1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/node.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 /* start node id of a node block dedicated to the given node id */ 9 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 10 11 /* node block offset on the NAT area dedicated to the given start node id */ 12 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK) 13 14 /* # of pages to perform synchronous readahead before building free nids */ 15 #define FREE_NID_PAGES 8 16 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 17 18 /* size of free nid batch when shrinking */ 19 #define SHRINK_NID_BATCH_SIZE 8 20 21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ 22 23 /* maximum readahead size for node during getting data blocks */ 24 #define MAX_RA_NODE 128 25 26 /* control the memory footprint threshold (10MB per 1GB ram) */ 27 #define DEF_RAM_THRESHOLD 1 28 29 /* control dirty nats ratio threshold (default: 10% over max nid count) */ 30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 31 /* control total # of nats */ 32 #define DEF_NAT_CACHE_THRESHOLD 100000 33 34 /* control total # of node writes used for roll-fowrad recovery */ 35 #define DEF_RF_NODE_BLOCKS 0 36 37 /* vector size for gang look-up from nat cache that consists of radix tree */ 38 #define NAT_VEC_SIZE 32 39 40 /* return value for read_node_page */ 41 #define LOCKED_PAGE 1 42 43 /* check pinned file's alignment status of physical blocks */ 44 #define FILE_NOT_ALIGNED 1 45 46 /* For flag in struct node_info */ 47 enum { 48 IS_CHECKPOINTED, /* is it checkpointed before? */ 49 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 50 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 51 IS_DIRTY, /* this nat entry is dirty? */ 52 IS_PREALLOC, /* nat entry is preallocated */ 53 }; 54 55 /* 56 * For node information 57 */ 58 struct node_info { 59 nid_t nid; /* node id */ 60 nid_t ino; /* inode number of the node's owner */ 61 block_t blk_addr; /* block address of the node */ 62 unsigned char version; /* version of the node */ 63 unsigned char flag; /* for node information bits */ 64 }; 65 66 struct nat_entry { 67 struct list_head list; /* for clean or dirty nat list */ 68 struct node_info ni; /* in-memory node information */ 69 }; 70 71 #define nat_get_nid(nat) ((nat)->ni.nid) 72 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n)) 73 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr) 74 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b)) 75 #define nat_get_ino(nat) ((nat)->ni.ino) 76 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i)) 77 #define nat_get_version(nat) ((nat)->ni.version) 78 #define nat_set_version(nat, v) ((nat)->ni.version = (v)) 79 80 #define inc_node_version(version) (++(version)) 81 82 static inline void copy_node_info(struct node_info *dst, 83 struct node_info *src) 84 { 85 dst->nid = src->nid; 86 dst->ino = src->ino; 87 dst->blk_addr = src->blk_addr; 88 dst->version = src->version; 89 /* should not copy flag here */ 90 } 91 92 static inline void set_nat_flag(struct nat_entry *ne, 93 unsigned int type, bool set) 94 { 95 if (set) 96 ne->ni.flag |= BIT(type); 97 else 98 ne->ni.flag &= ~BIT(type); 99 } 100 101 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 102 { 103 return ne->ni.flag & BIT(type); 104 } 105 106 static inline void nat_reset_flag(struct nat_entry *ne) 107 { 108 /* these states can be set only after checkpoint was done */ 109 set_nat_flag(ne, IS_CHECKPOINTED, true); 110 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 111 set_nat_flag(ne, HAS_LAST_FSYNC, true); 112 } 113 114 static inline void node_info_from_raw_nat(struct node_info *ni, 115 struct f2fs_nat_entry *raw_ne) 116 { 117 ni->ino = le32_to_cpu(raw_ne->ino); 118 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 119 ni->version = raw_ne->version; 120 } 121 122 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 123 struct node_info *ni) 124 { 125 raw_ne->ino = cpu_to_le32(ni->ino); 126 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 127 raw_ne->version = ni->version; 128 } 129 130 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) 131 { 132 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid * 133 NM_I(sbi)->dirty_nats_ratio / 100; 134 } 135 136 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) 137 { 138 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD; 139 } 140 141 enum mem_type { 142 FREE_NIDS, /* indicates the free nid list */ 143 NAT_ENTRIES, /* indicates the cached nat entry */ 144 DIRTY_DENTS, /* indicates dirty dentry pages */ 145 INO_ENTRIES, /* indicates inode entries */ 146 READ_EXTENT_CACHE, /* indicates read extent cache */ 147 AGE_EXTENT_CACHE, /* indicates age extent cache */ 148 DISCARD_CACHE, /* indicates memory of cached discard cmds */ 149 COMPRESS_PAGE, /* indicates memory of cached compressed pages */ 150 BASE_CHECK, /* check kernel status */ 151 }; 152 153 struct nat_entry_set { 154 struct list_head set_list; /* link with other nat sets */ 155 struct list_head entry_list; /* link with dirty nat entries */ 156 nid_t set; /* set number*/ 157 unsigned int entry_cnt; /* the # of nat entries in set */ 158 }; 159 160 struct free_nid { 161 struct list_head list; /* for free node id list */ 162 nid_t nid; /* node id */ 163 int state; /* in use or not: FREE_NID or PREALLOC_NID */ 164 }; 165 166 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 167 { 168 struct f2fs_nm_info *nm_i = NM_I(sbi); 169 struct free_nid *fnid; 170 171 spin_lock(&nm_i->nid_list_lock); 172 if (nm_i->nid_cnt[FREE_NID] <= 0) { 173 spin_unlock(&nm_i->nid_list_lock); 174 return; 175 } 176 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list); 177 *nid = fnid->nid; 178 spin_unlock(&nm_i->nid_list_lock); 179 } 180 181 /* 182 * inline functions 183 */ 184 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 185 { 186 struct f2fs_nm_info *nm_i = NM_I(sbi); 187 188 #ifdef CONFIG_F2FS_CHECK_FS 189 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir, 190 nm_i->bitmap_size)) 191 f2fs_bug_on(sbi, 1); 192 #endif 193 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 194 } 195 196 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 197 { 198 struct f2fs_nm_info *nm_i = NM_I(sbi); 199 pgoff_t block_off; 200 pgoff_t block_addr; 201 202 /* 203 * block_off = segment_off * 512 + off_in_segment 204 * OLD = (segment_off * 512) * 2 + off_in_segment 205 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment 206 */ 207 block_off = NAT_BLOCK_OFFSET(start); 208 209 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 210 (block_off << 1) - 211 (block_off & (BLKS_PER_SEG(sbi) - 1))); 212 213 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 214 block_addr += BLKS_PER_SEG(sbi); 215 216 return block_addr; 217 } 218 219 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 220 pgoff_t block_addr) 221 { 222 struct f2fs_nm_info *nm_i = NM_I(sbi); 223 224 block_addr -= nm_i->nat_blkaddr; 225 block_addr ^= BIT(sbi->log_blocks_per_seg); 226 return block_addr + nm_i->nat_blkaddr; 227 } 228 229 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 230 { 231 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 232 233 f2fs_change_bit(block_off, nm_i->nat_bitmap); 234 #ifdef CONFIG_F2FS_CHECK_FS 235 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir); 236 #endif 237 } 238 239 static inline nid_t ino_of_node(struct page *node_page) 240 { 241 struct f2fs_node *rn = F2FS_NODE(node_page); 242 return le32_to_cpu(rn->footer.ino); 243 } 244 245 static inline nid_t nid_of_node(struct page *node_page) 246 { 247 struct f2fs_node *rn = F2FS_NODE(node_page); 248 return le32_to_cpu(rn->footer.nid); 249 } 250 251 static inline unsigned int ofs_of_node(struct page *node_page) 252 { 253 struct f2fs_node *rn = F2FS_NODE(node_page); 254 unsigned flag = le32_to_cpu(rn->footer.flag); 255 return flag >> OFFSET_BIT_SHIFT; 256 } 257 258 static inline __u64 cpver_of_node(struct page *node_page) 259 { 260 struct f2fs_node *rn = F2FS_NODE(node_page); 261 return le64_to_cpu(rn->footer.cp_ver); 262 } 263 264 static inline block_t next_blkaddr_of_node(struct page *node_page) 265 { 266 struct f2fs_node *rn = F2FS_NODE(node_page); 267 return le32_to_cpu(rn->footer.next_blkaddr); 268 } 269 270 static inline void fill_node_footer(struct page *page, nid_t nid, 271 nid_t ino, unsigned int ofs, bool reset) 272 { 273 struct f2fs_node *rn = F2FS_NODE(page); 274 unsigned int old_flag = 0; 275 276 if (reset) 277 memset(rn, 0, sizeof(*rn)); 278 else 279 old_flag = le32_to_cpu(rn->footer.flag); 280 281 rn->footer.nid = cpu_to_le32(nid); 282 rn->footer.ino = cpu_to_le32(ino); 283 284 /* should remain old flag bits such as COLD_BIT_SHIFT */ 285 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 286 (old_flag & OFFSET_BIT_MASK)); 287 } 288 289 static inline void copy_node_footer(struct page *dst, struct page *src) 290 { 291 struct f2fs_node *src_rn = F2FS_NODE(src); 292 struct f2fs_node *dst_rn = F2FS_NODE(dst); 293 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 294 } 295 296 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 297 { 298 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 299 struct f2fs_node *rn = F2FS_NODE(page); 300 __u64 cp_ver = cur_cp_version(ckpt); 301 302 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 303 cp_ver |= (cur_cp_crc(ckpt) << 32); 304 305 rn->footer.cp_ver = cpu_to_le64(cp_ver); 306 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 307 } 308 309 static inline bool is_recoverable_dnode(struct page *page) 310 { 311 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 312 __u64 cp_ver = cur_cp_version(ckpt); 313 314 /* Don't care crc part, if fsck.f2fs sets it. */ 315 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG)) 316 return (cp_ver << 32) == (cpver_of_node(page) << 32); 317 318 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 319 cp_ver |= (cur_cp_crc(ckpt) << 32); 320 321 return cp_ver == cpver_of_node(page); 322 } 323 324 /* 325 * f2fs assigns the following node offsets described as (num). 326 * N = NIDS_PER_BLOCK 327 * 328 * Inode block (0) 329 * |- direct node (1) 330 * |- direct node (2) 331 * |- indirect node (3) 332 * | `- direct node (4 => 4 + N - 1) 333 * |- indirect node (4 + N) 334 * | `- direct node (5 + N => 5 + 2N - 1) 335 * `- double indirect node (5 + 2N) 336 * `- indirect node (6 + 2N) 337 * `- direct node 338 * ...... 339 * `- indirect node ((6 + 2N) + x(N + 1)) 340 * `- direct node 341 * ...... 342 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 343 * `- direct node 344 */ 345 static inline bool IS_DNODE(struct page *node_page) 346 { 347 unsigned int ofs = ofs_of_node(node_page); 348 349 if (f2fs_has_xattr_block(ofs)) 350 return true; 351 352 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 353 ofs == 5 + 2 * NIDS_PER_BLOCK) 354 return false; 355 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 356 ofs -= 6 + 2 * NIDS_PER_BLOCK; 357 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 358 return false; 359 } 360 return true; 361 } 362 363 static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 364 { 365 struct f2fs_node *rn = F2FS_NODE(p); 366 367 f2fs_wait_on_page_writeback(p, NODE, true, true); 368 369 if (i) 370 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 371 else 372 rn->in.nid[off] = cpu_to_le32(nid); 373 return set_page_dirty(p); 374 } 375 376 static inline nid_t get_nid(struct page *p, int off, bool i) 377 { 378 struct f2fs_node *rn = F2FS_NODE(p); 379 380 if (i) 381 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 382 return le32_to_cpu(rn->in.nid[off]); 383 } 384 385 /* 386 * Coldness identification: 387 * - Mark cold files in f2fs_inode_info 388 * - Mark cold node blocks in their node footer 389 * - Mark cold data pages in page cache 390 */ 391 392 static inline int is_node(struct page *page, int type) 393 { 394 struct f2fs_node *rn = F2FS_NODE(page); 395 return le32_to_cpu(rn->footer.flag) & BIT(type); 396 } 397 398 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 399 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 400 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 401 402 static inline void set_cold_node(struct page *page, bool is_dir) 403 { 404 struct f2fs_node *rn = F2FS_NODE(page); 405 unsigned int flag = le32_to_cpu(rn->footer.flag); 406 407 if (is_dir) 408 flag &= ~BIT(COLD_BIT_SHIFT); 409 else 410 flag |= BIT(COLD_BIT_SHIFT); 411 rn->footer.flag = cpu_to_le32(flag); 412 } 413 414 static inline void set_mark(struct page *page, int mark, int type) 415 { 416 struct f2fs_node *rn = F2FS_NODE(page); 417 unsigned int flag = le32_to_cpu(rn->footer.flag); 418 if (mark) 419 flag |= BIT(type); 420 else 421 flag &= ~BIT(type); 422 rn->footer.flag = cpu_to_le32(flag); 423 424 #ifdef CONFIG_F2FS_CHECK_FS 425 f2fs_inode_chksum_set(F2FS_P_SB(page), page); 426 #endif 427 } 428 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 429 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 430
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.