1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/sched/mm.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "iostat.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 38 __func__, nid); 39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); 40 return -EFSCORRUPTED; 41 } 42 return 0; 43 } 44 45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 46 { 47 struct f2fs_nm_info *nm_i = NM_I(sbi); 48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 49 struct sysinfo val; 50 unsigned long avail_ram; 51 unsigned long mem_size = 0; 52 bool res = false; 53 54 if (!nm_i) 55 return true; 56 57 si_meminfo(&val); 58 59 /* only uses low memory */ 60 avail_ram = val.totalram - val.totalhigh; 61 62 /* 63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively 64 */ 65 if (type == FREE_NIDS) { 66 mem_size = (nm_i->nid_cnt[FREE_NID] * 67 sizeof(struct free_nid)) >> PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 69 } else if (type == NAT_ENTRIES) { 70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] * 71 sizeof(struct nat_entry)) >> PAGE_SHIFT; 72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 73 if (excess_cached_nats(sbi)) 74 res = false; 75 } else if (type == DIRTY_DENTS) { 76 if (sbi->sb->s_bdi->wb.dirty_exceeded) 77 return false; 78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 80 } else if (type == INO_ENTRIES) { 81 int i; 82 83 for (i = 0; i < MAX_INO_ENTRY; i++) 84 mem_size += sbi->im[i].ino_num * 85 sizeof(struct ino_entry); 86 mem_size >>= PAGE_SHIFT; 87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) { 89 enum extent_type etype = type == READ_EXTENT_CACHE ? 90 EX_READ : EX_BLOCK_AGE; 91 struct extent_tree_info *eti = &sbi->extent_tree[etype]; 92 93 mem_size = (atomic_read(&eti->total_ext_tree) * 94 sizeof(struct extent_tree) + 95 atomic_read(&eti->total_ext_node) * 96 sizeof(struct extent_node)) >> PAGE_SHIFT; 97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 98 } else if (type == DISCARD_CACHE) { 99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) * 100 sizeof(struct discard_cmd)) >> PAGE_SHIFT; 101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100); 102 } else if (type == COMPRESS_PAGE) { 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 unsigned long free_ram = val.freeram; 105 106 /* 107 * free memory is lower than watermark or cached page count 108 * exceed threshold, deny caching compress page. 109 */ 110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) && 111 (COMPRESS_MAPPING(sbi)->nrpages < 112 free_ram * sbi->compress_percent / 100); 113 #else 114 res = false; 115 #endif 116 } else { 117 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 118 return true; 119 } 120 return res; 121 } 122 123 static void clear_node_page_dirty(struct page *page) 124 { 125 if (PageDirty(page)) { 126 f2fs_clear_page_cache_dirty_tag(page); 127 clear_page_dirty_for_io(page); 128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 129 } 130 ClearPageUptodate(page); 131 } 132 133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 134 { 135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid)); 136 } 137 138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 139 { 140 struct page *src_page; 141 struct page *dst_page; 142 pgoff_t dst_off; 143 void *src_addr; 144 void *dst_addr; 145 struct f2fs_nm_info *nm_i = NM_I(sbi); 146 147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 148 149 /* get current nat block page with lock */ 150 src_page = get_current_nat_page(sbi, nid); 151 if (IS_ERR(src_page)) 152 return src_page; 153 dst_page = f2fs_grab_meta_page(sbi, dst_off); 154 f2fs_bug_on(sbi, PageDirty(src_page)); 155 156 src_addr = page_address(src_page); 157 dst_addr = page_address(dst_page); 158 memcpy(dst_addr, src_addr, PAGE_SIZE); 159 set_page_dirty(dst_page); 160 f2fs_put_page(src_page, 1); 161 162 set_to_next_nat(nm_i, nid); 163 164 return dst_page; 165 } 166 167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi, 168 nid_t nid, bool no_fail) 169 { 170 struct nat_entry *new; 171 172 new = f2fs_kmem_cache_alloc(nat_entry_slab, 173 GFP_F2FS_ZERO, no_fail, sbi); 174 if (new) { 175 nat_set_nid(new, nid); 176 nat_reset_flag(new); 177 } 178 return new; 179 } 180 181 static void __free_nat_entry(struct nat_entry *e) 182 { 183 kmem_cache_free(nat_entry_slab, e); 184 } 185 186 /* must be locked by nat_tree_lock */ 187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 189 { 190 if (no_fail) 191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 193 return NULL; 194 195 if (raw_ne) 196 node_info_from_raw_nat(&ne->ni, raw_ne); 197 198 spin_lock(&nm_i->nat_list_lock); 199 list_add_tail(&ne->list, &nm_i->nat_entries); 200 spin_unlock(&nm_i->nat_list_lock); 201 202 nm_i->nat_cnt[TOTAL_NAT]++; 203 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 204 return ne; 205 } 206 207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 208 { 209 struct nat_entry *ne; 210 211 ne = radix_tree_lookup(&nm_i->nat_root, n); 212 213 /* for recent accessed nat entry, move it to tail of lru list */ 214 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 215 spin_lock(&nm_i->nat_list_lock); 216 if (!list_empty(&ne->list)) 217 list_move_tail(&ne->list, &nm_i->nat_entries); 218 spin_unlock(&nm_i->nat_list_lock); 219 } 220 221 return ne; 222 } 223 224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 225 nid_t start, unsigned int nr, struct nat_entry **ep) 226 { 227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 228 } 229 230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 231 { 232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 233 nm_i->nat_cnt[TOTAL_NAT]--; 234 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 235 __free_nat_entry(e); 236 } 237 238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 239 struct nat_entry *ne) 240 { 241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 242 struct nat_entry_set *head; 243 244 head = radix_tree_lookup(&nm_i->nat_set_root, set); 245 if (!head) { 246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, 247 GFP_NOFS, true, NULL); 248 249 INIT_LIST_HEAD(&head->entry_list); 250 INIT_LIST_HEAD(&head->set_list); 251 head->set = set; 252 head->entry_cnt = 0; 253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 254 } 255 return head; 256 } 257 258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 259 struct nat_entry *ne) 260 { 261 struct nat_entry_set *head; 262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 263 264 if (!new_ne) 265 head = __grab_nat_entry_set(nm_i, ne); 266 267 /* 268 * update entry_cnt in below condition: 269 * 1. update NEW_ADDR to valid block address; 270 * 2. update old block address to new one; 271 */ 272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 273 !get_nat_flag(ne, IS_DIRTY))) 274 head->entry_cnt++; 275 276 set_nat_flag(ne, IS_PREALLOC, new_ne); 277 278 if (get_nat_flag(ne, IS_DIRTY)) 279 goto refresh_list; 280 281 nm_i->nat_cnt[DIRTY_NAT]++; 282 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 283 set_nat_flag(ne, IS_DIRTY, true); 284 refresh_list: 285 spin_lock(&nm_i->nat_list_lock); 286 if (new_ne) 287 list_del_init(&ne->list); 288 else 289 list_move_tail(&ne->list, &head->entry_list); 290 spin_unlock(&nm_i->nat_list_lock); 291 } 292 293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 294 struct nat_entry_set *set, struct nat_entry *ne) 295 { 296 spin_lock(&nm_i->nat_list_lock); 297 list_move_tail(&ne->list, &nm_i->nat_entries); 298 spin_unlock(&nm_i->nat_list_lock); 299 300 set_nat_flag(ne, IS_DIRTY, false); 301 set->entry_cnt--; 302 nm_i->nat_cnt[DIRTY_NAT]--; 303 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 304 } 305 306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 307 nid_t start, unsigned int nr, struct nat_entry_set **ep) 308 { 309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 310 start, nr); 311 } 312 313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 314 { 315 return NODE_MAPPING(sbi) == page->mapping && 316 IS_DNODE(page) && is_cold_node(page); 317 } 318 319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 320 { 321 spin_lock_init(&sbi->fsync_node_lock); 322 INIT_LIST_HEAD(&sbi->fsync_node_list); 323 sbi->fsync_seg_id = 0; 324 sbi->fsync_node_num = 0; 325 } 326 327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 328 struct page *page) 329 { 330 struct fsync_node_entry *fn; 331 unsigned long flags; 332 unsigned int seq_id; 333 334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, 335 GFP_NOFS, true, NULL); 336 337 get_page(page); 338 fn->page = page; 339 INIT_LIST_HEAD(&fn->list); 340 341 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 342 list_add_tail(&fn->list, &sbi->fsync_node_list); 343 fn->seq_id = sbi->fsync_seg_id++; 344 seq_id = fn->seq_id; 345 sbi->fsync_node_num++; 346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 347 348 return seq_id; 349 } 350 351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 352 { 353 struct fsync_node_entry *fn; 354 unsigned long flags; 355 356 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 357 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 358 if (fn->page == page) { 359 list_del(&fn->list); 360 sbi->fsync_node_num--; 361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 362 kmem_cache_free(fsync_node_entry_slab, fn); 363 put_page(page); 364 return; 365 } 366 } 367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 368 f2fs_bug_on(sbi, 1); 369 } 370 371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 372 { 373 unsigned long flags; 374 375 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 376 sbi->fsync_seg_id = 0; 377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 378 } 379 380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 381 { 382 struct f2fs_nm_info *nm_i = NM_I(sbi); 383 struct nat_entry *e; 384 bool need = false; 385 386 f2fs_down_read(&nm_i->nat_tree_lock); 387 e = __lookup_nat_cache(nm_i, nid); 388 if (e) { 389 if (!get_nat_flag(e, IS_CHECKPOINTED) && 390 !get_nat_flag(e, HAS_FSYNCED_INODE)) 391 need = true; 392 } 393 f2fs_up_read(&nm_i->nat_tree_lock); 394 return need; 395 } 396 397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 398 { 399 struct f2fs_nm_info *nm_i = NM_I(sbi); 400 struct nat_entry *e; 401 bool is_cp = true; 402 403 f2fs_down_read(&nm_i->nat_tree_lock); 404 e = __lookup_nat_cache(nm_i, nid); 405 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 406 is_cp = false; 407 f2fs_up_read(&nm_i->nat_tree_lock); 408 return is_cp; 409 } 410 411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 412 { 413 struct f2fs_nm_info *nm_i = NM_I(sbi); 414 struct nat_entry *e; 415 bool need_update = true; 416 417 f2fs_down_read(&nm_i->nat_tree_lock); 418 e = __lookup_nat_cache(nm_i, ino); 419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 420 (get_nat_flag(e, IS_CHECKPOINTED) || 421 get_nat_flag(e, HAS_FSYNCED_INODE))) 422 need_update = false; 423 f2fs_up_read(&nm_i->nat_tree_lock); 424 return need_update; 425 } 426 427 /* must be locked by nat_tree_lock */ 428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 429 struct f2fs_nat_entry *ne) 430 { 431 struct f2fs_nm_info *nm_i = NM_I(sbi); 432 struct nat_entry *new, *e; 433 434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */ 435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem)) 436 return; 437 438 new = __alloc_nat_entry(sbi, nid, false); 439 if (!new) 440 return; 441 442 f2fs_down_write(&nm_i->nat_tree_lock); 443 e = __lookup_nat_cache(nm_i, nid); 444 if (!e) 445 e = __init_nat_entry(nm_i, new, ne, false); 446 else 447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 448 nat_get_blkaddr(e) != 449 le32_to_cpu(ne->block_addr) || 450 nat_get_version(e) != ne->version); 451 f2fs_up_write(&nm_i->nat_tree_lock); 452 if (e != new) 453 __free_nat_entry(new); 454 } 455 456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 457 block_t new_blkaddr, bool fsync_done) 458 { 459 struct f2fs_nm_info *nm_i = NM_I(sbi); 460 struct nat_entry *e; 461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true); 462 463 f2fs_down_write(&nm_i->nat_tree_lock); 464 e = __lookup_nat_cache(nm_i, ni->nid); 465 if (!e) { 466 e = __init_nat_entry(nm_i, new, NULL, true); 467 copy_node_info(&e->ni, ni); 468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 469 } else if (new_blkaddr == NEW_ADDR) { 470 /* 471 * when nid is reallocated, 472 * previous nat entry can be remained in nat cache. 473 * So, reinitialize it with new information. 474 */ 475 copy_node_info(&e->ni, ni); 476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 477 } 478 /* let's free early to reduce memory consumption */ 479 if (e != new) 480 __free_nat_entry(new); 481 482 /* sanity check */ 483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 485 new_blkaddr == NULL_ADDR); 486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 487 new_blkaddr == NEW_ADDR); 488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 489 new_blkaddr == NEW_ADDR); 490 491 /* increment version no as node is removed */ 492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 493 unsigned char version = nat_get_version(e); 494 495 nat_set_version(e, inc_node_version(version)); 496 } 497 498 /* change address */ 499 nat_set_blkaddr(e, new_blkaddr); 500 if (!__is_valid_data_blkaddr(new_blkaddr)) 501 set_nat_flag(e, IS_CHECKPOINTED, false); 502 __set_nat_cache_dirty(nm_i, e); 503 504 /* update fsync_mark if its inode nat entry is still alive */ 505 if (ni->nid != ni->ino) 506 e = __lookup_nat_cache(nm_i, ni->ino); 507 if (e) { 508 if (fsync_done && ni->nid == ni->ino) 509 set_nat_flag(e, HAS_FSYNCED_INODE, true); 510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 511 } 512 f2fs_up_write(&nm_i->nat_tree_lock); 513 } 514 515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 516 { 517 struct f2fs_nm_info *nm_i = NM_I(sbi); 518 int nr = nr_shrink; 519 520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock)) 521 return 0; 522 523 spin_lock(&nm_i->nat_list_lock); 524 while (nr_shrink) { 525 struct nat_entry *ne; 526 527 if (list_empty(&nm_i->nat_entries)) 528 break; 529 530 ne = list_first_entry(&nm_i->nat_entries, 531 struct nat_entry, list); 532 list_del(&ne->list); 533 spin_unlock(&nm_i->nat_list_lock); 534 535 __del_from_nat_cache(nm_i, ne); 536 nr_shrink--; 537 538 spin_lock(&nm_i->nat_list_lock); 539 } 540 spin_unlock(&nm_i->nat_list_lock); 541 542 f2fs_up_write(&nm_i->nat_tree_lock); 543 return nr - nr_shrink; 544 } 545 546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 547 struct node_info *ni, bool checkpoint_context) 548 { 549 struct f2fs_nm_info *nm_i = NM_I(sbi); 550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 551 struct f2fs_journal *journal = curseg->journal; 552 nid_t start_nid = START_NID(nid); 553 struct f2fs_nat_block *nat_blk; 554 struct page *page = NULL; 555 struct f2fs_nat_entry ne; 556 struct nat_entry *e; 557 pgoff_t index; 558 block_t blkaddr; 559 int i; 560 561 ni->nid = nid; 562 retry: 563 /* Check nat cache */ 564 f2fs_down_read(&nm_i->nat_tree_lock); 565 e = __lookup_nat_cache(nm_i, nid); 566 if (e) { 567 ni->ino = nat_get_ino(e); 568 ni->blk_addr = nat_get_blkaddr(e); 569 ni->version = nat_get_version(e); 570 f2fs_up_read(&nm_i->nat_tree_lock); 571 return 0; 572 } 573 574 /* 575 * Check current segment summary by trying to grab journal_rwsem first. 576 * This sem is on the critical path on the checkpoint requiring the above 577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here 578 * while not bothering checkpoint. 579 */ 580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) { 581 down_read(&curseg->journal_rwsem); 582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) || 583 !down_read_trylock(&curseg->journal_rwsem)) { 584 f2fs_up_read(&nm_i->nat_tree_lock); 585 goto retry; 586 } 587 588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 589 if (i >= 0) { 590 ne = nat_in_journal(journal, i); 591 node_info_from_raw_nat(ni, &ne); 592 } 593 up_read(&curseg->journal_rwsem); 594 if (i >= 0) { 595 f2fs_up_read(&nm_i->nat_tree_lock); 596 goto cache; 597 } 598 599 /* Fill node_info from nat page */ 600 index = current_nat_addr(sbi, nid); 601 f2fs_up_read(&nm_i->nat_tree_lock); 602 603 page = f2fs_get_meta_page(sbi, index); 604 if (IS_ERR(page)) 605 return PTR_ERR(page); 606 607 nat_blk = (struct f2fs_nat_block *)page_address(page); 608 ne = nat_blk->entries[nid - start_nid]; 609 node_info_from_raw_nat(ni, &ne); 610 f2fs_put_page(page, 1); 611 cache: 612 blkaddr = le32_to_cpu(ne.block_addr); 613 if (__is_valid_data_blkaddr(blkaddr) && 614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 615 return -EFAULT; 616 617 /* cache nat entry */ 618 cache_nat_entry(sbi, nid, &ne); 619 return 0; 620 } 621 622 /* 623 * readahead MAX_RA_NODE number of node pages. 624 */ 625 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 626 { 627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 628 struct blk_plug plug; 629 int i, end; 630 nid_t nid; 631 632 blk_start_plug(&plug); 633 634 /* Then, try readahead for siblings of the desired node */ 635 end = start + n; 636 end = min(end, (int)NIDS_PER_BLOCK); 637 for (i = start; i < end; i++) { 638 nid = get_nid(parent, i, false); 639 f2fs_ra_node_page(sbi, nid); 640 } 641 642 blk_finish_plug(&plug); 643 } 644 645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 646 { 647 const long direct_index = ADDRS_PER_INODE(dn->inode); 648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 651 int cur_level = dn->cur_level; 652 int max_level = dn->max_level; 653 pgoff_t base = 0; 654 655 if (!dn->max_level) 656 return pgofs + 1; 657 658 while (max_level-- > cur_level) 659 skipped_unit *= NIDS_PER_BLOCK; 660 661 switch (dn->max_level) { 662 case 3: 663 base += 2 * indirect_blks; 664 fallthrough; 665 case 2: 666 base += 2 * direct_blks; 667 fallthrough; 668 case 1: 669 base += direct_index; 670 break; 671 default: 672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 673 } 674 675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 676 } 677 678 /* 679 * The maximum depth is four. 680 * Offset[0] will have raw inode offset. 681 */ 682 static int get_node_path(struct inode *inode, long block, 683 int offset[4], unsigned int noffset[4]) 684 { 685 const long direct_index = ADDRS_PER_INODE(inode); 686 const long direct_blks = ADDRS_PER_BLOCK(inode); 687 const long dptrs_per_blk = NIDS_PER_BLOCK; 688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 690 int n = 0; 691 int level = 0; 692 693 noffset[0] = 0; 694 695 if (block < direct_index) { 696 offset[n] = block; 697 goto got; 698 } 699 block -= direct_index; 700 if (block < direct_blks) { 701 offset[n++] = NODE_DIR1_BLOCK; 702 noffset[n] = 1; 703 offset[n] = block; 704 level = 1; 705 goto got; 706 } 707 block -= direct_blks; 708 if (block < direct_blks) { 709 offset[n++] = NODE_DIR2_BLOCK; 710 noffset[n] = 2; 711 offset[n] = block; 712 level = 1; 713 goto got; 714 } 715 block -= direct_blks; 716 if (block < indirect_blks) { 717 offset[n++] = NODE_IND1_BLOCK; 718 noffset[n] = 3; 719 offset[n++] = block / direct_blks; 720 noffset[n] = 4 + offset[n - 1]; 721 offset[n] = block % direct_blks; 722 level = 2; 723 goto got; 724 } 725 block -= indirect_blks; 726 if (block < indirect_blks) { 727 offset[n++] = NODE_IND2_BLOCK; 728 noffset[n] = 4 + dptrs_per_blk; 729 offset[n++] = block / direct_blks; 730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 731 offset[n] = block % direct_blks; 732 level = 2; 733 goto got; 734 } 735 block -= indirect_blks; 736 if (block < dindirect_blks) { 737 offset[n++] = NODE_DIND_BLOCK; 738 noffset[n] = 5 + (dptrs_per_blk * 2); 739 offset[n++] = block / indirect_blks; 740 noffset[n] = 6 + (dptrs_per_blk * 2) + 741 offset[n - 1] * (dptrs_per_blk + 1); 742 offset[n++] = (block / direct_blks) % dptrs_per_blk; 743 noffset[n] = 7 + (dptrs_per_blk * 2) + 744 offset[n - 2] * (dptrs_per_blk + 1) + 745 offset[n - 1]; 746 offset[n] = block % direct_blks; 747 level = 3; 748 goto got; 749 } else { 750 return -E2BIG; 751 } 752 got: 753 return level; 754 } 755 756 /* 757 * Caller should call f2fs_put_dnode(dn). 758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 760 */ 761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 762 { 763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 764 struct page *npage[4]; 765 struct page *parent = NULL; 766 int offset[4]; 767 unsigned int noffset[4]; 768 nid_t nids[4]; 769 int level, i = 0; 770 int err = 0; 771 772 level = get_node_path(dn->inode, index, offset, noffset); 773 if (level < 0) 774 return level; 775 776 nids[0] = dn->inode->i_ino; 777 npage[0] = dn->inode_page; 778 779 if (!npage[0]) { 780 npage[0] = f2fs_get_node_page(sbi, nids[0]); 781 if (IS_ERR(npage[0])) 782 return PTR_ERR(npage[0]); 783 } 784 785 /* if inline_data is set, should not report any block indices */ 786 if (f2fs_has_inline_data(dn->inode) && index) { 787 err = -ENOENT; 788 f2fs_put_page(npage[0], 1); 789 goto release_out; 790 } 791 792 parent = npage[0]; 793 if (level != 0) 794 nids[1] = get_nid(parent, offset[0], true); 795 dn->inode_page = npage[0]; 796 dn->inode_page_locked = true; 797 798 /* get indirect or direct nodes */ 799 for (i = 1; i <= level; i++) { 800 bool done = false; 801 802 if (!nids[i] && mode == ALLOC_NODE) { 803 /* alloc new node */ 804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 805 err = -ENOSPC; 806 goto release_pages; 807 } 808 809 dn->nid = nids[i]; 810 npage[i] = f2fs_new_node_page(dn, noffset[i]); 811 if (IS_ERR(npage[i])) { 812 f2fs_alloc_nid_failed(sbi, nids[i]); 813 err = PTR_ERR(npage[i]); 814 goto release_pages; 815 } 816 817 set_nid(parent, offset[i - 1], nids[i], i == 1); 818 f2fs_alloc_nid_done(sbi, nids[i]); 819 done = true; 820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 822 if (IS_ERR(npage[i])) { 823 err = PTR_ERR(npage[i]); 824 goto release_pages; 825 } 826 done = true; 827 } 828 if (i == 1) { 829 dn->inode_page_locked = false; 830 unlock_page(parent); 831 } else { 832 f2fs_put_page(parent, 1); 833 } 834 835 if (!done) { 836 npage[i] = f2fs_get_node_page(sbi, nids[i]); 837 if (IS_ERR(npage[i])) { 838 err = PTR_ERR(npage[i]); 839 f2fs_put_page(npage[0], 0); 840 goto release_out; 841 } 842 } 843 if (i < level) { 844 parent = npage[i]; 845 nids[i + 1] = get_nid(parent, offset[i], false); 846 } 847 } 848 dn->nid = nids[level]; 849 dn->ofs_in_node = offset[level]; 850 dn->node_page = npage[level]; 851 dn->data_blkaddr = f2fs_data_blkaddr(dn); 852 853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) && 854 f2fs_sb_has_readonly(sbi)) { 855 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 856 unsigned int ofs_in_node = dn->ofs_in_node; 857 pgoff_t fofs = index; 858 unsigned int c_len; 859 block_t blkaddr; 860 861 /* should align fofs and ofs_in_node to cluster_size */ 862 if (fofs % cluster_size) { 863 fofs = round_down(fofs, cluster_size); 864 ofs_in_node = round_down(ofs_in_node, cluster_size); 865 } 866 867 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node); 868 if (!c_len) 869 goto out; 870 871 blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node); 872 if (blkaddr == COMPRESS_ADDR) 873 blkaddr = data_blkaddr(dn->inode, dn->node_page, 874 ofs_in_node + 1); 875 876 f2fs_update_read_extent_tree_range_compressed(dn->inode, 877 fofs, blkaddr, cluster_size, c_len); 878 } 879 out: 880 return 0; 881 882 release_pages: 883 f2fs_put_page(parent, 1); 884 if (i > 1) 885 f2fs_put_page(npage[0], 0); 886 release_out: 887 dn->inode_page = NULL; 888 dn->node_page = NULL; 889 if (err == -ENOENT) { 890 dn->cur_level = i; 891 dn->max_level = level; 892 dn->ofs_in_node = offset[level]; 893 } 894 return err; 895 } 896 897 static int truncate_node(struct dnode_of_data *dn) 898 { 899 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 900 struct node_info ni; 901 int err; 902 pgoff_t index; 903 904 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 905 if (err) 906 return err; 907 908 /* Deallocate node address */ 909 f2fs_invalidate_blocks(sbi, ni.blk_addr); 910 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 911 set_node_addr(sbi, &ni, NULL_ADDR, false); 912 913 if (dn->nid == dn->inode->i_ino) { 914 f2fs_remove_orphan_inode(sbi, dn->nid); 915 dec_valid_inode_count(sbi); 916 f2fs_inode_synced(dn->inode); 917 } 918 919 clear_node_page_dirty(dn->node_page); 920 set_sbi_flag(sbi, SBI_IS_DIRTY); 921 922 index = dn->node_page->index; 923 f2fs_put_page(dn->node_page, 1); 924 925 invalidate_mapping_pages(NODE_MAPPING(sbi), 926 index, index); 927 928 dn->node_page = NULL; 929 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 930 931 return 0; 932 } 933 934 static int truncate_dnode(struct dnode_of_data *dn) 935 { 936 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 937 struct page *page; 938 int err; 939 940 if (dn->nid == 0) 941 return 1; 942 943 /* get direct node */ 944 page = f2fs_get_node_page(sbi, dn->nid); 945 if (PTR_ERR(page) == -ENOENT) 946 return 1; 947 else if (IS_ERR(page)) 948 return PTR_ERR(page); 949 950 if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) { 951 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u", 952 dn->inode->i_ino, dn->nid, ino_of_node(page)); 953 set_sbi_flag(sbi, SBI_NEED_FSCK); 954 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE); 955 f2fs_put_page(page, 1); 956 return -EFSCORRUPTED; 957 } 958 959 /* Make dnode_of_data for parameter */ 960 dn->node_page = page; 961 dn->ofs_in_node = 0; 962 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 963 err = truncate_node(dn); 964 if (err) { 965 f2fs_put_page(page, 1); 966 return err; 967 } 968 969 return 1; 970 } 971 972 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 973 int ofs, int depth) 974 { 975 struct dnode_of_data rdn = *dn; 976 struct page *page; 977 struct f2fs_node *rn; 978 nid_t child_nid; 979 unsigned int child_nofs; 980 int freed = 0; 981 int i, ret; 982 983 if (dn->nid == 0) 984 return NIDS_PER_BLOCK + 1; 985 986 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 987 988 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 989 if (IS_ERR(page)) { 990 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 991 return PTR_ERR(page); 992 } 993 994 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 995 996 rn = F2FS_NODE(page); 997 if (depth < 3) { 998 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 999 child_nid = le32_to_cpu(rn->in.nid[i]); 1000 if (child_nid == 0) 1001 continue; 1002 rdn.nid = child_nid; 1003 ret = truncate_dnode(&rdn); 1004 if (ret < 0) 1005 goto out_err; 1006 if (set_nid(page, i, 0, false)) 1007 dn->node_changed = true; 1008 } 1009 } else { 1010 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 1011 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 1012 child_nid = le32_to_cpu(rn->in.nid[i]); 1013 if (child_nid == 0) { 1014 child_nofs += NIDS_PER_BLOCK + 1; 1015 continue; 1016 } 1017 rdn.nid = child_nid; 1018 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 1019 if (ret == (NIDS_PER_BLOCK + 1)) { 1020 if (set_nid(page, i, 0, false)) 1021 dn->node_changed = true; 1022 child_nofs += ret; 1023 } else if (ret < 0 && ret != -ENOENT) { 1024 goto out_err; 1025 } 1026 } 1027 freed = child_nofs; 1028 } 1029 1030 if (!ofs) { 1031 /* remove current indirect node */ 1032 dn->node_page = page; 1033 ret = truncate_node(dn); 1034 if (ret) 1035 goto out_err; 1036 freed++; 1037 } else { 1038 f2fs_put_page(page, 1); 1039 } 1040 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 1041 return freed; 1042 1043 out_err: 1044 f2fs_put_page(page, 1); 1045 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 1046 return ret; 1047 } 1048 1049 static int truncate_partial_nodes(struct dnode_of_data *dn, 1050 struct f2fs_inode *ri, int *offset, int depth) 1051 { 1052 struct page *pages[2]; 1053 nid_t nid[3]; 1054 nid_t child_nid; 1055 int err = 0; 1056 int i; 1057 int idx = depth - 2; 1058 1059 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1060 if (!nid[0]) 1061 return 0; 1062 1063 /* get indirect nodes in the path */ 1064 for (i = 0; i < idx + 1; i++) { 1065 /* reference count'll be increased */ 1066 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 1067 if (IS_ERR(pages[i])) { 1068 err = PTR_ERR(pages[i]); 1069 idx = i - 1; 1070 goto fail; 1071 } 1072 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 1073 } 1074 1075 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 1076 1077 /* free direct nodes linked to a partial indirect node */ 1078 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 1079 child_nid = get_nid(pages[idx], i, false); 1080 if (!child_nid) 1081 continue; 1082 dn->nid = child_nid; 1083 err = truncate_dnode(dn); 1084 if (err < 0) 1085 goto fail; 1086 if (set_nid(pages[idx], i, 0, false)) 1087 dn->node_changed = true; 1088 } 1089 1090 if (offset[idx + 1] == 0) { 1091 dn->node_page = pages[idx]; 1092 dn->nid = nid[idx]; 1093 err = truncate_node(dn); 1094 if (err) 1095 goto fail; 1096 } else { 1097 f2fs_put_page(pages[idx], 1); 1098 } 1099 offset[idx]++; 1100 offset[idx + 1] = 0; 1101 idx--; 1102 fail: 1103 for (i = idx; i >= 0; i--) 1104 f2fs_put_page(pages[i], 1); 1105 1106 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1107 1108 return err; 1109 } 1110 1111 /* 1112 * All the block addresses of data and nodes should be nullified. 1113 */ 1114 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1115 { 1116 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1117 int err = 0, cont = 1; 1118 int level, offset[4], noffset[4]; 1119 unsigned int nofs = 0; 1120 struct f2fs_inode *ri; 1121 struct dnode_of_data dn; 1122 struct page *page; 1123 1124 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1125 1126 level = get_node_path(inode, from, offset, noffset); 1127 if (level < 0) { 1128 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1129 return level; 1130 } 1131 1132 page = f2fs_get_node_page(sbi, inode->i_ino); 1133 if (IS_ERR(page)) { 1134 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1135 return PTR_ERR(page); 1136 } 1137 1138 set_new_dnode(&dn, inode, page, NULL, 0); 1139 unlock_page(page); 1140 1141 ri = F2FS_INODE(page); 1142 switch (level) { 1143 case 0: 1144 case 1: 1145 nofs = noffset[1]; 1146 break; 1147 case 2: 1148 nofs = noffset[1]; 1149 if (!offset[level - 1]) 1150 goto skip_partial; 1151 err = truncate_partial_nodes(&dn, ri, offset, level); 1152 if (err < 0 && err != -ENOENT) 1153 goto fail; 1154 nofs += 1 + NIDS_PER_BLOCK; 1155 break; 1156 case 3: 1157 nofs = 5 + 2 * NIDS_PER_BLOCK; 1158 if (!offset[level - 1]) 1159 goto skip_partial; 1160 err = truncate_partial_nodes(&dn, ri, offset, level); 1161 if (err < 0 && err != -ENOENT) 1162 goto fail; 1163 break; 1164 default: 1165 BUG(); 1166 } 1167 1168 skip_partial: 1169 while (cont) { 1170 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1171 switch (offset[0]) { 1172 case NODE_DIR1_BLOCK: 1173 case NODE_DIR2_BLOCK: 1174 err = truncate_dnode(&dn); 1175 break; 1176 1177 case NODE_IND1_BLOCK: 1178 case NODE_IND2_BLOCK: 1179 err = truncate_nodes(&dn, nofs, offset[1], 2); 1180 break; 1181 1182 case NODE_DIND_BLOCK: 1183 err = truncate_nodes(&dn, nofs, offset[1], 3); 1184 cont = 0; 1185 break; 1186 1187 default: 1188 BUG(); 1189 } 1190 if (err == -ENOENT) { 1191 set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK); 1192 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1193 f2fs_err_ratelimited(sbi, 1194 "truncate node fail, ino:%lu, nid:%u, " 1195 "offset[0]:%d, offset[1]:%d, nofs:%d", 1196 inode->i_ino, dn.nid, offset[0], 1197 offset[1], nofs); 1198 err = 0; 1199 } 1200 if (err < 0) 1201 goto fail; 1202 if (offset[1] == 0 && 1203 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1204 lock_page(page); 1205 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1206 f2fs_wait_on_page_writeback(page, NODE, true, true); 1207 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1208 set_page_dirty(page); 1209 unlock_page(page); 1210 } 1211 offset[1] = 0; 1212 offset[0]++; 1213 nofs += err; 1214 } 1215 fail: 1216 f2fs_put_page(page, 0); 1217 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1218 return err > 0 ? 0 : err; 1219 } 1220 1221 /* caller must lock inode page */ 1222 int f2fs_truncate_xattr_node(struct inode *inode) 1223 { 1224 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1225 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1226 struct dnode_of_data dn; 1227 struct page *npage; 1228 int err; 1229 1230 if (!nid) 1231 return 0; 1232 1233 npage = f2fs_get_node_page(sbi, nid); 1234 if (IS_ERR(npage)) 1235 return PTR_ERR(npage); 1236 1237 set_new_dnode(&dn, inode, NULL, npage, nid); 1238 err = truncate_node(&dn); 1239 if (err) { 1240 f2fs_put_page(npage, 1); 1241 return err; 1242 } 1243 1244 f2fs_i_xnid_write(inode, 0); 1245 1246 return 0; 1247 } 1248 1249 /* 1250 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1251 * f2fs_unlock_op(). 1252 */ 1253 int f2fs_remove_inode_page(struct inode *inode) 1254 { 1255 struct dnode_of_data dn; 1256 int err; 1257 1258 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1259 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1260 if (err) 1261 return err; 1262 1263 err = f2fs_truncate_xattr_node(inode); 1264 if (err) { 1265 f2fs_put_dnode(&dn); 1266 return err; 1267 } 1268 1269 /* remove potential inline_data blocks */ 1270 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1271 S_ISLNK(inode->i_mode)) 1272 f2fs_truncate_data_blocks_range(&dn, 1); 1273 1274 /* 0 is possible, after f2fs_new_inode() has failed */ 1275 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1276 f2fs_put_dnode(&dn); 1277 return -EIO; 1278 } 1279 1280 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1281 f2fs_warn(F2FS_I_SB(inode), 1282 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1283 inode->i_ino, (unsigned long long)inode->i_blocks); 1284 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1285 } 1286 1287 /* will put inode & node pages */ 1288 err = truncate_node(&dn); 1289 if (err) { 1290 f2fs_put_dnode(&dn); 1291 return err; 1292 } 1293 return 0; 1294 } 1295 1296 struct page *f2fs_new_inode_page(struct inode *inode) 1297 { 1298 struct dnode_of_data dn; 1299 1300 /* allocate inode page for new inode */ 1301 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1302 1303 /* caller should f2fs_put_page(page, 1); */ 1304 return f2fs_new_node_page(&dn, 0); 1305 } 1306 1307 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1308 { 1309 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1310 struct node_info new_ni; 1311 struct page *page; 1312 int err; 1313 1314 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1315 return ERR_PTR(-EPERM); 1316 1317 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1318 if (!page) 1319 return ERR_PTR(-ENOMEM); 1320 1321 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1322 goto fail; 1323 1324 #ifdef CONFIG_F2FS_CHECK_FS 1325 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false); 1326 if (err) { 1327 dec_valid_node_count(sbi, dn->inode, !ofs); 1328 goto fail; 1329 } 1330 if (unlikely(new_ni.blk_addr != NULL_ADDR)) { 1331 err = -EFSCORRUPTED; 1332 dec_valid_node_count(sbi, dn->inode, !ofs); 1333 set_sbi_flag(sbi, SBI_NEED_FSCK); 1334 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1335 goto fail; 1336 } 1337 #endif 1338 new_ni.nid = dn->nid; 1339 new_ni.ino = dn->inode->i_ino; 1340 new_ni.blk_addr = NULL_ADDR; 1341 new_ni.flag = 0; 1342 new_ni.version = 0; 1343 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1344 1345 f2fs_wait_on_page_writeback(page, NODE, true, true); 1346 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1347 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1348 if (!PageUptodate(page)) 1349 SetPageUptodate(page); 1350 if (set_page_dirty(page)) 1351 dn->node_changed = true; 1352 1353 if (f2fs_has_xattr_block(ofs)) 1354 f2fs_i_xnid_write(dn->inode, dn->nid); 1355 1356 if (ofs == 0) 1357 inc_valid_inode_count(sbi); 1358 return page; 1359 fail: 1360 clear_node_page_dirty(page); 1361 f2fs_put_page(page, 1); 1362 return ERR_PTR(err); 1363 } 1364 1365 /* 1366 * Caller should do after getting the following values. 1367 * 0: f2fs_put_page(page, 0) 1368 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1369 */ 1370 static int read_node_page(struct page *page, blk_opf_t op_flags) 1371 { 1372 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1373 struct node_info ni; 1374 struct f2fs_io_info fio = { 1375 .sbi = sbi, 1376 .type = NODE, 1377 .op = REQ_OP_READ, 1378 .op_flags = op_flags, 1379 .page = page, 1380 .encrypted_page = NULL, 1381 }; 1382 int err; 1383 1384 if (PageUptodate(page)) { 1385 if (!f2fs_inode_chksum_verify(sbi, page)) { 1386 ClearPageUptodate(page); 1387 return -EFSBADCRC; 1388 } 1389 return LOCKED_PAGE; 1390 } 1391 1392 err = f2fs_get_node_info(sbi, page->index, &ni, false); 1393 if (err) 1394 return err; 1395 1396 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */ 1397 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) { 1398 ClearPageUptodate(page); 1399 return -ENOENT; 1400 } 1401 1402 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1403 1404 err = f2fs_submit_page_bio(&fio); 1405 1406 if (!err) 1407 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE); 1408 1409 return err; 1410 } 1411 1412 /* 1413 * Readahead a node page 1414 */ 1415 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1416 { 1417 struct page *apage; 1418 int err; 1419 1420 if (!nid) 1421 return; 1422 if (f2fs_check_nid_range(sbi, nid)) 1423 return; 1424 1425 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1426 if (apage) 1427 return; 1428 1429 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1430 if (!apage) 1431 return; 1432 1433 err = read_node_page(apage, REQ_RAHEAD); 1434 f2fs_put_page(apage, err ? 1 : 0); 1435 } 1436 1437 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1438 struct page *parent, int start) 1439 { 1440 struct page *page; 1441 int err; 1442 1443 if (!nid) 1444 return ERR_PTR(-ENOENT); 1445 if (f2fs_check_nid_range(sbi, nid)) 1446 return ERR_PTR(-EINVAL); 1447 repeat: 1448 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1449 if (!page) 1450 return ERR_PTR(-ENOMEM); 1451 1452 err = read_node_page(page, 0); 1453 if (err < 0) { 1454 goto out_put_err; 1455 } else if (err == LOCKED_PAGE) { 1456 err = 0; 1457 goto page_hit; 1458 } 1459 1460 if (parent) 1461 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1462 1463 lock_page(page); 1464 1465 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1466 f2fs_put_page(page, 1); 1467 goto repeat; 1468 } 1469 1470 if (unlikely(!PageUptodate(page))) { 1471 err = -EIO; 1472 goto out_err; 1473 } 1474 1475 if (!f2fs_inode_chksum_verify(sbi, page)) { 1476 err = -EFSBADCRC; 1477 goto out_err; 1478 } 1479 page_hit: 1480 if (likely(nid == nid_of_node(page))) 1481 return page; 1482 1483 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1484 nid, nid_of_node(page), ino_of_node(page), 1485 ofs_of_node(page), cpver_of_node(page), 1486 next_blkaddr_of_node(page)); 1487 set_sbi_flag(sbi, SBI_NEED_FSCK); 1488 f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER); 1489 err = -EFSCORRUPTED; 1490 out_err: 1491 ClearPageUptodate(page); 1492 out_put_err: 1493 /* ENOENT comes from read_node_page which is not an error. */ 1494 if (err != -ENOENT) 1495 f2fs_handle_page_eio(sbi, page->index, NODE); 1496 f2fs_put_page(page, 1); 1497 return ERR_PTR(err); 1498 } 1499 1500 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1501 { 1502 return __get_node_page(sbi, nid, NULL, 0); 1503 } 1504 1505 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1506 { 1507 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1508 nid_t nid = get_nid(parent, start, false); 1509 1510 return __get_node_page(sbi, nid, parent, start); 1511 } 1512 1513 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1514 { 1515 struct inode *inode; 1516 struct page *page; 1517 int ret; 1518 1519 /* should flush inline_data before evict_inode */ 1520 inode = ilookup(sbi->sb, ino); 1521 if (!inode) 1522 return; 1523 1524 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1525 FGP_LOCK|FGP_NOWAIT, 0); 1526 if (!page) 1527 goto iput_out; 1528 1529 if (!PageUptodate(page)) 1530 goto page_out; 1531 1532 if (!PageDirty(page)) 1533 goto page_out; 1534 1535 if (!clear_page_dirty_for_io(page)) 1536 goto page_out; 1537 1538 ret = f2fs_write_inline_data(inode, page); 1539 inode_dec_dirty_pages(inode); 1540 f2fs_remove_dirty_inode(inode); 1541 if (ret) 1542 set_page_dirty(page); 1543 page_out: 1544 f2fs_put_page(page, 1); 1545 iput_out: 1546 iput(inode); 1547 } 1548 1549 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1550 { 1551 pgoff_t index; 1552 struct folio_batch fbatch; 1553 struct page *last_page = NULL; 1554 int nr_folios; 1555 1556 folio_batch_init(&fbatch); 1557 index = 0; 1558 1559 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1560 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1561 &fbatch))) { 1562 int i; 1563 1564 for (i = 0; i < nr_folios; i++) { 1565 struct page *page = &fbatch.folios[i]->page; 1566 1567 if (unlikely(f2fs_cp_error(sbi))) { 1568 f2fs_put_page(last_page, 0); 1569 folio_batch_release(&fbatch); 1570 return ERR_PTR(-EIO); 1571 } 1572 1573 if (!IS_DNODE(page) || !is_cold_node(page)) 1574 continue; 1575 if (ino_of_node(page) != ino) 1576 continue; 1577 1578 lock_page(page); 1579 1580 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1581 continue_unlock: 1582 unlock_page(page); 1583 continue; 1584 } 1585 if (ino_of_node(page) != ino) 1586 goto continue_unlock; 1587 1588 if (!PageDirty(page)) { 1589 /* someone wrote it for us */ 1590 goto continue_unlock; 1591 } 1592 1593 if (last_page) 1594 f2fs_put_page(last_page, 0); 1595 1596 get_page(page); 1597 last_page = page; 1598 unlock_page(page); 1599 } 1600 folio_batch_release(&fbatch); 1601 cond_resched(); 1602 } 1603 return last_page; 1604 } 1605 1606 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1607 struct writeback_control *wbc, bool do_balance, 1608 enum iostat_type io_type, unsigned int *seq_id) 1609 { 1610 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1611 nid_t nid; 1612 struct node_info ni; 1613 struct f2fs_io_info fio = { 1614 .sbi = sbi, 1615 .ino = ino_of_node(page), 1616 .type = NODE, 1617 .op = REQ_OP_WRITE, 1618 .op_flags = wbc_to_write_flags(wbc), 1619 .page = page, 1620 .encrypted_page = NULL, 1621 .submitted = 0, 1622 .io_type = io_type, 1623 .io_wbc = wbc, 1624 }; 1625 unsigned int seq; 1626 1627 trace_f2fs_writepage(page_folio(page), NODE); 1628 1629 if (unlikely(f2fs_cp_error(sbi))) { 1630 /* keep node pages in remount-ro mode */ 1631 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 1632 goto redirty_out; 1633 ClearPageUptodate(page); 1634 dec_page_count(sbi, F2FS_DIRTY_NODES); 1635 unlock_page(page); 1636 return 0; 1637 } 1638 1639 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1640 goto redirty_out; 1641 1642 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1643 wbc->sync_mode == WB_SYNC_NONE && 1644 IS_DNODE(page) && is_cold_node(page)) 1645 goto redirty_out; 1646 1647 /* get old block addr of this node page */ 1648 nid = nid_of_node(page); 1649 f2fs_bug_on(sbi, page->index != nid); 1650 1651 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance)) 1652 goto redirty_out; 1653 1654 if (wbc->for_reclaim) { 1655 if (!f2fs_down_read_trylock(&sbi->node_write)) 1656 goto redirty_out; 1657 } else { 1658 f2fs_down_read(&sbi->node_write); 1659 } 1660 1661 /* This page is already truncated */ 1662 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1663 ClearPageUptodate(page); 1664 dec_page_count(sbi, F2FS_DIRTY_NODES); 1665 f2fs_up_read(&sbi->node_write); 1666 unlock_page(page); 1667 return 0; 1668 } 1669 1670 if (__is_valid_data_blkaddr(ni.blk_addr) && 1671 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1672 DATA_GENERIC_ENHANCE)) { 1673 f2fs_up_read(&sbi->node_write); 1674 goto redirty_out; 1675 } 1676 1677 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi)) 1678 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1679 1680 /* should add to global list before clearing PAGECACHE status */ 1681 if (f2fs_in_warm_node_list(sbi, page)) { 1682 seq = f2fs_add_fsync_node_entry(sbi, page); 1683 if (seq_id) 1684 *seq_id = seq; 1685 } 1686 1687 set_page_writeback(page); 1688 1689 fio.old_blkaddr = ni.blk_addr; 1690 f2fs_do_write_node_page(nid, &fio); 1691 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1692 dec_page_count(sbi, F2FS_DIRTY_NODES); 1693 f2fs_up_read(&sbi->node_write); 1694 1695 if (wbc->for_reclaim) { 1696 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1697 submitted = NULL; 1698 } 1699 1700 unlock_page(page); 1701 1702 if (unlikely(f2fs_cp_error(sbi))) { 1703 f2fs_submit_merged_write(sbi, NODE); 1704 submitted = NULL; 1705 } 1706 if (submitted) 1707 *submitted = fio.submitted; 1708 1709 if (do_balance) 1710 f2fs_balance_fs(sbi, false); 1711 return 0; 1712 1713 redirty_out: 1714 redirty_page_for_writepage(wbc, page); 1715 return AOP_WRITEPAGE_ACTIVATE; 1716 } 1717 1718 int f2fs_move_node_page(struct page *node_page, int gc_type) 1719 { 1720 int err = 0; 1721 1722 if (gc_type == FG_GC) { 1723 struct writeback_control wbc = { 1724 .sync_mode = WB_SYNC_ALL, 1725 .nr_to_write = 1, 1726 .for_reclaim = 0, 1727 }; 1728 1729 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1730 1731 set_page_dirty(node_page); 1732 1733 if (!clear_page_dirty_for_io(node_page)) { 1734 err = -EAGAIN; 1735 goto out_page; 1736 } 1737 1738 if (__write_node_page(node_page, false, NULL, 1739 &wbc, false, FS_GC_NODE_IO, NULL)) { 1740 err = -EAGAIN; 1741 unlock_page(node_page); 1742 } 1743 goto release_page; 1744 } else { 1745 /* set page dirty and write it */ 1746 if (!folio_test_writeback(page_folio(node_page))) 1747 set_page_dirty(node_page); 1748 } 1749 out_page: 1750 unlock_page(node_page); 1751 release_page: 1752 f2fs_put_page(node_page, 0); 1753 return err; 1754 } 1755 1756 static int f2fs_write_node_page(struct page *page, 1757 struct writeback_control *wbc) 1758 { 1759 return __write_node_page(page, false, NULL, wbc, false, 1760 FS_NODE_IO, NULL); 1761 } 1762 1763 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1764 struct writeback_control *wbc, bool atomic, 1765 unsigned int *seq_id) 1766 { 1767 pgoff_t index; 1768 struct folio_batch fbatch; 1769 int ret = 0; 1770 struct page *last_page = NULL; 1771 bool marked = false; 1772 nid_t ino = inode->i_ino; 1773 int nr_folios; 1774 int nwritten = 0; 1775 1776 if (atomic) { 1777 last_page = last_fsync_dnode(sbi, ino); 1778 if (IS_ERR_OR_NULL(last_page)) 1779 return PTR_ERR_OR_ZERO(last_page); 1780 } 1781 retry: 1782 folio_batch_init(&fbatch); 1783 index = 0; 1784 1785 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1786 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1787 &fbatch))) { 1788 int i; 1789 1790 for (i = 0; i < nr_folios; i++) { 1791 struct page *page = &fbatch.folios[i]->page; 1792 bool submitted = false; 1793 1794 if (unlikely(f2fs_cp_error(sbi))) { 1795 f2fs_put_page(last_page, 0); 1796 folio_batch_release(&fbatch); 1797 ret = -EIO; 1798 goto out; 1799 } 1800 1801 if (!IS_DNODE(page) || !is_cold_node(page)) 1802 continue; 1803 if (ino_of_node(page) != ino) 1804 continue; 1805 1806 lock_page(page); 1807 1808 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1809 continue_unlock: 1810 unlock_page(page); 1811 continue; 1812 } 1813 if (ino_of_node(page) != ino) 1814 goto continue_unlock; 1815 1816 if (!PageDirty(page) && page != last_page) { 1817 /* someone wrote it for us */ 1818 goto continue_unlock; 1819 } 1820 1821 f2fs_wait_on_page_writeback(page, NODE, true, true); 1822 1823 set_fsync_mark(page, 0); 1824 set_dentry_mark(page, 0); 1825 1826 if (!atomic || page == last_page) { 1827 set_fsync_mark(page, 1); 1828 percpu_counter_inc(&sbi->rf_node_block_count); 1829 if (IS_INODE(page)) { 1830 if (is_inode_flag_set(inode, 1831 FI_DIRTY_INODE)) 1832 f2fs_update_inode(inode, page); 1833 set_dentry_mark(page, 1834 f2fs_need_dentry_mark(sbi, ino)); 1835 } 1836 /* may be written by other thread */ 1837 if (!PageDirty(page)) 1838 set_page_dirty(page); 1839 } 1840 1841 if (!clear_page_dirty_for_io(page)) 1842 goto continue_unlock; 1843 1844 ret = __write_node_page(page, atomic && 1845 page == last_page, 1846 &submitted, wbc, true, 1847 FS_NODE_IO, seq_id); 1848 if (ret) { 1849 unlock_page(page); 1850 f2fs_put_page(last_page, 0); 1851 break; 1852 } else if (submitted) { 1853 nwritten++; 1854 } 1855 1856 if (page == last_page) { 1857 f2fs_put_page(page, 0); 1858 marked = true; 1859 break; 1860 } 1861 } 1862 folio_batch_release(&fbatch); 1863 cond_resched(); 1864 1865 if (ret || marked) 1866 break; 1867 } 1868 if (!ret && atomic && !marked) { 1869 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1870 ino, last_page->index); 1871 lock_page(last_page); 1872 f2fs_wait_on_page_writeback(last_page, NODE, true, true); 1873 set_page_dirty(last_page); 1874 unlock_page(last_page); 1875 goto retry; 1876 } 1877 out: 1878 if (nwritten) 1879 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1880 return ret ? -EIO : 0; 1881 } 1882 1883 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1884 { 1885 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1886 bool clean; 1887 1888 if (inode->i_ino != ino) 1889 return 0; 1890 1891 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1892 return 0; 1893 1894 spin_lock(&sbi->inode_lock[DIRTY_META]); 1895 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1896 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1897 1898 if (clean) 1899 return 0; 1900 1901 inode = igrab(inode); 1902 if (!inode) 1903 return 0; 1904 return 1; 1905 } 1906 1907 static bool flush_dirty_inode(struct page *page) 1908 { 1909 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1910 struct inode *inode; 1911 nid_t ino = ino_of_node(page); 1912 1913 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1914 if (!inode) 1915 return false; 1916 1917 f2fs_update_inode(inode, page); 1918 unlock_page(page); 1919 1920 iput(inode); 1921 return true; 1922 } 1923 1924 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1925 { 1926 pgoff_t index = 0; 1927 struct folio_batch fbatch; 1928 int nr_folios; 1929 1930 folio_batch_init(&fbatch); 1931 1932 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1933 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1934 &fbatch))) { 1935 int i; 1936 1937 for (i = 0; i < nr_folios; i++) { 1938 struct page *page = &fbatch.folios[i]->page; 1939 1940 if (!IS_INODE(page)) 1941 continue; 1942 1943 lock_page(page); 1944 1945 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1946 continue_unlock: 1947 unlock_page(page); 1948 continue; 1949 } 1950 1951 if (!PageDirty(page)) { 1952 /* someone wrote it for us */ 1953 goto continue_unlock; 1954 } 1955 1956 /* flush inline_data, if it's async context. */ 1957 if (page_private_inline(page)) { 1958 clear_page_private_inline(page); 1959 unlock_page(page); 1960 flush_inline_data(sbi, ino_of_node(page)); 1961 continue; 1962 } 1963 unlock_page(page); 1964 } 1965 folio_batch_release(&fbatch); 1966 cond_resched(); 1967 } 1968 } 1969 1970 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1971 struct writeback_control *wbc, 1972 bool do_balance, enum iostat_type io_type) 1973 { 1974 pgoff_t index; 1975 struct folio_batch fbatch; 1976 int step = 0; 1977 int nwritten = 0; 1978 int ret = 0; 1979 int nr_folios, done = 0; 1980 1981 folio_batch_init(&fbatch); 1982 1983 next_step: 1984 index = 0; 1985 1986 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), 1987 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1988 &fbatch))) { 1989 int i; 1990 1991 for (i = 0; i < nr_folios; i++) { 1992 struct page *page = &fbatch.folios[i]->page; 1993 bool submitted = false; 1994 1995 /* give a priority to WB_SYNC threads */ 1996 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1997 wbc->sync_mode == WB_SYNC_NONE) { 1998 done = 1; 1999 break; 2000 } 2001 2002 /* 2003 * flushing sequence with step: 2004 * 0. indirect nodes 2005 * 1. dentry dnodes 2006 * 2. file dnodes 2007 */ 2008 if (step == 0 && IS_DNODE(page)) 2009 continue; 2010 if (step == 1 && (!IS_DNODE(page) || 2011 is_cold_node(page))) 2012 continue; 2013 if (step == 2 && (!IS_DNODE(page) || 2014 !is_cold_node(page))) 2015 continue; 2016 lock_node: 2017 if (wbc->sync_mode == WB_SYNC_ALL) 2018 lock_page(page); 2019 else if (!trylock_page(page)) 2020 continue; 2021 2022 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 2023 continue_unlock: 2024 unlock_page(page); 2025 continue; 2026 } 2027 2028 if (!PageDirty(page)) { 2029 /* someone wrote it for us */ 2030 goto continue_unlock; 2031 } 2032 2033 /* flush inline_data/inode, if it's async context. */ 2034 if (!do_balance) 2035 goto write_node; 2036 2037 /* flush inline_data */ 2038 if (page_private_inline(page)) { 2039 clear_page_private_inline(page); 2040 unlock_page(page); 2041 flush_inline_data(sbi, ino_of_node(page)); 2042 goto lock_node; 2043 } 2044 2045 /* flush dirty inode */ 2046 if (IS_INODE(page) && flush_dirty_inode(page)) 2047 goto lock_node; 2048 write_node: 2049 f2fs_wait_on_page_writeback(page, NODE, true, true); 2050 2051 if (!clear_page_dirty_for_io(page)) 2052 goto continue_unlock; 2053 2054 set_fsync_mark(page, 0); 2055 set_dentry_mark(page, 0); 2056 2057 ret = __write_node_page(page, false, &submitted, 2058 wbc, do_balance, io_type, NULL); 2059 if (ret) 2060 unlock_page(page); 2061 else if (submitted) 2062 nwritten++; 2063 2064 if (--wbc->nr_to_write == 0) 2065 break; 2066 } 2067 folio_batch_release(&fbatch); 2068 cond_resched(); 2069 2070 if (wbc->nr_to_write == 0) { 2071 step = 2; 2072 break; 2073 } 2074 } 2075 2076 if (step < 2) { 2077 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2078 wbc->sync_mode == WB_SYNC_NONE && step == 1) 2079 goto out; 2080 step++; 2081 goto next_step; 2082 } 2083 out: 2084 if (nwritten) 2085 f2fs_submit_merged_write(sbi, NODE); 2086 2087 if (unlikely(f2fs_cp_error(sbi))) 2088 return -EIO; 2089 return ret; 2090 } 2091 2092 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2093 unsigned int seq_id) 2094 { 2095 struct fsync_node_entry *fn; 2096 struct page *page; 2097 struct list_head *head = &sbi->fsync_node_list; 2098 unsigned long flags; 2099 unsigned int cur_seq_id = 0; 2100 2101 while (seq_id && cur_seq_id < seq_id) { 2102 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2103 if (list_empty(head)) { 2104 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2105 break; 2106 } 2107 fn = list_first_entry(head, struct fsync_node_entry, list); 2108 if (fn->seq_id > seq_id) { 2109 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2110 break; 2111 } 2112 cur_seq_id = fn->seq_id; 2113 page = fn->page; 2114 get_page(page); 2115 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2116 2117 f2fs_wait_on_page_writeback(page, NODE, true, false); 2118 2119 put_page(page); 2120 } 2121 2122 return filemap_check_errors(NODE_MAPPING(sbi)); 2123 } 2124 2125 static int f2fs_write_node_pages(struct address_space *mapping, 2126 struct writeback_control *wbc) 2127 { 2128 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2129 struct blk_plug plug; 2130 long diff; 2131 2132 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2133 goto skip_write; 2134 2135 /* balancing f2fs's metadata in background */ 2136 f2fs_balance_fs_bg(sbi, true); 2137 2138 /* collect a number of dirty node pages and write together */ 2139 if (wbc->sync_mode != WB_SYNC_ALL && 2140 get_pages(sbi, F2FS_DIRTY_NODES) < 2141 nr_pages_to_skip(sbi, NODE)) 2142 goto skip_write; 2143 2144 if (wbc->sync_mode == WB_SYNC_ALL) 2145 atomic_inc(&sbi->wb_sync_req[NODE]); 2146 else if (atomic_read(&sbi->wb_sync_req[NODE])) { 2147 /* to avoid potential deadlock */ 2148 if (current->plug) 2149 blk_finish_plug(current->plug); 2150 goto skip_write; 2151 } 2152 2153 trace_f2fs_writepages(mapping->host, wbc, NODE); 2154 2155 diff = nr_pages_to_write(sbi, NODE, wbc); 2156 blk_start_plug(&plug); 2157 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2158 blk_finish_plug(&plug); 2159 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2160 2161 if (wbc->sync_mode == WB_SYNC_ALL) 2162 atomic_dec(&sbi->wb_sync_req[NODE]); 2163 return 0; 2164 2165 skip_write: 2166 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2167 trace_f2fs_writepages(mapping->host, wbc, NODE); 2168 return 0; 2169 } 2170 2171 static bool f2fs_dirty_node_folio(struct address_space *mapping, 2172 struct folio *folio) 2173 { 2174 trace_f2fs_set_page_dirty(folio, NODE); 2175 2176 if (!folio_test_uptodate(folio)) 2177 folio_mark_uptodate(folio); 2178 #ifdef CONFIG_F2FS_CHECK_FS 2179 if (IS_INODE(&folio->page)) 2180 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page); 2181 #endif 2182 if (filemap_dirty_folio(mapping, folio)) { 2183 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 2184 set_page_private_reference(&folio->page); 2185 return true; 2186 } 2187 return false; 2188 } 2189 2190 /* 2191 * Structure of the f2fs node operations 2192 */ 2193 const struct address_space_operations f2fs_node_aops = { 2194 .writepage = f2fs_write_node_page, 2195 .writepages = f2fs_write_node_pages, 2196 .dirty_folio = f2fs_dirty_node_folio, 2197 .invalidate_folio = f2fs_invalidate_folio, 2198 .release_folio = f2fs_release_folio, 2199 .migrate_folio = filemap_migrate_folio, 2200 }; 2201 2202 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2203 nid_t n) 2204 { 2205 return radix_tree_lookup(&nm_i->free_nid_root, n); 2206 } 2207 2208 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2209 struct free_nid *i) 2210 { 2211 struct f2fs_nm_info *nm_i = NM_I(sbi); 2212 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2213 2214 if (err) 2215 return err; 2216 2217 nm_i->nid_cnt[FREE_NID]++; 2218 list_add_tail(&i->list, &nm_i->free_nid_list); 2219 return 0; 2220 } 2221 2222 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2223 struct free_nid *i, enum nid_state state) 2224 { 2225 struct f2fs_nm_info *nm_i = NM_I(sbi); 2226 2227 f2fs_bug_on(sbi, state != i->state); 2228 nm_i->nid_cnt[state]--; 2229 if (state == FREE_NID) 2230 list_del(&i->list); 2231 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2232 } 2233 2234 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2235 enum nid_state org_state, enum nid_state dst_state) 2236 { 2237 struct f2fs_nm_info *nm_i = NM_I(sbi); 2238 2239 f2fs_bug_on(sbi, org_state != i->state); 2240 i->state = dst_state; 2241 nm_i->nid_cnt[org_state]--; 2242 nm_i->nid_cnt[dst_state]++; 2243 2244 switch (dst_state) { 2245 case PREALLOC_NID: 2246 list_del(&i->list); 2247 break; 2248 case FREE_NID: 2249 list_add_tail(&i->list, &nm_i->free_nid_list); 2250 break; 2251 default: 2252 BUG_ON(1); 2253 } 2254 } 2255 2256 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi) 2257 { 2258 struct f2fs_nm_info *nm_i = NM_I(sbi); 2259 unsigned int i; 2260 bool ret = true; 2261 2262 f2fs_down_read(&nm_i->nat_tree_lock); 2263 for (i = 0; i < nm_i->nat_blocks; i++) { 2264 if (!test_bit_le(i, nm_i->nat_block_bitmap)) { 2265 ret = false; 2266 break; 2267 } 2268 } 2269 f2fs_up_read(&nm_i->nat_tree_lock); 2270 2271 return ret; 2272 } 2273 2274 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2275 bool set, bool build) 2276 { 2277 struct f2fs_nm_info *nm_i = NM_I(sbi); 2278 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2279 unsigned int nid_ofs = nid - START_NID(nid); 2280 2281 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2282 return; 2283 2284 if (set) { 2285 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2286 return; 2287 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2288 nm_i->free_nid_count[nat_ofs]++; 2289 } else { 2290 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2291 return; 2292 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2293 if (!build) 2294 nm_i->free_nid_count[nat_ofs]--; 2295 } 2296 } 2297 2298 /* return if the nid is recognized as free */ 2299 static bool add_free_nid(struct f2fs_sb_info *sbi, 2300 nid_t nid, bool build, bool update) 2301 { 2302 struct f2fs_nm_info *nm_i = NM_I(sbi); 2303 struct free_nid *i, *e; 2304 struct nat_entry *ne; 2305 int err = -EINVAL; 2306 bool ret = false; 2307 2308 /* 0 nid should not be used */ 2309 if (unlikely(nid == 0)) 2310 return false; 2311 2312 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2313 return false; 2314 2315 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL); 2316 i->nid = nid; 2317 i->state = FREE_NID; 2318 2319 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2320 2321 spin_lock(&nm_i->nid_list_lock); 2322 2323 if (build) { 2324 /* 2325 * Thread A Thread B 2326 * - f2fs_create 2327 * - f2fs_new_inode 2328 * - f2fs_alloc_nid 2329 * - __insert_nid_to_list(PREALLOC_NID) 2330 * - f2fs_balance_fs_bg 2331 * - f2fs_build_free_nids 2332 * - __f2fs_build_free_nids 2333 * - scan_nat_page 2334 * - add_free_nid 2335 * - __lookup_nat_cache 2336 * - f2fs_add_link 2337 * - f2fs_init_inode_metadata 2338 * - f2fs_new_inode_page 2339 * - f2fs_new_node_page 2340 * - set_node_addr 2341 * - f2fs_alloc_nid_done 2342 * - __remove_nid_from_list(PREALLOC_NID) 2343 * - __insert_nid_to_list(FREE_NID) 2344 */ 2345 ne = __lookup_nat_cache(nm_i, nid); 2346 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2347 nat_get_blkaddr(ne) != NULL_ADDR)) 2348 goto err_out; 2349 2350 e = __lookup_free_nid_list(nm_i, nid); 2351 if (e) { 2352 if (e->state == FREE_NID) 2353 ret = true; 2354 goto err_out; 2355 } 2356 } 2357 ret = true; 2358 err = __insert_free_nid(sbi, i); 2359 err_out: 2360 if (update) { 2361 update_free_nid_bitmap(sbi, nid, ret, build); 2362 if (!build) 2363 nm_i->available_nids++; 2364 } 2365 spin_unlock(&nm_i->nid_list_lock); 2366 radix_tree_preload_end(); 2367 2368 if (err) 2369 kmem_cache_free(free_nid_slab, i); 2370 return ret; 2371 } 2372 2373 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2374 { 2375 struct f2fs_nm_info *nm_i = NM_I(sbi); 2376 struct free_nid *i; 2377 bool need_free = false; 2378 2379 spin_lock(&nm_i->nid_list_lock); 2380 i = __lookup_free_nid_list(nm_i, nid); 2381 if (i && i->state == FREE_NID) { 2382 __remove_free_nid(sbi, i, FREE_NID); 2383 need_free = true; 2384 } 2385 spin_unlock(&nm_i->nid_list_lock); 2386 2387 if (need_free) 2388 kmem_cache_free(free_nid_slab, i); 2389 } 2390 2391 static int scan_nat_page(struct f2fs_sb_info *sbi, 2392 struct page *nat_page, nid_t start_nid) 2393 { 2394 struct f2fs_nm_info *nm_i = NM_I(sbi); 2395 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2396 block_t blk_addr; 2397 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2398 int i; 2399 2400 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2401 2402 i = start_nid % NAT_ENTRY_PER_BLOCK; 2403 2404 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2405 if (unlikely(start_nid >= nm_i->max_nid)) 2406 break; 2407 2408 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2409 2410 if (blk_addr == NEW_ADDR) 2411 return -EFSCORRUPTED; 2412 2413 if (blk_addr == NULL_ADDR) { 2414 add_free_nid(sbi, start_nid, true, true); 2415 } else { 2416 spin_lock(&NM_I(sbi)->nid_list_lock); 2417 update_free_nid_bitmap(sbi, start_nid, false, true); 2418 spin_unlock(&NM_I(sbi)->nid_list_lock); 2419 } 2420 } 2421 2422 return 0; 2423 } 2424 2425 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2426 { 2427 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2428 struct f2fs_journal *journal = curseg->journal; 2429 int i; 2430 2431 down_read(&curseg->journal_rwsem); 2432 for (i = 0; i < nats_in_cursum(journal); i++) { 2433 block_t addr; 2434 nid_t nid; 2435 2436 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2437 nid = le32_to_cpu(nid_in_journal(journal, i)); 2438 if (addr == NULL_ADDR) 2439 add_free_nid(sbi, nid, true, false); 2440 else 2441 remove_free_nid(sbi, nid); 2442 } 2443 up_read(&curseg->journal_rwsem); 2444 } 2445 2446 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2447 { 2448 struct f2fs_nm_info *nm_i = NM_I(sbi); 2449 unsigned int i, idx; 2450 nid_t nid; 2451 2452 f2fs_down_read(&nm_i->nat_tree_lock); 2453 2454 for (i = 0; i < nm_i->nat_blocks; i++) { 2455 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2456 continue; 2457 if (!nm_i->free_nid_count[i]) 2458 continue; 2459 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2460 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2461 NAT_ENTRY_PER_BLOCK, idx); 2462 if (idx >= NAT_ENTRY_PER_BLOCK) 2463 break; 2464 2465 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2466 add_free_nid(sbi, nid, true, false); 2467 2468 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2469 goto out; 2470 } 2471 } 2472 out: 2473 scan_curseg_cache(sbi); 2474 2475 f2fs_up_read(&nm_i->nat_tree_lock); 2476 } 2477 2478 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2479 bool sync, bool mount) 2480 { 2481 struct f2fs_nm_info *nm_i = NM_I(sbi); 2482 int i = 0, ret; 2483 nid_t nid = nm_i->next_scan_nid; 2484 2485 if (unlikely(nid >= nm_i->max_nid)) 2486 nid = 0; 2487 2488 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2489 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2490 2491 /* Enough entries */ 2492 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2493 return 0; 2494 2495 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2496 return 0; 2497 2498 if (!mount) { 2499 /* try to find free nids in free_nid_bitmap */ 2500 scan_free_nid_bits(sbi); 2501 2502 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2503 return 0; 2504 } 2505 2506 /* readahead nat pages to be scanned */ 2507 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2508 META_NAT, true); 2509 2510 f2fs_down_read(&nm_i->nat_tree_lock); 2511 2512 while (1) { 2513 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2514 nm_i->nat_block_bitmap)) { 2515 struct page *page = get_current_nat_page(sbi, nid); 2516 2517 if (IS_ERR(page)) { 2518 ret = PTR_ERR(page); 2519 } else { 2520 ret = scan_nat_page(sbi, page, nid); 2521 f2fs_put_page(page, 1); 2522 } 2523 2524 if (ret) { 2525 f2fs_up_read(&nm_i->nat_tree_lock); 2526 2527 if (ret == -EFSCORRUPTED) { 2528 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2529 set_sbi_flag(sbi, SBI_NEED_FSCK); 2530 f2fs_handle_error(sbi, 2531 ERROR_INCONSISTENT_NAT); 2532 } 2533 2534 return ret; 2535 } 2536 } 2537 2538 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2539 if (unlikely(nid >= nm_i->max_nid)) 2540 nid = 0; 2541 2542 if (++i >= FREE_NID_PAGES) 2543 break; 2544 } 2545 2546 /* go to the next free nat pages to find free nids abundantly */ 2547 nm_i->next_scan_nid = nid; 2548 2549 /* find free nids from current sum_pages */ 2550 scan_curseg_cache(sbi); 2551 2552 f2fs_up_read(&nm_i->nat_tree_lock); 2553 2554 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2555 nm_i->ra_nid_pages, META_NAT, false); 2556 2557 return 0; 2558 } 2559 2560 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2561 { 2562 int ret; 2563 2564 mutex_lock(&NM_I(sbi)->build_lock); 2565 ret = __f2fs_build_free_nids(sbi, sync, mount); 2566 mutex_unlock(&NM_I(sbi)->build_lock); 2567 2568 return ret; 2569 } 2570 2571 /* 2572 * If this function returns success, caller can obtain a new nid 2573 * from second parameter of this function. 2574 * The returned nid could be used ino as well as nid when inode is created. 2575 */ 2576 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2577 { 2578 struct f2fs_nm_info *nm_i = NM_I(sbi); 2579 struct free_nid *i = NULL; 2580 retry: 2581 if (time_to_inject(sbi, FAULT_ALLOC_NID)) 2582 return false; 2583 2584 spin_lock(&nm_i->nid_list_lock); 2585 2586 if (unlikely(nm_i->available_nids == 0)) { 2587 spin_unlock(&nm_i->nid_list_lock); 2588 return false; 2589 } 2590 2591 /* We should not use stale free nids created by f2fs_build_free_nids */ 2592 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2593 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2594 i = list_first_entry(&nm_i->free_nid_list, 2595 struct free_nid, list); 2596 *nid = i->nid; 2597 2598 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2599 nm_i->available_nids--; 2600 2601 update_free_nid_bitmap(sbi, *nid, false, false); 2602 2603 spin_unlock(&nm_i->nid_list_lock); 2604 return true; 2605 } 2606 spin_unlock(&nm_i->nid_list_lock); 2607 2608 /* Let's scan nat pages and its caches to get free nids */ 2609 if (!f2fs_build_free_nids(sbi, true, false)) 2610 goto retry; 2611 return false; 2612 } 2613 2614 /* 2615 * f2fs_alloc_nid() should be called prior to this function. 2616 */ 2617 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2618 { 2619 struct f2fs_nm_info *nm_i = NM_I(sbi); 2620 struct free_nid *i; 2621 2622 spin_lock(&nm_i->nid_list_lock); 2623 i = __lookup_free_nid_list(nm_i, nid); 2624 f2fs_bug_on(sbi, !i); 2625 __remove_free_nid(sbi, i, PREALLOC_NID); 2626 spin_unlock(&nm_i->nid_list_lock); 2627 2628 kmem_cache_free(free_nid_slab, i); 2629 } 2630 2631 /* 2632 * f2fs_alloc_nid() should be called prior to this function. 2633 */ 2634 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2635 { 2636 struct f2fs_nm_info *nm_i = NM_I(sbi); 2637 struct free_nid *i; 2638 bool need_free = false; 2639 2640 if (!nid) 2641 return; 2642 2643 spin_lock(&nm_i->nid_list_lock); 2644 i = __lookup_free_nid_list(nm_i, nid); 2645 f2fs_bug_on(sbi, !i); 2646 2647 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2648 __remove_free_nid(sbi, i, PREALLOC_NID); 2649 need_free = true; 2650 } else { 2651 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2652 } 2653 2654 nm_i->available_nids++; 2655 2656 update_free_nid_bitmap(sbi, nid, true, false); 2657 2658 spin_unlock(&nm_i->nid_list_lock); 2659 2660 if (need_free) 2661 kmem_cache_free(free_nid_slab, i); 2662 } 2663 2664 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2665 { 2666 struct f2fs_nm_info *nm_i = NM_I(sbi); 2667 int nr = nr_shrink; 2668 2669 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2670 return 0; 2671 2672 if (!mutex_trylock(&nm_i->build_lock)) 2673 return 0; 2674 2675 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2676 struct free_nid *i, *next; 2677 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2678 2679 spin_lock(&nm_i->nid_list_lock); 2680 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2681 if (!nr_shrink || !batch || 2682 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2683 break; 2684 __remove_free_nid(sbi, i, FREE_NID); 2685 kmem_cache_free(free_nid_slab, i); 2686 nr_shrink--; 2687 batch--; 2688 } 2689 spin_unlock(&nm_i->nid_list_lock); 2690 } 2691 2692 mutex_unlock(&nm_i->build_lock); 2693 2694 return nr - nr_shrink; 2695 } 2696 2697 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2698 { 2699 void *src_addr, *dst_addr; 2700 size_t inline_size; 2701 struct page *ipage; 2702 struct f2fs_inode *ri; 2703 2704 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2705 if (IS_ERR(ipage)) 2706 return PTR_ERR(ipage); 2707 2708 ri = F2FS_INODE(page); 2709 if (ri->i_inline & F2FS_INLINE_XATTR) { 2710 if (!f2fs_has_inline_xattr(inode)) { 2711 set_inode_flag(inode, FI_INLINE_XATTR); 2712 stat_inc_inline_xattr(inode); 2713 } 2714 } else { 2715 if (f2fs_has_inline_xattr(inode)) { 2716 stat_dec_inline_xattr(inode); 2717 clear_inode_flag(inode, FI_INLINE_XATTR); 2718 } 2719 goto update_inode; 2720 } 2721 2722 dst_addr = inline_xattr_addr(inode, ipage); 2723 src_addr = inline_xattr_addr(inode, page); 2724 inline_size = inline_xattr_size(inode); 2725 2726 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2727 memcpy(dst_addr, src_addr, inline_size); 2728 update_inode: 2729 f2fs_update_inode(inode, ipage); 2730 f2fs_put_page(ipage, 1); 2731 return 0; 2732 } 2733 2734 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2735 { 2736 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2737 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2738 nid_t new_xnid; 2739 struct dnode_of_data dn; 2740 struct node_info ni; 2741 struct page *xpage; 2742 int err; 2743 2744 if (!prev_xnid) 2745 goto recover_xnid; 2746 2747 /* 1: invalidate the previous xattr nid */ 2748 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false); 2749 if (err) 2750 return err; 2751 2752 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2753 dec_valid_node_count(sbi, inode, false); 2754 set_node_addr(sbi, &ni, NULL_ADDR, false); 2755 2756 recover_xnid: 2757 /* 2: update xattr nid in inode */ 2758 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2759 return -ENOSPC; 2760 2761 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2762 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2763 if (IS_ERR(xpage)) { 2764 f2fs_alloc_nid_failed(sbi, new_xnid); 2765 return PTR_ERR(xpage); 2766 } 2767 2768 f2fs_alloc_nid_done(sbi, new_xnid); 2769 f2fs_update_inode_page(inode); 2770 2771 /* 3: update and set xattr node page dirty */ 2772 if (page) { 2773 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), 2774 VALID_XATTR_BLOCK_SIZE); 2775 set_page_dirty(xpage); 2776 } 2777 f2fs_put_page(xpage, 1); 2778 2779 return 0; 2780 } 2781 2782 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2783 { 2784 struct f2fs_inode *src, *dst; 2785 nid_t ino = ino_of_node(page); 2786 struct node_info old_ni, new_ni; 2787 struct page *ipage; 2788 int err; 2789 2790 err = f2fs_get_node_info(sbi, ino, &old_ni, false); 2791 if (err) 2792 return err; 2793 2794 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2795 return -EINVAL; 2796 retry: 2797 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2798 if (!ipage) { 2799 memalloc_retry_wait(GFP_NOFS); 2800 goto retry; 2801 } 2802 2803 /* Should not use this inode from free nid list */ 2804 remove_free_nid(sbi, ino); 2805 2806 if (!PageUptodate(ipage)) 2807 SetPageUptodate(ipage); 2808 fill_node_footer(ipage, ino, ino, 0, true); 2809 set_cold_node(ipage, false); 2810 2811 src = F2FS_INODE(page); 2812 dst = F2FS_INODE(ipage); 2813 2814 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); 2815 dst->i_size = 0; 2816 dst->i_blocks = cpu_to_le64(1); 2817 dst->i_links = cpu_to_le32(1); 2818 dst->i_xattr_nid = 0; 2819 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2820 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2821 dst->i_extra_isize = src->i_extra_isize; 2822 2823 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2824 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2825 i_inline_xattr_size)) 2826 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2827 2828 if (f2fs_sb_has_project_quota(sbi) && 2829 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2830 i_projid)) 2831 dst->i_projid = src->i_projid; 2832 2833 if (f2fs_sb_has_inode_crtime(sbi) && 2834 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2835 i_crtime_nsec)) { 2836 dst->i_crtime = src->i_crtime; 2837 dst->i_crtime_nsec = src->i_crtime_nsec; 2838 } 2839 } 2840 2841 new_ni = old_ni; 2842 new_ni.ino = ino; 2843 2844 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2845 WARN_ON(1); 2846 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2847 inc_valid_inode_count(sbi); 2848 set_page_dirty(ipage); 2849 f2fs_put_page(ipage, 1); 2850 return 0; 2851 } 2852 2853 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2854 unsigned int segno, struct f2fs_summary_block *sum) 2855 { 2856 struct f2fs_node *rn; 2857 struct f2fs_summary *sum_entry; 2858 block_t addr; 2859 int i, idx, last_offset, nrpages; 2860 2861 /* scan the node segment */ 2862 last_offset = BLKS_PER_SEG(sbi); 2863 addr = START_BLOCK(sbi, segno); 2864 sum_entry = &sum->entries[0]; 2865 2866 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2867 nrpages = bio_max_segs(last_offset - i); 2868 2869 /* readahead node pages */ 2870 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2871 2872 for (idx = addr; idx < addr + nrpages; idx++) { 2873 struct page *page = f2fs_get_tmp_page(sbi, idx); 2874 2875 if (IS_ERR(page)) 2876 return PTR_ERR(page); 2877 2878 rn = F2FS_NODE(page); 2879 sum_entry->nid = rn->footer.nid; 2880 sum_entry->version = 0; 2881 sum_entry->ofs_in_node = 0; 2882 sum_entry++; 2883 f2fs_put_page(page, 1); 2884 } 2885 2886 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2887 addr + nrpages); 2888 } 2889 return 0; 2890 } 2891 2892 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2893 { 2894 struct f2fs_nm_info *nm_i = NM_I(sbi); 2895 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2896 struct f2fs_journal *journal = curseg->journal; 2897 int i; 2898 2899 down_write(&curseg->journal_rwsem); 2900 for (i = 0; i < nats_in_cursum(journal); i++) { 2901 struct nat_entry *ne; 2902 struct f2fs_nat_entry raw_ne; 2903 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2904 2905 if (f2fs_check_nid_range(sbi, nid)) 2906 continue; 2907 2908 raw_ne = nat_in_journal(journal, i); 2909 2910 ne = __lookup_nat_cache(nm_i, nid); 2911 if (!ne) { 2912 ne = __alloc_nat_entry(sbi, nid, true); 2913 __init_nat_entry(nm_i, ne, &raw_ne, true); 2914 } 2915 2916 /* 2917 * if a free nat in journal has not been used after last 2918 * checkpoint, we should remove it from available nids, 2919 * since later we will add it again. 2920 */ 2921 if (!get_nat_flag(ne, IS_DIRTY) && 2922 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2923 spin_lock(&nm_i->nid_list_lock); 2924 nm_i->available_nids--; 2925 spin_unlock(&nm_i->nid_list_lock); 2926 } 2927 2928 __set_nat_cache_dirty(nm_i, ne); 2929 } 2930 update_nats_in_cursum(journal, -i); 2931 up_write(&curseg->journal_rwsem); 2932 } 2933 2934 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2935 struct list_head *head, int max) 2936 { 2937 struct nat_entry_set *cur; 2938 2939 if (nes->entry_cnt >= max) 2940 goto add_out; 2941 2942 list_for_each_entry(cur, head, set_list) { 2943 if (cur->entry_cnt >= nes->entry_cnt) { 2944 list_add(&nes->set_list, cur->set_list.prev); 2945 return; 2946 } 2947 } 2948 add_out: 2949 list_add_tail(&nes->set_list, head); 2950 } 2951 2952 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs, 2953 unsigned int valid) 2954 { 2955 if (valid == 0) { 2956 __set_bit_le(nat_ofs, nm_i->empty_nat_bits); 2957 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2958 return; 2959 } 2960 2961 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits); 2962 if (valid == NAT_ENTRY_PER_BLOCK) 2963 __set_bit_le(nat_ofs, nm_i->full_nat_bits); 2964 else 2965 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2966 } 2967 2968 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2969 struct page *page) 2970 { 2971 struct f2fs_nm_info *nm_i = NM_I(sbi); 2972 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2973 struct f2fs_nat_block *nat_blk = page_address(page); 2974 int valid = 0; 2975 int i = 0; 2976 2977 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 2978 return; 2979 2980 if (nat_index == 0) { 2981 valid = 1; 2982 i = 1; 2983 } 2984 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2985 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 2986 valid++; 2987 } 2988 2989 __update_nat_bits(nm_i, nat_index, valid); 2990 } 2991 2992 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi) 2993 { 2994 struct f2fs_nm_info *nm_i = NM_I(sbi); 2995 unsigned int nat_ofs; 2996 2997 f2fs_down_read(&nm_i->nat_tree_lock); 2998 2999 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) { 3000 unsigned int valid = 0, nid_ofs = 0; 3001 3002 /* handle nid zero due to it should never be used */ 3003 if (unlikely(nat_ofs == 0)) { 3004 valid = 1; 3005 nid_ofs = 1; 3006 } 3007 3008 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) { 3009 if (!test_bit_le(nid_ofs, 3010 nm_i->free_nid_bitmap[nat_ofs])) 3011 valid++; 3012 } 3013 3014 __update_nat_bits(nm_i, nat_ofs, valid); 3015 } 3016 3017 f2fs_up_read(&nm_i->nat_tree_lock); 3018 } 3019 3020 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 3021 struct nat_entry_set *set, struct cp_control *cpc) 3022 { 3023 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3024 struct f2fs_journal *journal = curseg->journal; 3025 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 3026 bool to_journal = true; 3027 struct f2fs_nat_block *nat_blk; 3028 struct nat_entry *ne, *cur; 3029 struct page *page = NULL; 3030 3031 /* 3032 * there are two steps to flush nat entries: 3033 * #1, flush nat entries to journal in current hot data summary block. 3034 * #2, flush nat entries to nat page. 3035 */ 3036 if ((cpc->reason & CP_UMOUNT) || 3037 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 3038 to_journal = false; 3039 3040 if (to_journal) { 3041 down_write(&curseg->journal_rwsem); 3042 } else { 3043 page = get_next_nat_page(sbi, start_nid); 3044 if (IS_ERR(page)) 3045 return PTR_ERR(page); 3046 3047 nat_blk = page_address(page); 3048 f2fs_bug_on(sbi, !nat_blk); 3049 } 3050 3051 /* flush dirty nats in nat entry set */ 3052 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 3053 struct f2fs_nat_entry *raw_ne; 3054 nid_t nid = nat_get_nid(ne); 3055 int offset; 3056 3057 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 3058 3059 if (to_journal) { 3060 offset = f2fs_lookup_journal_in_cursum(journal, 3061 NAT_JOURNAL, nid, 1); 3062 f2fs_bug_on(sbi, offset < 0); 3063 raw_ne = &nat_in_journal(journal, offset); 3064 nid_in_journal(journal, offset) = cpu_to_le32(nid); 3065 } else { 3066 raw_ne = &nat_blk->entries[nid - start_nid]; 3067 } 3068 raw_nat_from_node_info(raw_ne, &ne->ni); 3069 nat_reset_flag(ne); 3070 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 3071 if (nat_get_blkaddr(ne) == NULL_ADDR) { 3072 add_free_nid(sbi, nid, false, true); 3073 } else { 3074 spin_lock(&NM_I(sbi)->nid_list_lock); 3075 update_free_nid_bitmap(sbi, nid, false, false); 3076 spin_unlock(&NM_I(sbi)->nid_list_lock); 3077 } 3078 } 3079 3080 if (to_journal) { 3081 up_write(&curseg->journal_rwsem); 3082 } else { 3083 update_nat_bits(sbi, start_nid, page); 3084 f2fs_put_page(page, 1); 3085 } 3086 3087 /* Allow dirty nats by node block allocation in write_begin */ 3088 if (!set->entry_cnt) { 3089 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 3090 kmem_cache_free(nat_entry_set_slab, set); 3091 } 3092 return 0; 3093 } 3094 3095 /* 3096 * This function is called during the checkpointing process. 3097 */ 3098 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3099 { 3100 struct f2fs_nm_info *nm_i = NM_I(sbi); 3101 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3102 struct f2fs_journal *journal = curseg->journal; 3103 struct nat_entry_set *setvec[NAT_VEC_SIZE]; 3104 struct nat_entry_set *set, *tmp; 3105 unsigned int found; 3106 nid_t set_idx = 0; 3107 LIST_HEAD(sets); 3108 int err = 0; 3109 3110 /* 3111 * during unmount, let's flush nat_bits before checking 3112 * nat_cnt[DIRTY_NAT]. 3113 */ 3114 if (cpc->reason & CP_UMOUNT) { 3115 f2fs_down_write(&nm_i->nat_tree_lock); 3116 remove_nats_in_journal(sbi); 3117 f2fs_up_write(&nm_i->nat_tree_lock); 3118 } 3119 3120 if (!nm_i->nat_cnt[DIRTY_NAT]) 3121 return 0; 3122 3123 f2fs_down_write(&nm_i->nat_tree_lock); 3124 3125 /* 3126 * if there are no enough space in journal to store dirty nat 3127 * entries, remove all entries from journal and merge them 3128 * into nat entry set. 3129 */ 3130 if (cpc->reason & CP_UMOUNT || 3131 !__has_cursum_space(journal, 3132 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) 3133 remove_nats_in_journal(sbi); 3134 3135 while ((found = __gang_lookup_nat_set(nm_i, 3136 set_idx, NAT_VEC_SIZE, setvec))) { 3137 unsigned idx; 3138 3139 set_idx = setvec[found - 1]->set + 1; 3140 for (idx = 0; idx < found; idx++) 3141 __adjust_nat_entry_set(setvec[idx], &sets, 3142 MAX_NAT_JENTRIES(journal)); 3143 } 3144 3145 /* flush dirty nats in nat entry set */ 3146 list_for_each_entry_safe(set, tmp, &sets, set_list) { 3147 err = __flush_nat_entry_set(sbi, set, cpc); 3148 if (err) 3149 break; 3150 } 3151 3152 f2fs_up_write(&nm_i->nat_tree_lock); 3153 /* Allow dirty nats by node block allocation in write_begin */ 3154 3155 return err; 3156 } 3157 3158 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 3159 { 3160 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3161 struct f2fs_nm_info *nm_i = NM_I(sbi); 3162 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 3163 unsigned int i; 3164 __u64 cp_ver = cur_cp_version(ckpt); 3165 block_t nat_bits_addr; 3166 3167 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3168 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3169 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 3170 if (!nm_i->nat_bits) 3171 return -ENOMEM; 3172 3173 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3174 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3175 3176 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3177 return 0; 3178 3179 nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) - 3180 nm_i->nat_bits_blocks; 3181 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3182 struct page *page; 3183 3184 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 3185 if (IS_ERR(page)) 3186 return PTR_ERR(page); 3187 3188 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 3189 page_address(page), F2FS_BLKSIZE); 3190 f2fs_put_page(page, 1); 3191 } 3192 3193 cp_ver |= (cur_cp_crc(ckpt) << 32); 3194 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3195 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 3196 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)", 3197 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits)); 3198 return 0; 3199 } 3200 3201 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3202 return 0; 3203 } 3204 3205 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3206 { 3207 struct f2fs_nm_info *nm_i = NM_I(sbi); 3208 unsigned int i = 0; 3209 nid_t nid, last_nid; 3210 3211 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3212 return; 3213 3214 for (i = 0; i < nm_i->nat_blocks; i++) { 3215 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3216 if (i >= nm_i->nat_blocks) 3217 break; 3218 3219 __set_bit_le(i, nm_i->nat_block_bitmap); 3220 3221 nid = i * NAT_ENTRY_PER_BLOCK; 3222 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3223 3224 spin_lock(&NM_I(sbi)->nid_list_lock); 3225 for (; nid < last_nid; nid++) 3226 update_free_nid_bitmap(sbi, nid, true, true); 3227 spin_unlock(&NM_I(sbi)->nid_list_lock); 3228 } 3229 3230 for (i = 0; i < nm_i->nat_blocks; i++) { 3231 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3232 if (i >= nm_i->nat_blocks) 3233 break; 3234 3235 __set_bit_le(i, nm_i->nat_block_bitmap); 3236 } 3237 } 3238 3239 static int init_node_manager(struct f2fs_sb_info *sbi) 3240 { 3241 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3242 struct f2fs_nm_info *nm_i = NM_I(sbi); 3243 unsigned char *version_bitmap; 3244 unsigned int nat_segs; 3245 int err; 3246 3247 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3248 3249 /* segment_count_nat includes pair segment so divide to 2. */ 3250 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3251 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3252 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3253 3254 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3255 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3256 F2FS_RESERVED_NODE_NUM; 3257 nm_i->nid_cnt[FREE_NID] = 0; 3258 nm_i->nid_cnt[PREALLOC_NID] = 0; 3259 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3260 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3261 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3262 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS; 3263 3264 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3265 INIT_LIST_HEAD(&nm_i->free_nid_list); 3266 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3267 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3268 INIT_LIST_HEAD(&nm_i->nat_entries); 3269 spin_lock_init(&nm_i->nat_list_lock); 3270 3271 mutex_init(&nm_i->build_lock); 3272 spin_lock_init(&nm_i->nid_list_lock); 3273 init_f2fs_rwsem(&nm_i->nat_tree_lock); 3274 3275 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3276 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3277 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3278 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3279 GFP_KERNEL); 3280 if (!nm_i->nat_bitmap) 3281 return -ENOMEM; 3282 3283 err = __get_nat_bitmaps(sbi); 3284 if (err) 3285 return err; 3286 3287 #ifdef CONFIG_F2FS_CHECK_FS 3288 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3289 GFP_KERNEL); 3290 if (!nm_i->nat_bitmap_mir) 3291 return -ENOMEM; 3292 #endif 3293 3294 return 0; 3295 } 3296 3297 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3298 { 3299 struct f2fs_nm_info *nm_i = NM_I(sbi); 3300 int i; 3301 3302 nm_i->free_nid_bitmap = 3303 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3304 nm_i->nat_blocks), 3305 GFP_KERNEL); 3306 if (!nm_i->free_nid_bitmap) 3307 return -ENOMEM; 3308 3309 for (i = 0; i < nm_i->nat_blocks; i++) { 3310 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3311 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3312 if (!nm_i->free_nid_bitmap[i]) 3313 return -ENOMEM; 3314 } 3315 3316 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3317 GFP_KERNEL); 3318 if (!nm_i->nat_block_bitmap) 3319 return -ENOMEM; 3320 3321 nm_i->free_nid_count = 3322 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3323 nm_i->nat_blocks), 3324 GFP_KERNEL); 3325 if (!nm_i->free_nid_count) 3326 return -ENOMEM; 3327 return 0; 3328 } 3329 3330 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3331 { 3332 int err; 3333 3334 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3335 GFP_KERNEL); 3336 if (!sbi->nm_info) 3337 return -ENOMEM; 3338 3339 err = init_node_manager(sbi); 3340 if (err) 3341 return err; 3342 3343 err = init_free_nid_cache(sbi); 3344 if (err) 3345 return err; 3346 3347 /* load free nid status from nat_bits table */ 3348 load_free_nid_bitmap(sbi); 3349 3350 return f2fs_build_free_nids(sbi, true, true); 3351 } 3352 3353 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3354 { 3355 struct f2fs_nm_info *nm_i = NM_I(sbi); 3356 struct free_nid *i, *next_i; 3357 void *vec[NAT_VEC_SIZE]; 3358 struct nat_entry **natvec = (struct nat_entry **)vec; 3359 struct nat_entry_set **setvec = (struct nat_entry_set **)vec; 3360 nid_t nid = 0; 3361 unsigned int found; 3362 3363 if (!nm_i) 3364 return; 3365 3366 /* destroy free nid list */ 3367 spin_lock(&nm_i->nid_list_lock); 3368 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3369 __remove_free_nid(sbi, i, FREE_NID); 3370 spin_unlock(&nm_i->nid_list_lock); 3371 kmem_cache_free(free_nid_slab, i); 3372 spin_lock(&nm_i->nid_list_lock); 3373 } 3374 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3375 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3376 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3377 spin_unlock(&nm_i->nid_list_lock); 3378 3379 /* destroy nat cache */ 3380 f2fs_down_write(&nm_i->nat_tree_lock); 3381 while ((found = __gang_lookup_nat_cache(nm_i, 3382 nid, NAT_VEC_SIZE, natvec))) { 3383 unsigned idx; 3384 3385 nid = nat_get_nid(natvec[found - 1]) + 1; 3386 for (idx = 0; idx < found; idx++) { 3387 spin_lock(&nm_i->nat_list_lock); 3388 list_del(&natvec[idx]->list); 3389 spin_unlock(&nm_i->nat_list_lock); 3390 3391 __del_from_nat_cache(nm_i, natvec[idx]); 3392 } 3393 } 3394 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); 3395 3396 /* destroy nat set cache */ 3397 nid = 0; 3398 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE); 3399 while ((found = __gang_lookup_nat_set(nm_i, 3400 nid, NAT_VEC_SIZE, setvec))) { 3401 unsigned idx; 3402 3403 nid = setvec[found - 1]->set + 1; 3404 for (idx = 0; idx < found; idx++) { 3405 /* entry_cnt is not zero, when cp_error was occurred */ 3406 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3407 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3408 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3409 } 3410 } 3411 f2fs_up_write(&nm_i->nat_tree_lock); 3412 3413 kvfree(nm_i->nat_block_bitmap); 3414 if (nm_i->free_nid_bitmap) { 3415 int i; 3416 3417 for (i = 0; i < nm_i->nat_blocks; i++) 3418 kvfree(nm_i->free_nid_bitmap[i]); 3419 kvfree(nm_i->free_nid_bitmap); 3420 } 3421 kvfree(nm_i->free_nid_count); 3422 3423 kvfree(nm_i->nat_bitmap); 3424 kvfree(nm_i->nat_bits); 3425 #ifdef CONFIG_F2FS_CHECK_FS 3426 kvfree(nm_i->nat_bitmap_mir); 3427 #endif 3428 sbi->nm_info = NULL; 3429 kfree(nm_i); 3430 } 3431 3432 int __init f2fs_create_node_manager_caches(void) 3433 { 3434 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3435 sizeof(struct nat_entry)); 3436 if (!nat_entry_slab) 3437 goto fail; 3438 3439 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3440 sizeof(struct free_nid)); 3441 if (!free_nid_slab) 3442 goto destroy_nat_entry; 3443 3444 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3445 sizeof(struct nat_entry_set)); 3446 if (!nat_entry_set_slab) 3447 goto destroy_free_nid; 3448 3449 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3450 sizeof(struct fsync_node_entry)); 3451 if (!fsync_node_entry_slab) 3452 goto destroy_nat_entry_set; 3453 return 0; 3454 3455 destroy_nat_entry_set: 3456 kmem_cache_destroy(nat_entry_set_slab); 3457 destroy_free_nid: 3458 kmem_cache_destroy(free_nid_slab); 3459 destroy_nat_entry: 3460 kmem_cache_destroy(nat_entry_slab); 3461 fail: 3462 return -ENOMEM; 3463 } 3464 3465 void f2fs_destroy_node_manager_caches(void) 3466 { 3467 kmem_cache_destroy(fsync_node_entry_slab); 3468 kmem_cache_destroy(nat_entry_set_slab); 3469 kmem_cache_destroy(free_nid_slab); 3470 kmem_cache_destroy(nat_entry_slab); 3471 } 3472
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.