ext4_msg(sb, KERN_WARNING, 3078 "warning: maximal mount count reached, " 3079 "running e2fsck is recommended"); 3080 else if (le32_to_cpu(es->s_checkinterval) && 3081 (ext4_get_tstamp(es, s_lastcheck) + 3082 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 3083 ext4_msg(sb, KERN_WARNING, 3084 "warning: checktime reached, " 3085 "running e2fsck is recommended"); 3086 if (!sbi->s_journal) 3087 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 3088 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 3089 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 3090 le16_add_cpu(&es->s_mnt_count, 1); 3091 ext4_update_tstamp(es, s_mtime); 3092 if (sbi->s_journal) { 3093 ext4_set_feature_journal_needs_recovery(sb); 3094 if (ext4_has_feature_orphan_file(sb)) 3095 ext4_set_feature_orphan_present(sb); 3096 } 3097 3098 err = ext4_commit_super(sb); 3099 done: 3100 if (test_opt(sb, DEBUG)) 3101 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 3102 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 3103 sb->s_blocksize, 3104 sbi->s_groups_count, 3105 EXT4_BLOCKS_PER_GROUP(sb), 3106 EXT4_INODES_PER_GROUP(sb), 3107 sbi->s_mount_opt, sbi->s_mount_opt2); 3108 return err; 3109 } 3110 3111 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 3112 { 3113 struct ext4_sb_info *sbi = EXT4_SB(sb); 3114 struct flex_groups **old_groups, **new_groups; 3115 int size, i, j; 3116 3117 if (!sbi->s_log_groups_per_flex) 3118 return 0; 3119 3120 size = ext4_flex_group(sbi, ngroup - 1) + 1; 3121 if (size <= sbi->s_flex_groups_allocated) 3122 return 0; 3123 3124 new_groups = kvzalloc(roundup_pow_of_two(size * 3125 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 3126 if (!new_groups) { 3127 ext4_msg(sb, KERN_ERR, 3128 "not enough memory for %d flex group pointers", size); 3129 return -ENOMEM; 3130 } 3131 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 3132 new_groups[i] = kvzalloc(roundup_pow_of_two( 3133 sizeof(struct flex_groups)), 3134 GFP_KERNEL); 3135 if (!new_groups[i]) { 3136 for (j = sbi->s_flex_groups_allocated; j < i; j++) 3137 kvfree(new_groups[j]); 3138 kvfree(new_groups); 3139 ext4_msg(sb, KERN_ERR, 3140 "not enough memory for %d flex groups", size); 3141 return -ENOMEM; 3142 } 3143 } 3144 rcu_read_lock(); 3145 old_groups = rcu_dereference(sbi->s_flex_groups); 3146 if (old_groups) 3147 memcpy(new_groups, old_groups, 3148 (sbi->s_flex_groups_allocated * 3149 sizeof(struct flex_groups *))); 3150 rcu_read_unlock(); 3151 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 3152 sbi->s_flex_groups_allocated = size; 3153 if (old_groups) 3154 ext4_kvfree_array_rcu(old_groups); 3155 return 0; 3156 } 3157 3158 static int ext4_fill_flex_info(struct super_block *sb) 3159 { 3160 struct ext4_sb_info *sbi = EXT4_SB(sb); 3161 struct ext4_group_desc *gdp = NULL; 3162 struct flex_groups *fg; 3163 ext4_group_t flex_group; 3164 int i, err; 3165 3166 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 3167 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 3168 sbi->s_log_groups_per_flex = 0; 3169 return 1; 3170 } 3171 3172 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 3173 if (err) 3174 goto failed; 3175 3176 for (i = 0; i < sbi->s_groups_count; i++) { 3177 gdp = ext4_get_group_desc(sb, i, NULL); 3178 3179 flex_group = ext4_flex_group(sbi, i); 3180 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 3181 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 3182 atomic64_add(ext4_free_group_clusters(sb, gdp), 3183 &fg->free_clusters); 3184 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 3185 } 3186 3187 return 1; 3188 failed: 3189 return 0; 3190 } 3191 3192 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 3193 struct ext4_group_desc *gdp) 3194 { 3195 int offset = offsetof(struct ext4_group_desc, bg_checksum); 3196 __u16 crc = 0; 3197 __le32 le_group = cpu_to_le32(block_group); 3198 struct ext4_sb_info *sbi = EXT4_SB(sb); 3199 3200 if (ext4_has_metadata_csum(sbi->s_sb)) { 3201 /* Use new metadata_csum algorithm */ 3202 __u32 csum32; 3203 __u16 dummy_csum = 0; 3204 3205 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 3206 sizeof(le_group)); 3207 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 3208 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 3209 sizeof(dummy_csum)); 3210 offset += sizeof(dummy_csum); 3211 if (offset < sbi->s_desc_size) 3212 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 3213 sbi->s_desc_size - offset); 3214 3215 crc = csum32 & 0xFFFF; 3216 goto out; 3217 } 3218 3219 /* old crc16 code */ 3220 if (!ext4_has_feature_gdt_csum(sb)) 3221 return 0; 3222 3223 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 3224 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 3225 crc = crc16(crc, (__u8 *)gdp, offset); 3226 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 3227 /* for checksum of struct ext4_group_desc do the rest...*/ 3228 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size) 3229 crc = crc16(crc, (__u8 *)gdp + offset, 3230 sbi->s_desc_size - offset); 3231 3232 out: 3233 return cpu_to_le16(crc); 3234 } 3235 3236 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 3237 struct ext4_group_desc *gdp) 3238 { 3239 if (ext4_has_group_desc_csum(sb) && 3240 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 3241 return 0; 3242 3243 return 1; 3244 } 3245 3246 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 3247 struct ext4_group_desc *gdp) 3248 { 3249 if (!ext4_has_group_desc_csum(sb)) 3250 return; 3251 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 3252 } 3253 3254 /* Called at mount-time, super-block is locked */ 3255 static int ext4_check_descriptors(struct super_block *sb, 3256 ext4_fsblk_t sb_block, 3257 ext4_group_t *first_not_zeroed) 3258 { 3259 struct ext4_sb_info *sbi = EXT4_SB(sb); 3260 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 3261 ext4_fsblk_t last_block; 3262 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 3263 ext4_fsblk_t block_bitmap; 3264 ext4_fsblk_t inode_bitmap; 3265 ext4_fsblk_t inode_table; 3266 int flexbg_flag = 0; 3267 ext4_group_t i, grp = sbi->s_groups_count; 3268 3269 if (ext4_has_feature_flex_bg(sb)) 3270 flexbg_flag = 1; 3271 3272 ext4_debug("Checking group descriptors"); 3273 3274 for (i = 0; i < sbi->s_groups_count; i++) { 3275 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 3276 3277 if (i == sbi->s_groups_count - 1 || flexbg_flag) 3278 last_block = ext4_blocks_count(sbi->s_es) - 1; 3279 else 3280 last_block = first_block + 3281 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 3282 3283 if ((grp == sbi->s_groups_count) && 3284 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3285 grp = i; 3286 3287 block_bitmap = ext4_block_bitmap(sb, gdp); 3288 if (block_bitmap == sb_block) { 3289 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3290 "Block bitmap for group %u overlaps " 3291 "superblock", i); 3292 if (!sb_rdonly(sb)) 3293 return 0; 3294 } 3295 if (block_bitmap >= sb_block + 1 && 3296 block_bitmap <= last_bg_block) { 3297 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3298 "Block bitmap for group %u overlaps " 3299 "block group descriptors", i); 3300 if (!sb_rdonly(sb)) 3301 return 0; 3302 } 3303 if (block_bitmap < first_block || block_bitmap > last_block) { 3304 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3305 "Block bitmap for group %u not in group " 3306 "(block %llu)!", i, block_bitmap); 3307 return 0; 3308 } 3309 inode_bitmap = ext4_inode_bitmap(sb, gdp); 3310 if (inode_bitmap == sb_block) { 3311 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3312 "Inode bitmap for group %u overlaps " 3313 "superblock", i); 3314 if (!sb_rdonly(sb)) 3315 return 0; 3316 } 3317 if (inode_bitmap >= sb_block + 1 && 3318 inode_bitmap <= last_bg_block) { 3319 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3320 "Inode bitmap for group %u overlaps " 3321 "block group descriptors", i); 3322 if (!sb_rdonly(sb)) 3323 return 0; 3324 } 3325 if (inode_bitmap < first_block || inode_bitmap > last_block) { 3326 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3327 "Inode bitmap for group %u not in group " 3328 "(block %llu)!", i, inode_bitmap); 3329 return 0; 3330 } 3331 inode_table = ext4_inode_table(sb, gdp); 3332 if (inode_table == sb_block) { 3333 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3334 "Inode table for group %u overlaps " 3335 "superblock", i); 3336 if (!sb_rdonly(sb)) 3337 return 0; 3338 } 3339 if (inode_table >= sb_block + 1 && 3340 inode_table <= last_bg_block) { 3341 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3342 "Inode table for group %u overlaps " 3343 "block group descriptors", i); 3344 if (!sb_rdonly(sb)) 3345 return 0; 3346 } 3347 if (inode_table < first_block || 3348 inode_table + sbi->s_itb_per_group - 1 > last_block) { 3349 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3350 "Inode table for group %u not in group " 3351 "(block %llu)!", i, inode_table); 3352 return 0; 3353 } 3354 ext4_lock_group(sb, i); 3355 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 3356 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 3357 "Checksum for group %u failed (%u!=%u)", 3358 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 3359 gdp)), le16_to_cpu(gdp->bg_checksum)); 3360 if (!sb_rdonly(sb)) { 3361 ext4_unlock_group(sb, i); 3362 return 0; 3363 } 3364 } 3365 ext4_unlock_group(sb, i); 3366 if (!flexbg_flag) 3367 first_block += EXT4_BLOCKS_PER_GROUP(sb); 3368 } 3369 if (NULL != first_not_zeroed) 3370 *first_not_zeroed = grp; 3371 return 1; 3372 } 3373 3374 /* 3375 * Maximal extent format file size. 3376 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3377 * extent format containers, within a sector_t, and within i_blocks 3378 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3379 * so that won't be a limiting factor. 3380 * 3381 * However there is other limiting factor. We do store extents in the form 3382 * of starting block and length, hence the resulting length of the extent 3383 * covering maximum file size must fit into on-disk format containers as 3384 * well. Given that length is always by 1 unit bigger than max unit (because 3385 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3386 * 3387 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3388 */ 3389 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3390 { 3391 loff_t res; 3392 loff_t upper_limit = MAX_LFS_FILESIZE; 3393 3394 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3395 3396 if (!has_huge_files) { 3397 upper_limit = (1LL << 32) - 1; 3398 3399 /* total blocks in file system block size */ 3400 upper_limit >>= (blkbits - 9); 3401 upper_limit <<= blkbits; 3402 } 3403 3404 /* 3405 * 32-bit extent-start container, ee_block. We lower the maxbytes 3406 * by one fs block, so ee_len can cover the extent of maximum file 3407 * size 3408 */ 3409 res = (1LL << 32) - 1; 3410 res <<= blkbits; 3411 3412 /* Sanity check against vm- & vfs- imposed limits */ 3413 if (res > upper_limit) 3414 res = upper_limit; 3415 3416 return res; 3417 } 3418 3419 /* 3420 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3421 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3422 * We need to be 1 filesystem block less than the 2^48 sector limit. 3423 */ 3424 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3425 { 3426 loff_t upper_limit, res = EXT4_NDIR_BLOCKS; 3427 int meta_blocks; 3428 unsigned int ppb = 1 << (bits - 2); 3429 3430 /* 3431 * This is calculated to be the largest file size for a dense, block 3432 * mapped file such that the file's total number of 512-byte sectors, 3433 * including data and all indirect blocks, does not exceed (2^48 - 1). 3434 * 3435 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3436 * number of 512-byte sectors of the file. 3437 */ 3438 if (!has_huge_files) { 3439 /* 3440 * !has_huge_files or implies that the inode i_block field 3441 * represents total file blocks in 2^32 512-byte sectors == 3442 * size of vfs inode i_blocks * 8 3443 */ 3444 upper_limit = (1LL << 32) - 1; 3445 3446 /* total blocks in file system block size */ 3447 upper_limit >>= (bits - 9); 3448 3449 } else { 3450 /* 3451 * We use 48 bit ext4_inode i_blocks 3452 * With EXT4_HUGE_FILE_FL set the i_blocks 3453 * represent total number of blocks in 3454 * file system block size 3455 */ 3456 upper_limit = (1LL << 48) - 1; 3457 3458 } 3459 3460 /* Compute how many blocks we can address by block tree */ 3461 res += ppb; 3462 res += ppb * ppb; 3463 res += ((loff_t)ppb) * ppb * ppb; 3464 /* Compute how many metadata blocks are needed */ 3465 meta_blocks = 1; 3466 meta_blocks += 1 + ppb; 3467 meta_blocks += 1 + ppb + ppb * ppb; 3468 /* Does block tree limit file size? */ 3469 if (res + meta_blocks <= upper_limit) 3470 goto check_lfs; 3471 3472 res = upper_limit; 3473 /* How many metadata blocks are needed for addressing upper_limit? */ 3474 upper_limit -= EXT4_NDIR_BLOCKS; 3475 /* indirect blocks */ 3476 meta_blocks = 1; 3477 upper_limit -= ppb; 3478 /* double indirect blocks */ 3479 if (upper_limit < ppb * ppb) { 3480 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb); 3481 res -= meta_blocks; 3482 goto check_lfs; 3483 } 3484 meta_blocks += 1 + ppb; 3485 upper_limit -= ppb * ppb; 3486 /* tripple indirect blocks for the rest */ 3487 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) + 3488 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb); 3489 res -= meta_blocks; 3490 check_lfs: 3491 res <<= bits; 3492 if (res > MAX_LFS_FILESIZE) 3493 res = MAX_LFS_FILESIZE; 3494 3495 return res; 3496 } 3497 3498 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3499 ext4_fsblk_t logical_sb_block, int nr) 3500 { 3501 struct ext4_sb_info *sbi = EXT4_SB(sb); 3502 ext4_group_t bg, first_meta_bg; 3503 int has_super = 0; 3504 3505 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3506 3507 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3508 return logical_sb_block + nr + 1; 3509 bg = sbi->s_desc_per_block * nr; 3510 if (ext4_bg_has_super(sb, bg)) 3511 has_super = 1; 3512 3513 /* 3514 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3515 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3516 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3517 * compensate. 3518 */ 3519 if (sb->s_blocksize == 1024 && nr == 0 && 3520 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3521 has_super++; 3522 3523 return (has_super + ext4_group_first_block_no(sb, bg)); 3524 } 3525 3526 /** 3527 * ext4_get_stripe_size: Get the stripe size. 3528 * @sbi: In memory super block info 3529 * 3530 * If we have specified it via mount option, then 3531 * use the mount option value. If the value specified at mount time is 3532 * greater than the blocks per group use the super block value. 3533 * If the super block value is greater than blocks per group return 0. 3534 * Allocator needs it be less than blocks per group. 3535 * 3536 */ 3537 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3538 { 3539 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3540 unsigned long stripe_width = 3541 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3542 int ret; 3543 3544 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3545 ret = sbi->s_stripe; 3546 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3547 ret = stripe_width; 3548 else if (stride && stride <= sbi->s_blocks_per_group) 3549 ret = stride; 3550 else 3551 ret = 0; 3552 3553 /* 3554 * If the stripe width is 1, this makes no sense and 3555 * we set it to 0 to turn off stripe handling code. 3556 */ 3557 if (ret <= 1) 3558 ret = 0; 3559 3560 return ret; 3561 } 3562 3563 /* 3564 * Check whether this filesystem can be mounted based on 3565 * the features present and the RDONLY/RDWR mount requested. 3566 * Returns 1 if this filesystem can be mounted as requested, 3567 * 0 if it cannot be. 3568 */ 3569 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3570 { 3571 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3572 ext4_msg(sb, KERN_ERR, 3573 "Couldn't mount because of " 3574 "unsupported optional features (%x)", 3575 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3576 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3577 return 0; 3578 } 3579 3580 if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) { 3581 ext4_msg(sb, KERN_ERR, 3582 "Filesystem with casefold feature cannot be " 3583 "mounted without CONFIG_UNICODE"); 3584 return 0; 3585 } 3586 3587 if (readonly) 3588 return 1; 3589 3590 if (ext4_has_feature_readonly(sb)) { 3591 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3592 sb->s_flags |= SB_RDONLY; 3593 return 1; 3594 } 3595 3596 /* Check that feature set is OK for a read-write mount */ 3597 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3598 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3599 "unsupported optional features (%x)", 3600 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3601 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3602 return 0; 3603 } 3604 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3605 ext4_msg(sb, KERN_ERR, 3606 "Can't support bigalloc feature without " 3607 "extents feature\n"); 3608 return 0; 3609 } 3610 3611 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3612 if (!readonly && (ext4_has_feature_quota(sb) || 3613 ext4_has_feature_project(sb))) { 3614 ext4_msg(sb, KERN_ERR, 3615 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3616 return 0; 3617 } 3618 #endif /* CONFIG_QUOTA */ 3619 return 1; 3620 } 3621 3622 /* 3623 * This function is called once a day if we have errors logged 3624 * on the file system 3625 */ 3626 static void print_daily_error_info(struct timer_list *t) 3627 { 3628 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3629 struct super_block *sb = sbi->s_sb; 3630 struct ext4_super_block *es = sbi->s_es; 3631 3632 if (es->s_error_count) 3633 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3634 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3635 le32_to_cpu(es->s_error_count)); 3636 if (es->s_first_error_time) { 3637 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3638 sb->s_id, 3639 ext4_get_tstamp(es, s_first_error_time), 3640 (int) sizeof(es->s_first_error_func), 3641 es->s_first_error_func, 3642 le32_to_cpu(es->s_first_error_line)); 3643 if (es->s_first_error_ino) 3644 printk(KERN_CONT ": inode %u", 3645 le32_to_cpu(es->s_first_error_ino)); 3646 if (es->s_first_error_block) 3647 printk(KERN_CONT ": block %llu", (unsigned long long) 3648 le64_to_cpu(es->s_first_error_block)); 3649 printk(KERN_CONT "\n"); 3650 } 3651 if (es->s_last_error_time) { 3652 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3653 sb->s_id, 3654 ext4_get_tstamp(es, s_last_error_time), 3655 (int) sizeof(es->s_last_error_func), 3656 es->s_last_error_func, 3657 le32_to_cpu(es->s_last_error_line)); 3658 if (es->s_last_error_ino) 3659 printk(KERN_CONT ": inode %u", 3660 le32_to_cpu(es->s_last_error_ino)); 3661 if (es->s_last_error_block) 3662 printk(KERN_CONT ": block %llu", (unsigned long long) 3663 le64_to_cpu(es->s_last_error_block)); 3664 printk(KERN_CONT "\n"); 3665 } 3666 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3667 } 3668 3669 /* Find next suitable group and run ext4_init_inode_table */ 3670 static int ext4_run_li_request(struct ext4_li_request *elr) 3671 { 3672 struct ext4_group_desc *gdp = NULL; 3673 struct super_block *sb = elr->lr_super; 3674 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3675 ext4_group_t group = elr->lr_next_group; 3676 unsigned int prefetch_ios = 0; 3677 int ret = 0; 3678 int nr = EXT4_SB(sb)->s_mb_prefetch; 3679 u64 start_time; 3680 3681 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3682 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios); 3683 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr); 3684 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr); 3685 if (group >= elr->lr_next_group) { 3686 ret = 1; 3687 if (elr->lr_first_not_zeroed != ngroups && 3688 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3689 elr->lr_next_group = elr->lr_first_not_zeroed; 3690 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3691 ret = 0; 3692 } 3693 } 3694 return ret; 3695 } 3696 3697 for (; group < ngroups; group++) { 3698 gdp = ext4_get_group_desc(sb, group, NULL); 3699 if (!gdp) { 3700 ret = 1; 3701 break; 3702 } 3703 3704 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3705 break; 3706 } 3707 3708 if (group >= ngroups) 3709 ret = 1; 3710 3711 if (!ret) { 3712 start_time = ktime_get_real_ns(); 3713 ret = ext4_init_inode_table(sb, group, 3714 elr->lr_timeout ? 0 : 1); 3715 trace_ext4_lazy_itable_init(sb, group); 3716 if (elr->lr_timeout == 0) { 3717 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) * 3718 EXT4_SB(elr->lr_super)->s_li_wait_mult); 3719 } 3720 elr->lr_next_sched = jiffies + elr->lr_timeout; 3721 elr->lr_next_group = group + 1; 3722 } 3723 return ret; 3724 } 3725 3726 /* 3727 * Remove lr_request from the list_request and free the 3728 * request structure. Should be called with li_list_mtx held 3729 */ 3730 static void ext4_remove_li_request(struct ext4_li_request *elr) 3731 { 3732 if (!elr) 3733 return; 3734 3735 list_del(&elr->lr_request); 3736 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3737 kfree(elr); 3738 } 3739 3740 static void ext4_unregister_li_request(struct super_block *sb) 3741 { 3742 mutex_lock(&ext4_li_mtx); 3743 if (!ext4_li_info) { 3744 mutex_unlock(&ext4_li_mtx); 3745 return; 3746 } 3747 3748 mutex_lock(&ext4_li_info->li_list_mtx); 3749 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3750 mutex_unlock(&ext4_li_info->li_list_mtx); 3751 mutex_unlock(&ext4_li_mtx); 3752 } 3753 3754 static struct task_struct *ext4_lazyinit_task; 3755 3756 /* 3757 * This is the function where ext4lazyinit thread lives. It walks 3758 * through the request list searching for next scheduled filesystem. 3759 * When such a fs is found, run the lazy initialization request 3760 * (ext4_rn_li_request) and keep track of the time spend in this 3761 * function. Based on that time we compute next schedule time of 3762 * the request. When walking through the list is complete, compute 3763 * next waking time and put itself into sleep. 3764 */ 3765 static int ext4_lazyinit_thread(void *arg) 3766 { 3767 struct ext4_lazy_init *eli = arg; 3768 struct list_head *pos, *n; 3769 struct ext4_li_request *elr; 3770 unsigned long next_wakeup, cur; 3771 3772 BUG_ON(NULL == eli); 3773 set_freezable(); 3774 3775 cont_thread: 3776 while (true) { 3777 next_wakeup = MAX_JIFFY_OFFSET; 3778 3779 mutex_lock(&eli->li_list_mtx); 3780 if (list_empty(&eli->li_request_list)) { 3781 mutex_unlock(&eli->li_list_mtx); 3782 goto exit_thread; 3783 } 3784 list_for_each_safe(pos, n, &eli->li_request_list) { 3785 int err = 0; 3786 int progress = 0; 3787 elr = list_entry(pos, struct ext4_li_request, 3788 lr_request); 3789 3790 if (time_before(jiffies, elr->lr_next_sched)) { 3791 if (time_before(elr->lr_next_sched, next_wakeup)) 3792 next_wakeup = elr->lr_next_sched; 3793 continue; 3794 } 3795 if (down_read_trylock(&elr->lr_super->s_umount)) { 3796 if (sb_start_write_trylock(elr->lr_super)) { 3797 progress = 1; 3798 /* 3799 * We hold sb->s_umount, sb can not 3800 * be removed from the list, it is 3801 * now safe to drop li_list_mtx 3802 */ 3803 mutex_unlock(&eli->li_list_mtx); 3804 err = ext4_run_li_request(elr); 3805 sb_end_write(elr->lr_super); 3806 mutex_lock(&eli->li_list_mtx); 3807 n = pos->next; 3808 } 3809 up_read((&elr->lr_super->s_umount)); 3810 } 3811 /* error, remove the lazy_init job */ 3812 if (err) { 3813 ext4_remove_li_request(elr); 3814 continue; 3815 } 3816 if (!progress) { 3817 elr->lr_next_sched = jiffies + 3818 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3819 } 3820 if (time_before(elr->lr_next_sched, next_wakeup)) 3821 next_wakeup = elr->lr_next_sched; 3822 } 3823 mutex_unlock(&eli->li_list_mtx); 3824 3825 try_to_freeze(); 3826 3827 cur = jiffies; 3828 if ((time_after_eq(cur, next_wakeup)) || 3829 (MAX_JIFFY_OFFSET == next_wakeup)) { 3830 cond_resched(); 3831 continue; 3832 } 3833 3834 schedule_timeout_interruptible(next_wakeup - cur); 3835 3836 if (kthread_should_stop()) { 3837 ext4_clear_request_list(); 3838 goto exit_thread; 3839 } 3840 } 3841 3842 exit_thread: 3843 /* 3844 * It looks like the request list is empty, but we need 3845 * to check it under the li_list_mtx lock, to prevent any 3846 * additions into it, and of course we should lock ext4_li_mtx 3847 * to atomically free the list and ext4_li_info, because at 3848 * this point another ext4 filesystem could be registering 3849 * new one. 3850 */ 3851 mutex_lock(&ext4_li_mtx); 3852 mutex_lock(&eli->li_list_mtx); 3853 if (!list_empty(&eli->li_request_list)) { 3854 mutex_unlock(&eli->li_list_mtx); 3855 mutex_unlock(&ext4_li_mtx); 3856 goto cont_thread; 3857 } 3858 mutex_unlock(&eli->li_list_mtx); 3859 kfree(ext4_li_info); 3860 ext4_li_info = NULL; 3861 mutex_unlock(&ext4_li_mtx); 3862 3863 return 0; 3864 } 3865 3866 static void ext4_clear_request_list(void) 3867 { 3868 struct list_head *pos, *n; 3869 struct ext4_li_request *elr; 3870 3871 mutex_lock(&ext4_li_info->li_list_mtx); 3872 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3873 elr = list_entry(pos, struct ext4_li_request, 3874 lr_request); 3875 ext4_remove_li_request(elr); 3876 } 3877 mutex_unlock(&ext4_li_info->li_list_mtx); 3878 } 3879 3880 static int ext4_run_lazyinit_thread(void) 3881 { 3882 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3883 ext4_li_info, "ext4lazyinit"); 3884 if (IS_ERR(ext4_lazyinit_task)) { 3885 int err = PTR_ERR(ext4_lazyinit_task); 3886 ext4_clear_request_list(); 3887 kfree(ext4_li_info); 3888 ext4_li_info = NULL; 3889 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3890 "initialization thread\n", 3891 err); 3892 return err; 3893 } 3894 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3895 return 0; 3896 } 3897 3898 /* 3899 * Check whether it make sense to run itable init. thread or not. 3900 * If there is at least one uninitialized inode table, return 3901 * corresponding group number, else the loop goes through all 3902 * groups and return total number of groups. 3903 */ 3904 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3905 { 3906 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3907 struct ext4_group_desc *gdp = NULL; 3908 3909 if (!ext4_has_group_desc_csum(sb)) 3910 return ngroups; 3911 3912 for (group = 0; group < ngroups; group++) { 3913 gdp = ext4_get_group_desc(sb, group, NULL); 3914 if (!gdp) 3915 continue; 3916 3917 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3918 break; 3919 } 3920 3921 return group; 3922 } 3923 3924 static int ext4_li_info_new(void) 3925 { 3926 struct ext4_lazy_init *eli = NULL; 3927 3928 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3929 if (!eli) 3930 return -ENOMEM; 3931 3932 INIT_LIST_HEAD(&eli->li_request_list); 3933 mutex_init(&eli->li_list_mtx); 3934 3935 eli->li_state |= EXT4_LAZYINIT_QUIT; 3936 3937 ext4_li_info = eli; 3938 3939 return 0; 3940 } 3941 3942 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3943 ext4_group_t start) 3944 { 3945 struct ext4_li_request *elr; 3946 3947 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3948 if (!elr) 3949 return NULL; 3950 3951 elr->lr_super = sb; 3952 elr->lr_first_not_zeroed = start; 3953 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3954 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3955 elr->lr_next_group = start; 3956 } else { 3957 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3958 } 3959 3960 /* 3961 * Randomize first schedule time of the request to 3962 * spread the inode table initialization requests 3963 * better. 3964 */ 3965 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ); 3966 return elr; 3967 } 3968 3969 int ext4_register_li_request(struct super_block *sb, 3970 ext4_group_t first_not_zeroed) 3971 { 3972 struct ext4_sb_info *sbi = EXT4_SB(sb); 3973 struct ext4_li_request *elr = NULL; 3974 ext4_group_t ngroups = sbi->s_groups_count; 3975 int ret = 0; 3976 3977 mutex_lock(&ext4_li_mtx); 3978 if (sbi->s_li_request != NULL) { 3979 /* 3980 * Reset timeout so it can be computed again, because 3981 * s_li_wait_mult might have changed. 3982 */ 3983 sbi->s_li_request->lr_timeout = 0; 3984 goto out; 3985 } 3986 3987 if (sb_rdonly(sb) || 3988 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 3989 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE)))) 3990 goto out; 3991 3992 elr = ext4_li_request_new(sb, first_not_zeroed); 3993 if (!elr) { 3994 ret = -ENOMEM; 3995 goto out; 3996 } 3997 3998 if (NULL == ext4_li_info) { 3999 ret = ext4_li_info_new(); 4000 if (ret) 4001 goto out; 4002 } 4003 4004 mutex_lock(&ext4_li_info->li_list_mtx); 4005 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 4006 mutex_unlock(&ext4_li_info->li_list_mtx); 4007 4008 sbi->s_li_request = elr; 4009 /* 4010 * set elr to NULL here since it has been inserted to 4011 * the request_list and the removal and free of it is 4012 * handled by ext4_clear_request_list from now on. 4013 */ 4014 elr = NULL; 4015 4016 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 4017 ret = ext4_run_lazyinit_thread(); 4018 if (ret) 4019 goto out; 4020 } 4021 out: 4022 mutex_unlock(&ext4_li_mtx); 4023 if (ret) 4024 kfree(elr); 4025 return ret; 4026 } 4027 4028 /* 4029 * We do not need to lock anything since this is called on 4030 * module unload. 4031 */ 4032 static void ext4_destroy_lazyinit_thread(void) 4033 { 4034 /* 4035 * If thread exited earlier 4036 * there's nothing to be done. 4037 */ 4038 if (!ext4_li_info || !ext4_lazyinit_task) 4039 return; 4040 4041 kthread_stop(ext4_lazyinit_task); 4042 } 4043 4044 static int set_journal_csum_feature_set(struct super_block *sb) 4045 { 4046 int ret = 1; 4047 int compat, incompat; 4048 struct ext4_sb_info *sbi = EXT4_SB(sb); 4049 4050 if (ext4_has_metadata_csum(sb)) { 4051 /* journal checksum v3 */ 4052 compat = 0; 4053 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 4054 } else { 4055 /* journal checksum v1 */ 4056 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 4057 incompat = 0; 4058 } 4059 4060 jbd2_journal_clear_features(sbi->s_journal, 4061 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 4062 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 4063 JBD2_FEATURE_INCOMPAT_CSUM_V2); 4064 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4065 ret = jbd2_journal_set_features(sbi->s_journal, 4066 compat, 0, 4067 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 4068 incompat); 4069 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 4070 ret = jbd2_journal_set_features(sbi->s_journal, 4071 compat, 0, 4072 incompat); 4073 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4074 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4075 } else { 4076 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 4077 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 4078 } 4079 4080 return ret; 4081 } 4082 4083 /* 4084 * Note: calculating the overhead so we can be compatible with 4085 * historical BSD practice is quite difficult in the face of 4086 * clusters/bigalloc. This is because multiple metadata blocks from 4087 * different block group can end up in the same allocation cluster. 4088 * Calculating the exact overhead in the face of clustered allocation 4089 * requires either O(all block bitmaps) in memory or O(number of block 4090 * groups**2) in time. We will still calculate the superblock for 4091 * older file systems --- and if we come across with a bigalloc file 4092 * system with zero in s_overhead_clusters the estimate will be close to 4093 * correct especially for very large cluster sizes --- but for newer 4094 * file systems, it's better to calculate this figure once at mkfs 4095 * time, and store it in the superblock. If the superblock value is 4096 * present (even for non-bigalloc file systems), we will use it. 4097 */ 4098 static int count_overhead(struct super_block *sb, ext4_group_t grp, 4099 char *buf) 4100 { 4101 struct ext4_sb_info *sbi = EXT4_SB(sb); 4102 struct ext4_group_desc *gdp; 4103 ext4_fsblk_t first_block, last_block, b; 4104 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4105 int s, j, count = 0; 4106 int has_super = ext4_bg_has_super(sb, grp); 4107 4108 if (!ext4_has_feature_bigalloc(sb)) 4109 return (has_super + ext4_bg_num_gdb(sb, grp) + 4110 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) + 4111 sbi->s_itb_per_group + 2); 4112 4113 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 4114 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 4115 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 4116 for (i = 0; i < ngroups; i++) { 4117 gdp = ext4_get_group_desc(sb, i, NULL); 4118 b = ext4_block_bitmap(sb, gdp); 4119 if (b >= first_block && b <= last_block) { 4120 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4121 count++; 4122 } 4123 b = ext4_inode_bitmap(sb, gdp); 4124 if (b >= first_block && b <= last_block) { 4125 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 4126 count++; 4127 } 4128 b = ext4_inode_table(sb, gdp); 4129 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 4130 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 4131 int c = EXT4_B2C(sbi, b - first_block); 4132 ext4_set_bit(c, buf); 4133 count++; 4134 } 4135 if (i != grp) 4136 continue; 4137 s = 0; 4138 if (ext4_bg_has_super(sb, grp)) { 4139 ext4_set_bit(s++, buf); 4140 count++; 4141 } 4142 j = ext4_bg_num_gdb(sb, grp); 4143 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 4144 ext4_error(sb, "Invalid number of block group " 4145 "descriptor blocks: %d", j); 4146 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 4147 } 4148 count += j; 4149 for (; j > 0; j--) 4150 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 4151 } 4152 if (!count) 4153 return 0; 4154 return EXT4_CLUSTERS_PER_GROUP(sb) - 4155 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 4156 } 4157 4158 /* 4159 * Compute the overhead and stash it in sbi->s_overhead 4160 */ 4161 int ext4_calculate_overhead(struct super_block *sb) 4162 { 4163 struct ext4_sb_info *sbi = EXT4_SB(sb); 4164 struct ext4_super_block *es = sbi->s_es; 4165 struct inode *j_inode; 4166 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 4167 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4168 ext4_fsblk_t overhead = 0; 4169 char *buf = (char *) get_zeroed_page(GFP_NOFS); 4170 4171 if (!buf) 4172 return -ENOMEM; 4173 4174 /* 4175 * Compute the overhead (FS structures). This is constant 4176 * for a given filesystem unless the number of block groups 4177 * changes so we cache the previous value until it does. 4178 */ 4179 4180 /* 4181 * All of the blocks before first_data_block are overhead 4182 */ 4183 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 4184 4185 /* 4186 * Add the overhead found in each block group 4187 */ 4188 for (i = 0; i < ngroups; i++) { 4189 int blks; 4190 4191 blks = count_overhead(sb, i, buf); 4192 overhead += blks; 4193 if (blks) 4194 memset(buf, 0, PAGE_SIZE); 4195 cond_resched(); 4196 } 4197 4198 /* 4199 * Add the internal journal blocks whether the journal has been 4200 * loaded or not 4201 */ 4202 if (sbi->s_journal && !sbi->s_journal_bdev_file) 4203 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 4204 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 4205 /* j_inum for internal journal is non-zero */ 4206 j_inode = ext4_get_journal_inode(sb, j_inum); 4207 if (!IS_ERR(j_inode)) { 4208 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 4209 overhead += EXT4_NUM_B2C(sbi, j_blocks); 4210 iput(j_inode); 4211 } else { 4212 ext4_msg(sb, KERN_ERR, "can't get journal size"); 4213 } 4214 } 4215 sbi->s_overhead = overhead; 4216 smp_wmb(); 4217 free_page((unsigned long) buf); 4218 return 0; 4219 } 4220 4221 static void ext4_set_resv_clusters(struct super_block *sb) 4222 { 4223 ext4_fsblk_t resv_clusters; 4224 struct ext4_sb_info *sbi = EXT4_SB(sb); 4225 4226 /* 4227 * There's no need to reserve anything when we aren't using extents. 4228 * The space estimates are exact, there are no unwritten extents, 4229 * hole punching doesn't need new metadata... This is needed especially 4230 * to keep ext2/3 backward compatibility. 4231 */ 4232 if (!ext4_has_feature_extents(sb)) 4233 return; 4234 /* 4235 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4236 * This should cover the situations where we can not afford to run 4237 * out of space like for example punch hole, or converting 4238 * unwritten extents in delalloc path. In most cases such 4239 * allocation would require 1, or 2 blocks, higher numbers are 4240 * very rare. 4241 */ 4242 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4243 sbi->s_cluster_bits); 4244 4245 do_div(resv_clusters, 50); 4246 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4247 4248 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4249 } 4250 4251 static const char *ext4_quota_mode(struct super_block *sb) 4252 { 4253 #ifdef CONFIG_QUOTA 4254 if (!ext4_quota_capable(sb)) 4255 return "none"; 4256 4257 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4258 return "journalled"; 4259 else 4260 return "writeback"; 4261 #else 4262 return "disabled"; 4263 #endif 4264 } 4265 4266 static void ext4_setup_csum_trigger(struct super_block *sb, 4267 enum ext4_journal_trigger_type type, 4268 void (*trigger)( 4269 struct jbd2_buffer_trigger_type *type, 4270 struct buffer_head *bh, 4271 void *mapped_data, 4272 size_t size)) 4273 { 4274 struct ext4_sb_info *sbi = EXT4_SB(sb); 4275 4276 sbi->s_journal_triggers[type].sb = sb; 4277 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 4278 } 4279 4280 static void ext4_free_sbi(struct ext4_sb_info *sbi) 4281 { 4282 if (!sbi) 4283 return; 4284 4285 kfree(sbi->s_blockgroup_lock); 4286 fs_put_dax(sbi->s_daxdev, NULL); 4287 kfree(sbi); 4288 } 4289 4290 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb) 4291 { 4292 struct ext4_sb_info *sbi; 4293 4294 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4295 if (!sbi) 4296 return NULL; 4297 4298 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off, 4299 NULL, NULL); 4300 4301 sbi->s_blockgroup_lock = 4302 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4303 4304 if (!sbi->s_blockgroup_lock) 4305 goto err_out; 4306 4307 sb->s_fs_info = sbi; 4308 sbi->s_sb = sb; 4309 return sbi; 4310 err_out: 4311 fs_put_dax(sbi->s_daxdev, NULL); 4312 kfree(sbi); 4313 return NULL; 4314 } 4315 4316 static void ext4_set_def_opts(struct super_block *sb, 4317 struct ext4_super_block *es) 4318 { 4319 unsigned long def_mount_opts; 4320 4321 /* Set defaults before we parse the mount options */ 4322 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4323 set_opt(sb, INIT_INODE_TABLE); 4324 if (def_mount_opts & EXT4_DEFM_DEBUG) 4325 set_opt(sb, DEBUG); 4326 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4327 set_opt(sb, GRPID); 4328 if (def_mount_opts & EXT4_DEFM_UID16) 4329 set_opt(sb, NO_UID32); 4330 /* xattr user namespace & acls are now defaulted on */ 4331 set_opt(sb, XATTR_USER); 4332 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4333 set_opt(sb, POSIX_ACL); 4334 #endif 4335 if (ext4_has_feature_fast_commit(sb)) 4336 set_opt2(sb, JOURNAL_FAST_COMMIT); 4337 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4338 if (ext4_has_metadata_csum(sb)) 4339 set_opt(sb, JOURNAL_CHECKSUM); 4340 4341 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4342 set_opt(sb, JOURNAL_DATA); 4343 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4344 set_opt(sb, ORDERED_DATA); 4345 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4346 set_opt(sb, WRITEBACK_DATA); 4347 4348 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC) 4349 set_opt(sb, ERRORS_PANIC); 4350 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE) 4351 set_opt(sb, ERRORS_CONT); 4352 else 4353 set_opt(sb, ERRORS_RO); 4354 /* block_validity enabled by default; disable with noblock_validity */ 4355 set_opt(sb, BLOCK_VALIDITY); 4356 if (def_mount_opts & EXT4_DEFM_DISCARD) 4357 set_opt(sb, DISCARD); 4358 4359 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4360 set_opt(sb, BARRIER); 4361 4362 /* 4363 * enable delayed allocation by default 4364 * Use -o nodelalloc to turn it off 4365 */ 4366 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4367 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4368 set_opt(sb, DELALLOC); 4369 4370 if (sb->s_blocksize <= PAGE_SIZE) 4371 set_opt(sb, DIOREAD_NOLOCK); 4372 } 4373 4374 static int ext4_handle_clustersize(struct super_block *sb) 4375 { 4376 struct ext4_sb_info *sbi = EXT4_SB(sb); 4377 struct ext4_super_block *es = sbi->s_es; 4378 int clustersize; 4379 4380 /* Handle clustersize */ 4381 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4382 if (ext4_has_feature_bigalloc(sb)) { 4383 if (clustersize < sb->s_blocksize) { 4384 ext4_msg(sb, KERN_ERR, 4385 "cluster size (%d) smaller than " 4386 "block size (%lu)", clustersize, sb->s_blocksize); 4387 return -EINVAL; 4388 } 4389 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4390 le32_to_cpu(es->s_log_block_size); 4391 } else { 4392 if (clustersize != sb->s_blocksize) { 4393 ext4_msg(sb, KERN_ERR, 4394 "fragment/cluster size (%d) != " 4395 "block size (%lu)", clustersize, sb->s_blocksize); 4396 return -EINVAL; 4397 } 4398 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) { 4399 ext4_msg(sb, KERN_ERR, 4400 "#blocks per group too big: %lu", 4401 sbi->s_blocks_per_group); 4402 return -EINVAL; 4403 } 4404 sbi->s_cluster_bits = 0; 4405 } 4406 sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group); 4407 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) { 4408 ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu", 4409 sbi->s_clusters_per_group); 4410 return -EINVAL; 4411 } 4412 if (sbi->s_blocks_per_group != 4413 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) { 4414 ext4_msg(sb, KERN_ERR, 4415 "blocks per group (%lu) and clusters per group (%lu) inconsistent", 4416 sbi->s_blocks_per_group, sbi->s_clusters_per_group); 4417 return -EINVAL; 4418 } 4419 sbi->s_cluster_ratio = clustersize / sb->s_blocksize; 4420 4421 /* Do we have standard group size of clustersize * 8 blocks ? */ 4422 if (sbi->s_blocks_per_group == clustersize << 3) 4423 set_opt2(sb, STD_GROUP_SIZE); 4424 4425 return 0; 4426 } 4427 4428 static void ext4_fast_commit_init(struct super_block *sb) 4429 { 4430 struct ext4_sb_info *sbi = EXT4_SB(sb); 4431 4432 /* Initialize fast commit stuff */ 4433 atomic_set(&sbi->s_fc_subtid, 0); 4434 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4435 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4436 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4437 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4438 sbi->s_fc_bytes = 0; 4439 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4440 sbi->s_fc_ineligible_tid = 0; 4441 spin_lock_init(&sbi->s_fc_lock); 4442 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4443 sbi->s_fc_replay_state.fc_regions = NULL; 4444 sbi->s_fc_replay_state.fc_regions_size = 0; 4445 sbi->s_fc_replay_state.fc_regions_used = 0; 4446 sbi->s_fc_replay_state.fc_regions_valid = 0; 4447 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4448 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4449 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4450 } 4451 4452 static int ext4_inode_info_init(struct super_block *sb, 4453 struct ext4_super_block *es) 4454 { 4455 struct ext4_sb_info *sbi = EXT4_SB(sb); 4456 4457 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4458 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4459 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4460 } else { 4461 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4462 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4463 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4464 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4465 sbi->s_first_ino); 4466 return -EINVAL; 4467 } 4468 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4469 (!is_power_of_2(sbi->s_inode_size)) || 4470 (sbi->s_inode_size > sb->s_blocksize)) { 4471 ext4_msg(sb, KERN_ERR, 4472 "unsupported inode size: %d", 4473 sbi->s_inode_size); 4474 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize); 4475 return -EINVAL; 4476 } 4477 /* 4478 * i_atime_extra is the last extra field available for 4479 * [acm]times in struct ext4_inode. Checking for that 4480 * field should suffice to ensure we have extra space 4481 * for all three. 4482 */ 4483 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4484 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4485 sb->s_time_gran = 1; 4486 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4487 } else { 4488 sb->s_time_gran = NSEC_PER_SEC; 4489 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4490 } 4491 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4492 } 4493 4494 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4495 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4496 EXT4_GOOD_OLD_INODE_SIZE; 4497 if (ext4_has_feature_extra_isize(sb)) { 4498 unsigned v, max = (sbi->s_inode_size - 4499 EXT4_GOOD_OLD_INODE_SIZE); 4500 4501 v = le16_to_cpu(es->s_want_extra_isize); 4502 if (v > max) { 4503 ext4_msg(sb, KERN_ERR, 4504 "bad s_want_extra_isize: %d", v); 4505 return -EINVAL; 4506 } 4507 if (sbi->s_want_extra_isize < v) 4508 sbi->s_want_extra_isize = v; 4509 4510 v = le16_to_cpu(es->s_min_extra_isize); 4511 if (v > max) { 4512 ext4_msg(sb, KERN_ERR, 4513 "bad s_min_extra_isize: %d", v); 4514 return -EINVAL; 4515 } 4516 if (sbi->s_want_extra_isize < v) 4517 sbi->s_want_extra_isize = v; 4518 } 4519 } 4520 4521 return 0; 4522 } 4523 4524 #if IS_ENABLED(CONFIG_UNICODE) 4525 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4526 { 4527 const struct ext4_sb_encodings *encoding_info; 4528 struct unicode_map *encoding; 4529 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags); 4530 4531 if (!ext4_has_feature_casefold(sb) || sb->s_encoding) 4532 return 0; 4533 4534 encoding_info = ext4_sb_read_encoding(es); 4535 if (!encoding_info) { 4536 ext4_msg(sb, KERN_ERR, 4537 "Encoding requested by superblock is unknown"); 4538 return -EINVAL; 4539 } 4540 4541 encoding = utf8_load(encoding_info->version); 4542 if (IS_ERR(encoding)) { 4543 ext4_msg(sb, KERN_ERR, 4544 "can't mount with superblock charset: %s-%u.%u.%u " 4545 "not supported by the kernel. flags: 0x%x.", 4546 encoding_info->name, 4547 unicode_major(encoding_info->version), 4548 unicode_minor(encoding_info->version), 4549 unicode_rev(encoding_info->version), 4550 encoding_flags); 4551 return -EINVAL; 4552 } 4553 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4554 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4555 unicode_major(encoding_info->version), 4556 unicode_minor(encoding_info->version), 4557 unicode_rev(encoding_info->version), 4558 encoding_flags); 4559 4560 sb->s_encoding = encoding; 4561 sb->s_encoding_flags = encoding_flags; 4562 4563 return 0; 4564 } 4565 #else 4566 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es) 4567 { 4568 return 0; 4569 } 4570 #endif 4571 4572 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es) 4573 { 4574 struct ext4_sb_info *sbi = EXT4_SB(sb); 4575 4576 /* Warn if metadata_csum and gdt_csum are both set. */ 4577 if (ext4_has_feature_metadata_csum(sb) && 4578 ext4_has_feature_gdt_csum(sb)) 4579 ext4_warning(sb, "metadata_csum and uninit_bg are " 4580 "redundant flags; please run fsck."); 4581 4582 /* Check for a known checksum algorithm */ 4583 if (!ext4_verify_csum_type(sb, es)) { 4584 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4585 "unknown checksum algorithm."); 4586 return -EINVAL; 4587 } 4588 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 4589 ext4_orphan_file_block_trigger); 4590 4591 /* Load the checksum driver */ 4592 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4593 if (IS_ERR(sbi->s_chksum_driver)) { 4594 int ret = PTR_ERR(sbi->s_chksum_driver); 4595 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4596 sbi->s_chksum_driver = NULL; 4597 return ret; 4598 } 4599 4600 /* Check superblock checksum */ 4601 if (!ext4_superblock_csum_verify(sb, es)) { 4602 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4603 "invalid superblock checksum. Run e2fsck?"); 4604 return -EFSBADCRC; 4605 } 4606 4607 /* Precompute checksum seed for all metadata */ 4608 if (ext4_has_feature_csum_seed(sb)) 4609 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4610 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4611 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4612 sizeof(es->s_uuid)); 4613 return 0; 4614 } 4615 4616 static int ext4_check_feature_compatibility(struct super_block *sb, 4617 struct ext4_super_block *es, 4618 int silent) 4619 { 4620 struct ext4_sb_info *sbi = EXT4_SB(sb); 4621 4622 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4623 (ext4_has_compat_features(sb) || 4624 ext4_has_ro_compat_features(sb) || 4625 ext4_has_incompat_features(sb))) 4626 ext4_msg(sb, KERN_WARNING, 4627 "feature flags set on rev 0 fs, " 4628 "running e2fsck is recommended"); 4629 4630 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4631 set_opt2(sb, HURD_COMPAT); 4632 if (ext4_has_feature_64bit(sb)) { 4633 ext4_msg(sb, KERN_ERR, 4634 "The Hurd can't support 64-bit file systems"); 4635 return -EINVAL; 4636 } 4637 4638 /* 4639 * ea_inode feature uses l_i_version field which is not 4640 * available in HURD_COMPAT mode. 4641 */ 4642 if (ext4_has_feature_ea_inode(sb)) { 4643 ext4_msg(sb, KERN_ERR, 4644 "ea_inode feature is not supported for Hurd"); 4645 return -EINVAL; 4646 } 4647 } 4648 4649 if (IS_EXT2_SB(sb)) { 4650 if (ext2_feature_set_ok(sb)) 4651 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4652 "using the ext4 subsystem"); 4653 else { 4654 /* 4655 * If we're probing be silent, if this looks like 4656 * it's actually an ext[34] filesystem. 4657 */ 4658 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4659 return -EINVAL; 4660 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4661 "to feature incompatibilities"); 4662 return -EINVAL; 4663 } 4664 } 4665 4666 if (IS_EXT3_SB(sb)) { 4667 if (ext3_feature_set_ok(sb)) 4668 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4669 "using the ext4 subsystem"); 4670 else { 4671 /* 4672 * If we're probing be silent, if this looks like 4673 * it's actually an ext4 filesystem. 4674 */ 4675 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4676 return -EINVAL; 4677 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4678 "to feature incompatibilities"); 4679 return -EINVAL; 4680 } 4681 } 4682 4683 /* 4684 * Check feature flags regardless of the revision level, since we 4685 * previously didn't change the revision level when setting the flags, 4686 * so there is a chance incompat flags are set on a rev 0 filesystem. 4687 */ 4688 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4689 return -EINVAL; 4690 4691 if (sbi->s_daxdev) { 4692 if (sb->s_blocksize == PAGE_SIZE) 4693 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4694 else 4695 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n"); 4696 } 4697 4698 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4699 if (ext4_has_feature_inline_data(sb)) { 4700 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4701 " that may contain inline data"); 4702 return -EINVAL; 4703 } 4704 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4705 ext4_msg(sb, KERN_ERR, 4706 "DAX unsupported by block device."); 4707 return -EINVAL; 4708 } 4709 } 4710 4711 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4712 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4713 es->s_encryption_level); 4714 return -EINVAL; 4715 } 4716 4717 return 0; 4718 } 4719 4720 static int ext4_check_geometry(struct super_block *sb, 4721 struct ext4_super_block *es) 4722 { 4723 struct ext4_sb_info *sbi = EXT4_SB(sb); 4724 __u64 blocks_count; 4725 int err; 4726 4727 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) { 4728 ext4_msg(sb, KERN_ERR, 4729 "Number of reserved GDT blocks insanely large: %d", 4730 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4731 return -EINVAL; 4732 } 4733 /* 4734 * Test whether we have more sectors than will fit in sector_t, 4735 * and whether the max offset is addressable by the page cache. 4736 */ 4737 err = generic_check_addressable(sb->s_blocksize_bits, 4738 ext4_blocks_count(es)); 4739 if (err) { 4740 ext4_msg(sb, KERN_ERR, "filesystem" 4741 " too large to mount safely on this system"); 4742 return err; 4743 } 4744 4745 /* check blocks count against device size */ 4746 blocks_count = sb_bdev_nr_blocks(sb); 4747 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4748 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4749 "exceeds size of device (%llu blocks)", 4750 ext4_blocks_count(es), blocks_count); 4751 return -EINVAL; 4752 } 4753 4754 /* 4755 * It makes no sense for the first data block to be beyond the end 4756 * of the filesystem. 4757 */ 4758 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4759 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4760 "block %u is beyond end of filesystem (%llu)", 4761 le32_to_cpu(es->s_first_data_block), 4762 ext4_blocks_count(es)); 4763 return -EINVAL; 4764 } 4765 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4766 (sbi->s_cluster_ratio == 1)) { 4767 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4768 "block is 0 with a 1k block and cluster size"); 4769 return -EINVAL; 4770 } 4771 4772 blocks_count = (ext4_blocks_count(es) - 4773 le32_to_cpu(es->s_first_data_block) + 4774 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4775 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4776 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4777 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4778 "(block count %llu, first data block %u, " 4779 "blocks per group %lu)", blocks_count, 4780 ext4_blocks_count(es), 4781 le32_to_cpu(es->s_first_data_block), 4782 EXT4_BLOCKS_PER_GROUP(sb)); 4783 return -EINVAL; 4784 } 4785 sbi->s_groups_count = blocks_count; 4786 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4787 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4788 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4789 le32_to_cpu(es->s_inodes_count)) { 4790 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4791 le32_to_cpu(es->s_inodes_count), 4792 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4793 return -EINVAL; 4794 } 4795 4796 return 0; 4797 } 4798 4799 static int ext4_group_desc_init(struct super_block *sb, 4800 struct ext4_super_block *es, 4801 ext4_fsblk_t logical_sb_block, 4802 ext4_group_t *first_not_zeroed) 4803 { 4804 struct ext4_sb_info *sbi = EXT4_SB(sb); 4805 unsigned int db_count; 4806 ext4_fsblk_t block; 4807 int i; 4808 4809 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4810 EXT4_DESC_PER_BLOCK(sb); 4811 if (ext4_has_feature_meta_bg(sb)) { 4812 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4813 ext4_msg(sb, KERN_WARNING, 4814 "first meta block group too large: %u " 4815 "(group descriptor block count %u)", 4816 le32_to_cpu(es->s_first_meta_bg), db_count); 4817 return -EINVAL; 4818 } 4819 } 4820 rcu_assign_pointer(sbi->s_group_desc, 4821 kvmalloc_array(db_count, 4822 sizeof(struct buffer_head *), 4823 GFP_KERNEL)); 4824 if (sbi->s_group_desc == NULL) { 4825 ext4_msg(sb, KERN_ERR, "not enough memory"); 4826 return -ENOMEM; 4827 } 4828 4829 bgl_lock_init(sbi->s_blockgroup_lock); 4830 4831 /* Pre-read the descriptors into the buffer cache */ 4832 for (i = 0; i < db_count; i++) { 4833 block = descriptor_loc(sb, logical_sb_block, i); 4834 ext4_sb_breadahead_unmovable(sb, block); 4835 } 4836 4837 for (i = 0; i < db_count; i++) { 4838 struct buffer_head *bh; 4839 4840 block = descriptor_loc(sb, logical_sb_block, i); 4841 bh = ext4_sb_bread_unmovable(sb, block); 4842 if (IS_ERR(bh)) { 4843 ext4_msg(sb, KERN_ERR, 4844 "can't read group descriptor %d", i); 4845 sbi->s_gdb_count = i; 4846 return PTR_ERR(bh); 4847 } 4848 rcu_read_lock(); 4849 rcu_dereference(sbi->s_group_desc)[i] = bh; 4850 rcu_read_unlock(); 4851 } 4852 sbi->s_gdb_count = db_count; 4853 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) { 4854 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4855 return -EFSCORRUPTED; 4856 } 4857 4858 return 0; 4859 } 4860 4861 static int ext4_load_and_init_journal(struct super_block *sb, 4862 struct ext4_super_block *es, 4863 struct ext4_fs_context *ctx) 4864 { 4865 struct ext4_sb_info *sbi = EXT4_SB(sb); 4866 int err; 4867 4868 err = ext4_load_journal(sb, es, ctx->journal_devnum); 4869 if (err) 4870 return err; 4871 4872 if (ext4_has_feature_64bit(sb) && 4873 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4874 JBD2_FEATURE_INCOMPAT_64BIT)) { 4875 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4876 goto out; 4877 } 4878 4879 if (!set_journal_csum_feature_set(sb)) { 4880 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4881 "feature set"); 4882 goto out; 4883 } 4884 4885 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4886 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4887 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4888 ext4_msg(sb, KERN_ERR, 4889 "Failed to set fast commit journal feature"); 4890 goto out; 4891 } 4892 4893 /* We have now updated the journal if required, so we can 4894 * validate the data journaling mode. */ 4895 switch (test_opt(sb, DATA_FLAGS)) { 4896 case 0: 4897 /* No mode set, assume a default based on the journal 4898 * capabilities: ORDERED_DATA if the journal can 4899 * cope, else JOURNAL_DATA 4900 */ 4901 if (jbd2_journal_check_available_features 4902 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4903 set_opt(sb, ORDERED_DATA); 4904 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4905 } else { 4906 set_opt(sb, JOURNAL_DATA); 4907 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4908 } 4909 break; 4910 4911 case EXT4_MOUNT_ORDERED_DATA: 4912 case EXT4_MOUNT_WRITEBACK_DATA: 4913 if (!jbd2_journal_check_available_features 4914 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4915 ext4_msg(sb, KERN_ERR, "Journal does not support " 4916 "requested data journaling mode"); 4917 goto out; 4918 } 4919 break; 4920 default: 4921 break; 4922 } 4923 4924 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4925 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4926 ext4_msg(sb, KERN_ERR, "can't mount with " 4927 "journal_async_commit in data=ordered mode"); 4928 goto out; 4929 } 4930 4931 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 4932 4933 sbi->s_journal->j_submit_inode_data_buffers = 4934 ext4_journal_submit_inode_data_buffers; 4935 sbi->s_journal->j_finish_inode_data_buffers = 4936 ext4_journal_finish_inode_data_buffers; 4937 4938 return 0; 4939 4940 out: 4941 /* flush s_sb_upd_work before destroying the journal. */ 4942 flush_work(&sbi->s_sb_upd_work); 4943 jbd2_journal_destroy(sbi->s_journal); 4944 sbi->s_journal = NULL; 4945 return -EINVAL; 4946 } 4947 4948 static int ext4_check_journal_data_mode(struct super_block *sb) 4949 { 4950 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4951 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with " 4952 "data=journal disables delayed allocation, " 4953 "dioread_nolock, O_DIRECT and fast_commit support!\n"); 4954 /* can't mount with both data=journal and dioread_nolock. */ 4955 clear_opt(sb, DIOREAD_NOLOCK); 4956 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4957 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4958 ext4_msg(sb, KERN_ERR, "can't mount with " 4959 "both data=journal and delalloc"); 4960 return -EINVAL; 4961 } 4962 if (test_opt(sb, DAX_ALWAYS)) { 4963 ext4_msg(sb, KERN_ERR, "can't mount with " 4964 "both data=journal and dax"); 4965 return -EINVAL; 4966 } 4967 if (ext4_has_feature_encrypt(sb)) { 4968 ext4_msg(sb, KERN_WARNING, 4969 "encrypted files will use data=ordered " 4970 "instead of data journaling mode"); 4971 } 4972 if (test_opt(sb, DELALLOC)) 4973 clear_opt(sb, DELALLOC); 4974 } else { 4975 sb->s_iflags |= SB_I_CGROUPWB; 4976 } 4977 4978 return 0; 4979 } 4980 4981 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb, 4982 int silent) 4983 { 4984 struct ext4_sb_info *sbi = EXT4_SB(sb); 4985 struct ext4_super_block *es; 4986 ext4_fsblk_t logical_sb_block; 4987 unsigned long offset = 0; 4988 struct buffer_head *bh; 4989 int ret = -EINVAL; 4990 int blocksize; 4991 4992 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 4993 if (!blocksize) { 4994 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 4995 return -EINVAL; 4996 } 4997 4998 /* 4999 * The ext4 superblock will not be buffer aligned for other than 1kB 5000 * block sizes. We need to calculate the offset from buffer start. 5001 */ 5002 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 5003 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5004 offset = do_div(logical_sb_block, blocksize); 5005 } else { 5006 logical_sb_block = sbi->s_sb_block; 5007 } 5008 5009 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5010 if (IS_ERR(bh)) { 5011 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 5012 return PTR_ERR(bh); 5013 } 5014 /* 5015 * Note: s_es must be initialized as soon as possible because 5016 * some ext4 macro-instructions depend on its value 5017 */ 5018 es = (struct ext4_super_block *) (bh->b_data + offset); 5019 sbi->s_es = es; 5020 sb->s_magic = le16_to_cpu(es->s_magic); 5021 if (sb->s_magic != EXT4_SUPER_MAGIC) { 5022 if (!silent) 5023 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5024 goto out; 5025 } 5026 5027 if (le32_to_cpu(es->s_log_block_size) > 5028 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5029 ext4_msg(sb, KERN_ERR, 5030 "Invalid log block size: %u", 5031 le32_to_cpu(es->s_log_block_size)); 5032 goto out; 5033 } 5034 if (le32_to_cpu(es->s_log_cluster_size) > 5035 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 5036 ext4_msg(sb, KERN_ERR, 5037 "Invalid log cluster size: %u", 5038 le32_to_cpu(es->s_log_cluster_size)); 5039 goto out; 5040 } 5041 5042 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 5043 5044 /* 5045 * If the default block size is not the same as the real block size, 5046 * we need to reload it. 5047 */ 5048 if (sb->s_blocksize == blocksize) { 5049 *lsb = logical_sb_block; 5050 sbi->s_sbh = bh; 5051 return 0; 5052 } 5053 5054 /* 5055 * bh must be released before kill_bdev(), otherwise 5056 * it won't be freed and its page also. kill_bdev() 5057 * is called by sb_set_blocksize(). 5058 */ 5059 brelse(bh); 5060 /* Validate the filesystem blocksize */ 5061 if (!sb_set_blocksize(sb, blocksize)) { 5062 ext4_msg(sb, KERN_ERR, "bad block size %d", 5063 blocksize); 5064 bh = NULL; 5065 goto out; 5066 } 5067 5068 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE; 5069 offset = do_div(logical_sb_block, blocksize); 5070 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 5071 if (IS_ERR(bh)) { 5072 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); 5073 ret = PTR_ERR(bh); 5074 bh = NULL; 5075 goto out; 5076 } 5077 es = (struct ext4_super_block *)(bh->b_data + offset); 5078 sbi->s_es = es; 5079 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 5080 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); 5081 goto out; 5082 } 5083 *lsb = logical_sb_block; 5084 sbi->s_sbh = bh; 5085 return 0; 5086 out: 5087 brelse(bh); 5088 return ret; 5089 } 5090 5091 static int ext4_hash_info_init(struct super_block *sb) 5092 { 5093 struct ext4_sb_info *sbi = EXT4_SB(sb); 5094 struct ext4_super_block *es = sbi->s_es; 5095 unsigned int i; 5096 5097 sbi->s_def_hash_version = es->s_def_hash_version; 5098 5099 if (sbi->s_def_hash_version > DX_HASH_LAST) { 5100 ext4_msg(sb, KERN_ERR, 5101 "Invalid default hash set in the superblock"); 5102 return -EINVAL; 5103 } else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) { 5104 ext4_msg(sb, KERN_ERR, 5105 "SIPHASH is not a valid default hash value"); 5106 return -EINVAL; 5107 } 5108 5109 for (i = 0; i < 4; i++) 5110 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 5111 5112 if (ext4_has_feature_dir_index(sb)) { 5113 i = le32_to_cpu(es->s_flags); 5114 if (i & EXT2_FLAGS_UNSIGNED_HASH) 5115 sbi->s_hash_unsigned = 3; 5116 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 5117 #ifdef __CHAR_UNSIGNED__ 5118 if (!sb_rdonly(sb)) 5119 es->s_flags |= 5120 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 5121 sbi->s_hash_unsigned = 3; 5122 #else 5123 if (!sb_rdonly(sb)) 5124 es->s_flags |= 5125 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 5126 #endif 5127 } 5128 } 5129 return 0; 5130 } 5131 5132 static int ext4_block_group_meta_init(struct super_block *sb, int silent) 5133 { 5134 struct ext4_sb_info *sbi = EXT4_SB(sb); 5135 struct ext4_super_block *es = sbi->s_es; 5136 int has_huge_files; 5137 5138 has_huge_files = ext4_has_feature_huge_file(sb); 5139 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 5140 has_huge_files); 5141 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 5142 5143 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 5144 if (ext4_has_feature_64bit(sb)) { 5145 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 5146 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 5147 !is_power_of_2(sbi->s_desc_size)) { 5148 ext4_msg(sb, KERN_ERR, 5149 "unsupported descriptor size %lu", 5150 sbi->s_desc_size); 5151 return -EINVAL; 5152 } 5153 } else 5154 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 5155 5156 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 5157 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 5158 5159 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb); 5160 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) { 5161 if (!silent) 5162 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5163 return -EINVAL; 5164 } 5165 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 5166 sbi->s_inodes_per_group > sb->s_blocksize * 8) { 5167 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 5168 sbi->s_inodes_per_group); 5169 return -EINVAL; 5170 } 5171 sbi->s_itb_per_group = sbi->s_inodes_per_group / 5172 sbi->s_inodes_per_block; 5173 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb); 5174 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY; 5175 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 5176 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 5177 5178 return 0; 5179 } 5180 5181 /* 5182 * It's hard to get stripe aligned blocks if stripe is not aligned with 5183 * cluster, just disable stripe and alert user to simplify code and avoid 5184 * stripe aligned allocation which will rarely succeed. 5185 */ 5186 static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe) 5187 { 5188 struct ext4_sb_info *sbi = EXT4_SB(sb); 5189 return (stripe > 0 && sbi->s_cluster_ratio > 1 && 5190 stripe % sbi->s_cluster_ratio != 0); 5191 } 5192 5193 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb) 5194 { 5195 struct ext4_super_block *es = NULL; 5196 struct ext4_sb_info *sbi = EXT4_SB(sb); 5197 ext4_fsblk_t logical_sb_block; 5198 struct inode *root; 5199 int needs_recovery; 5200 int err; 5201 ext4_group_t first_not_zeroed; 5202 struct ext4_fs_context *ctx = fc->fs_private; 5203 int silent = fc->sb_flags & SB_SILENT; 5204 5205 /* Set defaults for the variables that will be set during parsing */ 5206 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) 5207 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5208 5209 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 5210 sbi->s_sectors_written_start = 5211 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 5212 5213 err = ext4_load_super(sb, &logical_sb_block, silent); 5214 if (err) 5215 goto out_fail; 5216 5217 es = sbi->s_es; 5218 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 5219 5220 err = ext4_init_metadata_csum(sb, es); 5221 if (err) 5222 goto failed_mount; 5223 5224 ext4_set_def_opts(sb, es); 5225 5226 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 5227 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 5228 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 5229 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 5230 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 5231 5232 /* 5233 * set default s_li_wait_mult for lazyinit, for the case there is 5234 * no mount option specified. 5235 */ 5236 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 5237 5238 err = ext4_inode_info_init(sb, es); 5239 if (err) 5240 goto failed_mount; 5241 5242 err = parse_apply_sb_mount_options(sb, ctx); 5243 if (err < 0) 5244 goto failed_mount; 5245 5246 sbi->s_def_mount_opt = sbi->s_mount_opt; 5247 sbi->s_def_mount_opt2 = sbi->s_mount_opt2; 5248 5249 err = ext4_check_opt_consistency(fc, sb); 5250 if (err < 0) 5251 goto failed_mount; 5252 5253 ext4_apply_options(fc, sb); 5254 5255 err = ext4_encoding_init(sb, es); 5256 if (err) 5257 goto failed_mount; 5258 5259 err = ext4_check_journal_data_mode(sb); 5260 if (err) 5261 goto failed_mount; 5262 5263 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5264 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5265 5266 /* i_version is always enabled now */ 5267 sb->s_flags |= SB_I_VERSION; 5268 5269 err = ext4_check_feature_compatibility(sb, es, silent); 5270 if (err) 5271 goto failed_mount; 5272 5273 err = ext4_block_group_meta_init(sb, silent); 5274 if (err) 5275 goto failed_mount; 5276 5277 err = ext4_hash_info_init(sb); 5278 if (err) 5279 goto failed_mount; 5280 5281 err = ext4_handle_clustersize(sb); 5282 if (err) 5283 goto failed_mount; 5284 5285 err = ext4_check_geometry(sb, es); 5286 if (err) 5287 goto failed_mount; 5288 5289 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 5290 spin_lock_init(&sbi->s_error_lock); 5291 INIT_WORK(&sbi->s_sb_upd_work, update_super_work); 5292 5293 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed); 5294 if (err) 5295 goto failed_mount3; 5296 5297 err = ext4_es_register_shrinker(sbi); 5298 if (err) 5299 goto failed_mount3; 5300 5301 sbi->s_stripe = ext4_get_stripe_size(sbi); 5302 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) { 5303 ext4_msg(sb, KERN_WARNING, 5304 "stripe (%lu) is not aligned with cluster size (%u), " 5305 "stripe is disabled", 5306 sbi->s_stripe, sbi->s_cluster_ratio); 5307 sbi->s_stripe = 0; 5308 } 5309 sbi->s_extent_max_zeroout_kb = 32; 5310 5311 /* 5312 * set up enough so that it can read an inode 5313 */ 5314 sb->s_op = &ext4_sops; 5315 sb->s_export_op = &ext4_export_ops; 5316 sb->s_xattr = ext4_xattr_handlers; 5317 #ifdef CONFIG_FS_ENCRYPTION 5318 sb->s_cop = &ext4_cryptops; 5319 #endif 5320 #ifdef CONFIG_FS_VERITY 5321 sb->s_vop = &ext4_verityops; 5322 #endif 5323 #ifdef CONFIG_QUOTA 5324 sb->dq_op = &ext4_quota_operations; 5325 if (ext4_has_feature_quota(sb)) 5326 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5327 else 5328 sb->s_qcop = &ext4_qctl_operations; 5329 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 5330 #endif 5331 super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid)); 5332 super_set_sysfs_name_bdev(sb); 5333 5334 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 5335 mutex_init(&sbi->s_orphan_lock); 5336 5337 spin_lock_init(&sbi->s_bdev_wb_lock); 5338 5339 ext4_fast_commit_init(sb); 5340 5341 sb->s_root = NULL; 5342 5343 needs_recovery = (es->s_last_orphan != 0 || 5344 ext4_has_feature_orphan_present(sb) || 5345 ext4_has_feature_journal_needs_recovery(sb)); 5346 5347 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) { 5348 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)); 5349 if (err) 5350 goto failed_mount3a; 5351 } 5352 5353 err = -EINVAL; 5354 /* 5355 * The first inode we look at is the journal inode. Don't try 5356 * root first: it may be modified in the journal! 5357 */ 5358 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 5359 err = ext4_load_and_init_journal(sb, es, ctx); 5360 if (err) 5361 goto failed_mount3a; 5362 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 5363 ext4_has_feature_journal_needs_recovery(sb)) { 5364 ext4_msg(sb, KERN_ERR, "required journal recovery " 5365 "suppressed and not mounted read-only"); 5366 goto failed_mount3a; 5367 } else { 5368 /* Nojournal mode, all journal mount options are illegal */ 5369 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5370 ext4_msg(sb, KERN_ERR, "can't mount with " 5371 "journal_async_commit, fs mounted w/o journal"); 5372 goto failed_mount3a; 5373 } 5374 5375 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 5376 ext4_msg(sb, KERN_ERR, "can't mount with " 5377 "journal_checksum, fs mounted w/o journal"); 5378 goto failed_mount3a; 5379 } 5380 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 5381 ext4_msg(sb, KERN_ERR, "can't mount with " 5382 "commit=%lu, fs mounted w/o journal", 5383 sbi->s_commit_interval / HZ); 5384 goto failed_mount3a; 5385 } 5386 if (EXT4_MOUNT_DATA_FLAGS & 5387 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 5388 ext4_msg(sb, KERN_ERR, "can't mount with " 5389 "data=, fs mounted w/o journal"); 5390 goto failed_mount3a; 5391 } 5392 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 5393 clear_opt(sb, JOURNAL_CHECKSUM); 5394 clear_opt(sb, DATA_FLAGS); 5395 clear_opt2(sb, JOURNAL_FAST_COMMIT); 5396 sbi->s_journal = NULL; 5397 needs_recovery = 0; 5398 } 5399 5400 if (!test_opt(sb, NO_MBCACHE)) { 5401 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 5402 if (!sbi->s_ea_block_cache) { 5403 ext4_msg(sb, KERN_ERR, 5404 "Failed to create ea_block_cache"); 5405 err = -EINVAL; 5406 goto failed_mount_wq; 5407 } 5408 5409 if (ext4_has_feature_ea_inode(sb)) { 5410 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 5411 if (!sbi->s_ea_inode_cache) { 5412 ext4_msg(sb, KERN_ERR, 5413 "Failed to create ea_inode_cache"); 5414 err = -EINVAL; 5415 goto failed_mount_wq; 5416 } 5417 } 5418 } 5419 5420 /* 5421 * Get the # of file system overhead blocks from the 5422 * superblock if present. 5423 */ 5424 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 5425 /* ignore the precalculated value if it is ridiculous */ 5426 if (sbi->s_overhead > ext4_blocks_count(es)) 5427 sbi->s_overhead = 0; 5428 /* 5429 * If the bigalloc feature is not enabled recalculating the 5430 * overhead doesn't take long, so we might as well just redo 5431 * it to make sure we are using the correct value. 5432 */ 5433 if (!ext4_has_feature_bigalloc(sb)) 5434 sbi->s_overhead = 0; 5435 if (sbi->s_overhead == 0) { 5436 err = ext4_calculate_overhead(sb); 5437 if (err) 5438 goto failed_mount_wq; 5439 } 5440 5441 /* 5442 * The maximum number of concurrent works can be high and 5443 * concurrency isn't really necessary. Limit it to 1. 5444 */ 5445 EXT4_SB(sb)->rsv_conversion_wq = 5446 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 5447 if (!EXT4_SB(sb)->rsv_conversion_wq) { 5448 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 5449 err = -ENOMEM; 5450 goto failed_mount4; 5451 } 5452 5453 /* 5454 * The jbd2_journal_load will have done any necessary log recovery, 5455 * so we can safely mount the rest of the filesystem now. 5456 */ 5457 5458 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 5459 if (IS_ERR(root)) { 5460 ext4_msg(sb, KERN_ERR, "get root inode failed"); 5461 err = PTR_ERR(root); 5462 root = NULL; 5463 goto failed_mount4; 5464 } 5465 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 5466 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 5467 iput(root); 5468 err = -EFSCORRUPTED; 5469 goto failed_mount4; 5470 } 5471 5472 generic_set_sb_d_ops(sb); 5473 sb->s_root = d_make_root(root); 5474 if (!sb->s_root) { 5475 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 5476 err = -ENOMEM; 5477 goto failed_mount4; 5478 } 5479 5480 err = ext4_setup_super(sb, es, sb_rdonly(sb)); 5481 if (err == -EROFS) { 5482 sb->s_flags |= SB_RDONLY; 5483 } else if (err) 5484 goto failed_mount4a; 5485 5486 ext4_set_resv_clusters(sb); 5487 5488 if (test_opt(sb, BLOCK_VALIDITY)) { 5489 err = ext4_setup_system_zone(sb); 5490 if (err) { 5491 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5492 "zone (%d)", err); 5493 goto failed_mount4a; 5494 } 5495 } 5496 ext4_fc_replay_cleanup(sb); 5497 5498 ext4_ext_init(sb); 5499 5500 /* 5501 * Enable optimize_scan if number of groups is > threshold. This can be 5502 * turned off by passing "mb_optimize_scan=0". This can also be 5503 * turned on forcefully by passing "mb_optimize_scan=1". 5504 */ 5505 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) { 5506 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5507 set_opt2(sb, MB_OPTIMIZE_SCAN); 5508 else 5509 clear_opt2(sb, MB_OPTIMIZE_SCAN); 5510 } 5511 5512 err = ext4_mb_init(sb); 5513 if (err) { 5514 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5515 err); 5516 goto failed_mount5; 5517 } 5518 5519 /* 5520 * We can only set up the journal commit callback once 5521 * mballoc is initialized 5522 */ 5523 if (sbi->s_journal) 5524 sbi->s_journal->j_commit_callback = 5525 ext4_journal_commit_callback; 5526 5527 err = ext4_percpu_param_init(sbi); 5528 if (err) 5529 goto failed_mount6; 5530 5531 if (ext4_has_feature_flex_bg(sb)) 5532 if (!ext4_fill_flex_info(sb)) { 5533 ext4_msg(sb, KERN_ERR, 5534 "unable to initialize " 5535 "flex_bg meta info!"); 5536 err = -ENOMEM; 5537 goto failed_mount6; 5538 } 5539 5540 err = ext4_register_li_request(sb, first_not_zeroed); 5541 if (err) 5542 goto failed_mount6; 5543 5544 err = ext4_init_orphan_info(sb); 5545 if (err) 5546 goto failed_mount7; 5547 #ifdef CONFIG_QUOTA 5548 /* Enable quota usage during mount. */ 5549 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5550 err = ext4_enable_quotas(sb); 5551 if (err) 5552 goto failed_mount8; 5553 } 5554 #endif /* CONFIG_QUOTA */ 5555 5556 /* 5557 * Save the original bdev mapping's wb_err value which could be 5558 * used to detect the metadata async write error. 5559 */ 5560 errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err, 5561 &sbi->s_bdev_wb_err); 5562 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5563 ext4_orphan_cleanup(sb, es); 5564 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5565 /* 5566 * Update the checksum after updating free space/inode counters and 5567 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect 5568 * checksum in the buffer cache until it is written out and 5569 * e2fsprogs programs trying to open a file system immediately 5570 * after it is mounted can fail. 5571 */ 5572 ext4_superblock_csum_set(sb); 5573 if (needs_recovery) { 5574 ext4_msg(sb, KERN_INFO, "recovery complete"); 5575 err = ext4_mark_recovery_complete(sb, es); 5576 if (err) 5577 goto failed_mount9; 5578 } 5579 5580 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev)) 5581 ext4_msg(sb, KERN_WARNING, 5582 "mounting with \"discard\" option, but the device does not support discard"); 5583 5584 if (es->s_error_count) 5585 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5586 5587 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5588 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5589 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5590 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5591 atomic_set(&sbi->s_warning_count, 0); 5592 atomic_set(&sbi->s_msg_count, 0); 5593 5594 /* Register sysfs after all initializations are complete. */ 5595 err = ext4_register_sysfs(sb); 5596 if (err) 5597 goto failed_mount9; 5598 5599 return 0; 5600 5601 failed_mount9: 5602 ext4_quotas_off(sb, EXT4_MAXQUOTAS); 5603 failed_mount8: __maybe_unused 5604 ext4_release_orphan_info(sb); 5605 failed_mount7: 5606 ext4_unregister_li_request(sb); 5607 failed_mount6: 5608 ext4_mb_release(sb); 5609 ext4_flex_groups_free(sbi); 5610 ext4_percpu_param_destroy(sbi); 5611 failed_mount5: 5612 ext4_ext_release(sb); 5613 ext4_release_system_zone(sb); 5614 failed_mount4a: 5615 dput(sb->s_root); 5616 sb->s_root = NULL; 5617 failed_mount4: 5618 ext4_msg(sb, KERN_ERR, "mount failed"); 5619 if (EXT4_SB(sb)->rsv_conversion_wq) 5620 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5621 failed_mount_wq: 5622 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5623 sbi->s_ea_inode_cache = NULL; 5624 5625 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5626 sbi->s_ea_block_cache = NULL; 5627 5628 if (sbi->s_journal) { 5629 /* flush s_sb_upd_work before journal destroy. */ 5630 flush_work(&sbi->s_sb_upd_work); 5631 jbd2_journal_destroy(sbi->s_journal); 5632 sbi->s_journal = NULL; 5633 } 5634 failed_mount3a: 5635 ext4_es_unregister_shrinker(sbi); 5636 failed_mount3: 5637 /* flush s_sb_upd_work before sbi destroy */ 5638 flush_work(&sbi->s_sb_upd_work); 5639 ext4_stop_mmpd(sbi); 5640 del_timer_sync(&sbi->s_err_report); 5641 ext4_group_desc_free(sbi); 5642 failed_mount: 5643 if (sbi->s_chksum_driver) 5644 crypto_free_shash(sbi->s_chksum_driver); 5645 5646 #if IS_ENABLED(CONFIG_UNICODE) 5647 utf8_unload(sb->s_encoding); 5648 #endif 5649 5650 #ifdef CONFIG_QUOTA 5651 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++) 5652 kfree(get_qf_name(sb, sbi, i)); 5653 #endif 5654 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5655 brelse(sbi->s_sbh); 5656 if (sbi->s_journal_bdev_file) { 5657 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file)); 5658 bdev_fput(sbi->s_journal_bdev_file); 5659 } 5660 out_fail: 5661 invalidate_bdev(sb->s_bdev); 5662 sb->s_fs_info = NULL; 5663 return err; 5664 } 5665 5666 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc) 5667 { 5668 struct ext4_fs_context *ctx = fc->fs_private; 5669 struct ext4_sb_info *sbi; 5670 const char *descr; 5671 int ret; 5672 5673 sbi = ext4_alloc_sbi(sb); 5674 if (!sbi) 5675 return -ENOMEM; 5676 5677 fc->s_fs_info = sbi; 5678 5679 /* Cleanup superblock name */ 5680 strreplace(sb->s_id, '/', '!'); 5681 5682 sbi->s_sb_block = 1; /* Default super block location */ 5683 if (ctx->spec & EXT4_SPEC_s_sb_block) 5684 sbi->s_sb_block = ctx->s_sb_block; 5685 5686 ret = __ext4_fill_super(fc, sb); 5687 if (ret < 0) 5688 goto free_sbi; 5689 5690 if (sbi->s_journal) { 5691 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5692 descr = " journalled data mode"; 5693 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5694 descr = " ordered data mode"; 5695 else 5696 descr = " writeback data mode"; 5697 } else 5698 descr = "out journal"; 5699 5700 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5701 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. " 5702 "Quota mode: %s.", &sb->s_uuid, 5703 sb_rdonly(sb) ? "ro" : "r/w", descr, 5704 ext4_quota_mode(sb)); 5705 5706 /* Update the s_overhead_clusters if necessary */ 5707 ext4_update_overhead(sb, false); 5708 return 0; 5709 5710 free_sbi: 5711 ext4_free_sbi(sbi); 5712 fc->s_fs_info = NULL; 5713 return ret; 5714 } 5715 5716 static int ext4_get_tree(struct fs_context *fc) 5717 { 5718 return get_tree_bdev(fc, ext4_fill_super); 5719 } 5720 5721 /* 5722 * Setup any per-fs journal parameters now. We'll do this both on 5723 * initial mount, once the journal has been initialised but before we've 5724 * done any recovery; and again on any subsequent remount. 5725 */ 5726 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5727 { 5728 struct ext4_sb_info *sbi = EXT4_SB(sb); 5729 5730 journal->j_commit_interval = sbi->s_commit_interval; 5731 journal->j_min_batch_time = sbi->s_min_batch_time; 5732 journal->j_max_batch_time = sbi->s_max_batch_time; 5733 ext4_fc_init(sb, journal); 5734 5735 write_lock(&journal->j_state_lock); 5736 if (test_opt(sb, BARRIER)) 5737 journal->j_flags |= JBD2_BARRIER; 5738 else 5739 journal->j_flags &= ~JBD2_BARRIER; 5740 if (test_opt(sb, DATA_ERR_ABORT)) 5741 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5742 else 5743 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5744 /* 5745 * Always enable journal cycle record option, letting the journal 5746 * records log transactions continuously between each mount. 5747 */ 5748 journal->j_flags |= JBD2_CYCLE_RECORD; 5749 write_unlock(&journal->j_state_lock); 5750 } 5751 5752 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5753 unsigned int journal_inum) 5754 { 5755 struct inode *journal_inode; 5756 5757 /* 5758 * Test for the existence of a valid inode on disk. Bad things 5759 * happen if we iget() an unused inode, as the subsequent iput() 5760 * will try to delete it. 5761 */ 5762 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5763 if (IS_ERR(journal_inode)) { 5764 ext4_msg(sb, KERN_ERR, "no journal found"); 5765 return ERR_CAST(journal_inode); 5766 } 5767 if (!journal_inode->i_nlink) { 5768 make_bad_inode(journal_inode); 5769 iput(journal_inode); 5770 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5771 return ERR_PTR(-EFSCORRUPTED); 5772 } 5773 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) { 5774 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5775 iput(journal_inode); 5776 return ERR_PTR(-EFSCORRUPTED); 5777 } 5778 5779 ext4_debug("Journal inode found at %p: %lld bytes\n", 5780 journal_inode, journal_inode->i_size); 5781 return journal_inode; 5782 } 5783 5784 static int ext4_journal_bmap(journal_t *journal, sector_t *block) 5785 { 5786 struct ext4_map_blocks map; 5787 int ret; 5788 5789 if (journal->j_inode == NULL) 5790 return 0; 5791 5792 map.m_lblk = *block; 5793 map.m_len = 1; 5794 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0); 5795 if (ret <= 0) { 5796 ext4_msg(journal->j_inode->i_sb, KERN_CRIT, 5797 "journal bmap failed: block %llu ret %d\n", 5798 *block, ret); 5799 jbd2_journal_abort(journal, ret ? ret : -EIO); 5800 return ret; 5801 } 5802 *block = map.m_pblk; 5803 return 0; 5804 } 5805 5806 static journal_t *ext4_open_inode_journal(struct super_block *sb, 5807 unsigned int journal_inum) 5808 { 5809 struct inode *journal_inode; 5810 journal_t *journal; 5811 5812 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5813 if (IS_ERR(journal_inode)) 5814 return ERR_CAST(journal_inode); 5815 5816 journal = jbd2_journal_init_inode(journal_inode); 5817 if (IS_ERR(journal)) { 5818 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5819 iput(journal_inode); 5820 return ERR_CAST(journal); 5821 } 5822 journal->j_private = sb; 5823 journal->j_bmap = ext4_journal_bmap; 5824 ext4_init_journal_params(sb, journal); 5825 return journal; 5826 } 5827 5828 static struct file *ext4_get_journal_blkdev(struct super_block *sb, 5829 dev_t j_dev, ext4_fsblk_t *j_start, 5830 ext4_fsblk_t *j_len) 5831 { 5832 struct buffer_head *bh; 5833 struct block_device *bdev; 5834 struct file *bdev_file; 5835 int hblock, blocksize; 5836 ext4_fsblk_t sb_block; 5837 unsigned long offset; 5838 struct ext4_super_block *es; 5839 int errno; 5840 5841 bdev_file = bdev_file_open_by_dev(j_dev, 5842 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES, 5843 sb, &fs_holder_ops); 5844 if (IS_ERR(bdev_file)) { 5845 ext4_msg(sb, KERN_ERR, 5846 "failed to open journal device unknown-block(%u,%u) %ld", 5847 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file)); 5848 return bdev_file; 5849 } 5850 5851 bdev = file_bdev(bdev_file); 5852 blocksize = sb->s_blocksize; 5853 hblock = bdev_logical_block_size(bdev); 5854 if (blocksize < hblock) { 5855 ext4_msg(sb, KERN_ERR, 5856 "blocksize too small for journal device"); 5857 errno = -EINVAL; 5858 goto out_bdev; 5859 } 5860 5861 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5862 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5863 set_blocksize(bdev_file, blocksize); 5864 bh = __bread(bdev, sb_block, blocksize); 5865 if (!bh) { 5866 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5867 "external journal"); 5868 errno = -EINVAL; 5869 goto out_bdev; 5870 } 5871 5872 es = (struct ext4_super_block *) (bh->b_data + offset); 5873 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5874 !(le32_to_cpu(es->s_feature_incompat) & 5875 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5876 ext4_msg(sb, KERN_ERR, "external journal has bad superblock"); 5877 errno = -EFSCORRUPTED; 5878 goto out_bh; 5879 } 5880 5881 if ((le32_to_cpu(es->s_feature_ro_compat) & 5882 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5883 es->s_checksum != ext4_superblock_csum(sb, es)) { 5884 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock"); 5885 errno = -EFSCORRUPTED; 5886 goto out_bh; 5887 } 5888 5889 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5890 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5891 errno = -EFSCORRUPTED; 5892 goto out_bh; 5893 } 5894 5895 *j_start = sb_block + 1; 5896 *j_len = ext4_blocks_count(es); 5897 brelse(bh); 5898 return bdev_file; 5899 5900 out_bh: 5901 brelse(bh); 5902 out_bdev: 5903 bdev_fput(bdev_file); 5904 return ERR_PTR(errno); 5905 } 5906 5907 static journal_t *ext4_open_dev_journal(struct super_block *sb, 5908 dev_t j_dev) 5909 { 5910 journal_t *journal; 5911 ext4_fsblk_t j_start; 5912 ext4_fsblk_t j_len; 5913 struct file *bdev_file; 5914 int errno = 0; 5915 5916 bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len); 5917 if (IS_ERR(bdev_file)) 5918 return ERR_CAST(bdev_file); 5919 5920 journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start, 5921 j_len, sb->s_blocksize); 5922 if (IS_ERR(journal)) { 5923 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5924 errno = PTR_ERR(journal); 5925 goto out_bdev; 5926 } 5927 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5928 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5929 "user (unsupported) - %d", 5930 be32_to_cpu(journal->j_superblock->s_nr_users)); 5931 errno = -EINVAL; 5932 goto out_journal; 5933 } 5934 journal->j_private = sb; 5935 EXT4_SB(sb)->s_journal_bdev_file = bdev_file; 5936 ext4_init_journal_params(sb, journal); 5937 return journal; 5938 5939 out_journal: 5940 jbd2_journal_destroy(journal); 5941 out_bdev: 5942 bdev_fput(bdev_file); 5943 return ERR_PTR(errno); 5944 } 5945 5946 static int ext4_load_journal(struct super_block *sb, 5947 struct ext4_super_block *es, 5948 unsigned long journal_devnum) 5949 { 5950 journal_t *journal; 5951 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5952 dev_t journal_dev; 5953 int err = 0; 5954 int really_read_only; 5955 int journal_dev_ro; 5956 5957 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5958 return -EFSCORRUPTED; 5959 5960 if (journal_devnum && 5961 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5962 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5963 "numbers have changed"); 5964 journal_dev = new_decode_dev(journal_devnum); 5965 } else 5966 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5967 5968 if (journal_inum && journal_dev) { 5969 ext4_msg(sb, KERN_ERR, 5970 "filesystem has both journal inode and journal device!"); 5971 return -EINVAL; 5972 } 5973 5974 if (journal_inum) { 5975 journal = ext4_open_inode_journal(sb, journal_inum); 5976 if (IS_ERR(journal)) 5977 return PTR_ERR(journal); 5978 } else { 5979 journal = ext4_open_dev_journal(sb, journal_dev); 5980 if (IS_ERR(journal)) 5981 return PTR_ERR(journal); 5982 } 5983 5984 journal_dev_ro = bdev_read_only(journal->j_dev); 5985 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5986 5987 if (journal_dev_ro && !sb_rdonly(sb)) { 5988 ext4_msg(sb, KERN_ERR, 5989 "journal device read-only, try mounting with '-o ro'"); 5990 err = -EROFS; 5991 goto err_out; 5992 } 5993 5994 /* 5995 * Are we loading a blank journal or performing recovery after a 5996 * crash? For recovery, we need to check in advance whether we 5997 * can get read-write access to the device. 5998 */ 5999 if (ext4_has_feature_journal_needs_recovery(sb)) { 6000 if (sb_rdonly(sb)) { 6001 ext4_msg(sb, KERN_INFO, "INFO: recovery " 6002 "required on readonly filesystem"); 6003 if (really_read_only) { 6004 ext4_msg(sb, KERN_ERR, "write access " 6005 "unavailable, cannot proceed " 6006 "(try mounting with noload)"); 6007 err = -EROFS; 6008 goto err_out; 6009 } 6010 ext4_msg(sb, KERN_INFO, "write access will " 6011 "be enabled during recovery"); 6012 } 6013 } 6014 6015 if (!(journal->j_flags & JBD2_BARRIER)) 6016 ext4_msg(sb, KERN_INFO, "barriers disabled"); 6017 6018 if (!ext4_has_feature_journal_needs_recovery(sb)) 6019 err = jbd2_journal_wipe(journal, !really_read_only); 6020 if (!err) { 6021 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 6022 __le16 orig_state; 6023 bool changed = false; 6024 6025 if (save) 6026 memcpy(save, ((char *) es) + 6027 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 6028 err = jbd2_journal_load(journal); 6029 if (save && memcmp(((char *) es) + EXT4_S_ERR_START, 6030 save, EXT4_S_ERR_LEN)) { 6031 memcpy(((char *) es) + EXT4_S_ERR_START, 6032 save, EXT4_S_ERR_LEN); 6033 changed = true; 6034 } 6035 kfree(save); 6036 orig_state = es->s_state; 6037 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state & 6038 EXT4_ERROR_FS); 6039 if (orig_state != es->s_state) 6040 changed = true; 6041 /* Write out restored error information to the superblock */ 6042 if (changed && !really_read_only) { 6043 int err2; 6044 err2 = ext4_commit_super(sb); 6045 err = err ? : err2; 6046 } 6047 } 6048 6049 if (err) { 6050 ext4_msg(sb, KERN_ERR, "error loading journal"); 6051 goto err_out; 6052 } 6053 6054 EXT4_SB(sb)->s_journal = journal; 6055 err = ext4_clear_journal_err(sb, es); 6056 if (err) { 6057 EXT4_SB(sb)->s_journal = NULL; 6058 jbd2_journal_destroy(journal); 6059 return err; 6060 } 6061 6062 if (!really_read_only && journal_devnum && 6063 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 6064 es->s_journal_dev = cpu_to_le32(journal_devnum); 6065 ext4_commit_super(sb); 6066 } 6067 if (!really_read_only && journal_inum && 6068 journal_inum != le32_to_cpu(es->s_journal_inum)) { 6069 es->s_journal_inum = cpu_to_le32(journal_inum); 6070 ext4_commit_super(sb); 6071 } 6072 6073 return 0; 6074 6075 err_out: 6076 jbd2_journal_destroy(journal); 6077 return err; 6078 } 6079 6080 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 6081 static void ext4_update_super(struct super_block *sb) 6082 { 6083 struct ext4_sb_info *sbi = EXT4_SB(sb); 6084 struct ext4_super_block *es = sbi->s_es; 6085 struct buffer_head *sbh = sbi->s_sbh; 6086 6087 lock_buffer(sbh); 6088 /* 6089 * If the file system is mounted read-only, don't update the 6090 * superblock write time. This avoids updating the superblock 6091 * write time when we are mounting the root file system 6092 * read/only but we need to replay the journal; at that point, 6093 * for people who are east of GMT and who make their clock 6094 * tick in localtime for Windows bug-for-bug compatibility, 6095 * the clock is set in the future, and this will cause e2fsck 6096 * to complain and force a full file system check. 6097 */ 6098 if (!sb_rdonly(sb)) 6099 ext4_update_tstamp(es, s_wtime); 6100 es->s_kbytes_written = 6101 cpu_to_le64(sbi->s_kbytes_written + 6102 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 6103 sbi->s_sectors_written_start) >> 1)); 6104 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 6105 ext4_free_blocks_count_set(es, 6106 EXT4_C2B(sbi, percpu_counter_sum_positive( 6107 &sbi->s_freeclusters_counter))); 6108 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 6109 es->s_free_inodes_count = 6110 cpu_to_le32(percpu_counter_sum_positive( 6111 &sbi->s_freeinodes_counter)); 6112 /* Copy error information to the on-disk superblock */ 6113 spin_lock(&sbi->s_error_lock); 6114 if (sbi->s_add_error_count > 0) { 6115 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6116 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 6117 __ext4_update_tstamp(&es->s_first_error_time, 6118 &es->s_first_error_time_hi, 6119 sbi->s_first_error_time); 6120 strtomem_pad(es->s_first_error_func, 6121 sbi->s_first_error_func, 0); 6122 es->s_first_error_line = 6123 cpu_to_le32(sbi->s_first_error_line); 6124 es->s_first_error_ino = 6125 cpu_to_le32(sbi->s_first_error_ino); 6126 es->s_first_error_block = 6127 cpu_to_le64(sbi->s_first_error_block); 6128 es->s_first_error_errcode = 6129 ext4_errno_to_code(sbi->s_first_error_code); 6130 } 6131 __ext4_update_tstamp(&es->s_last_error_time, 6132 &es->s_last_error_time_hi, 6133 sbi->s_last_error_time); 6134 strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0); 6135 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 6136 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 6137 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 6138 es->s_last_error_errcode = 6139 ext4_errno_to_code(sbi->s_last_error_code); 6140 /* 6141 * Start the daily error reporting function if it hasn't been 6142 * started already 6143 */ 6144 if (!es->s_error_count) 6145 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 6146 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 6147 sbi->s_add_error_count = 0; 6148 } 6149 spin_unlock(&sbi->s_error_lock); 6150 6151 ext4_superblock_csum_set(sb); 6152 unlock_buffer(sbh); 6153 } 6154 6155 static int ext4_commit_super(struct super_block *sb) 6156 { 6157 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 6158 6159 if (!sbh) 6160 return -EINVAL; 6161 6162 ext4_update_super(sb); 6163 6164 lock_buffer(sbh); 6165 /* Buffer got discarded which means block device got invalidated */ 6166 if (!buffer_mapped(sbh)) { 6167 unlock_buffer(sbh); 6168 return -EIO; 6169 } 6170 6171 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 6172 /* 6173 * Oh, dear. A previous attempt to write the 6174 * superblock failed. This could happen because the 6175 * USB device was yanked out. Or it could happen to 6176 * be a transient write error and maybe the block will 6177 * be remapped. Nothing we can do but to retry the 6178 * write and hope for the best. 6179 */ 6180 ext4_msg(sb, KERN_ERR, "previous I/O error to " 6181 "superblock detected"); 6182 clear_buffer_write_io_error(sbh); 6183 set_buffer_uptodate(sbh); 6184 } 6185 get_bh(sbh); 6186 /* Clear potential dirty bit if it was journalled update */ 6187 clear_buffer_dirty(sbh); 6188 sbh->b_end_io = end_buffer_write_sync; 6189 submit_bh(REQ_OP_WRITE | REQ_SYNC | 6190 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh); 6191 wait_on_buffer(sbh); 6192 if (buffer_write_io_error(sbh)) { 6193 ext4_msg(sb, KERN_ERR, "I/O error while writing " 6194 "superblock"); 6195 clear_buffer_write_io_error(sbh); 6196 set_buffer_uptodate(sbh); 6197 return -EIO; 6198 } 6199 return 0; 6200 } 6201 6202 /* 6203 * Have we just finished recovery? If so, and if we are mounting (or 6204 * remounting) the filesystem readonly, then we will end up with a 6205 * consistent fs on disk. Record that fact. 6206 */ 6207 static int ext4_mark_recovery_complete(struct super_block *sb, 6208 struct ext4_super_block *es) 6209 { 6210 int err; 6211 journal_t *journal = EXT4_SB(sb)->s_journal; 6212 6213 if (!ext4_has_feature_journal(sb)) { 6214 if (journal != NULL) { 6215 ext4_error(sb, "Journal got removed while the fs was " 6216 "mounted!"); 6217 return -EFSCORRUPTED; 6218 } 6219 return 0; 6220 } 6221 jbd2_journal_lock_updates(journal); 6222 err = jbd2_journal_flush(journal, 0); 6223 if (err < 0) 6224 goto out; 6225 6226 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 6227 ext4_has_feature_orphan_present(sb))) { 6228 if (!ext4_orphan_file_empty(sb)) { 6229 ext4_error(sb, "Orphan file not empty on read-only fs."); 6230 err = -EFSCORRUPTED; 6231 goto out; 6232 } 6233 ext4_clear_feature_journal_needs_recovery(sb); 6234 ext4_clear_feature_orphan_present(sb); 6235 ext4_commit_super(sb); 6236 } 6237 out: 6238 jbd2_journal_unlock_updates(journal); 6239 return err; 6240 } 6241 6242 /* 6243 * If we are mounting (or read-write remounting) a filesystem whose journal 6244 * has recorded an error from a previous lifetime, move that error to the 6245 * main filesystem now. 6246 */ 6247 static int ext4_clear_journal_err(struct super_block *sb, 6248 struct ext4_super_block *es) 6249 { 6250 journal_t *journal; 6251 int j_errno; 6252 const char *errstr; 6253 6254 if (!ext4_has_feature_journal(sb)) { 6255 ext4_error(sb, "Journal got removed while the fs was mounted!"); 6256 return -EFSCORRUPTED; 6257 } 6258 6259 journal = EXT4_SB(sb)->s_journal; 6260 6261 /* 6262 * Now check for any error status which may have been recorded in the 6263 * journal by a prior ext4_error() or ext4_abort() 6264 */ 6265 6266 j_errno = jbd2_journal_errno(journal); 6267 if (j_errno) { 6268 char nbuf[16]; 6269 6270 errstr = ext4_decode_error(sb, j_errno, nbuf); 6271 ext4_warning(sb, "Filesystem error recorded " 6272 "from previous mount: %s", errstr); 6273 6274 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 6275 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 6276 j_errno = ext4_commit_super(sb); 6277 if (j_errno) 6278 return j_errno; 6279 ext4_warning(sb, "Marked fs in need of filesystem check."); 6280 6281 jbd2_journal_clear_err(journal); 6282 jbd2_journal_update_sb_errno(journal); 6283 } 6284 return 0; 6285 } 6286 6287 /* 6288 * Force the running and committing transactions to commit, 6289 * and wait on the commit. 6290 */ 6291 int ext4_force_commit(struct super_block *sb) 6292 { 6293 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal); 6294 } 6295 6296 static int ext4_sync_fs(struct super_block *sb, int wait) 6297 { 6298 int ret = 0; 6299 tid_t target; 6300 bool needs_barrier = false; 6301 struct ext4_sb_info *sbi = EXT4_SB(sb); 6302 6303 if (unlikely(ext4_forced_shutdown(sb))) 6304 return 0; 6305 6306 trace_ext4_sync_fs(sb, wait); 6307 flush_workqueue(sbi->rsv_conversion_wq); 6308 /* 6309 * Writeback quota in non-journalled quota case - journalled quota has 6310 * no dirty dquots 6311 */ 6312 dquot_writeback_dquots(sb, -1); 6313 /* 6314 * Data writeback is possible w/o journal transaction, so barrier must 6315 * being sent at the end of the function. But we can skip it if 6316 * transaction_commit will do it for us. 6317 */ 6318 if (sbi->s_journal) { 6319 target = jbd2_get_latest_transaction(sbi->s_journal); 6320 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 6321 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 6322 needs_barrier = true; 6323 6324 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 6325 if (wait) 6326 ret = jbd2_log_wait_commit(sbi->s_journal, 6327 target); 6328 } 6329 } else if (wait && test_opt(sb, BARRIER)) 6330 needs_barrier = true; 6331 if (needs_barrier) { 6332 int err; 6333 err = blkdev_issue_flush(sb->s_bdev); 6334 if (!ret) 6335 ret = err; 6336 } 6337 6338 return ret; 6339 } 6340 6341 /* 6342 * LVM calls this function before a (read-only) snapshot is created. This 6343 * gives us a chance to flush the journal completely and mark the fs clean. 6344 * 6345 * Note that only this function cannot bring a filesystem to be in a clean 6346 * state independently. It relies on upper layer to stop all data & metadata 6347 * modifications. 6348 */ 6349 static int ext4_freeze(struct super_block *sb) 6350 { 6351 int error = 0; 6352 journal_t *journal = EXT4_SB(sb)->s_journal; 6353 6354 if (journal) { 6355 /* Now we set up the journal barrier. */ 6356 jbd2_journal_lock_updates(journal); 6357 6358 /* 6359 * Don't clear the needs_recovery flag if we failed to 6360 * flush the journal. 6361 */ 6362 error = jbd2_journal_flush(journal, 0); 6363 if (error < 0) 6364 goto out; 6365 6366 /* Journal blocked and flushed, clear needs_recovery flag. */ 6367 ext4_clear_feature_journal_needs_recovery(sb); 6368 if (ext4_orphan_file_empty(sb)) 6369 ext4_clear_feature_orphan_present(sb); 6370 } 6371 6372 error = ext4_commit_super(sb); 6373 out: 6374 if (journal) 6375 /* we rely on upper layer to stop further updates */ 6376 jbd2_journal_unlock_updates(journal); 6377 return error; 6378 } 6379 6380 /* 6381 * Called by LVM after the snapshot is done. We need to reset the RECOVER 6382 * flag here, even though the filesystem is not technically dirty yet. 6383 */ 6384 static int ext4_unfreeze(struct super_block *sb) 6385 { 6386 if (ext4_forced_shutdown(sb)) 6387 return 0; 6388 6389 if (EXT4_SB(sb)->s_journal) { 6390 /* Reset the needs_recovery flag before the fs is unlocked. */ 6391 ext4_set_feature_journal_needs_recovery(sb); 6392 if (ext4_has_feature_orphan_file(sb)) 6393 ext4_set_feature_orphan_present(sb); 6394 } 6395 6396 ext4_commit_super(sb); 6397 return 0; 6398 } 6399 6400 /* 6401 * Structure to save mount options for ext4_remount's benefit 6402 */ 6403 struct ext4_mount_options { 6404 unsigned long s_mount_opt; 6405 unsigned long s_mount_opt2; 6406 kuid_t s_resuid; 6407 kgid_t s_resgid; 6408 unsigned long s_commit_interval; 6409 u32 s_min_batch_time, s_max_batch_time; 6410 #ifdef CONFIG_QUOTA 6411 int s_jquota_fmt; 6412 char *s_qf_names[EXT4_MAXQUOTAS]; 6413 #endif 6414 }; 6415 6416 static int __ext4_remount(struct fs_context *fc, struct super_block *sb) 6417 { 6418 struct ext4_fs_context *ctx = fc->fs_private; 6419 struct ext4_super_block *es; 6420 struct ext4_sb_info *sbi = EXT4_SB(sb); 6421 unsigned long old_sb_flags; 6422 struct ext4_mount_options old_opts; 6423 ext4_group_t g; 6424 int err = 0; 6425 int alloc_ctx; 6426 #ifdef CONFIG_QUOTA 6427 int enable_quota = 0; 6428 int i, j; 6429 char *to_free[EXT4_MAXQUOTAS]; 6430 #endif 6431 6432 6433 /* Store the original options */ 6434 old_sb_flags = sb->s_flags; 6435 old_opts.s_mount_opt = sbi->s_mount_opt; 6436 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 6437 old_opts.s_resuid = sbi->s_resuid; 6438 old_opts.s_resgid = sbi->s_resgid; 6439 old_opts.s_commit_interval = sbi->s_commit_interval; 6440 old_opts.s_min_batch_time = sbi->s_min_batch_time; 6441 old_opts.s_max_batch_time = sbi->s_max_batch_time; 6442 #ifdef CONFIG_QUOTA 6443 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 6444 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6445 if (sbi->s_qf_names[i]) { 6446 char *qf_name = get_qf_name(sb, sbi, i); 6447 6448 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 6449 if (!old_opts.s_qf_names[i]) { 6450 for (j = 0; j < i; j++) 6451 kfree(old_opts.s_qf_names[j]); 6452 return -ENOMEM; 6453 } 6454 } else 6455 old_opts.s_qf_names[i] = NULL; 6456 #endif 6457 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) { 6458 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 6459 ctx->journal_ioprio = 6460 sbi->s_journal->j_task->io_context->ioprio; 6461 else 6462 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 6463 6464 } 6465 6466 if ((ctx->spec & EXT4_SPEC_s_stripe) && 6467 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) { 6468 ext4_msg(sb, KERN_WARNING, 6469 "stripe (%lu) is not aligned with cluster size (%u), " 6470 "stripe is disabled", 6471 ctx->s_stripe, sbi->s_cluster_ratio); 6472 ctx->s_stripe = 0; 6473 } 6474 6475 /* 6476 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause 6477 * two calls to ext4_should_dioread_nolock() to return inconsistent 6478 * values, triggering WARN_ON in ext4_add_complete_io(). we grab 6479 * here s_writepages_rwsem to avoid race between writepages ops and 6480 * remount. 6481 */ 6482 alloc_ctx = ext4_writepages_down_write(sb); 6483 ext4_apply_options(fc, sb); 6484 ext4_writepages_up_write(sb, alloc_ctx); 6485 6486 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 6487 test_opt(sb, JOURNAL_CHECKSUM)) { 6488 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 6489 "during remount not supported; ignoring"); 6490 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 6491 } 6492 6493 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 6494 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 6495 ext4_msg(sb, KERN_ERR, "can't mount with " 6496 "both data=journal and delalloc"); 6497 err = -EINVAL; 6498 goto restore_opts; 6499 } 6500 if (test_opt(sb, DIOREAD_NOLOCK)) { 6501 ext4_msg(sb, KERN_ERR, "can't mount with " 6502 "both data=journal and dioread_nolock"); 6503 err = -EINVAL; 6504 goto restore_opts; 6505 } 6506 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 6507 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 6508 ext4_msg(sb, KERN_ERR, "can't mount with " 6509 "journal_async_commit in data=ordered mode"); 6510 err = -EINVAL; 6511 goto restore_opts; 6512 } 6513 } 6514 6515 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 6516 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 6517 err = -EINVAL; 6518 goto restore_opts; 6519 } 6520 6521 if (test_opt2(sb, ABORT)) 6522 ext4_abort(sb, ESHUTDOWN, "Abort forced by user"); 6523 6524 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 6525 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 6526 6527 es = sbi->s_es; 6528 6529 if (sbi->s_journal) { 6530 ext4_init_journal_params(sb, sbi->s_journal); 6531 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio); 6532 } 6533 6534 /* Flush outstanding errors before changing fs state */ 6535 flush_work(&sbi->s_sb_upd_work); 6536 6537 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) { 6538 if (ext4_forced_shutdown(sb)) { 6539 err = -EROFS; 6540 goto restore_opts; 6541 } 6542 6543 if (fc->sb_flags & SB_RDONLY) { 6544 err = sync_filesystem(sb); 6545 if (err < 0) 6546 goto restore_opts; 6547 err = dquot_suspend(sb, -1); 6548 if (err < 0) 6549 goto restore_opts; 6550 6551 /* 6552 * First of all, the unconditional stuff we have to do 6553 * to disable replay of the journal when we next remount 6554 */ 6555 sb->s_flags |= SB_RDONLY; 6556 6557 /* 6558 * OK, test if we are remounting a valid rw partition 6559 * readonly, and if so set the rdonly flag and then 6560 * mark the partition as valid again. 6561 */ 6562 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 6563 (sbi->s_mount_state & EXT4_VALID_FS)) 6564 es->s_state = cpu_to_le16(sbi->s_mount_state); 6565 6566 if (sbi->s_journal) { 6567 /* 6568 * We let remount-ro finish even if marking fs 6569 * as clean failed... 6570 */ 6571 ext4_mark_recovery_complete(sb, es); 6572 } 6573 } else { 6574 /* Make sure we can mount this feature set readwrite */ 6575 if (ext4_has_feature_readonly(sb) || 6576 !ext4_feature_set_ok(sb, 0)) { 6577 err = -EROFS; 6578 goto restore_opts; 6579 } 6580 /* 6581 * Make sure the group descriptor checksums 6582 * are sane. If they aren't, refuse to remount r/w. 6583 */ 6584 for (g = 0; g < sbi->s_groups_count; g++) { 6585 struct ext4_group_desc *gdp = 6586 ext4_get_group_desc(sb, g, NULL); 6587 6588 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6589 ext4_msg(sb, KERN_ERR, 6590 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6591 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6592 le16_to_cpu(gdp->bg_checksum)); 6593 err = -EFSBADCRC; 6594 goto restore_opts; 6595 } 6596 } 6597 6598 /* 6599 * If we have an unprocessed orphan list hanging 6600 * around from a previously readonly bdev mount, 6601 * require a full umount/remount for now. 6602 */ 6603 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 6604 ext4_msg(sb, KERN_WARNING, "Couldn't " 6605 "remount RDWR because of unprocessed " 6606 "orphan inode list. Please " 6607 "umount/remount instead"); 6608 err = -EINVAL; 6609 goto restore_opts; 6610 } 6611 6612 /* 6613 * Mounting a RDONLY partition read-write, so reread 6614 * and store the current valid flag. (It may have 6615 * been changed by e2fsck since we originally mounted 6616 * the partition.) 6617 */ 6618 if (sbi->s_journal) { 6619 err = ext4_clear_journal_err(sb, es); 6620 if (err) 6621 goto restore_opts; 6622 } 6623 sbi->s_mount_state = (le16_to_cpu(es->s_state) & 6624 ~EXT4_FC_REPLAY); 6625 6626 err = ext4_setup_super(sb, es, 0); 6627 if (err) 6628 goto restore_opts; 6629 6630 sb->s_flags &= ~SB_RDONLY; 6631 if (ext4_has_feature_mmp(sb)) { 6632 err = ext4_multi_mount_protect(sb, 6633 le64_to_cpu(es->s_mmp_block)); 6634 if (err) 6635 goto restore_opts; 6636 } 6637 #ifdef CONFIG_QUOTA 6638 enable_quota = 1; 6639 #endif 6640 } 6641 } 6642 6643 /* 6644 * Handle creation of system zone data early because it can fail. 6645 * Releasing of existing data is done when we are sure remount will 6646 * succeed. 6647 */ 6648 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6649 err = ext4_setup_system_zone(sb); 6650 if (err) 6651 goto restore_opts; 6652 } 6653 6654 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6655 err = ext4_commit_super(sb); 6656 if (err) 6657 goto restore_opts; 6658 } 6659 6660 #ifdef CONFIG_QUOTA 6661 if (enable_quota) { 6662 if (sb_any_quota_suspended(sb)) 6663 dquot_resume(sb, -1); 6664 else if (ext4_has_feature_quota(sb)) { 6665 err = ext4_enable_quotas(sb); 6666 if (err) 6667 goto restore_opts; 6668 } 6669 } 6670 /* Release old quota file names */ 6671 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6672 kfree(old_opts.s_qf_names[i]); 6673 #endif 6674 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6675 ext4_release_system_zone(sb); 6676 6677 /* 6678 * Reinitialize lazy itable initialization thread based on 6679 * current settings 6680 */ 6681 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6682 ext4_unregister_li_request(sb); 6683 else { 6684 ext4_group_t first_not_zeroed; 6685 first_not_zeroed = ext4_has_uninit_itable(sb); 6686 ext4_register_li_request(sb, first_not_zeroed); 6687 } 6688 6689 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6690 ext4_stop_mmpd(sbi); 6691 6692 return 0; 6693 6694 restore_opts: 6695 /* 6696 * If there was a failing r/w to ro transition, we may need to 6697 * re-enable quota 6698 */ 6699 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) && 6700 sb_any_quota_suspended(sb)) 6701 dquot_resume(sb, -1); 6702 6703 alloc_ctx = ext4_writepages_down_write(sb); 6704 sb->s_flags = old_sb_flags; 6705 sbi->s_mount_opt = old_opts.s_mount_opt; 6706 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6707 sbi->s_resuid = old_opts.s_resuid; 6708 sbi->s_resgid = old_opts.s_resgid; 6709 sbi->s_commit_interval = old_opts.s_commit_interval; 6710 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6711 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6712 ext4_writepages_up_write(sb, alloc_ctx); 6713 6714 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6715 ext4_release_system_zone(sb); 6716 #ifdef CONFIG_QUOTA 6717 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6718 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6719 to_free[i] = get_qf_name(sb, sbi, i); 6720 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6721 } 6722 synchronize_rcu(); 6723 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6724 kfree(to_free[i]); 6725 #endif 6726 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6727 ext4_stop_mmpd(sbi); 6728 return err; 6729 } 6730 6731 static int ext4_reconfigure(struct fs_context *fc) 6732 { 6733 struct super_block *sb = fc->root->d_sb; 6734 int ret; 6735 6736 fc->s_fs_info = EXT4_SB(sb); 6737 6738 ret = ext4_check_opt_consistency(fc, sb); 6739 if (ret < 0) 6740 return ret; 6741 6742 ret = __ext4_remount(fc, sb); 6743 if (ret < 0) 6744 return ret; 6745 6746 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.", 6747 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w", 6748 ext4_quota_mode(sb)); 6749 6750 return 0; 6751 } 6752 6753 #ifdef CONFIG_QUOTA 6754 static int ext4_statfs_project(struct super_block *sb, 6755 kprojid_t projid, struct kstatfs *buf) 6756 { 6757 struct kqid qid; 6758 struct dquot *dquot; 6759 u64 limit; 6760 u64 curblock; 6761 6762 qid = make_kqid_projid(projid); 6763 dquot = dqget(sb, qid); 6764 if (IS_ERR(dquot)) 6765 return PTR_ERR(dquot); 6766 spin_lock(&dquot->dq_dqb_lock); 6767 6768 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6769 dquot->dq_dqb.dqb_bhardlimit); 6770 limit >>= sb->s_blocksize_bits; 6771 6772 if (limit && buf->f_blocks > limit) { 6773 curblock = (dquot->dq_dqb.dqb_curspace + 6774 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6775 buf->f_blocks = limit; 6776 buf->f_bfree = buf->f_bavail = 6777 (buf->f_blocks > curblock) ? 6778 (buf->f_blocks - curblock) : 0; 6779 } 6780 6781 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6782 dquot->dq_dqb.dqb_ihardlimit); 6783 if (limit && buf->f_files > limit) { 6784 buf->f_files = limit; 6785 buf->f_ffree = 6786 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6787 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6788 } 6789 6790 spin_unlock(&dquot->dq_dqb_lock); 6791 dqput(dquot); 6792 return 0; 6793 } 6794 #endif 6795 6796 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6797 { 6798 struct super_block *sb = dentry->d_sb; 6799 struct ext4_sb_info *sbi = EXT4_SB(sb); 6800 struct ext4_super_block *es = sbi->s_es; 6801 ext4_fsblk_t overhead = 0, resv_blocks; 6802 s64 bfree; 6803 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6804 6805 if (!test_opt(sb, MINIX_DF)) 6806 overhead = sbi->s_overhead; 6807 6808 buf->f_type = EXT4_SUPER_MAGIC; 6809 buf->f_bsize = sb->s_blocksize; 6810 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6811 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6812 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6813 /* prevent underflow in case that few free space is available */ 6814 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6815 buf->f_bavail = buf->f_bfree - 6816 (ext4_r_blocks_count(es) + resv_blocks); 6817 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6818 buf->f_bavail = 0; 6819 buf->f_files = le32_to_cpu(es->s_inodes_count); 6820 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6821 buf->f_namelen = EXT4_NAME_LEN; 6822 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6823 6824 #ifdef CONFIG_QUOTA 6825 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6826 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6827 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6828 #endif 6829 return 0; 6830 } 6831 6832 6833 #ifdef CONFIG_QUOTA 6834 6835 /* 6836 * Helper functions so that transaction is started before we acquire dqio_sem 6837 * to keep correct lock ordering of transaction > dqio_sem 6838 */ 6839 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6840 { 6841 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6842 } 6843 6844 static int ext4_write_dquot(struct dquot *dquot) 6845 { 6846 int ret, err; 6847 handle_t *handle; 6848 struct inode *inode; 6849 6850 inode = dquot_to_inode(dquot); 6851 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6852 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6853 if (IS_ERR(handle)) 6854 return PTR_ERR(handle); 6855 ret = dquot_commit(dquot); 6856 if (ret < 0) 6857 ext4_error_err(dquot->dq_sb, -ret, 6858 "Failed to commit dquot type %d", 6859 dquot->dq_id.type); 6860 err = ext4_journal_stop(handle); 6861 if (!ret) 6862 ret = err; 6863 return ret; 6864 } 6865 6866 static int ext4_acquire_dquot(struct dquot *dquot) 6867 { 6868 int ret, err; 6869 handle_t *handle; 6870 6871 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6872 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6873 if (IS_ERR(handle)) 6874 return PTR_ERR(handle); 6875 ret = dquot_acquire(dquot); 6876 if (ret < 0) 6877 ext4_error_err(dquot->dq_sb, -ret, 6878 "Failed to acquire dquot type %d", 6879 dquot->dq_id.type); 6880 err = ext4_journal_stop(handle); 6881 if (!ret) 6882 ret = err; 6883 return ret; 6884 } 6885 6886 static int ext4_release_dquot(struct dquot *dquot) 6887 { 6888 int ret, err; 6889 handle_t *handle; 6890 6891 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6892 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6893 if (IS_ERR(handle)) { 6894 /* Release dquot anyway to avoid endless cycle in dqput() */ 6895 dquot_release(dquot); 6896 return PTR_ERR(handle); 6897 } 6898 ret = dquot_release(dquot); 6899 if (ret < 0) 6900 ext4_error_err(dquot->dq_sb, -ret, 6901 "Failed to release dquot type %d", 6902 dquot->dq_id.type); 6903 err = ext4_journal_stop(handle); 6904 if (!ret) 6905 ret = err; 6906 return ret; 6907 } 6908 6909 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6910 { 6911 struct super_block *sb = dquot->dq_sb; 6912 6913 if (ext4_is_quota_journalled(sb)) { 6914 dquot_mark_dquot_dirty(dquot); 6915 return ext4_write_dquot(dquot); 6916 } else { 6917 return dquot_mark_dquot_dirty(dquot); 6918 } 6919 } 6920 6921 static int ext4_write_info(struct super_block *sb, int type) 6922 { 6923 int ret, err; 6924 handle_t *handle; 6925 6926 /* Data block + inode block */ 6927 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2); 6928 if (IS_ERR(handle)) 6929 return PTR_ERR(handle); 6930 ret = dquot_commit_info(sb, type); 6931 err = ext4_journal_stop(handle); 6932 if (!ret) 6933 ret = err; 6934 return ret; 6935 } 6936 6937 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6938 { 6939 struct ext4_inode_info *ei = EXT4_I(inode); 6940 6941 /* The first argument of lockdep_set_subclass has to be 6942 * *exactly* the same as the argument to init_rwsem() --- in 6943 * this case, in init_once() --- or lockdep gets unhappy 6944 * because the name of the lock is set using the 6945 * stringification of the argument to init_rwsem(). 6946 */ 6947 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6948 lockdep_set_subclass(&ei->i_data_sem, subclass); 6949 } 6950 6951 /* 6952 * Standard function to be called on quota_on 6953 */ 6954 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6955 const struct path *path) 6956 { 6957 int err; 6958 6959 if (!test_opt(sb, QUOTA)) 6960 return -EINVAL; 6961 6962 /* Quotafile not on the same filesystem? */ 6963 if (path->dentry->d_sb != sb) 6964 return -EXDEV; 6965 6966 /* Quota already enabled for this file? */ 6967 if (IS_NOQUOTA(d_inode(path->dentry))) 6968 return -EBUSY; 6969 6970 /* Journaling quota? */ 6971 if (EXT4_SB(sb)->s_qf_names[type]) { 6972 /* Quotafile not in fs root? */ 6973 if (path->dentry->d_parent != sb->s_root) 6974 ext4_msg(sb, KERN_WARNING, 6975 "Quota file not on filesystem root. " 6976 "Journaled quota will not work"); 6977 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6978 } else { 6979 /* 6980 * Clear the flag just in case mount options changed since 6981 * last time. 6982 */ 6983 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6984 } 6985 6986 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6987 err = dquot_quota_on(sb, type, format_id, path); 6988 if (!err) { 6989 struct inode *inode = d_inode(path->dentry); 6990 handle_t *handle; 6991 6992 /* 6993 * Set inode flags to prevent userspace from messing with quota 6994 * files. If this fails, we return success anyway since quotas 6995 * are already enabled and this is not a hard failure. 6996 */ 6997 inode_lock(inode); 6998 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6999 if (IS_ERR(handle)) 7000 goto unlock_inode; 7001 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 7002 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 7003 S_NOATIME | S_IMMUTABLE); 7004 err = ext4_mark_inode_dirty(handle, inode); 7005 ext4_journal_stop(handle); 7006 unlock_inode: 7007 inode_unlock(inode); 7008 if (err) 7009 dquot_quota_off(sb, type); 7010 } 7011 if (err) 7012 lockdep_set_quota_inode(path->dentry->d_inode, 7013 I_DATA_SEM_NORMAL); 7014 return err; 7015 } 7016 7017 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum) 7018 { 7019 switch (type) { 7020 case USRQUOTA: 7021 return qf_inum == EXT4_USR_QUOTA_INO; 7022 case GRPQUOTA: 7023 return qf_inum == EXT4_GRP_QUOTA_INO; 7024 case PRJQUOTA: 7025 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO; 7026 default: 7027 BUG(); 7028 } 7029 } 7030 7031 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 7032 unsigned int flags) 7033 { 7034 int err; 7035 struct inode *qf_inode; 7036 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7037 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7038 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7039 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7040 }; 7041 7042 BUG_ON(!ext4_has_feature_quota(sb)); 7043 7044 if (!qf_inums[type]) 7045 return -EPERM; 7046 7047 if (!ext4_check_quota_inum(type, qf_inums[type])) { 7048 ext4_error(sb, "Bad quota inum: %lu, type: %d", 7049 qf_inums[type], type); 7050 return -EUCLEAN; 7051 } 7052 7053 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 7054 if (IS_ERR(qf_inode)) { 7055 ext4_error(sb, "Bad quota inode: %lu, type: %d", 7056 qf_inums[type], type); 7057 return PTR_ERR(qf_inode); 7058 } 7059 7060 /* Don't account quota for quota files to avoid recursion */ 7061 qf_inode->i_flags |= S_NOQUOTA; 7062 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 7063 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 7064 if (err) 7065 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 7066 iput(qf_inode); 7067 7068 return err; 7069 } 7070 7071 /* Enable usage tracking for all quota types. */ 7072 int ext4_enable_quotas(struct super_block *sb) 7073 { 7074 int type, err = 0; 7075 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 7076 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 7077 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 7078 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 7079 }; 7080 bool quota_mopt[EXT4_MAXQUOTAS] = { 7081 test_opt(sb, USRQUOTA), 7082 test_opt(sb, GRPQUOTA), 7083 test_opt(sb, PRJQUOTA), 7084 }; 7085 7086 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 7087 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 7088 if (qf_inums[type]) { 7089 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 7090 DQUOT_USAGE_ENABLED | 7091 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 7092 if (err) { 7093 ext4_warning(sb, 7094 "Failed to enable quota tracking " 7095 "(type=%d, err=%d, ino=%lu). " 7096 "Please run e2fsck to fix.", type, 7097 err, qf_inums[type]); 7098 7099 ext4_quotas_off(sb, type); 7100 return err; 7101 } 7102 } 7103 } 7104 return 0; 7105 } 7106 7107 static int ext4_quota_off(struct super_block *sb, int type) 7108 { 7109 struct inode *inode = sb_dqopt(sb)->files[type]; 7110 handle_t *handle; 7111 int err; 7112 7113 /* Force all delayed allocation blocks to be allocated. 7114 * Caller already holds s_umount sem */ 7115 if (test_opt(sb, DELALLOC)) 7116 sync_filesystem(sb); 7117 7118 if (!inode || !igrab(inode)) 7119 goto out; 7120 7121 err = dquot_quota_off(sb, type); 7122 if (err || ext4_has_feature_quota(sb)) 7123 goto out_put; 7124 /* 7125 * When the filesystem was remounted read-only first, we cannot cleanup 7126 * inode flags here. Bad luck but people should be using QUOTA feature 7127 * these days anyway. 7128 */ 7129 if (sb_rdonly(sb)) 7130 goto out_put; 7131 7132 inode_lock(inode); 7133 /* 7134 * Update modification times of quota files when userspace can 7135 * start looking at them. If we fail, we return success anyway since 7136 * this is not a hard failure and quotas are already disabled. 7137 */ 7138 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 7139 if (IS_ERR(handle)) { 7140 err = PTR_ERR(handle); 7141 goto out_unlock; 7142 } 7143 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 7144 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 7145 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 7146 err = ext4_mark_inode_dirty(handle, inode); 7147 ext4_journal_stop(handle); 7148 out_unlock: 7149 inode_unlock(inode); 7150 out_put: 7151 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 7152 iput(inode); 7153 return err; 7154 out: 7155 return dquot_quota_off(sb, type); 7156 } 7157 7158 /* Read data from quotafile - avoid pagecache and such because we cannot afford 7159 * acquiring the locks... As quota files are never truncated and quota code 7160 * itself serializes the operations (and no one else should touch the files) 7161 * we don't have to be afraid of races */ 7162 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 7163 size_t len, loff_t off) 7164 { 7165 struct inode *inode = sb_dqopt(sb)->files[type]; 7166 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7167 int offset = off & (sb->s_blocksize - 1); 7168 int tocopy; 7169 size_t toread; 7170 struct buffer_head *bh; 7171 loff_t i_size = i_size_read(inode); 7172 7173 if (off > i_size) 7174 return 0; 7175 if (off+len > i_size) 7176 len = i_size-off; 7177 toread = len; 7178 while (toread > 0) { 7179 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 7180 bh = ext4_bread(NULL, inode, blk, 0); 7181 if (IS_ERR(bh)) 7182 return PTR_ERR(bh); 7183 if (!bh) /* A hole? */ 7184 memset(data, 0, tocopy); 7185 else 7186 memcpy(data, bh->b_data+offset, tocopy); 7187 brelse(bh); 7188 offset = 0; 7189 toread -= tocopy; 7190 data += tocopy; 7191 blk++; 7192 } 7193 return len; 7194 } 7195 7196 /* Write to quotafile (we know the transaction is already started and has 7197 * enough credits) */ 7198 static ssize_t ext4_quota_write(struct super_block *sb, int type, 7199 const char *data, size_t len, loff_t off) 7200 { 7201 struct inode *inode = sb_dqopt(sb)->files[type]; 7202 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 7203 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 7204 int retries = 0; 7205 struct buffer_head *bh; 7206 handle_t *handle = journal_current_handle(); 7207 7208 if (!handle) { 7209 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7210 " cancelled because transaction is not started", 7211 (unsigned long long)off, (unsigned long long)len); 7212 return -EIO; 7213 } 7214 /* 7215 * Since we account only one data block in transaction credits, 7216 * then it is impossible to cross a block boundary. 7217 */ 7218 if (sb->s_blocksize - offset < len) { 7219 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 7220 " cancelled because not block aligned", 7221 (unsigned long long)off, (unsigned long long)len); 7222 return -EIO; 7223 } 7224 7225 do { 7226 bh = ext4_bread(handle, inode, blk, 7227 EXT4_GET_BLOCKS_CREATE | 7228 EXT4_GET_BLOCKS_METADATA_NOFAIL); 7229 } while (PTR_ERR(bh) == -ENOSPC && 7230 ext4_should_retry_alloc(inode->i_sb, &retries)); 7231 if (IS_ERR(bh)) 7232 return PTR_ERR(bh); 7233 if (!bh) 7234 goto out; 7235 BUFFER_TRACE(bh, "get write access"); 7236 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 7237 if (err) { 7238 brelse(bh); 7239 return err; 7240 } 7241 lock_buffer(bh); 7242 memcpy(bh->b_data+offset, data, len); 7243 flush_dcache_page(bh->b_page); 7244 unlock_buffer(bh); 7245 err = ext4_handle_dirty_metadata(handle, NULL, bh); 7246 brelse(bh); 7247 out: 7248 if (inode->i_size < off + len) { 7249 i_size_write(inode, off + len); 7250 EXT4_I(inode)->i_disksize = inode->i_size; 7251 err2 = ext4_mark_inode_dirty(handle, inode); 7252 if (unlikely(err2 && !err)) 7253 err = err2; 7254 } 7255 return err ? err : len; 7256 } 7257 #endif 7258 7259 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 7260 static inline void register_as_ext2(void) 7261 { 7262 int err = register_filesystem(&ext2_fs_type); 7263 if (err) 7264 printk(KERN_WARNING 7265 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 7266 } 7267 7268 static inline void unregister_as_ext2(void) 7269 { 7270 unregister_filesystem(&ext2_fs_type); 7271 } 7272 7273 static inline int ext2_feature_set_ok(struct super_block *sb) 7274 { 7275 if (ext4_has_unknown_ext2_incompat_features(sb)) 7276 return 0; 7277 if (sb_rdonly(sb)) 7278 return 1; 7279 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 7280 return 0; 7281 return 1; 7282 } 7283 #else 7284 static inline void register_as_ext2(void) { } 7285 static inline void unregister_as_ext2(void) { } 7286 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 7287 #endif 7288 7289 static inline void register_as_ext3(void) 7290 { 7291 int err = register_filesystem(&ext3_fs_type); 7292 if (err) 7293 printk(KERN_WARNING 7294 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 7295 } 7296 7297 static inline void unregister_as_ext3(void) 7298 { 7299 unregister_filesystem(&ext3_fs_type); 7300 } 7301 7302 static inline int ext3_feature_set_ok(struct super_block *sb) 7303 { 7304 if (ext4_has_unknown_ext3_incompat_features(sb)) 7305 return 0; 7306 if (!ext4_has_feature_journal(sb)) 7307 return 0; 7308 if (sb_rdonly(sb)) 7309 return 1; 7310 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 7311 return 0; 7312 return 1; 7313 } 7314 7315 static void ext4_kill_sb(struct super_block *sb) 7316 { 7317 struct ext4_sb_info *sbi = EXT4_SB(sb); 7318 struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL; 7319 7320 kill_block_super(sb); 7321 7322 if (bdev_file) 7323 bdev_fput(bdev_file); 7324 } 7325 7326 static struct file_system_type ext4_fs_type = { 7327 .owner = THIS_MODULE, 7328 .name = "ext4", 7329 .init_fs_context = ext4_init_fs_context, 7330 .parameters = ext4_param_specs, 7331 .kill_sb = ext4_kill_sb, 7332 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 7333 }; 7334 MODULE_ALIAS_FS("ext4"); 7335 7336 /* Shared across all ext4 file systems */ 7337 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 7338 7339 static int __init ext4_init_fs(void) 7340 { 7341 int i, err; 7342 7343 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 7344 ext4_li_info = NULL; 7345 7346 /* Build-time check for flags consistency */ 7347 ext4_check_flag_values(); 7348 7349 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 7350 init_waitqueue_head(&ext4__ioend_wq[i]); 7351 7352 err = ext4_init_es(); 7353 if (err) 7354 return err; 7355 7356 err = ext4_init_pending(); 7357 if (err) 7358 goto out7; 7359 7360 err = ext4_init_post_read_processing(); 7361 if (err) 7362 goto out6; 7363 7364 err = ext4_init_pageio(); 7365 if (err) 7366 goto out5; 7367 7368 err = ext4_init_system_zone(); 7369 if (err) 7370 goto out4; 7371 7372 err = ext4_init_sysfs(); 7373 if (err) 7374 goto out3; 7375 7376 err = ext4_init_mballoc(); 7377 if (err) 7378 goto out2; 7379 err = init_inodecache(); 7380 if (err) 7381 goto out1; 7382 7383 err = ext4_fc_init_dentry_cache(); 7384 if (err) 7385 goto out05; 7386 7387 register_as_ext3(); 7388 register_as_ext2(); 7389 err = register_filesystem(&ext4_fs_type); 7390 if (err) 7391 goto out; 7392 7393 return 0; 7394 out: 7395 unregister_as_ext2(); 7396 unregister_as_ext3(); 7397 ext4_fc_destroy_dentry_cache(); 7398 out05: 7399 destroy_inodecache(); 7400 out1: 7401 ext4_exit_mballoc(); 7402 out2: 7403 ext4_exit_sysfs(); 7404 out3: 7405 ext4_exit_system_zone(); 7406 out4: 7407 ext4_exit_pageio(); 7408 out5: 7409 ext4_exit_post_read_processing(); 7410 out6: 7411 ext4_exit_pending(); 7412 out7: 7413 ext4_exit_es(); 7414 7415 return err; 7416 } 7417 7418 static void __exit ext4_exit_fs(void) 7419 { 7420 ext4_destroy_lazyinit_thread(); 7421 unregister_as_ext2(); 7422 unregister_as_ext3(); 7423 unregister_filesystem(&ext4_fs_type); 7424 ext4_fc_destroy_dentry_cache(); 7425 destroy_inodecache(); 7426 ext4_exit_mballoc(); 7427 ext4_exit_sysfs(); 7428 ext4_exit_system_zone(); 7429 ext4_exit_pageio(); 7430 ext4_exit_post_read_processing(); 7431 ext4_exit_es(); 7432 ext4_exit_pending(); 7433 } 7434 7435 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 7436 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 7437 MODULE_LICENSE("GPL"); 7438 MODULE_SOFTDEP("pre: crc32c"); 7439 module_init(ext4_init_fs) 7440 module_exit(ext4_exit_fs) 7441
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.