~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/node.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * fs/f2fs/node.c
  4  *
  5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6  *             http://www.samsung.com/
  7  */
  8 #include <linux/fs.h>
  9 #include <linux/f2fs_fs.h>
 10 #include <linux/mpage.h>
 11 #include <linux/sched/mm.h>
 12 #include <linux/blkdev.h>
 13 #include <linux/pagevec.h>
 14 #include <linux/swap.h>
 15 
 16 #include "f2fs.h"
 17 #include "node.h"
 18 #include "segment.h"
 19 #include "xattr.h"
 20 #include "iostat.h"
 21 #include <trace/events/f2fs.h>
 22 
 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
 24 
 25 static struct kmem_cache *nat_entry_slab;
 26 static struct kmem_cache *free_nid_slab;
 27 static struct kmem_cache *nat_entry_set_slab;
 28 static struct kmem_cache *fsync_node_entry_slab;
 29 
 30 /*
 31  * Check whether the given nid is within node id range.
 32  */
 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
 34 {
 35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
 36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
 37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
 38                           __func__, nid);
 39                 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
 40                 return -EFSCORRUPTED;
 41         }
 42         return 0;
 43 }
 44 
 45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
 46 {
 47         struct f2fs_nm_info *nm_i = NM_I(sbi);
 48         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 49         struct sysinfo val;
 50         unsigned long avail_ram;
 51         unsigned long mem_size = 0;
 52         bool res = false;
 53 
 54         if (!nm_i)
 55                 return true;
 56 
 57         si_meminfo(&val);
 58 
 59         /* only uses low memory */
 60         avail_ram = val.totalram - val.totalhigh;
 61 
 62         /*
 63          * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
 64          */
 65         if (type == FREE_NIDS) {
 66                 mem_size = (nm_i->nid_cnt[FREE_NID] *
 67                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
 68                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
 69         } else if (type == NAT_ENTRIES) {
 70                 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
 71                                 sizeof(struct nat_entry)) >> PAGE_SHIFT;
 72                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
 73                 if (excess_cached_nats(sbi))
 74                         res = false;
 75         } else if (type == DIRTY_DENTS) {
 76                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
 77                         return false;
 78                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
 79                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
 80         } else if (type == INO_ENTRIES) {
 81                 int i;
 82 
 83                 for (i = 0; i < MAX_INO_ENTRY; i++)
 84                         mem_size += sbi->im[i].ino_num *
 85                                                 sizeof(struct ino_entry);
 86                 mem_size >>= PAGE_SHIFT;
 87                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
 88         } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
 89                 enum extent_type etype = type == READ_EXTENT_CACHE ?
 90                                                 EX_READ : EX_BLOCK_AGE;
 91                 struct extent_tree_info *eti = &sbi->extent_tree[etype];
 92 
 93                 mem_size = (atomic_read(&eti->total_ext_tree) *
 94                                 sizeof(struct extent_tree) +
 95                                 atomic_read(&eti->total_ext_node) *
 96                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
 97                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
 98         } else if (type == DISCARD_CACHE) {
 99                 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100                                 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101                 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102         } else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104                 unsigned long free_ram = val.freeram;
105 
106                 /*
107                  * free memory is lower than watermark or cached page count
108                  * exceed threshold, deny caching compress page.
109                  */
110                 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111                         (COMPRESS_MAPPING(sbi)->nrpages <
112                          free_ram * sbi->compress_percent / 100);
113 #else
114                 res = false;
115 #endif
116         } else {
117                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118                         return true;
119         }
120         return res;
121 }
122 
123 static void clear_node_page_dirty(struct page *page)
124 {
125         if (PageDirty(page)) {
126                 f2fs_clear_page_cache_dirty_tag(page);
127                 clear_page_dirty_for_io(page);
128                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129         }
130         ClearPageUptodate(page);
131 }
132 
133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135         return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137 
138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140         struct page *src_page;
141         struct page *dst_page;
142         pgoff_t dst_off;
143         void *src_addr;
144         void *dst_addr;
145         struct f2fs_nm_info *nm_i = NM_I(sbi);
146 
147         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148 
149         /* get current nat block page with lock */
150         src_page = get_current_nat_page(sbi, nid);
151         if (IS_ERR(src_page))
152                 return src_page;
153         dst_page = f2fs_grab_meta_page(sbi, dst_off);
154         f2fs_bug_on(sbi, PageDirty(src_page));
155 
156         src_addr = page_address(src_page);
157         dst_addr = page_address(dst_page);
158         memcpy(dst_addr, src_addr, PAGE_SIZE);
159         set_page_dirty(dst_page);
160         f2fs_put_page(src_page, 1);
161 
162         set_to_next_nat(nm_i, nid);
163 
164         return dst_page;
165 }
166 
167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168                                                 nid_t nid, bool no_fail)
169 {
170         struct nat_entry *new;
171 
172         new = f2fs_kmem_cache_alloc(nat_entry_slab,
173                                         GFP_F2FS_ZERO, no_fail, sbi);
174         if (new) {
175                 nat_set_nid(new, nid);
176                 nat_reset_flag(new);
177         }
178         return new;
179 }
180 
181 static void __free_nat_entry(struct nat_entry *e)
182 {
183         kmem_cache_free(nat_entry_slab, e);
184 }
185 
186 /* must be locked by nat_tree_lock */
187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190         if (no_fail)
191                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193                 return NULL;
194 
195         if (raw_ne)
196                 node_info_from_raw_nat(&ne->ni, raw_ne);
197 
198         spin_lock(&nm_i->nat_list_lock);
199         list_add_tail(&ne->list, &nm_i->nat_entries);
200         spin_unlock(&nm_i->nat_list_lock);
201 
202         nm_i->nat_cnt[TOTAL_NAT]++;
203         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204         return ne;
205 }
206 
207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209         struct nat_entry *ne;
210 
211         ne = radix_tree_lookup(&nm_i->nat_root, n);
212 
213         /* for recent accessed nat entry, move it to tail of lru list */
214         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215                 spin_lock(&nm_i->nat_list_lock);
216                 if (!list_empty(&ne->list))
217                         list_move_tail(&ne->list, &nm_i->nat_entries);
218                 spin_unlock(&nm_i->nat_list_lock);
219         }
220 
221         return ne;
222 }
223 
224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225                 nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229 
230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233         nm_i->nat_cnt[TOTAL_NAT]--;
234         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235         __free_nat_entry(e);
236 }
237 
238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239                                                         struct nat_entry *ne)
240 {
241         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242         struct nat_entry_set *head;
243 
244         head = radix_tree_lookup(&nm_i->nat_set_root, set);
245         if (!head) {
246                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247                                                 GFP_NOFS, true, NULL);
248 
249                 INIT_LIST_HEAD(&head->entry_list);
250                 INIT_LIST_HEAD(&head->set_list);
251                 head->set = set;
252                 head->entry_cnt = 0;
253                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254         }
255         return head;
256 }
257 
258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259                                                 struct nat_entry *ne)
260 {
261         struct nat_entry_set *head;
262         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263 
264         if (!new_ne)
265                 head = __grab_nat_entry_set(nm_i, ne);
266 
267         /*
268          * update entry_cnt in below condition:
269          * 1. update NEW_ADDR to valid block address;
270          * 2. update old block address to new one;
271          */
272         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273                                 !get_nat_flag(ne, IS_DIRTY)))
274                 head->entry_cnt++;
275 
276         set_nat_flag(ne, IS_PREALLOC, new_ne);
277 
278         if (get_nat_flag(ne, IS_DIRTY))
279                 goto refresh_list;
280 
281         nm_i->nat_cnt[DIRTY_NAT]++;
282         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283         set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285         spin_lock(&nm_i->nat_list_lock);
286         if (new_ne)
287                 list_del_init(&ne->list);
288         else
289                 list_move_tail(&ne->list, &head->entry_list);
290         spin_unlock(&nm_i->nat_list_lock);
291 }
292 
293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294                 struct nat_entry_set *set, struct nat_entry *ne)
295 {
296         spin_lock(&nm_i->nat_list_lock);
297         list_move_tail(&ne->list, &nm_i->nat_entries);
298         spin_unlock(&nm_i->nat_list_lock);
299 
300         set_nat_flag(ne, IS_DIRTY, false);
301         set->entry_cnt--;
302         nm_i->nat_cnt[DIRTY_NAT]--;
303         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305 
306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310                                                         start, nr);
311 }
312 
313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315         return NODE_MAPPING(sbi) == page->mapping &&
316                         IS_DNODE(page) && is_cold_node(page);
317 }
318 
319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321         spin_lock_init(&sbi->fsync_node_lock);
322         INIT_LIST_HEAD(&sbi->fsync_node_list);
323         sbi->fsync_seg_id = 0;
324         sbi->fsync_node_num = 0;
325 }
326 
327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328                                                         struct page *page)
329 {
330         struct fsync_node_entry *fn;
331         unsigned long flags;
332         unsigned int seq_id;
333 
334         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335                                         GFP_NOFS, true, NULL);
336 
337         get_page(page);
338         fn->page = page;
339         INIT_LIST_HEAD(&fn->list);
340 
341         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342         list_add_tail(&fn->list, &sbi->fsync_node_list);
343         fn->seq_id = sbi->fsync_seg_id++;
344         seq_id = fn->seq_id;
345         sbi->fsync_node_num++;
346         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347 
348         return seq_id;
349 }
350 
351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353         struct fsync_node_entry *fn;
354         unsigned long flags;
355 
356         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358                 if (fn->page == page) {
359                         list_del(&fn->list);
360                         sbi->fsync_node_num--;
361                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362                         kmem_cache_free(fsync_node_entry_slab, fn);
363                         put_page(page);
364                         return;
365                 }
366         }
367         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368         f2fs_bug_on(sbi, 1);
369 }
370 
371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373         unsigned long flags;
374 
375         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376         sbi->fsync_seg_id = 0;
377         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379 
380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382         struct f2fs_nm_info *nm_i = NM_I(sbi);
383         struct nat_entry *e;
384         bool need = false;
385 
386         f2fs_down_read(&nm_i->nat_tree_lock);
387         e = __lookup_nat_cache(nm_i, nid);
388         if (e) {
389                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
391                         need = true;
392         }
393         f2fs_up_read(&nm_i->nat_tree_lock);
394         return need;
395 }
396 
397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399         struct f2fs_nm_info *nm_i = NM_I(sbi);
400         struct nat_entry *e;
401         bool is_cp = true;
402 
403         f2fs_down_read(&nm_i->nat_tree_lock);
404         e = __lookup_nat_cache(nm_i, nid);
405         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406                 is_cp = false;
407         f2fs_up_read(&nm_i->nat_tree_lock);
408         return is_cp;
409 }
410 
411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413         struct f2fs_nm_info *nm_i = NM_I(sbi);
414         struct nat_entry *e;
415         bool need_update = true;
416 
417         f2fs_down_read(&nm_i->nat_tree_lock);
418         e = __lookup_nat_cache(nm_i, ino);
419         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420                         (get_nat_flag(e, IS_CHECKPOINTED) ||
421                          get_nat_flag(e, HAS_FSYNCED_INODE)))
422                 need_update = false;
423         f2fs_up_read(&nm_i->nat_tree_lock);
424         return need_update;
425 }
426 
427 /* must be locked by nat_tree_lock */
428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429                                                 struct f2fs_nat_entry *ne)
430 {
431         struct f2fs_nm_info *nm_i = NM_I(sbi);
432         struct nat_entry *new, *e;
433 
434         /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435         if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436                 return;
437 
438         new = __alloc_nat_entry(sbi, nid, false);
439         if (!new)
440                 return;
441 
442         f2fs_down_write(&nm_i->nat_tree_lock);
443         e = __lookup_nat_cache(nm_i, nid);
444         if (!e)
445                 e = __init_nat_entry(nm_i, new, ne, false);
446         else
447                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448                                 nat_get_blkaddr(e) !=
449                                         le32_to_cpu(ne->block_addr) ||
450                                 nat_get_version(e) != ne->version);
451         f2fs_up_write(&nm_i->nat_tree_lock);
452         if (e != new)
453                 __free_nat_entry(new);
454 }
455 
456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457                         block_t new_blkaddr, bool fsync_done)
458 {
459         struct f2fs_nm_info *nm_i = NM_I(sbi);
460         struct nat_entry *e;
461         struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462 
463         f2fs_down_write(&nm_i->nat_tree_lock);
464         e = __lookup_nat_cache(nm_i, ni->nid);
465         if (!e) {
466                 e = __init_nat_entry(nm_i, new, NULL, true);
467                 copy_node_info(&e->ni, ni);
468                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469         } else if (new_blkaddr == NEW_ADDR) {
470                 /*
471                  * when nid is reallocated,
472                  * previous nat entry can be remained in nat cache.
473                  * So, reinitialize it with new information.
474                  */
475                 copy_node_info(&e->ni, ni);
476                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477         }
478         /* let's free early to reduce memory consumption */
479         if (e != new)
480                 __free_nat_entry(new);
481 
482         /* sanity check */
483         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485                         new_blkaddr == NULL_ADDR);
486         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487                         new_blkaddr == NEW_ADDR);
488         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489                         new_blkaddr == NEW_ADDR);
490 
491         /* increment version no as node is removed */
492         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493                 unsigned char version = nat_get_version(e);
494 
495                 nat_set_version(e, inc_node_version(version));
496         }
497 
498         /* change address */
499         nat_set_blkaddr(e, new_blkaddr);
500         if (!__is_valid_data_blkaddr(new_blkaddr))
501                 set_nat_flag(e, IS_CHECKPOINTED, false);
502         __set_nat_cache_dirty(nm_i, e);
503 
504         /* update fsync_mark if its inode nat entry is still alive */
505         if (ni->nid != ni->ino)
506                 e = __lookup_nat_cache(nm_i, ni->ino);
507         if (e) {
508                 if (fsync_done && ni->nid == ni->ino)
509                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
510                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511         }
512         f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514 
515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517         struct f2fs_nm_info *nm_i = NM_I(sbi);
518         int nr = nr_shrink;
519 
520         if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521                 return 0;
522 
523         spin_lock(&nm_i->nat_list_lock);
524         while (nr_shrink) {
525                 struct nat_entry *ne;
526 
527                 if (list_empty(&nm_i->nat_entries))
528                         break;
529 
530                 ne = list_first_entry(&nm_i->nat_entries,
531                                         struct nat_entry, list);
532                 list_del(&ne->list);
533                 spin_unlock(&nm_i->nat_list_lock);
534 
535                 __del_from_nat_cache(nm_i, ne);
536                 nr_shrink--;
537 
538                 spin_lock(&nm_i->nat_list_lock);
539         }
540         spin_unlock(&nm_i->nat_list_lock);
541 
542         f2fs_up_write(&nm_i->nat_tree_lock);
543         return nr - nr_shrink;
544 }
545 
546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547                                 struct node_info *ni, bool checkpoint_context)
548 {
549         struct f2fs_nm_info *nm_i = NM_I(sbi);
550         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551         struct f2fs_journal *journal = curseg->journal;
552         nid_t start_nid = START_NID(nid);
553         struct f2fs_nat_block *nat_blk;
554         struct page *page = NULL;
555         struct f2fs_nat_entry ne;
556         struct nat_entry *e;
557         pgoff_t index;
558         block_t blkaddr;
559         int i;
560 
561         ni->nid = nid;
562 retry:
563         /* Check nat cache */
564         f2fs_down_read(&nm_i->nat_tree_lock);
565         e = __lookup_nat_cache(nm_i, nid);
566         if (e) {
567                 ni->ino = nat_get_ino(e);
568                 ni->blk_addr = nat_get_blkaddr(e);
569                 ni->version = nat_get_version(e);
570                 f2fs_up_read(&nm_i->nat_tree_lock);
571                 return 0;
572         }
573 
574         /*
575          * Check current segment summary by trying to grab journal_rwsem first.
576          * This sem is on the critical path on the checkpoint requiring the above
577          * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578          * while not bothering checkpoint.
579          */
580         if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581                 down_read(&curseg->journal_rwsem);
582         } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583                                 !down_read_trylock(&curseg->journal_rwsem)) {
584                 f2fs_up_read(&nm_i->nat_tree_lock);
585                 goto retry;
586         }
587 
588         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589         if (i >= 0) {
590                 ne = nat_in_journal(journal, i);
591                 node_info_from_raw_nat(ni, &ne);
592         }
593         up_read(&curseg->journal_rwsem);
594         if (i >= 0) {
595                 f2fs_up_read(&nm_i->nat_tree_lock);
596                 goto cache;
597         }
598 
599         /* Fill node_info from nat page */
600         index = current_nat_addr(sbi, nid);
601         f2fs_up_read(&nm_i->nat_tree_lock);
602 
603         page = f2fs_get_meta_page(sbi, index);
604         if (IS_ERR(page))
605                 return PTR_ERR(page);
606 
607         nat_blk = (struct f2fs_nat_block *)page_address(page);
608         ne = nat_blk->entries[nid - start_nid];
609         node_info_from_raw_nat(ni, &ne);
610         f2fs_put_page(page, 1);
611 cache:
612         blkaddr = le32_to_cpu(ne.block_addr);
613         if (__is_valid_data_blkaddr(blkaddr) &&
614                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615                 return -EFAULT;
616 
617         /* cache nat entry */
618         cache_nat_entry(sbi, nid, &ne);
619         return 0;
620 }
621 
622 /*
623  * readahead MAX_RA_NODE number of node pages.
624  */
625 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626 {
627         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628         struct blk_plug plug;
629         int i, end;
630         nid_t nid;
631 
632         blk_start_plug(&plug);
633 
634         /* Then, try readahead for siblings of the desired node */
635         end = start + n;
636         end = min(end, (int)NIDS_PER_BLOCK);
637         for (i = start; i < end; i++) {
638                 nid = get_nid(parent, i, false);
639                 f2fs_ra_node_page(sbi, nid);
640         }
641 
642         blk_finish_plug(&plug);
643 }
644 
645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646 {
647         const long direct_index = ADDRS_PER_INODE(dn->inode);
648         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651         int cur_level = dn->cur_level;
652         int max_level = dn->max_level;
653         pgoff_t base = 0;
654 
655         if (!dn->max_level)
656                 return pgofs + 1;
657 
658         while (max_level-- > cur_level)
659                 skipped_unit *= NIDS_PER_BLOCK;
660 
661         switch (dn->max_level) {
662         case 3:
663                 base += 2 * indirect_blks;
664                 fallthrough;
665         case 2:
666                 base += 2 * direct_blks;
667                 fallthrough;
668         case 1:
669                 base += direct_index;
670                 break;
671         default:
672                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673         }
674 
675         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676 }
677 
678 /*
679  * The maximum depth is four.
680  * Offset[0] will have raw inode offset.
681  */
682 static int get_node_path(struct inode *inode, long block,
683                                 int offset[4], unsigned int noffset[4])
684 {
685         const long direct_index = ADDRS_PER_INODE(inode);
686         const long direct_blks = ADDRS_PER_BLOCK(inode);
687         const long dptrs_per_blk = NIDS_PER_BLOCK;
688         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690         int n = 0;
691         int level = 0;
692 
693         noffset[0] = 0;
694 
695         if (block < direct_index) {
696                 offset[n] = block;
697                 goto got;
698         }
699         block -= direct_index;
700         if (block < direct_blks) {
701                 offset[n++] = NODE_DIR1_BLOCK;
702                 noffset[n] = 1;
703                 offset[n] = block;
704                 level = 1;
705                 goto got;
706         }
707         block -= direct_blks;
708         if (block < direct_blks) {
709                 offset[n++] = NODE_DIR2_BLOCK;
710                 noffset[n] = 2;
711                 offset[n] = block;
712                 level = 1;
713                 goto got;
714         }
715         block -= direct_blks;
716         if (block < indirect_blks) {
717                 offset[n++] = NODE_IND1_BLOCK;
718                 noffset[n] = 3;
719                 offset[n++] = block / direct_blks;
720                 noffset[n] = 4 + offset[n - 1];
721                 offset[n] = block % direct_blks;
722                 level = 2;
723                 goto got;
724         }
725         block -= indirect_blks;
726         if (block < indirect_blks) {
727                 offset[n++] = NODE_IND2_BLOCK;
728                 noffset[n] = 4 + dptrs_per_blk;
729                 offset[n++] = block / direct_blks;
730                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731                 offset[n] = block % direct_blks;
732                 level = 2;
733                 goto got;
734         }
735         block -= indirect_blks;
736         if (block < dindirect_blks) {
737                 offset[n++] = NODE_DIND_BLOCK;
738                 noffset[n] = 5 + (dptrs_per_blk * 2);
739                 offset[n++] = block / indirect_blks;
740                 noffset[n] = 6 + (dptrs_per_blk * 2) +
741                               offset[n - 1] * (dptrs_per_blk + 1);
742                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743                 noffset[n] = 7 + (dptrs_per_blk * 2) +
744                               offset[n - 2] * (dptrs_per_blk + 1) +
745                               offset[n - 1];
746                 offset[n] = block % direct_blks;
747                 level = 3;
748                 goto got;
749         } else {
750                 return -E2BIG;
751         }
752 got:
753         return level;
754 }
755 
756 /*
757  * Caller should call f2fs_put_dnode(dn).
758  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760  */
761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762 {
763         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764         struct page *npage[4];
765         struct page *parent = NULL;
766         int offset[4];
767         unsigned int noffset[4];
768         nid_t nids[4];
769         int level, i = 0;
770         int err = 0;
771 
772         level = get_node_path(dn->inode, index, offset, noffset);
773         if (level < 0)
774                 return level;
775 
776         nids[0] = dn->inode->i_ino;
777         npage[0] = dn->inode_page;
778 
779         if (!npage[0]) {
780                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781                 if (IS_ERR(npage[0]))
782                         return PTR_ERR(npage[0]);
783         }
784 
785         /* if inline_data is set, should not report any block indices */
786         if (f2fs_has_inline_data(dn->inode) && index) {
787                 err = -ENOENT;
788                 f2fs_put_page(npage[0], 1);
789                 goto release_out;
790         }
791 
792         parent = npage[0];
793         if (level != 0)
794                 nids[1] = get_nid(parent, offset[0], true);
795         dn->inode_page = npage[0];
796         dn->inode_page_locked = true;
797 
798         /* get indirect or direct nodes */
799         for (i = 1; i <= level; i++) {
800                 bool done = false;
801 
802                 if (!nids[i] && mode == ALLOC_NODE) {
803                         /* alloc new node */
804                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805                                 err = -ENOSPC;
806                                 goto release_pages;
807                         }
808 
809                         dn->nid = nids[i];
810                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
811                         if (IS_ERR(npage[i])) {
812                                 f2fs_alloc_nid_failed(sbi, nids[i]);
813                                 err = PTR_ERR(npage[i]);
814                                 goto release_pages;
815                         }
816 
817                         set_nid(parent, offset[i - 1], nids[i], i == 1);
818                         f2fs_alloc_nid_done(sbi, nids[i]);
819                         done = true;
820                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822                         if (IS_ERR(npage[i])) {
823                                 err = PTR_ERR(npage[i]);
824                                 goto release_pages;
825                         }
826                         done = true;
827                 }
828                 if (i == 1) {
829                         dn->inode_page_locked = false;
830                         unlock_page(parent);
831                 } else {
832                         f2fs_put_page(parent, 1);
833                 }
834 
835                 if (!done) {
836                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
837                         if (IS_ERR(npage[i])) {
838                                 err = PTR_ERR(npage[i]);
839                                 f2fs_put_page(npage[0], 0);
840                                 goto release_out;
841                         }
842                 }
843                 if (i < level) {
844                         parent = npage[i];
845                         nids[i + 1] = get_nid(parent, offset[i], false);
846                 }
847         }
848         dn->nid = nids[level];
849         dn->ofs_in_node = offset[level];
850         dn->node_page = npage[level];
851         dn->data_blkaddr = f2fs_data_blkaddr(dn);
852 
853         if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854                                         f2fs_sb_has_readonly(sbi)) {
855                 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
856                 unsigned int ofs_in_node = dn->ofs_in_node;
857                 pgoff_t fofs = index;
858                 unsigned int c_len;
859                 block_t blkaddr;
860 
861                 /* should align fofs and ofs_in_node to cluster_size */
862                 if (fofs % cluster_size) {
863                         fofs = round_down(fofs, cluster_size);
864                         ofs_in_node = round_down(ofs_in_node, cluster_size);
865                 }
866 
867                 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
868                 if (!c_len)
869                         goto out;
870 
871                 blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
872                 if (blkaddr == COMPRESS_ADDR)
873                         blkaddr = data_blkaddr(dn->inode, dn->node_page,
874                                                 ofs_in_node + 1);
875 
876                 f2fs_update_read_extent_tree_range_compressed(dn->inode,
877                                         fofs, blkaddr, cluster_size, c_len);
878         }
879 out:
880         return 0;
881 
882 release_pages:
883         f2fs_put_page(parent, 1);
884         if (i > 1)
885                 f2fs_put_page(npage[0], 0);
886 release_out:
887         dn->inode_page = NULL;
888         dn->node_page = NULL;
889         if (err == -ENOENT) {
890                 dn->cur_level = i;
891                 dn->max_level = level;
892                 dn->ofs_in_node = offset[level];
893         }
894         return err;
895 }
896 
897 static int truncate_node(struct dnode_of_data *dn)
898 {
899         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
900         struct node_info ni;
901         int err;
902         pgoff_t index;
903 
904         err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
905         if (err)
906                 return err;
907 
908         /* Deallocate node address */
909         f2fs_invalidate_blocks(sbi, ni.blk_addr);
910         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
911         set_node_addr(sbi, &ni, NULL_ADDR, false);
912 
913         if (dn->nid == dn->inode->i_ino) {
914                 f2fs_remove_orphan_inode(sbi, dn->nid);
915                 dec_valid_inode_count(sbi);
916                 f2fs_inode_synced(dn->inode);
917         }
918 
919         clear_node_page_dirty(dn->node_page);
920         set_sbi_flag(sbi, SBI_IS_DIRTY);
921 
922         index = dn->node_page->index;
923         f2fs_put_page(dn->node_page, 1);
924 
925         invalidate_mapping_pages(NODE_MAPPING(sbi),
926                         index, index);
927 
928         dn->node_page = NULL;
929         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
930 
931         return 0;
932 }
933 
934 static int truncate_dnode(struct dnode_of_data *dn)
935 {
936         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
937         struct page *page;
938         int err;
939 
940         if (dn->nid == 0)
941                 return 1;
942 
943         /* get direct node */
944         page = f2fs_get_node_page(sbi, dn->nid);
945         if (PTR_ERR(page) == -ENOENT)
946                 return 1;
947         else if (IS_ERR(page))
948                 return PTR_ERR(page);
949 
950         if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
951                 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
952                                 dn->inode->i_ino, dn->nid, ino_of_node(page));
953                 set_sbi_flag(sbi, SBI_NEED_FSCK);
954                 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
955                 f2fs_put_page(page, 1);
956                 return -EFSCORRUPTED;
957         }
958 
959         /* Make dnode_of_data for parameter */
960         dn->node_page = page;
961         dn->ofs_in_node = 0;
962         f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
963         err = truncate_node(dn);
964         if (err) {
965                 f2fs_put_page(page, 1);
966                 return err;
967         }
968 
969         return 1;
970 }
971 
972 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
973                                                 int ofs, int depth)
974 {
975         struct dnode_of_data rdn = *dn;
976         struct page *page;
977         struct f2fs_node *rn;
978         nid_t child_nid;
979         unsigned int child_nofs;
980         int freed = 0;
981         int i, ret;
982 
983         if (dn->nid == 0)
984                 return NIDS_PER_BLOCK + 1;
985 
986         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
987 
988         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
989         if (IS_ERR(page)) {
990                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
991                 return PTR_ERR(page);
992         }
993 
994         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
995 
996         rn = F2FS_NODE(page);
997         if (depth < 3) {
998                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
999                         child_nid = le32_to_cpu(rn->in.nid[i]);
1000                         if (child_nid == 0)
1001                                 continue;
1002                         rdn.nid = child_nid;
1003                         ret = truncate_dnode(&rdn);
1004                         if (ret < 0)
1005                                 goto out_err;
1006                         if (set_nid(page, i, 0, false))
1007                                 dn->node_changed = true;
1008                 }
1009         } else {
1010                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1011                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1012                         child_nid = le32_to_cpu(rn->in.nid[i]);
1013                         if (child_nid == 0) {
1014                                 child_nofs += NIDS_PER_BLOCK + 1;
1015                                 continue;
1016                         }
1017                         rdn.nid = child_nid;
1018                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1019                         if (ret == (NIDS_PER_BLOCK + 1)) {
1020                                 if (set_nid(page, i, 0, false))
1021                                         dn->node_changed = true;
1022                                 child_nofs += ret;
1023                         } else if (ret < 0 && ret != -ENOENT) {
1024                                 goto out_err;
1025                         }
1026                 }
1027                 freed = child_nofs;
1028         }
1029 
1030         if (!ofs) {
1031                 /* remove current indirect node */
1032                 dn->node_page = page;
1033                 ret = truncate_node(dn);
1034                 if (ret)
1035                         goto out_err;
1036                 freed++;
1037         } else {
1038                 f2fs_put_page(page, 1);
1039         }
1040         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1041         return freed;
1042 
1043 out_err:
1044         f2fs_put_page(page, 1);
1045         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1046         return ret;
1047 }
1048 
1049 static int truncate_partial_nodes(struct dnode_of_data *dn,
1050                         struct f2fs_inode *ri, int *offset, int depth)
1051 {
1052         struct page *pages[2];
1053         nid_t nid[3];
1054         nid_t child_nid;
1055         int err = 0;
1056         int i;
1057         int idx = depth - 2;
1058 
1059         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1060         if (!nid[0])
1061                 return 0;
1062 
1063         /* get indirect nodes in the path */
1064         for (i = 0; i < idx + 1; i++) {
1065                 /* reference count'll be increased */
1066                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1067                 if (IS_ERR(pages[i])) {
1068                         err = PTR_ERR(pages[i]);
1069                         idx = i - 1;
1070                         goto fail;
1071                 }
1072                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1073         }
1074 
1075         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1076 
1077         /* free direct nodes linked to a partial indirect node */
1078         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1079                 child_nid = get_nid(pages[idx], i, false);
1080                 if (!child_nid)
1081                         continue;
1082                 dn->nid = child_nid;
1083                 err = truncate_dnode(dn);
1084                 if (err < 0)
1085                         goto fail;
1086                 if (set_nid(pages[idx], i, 0, false))
1087                         dn->node_changed = true;
1088         }
1089 
1090         if (offset[idx + 1] == 0) {
1091                 dn->node_page = pages[idx];
1092                 dn->nid = nid[idx];
1093                 err = truncate_node(dn);
1094                 if (err)
1095                         goto fail;
1096         } else {
1097                 f2fs_put_page(pages[idx], 1);
1098         }
1099         offset[idx]++;
1100         offset[idx + 1] = 0;
1101         idx--;
1102 fail:
1103         for (i = idx; i >= 0; i--)
1104                 f2fs_put_page(pages[i], 1);
1105 
1106         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1107 
1108         return err;
1109 }
1110 
1111 /*
1112  * All the block addresses of data and nodes should be nullified.
1113  */
1114 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1115 {
1116         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1117         int err = 0, cont = 1;
1118         int level, offset[4], noffset[4];
1119         unsigned int nofs = 0;
1120         struct f2fs_inode *ri;
1121         struct dnode_of_data dn;
1122         struct page *page;
1123 
1124         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1125 
1126         level = get_node_path(inode, from, offset, noffset);
1127         if (level < 0) {
1128                 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1129                 return level;
1130         }
1131 
1132         page = f2fs_get_node_page(sbi, inode->i_ino);
1133         if (IS_ERR(page)) {
1134                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1135                 return PTR_ERR(page);
1136         }
1137 
1138         set_new_dnode(&dn, inode, page, NULL, 0);
1139         unlock_page(page);
1140 
1141         ri = F2FS_INODE(page);
1142         switch (level) {
1143         case 0:
1144         case 1:
1145                 nofs = noffset[1];
1146                 break;
1147         case 2:
1148                 nofs = noffset[1];
1149                 if (!offset[level - 1])
1150                         goto skip_partial;
1151                 err = truncate_partial_nodes(&dn, ri, offset, level);
1152                 if (err < 0 && err != -ENOENT)
1153                         goto fail;
1154                 nofs += 1 + NIDS_PER_BLOCK;
1155                 break;
1156         case 3:
1157                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1158                 if (!offset[level - 1])
1159                         goto skip_partial;
1160                 err = truncate_partial_nodes(&dn, ri, offset, level);
1161                 if (err < 0 && err != -ENOENT)
1162                         goto fail;
1163                 break;
1164         default:
1165                 BUG();
1166         }
1167 
1168 skip_partial:
1169         while (cont) {
1170                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1171                 switch (offset[0]) {
1172                 case NODE_DIR1_BLOCK:
1173                 case NODE_DIR2_BLOCK:
1174                         err = truncate_dnode(&dn);
1175                         break;
1176 
1177                 case NODE_IND1_BLOCK:
1178                 case NODE_IND2_BLOCK:
1179                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1180                         break;
1181 
1182                 case NODE_DIND_BLOCK:
1183                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1184                         cont = 0;
1185                         break;
1186 
1187                 default:
1188                         BUG();
1189                 }
1190                 if (err == -ENOENT) {
1191                         set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
1192                         f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1193                         f2fs_err_ratelimited(sbi,
1194                                 "truncate node fail, ino:%lu, nid:%u, "
1195                                 "offset[0]:%d, offset[1]:%d, nofs:%d",
1196                                 inode->i_ino, dn.nid, offset[0],
1197                                 offset[1], nofs);
1198                         err = 0;
1199                 }
1200                 if (err < 0)
1201                         goto fail;
1202                 if (offset[1] == 0 &&
1203                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1204                         lock_page(page);
1205                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1206                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1207                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1208                         set_page_dirty(page);
1209                         unlock_page(page);
1210                 }
1211                 offset[1] = 0;
1212                 offset[0]++;
1213                 nofs += err;
1214         }
1215 fail:
1216         f2fs_put_page(page, 0);
1217         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1218         return err > 0 ? 0 : err;
1219 }
1220 
1221 /* caller must lock inode page */
1222 int f2fs_truncate_xattr_node(struct inode *inode)
1223 {
1224         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1225         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1226         struct dnode_of_data dn;
1227         struct page *npage;
1228         int err;
1229 
1230         if (!nid)
1231                 return 0;
1232 
1233         npage = f2fs_get_node_page(sbi, nid);
1234         if (IS_ERR(npage))
1235                 return PTR_ERR(npage);
1236 
1237         set_new_dnode(&dn, inode, NULL, npage, nid);
1238         err = truncate_node(&dn);
1239         if (err) {
1240                 f2fs_put_page(npage, 1);
1241                 return err;
1242         }
1243 
1244         f2fs_i_xnid_write(inode, 0);
1245 
1246         return 0;
1247 }
1248 
1249 /*
1250  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1251  * f2fs_unlock_op().
1252  */
1253 int f2fs_remove_inode_page(struct inode *inode)
1254 {
1255         struct dnode_of_data dn;
1256         int err;
1257 
1258         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1259         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1260         if (err)
1261                 return err;
1262 
1263         err = f2fs_truncate_xattr_node(inode);
1264         if (err) {
1265                 f2fs_put_dnode(&dn);
1266                 return err;
1267         }
1268 
1269         /* remove potential inline_data blocks */
1270         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1271                                 S_ISLNK(inode->i_mode))
1272                 f2fs_truncate_data_blocks_range(&dn, 1);
1273 
1274         /* 0 is possible, after f2fs_new_inode() has failed */
1275         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1276                 f2fs_put_dnode(&dn);
1277                 return -EIO;
1278         }
1279 
1280         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1281                 f2fs_warn(F2FS_I_SB(inode),
1282                         "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1283                         inode->i_ino, (unsigned long long)inode->i_blocks);
1284                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1285         }
1286 
1287         /* will put inode & node pages */
1288         err = truncate_node(&dn);
1289         if (err) {
1290                 f2fs_put_dnode(&dn);
1291                 return err;
1292         }
1293         return 0;
1294 }
1295 
1296 struct page *f2fs_new_inode_page(struct inode *inode)
1297 {
1298         struct dnode_of_data dn;
1299 
1300         /* allocate inode page for new inode */
1301         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1302 
1303         /* caller should f2fs_put_page(page, 1); */
1304         return f2fs_new_node_page(&dn, 0);
1305 }
1306 
1307 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1308 {
1309         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1310         struct node_info new_ni;
1311         struct page *page;
1312         int err;
1313 
1314         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1315                 return ERR_PTR(-EPERM);
1316 
1317         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1318         if (!page)
1319                 return ERR_PTR(-ENOMEM);
1320 
1321         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1322                 goto fail;
1323 
1324 #ifdef CONFIG_F2FS_CHECK_FS
1325         err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1326         if (err) {
1327                 dec_valid_node_count(sbi, dn->inode, !ofs);
1328                 goto fail;
1329         }
1330         if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1331                 err = -EFSCORRUPTED;
1332                 dec_valid_node_count(sbi, dn->inode, !ofs);
1333                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1334                 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1335                 goto fail;
1336         }
1337 #endif
1338         new_ni.nid = dn->nid;
1339         new_ni.ino = dn->inode->i_ino;
1340         new_ni.blk_addr = NULL_ADDR;
1341         new_ni.flag = 0;
1342         new_ni.version = 0;
1343         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1344 
1345         f2fs_wait_on_page_writeback(page, NODE, true, true);
1346         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1347         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1348         if (!PageUptodate(page))
1349                 SetPageUptodate(page);
1350         if (set_page_dirty(page))
1351                 dn->node_changed = true;
1352 
1353         if (f2fs_has_xattr_block(ofs))
1354                 f2fs_i_xnid_write(dn->inode, dn->nid);
1355 
1356         if (ofs == 0)
1357                 inc_valid_inode_count(sbi);
1358         return page;
1359 fail:
1360         clear_node_page_dirty(page);
1361         f2fs_put_page(page, 1);
1362         return ERR_PTR(err);
1363 }
1364 
1365 /*
1366  * Caller should do after getting the following values.
1367  * 0: f2fs_put_page(page, 0)
1368  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1369  */
1370 static int read_node_page(struct page *page, blk_opf_t op_flags)
1371 {
1372         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1373         struct node_info ni;
1374         struct f2fs_io_info fio = {
1375                 .sbi = sbi,
1376                 .type = NODE,
1377                 .op = REQ_OP_READ,
1378                 .op_flags = op_flags,
1379                 .page = page,
1380                 .encrypted_page = NULL,
1381         };
1382         int err;
1383 
1384         if (PageUptodate(page)) {
1385                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1386                         ClearPageUptodate(page);
1387                         return -EFSBADCRC;
1388                 }
1389                 return LOCKED_PAGE;
1390         }
1391 
1392         err = f2fs_get_node_info(sbi, page->index, &ni, false);
1393         if (err)
1394                 return err;
1395 
1396         /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1397         if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1398                 ClearPageUptodate(page);
1399                 return -ENOENT;
1400         }
1401 
1402         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1403 
1404         err = f2fs_submit_page_bio(&fio);
1405 
1406         if (!err)
1407                 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1408 
1409         return err;
1410 }
1411 
1412 /*
1413  * Readahead a node page
1414  */
1415 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1416 {
1417         struct page *apage;
1418         int err;
1419 
1420         if (!nid)
1421                 return;
1422         if (f2fs_check_nid_range(sbi, nid))
1423                 return;
1424 
1425         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1426         if (apage)
1427                 return;
1428 
1429         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1430         if (!apage)
1431                 return;
1432 
1433         err = read_node_page(apage, REQ_RAHEAD);
1434         f2fs_put_page(apage, err ? 1 : 0);
1435 }
1436 
1437 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1438                                         struct page *parent, int start)
1439 {
1440         struct page *page;
1441         int err;
1442 
1443         if (!nid)
1444                 return ERR_PTR(-ENOENT);
1445         if (f2fs_check_nid_range(sbi, nid))
1446                 return ERR_PTR(-EINVAL);
1447 repeat:
1448         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1449         if (!page)
1450                 return ERR_PTR(-ENOMEM);
1451 
1452         err = read_node_page(page, 0);
1453         if (err < 0) {
1454                 goto out_put_err;
1455         } else if (err == LOCKED_PAGE) {
1456                 err = 0;
1457                 goto page_hit;
1458         }
1459 
1460         if (parent)
1461                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1462 
1463         lock_page(page);
1464 
1465         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1466                 f2fs_put_page(page, 1);
1467                 goto repeat;
1468         }
1469 
1470         if (unlikely(!PageUptodate(page))) {
1471                 err = -EIO;
1472                 goto out_err;
1473         }
1474 
1475         if (!f2fs_inode_chksum_verify(sbi, page)) {
1476                 err = -EFSBADCRC;
1477                 goto out_err;
1478         }
1479 page_hit:
1480         if (likely(nid == nid_of_node(page)))
1481                 return page;
1482 
1483         f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1484                           nid, nid_of_node(page), ino_of_node(page),
1485                           ofs_of_node(page), cpver_of_node(page),
1486                           next_blkaddr_of_node(page));
1487         set_sbi_flag(sbi, SBI_NEED_FSCK);
1488         f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1489         err = -EFSCORRUPTED;
1490 out_err:
1491         ClearPageUptodate(page);
1492 out_put_err:
1493         /* ENOENT comes from read_node_page which is not an error. */
1494         if (err != -ENOENT)
1495                 f2fs_handle_page_eio(sbi, page->index, NODE);
1496         f2fs_put_page(page, 1);
1497         return ERR_PTR(err);
1498 }
1499 
1500 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1501 {
1502         return __get_node_page(sbi, nid, NULL, 0);
1503 }
1504 
1505 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1506 {
1507         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1508         nid_t nid = get_nid(parent, start, false);
1509 
1510         return __get_node_page(sbi, nid, parent, start);
1511 }
1512 
1513 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1514 {
1515         struct inode *inode;
1516         struct page *page;
1517         int ret;
1518 
1519         /* should flush inline_data before evict_inode */
1520         inode = ilookup(sbi->sb, ino);
1521         if (!inode)
1522                 return;
1523 
1524         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1525                                         FGP_LOCK|FGP_NOWAIT, 0);
1526         if (!page)
1527                 goto iput_out;
1528 
1529         if (!PageUptodate(page))
1530                 goto page_out;
1531 
1532         if (!PageDirty(page))
1533                 goto page_out;
1534 
1535         if (!clear_page_dirty_for_io(page))
1536                 goto page_out;
1537 
1538         ret = f2fs_write_inline_data(inode, page);
1539         inode_dec_dirty_pages(inode);
1540         f2fs_remove_dirty_inode(inode);
1541         if (ret)
1542                 set_page_dirty(page);
1543 page_out:
1544         f2fs_put_page(page, 1);
1545 iput_out:
1546         iput(inode);
1547 }
1548 
1549 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1550 {
1551         pgoff_t index;
1552         struct folio_batch fbatch;
1553         struct page *last_page = NULL;
1554         int nr_folios;
1555 
1556         folio_batch_init(&fbatch);
1557         index = 0;
1558 
1559         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1560                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1561                                         &fbatch))) {
1562                 int i;
1563 
1564                 for (i = 0; i < nr_folios; i++) {
1565                         struct page *page = &fbatch.folios[i]->page;
1566 
1567                         if (unlikely(f2fs_cp_error(sbi))) {
1568                                 f2fs_put_page(last_page, 0);
1569                                 folio_batch_release(&fbatch);
1570                                 return ERR_PTR(-EIO);
1571                         }
1572 
1573                         if (!IS_DNODE(page) || !is_cold_node(page))
1574                                 continue;
1575                         if (ino_of_node(page) != ino)
1576                                 continue;
1577 
1578                         lock_page(page);
1579 
1580                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1581 continue_unlock:
1582                                 unlock_page(page);
1583                                 continue;
1584                         }
1585                         if (ino_of_node(page) != ino)
1586                                 goto continue_unlock;
1587 
1588                         if (!PageDirty(page)) {
1589                                 /* someone wrote it for us */
1590                                 goto continue_unlock;
1591                         }
1592 
1593                         if (last_page)
1594                                 f2fs_put_page(last_page, 0);
1595 
1596                         get_page(page);
1597                         last_page = page;
1598                         unlock_page(page);
1599                 }
1600                 folio_batch_release(&fbatch);
1601                 cond_resched();
1602         }
1603         return last_page;
1604 }
1605 
1606 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1607                                 struct writeback_control *wbc, bool do_balance,
1608                                 enum iostat_type io_type, unsigned int *seq_id)
1609 {
1610         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1611         nid_t nid;
1612         struct node_info ni;
1613         struct f2fs_io_info fio = {
1614                 .sbi = sbi,
1615                 .ino = ino_of_node(page),
1616                 .type = NODE,
1617                 .op = REQ_OP_WRITE,
1618                 .op_flags = wbc_to_write_flags(wbc),
1619                 .page = page,
1620                 .encrypted_page = NULL,
1621                 .submitted = 0,
1622                 .io_type = io_type,
1623                 .io_wbc = wbc,
1624         };
1625         unsigned int seq;
1626 
1627         trace_f2fs_writepage(page_folio(page), NODE);
1628 
1629         if (unlikely(f2fs_cp_error(sbi))) {
1630                 /* keep node pages in remount-ro mode */
1631                 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1632                         goto redirty_out;
1633                 ClearPageUptodate(page);
1634                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1635                 unlock_page(page);
1636                 return 0;
1637         }
1638 
1639         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1640                 goto redirty_out;
1641 
1642         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1643                         wbc->sync_mode == WB_SYNC_NONE &&
1644                         IS_DNODE(page) && is_cold_node(page))
1645                 goto redirty_out;
1646 
1647         /* get old block addr of this node page */
1648         nid = nid_of_node(page);
1649         f2fs_bug_on(sbi, page->index != nid);
1650 
1651         if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1652                 goto redirty_out;
1653 
1654         if (wbc->for_reclaim) {
1655                 if (!f2fs_down_read_trylock(&sbi->node_write))
1656                         goto redirty_out;
1657         } else {
1658                 f2fs_down_read(&sbi->node_write);
1659         }
1660 
1661         /* This page is already truncated */
1662         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1663                 ClearPageUptodate(page);
1664                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1665                 f2fs_up_read(&sbi->node_write);
1666                 unlock_page(page);
1667                 return 0;
1668         }
1669 
1670         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1671                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1672                                         DATA_GENERIC_ENHANCE)) {
1673                 f2fs_up_read(&sbi->node_write);
1674                 goto redirty_out;
1675         }
1676 
1677         if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1678                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1679 
1680         /* should add to global list before clearing PAGECACHE status */
1681         if (f2fs_in_warm_node_list(sbi, page)) {
1682                 seq = f2fs_add_fsync_node_entry(sbi, page);
1683                 if (seq_id)
1684                         *seq_id = seq;
1685         }
1686 
1687         set_page_writeback(page);
1688 
1689         fio.old_blkaddr = ni.blk_addr;
1690         f2fs_do_write_node_page(nid, &fio);
1691         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1692         dec_page_count(sbi, F2FS_DIRTY_NODES);
1693         f2fs_up_read(&sbi->node_write);
1694 
1695         if (wbc->for_reclaim) {
1696                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1697                 submitted = NULL;
1698         }
1699 
1700         unlock_page(page);
1701 
1702         if (unlikely(f2fs_cp_error(sbi))) {
1703                 f2fs_submit_merged_write(sbi, NODE);
1704                 submitted = NULL;
1705         }
1706         if (submitted)
1707                 *submitted = fio.submitted;
1708 
1709         if (do_balance)
1710                 f2fs_balance_fs(sbi, false);
1711         return 0;
1712 
1713 redirty_out:
1714         redirty_page_for_writepage(wbc, page);
1715         return AOP_WRITEPAGE_ACTIVATE;
1716 }
1717 
1718 int f2fs_move_node_page(struct page *node_page, int gc_type)
1719 {
1720         int err = 0;
1721 
1722         if (gc_type == FG_GC) {
1723                 struct writeback_control wbc = {
1724                         .sync_mode = WB_SYNC_ALL,
1725                         .nr_to_write = 1,
1726                         .for_reclaim = 0,
1727                 };
1728 
1729                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1730 
1731                 set_page_dirty(node_page);
1732 
1733                 if (!clear_page_dirty_for_io(node_page)) {
1734                         err = -EAGAIN;
1735                         goto out_page;
1736                 }
1737 
1738                 if (__write_node_page(node_page, false, NULL,
1739                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1740                         err = -EAGAIN;
1741                         unlock_page(node_page);
1742                 }
1743                 goto release_page;
1744         } else {
1745                 /* set page dirty and write it */
1746                 if (!folio_test_writeback(page_folio(node_page)))
1747                         set_page_dirty(node_page);
1748         }
1749 out_page:
1750         unlock_page(node_page);
1751 release_page:
1752         f2fs_put_page(node_page, 0);
1753         return err;
1754 }
1755 
1756 static int f2fs_write_node_page(struct page *page,
1757                                 struct writeback_control *wbc)
1758 {
1759         return __write_node_page(page, false, NULL, wbc, false,
1760                                                 FS_NODE_IO, NULL);
1761 }
1762 
1763 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1764                         struct writeback_control *wbc, bool atomic,
1765                         unsigned int *seq_id)
1766 {
1767         pgoff_t index;
1768         struct folio_batch fbatch;
1769         int ret = 0;
1770         struct page *last_page = NULL;
1771         bool marked = false;
1772         nid_t ino = inode->i_ino;
1773         int nr_folios;
1774         int nwritten = 0;
1775 
1776         if (atomic) {
1777                 last_page = last_fsync_dnode(sbi, ino);
1778                 if (IS_ERR_OR_NULL(last_page))
1779                         return PTR_ERR_OR_ZERO(last_page);
1780         }
1781 retry:
1782         folio_batch_init(&fbatch);
1783         index = 0;
1784 
1785         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1786                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1787                                         &fbatch))) {
1788                 int i;
1789 
1790                 for (i = 0; i < nr_folios; i++) {
1791                         struct page *page = &fbatch.folios[i]->page;
1792                         bool submitted = false;
1793 
1794                         if (unlikely(f2fs_cp_error(sbi))) {
1795                                 f2fs_put_page(last_page, 0);
1796                                 folio_batch_release(&fbatch);
1797                                 ret = -EIO;
1798                                 goto out;
1799                         }
1800 
1801                         if (!IS_DNODE(page) || !is_cold_node(page))
1802                                 continue;
1803                         if (ino_of_node(page) != ino)
1804                                 continue;
1805 
1806                         lock_page(page);
1807 
1808                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1809 continue_unlock:
1810                                 unlock_page(page);
1811                                 continue;
1812                         }
1813                         if (ino_of_node(page) != ino)
1814                                 goto continue_unlock;
1815 
1816                         if (!PageDirty(page) && page != last_page) {
1817                                 /* someone wrote it for us */
1818                                 goto continue_unlock;
1819                         }
1820 
1821                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1822 
1823                         set_fsync_mark(page, 0);
1824                         set_dentry_mark(page, 0);
1825 
1826                         if (!atomic || page == last_page) {
1827                                 set_fsync_mark(page, 1);
1828                                 percpu_counter_inc(&sbi->rf_node_block_count);
1829                                 if (IS_INODE(page)) {
1830                                         if (is_inode_flag_set(inode,
1831                                                                 FI_DIRTY_INODE))
1832                                                 f2fs_update_inode(inode, page);
1833                                         set_dentry_mark(page,
1834                                                 f2fs_need_dentry_mark(sbi, ino));
1835                                 }
1836                                 /* may be written by other thread */
1837                                 if (!PageDirty(page))
1838                                         set_page_dirty(page);
1839                         }
1840 
1841                         if (!clear_page_dirty_for_io(page))
1842                                 goto continue_unlock;
1843 
1844                         ret = __write_node_page(page, atomic &&
1845                                                 page == last_page,
1846                                                 &submitted, wbc, true,
1847                                                 FS_NODE_IO, seq_id);
1848                         if (ret) {
1849                                 unlock_page(page);
1850                                 f2fs_put_page(last_page, 0);
1851                                 break;
1852                         } else if (submitted) {
1853                                 nwritten++;
1854                         }
1855 
1856                         if (page == last_page) {
1857                                 f2fs_put_page(page, 0);
1858                                 marked = true;
1859                                 break;
1860                         }
1861                 }
1862                 folio_batch_release(&fbatch);
1863                 cond_resched();
1864 
1865                 if (ret || marked)
1866                         break;
1867         }
1868         if (!ret && atomic && !marked) {
1869                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1870                            ino, last_page->index);
1871                 lock_page(last_page);
1872                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1873                 set_page_dirty(last_page);
1874                 unlock_page(last_page);
1875                 goto retry;
1876         }
1877 out:
1878         if (nwritten)
1879                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1880         return ret ? -EIO : 0;
1881 }
1882 
1883 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1884 {
1885         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1886         bool clean;
1887 
1888         if (inode->i_ino != ino)
1889                 return 0;
1890 
1891         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1892                 return 0;
1893 
1894         spin_lock(&sbi->inode_lock[DIRTY_META]);
1895         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1896         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1897 
1898         if (clean)
1899                 return 0;
1900 
1901         inode = igrab(inode);
1902         if (!inode)
1903                 return 0;
1904         return 1;
1905 }
1906 
1907 static bool flush_dirty_inode(struct page *page)
1908 {
1909         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1910         struct inode *inode;
1911         nid_t ino = ino_of_node(page);
1912 
1913         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1914         if (!inode)
1915                 return false;
1916 
1917         f2fs_update_inode(inode, page);
1918         unlock_page(page);
1919 
1920         iput(inode);
1921         return true;
1922 }
1923 
1924 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1925 {
1926         pgoff_t index = 0;
1927         struct folio_batch fbatch;
1928         int nr_folios;
1929 
1930         folio_batch_init(&fbatch);
1931 
1932         while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1933                                         (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1934                                         &fbatch))) {
1935                 int i;
1936 
1937                 for (i = 0; i < nr_folios; i++) {
1938                         struct page *page = &fbatch.folios[i]->page;
1939 
1940                         if (!IS_INODE(page))
1941                                 continue;
1942 
1943                         lock_page(page);
1944 
1945                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1946 continue_unlock:
1947                                 unlock_page(page);
1948                                 continue;
1949                         }
1950 
1951                         if (!PageDirty(page)) {
1952                                 /* someone wrote it for us */
1953                                 goto continue_unlock;
1954                         }
1955 
1956                         /* flush inline_data, if it's async context. */
1957                         if (page_private_inline(page)) {
1958                                 clear_page_private_inline(page);
1959                                 unlock_page(page);
1960                                 flush_inline_data(sbi, ino_of_node(page));
1961                                 continue;
1962                         }
1963                         unlock_page(page);
1964                 }
1965                 folio_batch_release(&fbatch);
1966                 cond_resched();
1967         }
1968 }
1969 
1970 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1971                                 struct writeback_control *wbc,
1972                                 bool do_balance, enum iostat_type io_type)
1973 {
1974         pgoff_t index;
1975         struct folio_batch fbatch;
1976         int step = 0;
1977         int nwritten = 0;
1978         int ret = 0;
1979         int nr_folios, done = 0;
1980 
1981         folio_batch_init(&fbatch);
1982 
1983 next_step:
1984         index = 0;
1985 
1986         while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1987                                 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1988                                 &fbatch))) {
1989                 int i;
1990 
1991                 for (i = 0; i < nr_folios; i++) {
1992                         struct page *page = &fbatch.folios[i]->page;
1993                         bool submitted = false;
1994 
1995                         /* give a priority to WB_SYNC threads */
1996                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1997                                         wbc->sync_mode == WB_SYNC_NONE) {
1998                                 done = 1;
1999                                 break;
2000                         }
2001 
2002                         /*
2003                          * flushing sequence with step:
2004                          * 0. indirect nodes
2005                          * 1. dentry dnodes
2006                          * 2. file dnodes
2007                          */
2008                         if (step == 0 && IS_DNODE(page))
2009                                 continue;
2010                         if (step == 1 && (!IS_DNODE(page) ||
2011                                                 is_cold_node(page)))
2012                                 continue;
2013                         if (step == 2 && (!IS_DNODE(page) ||
2014                                                 !is_cold_node(page)))
2015                                 continue;
2016 lock_node:
2017                         if (wbc->sync_mode == WB_SYNC_ALL)
2018                                 lock_page(page);
2019                         else if (!trylock_page(page))
2020                                 continue;
2021 
2022                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2023 continue_unlock:
2024                                 unlock_page(page);
2025                                 continue;
2026                         }
2027 
2028                         if (!PageDirty(page)) {
2029                                 /* someone wrote it for us */
2030                                 goto continue_unlock;
2031                         }
2032 
2033                         /* flush inline_data/inode, if it's async context. */
2034                         if (!do_balance)
2035                                 goto write_node;
2036 
2037                         /* flush inline_data */
2038                         if (page_private_inline(page)) {
2039                                 clear_page_private_inline(page);
2040                                 unlock_page(page);
2041                                 flush_inline_data(sbi, ino_of_node(page));
2042                                 goto lock_node;
2043                         }
2044 
2045                         /* flush dirty inode */
2046                         if (IS_INODE(page) && flush_dirty_inode(page))
2047                                 goto lock_node;
2048 write_node:
2049                         f2fs_wait_on_page_writeback(page, NODE, true, true);
2050 
2051                         if (!clear_page_dirty_for_io(page))
2052                                 goto continue_unlock;
2053 
2054                         set_fsync_mark(page, 0);
2055                         set_dentry_mark(page, 0);
2056 
2057                         ret = __write_node_page(page, false, &submitted,
2058                                                 wbc, do_balance, io_type, NULL);
2059                         if (ret)
2060                                 unlock_page(page);
2061                         else if (submitted)
2062                                 nwritten++;
2063 
2064                         if (--wbc->nr_to_write == 0)
2065                                 break;
2066                 }
2067                 folio_batch_release(&fbatch);
2068                 cond_resched();
2069 
2070                 if (wbc->nr_to_write == 0) {
2071                         step = 2;
2072                         break;
2073                 }
2074         }
2075 
2076         if (step < 2) {
2077                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2078                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2079                         goto out;
2080                 step++;
2081                 goto next_step;
2082         }
2083 out:
2084         if (nwritten)
2085                 f2fs_submit_merged_write(sbi, NODE);
2086 
2087         if (unlikely(f2fs_cp_error(sbi)))
2088                 return -EIO;
2089         return ret;
2090 }
2091 
2092 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2093                                                 unsigned int seq_id)
2094 {
2095         struct fsync_node_entry *fn;
2096         struct page *page;
2097         struct list_head *head = &sbi->fsync_node_list;
2098         unsigned long flags;
2099         unsigned int cur_seq_id = 0;
2100 
2101         while (seq_id && cur_seq_id < seq_id) {
2102                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2103                 if (list_empty(head)) {
2104                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2105                         break;
2106                 }
2107                 fn = list_first_entry(head, struct fsync_node_entry, list);
2108                 if (fn->seq_id > seq_id) {
2109                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2110                         break;
2111                 }
2112                 cur_seq_id = fn->seq_id;
2113                 page = fn->page;
2114                 get_page(page);
2115                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2116 
2117                 f2fs_wait_on_page_writeback(page, NODE, true, false);
2118 
2119                 put_page(page);
2120         }
2121 
2122         return filemap_check_errors(NODE_MAPPING(sbi));
2123 }
2124 
2125 static int f2fs_write_node_pages(struct address_space *mapping,
2126                             struct writeback_control *wbc)
2127 {
2128         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2129         struct blk_plug plug;
2130         long diff;
2131 
2132         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2133                 goto skip_write;
2134 
2135         /* balancing f2fs's metadata in background */
2136         f2fs_balance_fs_bg(sbi, true);
2137 
2138         /* collect a number of dirty node pages and write together */
2139         if (wbc->sync_mode != WB_SYNC_ALL &&
2140                         get_pages(sbi, F2FS_DIRTY_NODES) <
2141                                         nr_pages_to_skip(sbi, NODE))
2142                 goto skip_write;
2143 
2144         if (wbc->sync_mode == WB_SYNC_ALL)
2145                 atomic_inc(&sbi->wb_sync_req[NODE]);
2146         else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2147                 /* to avoid potential deadlock */
2148                 if (current->plug)
2149                         blk_finish_plug(current->plug);
2150                 goto skip_write;
2151         }
2152 
2153         trace_f2fs_writepages(mapping->host, wbc, NODE);
2154 
2155         diff = nr_pages_to_write(sbi, NODE, wbc);
2156         blk_start_plug(&plug);
2157         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2158         blk_finish_plug(&plug);
2159         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2160 
2161         if (wbc->sync_mode == WB_SYNC_ALL)
2162                 atomic_dec(&sbi->wb_sync_req[NODE]);
2163         return 0;
2164 
2165 skip_write:
2166         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2167         trace_f2fs_writepages(mapping->host, wbc, NODE);
2168         return 0;
2169 }
2170 
2171 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2172                 struct folio *folio)
2173 {
2174         trace_f2fs_set_page_dirty(folio, NODE);
2175 
2176         if (!folio_test_uptodate(folio))
2177                 folio_mark_uptodate(folio);
2178 #ifdef CONFIG_F2FS_CHECK_FS
2179         if (IS_INODE(&folio->page))
2180                 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2181 #endif
2182         if (filemap_dirty_folio(mapping, folio)) {
2183                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2184                 set_page_private_reference(&folio->page);
2185                 return true;
2186         }
2187         return false;
2188 }
2189 
2190 /*
2191  * Structure of the f2fs node operations
2192  */
2193 const struct address_space_operations f2fs_node_aops = {
2194         .writepage      = f2fs_write_node_page,
2195         .writepages     = f2fs_write_node_pages,
2196         .dirty_folio    = f2fs_dirty_node_folio,
2197         .invalidate_folio = f2fs_invalidate_folio,
2198         .release_folio  = f2fs_release_folio,
2199         .migrate_folio  = filemap_migrate_folio,
2200 };
2201 
2202 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2203                                                 nid_t n)
2204 {
2205         return radix_tree_lookup(&nm_i->free_nid_root, n);
2206 }
2207 
2208 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2209                                 struct free_nid *i)
2210 {
2211         struct f2fs_nm_info *nm_i = NM_I(sbi);
2212         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2213 
2214         if (err)
2215                 return err;
2216 
2217         nm_i->nid_cnt[FREE_NID]++;
2218         list_add_tail(&i->list, &nm_i->free_nid_list);
2219         return 0;
2220 }
2221 
2222 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2223                         struct free_nid *i, enum nid_state state)
2224 {
2225         struct f2fs_nm_info *nm_i = NM_I(sbi);
2226 
2227         f2fs_bug_on(sbi, state != i->state);
2228         nm_i->nid_cnt[state]--;
2229         if (state == FREE_NID)
2230                 list_del(&i->list);
2231         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2232 }
2233 
2234 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2235                         enum nid_state org_state, enum nid_state dst_state)
2236 {
2237         struct f2fs_nm_info *nm_i = NM_I(sbi);
2238 
2239         f2fs_bug_on(sbi, org_state != i->state);
2240         i->state = dst_state;
2241         nm_i->nid_cnt[org_state]--;
2242         nm_i->nid_cnt[dst_state]++;
2243 
2244         switch (dst_state) {
2245         case PREALLOC_NID:
2246                 list_del(&i->list);
2247                 break;
2248         case FREE_NID:
2249                 list_add_tail(&i->list, &nm_i->free_nid_list);
2250                 break;
2251         default:
2252                 BUG_ON(1);
2253         }
2254 }
2255 
2256 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2257 {
2258         struct f2fs_nm_info *nm_i = NM_I(sbi);
2259         unsigned int i;
2260         bool ret = true;
2261 
2262         f2fs_down_read(&nm_i->nat_tree_lock);
2263         for (i = 0; i < nm_i->nat_blocks; i++) {
2264                 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2265                         ret = false;
2266                         break;
2267                 }
2268         }
2269         f2fs_up_read(&nm_i->nat_tree_lock);
2270 
2271         return ret;
2272 }
2273 
2274 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2275                                                         bool set, bool build)
2276 {
2277         struct f2fs_nm_info *nm_i = NM_I(sbi);
2278         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2279         unsigned int nid_ofs = nid - START_NID(nid);
2280 
2281         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2282                 return;
2283 
2284         if (set) {
2285                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2286                         return;
2287                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2288                 nm_i->free_nid_count[nat_ofs]++;
2289         } else {
2290                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2291                         return;
2292                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2293                 if (!build)
2294                         nm_i->free_nid_count[nat_ofs]--;
2295         }
2296 }
2297 
2298 /* return if the nid is recognized as free */
2299 static bool add_free_nid(struct f2fs_sb_info *sbi,
2300                                 nid_t nid, bool build, bool update)
2301 {
2302         struct f2fs_nm_info *nm_i = NM_I(sbi);
2303         struct free_nid *i, *e;
2304         struct nat_entry *ne;
2305         int err = -EINVAL;
2306         bool ret = false;
2307 
2308         /* 0 nid should not be used */
2309         if (unlikely(nid == 0))
2310                 return false;
2311 
2312         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2313                 return false;
2314 
2315         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2316         i->nid = nid;
2317         i->state = FREE_NID;
2318 
2319         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2320 
2321         spin_lock(&nm_i->nid_list_lock);
2322 
2323         if (build) {
2324                 /*
2325                  *   Thread A             Thread B
2326                  *  - f2fs_create
2327                  *   - f2fs_new_inode
2328                  *    - f2fs_alloc_nid
2329                  *     - __insert_nid_to_list(PREALLOC_NID)
2330                  *                     - f2fs_balance_fs_bg
2331                  *                      - f2fs_build_free_nids
2332                  *                       - __f2fs_build_free_nids
2333                  *                        - scan_nat_page
2334                  *                         - add_free_nid
2335                  *                          - __lookup_nat_cache
2336                  *  - f2fs_add_link
2337                  *   - f2fs_init_inode_metadata
2338                  *    - f2fs_new_inode_page
2339                  *     - f2fs_new_node_page
2340                  *      - set_node_addr
2341                  *  - f2fs_alloc_nid_done
2342                  *   - __remove_nid_from_list(PREALLOC_NID)
2343                  *                         - __insert_nid_to_list(FREE_NID)
2344                  */
2345                 ne = __lookup_nat_cache(nm_i, nid);
2346                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2347                                 nat_get_blkaddr(ne) != NULL_ADDR))
2348                         goto err_out;
2349 
2350                 e = __lookup_free_nid_list(nm_i, nid);
2351                 if (e) {
2352                         if (e->state == FREE_NID)
2353                                 ret = true;
2354                         goto err_out;
2355                 }
2356         }
2357         ret = true;
2358         err = __insert_free_nid(sbi, i);
2359 err_out:
2360         if (update) {
2361                 update_free_nid_bitmap(sbi, nid, ret, build);
2362                 if (!build)
2363                         nm_i->available_nids++;
2364         }
2365         spin_unlock(&nm_i->nid_list_lock);
2366         radix_tree_preload_end();
2367 
2368         if (err)
2369                 kmem_cache_free(free_nid_slab, i);
2370         return ret;
2371 }
2372 
2373 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2374 {
2375         struct f2fs_nm_info *nm_i = NM_I(sbi);
2376         struct free_nid *i;
2377         bool need_free = false;
2378 
2379         spin_lock(&nm_i->nid_list_lock);
2380         i = __lookup_free_nid_list(nm_i, nid);
2381         if (i && i->state == FREE_NID) {
2382                 __remove_free_nid(sbi, i, FREE_NID);
2383                 need_free = true;
2384         }
2385         spin_unlock(&nm_i->nid_list_lock);
2386 
2387         if (need_free)
2388                 kmem_cache_free(free_nid_slab, i);
2389 }
2390 
2391 static int scan_nat_page(struct f2fs_sb_info *sbi,
2392                         struct page *nat_page, nid_t start_nid)
2393 {
2394         struct f2fs_nm_info *nm_i = NM_I(sbi);
2395         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2396         block_t blk_addr;
2397         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2398         int i;
2399 
2400         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2401 
2402         i = start_nid % NAT_ENTRY_PER_BLOCK;
2403 
2404         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2405                 if (unlikely(start_nid >= nm_i->max_nid))
2406                         break;
2407 
2408                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2409 
2410                 if (blk_addr == NEW_ADDR)
2411                         return -EFSCORRUPTED;
2412 
2413                 if (blk_addr == NULL_ADDR) {
2414                         add_free_nid(sbi, start_nid, true, true);
2415                 } else {
2416                         spin_lock(&NM_I(sbi)->nid_list_lock);
2417                         update_free_nid_bitmap(sbi, start_nid, false, true);
2418                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2419                 }
2420         }
2421 
2422         return 0;
2423 }
2424 
2425 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2426 {
2427         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2428         struct f2fs_journal *journal = curseg->journal;
2429         int i;
2430 
2431         down_read(&curseg->journal_rwsem);
2432         for (i = 0; i < nats_in_cursum(journal); i++) {
2433                 block_t addr;
2434                 nid_t nid;
2435 
2436                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2437                 nid = le32_to_cpu(nid_in_journal(journal, i));
2438                 if (addr == NULL_ADDR)
2439                         add_free_nid(sbi, nid, true, false);
2440                 else
2441                         remove_free_nid(sbi, nid);
2442         }
2443         up_read(&curseg->journal_rwsem);
2444 }
2445 
2446 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2447 {
2448         struct f2fs_nm_info *nm_i = NM_I(sbi);
2449         unsigned int i, idx;
2450         nid_t nid;
2451 
2452         f2fs_down_read(&nm_i->nat_tree_lock);
2453 
2454         for (i = 0; i < nm_i->nat_blocks; i++) {
2455                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2456                         continue;
2457                 if (!nm_i->free_nid_count[i])
2458                         continue;
2459                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2460                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2461                                                 NAT_ENTRY_PER_BLOCK, idx);
2462                         if (idx >= NAT_ENTRY_PER_BLOCK)
2463                                 break;
2464 
2465                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2466                         add_free_nid(sbi, nid, true, false);
2467 
2468                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2469                                 goto out;
2470                 }
2471         }
2472 out:
2473         scan_curseg_cache(sbi);
2474 
2475         f2fs_up_read(&nm_i->nat_tree_lock);
2476 }
2477 
2478 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2479                                                 bool sync, bool mount)
2480 {
2481         struct f2fs_nm_info *nm_i = NM_I(sbi);
2482         int i = 0, ret;
2483         nid_t nid = nm_i->next_scan_nid;
2484 
2485         if (unlikely(nid >= nm_i->max_nid))
2486                 nid = 0;
2487 
2488         if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2489                 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2490 
2491         /* Enough entries */
2492         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2493                 return 0;
2494 
2495         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2496                 return 0;
2497 
2498         if (!mount) {
2499                 /* try to find free nids in free_nid_bitmap */
2500                 scan_free_nid_bits(sbi);
2501 
2502                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2503                         return 0;
2504         }
2505 
2506         /* readahead nat pages to be scanned */
2507         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2508                                                         META_NAT, true);
2509 
2510         f2fs_down_read(&nm_i->nat_tree_lock);
2511 
2512         while (1) {
2513                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2514                                                 nm_i->nat_block_bitmap)) {
2515                         struct page *page = get_current_nat_page(sbi, nid);
2516 
2517                         if (IS_ERR(page)) {
2518                                 ret = PTR_ERR(page);
2519                         } else {
2520                                 ret = scan_nat_page(sbi, page, nid);
2521                                 f2fs_put_page(page, 1);
2522                         }
2523 
2524                         if (ret) {
2525                                 f2fs_up_read(&nm_i->nat_tree_lock);
2526 
2527                                 if (ret == -EFSCORRUPTED) {
2528                                         f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2529                                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2530                                         f2fs_handle_error(sbi,
2531                                                 ERROR_INCONSISTENT_NAT);
2532                                 }
2533 
2534                                 return ret;
2535                         }
2536                 }
2537 
2538                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2539                 if (unlikely(nid >= nm_i->max_nid))
2540                         nid = 0;
2541 
2542                 if (++i >= FREE_NID_PAGES)
2543                         break;
2544         }
2545 
2546         /* go to the next free nat pages to find free nids abundantly */
2547         nm_i->next_scan_nid = nid;
2548 
2549         /* find free nids from current sum_pages */
2550         scan_curseg_cache(sbi);
2551 
2552         f2fs_up_read(&nm_i->nat_tree_lock);
2553 
2554         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2555                                         nm_i->ra_nid_pages, META_NAT, false);
2556 
2557         return 0;
2558 }
2559 
2560 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2561 {
2562         int ret;
2563 
2564         mutex_lock(&NM_I(sbi)->build_lock);
2565         ret = __f2fs_build_free_nids(sbi, sync, mount);
2566         mutex_unlock(&NM_I(sbi)->build_lock);
2567 
2568         return ret;
2569 }
2570 
2571 /*
2572  * If this function returns success, caller can obtain a new nid
2573  * from second parameter of this function.
2574  * The returned nid could be used ino as well as nid when inode is created.
2575  */
2576 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2577 {
2578         struct f2fs_nm_info *nm_i = NM_I(sbi);
2579         struct free_nid *i = NULL;
2580 retry:
2581         if (time_to_inject(sbi, FAULT_ALLOC_NID))
2582                 return false;
2583 
2584         spin_lock(&nm_i->nid_list_lock);
2585 
2586         if (unlikely(nm_i->available_nids == 0)) {
2587                 spin_unlock(&nm_i->nid_list_lock);
2588                 return false;
2589         }
2590 
2591         /* We should not use stale free nids created by f2fs_build_free_nids */
2592         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2593                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2594                 i = list_first_entry(&nm_i->free_nid_list,
2595                                         struct free_nid, list);
2596                 *nid = i->nid;
2597 
2598                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2599                 nm_i->available_nids--;
2600 
2601                 update_free_nid_bitmap(sbi, *nid, false, false);
2602 
2603                 spin_unlock(&nm_i->nid_list_lock);
2604                 return true;
2605         }
2606         spin_unlock(&nm_i->nid_list_lock);
2607 
2608         /* Let's scan nat pages and its caches to get free nids */
2609         if (!f2fs_build_free_nids(sbi, true, false))
2610                 goto retry;
2611         return false;
2612 }
2613 
2614 /*
2615  * f2fs_alloc_nid() should be called prior to this function.
2616  */
2617 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2618 {
2619         struct f2fs_nm_info *nm_i = NM_I(sbi);
2620         struct free_nid *i;
2621 
2622         spin_lock(&nm_i->nid_list_lock);
2623         i = __lookup_free_nid_list(nm_i, nid);
2624         f2fs_bug_on(sbi, !i);
2625         __remove_free_nid(sbi, i, PREALLOC_NID);
2626         spin_unlock(&nm_i->nid_list_lock);
2627 
2628         kmem_cache_free(free_nid_slab, i);
2629 }
2630 
2631 /*
2632  * f2fs_alloc_nid() should be called prior to this function.
2633  */
2634 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2635 {
2636         struct f2fs_nm_info *nm_i = NM_I(sbi);
2637         struct free_nid *i;
2638         bool need_free = false;
2639 
2640         if (!nid)
2641                 return;
2642 
2643         spin_lock(&nm_i->nid_list_lock);
2644         i = __lookup_free_nid_list(nm_i, nid);
2645         f2fs_bug_on(sbi, !i);
2646 
2647         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2648                 __remove_free_nid(sbi, i, PREALLOC_NID);
2649                 need_free = true;
2650         } else {
2651                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2652         }
2653 
2654         nm_i->available_nids++;
2655 
2656         update_free_nid_bitmap(sbi, nid, true, false);
2657 
2658         spin_unlock(&nm_i->nid_list_lock);
2659 
2660         if (need_free)
2661                 kmem_cache_free(free_nid_slab, i);
2662 }
2663 
2664 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2665 {
2666         struct f2fs_nm_info *nm_i = NM_I(sbi);
2667         int nr = nr_shrink;
2668 
2669         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2670                 return 0;
2671 
2672         if (!mutex_trylock(&nm_i->build_lock))
2673                 return 0;
2674 
2675         while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2676                 struct free_nid *i, *next;
2677                 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2678 
2679                 spin_lock(&nm_i->nid_list_lock);
2680                 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2681                         if (!nr_shrink || !batch ||
2682                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2683                                 break;
2684                         __remove_free_nid(sbi, i, FREE_NID);
2685                         kmem_cache_free(free_nid_slab, i);
2686                         nr_shrink--;
2687                         batch--;
2688                 }
2689                 spin_unlock(&nm_i->nid_list_lock);
2690         }
2691 
2692         mutex_unlock(&nm_i->build_lock);
2693 
2694         return nr - nr_shrink;
2695 }
2696 
2697 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2698 {
2699         void *src_addr, *dst_addr;
2700         size_t inline_size;
2701         struct page *ipage;
2702         struct f2fs_inode *ri;
2703 
2704         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2705         if (IS_ERR(ipage))
2706                 return PTR_ERR(ipage);
2707 
2708         ri = F2FS_INODE(page);
2709         if (ri->i_inline & F2FS_INLINE_XATTR) {
2710                 if (!f2fs_has_inline_xattr(inode)) {
2711                         set_inode_flag(inode, FI_INLINE_XATTR);
2712                         stat_inc_inline_xattr(inode);
2713                 }
2714         } else {
2715                 if (f2fs_has_inline_xattr(inode)) {
2716                         stat_dec_inline_xattr(inode);
2717                         clear_inode_flag(inode, FI_INLINE_XATTR);
2718                 }
2719                 goto update_inode;
2720         }
2721 
2722         dst_addr = inline_xattr_addr(inode, ipage);
2723         src_addr = inline_xattr_addr(inode, page);
2724         inline_size = inline_xattr_size(inode);
2725 
2726         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2727         memcpy(dst_addr, src_addr, inline_size);
2728 update_inode:
2729         f2fs_update_inode(inode, ipage);
2730         f2fs_put_page(ipage, 1);
2731         return 0;
2732 }
2733 
2734 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2735 {
2736         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2737         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2738         nid_t new_xnid;
2739         struct dnode_of_data dn;
2740         struct node_info ni;
2741         struct page *xpage;
2742         int err;
2743 
2744         if (!prev_xnid)
2745                 goto recover_xnid;
2746 
2747         /* 1: invalidate the previous xattr nid */
2748         err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2749         if (err)
2750                 return err;
2751 
2752         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2753         dec_valid_node_count(sbi, inode, false);
2754         set_node_addr(sbi, &ni, NULL_ADDR, false);
2755 
2756 recover_xnid:
2757         /* 2: update xattr nid in inode */
2758         if (!f2fs_alloc_nid(sbi, &new_xnid))
2759                 return -ENOSPC;
2760 
2761         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2762         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2763         if (IS_ERR(xpage)) {
2764                 f2fs_alloc_nid_failed(sbi, new_xnid);
2765                 return PTR_ERR(xpage);
2766         }
2767 
2768         f2fs_alloc_nid_done(sbi, new_xnid);
2769         f2fs_update_inode_page(inode);
2770 
2771         /* 3: update and set xattr node page dirty */
2772         if (page) {
2773                 memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2774                                 VALID_XATTR_BLOCK_SIZE);
2775                 set_page_dirty(xpage);
2776         }
2777         f2fs_put_page(xpage, 1);
2778 
2779         return 0;
2780 }
2781 
2782 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2783 {
2784         struct f2fs_inode *src, *dst;
2785         nid_t ino = ino_of_node(page);
2786         struct node_info old_ni, new_ni;
2787         struct page *ipage;
2788         int err;
2789 
2790         err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2791         if (err)
2792                 return err;
2793 
2794         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2795                 return -EINVAL;
2796 retry:
2797         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2798         if (!ipage) {
2799                 memalloc_retry_wait(GFP_NOFS);
2800                 goto retry;
2801         }
2802 
2803         /* Should not use this inode from free nid list */
2804         remove_free_nid(sbi, ino);
2805 
2806         if (!PageUptodate(ipage))
2807                 SetPageUptodate(ipage);
2808         fill_node_footer(ipage, ino, ino, 0, true);
2809         set_cold_node(ipage, false);
2810 
2811         src = F2FS_INODE(page);
2812         dst = F2FS_INODE(ipage);
2813 
2814         memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2815         dst->i_size = 0;
2816         dst->i_blocks = cpu_to_le64(1);
2817         dst->i_links = cpu_to_le32(1);
2818         dst->i_xattr_nid = 0;
2819         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2820         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2821                 dst->i_extra_isize = src->i_extra_isize;
2822 
2823                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2824                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2825                                                         i_inline_xattr_size))
2826                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2827 
2828                 if (f2fs_sb_has_project_quota(sbi) &&
2829                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2830                                                                 i_projid))
2831                         dst->i_projid = src->i_projid;
2832 
2833                 if (f2fs_sb_has_inode_crtime(sbi) &&
2834                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2835                                                         i_crtime_nsec)) {
2836                         dst->i_crtime = src->i_crtime;
2837                         dst->i_crtime_nsec = src->i_crtime_nsec;
2838                 }
2839         }
2840 
2841         new_ni = old_ni;
2842         new_ni.ino = ino;
2843 
2844         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2845                 WARN_ON(1);
2846         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2847         inc_valid_inode_count(sbi);
2848         set_page_dirty(ipage);
2849         f2fs_put_page(ipage, 1);
2850         return 0;
2851 }
2852 
2853 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2854                         unsigned int segno, struct f2fs_summary_block *sum)
2855 {
2856         struct f2fs_node *rn;
2857         struct f2fs_summary *sum_entry;
2858         block_t addr;
2859         int i, idx, last_offset, nrpages;
2860 
2861         /* scan the node segment */
2862         last_offset = BLKS_PER_SEG(sbi);
2863         addr = START_BLOCK(sbi, segno);
2864         sum_entry = &sum->entries[0];
2865 
2866         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2867                 nrpages = bio_max_segs(last_offset - i);
2868 
2869                 /* readahead node pages */
2870                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2871 
2872                 for (idx = addr; idx < addr + nrpages; idx++) {
2873                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2874 
2875                         if (IS_ERR(page))
2876                                 return PTR_ERR(page);
2877 
2878                         rn = F2FS_NODE(page);
2879                         sum_entry->nid = rn->footer.nid;
2880                         sum_entry->version = 0;
2881                         sum_entry->ofs_in_node = 0;
2882                         sum_entry++;
2883                         f2fs_put_page(page, 1);
2884                 }
2885 
2886                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2887                                                         addr + nrpages);
2888         }
2889         return 0;
2890 }
2891 
2892 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2893 {
2894         struct f2fs_nm_info *nm_i = NM_I(sbi);
2895         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2896         struct f2fs_journal *journal = curseg->journal;
2897         int i;
2898 
2899         down_write(&curseg->journal_rwsem);
2900         for (i = 0; i < nats_in_cursum(journal); i++) {
2901                 struct nat_entry *ne;
2902                 struct f2fs_nat_entry raw_ne;
2903                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2904 
2905                 if (f2fs_check_nid_range(sbi, nid))
2906                         continue;
2907 
2908                 raw_ne = nat_in_journal(journal, i);
2909 
2910                 ne = __lookup_nat_cache(nm_i, nid);
2911                 if (!ne) {
2912                         ne = __alloc_nat_entry(sbi, nid, true);
2913                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2914                 }
2915 
2916                 /*
2917                  * if a free nat in journal has not been used after last
2918                  * checkpoint, we should remove it from available nids,
2919                  * since later we will add it again.
2920                  */
2921                 if (!get_nat_flag(ne, IS_DIRTY) &&
2922                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2923                         spin_lock(&nm_i->nid_list_lock);
2924                         nm_i->available_nids--;
2925                         spin_unlock(&nm_i->nid_list_lock);
2926                 }
2927 
2928                 __set_nat_cache_dirty(nm_i, ne);
2929         }
2930         update_nats_in_cursum(journal, -i);
2931         up_write(&curseg->journal_rwsem);
2932 }
2933 
2934 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2935                                                 struct list_head *head, int max)
2936 {
2937         struct nat_entry_set *cur;
2938 
2939         if (nes->entry_cnt >= max)
2940                 goto add_out;
2941 
2942         list_for_each_entry(cur, head, set_list) {
2943                 if (cur->entry_cnt >= nes->entry_cnt) {
2944                         list_add(&nes->set_list, cur->set_list.prev);
2945                         return;
2946                 }
2947         }
2948 add_out:
2949         list_add_tail(&nes->set_list, head);
2950 }
2951 
2952 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2953                                                         unsigned int valid)
2954 {
2955         if (valid == 0) {
2956                 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2957                 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2958                 return;
2959         }
2960 
2961         __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2962         if (valid == NAT_ENTRY_PER_BLOCK)
2963                 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2964         else
2965                 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2966 }
2967 
2968 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2969                                                 struct page *page)
2970 {
2971         struct f2fs_nm_info *nm_i = NM_I(sbi);
2972         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2973         struct f2fs_nat_block *nat_blk = page_address(page);
2974         int valid = 0;
2975         int i = 0;
2976 
2977         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2978                 return;
2979 
2980         if (nat_index == 0) {
2981                 valid = 1;
2982                 i = 1;
2983         }
2984         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2985                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2986                         valid++;
2987         }
2988 
2989         __update_nat_bits(nm_i, nat_index, valid);
2990 }
2991 
2992 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2993 {
2994         struct f2fs_nm_info *nm_i = NM_I(sbi);
2995         unsigned int nat_ofs;
2996 
2997         f2fs_down_read(&nm_i->nat_tree_lock);
2998 
2999         for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
3000                 unsigned int valid = 0, nid_ofs = 0;
3001 
3002                 /* handle nid zero due to it should never be used */
3003                 if (unlikely(nat_ofs == 0)) {
3004                         valid = 1;
3005                         nid_ofs = 1;
3006                 }
3007 
3008                 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
3009                         if (!test_bit_le(nid_ofs,
3010                                         nm_i->free_nid_bitmap[nat_ofs]))
3011                                 valid++;
3012                 }
3013 
3014                 __update_nat_bits(nm_i, nat_ofs, valid);
3015         }
3016 
3017         f2fs_up_read(&nm_i->nat_tree_lock);
3018 }
3019 
3020 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3021                 struct nat_entry_set *set, struct cp_control *cpc)
3022 {
3023         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3024         struct f2fs_journal *journal = curseg->journal;
3025         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3026         bool to_journal = true;
3027         struct f2fs_nat_block *nat_blk;
3028         struct nat_entry *ne, *cur;
3029         struct page *page = NULL;
3030 
3031         /*
3032          * there are two steps to flush nat entries:
3033          * #1, flush nat entries to journal in current hot data summary block.
3034          * #2, flush nat entries to nat page.
3035          */
3036         if ((cpc->reason & CP_UMOUNT) ||
3037                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3038                 to_journal = false;
3039 
3040         if (to_journal) {
3041                 down_write(&curseg->journal_rwsem);
3042         } else {
3043                 page = get_next_nat_page(sbi, start_nid);
3044                 if (IS_ERR(page))
3045                         return PTR_ERR(page);
3046 
3047                 nat_blk = page_address(page);
3048                 f2fs_bug_on(sbi, !nat_blk);
3049         }
3050 
3051         /* flush dirty nats in nat entry set */
3052         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3053                 struct f2fs_nat_entry *raw_ne;
3054                 nid_t nid = nat_get_nid(ne);
3055                 int offset;
3056 
3057                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3058 
3059                 if (to_journal) {
3060                         offset = f2fs_lookup_journal_in_cursum(journal,
3061                                                         NAT_JOURNAL, nid, 1);
3062                         f2fs_bug_on(sbi, offset < 0);
3063                         raw_ne = &nat_in_journal(journal, offset);
3064                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
3065                 } else {
3066                         raw_ne = &nat_blk->entries[nid - start_nid];
3067                 }
3068                 raw_nat_from_node_info(raw_ne, &ne->ni);
3069                 nat_reset_flag(ne);
3070                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3071                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3072                         add_free_nid(sbi, nid, false, true);
3073                 } else {
3074                         spin_lock(&NM_I(sbi)->nid_list_lock);
3075                         update_free_nid_bitmap(sbi, nid, false, false);
3076                         spin_unlock(&NM_I(sbi)->nid_list_lock);
3077                 }
3078         }
3079 
3080         if (to_journal) {
3081                 up_write(&curseg->journal_rwsem);
3082         } else {
3083                 update_nat_bits(sbi, start_nid, page);
3084                 f2fs_put_page(page, 1);
3085         }
3086 
3087         /* Allow dirty nats by node block allocation in write_begin */
3088         if (!set->entry_cnt) {
3089                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3090                 kmem_cache_free(nat_entry_set_slab, set);
3091         }
3092         return 0;
3093 }
3094 
3095 /*
3096  * This function is called during the checkpointing process.
3097  */
3098 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3099 {
3100         struct f2fs_nm_info *nm_i = NM_I(sbi);
3101         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3102         struct f2fs_journal *journal = curseg->journal;
3103         struct nat_entry_set *setvec[NAT_VEC_SIZE];
3104         struct nat_entry_set *set, *tmp;
3105         unsigned int found;
3106         nid_t set_idx = 0;
3107         LIST_HEAD(sets);
3108         int err = 0;
3109 
3110         /*
3111          * during unmount, let's flush nat_bits before checking
3112          * nat_cnt[DIRTY_NAT].
3113          */
3114         if (cpc->reason & CP_UMOUNT) {
3115                 f2fs_down_write(&nm_i->nat_tree_lock);
3116                 remove_nats_in_journal(sbi);
3117                 f2fs_up_write(&nm_i->nat_tree_lock);
3118         }
3119 
3120         if (!nm_i->nat_cnt[DIRTY_NAT])
3121                 return 0;
3122 
3123         f2fs_down_write(&nm_i->nat_tree_lock);
3124 
3125         /*
3126          * if there are no enough space in journal to store dirty nat
3127          * entries, remove all entries from journal and merge them
3128          * into nat entry set.
3129          */
3130         if (cpc->reason & CP_UMOUNT ||
3131                 !__has_cursum_space(journal,
3132                         nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3133                 remove_nats_in_journal(sbi);
3134 
3135         while ((found = __gang_lookup_nat_set(nm_i,
3136                                         set_idx, NAT_VEC_SIZE, setvec))) {
3137                 unsigned idx;
3138 
3139                 set_idx = setvec[found - 1]->set + 1;
3140                 for (idx = 0; idx < found; idx++)
3141                         __adjust_nat_entry_set(setvec[idx], &sets,
3142                                                 MAX_NAT_JENTRIES(journal));
3143         }
3144 
3145         /* flush dirty nats in nat entry set */
3146         list_for_each_entry_safe(set, tmp, &sets, set_list) {
3147                 err = __flush_nat_entry_set(sbi, set, cpc);
3148                 if (err)
3149                         break;
3150         }
3151 
3152         f2fs_up_write(&nm_i->nat_tree_lock);
3153         /* Allow dirty nats by node block allocation in write_begin */
3154 
3155         return err;
3156 }
3157 
3158 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3159 {
3160         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3161         struct f2fs_nm_info *nm_i = NM_I(sbi);
3162         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3163         unsigned int i;
3164         __u64 cp_ver = cur_cp_version(ckpt);
3165         block_t nat_bits_addr;
3166 
3167         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3168         nm_i->nat_bits = f2fs_kvzalloc(sbi,
3169                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3170         if (!nm_i->nat_bits)
3171                 return -ENOMEM;
3172 
3173         nm_i->full_nat_bits = nm_i->nat_bits + 8;
3174         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3175 
3176         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3177                 return 0;
3178 
3179         nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3180                                                 nm_i->nat_bits_blocks;
3181         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3182                 struct page *page;
3183 
3184                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3185                 if (IS_ERR(page))
3186                         return PTR_ERR(page);
3187 
3188                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3189                                         page_address(page), F2FS_BLKSIZE);
3190                 f2fs_put_page(page, 1);
3191         }
3192 
3193         cp_ver |= (cur_cp_crc(ckpt) << 32);
3194         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3195                 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3196                 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3197                         cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3198                 return 0;
3199         }
3200 
3201         f2fs_notice(sbi, "Found nat_bits in checkpoint");
3202         return 0;
3203 }
3204 
3205 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3206 {
3207         struct f2fs_nm_info *nm_i = NM_I(sbi);
3208         unsigned int i = 0;
3209         nid_t nid, last_nid;
3210 
3211         if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3212                 return;
3213 
3214         for (i = 0; i < nm_i->nat_blocks; i++) {
3215                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3216                 if (i >= nm_i->nat_blocks)
3217                         break;
3218 
3219                 __set_bit_le(i, nm_i->nat_block_bitmap);
3220 
3221                 nid = i * NAT_ENTRY_PER_BLOCK;
3222                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3223 
3224                 spin_lock(&NM_I(sbi)->nid_list_lock);
3225                 for (; nid < last_nid; nid++)
3226                         update_free_nid_bitmap(sbi, nid, true, true);
3227                 spin_unlock(&NM_I(sbi)->nid_list_lock);
3228         }
3229 
3230         for (i = 0; i < nm_i->nat_blocks; i++) {
3231                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3232                 if (i >= nm_i->nat_blocks)
3233                         break;
3234 
3235                 __set_bit_le(i, nm_i->nat_block_bitmap);
3236         }
3237 }
3238 
3239 static int init_node_manager(struct f2fs_sb_info *sbi)
3240 {
3241         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3242         struct f2fs_nm_info *nm_i = NM_I(sbi);
3243         unsigned char *version_bitmap;
3244         unsigned int nat_segs;
3245         int err;
3246 
3247         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3248 
3249         /* segment_count_nat includes pair segment so divide to 2. */
3250         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3251         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3252         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3253 
3254         /* not used nids: 0, node, meta, (and root counted as valid node) */
3255         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3256                                                 F2FS_RESERVED_NODE_NUM;
3257         nm_i->nid_cnt[FREE_NID] = 0;
3258         nm_i->nid_cnt[PREALLOC_NID] = 0;
3259         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3260         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3261         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3262         nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3263 
3264         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3265         INIT_LIST_HEAD(&nm_i->free_nid_list);
3266         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3267         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3268         INIT_LIST_HEAD(&nm_i->nat_entries);
3269         spin_lock_init(&nm_i->nat_list_lock);
3270 
3271         mutex_init(&nm_i->build_lock);
3272         spin_lock_init(&nm_i->nid_list_lock);
3273         init_f2fs_rwsem(&nm_i->nat_tree_lock);
3274 
3275         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3276         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3277         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3278         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3279                                         GFP_KERNEL);
3280         if (!nm_i->nat_bitmap)
3281                 return -ENOMEM;
3282 
3283         err = __get_nat_bitmaps(sbi);
3284         if (err)
3285                 return err;
3286 
3287 #ifdef CONFIG_F2FS_CHECK_FS
3288         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3289                                         GFP_KERNEL);
3290         if (!nm_i->nat_bitmap_mir)
3291                 return -ENOMEM;
3292 #endif
3293 
3294         return 0;
3295 }
3296 
3297 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3298 {
3299         struct f2fs_nm_info *nm_i = NM_I(sbi);
3300         int i;
3301 
3302         nm_i->free_nid_bitmap =
3303                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3304                                               nm_i->nat_blocks),
3305                               GFP_KERNEL);
3306         if (!nm_i->free_nid_bitmap)
3307                 return -ENOMEM;
3308 
3309         for (i = 0; i < nm_i->nat_blocks; i++) {
3310                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3311                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3312                 if (!nm_i->free_nid_bitmap[i])
3313                         return -ENOMEM;
3314         }
3315 
3316         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3317                                                                 GFP_KERNEL);
3318         if (!nm_i->nat_block_bitmap)
3319                 return -ENOMEM;
3320 
3321         nm_i->free_nid_count =
3322                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3323                                               nm_i->nat_blocks),
3324                               GFP_KERNEL);
3325         if (!nm_i->free_nid_count)
3326                 return -ENOMEM;
3327         return 0;
3328 }
3329 
3330 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3331 {
3332         int err;
3333 
3334         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3335                                                         GFP_KERNEL);
3336         if (!sbi->nm_info)
3337                 return -ENOMEM;
3338 
3339         err = init_node_manager(sbi);
3340         if (err)
3341                 return err;
3342 
3343         err = init_free_nid_cache(sbi);
3344         if (err)
3345                 return err;
3346 
3347         /* load free nid status from nat_bits table */
3348         load_free_nid_bitmap(sbi);
3349 
3350         return f2fs_build_free_nids(sbi, true, true);
3351 }
3352 
3353 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3354 {
3355         struct f2fs_nm_info *nm_i = NM_I(sbi);
3356         struct free_nid *i, *next_i;
3357         void *vec[NAT_VEC_SIZE];
3358         struct nat_entry **natvec = (struct nat_entry **)vec;
3359         struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3360         nid_t nid = 0;
3361         unsigned int found;
3362 
3363         if (!nm_i)
3364                 return;
3365 
3366         /* destroy free nid list */
3367         spin_lock(&nm_i->nid_list_lock);
3368         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3369                 __remove_free_nid(sbi, i, FREE_NID);
3370                 spin_unlock(&nm_i->nid_list_lock);
3371                 kmem_cache_free(free_nid_slab, i);
3372                 spin_lock(&nm_i->nid_list_lock);
3373         }
3374         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3375         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3376         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3377         spin_unlock(&nm_i->nid_list_lock);
3378 
3379         /* destroy nat cache */
3380         f2fs_down_write(&nm_i->nat_tree_lock);
3381         while ((found = __gang_lookup_nat_cache(nm_i,
3382                                         nid, NAT_VEC_SIZE, natvec))) {
3383                 unsigned idx;
3384 
3385                 nid = nat_get_nid(natvec[found - 1]) + 1;
3386                 for (idx = 0; idx < found; idx++) {
3387                         spin_lock(&nm_i->nat_list_lock);
3388                         list_del(&natvec[idx]->list);
3389                         spin_unlock(&nm_i->nat_list_lock);
3390 
3391                         __del_from_nat_cache(nm_i, natvec[idx]);
3392                 }
3393         }
3394         f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3395 
3396         /* destroy nat set cache */
3397         nid = 0;
3398         memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3399         while ((found = __gang_lookup_nat_set(nm_i,
3400                                         nid, NAT_VEC_SIZE, setvec))) {
3401                 unsigned idx;
3402 
3403                 nid = setvec[found - 1]->set + 1;
3404                 for (idx = 0; idx < found; idx++) {
3405                         /* entry_cnt is not zero, when cp_error was occurred */
3406                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3407                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3408                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3409                 }
3410         }
3411         f2fs_up_write(&nm_i->nat_tree_lock);
3412 
3413         kvfree(nm_i->nat_block_bitmap);
3414         if (nm_i->free_nid_bitmap) {
3415                 int i;
3416 
3417                 for (i = 0; i < nm_i->nat_blocks; i++)
3418                         kvfree(nm_i->free_nid_bitmap[i]);
3419                 kvfree(nm_i->free_nid_bitmap);
3420         }
3421         kvfree(nm_i->free_nid_count);
3422 
3423         kvfree(nm_i->nat_bitmap);
3424         kvfree(nm_i->nat_bits);
3425 #ifdef CONFIG_F2FS_CHECK_FS
3426         kvfree(nm_i->nat_bitmap_mir);
3427 #endif
3428         sbi->nm_info = NULL;
3429         kfree(nm_i);
3430 }
3431 
3432 int __init f2fs_create_node_manager_caches(void)
3433 {
3434         nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3435                         sizeof(struct nat_entry));
3436         if (!nat_entry_slab)
3437                 goto fail;
3438 
3439         free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3440                         sizeof(struct free_nid));
3441         if (!free_nid_slab)
3442                 goto destroy_nat_entry;
3443 
3444         nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3445                         sizeof(struct nat_entry_set));
3446         if (!nat_entry_set_slab)
3447                 goto destroy_free_nid;
3448 
3449         fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3450                         sizeof(struct fsync_node_entry));
3451         if (!fsync_node_entry_slab)
3452                 goto destroy_nat_entry_set;
3453         return 0;
3454 
3455 destroy_nat_entry_set:
3456         kmem_cache_destroy(nat_entry_set_slab);
3457 destroy_free_nid:
3458         kmem_cache_destroy(free_nid_slab);
3459 destroy_nat_entry:
3460         kmem_cache_destroy(nat_entry_slab);
3461 fail:
3462         return -ENOMEM;
3463 }
3464 
3465 void f2fs_destroy_node_manager_caches(void)
3466 {
3467         kmem_cache_destroy(fsync_node_entry_slab);
3468         kmem_cache_destroy(nat_entry_set_slab);
3469         kmem_cache_destroy(free_nid_slab);
3470         kmem_cache_destroy(nat_entry_slab);
3471 }
3472 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php