~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/checkpoint.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * fs/f2fs/checkpoint.c
  4  *
  5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6  *             http://www.samsung.com/
  7  */
  8 #include <linux/fs.h>
  9 #include <linux/bio.h>
 10 #include <linux/mpage.h>
 11 #include <linux/writeback.h>
 12 #include <linux/blkdev.h>
 13 #include <linux/f2fs_fs.h>
 14 #include <linux/pagevec.h>
 15 #include <linux/swap.h>
 16 #include <linux/kthread.h>
 17 
 18 #include "f2fs.h"
 19 #include "node.h"
 20 #include "segment.h"
 21 #include "iostat.h"
 22 #include <trace/events/f2fs.h>
 23 
 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
 25 
 26 static struct kmem_cache *ino_entry_slab;
 27 struct kmem_cache *f2fs_inode_entry_slab;
 28 
 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
 30                                                 unsigned char reason)
 31 {
 32         f2fs_build_fault_attr(sbi, 0, 0);
 33         if (!end_io)
 34                 f2fs_flush_merged_writes(sbi);
 35         f2fs_handle_critical_error(sbi, reason, end_io);
 36 }
 37 
 38 /*
 39  * We guarantee no failure on the returned page.
 40  */
 41 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 42 {
 43         struct address_space *mapping = META_MAPPING(sbi);
 44         struct page *page;
 45 repeat:
 46         page = f2fs_grab_cache_page(mapping, index, false);
 47         if (!page) {
 48                 cond_resched();
 49                 goto repeat;
 50         }
 51         f2fs_wait_on_page_writeback(page, META, true, true);
 52         if (!PageUptodate(page))
 53                 SetPageUptodate(page);
 54         return page;
 55 }
 56 
 57 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
 58                                                         bool is_meta)
 59 {
 60         struct address_space *mapping = META_MAPPING(sbi);
 61         struct page *page;
 62         struct f2fs_io_info fio = {
 63                 .sbi = sbi,
 64                 .type = META,
 65                 .op = REQ_OP_READ,
 66                 .op_flags = REQ_META | REQ_PRIO,
 67                 .old_blkaddr = index,
 68                 .new_blkaddr = index,
 69                 .encrypted_page = NULL,
 70                 .is_por = !is_meta ? 1 : 0,
 71         };
 72         int err;
 73 
 74         if (unlikely(!is_meta))
 75                 fio.op_flags &= ~REQ_META;
 76 repeat:
 77         page = f2fs_grab_cache_page(mapping, index, false);
 78         if (!page) {
 79                 cond_resched();
 80                 goto repeat;
 81         }
 82         if (PageUptodate(page))
 83                 goto out;
 84 
 85         fio.page = page;
 86 
 87         err = f2fs_submit_page_bio(&fio);
 88         if (err) {
 89                 f2fs_put_page(page, 1);
 90                 return ERR_PTR(err);
 91         }
 92 
 93         f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
 94 
 95         lock_page(page);
 96         if (unlikely(page->mapping != mapping)) {
 97                 f2fs_put_page(page, 1);
 98                 goto repeat;
 99         }
100 
101         if (unlikely(!PageUptodate(page))) {
102                 f2fs_handle_page_eio(sbi, page->index, META);
103                 f2fs_put_page(page, 1);
104                 return ERR_PTR(-EIO);
105         }
106 out:
107         return page;
108 }
109 
110 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
111 {
112         return __get_meta_page(sbi, index, true);
113 }
114 
115 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117         struct page *page;
118         int count = 0;
119 
120 retry:
121         page = __get_meta_page(sbi, index, true);
122         if (IS_ERR(page)) {
123                 if (PTR_ERR(page) == -EIO &&
124                                 ++count <= DEFAULT_RETRY_IO_COUNT)
125                         goto retry;
126                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
127         }
128         return page;
129 }
130 
131 /* for POR only */
132 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
133 {
134         return __get_meta_page(sbi, index, false);
135 }
136 
137 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
138                                                         int type)
139 {
140         struct seg_entry *se;
141         unsigned int segno, offset;
142         bool exist;
143 
144         if (type == DATA_GENERIC)
145                 return true;
146 
147         segno = GET_SEGNO(sbi, blkaddr);
148         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
149         se = get_seg_entry(sbi, segno);
150 
151         exist = f2fs_test_bit(offset, se->cur_valid_map);
152 
153         /* skip data, if we already have an error in checkpoint. */
154         if (unlikely(f2fs_cp_error(sbi)))
155                 return exist;
156 
157         if ((exist && type == DATA_GENERIC_ENHANCE_UPDATE) ||
158                 (!exist && type == DATA_GENERIC_ENHANCE))
159                 goto out_err;
160         if (!exist && type != DATA_GENERIC_ENHANCE_UPDATE)
161                 goto out_handle;
162         return exist;
163 
164 out_err:
165         f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
166                  blkaddr, exist);
167         set_sbi_flag(sbi, SBI_NEED_FSCK);
168         dump_stack();
169 out_handle:
170         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
171         return exist;
172 }
173 
174 static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
175                                         block_t blkaddr, int type)
176 {
177         switch (type) {
178         case META_NAT:
179                 break;
180         case META_SIT:
181                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
182                         goto check_only;
183                 break;
184         case META_SSA:
185                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
186                         blkaddr < SM_I(sbi)->ssa_blkaddr))
187                         goto check_only;
188                 break;
189         case META_CP:
190                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
191                         blkaddr < __start_cp_addr(sbi)))
192                         goto check_only;
193                 break;
194         case META_POR:
195                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
196                         blkaddr < MAIN_BLKADDR(sbi)))
197                         goto check_only;
198                 break;
199         case DATA_GENERIC:
200         case DATA_GENERIC_ENHANCE:
201         case DATA_GENERIC_ENHANCE_READ:
202         case DATA_GENERIC_ENHANCE_UPDATE:
203                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
204                                 blkaddr < MAIN_BLKADDR(sbi))) {
205 
206                         /* Skip to emit an error message. */
207                         if (unlikely(f2fs_cp_error(sbi)))
208                                 return false;
209 
210                         f2fs_warn(sbi, "access invalid blkaddr:%u",
211                                   blkaddr);
212                         set_sbi_flag(sbi, SBI_NEED_FSCK);
213                         dump_stack();
214                         goto err;
215                 } else {
216                         return __is_bitmap_valid(sbi, blkaddr, type);
217                 }
218                 break;
219         case META_GENERIC:
220                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
221                         blkaddr >= MAIN_BLKADDR(sbi)))
222                         goto err;
223                 break;
224         default:
225                 BUG();
226         }
227 
228         return true;
229 err:
230         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
231 check_only:
232         return false;
233 }
234 
235 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
236                                         block_t blkaddr, int type)
237 {
238         if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY))
239                 return false;
240         return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
241 }
242 
243 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
244                                         block_t blkaddr, int type)
245 {
246         return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
247 }
248 
249 /*
250  * Readahead CP/NAT/SIT/SSA/POR pages
251  */
252 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
253                                                         int type, bool sync)
254 {
255         struct page *page;
256         block_t blkno = start;
257         struct f2fs_io_info fio = {
258                 .sbi = sbi,
259                 .type = META,
260                 .op = REQ_OP_READ,
261                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
262                 .encrypted_page = NULL,
263                 .in_list = 0,
264                 .is_por = (type == META_POR) ? 1 : 0,
265         };
266         struct blk_plug plug;
267         int err;
268 
269         if (unlikely(type == META_POR))
270                 fio.op_flags &= ~REQ_META;
271 
272         blk_start_plug(&plug);
273         for (; nrpages-- > 0; blkno++) {
274 
275                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
276                         goto out;
277 
278                 switch (type) {
279                 case META_NAT:
280                         if (unlikely(blkno >=
281                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
282                                 blkno = 0;
283                         /* get nat block addr */
284                         fio.new_blkaddr = current_nat_addr(sbi,
285                                         blkno * NAT_ENTRY_PER_BLOCK);
286                         break;
287                 case META_SIT:
288                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
289                                 goto out;
290                         /* get sit block addr */
291                         fio.new_blkaddr = current_sit_addr(sbi,
292                                         blkno * SIT_ENTRY_PER_BLOCK);
293                         break;
294                 case META_SSA:
295                 case META_CP:
296                 case META_POR:
297                         fio.new_blkaddr = blkno;
298                         break;
299                 default:
300                         BUG();
301                 }
302 
303                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
304                                                 fio.new_blkaddr, false);
305                 if (!page)
306                         continue;
307                 if (PageUptodate(page)) {
308                         f2fs_put_page(page, 1);
309                         continue;
310                 }
311 
312                 fio.page = page;
313                 err = f2fs_submit_page_bio(&fio);
314                 f2fs_put_page(page, err ? 1 : 0);
315 
316                 if (!err)
317                         f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
318                                                         F2FS_BLKSIZE);
319         }
320 out:
321         blk_finish_plug(&plug);
322         return blkno - start;
323 }
324 
325 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
326                                                         unsigned int ra_blocks)
327 {
328         struct page *page;
329         bool readahead = false;
330 
331         if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
332                 return;
333 
334         page = find_get_page(META_MAPPING(sbi), index);
335         if (!page || !PageUptodate(page))
336                 readahead = true;
337         f2fs_put_page(page, 0);
338 
339         if (readahead)
340                 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
341 }
342 
343 static int __f2fs_write_meta_page(struct page *page,
344                                 struct writeback_control *wbc,
345                                 enum iostat_type io_type)
346 {
347         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
348 
349         trace_f2fs_writepage(page_folio(page), META);
350 
351         if (unlikely(f2fs_cp_error(sbi))) {
352                 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
353                         ClearPageUptodate(page);
354                         dec_page_count(sbi, F2FS_DIRTY_META);
355                         unlock_page(page);
356                         return 0;
357                 }
358                 goto redirty_out;
359         }
360         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
361                 goto redirty_out;
362         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
363                 goto redirty_out;
364 
365         f2fs_do_write_meta_page(sbi, page, io_type);
366         dec_page_count(sbi, F2FS_DIRTY_META);
367 
368         if (wbc->for_reclaim)
369                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
370 
371         unlock_page(page);
372 
373         if (unlikely(f2fs_cp_error(sbi)))
374                 f2fs_submit_merged_write(sbi, META);
375 
376         return 0;
377 
378 redirty_out:
379         redirty_page_for_writepage(wbc, page);
380         return AOP_WRITEPAGE_ACTIVATE;
381 }
382 
383 static int f2fs_write_meta_page(struct page *page,
384                                 struct writeback_control *wbc)
385 {
386         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
387 }
388 
389 static int f2fs_write_meta_pages(struct address_space *mapping,
390                                 struct writeback_control *wbc)
391 {
392         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
393         long diff, written;
394 
395         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
396                 goto skip_write;
397 
398         /* collect a number of dirty meta pages and write together */
399         if (wbc->sync_mode != WB_SYNC_ALL &&
400                         get_pages(sbi, F2FS_DIRTY_META) <
401                                         nr_pages_to_skip(sbi, META))
402                 goto skip_write;
403 
404         /* if locked failed, cp will flush dirty pages instead */
405         if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
406                 goto skip_write;
407 
408         trace_f2fs_writepages(mapping->host, wbc, META);
409         diff = nr_pages_to_write(sbi, META, wbc);
410         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
411         f2fs_up_write(&sbi->cp_global_sem);
412         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
413         return 0;
414 
415 skip_write:
416         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
417         trace_f2fs_writepages(mapping->host, wbc, META);
418         return 0;
419 }
420 
421 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
422                                 long nr_to_write, enum iostat_type io_type)
423 {
424         struct address_space *mapping = META_MAPPING(sbi);
425         pgoff_t index = 0, prev = ULONG_MAX;
426         struct folio_batch fbatch;
427         long nwritten = 0;
428         int nr_folios;
429         struct writeback_control wbc = {
430                 .for_reclaim = 0,
431         };
432         struct blk_plug plug;
433 
434         folio_batch_init(&fbatch);
435 
436         blk_start_plug(&plug);
437 
438         while ((nr_folios = filemap_get_folios_tag(mapping, &index,
439                                         (pgoff_t)-1,
440                                         PAGECACHE_TAG_DIRTY, &fbatch))) {
441                 int i;
442 
443                 for (i = 0; i < nr_folios; i++) {
444                         struct folio *folio = fbatch.folios[i];
445 
446                         if (nr_to_write != LONG_MAX && i != 0 &&
447                                         folio->index != prev +
448                                         folio_nr_pages(fbatch.folios[i-1])) {
449                                 folio_batch_release(&fbatch);
450                                 goto stop;
451                         }
452 
453                         folio_lock(folio);
454 
455                         if (unlikely(folio->mapping != mapping)) {
456 continue_unlock:
457                                 folio_unlock(folio);
458                                 continue;
459                         }
460                         if (!folio_test_dirty(folio)) {
461                                 /* someone wrote it for us */
462                                 goto continue_unlock;
463                         }
464 
465                         f2fs_wait_on_page_writeback(&folio->page, META,
466                                         true, true);
467 
468                         if (!folio_clear_dirty_for_io(folio))
469                                 goto continue_unlock;
470 
471                         if (__f2fs_write_meta_page(&folio->page, &wbc,
472                                                 io_type)) {
473                                 folio_unlock(folio);
474                                 break;
475                         }
476                         nwritten += folio_nr_pages(folio);
477                         prev = folio->index;
478                         if (unlikely(nwritten >= nr_to_write))
479                                 break;
480                 }
481                 folio_batch_release(&fbatch);
482                 cond_resched();
483         }
484 stop:
485         if (nwritten)
486                 f2fs_submit_merged_write(sbi, type);
487 
488         blk_finish_plug(&plug);
489 
490         return nwritten;
491 }
492 
493 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
494                 struct folio *folio)
495 {
496         trace_f2fs_set_page_dirty(folio, META);
497 
498         if (!folio_test_uptodate(folio))
499                 folio_mark_uptodate(folio);
500         if (filemap_dirty_folio(mapping, folio)) {
501                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
502                 set_page_private_reference(&folio->page);
503                 return true;
504         }
505         return false;
506 }
507 
508 const struct address_space_operations f2fs_meta_aops = {
509         .writepage      = f2fs_write_meta_page,
510         .writepages     = f2fs_write_meta_pages,
511         .dirty_folio    = f2fs_dirty_meta_folio,
512         .invalidate_folio = f2fs_invalidate_folio,
513         .release_folio  = f2fs_release_folio,
514         .migrate_folio  = filemap_migrate_folio,
515 };
516 
517 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
518                                                 unsigned int devidx, int type)
519 {
520         struct inode_management *im = &sbi->im[type];
521         struct ino_entry *e = NULL, *new = NULL;
522 
523         if (type == FLUSH_INO) {
524                 rcu_read_lock();
525                 e = radix_tree_lookup(&im->ino_root, ino);
526                 rcu_read_unlock();
527         }
528 
529 retry:
530         if (!e)
531                 new = f2fs_kmem_cache_alloc(ino_entry_slab,
532                                                 GFP_NOFS, true, NULL);
533 
534         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
535 
536         spin_lock(&im->ino_lock);
537         e = radix_tree_lookup(&im->ino_root, ino);
538         if (!e) {
539                 if (!new) {
540                         spin_unlock(&im->ino_lock);
541                         radix_tree_preload_end();
542                         goto retry;
543                 }
544                 e = new;
545                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
546                         f2fs_bug_on(sbi, 1);
547 
548                 memset(e, 0, sizeof(struct ino_entry));
549                 e->ino = ino;
550 
551                 list_add_tail(&e->list, &im->ino_list);
552                 if (type != ORPHAN_INO)
553                         im->ino_num++;
554         }
555 
556         if (type == FLUSH_INO)
557                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
558 
559         spin_unlock(&im->ino_lock);
560         radix_tree_preload_end();
561 
562         if (new && e != new)
563                 kmem_cache_free(ino_entry_slab, new);
564 }
565 
566 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
567 {
568         struct inode_management *im = &sbi->im[type];
569         struct ino_entry *e;
570 
571         spin_lock(&im->ino_lock);
572         e = radix_tree_lookup(&im->ino_root, ino);
573         if (e) {
574                 list_del(&e->list);
575                 radix_tree_delete(&im->ino_root, ino);
576                 im->ino_num--;
577                 spin_unlock(&im->ino_lock);
578                 kmem_cache_free(ino_entry_slab, e);
579                 return;
580         }
581         spin_unlock(&im->ino_lock);
582 }
583 
584 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
585 {
586         /* add new dirty ino entry into list */
587         __add_ino_entry(sbi, ino, 0, type);
588 }
589 
590 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
591 {
592         /* remove dirty ino entry from list */
593         __remove_ino_entry(sbi, ino, type);
594 }
595 
596 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
597 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
598 {
599         struct inode_management *im = &sbi->im[mode];
600         struct ino_entry *e;
601 
602         spin_lock(&im->ino_lock);
603         e = radix_tree_lookup(&im->ino_root, ino);
604         spin_unlock(&im->ino_lock);
605         return e ? true : false;
606 }
607 
608 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
609 {
610         struct ino_entry *e, *tmp;
611         int i;
612 
613         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
614                 struct inode_management *im = &sbi->im[i];
615 
616                 spin_lock(&im->ino_lock);
617                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
618                         list_del(&e->list);
619                         radix_tree_delete(&im->ino_root, e->ino);
620                         kmem_cache_free(ino_entry_slab, e);
621                         im->ino_num--;
622                 }
623                 spin_unlock(&im->ino_lock);
624         }
625 }
626 
627 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
628                                         unsigned int devidx, int type)
629 {
630         __add_ino_entry(sbi, ino, devidx, type);
631 }
632 
633 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
634                                         unsigned int devidx, int type)
635 {
636         struct inode_management *im = &sbi->im[type];
637         struct ino_entry *e;
638         bool is_dirty = false;
639 
640         spin_lock(&im->ino_lock);
641         e = radix_tree_lookup(&im->ino_root, ino);
642         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
643                 is_dirty = true;
644         spin_unlock(&im->ino_lock);
645         return is_dirty;
646 }
647 
648 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
649 {
650         struct inode_management *im = &sbi->im[ORPHAN_INO];
651         int err = 0;
652 
653         spin_lock(&im->ino_lock);
654 
655         if (time_to_inject(sbi, FAULT_ORPHAN)) {
656                 spin_unlock(&im->ino_lock);
657                 return -ENOSPC;
658         }
659 
660         if (unlikely(im->ino_num >= sbi->max_orphans))
661                 err = -ENOSPC;
662         else
663                 im->ino_num++;
664         spin_unlock(&im->ino_lock);
665 
666         return err;
667 }
668 
669 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
670 {
671         struct inode_management *im = &sbi->im[ORPHAN_INO];
672 
673         spin_lock(&im->ino_lock);
674         f2fs_bug_on(sbi, im->ino_num == 0);
675         im->ino_num--;
676         spin_unlock(&im->ino_lock);
677 }
678 
679 void f2fs_add_orphan_inode(struct inode *inode)
680 {
681         /* add new orphan ino entry into list */
682         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
683         f2fs_update_inode_page(inode);
684 }
685 
686 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
687 {
688         /* remove orphan entry from orphan list */
689         __remove_ino_entry(sbi, ino, ORPHAN_INO);
690 }
691 
692 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
693 {
694         struct inode *inode;
695         struct node_info ni;
696         int err;
697 
698         inode = f2fs_iget_retry(sbi->sb, ino);
699         if (IS_ERR(inode)) {
700                 /*
701                  * there should be a bug that we can't find the entry
702                  * to orphan inode.
703                  */
704                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
705                 return PTR_ERR(inode);
706         }
707 
708         err = f2fs_dquot_initialize(inode);
709         if (err) {
710                 iput(inode);
711                 goto err_out;
712         }
713 
714         clear_nlink(inode);
715 
716         /* truncate all the data during iput */
717         iput(inode);
718 
719         err = f2fs_get_node_info(sbi, ino, &ni, false);
720         if (err)
721                 goto err_out;
722 
723         /* ENOMEM was fully retried in f2fs_evict_inode. */
724         if (ni.blk_addr != NULL_ADDR) {
725                 err = -EIO;
726                 goto err_out;
727         }
728         return 0;
729 
730 err_out:
731         set_sbi_flag(sbi, SBI_NEED_FSCK);
732         f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
733                   __func__, ino);
734         return err;
735 }
736 
737 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
738 {
739         block_t start_blk, orphan_blocks, i, j;
740         int err = 0;
741 
742         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
743                 return 0;
744 
745         if (f2fs_hw_is_readonly(sbi)) {
746                 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
747                 return 0;
748         }
749 
750         if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE))
751                 f2fs_info(sbi, "orphan cleanup on readonly fs");
752 
753         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
754         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
755 
756         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
757 
758         for (i = 0; i < orphan_blocks; i++) {
759                 struct page *page;
760                 struct f2fs_orphan_block *orphan_blk;
761 
762                 page = f2fs_get_meta_page(sbi, start_blk + i);
763                 if (IS_ERR(page)) {
764                         err = PTR_ERR(page);
765                         goto out;
766                 }
767 
768                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
769                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
770                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
771 
772                         err = recover_orphan_inode(sbi, ino);
773                         if (err) {
774                                 f2fs_put_page(page, 1);
775                                 goto out;
776                         }
777                 }
778                 f2fs_put_page(page, 1);
779         }
780         /* clear Orphan Flag */
781         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
782 out:
783         set_sbi_flag(sbi, SBI_IS_RECOVERED);
784 
785         return err;
786 }
787 
788 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
789 {
790         struct list_head *head;
791         struct f2fs_orphan_block *orphan_blk = NULL;
792         unsigned int nentries = 0;
793         unsigned short index = 1;
794         unsigned short orphan_blocks;
795         struct page *page = NULL;
796         struct ino_entry *orphan = NULL;
797         struct inode_management *im = &sbi->im[ORPHAN_INO];
798 
799         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
800 
801         /*
802          * we don't need to do spin_lock(&im->ino_lock) here, since all the
803          * orphan inode operations are covered under f2fs_lock_op().
804          * And, spin_lock should be avoided due to page operations below.
805          */
806         head = &im->ino_list;
807 
808         /* loop for each orphan inode entry and write them in journal block */
809         list_for_each_entry(orphan, head, list) {
810                 if (!page) {
811                         page = f2fs_grab_meta_page(sbi, start_blk++);
812                         orphan_blk =
813                                 (struct f2fs_orphan_block *)page_address(page);
814                         memset(orphan_blk, 0, sizeof(*orphan_blk));
815                 }
816 
817                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
818 
819                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
820                         /*
821                          * an orphan block is full of 1020 entries,
822                          * then we need to flush current orphan blocks
823                          * and bring another one in memory
824                          */
825                         orphan_blk->blk_addr = cpu_to_le16(index);
826                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
827                         orphan_blk->entry_count = cpu_to_le32(nentries);
828                         set_page_dirty(page);
829                         f2fs_put_page(page, 1);
830                         index++;
831                         nentries = 0;
832                         page = NULL;
833                 }
834         }
835 
836         if (page) {
837                 orphan_blk->blk_addr = cpu_to_le16(index);
838                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
839                 orphan_blk->entry_count = cpu_to_le32(nentries);
840                 set_page_dirty(page);
841                 f2fs_put_page(page, 1);
842         }
843 }
844 
845 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
846                                                 struct f2fs_checkpoint *ckpt)
847 {
848         unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
849         __u32 chksum;
850 
851         chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
852         if (chksum_ofs < CP_CHKSUM_OFFSET) {
853                 chksum_ofs += sizeof(chksum);
854                 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
855                                                 F2FS_BLKSIZE - chksum_ofs);
856         }
857         return chksum;
858 }
859 
860 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
861                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
862                 unsigned long long *version)
863 {
864         size_t crc_offset = 0;
865         __u32 crc;
866 
867         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
868         if (IS_ERR(*cp_page))
869                 return PTR_ERR(*cp_page);
870 
871         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
872 
873         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
874         if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
875                         crc_offset > CP_CHKSUM_OFFSET) {
876                 f2fs_put_page(*cp_page, 1);
877                 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
878                 return -EINVAL;
879         }
880 
881         crc = f2fs_checkpoint_chksum(sbi, *cp_block);
882         if (crc != cur_cp_crc(*cp_block)) {
883                 f2fs_put_page(*cp_page, 1);
884                 f2fs_warn(sbi, "invalid crc value");
885                 return -EINVAL;
886         }
887 
888         *version = cur_cp_version(*cp_block);
889         return 0;
890 }
891 
892 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
893                                 block_t cp_addr, unsigned long long *version)
894 {
895         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
896         struct f2fs_checkpoint *cp_block = NULL;
897         unsigned long long cur_version = 0, pre_version = 0;
898         unsigned int cp_blocks;
899         int err;
900 
901         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
902                                         &cp_page_1, version);
903         if (err)
904                 return NULL;
905 
906         cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
907 
908         if (cp_blocks > BLKS_PER_SEG(sbi) || cp_blocks <= F2FS_CP_PACKS) {
909                 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
910                           le32_to_cpu(cp_block->cp_pack_total_block_count));
911                 goto invalid_cp;
912         }
913         pre_version = *version;
914 
915         cp_addr += cp_blocks - 1;
916         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
917                                         &cp_page_2, version);
918         if (err)
919                 goto invalid_cp;
920         cur_version = *version;
921 
922         if (cur_version == pre_version) {
923                 *version = cur_version;
924                 f2fs_put_page(cp_page_2, 1);
925                 return cp_page_1;
926         }
927         f2fs_put_page(cp_page_2, 1);
928 invalid_cp:
929         f2fs_put_page(cp_page_1, 1);
930         return NULL;
931 }
932 
933 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
934 {
935         struct f2fs_checkpoint *cp_block;
936         struct f2fs_super_block *fsb = sbi->raw_super;
937         struct page *cp1, *cp2, *cur_page;
938         unsigned long blk_size = sbi->blocksize;
939         unsigned long long cp1_version = 0, cp2_version = 0;
940         unsigned long long cp_start_blk_no;
941         unsigned int cp_blks = 1 + __cp_payload(sbi);
942         block_t cp_blk_no;
943         int i;
944         int err;
945 
946         sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
947                                   GFP_KERNEL);
948         if (!sbi->ckpt)
949                 return -ENOMEM;
950         /*
951          * Finding out valid cp block involves read both
952          * sets( cp pack 1 and cp pack 2)
953          */
954         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
955         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
956 
957         /* The second checkpoint pack should start at the next segment */
958         cp_start_blk_no += ((unsigned long long)1) <<
959                                 le32_to_cpu(fsb->log_blocks_per_seg);
960         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
961 
962         if (cp1 && cp2) {
963                 if (ver_after(cp2_version, cp1_version))
964                         cur_page = cp2;
965                 else
966                         cur_page = cp1;
967         } else if (cp1) {
968                 cur_page = cp1;
969         } else if (cp2) {
970                 cur_page = cp2;
971         } else {
972                 err = -EFSCORRUPTED;
973                 goto fail_no_cp;
974         }
975 
976         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
977         memcpy(sbi->ckpt, cp_block, blk_size);
978 
979         if (cur_page == cp1)
980                 sbi->cur_cp_pack = 1;
981         else
982                 sbi->cur_cp_pack = 2;
983 
984         /* Sanity checking of checkpoint */
985         if (f2fs_sanity_check_ckpt(sbi)) {
986                 err = -EFSCORRUPTED;
987                 goto free_fail_no_cp;
988         }
989 
990         if (cp_blks <= 1)
991                 goto done;
992 
993         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
994         if (cur_page == cp2)
995                 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
996 
997         for (i = 1; i < cp_blks; i++) {
998                 void *sit_bitmap_ptr;
999                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
1000 
1001                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
1002                 if (IS_ERR(cur_page)) {
1003                         err = PTR_ERR(cur_page);
1004                         goto free_fail_no_cp;
1005                 }
1006                 sit_bitmap_ptr = page_address(cur_page);
1007                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
1008                 f2fs_put_page(cur_page, 1);
1009         }
1010 done:
1011         f2fs_put_page(cp1, 1);
1012         f2fs_put_page(cp2, 1);
1013         return 0;
1014 
1015 free_fail_no_cp:
1016         f2fs_put_page(cp1, 1);
1017         f2fs_put_page(cp2, 1);
1018 fail_no_cp:
1019         kvfree(sbi->ckpt);
1020         return err;
1021 }
1022 
1023 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1024 {
1025         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1026         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1027 
1028         if (is_inode_flag_set(inode, flag))
1029                 return;
1030 
1031         set_inode_flag(inode, flag);
1032         list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1033         stat_inc_dirty_inode(sbi, type);
1034 }
1035 
1036 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1037 {
1038         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1039 
1040         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1041                 return;
1042 
1043         list_del_init(&F2FS_I(inode)->dirty_list);
1044         clear_inode_flag(inode, flag);
1045         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1046 }
1047 
1048 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1049 {
1050         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1051         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1052 
1053         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1054                         !S_ISLNK(inode->i_mode))
1055                 return;
1056 
1057         spin_lock(&sbi->inode_lock[type]);
1058         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1059                 __add_dirty_inode(inode, type);
1060         inode_inc_dirty_pages(inode);
1061         spin_unlock(&sbi->inode_lock[type]);
1062 
1063         set_page_private_reference(&folio->page);
1064 }
1065 
1066 void f2fs_remove_dirty_inode(struct inode *inode)
1067 {
1068         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1069         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1070 
1071         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1072                         !S_ISLNK(inode->i_mode))
1073                 return;
1074 
1075         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1076                 return;
1077 
1078         spin_lock(&sbi->inode_lock[type]);
1079         __remove_dirty_inode(inode, type);
1080         spin_unlock(&sbi->inode_lock[type]);
1081 }
1082 
1083 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1084                                                 bool from_cp)
1085 {
1086         struct list_head *head;
1087         struct inode *inode;
1088         struct f2fs_inode_info *fi;
1089         bool is_dir = (type == DIR_INODE);
1090         unsigned long ino = 0;
1091 
1092         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1093                                 get_pages(sbi, is_dir ?
1094                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1095 retry:
1096         if (unlikely(f2fs_cp_error(sbi))) {
1097                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1098                                 get_pages(sbi, is_dir ?
1099                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1100                 return -EIO;
1101         }
1102 
1103         spin_lock(&sbi->inode_lock[type]);
1104 
1105         head = &sbi->inode_list[type];
1106         if (list_empty(head)) {
1107                 spin_unlock(&sbi->inode_lock[type]);
1108                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1109                                 get_pages(sbi, is_dir ?
1110                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1111                 return 0;
1112         }
1113         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1114         inode = igrab(&fi->vfs_inode);
1115         spin_unlock(&sbi->inode_lock[type]);
1116         if (inode) {
1117                 unsigned long cur_ino = inode->i_ino;
1118 
1119                 if (from_cp)
1120                         F2FS_I(inode)->cp_task = current;
1121                 F2FS_I(inode)->wb_task = current;
1122 
1123                 filemap_fdatawrite(inode->i_mapping);
1124 
1125                 F2FS_I(inode)->wb_task = NULL;
1126                 if (from_cp)
1127                         F2FS_I(inode)->cp_task = NULL;
1128 
1129                 iput(inode);
1130                 /* We need to give cpu to another writers. */
1131                 if (ino == cur_ino)
1132                         cond_resched();
1133                 else
1134                         ino = cur_ino;
1135         } else {
1136                 /*
1137                  * We should submit bio, since it exists several
1138                  * writebacking dentry pages in the freeing inode.
1139                  */
1140                 f2fs_submit_merged_write(sbi, DATA);
1141                 cond_resched();
1142         }
1143         goto retry;
1144 }
1145 
1146 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1147 {
1148         struct list_head *head = &sbi->inode_list[DIRTY_META];
1149         struct inode *inode;
1150         struct f2fs_inode_info *fi;
1151         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1152 
1153         while (total--) {
1154                 if (unlikely(f2fs_cp_error(sbi)))
1155                         return -EIO;
1156 
1157                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1158                 if (list_empty(head)) {
1159                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1160                         return 0;
1161                 }
1162                 fi = list_first_entry(head, struct f2fs_inode_info,
1163                                                         gdirty_list);
1164                 inode = igrab(&fi->vfs_inode);
1165                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1166                 if (inode) {
1167                         sync_inode_metadata(inode, 0);
1168 
1169                         /* it's on eviction */
1170                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1171                                 f2fs_update_inode_page(inode);
1172                         iput(inode);
1173                 }
1174         }
1175         return 0;
1176 }
1177 
1178 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1179 {
1180         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1181         struct f2fs_nm_info *nm_i = NM_I(sbi);
1182         nid_t last_nid = nm_i->next_scan_nid;
1183 
1184         next_free_nid(sbi, &last_nid);
1185         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1186         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1187         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1188         ckpt->next_free_nid = cpu_to_le32(last_nid);
1189 
1190         /* update user_block_counts */
1191         sbi->last_valid_block_count = sbi->total_valid_block_count;
1192         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1193         percpu_counter_set(&sbi->rf_node_block_count, 0);
1194 }
1195 
1196 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1197 {
1198         bool ret = false;
1199 
1200         if (!is_journalled_quota(sbi))
1201                 return false;
1202 
1203         if (!f2fs_down_write_trylock(&sbi->quota_sem))
1204                 return true;
1205         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1206                 ret = false;
1207         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1208                 ret = false;
1209         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1210                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1211                 ret = true;
1212         } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1213                 ret = true;
1214         }
1215         f2fs_up_write(&sbi->quota_sem);
1216         return ret;
1217 }
1218 
1219 /*
1220  * Freeze all the FS-operations for checkpoint.
1221  */
1222 static int block_operations(struct f2fs_sb_info *sbi)
1223 {
1224         struct writeback_control wbc = {
1225                 .sync_mode = WB_SYNC_ALL,
1226                 .nr_to_write = LONG_MAX,
1227                 .for_reclaim = 0,
1228         };
1229         int err = 0, cnt = 0;
1230 
1231         /*
1232          * Let's flush inline_data in dirty node pages.
1233          */
1234         f2fs_flush_inline_data(sbi);
1235 
1236 retry_flush_quotas:
1237         f2fs_lock_all(sbi);
1238         if (__need_flush_quota(sbi)) {
1239                 int locked;
1240 
1241                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1242                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1243                         set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1244                         goto retry_flush_dents;
1245                 }
1246                 f2fs_unlock_all(sbi);
1247 
1248                 /* only failed during mount/umount/freeze/quotactl */
1249                 locked = down_read_trylock(&sbi->sb->s_umount);
1250                 f2fs_quota_sync(sbi->sb, -1);
1251                 if (locked)
1252                         up_read(&sbi->sb->s_umount);
1253                 cond_resched();
1254                 goto retry_flush_quotas;
1255         }
1256 
1257 retry_flush_dents:
1258         /* write all the dirty dentry pages */
1259         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1260                 f2fs_unlock_all(sbi);
1261                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1262                 if (err)
1263                         return err;
1264                 cond_resched();
1265                 goto retry_flush_quotas;
1266         }
1267 
1268         /*
1269          * POR: we should ensure that there are no dirty node pages
1270          * until finishing nat/sit flush. inode->i_blocks can be updated.
1271          */
1272         f2fs_down_write(&sbi->node_change);
1273 
1274         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1275                 f2fs_up_write(&sbi->node_change);
1276                 f2fs_unlock_all(sbi);
1277                 err = f2fs_sync_inode_meta(sbi);
1278                 if (err)
1279                         return err;
1280                 cond_resched();
1281                 goto retry_flush_quotas;
1282         }
1283 
1284 retry_flush_nodes:
1285         f2fs_down_write(&sbi->node_write);
1286 
1287         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1288                 f2fs_up_write(&sbi->node_write);
1289                 atomic_inc(&sbi->wb_sync_req[NODE]);
1290                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1291                 atomic_dec(&sbi->wb_sync_req[NODE]);
1292                 if (err) {
1293                         f2fs_up_write(&sbi->node_change);
1294                         f2fs_unlock_all(sbi);
1295                         return err;
1296                 }
1297                 cond_resched();
1298                 goto retry_flush_nodes;
1299         }
1300 
1301         /*
1302          * sbi->node_change is used only for AIO write_begin path which produces
1303          * dirty node blocks and some checkpoint values by block allocation.
1304          */
1305         __prepare_cp_block(sbi);
1306         f2fs_up_write(&sbi->node_change);
1307         return err;
1308 }
1309 
1310 static void unblock_operations(struct f2fs_sb_info *sbi)
1311 {
1312         f2fs_up_write(&sbi->node_write);
1313         f2fs_unlock_all(sbi);
1314 }
1315 
1316 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1317 {
1318         DEFINE_WAIT(wait);
1319 
1320         for (;;) {
1321                 if (!get_pages(sbi, type))
1322                         break;
1323 
1324                 if (unlikely(f2fs_cp_error(sbi) &&
1325                         !is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1326                         break;
1327 
1328                 if (type == F2FS_DIRTY_META)
1329                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1330                                                         FS_CP_META_IO);
1331                 else if (type == F2FS_WB_CP_DATA)
1332                         f2fs_submit_merged_write(sbi, DATA);
1333 
1334                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1335                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1336         }
1337         finish_wait(&sbi->cp_wait, &wait);
1338 }
1339 
1340 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1341 {
1342         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1343         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1344         unsigned long flags;
1345 
1346         if (cpc->reason & CP_UMOUNT) {
1347                 if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1348                         NM_I(sbi)->nat_bits_blocks > BLKS_PER_SEG(sbi)) {
1349                         clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1350                         f2fs_notice(sbi, "Disable nat_bits due to no space");
1351                 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1352                                                 f2fs_nat_bitmap_enabled(sbi)) {
1353                         f2fs_enable_nat_bits(sbi);
1354                         set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1355                         f2fs_notice(sbi, "Rebuild and enable nat_bits");
1356                 }
1357         }
1358 
1359         spin_lock_irqsave(&sbi->cp_lock, flags);
1360 
1361         if (cpc->reason & CP_TRIMMED)
1362                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1363         else
1364                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1365 
1366         if (cpc->reason & CP_UMOUNT)
1367                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1368         else
1369                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1370 
1371         if (cpc->reason & CP_FASTBOOT)
1372                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1373         else
1374                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1375 
1376         if (orphan_num)
1377                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1378         else
1379                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1380 
1381         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1382                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1383 
1384         if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1385                 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1386         else
1387                 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1388 
1389         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1390                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1391         else
1392                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1393 
1394         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1395                 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1396         else
1397                 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1398 
1399         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1400                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1401         else
1402                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1403 
1404         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1405                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1406 
1407         /* set this flag to activate crc|cp_ver for recovery */
1408         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1409         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1410 
1411         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1412 }
1413 
1414 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1415         void *src, block_t blk_addr)
1416 {
1417         struct writeback_control wbc = {
1418                 .for_reclaim = 0,
1419         };
1420 
1421         /*
1422          * filemap_get_folios_tag and lock_page again will take
1423          * some extra time. Therefore, f2fs_update_meta_pages and
1424          * f2fs_sync_meta_pages are combined in this function.
1425          */
1426         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1427         int err;
1428 
1429         f2fs_wait_on_page_writeback(page, META, true, true);
1430 
1431         memcpy(page_address(page), src, PAGE_SIZE);
1432 
1433         set_page_dirty(page);
1434         if (unlikely(!clear_page_dirty_for_io(page)))
1435                 f2fs_bug_on(sbi, 1);
1436 
1437         /* writeout cp pack 2 page */
1438         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1439         if (unlikely(err && f2fs_cp_error(sbi))) {
1440                 f2fs_put_page(page, 1);
1441                 return;
1442         }
1443 
1444         f2fs_bug_on(sbi, err);
1445         f2fs_put_page(page, 0);
1446 
1447         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1448         f2fs_submit_merged_write(sbi, META_FLUSH);
1449 }
1450 
1451 static inline u64 get_sectors_written(struct block_device *bdev)
1452 {
1453         return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1454 }
1455 
1456 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1457 {
1458         if (f2fs_is_multi_device(sbi)) {
1459                 u64 sectors = 0;
1460                 int i;
1461 
1462                 for (i = 0; i < sbi->s_ndevs; i++)
1463                         sectors += get_sectors_written(FDEV(i).bdev);
1464 
1465                 return sectors;
1466         }
1467 
1468         return get_sectors_written(sbi->sb->s_bdev);
1469 }
1470 
1471 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1472 {
1473         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1474         struct f2fs_nm_info *nm_i = NM_I(sbi);
1475         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1476         block_t start_blk;
1477         unsigned int data_sum_blocks, orphan_blocks;
1478         __u32 crc32 = 0;
1479         int i;
1480         int cp_payload_blks = __cp_payload(sbi);
1481         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1482         u64 kbytes_written;
1483         int err;
1484 
1485         /* Flush all the NAT/SIT pages */
1486         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1487 
1488         /* start to update checkpoint, cp ver is already updated previously */
1489         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1490         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1491         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1492                 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE);
1493 
1494                 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
1495                 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1496                 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
1497         }
1498         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1499                 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA);
1500 
1501                 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
1502                 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1503                 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
1504         }
1505 
1506         /* 2 cp + n data seg summary + orphan inode blocks */
1507         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1508         spin_lock_irqsave(&sbi->cp_lock, flags);
1509         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1510                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1511         else
1512                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1513         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1514 
1515         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1516         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1517                         orphan_blocks);
1518 
1519         if (__remain_node_summaries(cpc->reason))
1520                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1521                                 cp_payload_blks + data_sum_blocks +
1522                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1523         else
1524                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1525                                 cp_payload_blks + data_sum_blocks +
1526                                 orphan_blocks);
1527 
1528         /* update ckpt flag for checkpoint */
1529         update_ckpt_flags(sbi, cpc);
1530 
1531         /* update SIT/NAT bitmap */
1532         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1533         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1534 
1535         crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1536         *((__le32 *)((unsigned char *)ckpt +
1537                                 le32_to_cpu(ckpt->checksum_offset)))
1538                                 = cpu_to_le32(crc32);
1539 
1540         start_blk = __start_cp_next_addr(sbi);
1541 
1542         /* write nat bits */
1543         if ((cpc->reason & CP_UMOUNT) &&
1544                         is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1545                 __u64 cp_ver = cur_cp_version(ckpt);
1546                 block_t blk;
1547 
1548                 cp_ver |= ((__u64)crc32 << 32);
1549                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1550 
1551                 blk = start_blk + BLKS_PER_SEG(sbi) - nm_i->nat_bits_blocks;
1552                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1553                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1554                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1555         }
1556 
1557         /* write out checkpoint buffer at block 0 */
1558         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1559 
1560         for (i = 1; i < 1 + cp_payload_blks; i++)
1561                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1562                                                         start_blk++);
1563 
1564         if (orphan_num) {
1565                 write_orphan_inodes(sbi, start_blk);
1566                 start_blk += orphan_blocks;
1567         }
1568 
1569         f2fs_write_data_summaries(sbi, start_blk);
1570         start_blk += data_sum_blocks;
1571 
1572         /* Record write statistics in the hot node summary */
1573         kbytes_written = sbi->kbytes_written;
1574         kbytes_written += (f2fs_get_sectors_written(sbi) -
1575                                 sbi->sectors_written_start) >> 1;
1576         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1577 
1578         if (__remain_node_summaries(cpc->reason)) {
1579                 f2fs_write_node_summaries(sbi, start_blk);
1580                 start_blk += NR_CURSEG_NODE_TYPE;
1581         }
1582 
1583         /* Here, we have one bio having CP pack except cp pack 2 page */
1584         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1585         /* Wait for all dirty meta pages to be submitted for IO */
1586         f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1587 
1588         /* wait for previous submitted meta pages writeback */
1589         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1590 
1591         /* flush all device cache */
1592         err = f2fs_flush_device_cache(sbi);
1593         if (err)
1594                 return err;
1595 
1596         /* barrier and flush checkpoint cp pack 2 page if it can */
1597         commit_checkpoint(sbi, ckpt, start_blk);
1598         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1599 
1600         /*
1601          * invalidate intermediate page cache borrowed from meta inode which are
1602          * used for migration of encrypted, verity or compressed inode's blocks.
1603          */
1604         if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1605                 f2fs_sb_has_compression(sbi))
1606                 f2fs_bug_on(sbi,
1607                         invalidate_inode_pages2_range(META_MAPPING(sbi),
1608                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1));
1609 
1610         f2fs_release_ino_entry(sbi, false);
1611 
1612         f2fs_reset_fsync_node_info(sbi);
1613 
1614         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1615         clear_sbi_flag(sbi, SBI_NEED_CP);
1616         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1617 
1618         spin_lock(&sbi->stat_lock);
1619         sbi->unusable_block_count = 0;
1620         spin_unlock(&sbi->stat_lock);
1621 
1622         __set_cp_next_pack(sbi);
1623 
1624         /*
1625          * redirty superblock if metadata like node page or inode cache is
1626          * updated during writing checkpoint.
1627          */
1628         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1629                         get_pages(sbi, F2FS_DIRTY_IMETA))
1630                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1631 
1632         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1633 
1634         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1635 }
1636 
1637 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1638 {
1639         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1640         unsigned long long ckpt_ver;
1641         int err = 0;
1642 
1643         if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1644                 return -EROFS;
1645 
1646         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1647                 if (cpc->reason != CP_PAUSE)
1648                         return 0;
1649                 f2fs_warn(sbi, "Start checkpoint disabled!");
1650         }
1651         if (cpc->reason != CP_RESIZE)
1652                 f2fs_down_write(&sbi->cp_global_sem);
1653 
1654         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1655                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1656                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1657                 goto out;
1658         if (unlikely(f2fs_cp_error(sbi))) {
1659                 err = -EIO;
1660                 goto out;
1661         }
1662 
1663         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1664 
1665         err = block_operations(sbi);
1666         if (err)
1667                 goto out;
1668 
1669         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1670 
1671         f2fs_flush_merged_writes(sbi);
1672 
1673         /* this is the case of multiple fstrims without any changes */
1674         if (cpc->reason & CP_DISCARD) {
1675                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1676                         unblock_operations(sbi);
1677                         goto out;
1678                 }
1679 
1680                 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1681                                 SIT_I(sbi)->dirty_sentries == 0 &&
1682                                 prefree_segments(sbi) == 0) {
1683                         f2fs_flush_sit_entries(sbi, cpc);
1684                         f2fs_clear_prefree_segments(sbi, cpc);
1685                         unblock_operations(sbi);
1686                         goto out;
1687                 }
1688         }
1689 
1690         /*
1691          * update checkpoint pack index
1692          * Increase the version number so that
1693          * SIT entries and seg summaries are written at correct place
1694          */
1695         ckpt_ver = cur_cp_version(ckpt);
1696         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1697 
1698         /* write cached NAT/SIT entries to NAT/SIT area */
1699         err = f2fs_flush_nat_entries(sbi, cpc);
1700         if (err) {
1701                 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1702                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1703                 goto stop;
1704         }
1705 
1706         f2fs_flush_sit_entries(sbi, cpc);
1707 
1708         /* save inmem log status */
1709         f2fs_save_inmem_curseg(sbi);
1710 
1711         err = do_checkpoint(sbi, cpc);
1712         if (err) {
1713                 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1714                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1715                 f2fs_release_discard_addrs(sbi);
1716         } else {
1717                 f2fs_clear_prefree_segments(sbi, cpc);
1718         }
1719 
1720         f2fs_restore_inmem_curseg(sbi);
1721         f2fs_reinit_atgc_curseg(sbi);
1722         stat_inc_cp_count(sbi);
1723 stop:
1724         unblock_operations(sbi);
1725 
1726         if (cpc->reason & CP_RECOVERY)
1727                 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1728 
1729         /* update CP_TIME to trigger checkpoint periodically */
1730         f2fs_update_time(sbi, CP_TIME);
1731         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1732 out:
1733         if (cpc->reason != CP_RESIZE)
1734                 f2fs_up_write(&sbi->cp_global_sem);
1735         return err;
1736 }
1737 
1738 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1739 {
1740         int i;
1741 
1742         for (i = 0; i < MAX_INO_ENTRY; i++) {
1743                 struct inode_management *im = &sbi->im[i];
1744 
1745                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1746                 spin_lock_init(&im->ino_lock);
1747                 INIT_LIST_HEAD(&im->ino_list);
1748                 im->ino_num = 0;
1749         }
1750 
1751         sbi->max_orphans = (BLKS_PER_SEG(sbi) - F2FS_CP_PACKS -
1752                         NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1753                         F2FS_ORPHANS_PER_BLOCK;
1754 }
1755 
1756 int __init f2fs_create_checkpoint_caches(void)
1757 {
1758         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1759                         sizeof(struct ino_entry));
1760         if (!ino_entry_slab)
1761                 return -ENOMEM;
1762         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1763                         sizeof(struct inode_entry));
1764         if (!f2fs_inode_entry_slab) {
1765                 kmem_cache_destroy(ino_entry_slab);
1766                 return -ENOMEM;
1767         }
1768         return 0;
1769 }
1770 
1771 void f2fs_destroy_checkpoint_caches(void)
1772 {
1773         kmem_cache_destroy(ino_entry_slab);
1774         kmem_cache_destroy(f2fs_inode_entry_slab);
1775 }
1776 
1777 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1778 {
1779         struct cp_control cpc = { .reason = CP_SYNC, };
1780         int err;
1781 
1782         f2fs_down_write(&sbi->gc_lock);
1783         err = f2fs_write_checkpoint(sbi, &cpc);
1784         f2fs_up_write(&sbi->gc_lock);
1785 
1786         return err;
1787 }
1788 
1789 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1790 {
1791         struct ckpt_req_control *cprc = &sbi->cprc_info;
1792         struct ckpt_req *req, *next;
1793         struct llist_node *dispatch_list;
1794         u64 sum_diff = 0, diff, count = 0;
1795         int ret;
1796 
1797         dispatch_list = llist_del_all(&cprc->issue_list);
1798         if (!dispatch_list)
1799                 return;
1800         dispatch_list = llist_reverse_order(dispatch_list);
1801 
1802         ret = __write_checkpoint_sync(sbi);
1803         atomic_inc(&cprc->issued_ckpt);
1804 
1805         llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1806                 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1807                 req->ret = ret;
1808                 complete(&req->wait);
1809 
1810                 sum_diff += diff;
1811                 count++;
1812         }
1813         atomic_sub(count, &cprc->queued_ckpt);
1814         atomic_add(count, &cprc->total_ckpt);
1815 
1816         spin_lock(&cprc->stat_lock);
1817         cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1818         if (cprc->peak_time < cprc->cur_time)
1819                 cprc->peak_time = cprc->cur_time;
1820         spin_unlock(&cprc->stat_lock);
1821 }
1822 
1823 static int issue_checkpoint_thread(void *data)
1824 {
1825         struct f2fs_sb_info *sbi = data;
1826         struct ckpt_req_control *cprc = &sbi->cprc_info;
1827         wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1828 repeat:
1829         if (kthread_should_stop())
1830                 return 0;
1831 
1832         if (!llist_empty(&cprc->issue_list))
1833                 __checkpoint_and_complete_reqs(sbi);
1834 
1835         wait_event_interruptible(*q,
1836                 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1837         goto repeat;
1838 }
1839 
1840 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1841                 struct ckpt_req *wait_req)
1842 {
1843         struct ckpt_req_control *cprc = &sbi->cprc_info;
1844 
1845         if (!llist_empty(&cprc->issue_list)) {
1846                 __checkpoint_and_complete_reqs(sbi);
1847         } else {
1848                 /* already dispatched by issue_checkpoint_thread */
1849                 if (wait_req)
1850                         wait_for_completion(&wait_req->wait);
1851         }
1852 }
1853 
1854 static void init_ckpt_req(struct ckpt_req *req)
1855 {
1856         memset(req, 0, sizeof(struct ckpt_req));
1857 
1858         init_completion(&req->wait);
1859         req->queue_time = ktime_get();
1860 }
1861 
1862 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1863 {
1864         struct ckpt_req_control *cprc = &sbi->cprc_info;
1865         struct ckpt_req req;
1866         struct cp_control cpc;
1867 
1868         cpc.reason = __get_cp_reason(sbi);
1869         if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1870                 int ret;
1871 
1872                 f2fs_down_write(&sbi->gc_lock);
1873                 ret = f2fs_write_checkpoint(sbi, &cpc);
1874                 f2fs_up_write(&sbi->gc_lock);
1875 
1876                 return ret;
1877         }
1878 
1879         if (!cprc->f2fs_issue_ckpt)
1880                 return __write_checkpoint_sync(sbi);
1881 
1882         init_ckpt_req(&req);
1883 
1884         llist_add(&req.llnode, &cprc->issue_list);
1885         atomic_inc(&cprc->queued_ckpt);
1886 
1887         /*
1888          * update issue_list before we wake up issue_checkpoint thread,
1889          * this smp_mb() pairs with another barrier in ___wait_event(),
1890          * see more details in comments of waitqueue_active().
1891          */
1892         smp_mb();
1893 
1894         if (waitqueue_active(&cprc->ckpt_wait_queue))
1895                 wake_up(&cprc->ckpt_wait_queue);
1896 
1897         if (cprc->f2fs_issue_ckpt)
1898                 wait_for_completion(&req.wait);
1899         else
1900                 flush_remained_ckpt_reqs(sbi, &req);
1901 
1902         return req.ret;
1903 }
1904 
1905 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1906 {
1907         dev_t dev = sbi->sb->s_bdev->bd_dev;
1908         struct ckpt_req_control *cprc = &sbi->cprc_info;
1909 
1910         if (cprc->f2fs_issue_ckpt)
1911                 return 0;
1912 
1913         cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1914                         "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1915         if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1916                 int err = PTR_ERR(cprc->f2fs_issue_ckpt);
1917 
1918                 cprc->f2fs_issue_ckpt = NULL;
1919                 return err;
1920         }
1921 
1922         set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1923 
1924         return 0;
1925 }
1926 
1927 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1928 {
1929         struct ckpt_req_control *cprc = &sbi->cprc_info;
1930         struct task_struct *ckpt_task;
1931 
1932         if (!cprc->f2fs_issue_ckpt)
1933                 return;
1934 
1935         ckpt_task = cprc->f2fs_issue_ckpt;
1936         cprc->f2fs_issue_ckpt = NULL;
1937         kthread_stop(ckpt_task);
1938 
1939         f2fs_flush_ckpt_thread(sbi);
1940 }
1941 
1942 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1943 {
1944         struct ckpt_req_control *cprc = &sbi->cprc_info;
1945 
1946         flush_remained_ckpt_reqs(sbi, NULL);
1947 
1948         /* Let's wait for the previous dispatched checkpoint. */
1949         while (atomic_read(&cprc->queued_ckpt))
1950                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1951 }
1952 
1953 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1954 {
1955         struct ckpt_req_control *cprc = &sbi->cprc_info;
1956 
1957         atomic_set(&cprc->issued_ckpt, 0);
1958         atomic_set(&cprc->total_ckpt, 0);
1959         atomic_set(&cprc->queued_ckpt, 0);
1960         cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1961         init_waitqueue_head(&cprc->ckpt_wait_queue);
1962         init_llist_head(&cprc->issue_list);
1963         spin_lock_init(&cprc->stat_lock);
1964 }
1965 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php