1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *revoke_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_abort_atomic_write(struct inode *inode, bool clean) 189 { 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 192 if (!f2fs_is_atomic_file(inode)) 193 return; 194 195 if (clean) 196 truncate_inode_pages_final(inode->i_mapping); 197 198 release_atomic_write_cnt(inode); 199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED); 200 clear_inode_flag(inode, FI_ATOMIC_REPLACE); 201 clear_inode_flag(inode, FI_ATOMIC_FILE); 202 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) { 203 clear_inode_flag(inode, FI_ATOMIC_DIRTIED); 204 f2fs_mark_inode_dirty_sync(inode, true); 205 } 206 stat_dec_atomic_inode(inode); 207 208 F2FS_I(inode)->atomic_write_task = NULL; 209 210 if (clean) { 211 f2fs_i_size_write(inode, fi->original_i_size); 212 fi->original_i_size = 0; 213 } 214 /* avoid stale dirty inode during eviction */ 215 sync_inode_metadata(inode, 0); 216 } 217 218 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, 219 block_t new_addr, block_t *old_addr, bool recover) 220 { 221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 222 struct dnode_of_data dn; 223 struct node_info ni; 224 int err; 225 226 retry: 227 set_new_dnode(&dn, inode, NULL, NULL, 0); 228 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 229 if (err) { 230 if (err == -ENOMEM) { 231 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 232 goto retry; 233 } 234 return err; 235 } 236 237 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 238 if (err) { 239 f2fs_put_dnode(&dn); 240 return err; 241 } 242 243 if (recover) { 244 /* dn.data_blkaddr is always valid */ 245 if (!__is_valid_data_blkaddr(new_addr)) { 246 if (new_addr == NULL_ADDR) 247 dec_valid_block_count(sbi, inode, 1); 248 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 249 f2fs_update_data_blkaddr(&dn, new_addr); 250 } else { 251 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 252 new_addr, ni.version, true, true); 253 } 254 } else { 255 blkcnt_t count = 1; 256 257 err = inc_valid_block_count(sbi, inode, &count, true); 258 if (err) { 259 f2fs_put_dnode(&dn); 260 return err; 261 } 262 263 *old_addr = dn.data_blkaddr; 264 f2fs_truncate_data_blocks_range(&dn, 1); 265 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); 266 267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, 268 ni.version, true, false); 269 } 270 271 f2fs_put_dnode(&dn); 272 273 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode, 274 index, old_addr ? *old_addr : 0, new_addr, recover); 275 return 0; 276 } 277 278 static void __complete_revoke_list(struct inode *inode, struct list_head *head, 279 bool revoke) 280 { 281 struct revoke_entry *cur, *tmp; 282 pgoff_t start_index = 0; 283 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE); 284 285 list_for_each_entry_safe(cur, tmp, head, list) { 286 if (revoke) { 287 __replace_atomic_write_block(inode, cur->index, 288 cur->old_addr, NULL, true); 289 } else if (truncate) { 290 f2fs_truncate_hole(inode, start_index, cur->index); 291 start_index = cur->index + 1; 292 } 293 294 list_del(&cur->list); 295 kmem_cache_free(revoke_entry_slab, cur); 296 } 297 298 if (!revoke && truncate) 299 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false); 300 } 301 302 static int __f2fs_commit_atomic_write(struct inode *inode) 303 { 304 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 305 struct f2fs_inode_info *fi = F2FS_I(inode); 306 struct inode *cow_inode = fi->cow_inode; 307 struct revoke_entry *new; 308 struct list_head revoke_list; 309 block_t blkaddr; 310 struct dnode_of_data dn; 311 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 312 pgoff_t off = 0, blen, index; 313 int ret = 0, i; 314 315 INIT_LIST_HEAD(&revoke_list); 316 317 while (len) { 318 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); 319 320 set_new_dnode(&dn, cow_inode, NULL, NULL, 0); 321 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 322 if (ret && ret != -ENOENT) { 323 goto out; 324 } else if (ret == -ENOENT) { 325 ret = 0; 326 if (dn.max_level == 0) 327 goto out; 328 goto next; 329 } 330 331 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), 332 len); 333 index = off; 334 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { 335 blkaddr = f2fs_data_blkaddr(&dn); 336 337 if (!__is_valid_data_blkaddr(blkaddr)) { 338 continue; 339 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 340 DATA_GENERIC_ENHANCE)) { 341 f2fs_put_dnode(&dn); 342 ret = -EFSCORRUPTED; 343 goto out; 344 } 345 346 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, 347 true, NULL); 348 349 ret = __replace_atomic_write_block(inode, index, blkaddr, 350 &new->old_addr, false); 351 if (ret) { 352 f2fs_put_dnode(&dn); 353 kmem_cache_free(revoke_entry_slab, new); 354 goto out; 355 } 356 357 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 358 new->index = index; 359 list_add_tail(&new->list, &revoke_list); 360 } 361 f2fs_put_dnode(&dn); 362 next: 363 off += blen; 364 len -= blen; 365 } 366 367 out: 368 if (ret) { 369 sbi->revoked_atomic_block += fi->atomic_write_cnt; 370 } else { 371 sbi->committed_atomic_block += fi->atomic_write_cnt; 372 set_inode_flag(inode, FI_ATOMIC_COMMITTED); 373 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) { 374 clear_inode_flag(inode, FI_ATOMIC_DIRTIED); 375 f2fs_mark_inode_dirty_sync(inode, true); 376 } 377 } 378 379 __complete_revoke_list(inode, &revoke_list, ret ? true : false); 380 381 return ret; 382 } 383 384 int f2fs_commit_atomic_write(struct inode *inode) 385 { 386 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 387 struct f2fs_inode_info *fi = F2FS_I(inode); 388 int err; 389 390 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 391 if (err) 392 return err; 393 394 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 395 f2fs_lock_op(sbi); 396 397 err = __f2fs_commit_atomic_write(inode); 398 399 f2fs_unlock_op(sbi); 400 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 401 402 return err; 403 } 404 405 /* 406 * This function balances dirty node and dentry pages. 407 * In addition, it controls garbage collection. 408 */ 409 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 410 { 411 if (f2fs_cp_error(sbi)) 412 return; 413 414 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 415 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT); 416 417 /* balance_fs_bg is able to be pending */ 418 if (need && excess_cached_nats(sbi)) 419 f2fs_balance_fs_bg(sbi, false); 420 421 if (!f2fs_is_checkpoint_ready(sbi)) 422 return; 423 424 /* 425 * We should do GC or end up with checkpoint, if there are so many dirty 426 * dir/node pages without enough free segments. 427 */ 428 if (has_enough_free_secs(sbi, 0, 0)) 429 return; 430 431 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 432 sbi->gc_thread->f2fs_gc_task) { 433 DEFINE_WAIT(wait); 434 435 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 436 TASK_UNINTERRUPTIBLE); 437 wake_up(&sbi->gc_thread->gc_wait_queue_head); 438 io_schedule(); 439 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 440 } else { 441 struct f2fs_gc_control gc_control = { 442 .victim_segno = NULL_SEGNO, 443 .init_gc_type = BG_GC, 444 .no_bg_gc = true, 445 .should_migrate_blocks = false, 446 .err_gc_skipped = false, 447 .nr_free_secs = 1 }; 448 f2fs_down_write(&sbi->gc_lock); 449 stat_inc_gc_call_count(sbi, FOREGROUND); 450 f2fs_gc(sbi, &gc_control); 451 } 452 } 453 454 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 455 { 456 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 457 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 458 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 459 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 460 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 461 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 462 unsigned int threshold = 463 SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD)); 464 unsigned int global_threshold = threshold * 3 / 2; 465 466 if (dents >= threshold || qdata >= threshold || 467 nodes >= threshold || meta >= threshold || 468 imeta >= threshold) 469 return true; 470 return dents + qdata + nodes + meta + imeta > global_threshold; 471 } 472 473 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 474 { 475 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 476 return; 477 478 /* try to shrink extent cache when there is no enough memory */ 479 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE)) 480 f2fs_shrink_read_extent_tree(sbi, 481 READ_EXTENT_CACHE_SHRINK_NUMBER); 482 483 /* try to shrink age extent cache when there is no enough memory */ 484 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE)) 485 f2fs_shrink_age_extent_tree(sbi, 486 AGE_EXTENT_CACHE_SHRINK_NUMBER); 487 488 /* check the # of cached NAT entries */ 489 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 490 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 491 492 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 493 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 494 else 495 f2fs_build_free_nids(sbi, false, false); 496 497 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 498 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 499 goto do_sync; 500 501 /* there is background inflight IO or foreground operation recently */ 502 if (is_inflight_io(sbi, REQ_TIME) || 503 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 504 return; 505 506 /* exceed periodical checkpoint timeout threshold */ 507 if (f2fs_time_over(sbi, CP_TIME)) 508 goto do_sync; 509 510 /* checkpoint is the only way to shrink partial cached entries */ 511 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 512 f2fs_available_free_memory(sbi, INO_ENTRIES)) 513 return; 514 515 do_sync: 516 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 517 struct blk_plug plug; 518 519 mutex_lock(&sbi->flush_lock); 520 521 blk_start_plug(&plug); 522 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false); 523 blk_finish_plug(&plug); 524 525 mutex_unlock(&sbi->flush_lock); 526 } 527 stat_inc_cp_call_count(sbi, BACKGROUND); 528 f2fs_sync_fs(sbi->sb, 1); 529 } 530 531 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 532 struct block_device *bdev) 533 { 534 int ret = blkdev_issue_flush(bdev); 535 536 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 537 test_opt(sbi, FLUSH_MERGE), ret); 538 if (!ret) 539 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0); 540 return ret; 541 } 542 543 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 544 { 545 int ret = 0; 546 int i; 547 548 if (!f2fs_is_multi_device(sbi)) 549 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 550 551 for (i = 0; i < sbi->s_ndevs; i++) { 552 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 553 continue; 554 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 555 if (ret) 556 break; 557 } 558 return ret; 559 } 560 561 static int issue_flush_thread(void *data) 562 { 563 struct f2fs_sb_info *sbi = data; 564 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 565 wait_queue_head_t *q = &fcc->flush_wait_queue; 566 repeat: 567 if (kthread_should_stop()) 568 return 0; 569 570 if (!llist_empty(&fcc->issue_list)) { 571 struct flush_cmd *cmd, *next; 572 int ret; 573 574 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 575 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 576 577 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 578 579 ret = submit_flush_wait(sbi, cmd->ino); 580 atomic_inc(&fcc->issued_flush); 581 582 llist_for_each_entry_safe(cmd, next, 583 fcc->dispatch_list, llnode) { 584 cmd->ret = ret; 585 complete(&cmd->wait); 586 } 587 fcc->dispatch_list = NULL; 588 } 589 590 wait_event_interruptible(*q, 591 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 592 goto repeat; 593 } 594 595 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 596 { 597 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 598 struct flush_cmd cmd; 599 int ret; 600 601 if (test_opt(sbi, NOBARRIER)) 602 return 0; 603 604 if (!test_opt(sbi, FLUSH_MERGE)) { 605 atomic_inc(&fcc->queued_flush); 606 ret = submit_flush_wait(sbi, ino); 607 atomic_dec(&fcc->queued_flush); 608 atomic_inc(&fcc->issued_flush); 609 return ret; 610 } 611 612 if (atomic_inc_return(&fcc->queued_flush) == 1 || 613 f2fs_is_multi_device(sbi)) { 614 ret = submit_flush_wait(sbi, ino); 615 atomic_dec(&fcc->queued_flush); 616 617 atomic_inc(&fcc->issued_flush); 618 return ret; 619 } 620 621 cmd.ino = ino; 622 init_completion(&cmd.wait); 623 624 llist_add(&cmd.llnode, &fcc->issue_list); 625 626 /* 627 * update issue_list before we wake up issue_flush thread, this 628 * smp_mb() pairs with another barrier in ___wait_event(), see 629 * more details in comments of waitqueue_active(). 630 */ 631 smp_mb(); 632 633 if (waitqueue_active(&fcc->flush_wait_queue)) 634 wake_up(&fcc->flush_wait_queue); 635 636 if (fcc->f2fs_issue_flush) { 637 wait_for_completion(&cmd.wait); 638 atomic_dec(&fcc->queued_flush); 639 } else { 640 struct llist_node *list; 641 642 list = llist_del_all(&fcc->issue_list); 643 if (!list) { 644 wait_for_completion(&cmd.wait); 645 atomic_dec(&fcc->queued_flush); 646 } else { 647 struct flush_cmd *tmp, *next; 648 649 ret = submit_flush_wait(sbi, ino); 650 651 llist_for_each_entry_safe(tmp, next, list, llnode) { 652 if (tmp == &cmd) { 653 cmd.ret = ret; 654 atomic_dec(&fcc->queued_flush); 655 continue; 656 } 657 tmp->ret = ret; 658 complete(&tmp->wait); 659 } 660 } 661 } 662 663 return cmd.ret; 664 } 665 666 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 667 { 668 dev_t dev = sbi->sb->s_bdev->bd_dev; 669 struct flush_cmd_control *fcc; 670 671 if (SM_I(sbi)->fcc_info) { 672 fcc = SM_I(sbi)->fcc_info; 673 if (fcc->f2fs_issue_flush) 674 return 0; 675 goto init_thread; 676 } 677 678 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 679 if (!fcc) 680 return -ENOMEM; 681 atomic_set(&fcc->issued_flush, 0); 682 atomic_set(&fcc->queued_flush, 0); 683 init_waitqueue_head(&fcc->flush_wait_queue); 684 init_llist_head(&fcc->issue_list); 685 SM_I(sbi)->fcc_info = fcc; 686 if (!test_opt(sbi, FLUSH_MERGE)) 687 return 0; 688 689 init_thread: 690 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 691 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 692 if (IS_ERR(fcc->f2fs_issue_flush)) { 693 int err = PTR_ERR(fcc->f2fs_issue_flush); 694 695 fcc->f2fs_issue_flush = NULL; 696 return err; 697 } 698 699 return 0; 700 } 701 702 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 703 { 704 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 705 706 if (fcc && fcc->f2fs_issue_flush) { 707 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 708 709 fcc->f2fs_issue_flush = NULL; 710 kthread_stop(flush_thread); 711 } 712 if (free) { 713 kfree(fcc); 714 SM_I(sbi)->fcc_info = NULL; 715 } 716 } 717 718 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 719 { 720 int ret = 0, i; 721 722 if (!f2fs_is_multi_device(sbi)) 723 return 0; 724 725 if (test_opt(sbi, NOBARRIER)) 726 return 0; 727 728 for (i = 1; i < sbi->s_ndevs; i++) { 729 int count = DEFAULT_RETRY_IO_COUNT; 730 731 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 732 continue; 733 734 do { 735 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 736 if (ret) 737 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 738 } while (ret && --count); 739 740 if (ret) { 741 f2fs_stop_checkpoint(sbi, false, 742 STOP_CP_REASON_FLUSH_FAIL); 743 break; 744 } 745 746 spin_lock(&sbi->dev_lock); 747 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 748 spin_unlock(&sbi->dev_lock); 749 } 750 751 return ret; 752 } 753 754 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 755 enum dirty_type dirty_type) 756 { 757 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 758 759 /* need not be added */ 760 if (IS_CURSEG(sbi, segno)) 761 return; 762 763 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 764 dirty_i->nr_dirty[dirty_type]++; 765 766 if (dirty_type == DIRTY) { 767 struct seg_entry *sentry = get_seg_entry(sbi, segno); 768 enum dirty_type t = sentry->type; 769 770 if (unlikely(t >= DIRTY)) { 771 f2fs_bug_on(sbi, 1); 772 return; 773 } 774 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 775 dirty_i->nr_dirty[t]++; 776 777 if (__is_large_section(sbi)) { 778 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 779 block_t valid_blocks = 780 get_valid_blocks(sbi, segno, true); 781 782 f2fs_bug_on(sbi, 783 (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 784 !valid_blocks) || 785 valid_blocks == CAP_BLKS_PER_SEC(sbi)); 786 787 if (!IS_CURSEC(sbi, secno)) 788 set_bit(secno, dirty_i->dirty_secmap); 789 } 790 } 791 } 792 793 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 794 enum dirty_type dirty_type) 795 { 796 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 797 block_t valid_blocks; 798 799 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 800 dirty_i->nr_dirty[dirty_type]--; 801 802 if (dirty_type == DIRTY) { 803 struct seg_entry *sentry = get_seg_entry(sbi, segno); 804 enum dirty_type t = sentry->type; 805 806 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 807 dirty_i->nr_dirty[t]--; 808 809 valid_blocks = get_valid_blocks(sbi, segno, true); 810 if (valid_blocks == 0) { 811 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 812 dirty_i->victim_secmap); 813 #ifdef CONFIG_F2FS_CHECK_FS 814 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 815 #endif 816 } 817 if (__is_large_section(sbi)) { 818 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 819 820 if (!valid_blocks || 821 valid_blocks == CAP_BLKS_PER_SEC(sbi)) { 822 clear_bit(secno, dirty_i->dirty_secmap); 823 return; 824 } 825 826 if (!IS_CURSEC(sbi, secno)) 827 set_bit(secno, dirty_i->dirty_secmap); 828 } 829 } 830 } 831 832 /* 833 * Should not occur error such as -ENOMEM. 834 * Adding dirty entry into seglist is not critical operation. 835 * If a given segment is one of current working segments, it won't be added. 836 */ 837 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 838 { 839 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 840 unsigned short valid_blocks, ckpt_valid_blocks; 841 unsigned int usable_blocks; 842 843 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 844 return; 845 846 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 847 mutex_lock(&dirty_i->seglist_lock); 848 849 valid_blocks = get_valid_blocks(sbi, segno, false); 850 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 851 852 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 853 ckpt_valid_blocks == usable_blocks)) { 854 __locate_dirty_segment(sbi, segno, PRE); 855 __remove_dirty_segment(sbi, segno, DIRTY); 856 } else if (valid_blocks < usable_blocks) { 857 __locate_dirty_segment(sbi, segno, DIRTY); 858 } else { 859 /* Recovery routine with SSR needs this */ 860 __remove_dirty_segment(sbi, segno, DIRTY); 861 } 862 863 mutex_unlock(&dirty_i->seglist_lock); 864 } 865 866 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 867 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 868 { 869 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 870 unsigned int segno; 871 872 mutex_lock(&dirty_i->seglist_lock); 873 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 874 if (get_valid_blocks(sbi, segno, false)) 875 continue; 876 if (IS_CURSEG(sbi, segno)) 877 continue; 878 __locate_dirty_segment(sbi, segno, PRE); 879 __remove_dirty_segment(sbi, segno, DIRTY); 880 } 881 mutex_unlock(&dirty_i->seglist_lock); 882 } 883 884 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 885 { 886 int ovp_hole_segs = 887 (overprovision_segments(sbi) - reserved_segments(sbi)); 888 block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs); 889 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 890 block_t holes[2] = {0, 0}; /* DATA and NODE */ 891 block_t unusable; 892 struct seg_entry *se; 893 unsigned int segno; 894 895 mutex_lock(&dirty_i->seglist_lock); 896 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 897 se = get_seg_entry(sbi, segno); 898 if (IS_NODESEG(se->type)) 899 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 900 se->valid_blocks; 901 else 902 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 903 se->valid_blocks; 904 } 905 mutex_unlock(&dirty_i->seglist_lock); 906 907 unusable = max(holes[DATA], holes[NODE]); 908 if (unusable > ovp_holes) 909 return unusable - ovp_holes; 910 return 0; 911 } 912 913 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 914 { 915 int ovp_hole_segs = 916 (overprovision_segments(sbi) - reserved_segments(sbi)); 917 918 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 919 return 0; 920 if (unusable > F2FS_OPTION(sbi).unusable_cap) 921 return -EAGAIN; 922 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 923 dirty_segments(sbi) > ovp_hole_segs) 924 return -EAGAIN; 925 if (has_not_enough_free_secs(sbi, 0, 0)) 926 return -EAGAIN; 927 return 0; 928 } 929 930 /* This is only used by SBI_CP_DISABLED */ 931 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 932 { 933 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 934 unsigned int segno = 0; 935 936 mutex_lock(&dirty_i->seglist_lock); 937 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 938 if (get_valid_blocks(sbi, segno, false)) 939 continue; 940 if (get_ckpt_valid_blocks(sbi, segno, false)) 941 continue; 942 mutex_unlock(&dirty_i->seglist_lock); 943 return segno; 944 } 945 mutex_unlock(&dirty_i->seglist_lock); 946 return NULL_SEGNO; 947 } 948 949 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 950 struct block_device *bdev, block_t lstart, 951 block_t start, block_t len) 952 { 953 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 954 struct list_head *pend_list; 955 struct discard_cmd *dc; 956 957 f2fs_bug_on(sbi, !len); 958 959 pend_list = &dcc->pend_list[plist_idx(len)]; 960 961 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 962 INIT_LIST_HEAD(&dc->list); 963 dc->bdev = bdev; 964 dc->di.lstart = lstart; 965 dc->di.start = start; 966 dc->di.len = len; 967 dc->ref = 0; 968 dc->state = D_PREP; 969 dc->queued = 0; 970 dc->error = 0; 971 init_completion(&dc->wait); 972 list_add_tail(&dc->list, pend_list); 973 spin_lock_init(&dc->lock); 974 dc->bio_ref = 0; 975 atomic_inc(&dcc->discard_cmd_cnt); 976 dcc->undiscard_blks += len; 977 978 return dc; 979 } 980 981 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi) 982 { 983 #ifdef CONFIG_F2FS_CHECK_FS 984 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 985 struct rb_node *cur = rb_first_cached(&dcc->root), *next; 986 struct discard_cmd *cur_dc, *next_dc; 987 988 while (cur) { 989 next = rb_next(cur); 990 if (!next) 991 return true; 992 993 cur_dc = rb_entry(cur, struct discard_cmd, rb_node); 994 next_dc = rb_entry(next, struct discard_cmd, rb_node); 995 996 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) { 997 f2fs_info(sbi, "broken discard_rbtree, " 998 "cur(%u, %u) next(%u, %u)", 999 cur_dc->di.lstart, cur_dc->di.len, 1000 next_dc->di.lstart, next_dc->di.len); 1001 return false; 1002 } 1003 cur = next; 1004 } 1005 #endif 1006 return true; 1007 } 1008 1009 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi, 1010 block_t blkaddr) 1011 { 1012 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1013 struct rb_node *node = dcc->root.rb_root.rb_node; 1014 struct discard_cmd *dc; 1015 1016 while (node) { 1017 dc = rb_entry(node, struct discard_cmd, rb_node); 1018 1019 if (blkaddr < dc->di.lstart) 1020 node = node->rb_left; 1021 else if (blkaddr >= dc->di.lstart + dc->di.len) 1022 node = node->rb_right; 1023 else 1024 return dc; 1025 } 1026 return NULL; 1027 } 1028 1029 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root, 1030 block_t blkaddr, 1031 struct discard_cmd **prev_entry, 1032 struct discard_cmd **next_entry, 1033 struct rb_node ***insert_p, 1034 struct rb_node **insert_parent) 1035 { 1036 struct rb_node **pnode = &root->rb_root.rb_node; 1037 struct rb_node *parent = NULL, *tmp_node; 1038 struct discard_cmd *dc; 1039 1040 *insert_p = NULL; 1041 *insert_parent = NULL; 1042 *prev_entry = NULL; 1043 *next_entry = NULL; 1044 1045 if (RB_EMPTY_ROOT(&root->rb_root)) 1046 return NULL; 1047 1048 while (*pnode) { 1049 parent = *pnode; 1050 dc = rb_entry(*pnode, struct discard_cmd, rb_node); 1051 1052 if (blkaddr < dc->di.lstart) 1053 pnode = &(*pnode)->rb_left; 1054 else if (blkaddr >= dc->di.lstart + dc->di.len) 1055 pnode = &(*pnode)->rb_right; 1056 else 1057 goto lookup_neighbors; 1058 } 1059 1060 *insert_p = pnode; 1061 *insert_parent = parent; 1062 1063 dc = rb_entry(parent, struct discard_cmd, rb_node); 1064 tmp_node = parent; 1065 if (parent && blkaddr > dc->di.lstart) 1066 tmp_node = rb_next(parent); 1067 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1068 1069 tmp_node = parent; 1070 if (parent && blkaddr < dc->di.lstart) 1071 tmp_node = rb_prev(parent); 1072 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1073 return NULL; 1074 1075 lookup_neighbors: 1076 /* lookup prev node for merging backward later */ 1077 tmp_node = rb_prev(&dc->rb_node); 1078 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1079 1080 /* lookup next node for merging frontward later */ 1081 tmp_node = rb_next(&dc->rb_node); 1082 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1083 return dc; 1084 } 1085 1086 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1087 struct discard_cmd *dc) 1088 { 1089 if (dc->state == D_DONE) 1090 atomic_sub(dc->queued, &dcc->queued_discard); 1091 1092 list_del(&dc->list); 1093 rb_erase_cached(&dc->rb_node, &dcc->root); 1094 dcc->undiscard_blks -= dc->di.len; 1095 1096 kmem_cache_free(discard_cmd_slab, dc); 1097 1098 atomic_dec(&dcc->discard_cmd_cnt); 1099 } 1100 1101 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1102 struct discard_cmd *dc) 1103 { 1104 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1105 unsigned long flags; 1106 1107 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len); 1108 1109 spin_lock_irqsave(&dc->lock, flags); 1110 if (dc->bio_ref) { 1111 spin_unlock_irqrestore(&dc->lock, flags); 1112 return; 1113 } 1114 spin_unlock_irqrestore(&dc->lock, flags); 1115 1116 f2fs_bug_on(sbi, dc->ref); 1117 1118 if (dc->error == -EOPNOTSUPP) 1119 dc->error = 0; 1120 1121 if (dc->error) 1122 f2fs_info_ratelimited(sbi, 1123 "Issue discard(%u, %u, %u) failed, ret: %d", 1124 dc->di.lstart, dc->di.start, dc->di.len, dc->error); 1125 __detach_discard_cmd(dcc, dc); 1126 } 1127 1128 static void f2fs_submit_discard_endio(struct bio *bio) 1129 { 1130 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1131 unsigned long flags; 1132 1133 spin_lock_irqsave(&dc->lock, flags); 1134 if (!dc->error) 1135 dc->error = blk_status_to_errno(bio->bi_status); 1136 dc->bio_ref--; 1137 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1138 dc->state = D_DONE; 1139 complete_all(&dc->wait); 1140 } 1141 spin_unlock_irqrestore(&dc->lock, flags); 1142 bio_put(bio); 1143 } 1144 1145 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1146 block_t start, block_t end) 1147 { 1148 #ifdef CONFIG_F2FS_CHECK_FS 1149 struct seg_entry *sentry; 1150 unsigned int segno; 1151 block_t blk = start; 1152 unsigned long offset, size, *map; 1153 1154 while (blk < end) { 1155 segno = GET_SEGNO(sbi, blk); 1156 sentry = get_seg_entry(sbi, segno); 1157 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1158 1159 if (end < START_BLOCK(sbi, segno + 1)) 1160 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1161 else 1162 size = BLKS_PER_SEG(sbi); 1163 map = (unsigned long *)(sentry->cur_valid_map); 1164 offset = __find_rev_next_bit(map, size, offset); 1165 f2fs_bug_on(sbi, offset != size); 1166 blk = START_BLOCK(sbi, segno + 1); 1167 } 1168 #endif 1169 } 1170 1171 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1172 struct discard_policy *dpolicy, 1173 int discard_type, unsigned int granularity) 1174 { 1175 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1176 1177 /* common policy */ 1178 dpolicy->type = discard_type; 1179 dpolicy->sync = true; 1180 dpolicy->ordered = false; 1181 dpolicy->granularity = granularity; 1182 1183 dpolicy->max_requests = dcc->max_discard_request; 1184 dpolicy->io_aware_gran = dcc->discard_io_aware_gran; 1185 dpolicy->timeout = false; 1186 1187 if (discard_type == DPOLICY_BG) { 1188 dpolicy->min_interval = dcc->min_discard_issue_time; 1189 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1190 dpolicy->max_interval = dcc->max_discard_issue_time; 1191 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE) 1192 dpolicy->io_aware = true; 1193 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE) 1194 dpolicy->io_aware = false; 1195 dpolicy->sync = false; 1196 dpolicy->ordered = true; 1197 if (utilization(sbi) > dcc->discard_urgent_util) { 1198 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1199 if (atomic_read(&dcc->discard_cmd_cnt)) 1200 dpolicy->max_interval = 1201 dcc->min_discard_issue_time; 1202 } 1203 } else if (discard_type == DPOLICY_FORCE) { 1204 dpolicy->min_interval = dcc->min_discard_issue_time; 1205 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1206 dpolicy->max_interval = dcc->max_discard_issue_time; 1207 dpolicy->io_aware = false; 1208 } else if (discard_type == DPOLICY_FSTRIM) { 1209 dpolicy->io_aware = false; 1210 } else if (discard_type == DPOLICY_UMOUNT) { 1211 dpolicy->io_aware = false; 1212 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1213 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1214 dpolicy->timeout = true; 1215 } 1216 } 1217 1218 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1219 struct block_device *bdev, block_t lstart, 1220 block_t start, block_t len); 1221 1222 #ifdef CONFIG_BLK_DEV_ZONED 1223 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi, 1224 struct discard_cmd *dc, blk_opf_t flag, 1225 struct list_head *wait_list, 1226 unsigned int *issued) 1227 { 1228 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1229 struct block_device *bdev = dc->bdev; 1230 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS); 1231 unsigned long flags; 1232 1233 trace_f2fs_issue_reset_zone(bdev, dc->di.start); 1234 1235 spin_lock_irqsave(&dc->lock, flags); 1236 dc->state = D_SUBMIT; 1237 dc->bio_ref++; 1238 spin_unlock_irqrestore(&dc->lock, flags); 1239 1240 if (issued) 1241 (*issued)++; 1242 1243 atomic_inc(&dcc->queued_discard); 1244 dc->queued++; 1245 list_move_tail(&dc->list, wait_list); 1246 1247 /* sanity check on discard range */ 1248 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len); 1249 1250 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start); 1251 bio->bi_private = dc; 1252 bio->bi_end_io = f2fs_submit_discard_endio; 1253 submit_bio(bio); 1254 1255 atomic_inc(&dcc->issued_discard); 1256 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE); 1257 } 1258 #endif 1259 1260 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1261 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1262 struct discard_policy *dpolicy, 1263 struct discard_cmd *dc, int *issued) 1264 { 1265 struct block_device *bdev = dc->bdev; 1266 unsigned int max_discard_blocks = 1267 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1268 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1269 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1270 &(dcc->fstrim_list) : &(dcc->wait_list); 1271 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0; 1272 block_t lstart, start, len, total_len; 1273 int err = 0; 1274 1275 if (dc->state != D_PREP) 1276 return 0; 1277 1278 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1279 return 0; 1280 1281 #ifdef CONFIG_BLK_DEV_ZONED 1282 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) { 1283 int devi = f2fs_bdev_index(sbi, bdev); 1284 1285 if (devi < 0) 1286 return -EINVAL; 1287 1288 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1289 __submit_zone_reset_cmd(sbi, dc, flag, 1290 wait_list, issued); 1291 return 0; 1292 } 1293 1294 /* 1295 * Issue discard for conventional zones only if the device 1296 * supports discard. 1297 */ 1298 if (!bdev_max_discard_sectors(bdev)) 1299 return -EOPNOTSUPP; 1300 } 1301 #endif 1302 1303 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len); 1304 1305 lstart = dc->di.lstart; 1306 start = dc->di.start; 1307 len = dc->di.len; 1308 total_len = len; 1309 1310 dc->di.len = 0; 1311 1312 while (total_len && *issued < dpolicy->max_requests && !err) { 1313 struct bio *bio = NULL; 1314 unsigned long flags; 1315 bool last = true; 1316 1317 if (len > max_discard_blocks) { 1318 len = max_discard_blocks; 1319 last = false; 1320 } 1321 1322 (*issued)++; 1323 if (*issued == dpolicy->max_requests) 1324 last = true; 1325 1326 dc->di.len += len; 1327 1328 if (time_to_inject(sbi, FAULT_DISCARD)) { 1329 err = -EIO; 1330 } else { 1331 err = __blkdev_issue_discard(bdev, 1332 SECTOR_FROM_BLOCK(start), 1333 SECTOR_FROM_BLOCK(len), 1334 GFP_NOFS, &bio); 1335 } 1336 if (err) { 1337 spin_lock_irqsave(&dc->lock, flags); 1338 if (dc->state == D_PARTIAL) 1339 dc->state = D_SUBMIT; 1340 spin_unlock_irqrestore(&dc->lock, flags); 1341 1342 break; 1343 } 1344 1345 f2fs_bug_on(sbi, !bio); 1346 1347 /* 1348 * should keep before submission to avoid D_DONE 1349 * right away 1350 */ 1351 spin_lock_irqsave(&dc->lock, flags); 1352 if (last) 1353 dc->state = D_SUBMIT; 1354 else 1355 dc->state = D_PARTIAL; 1356 dc->bio_ref++; 1357 spin_unlock_irqrestore(&dc->lock, flags); 1358 1359 atomic_inc(&dcc->queued_discard); 1360 dc->queued++; 1361 list_move_tail(&dc->list, wait_list); 1362 1363 /* sanity check on discard range */ 1364 __check_sit_bitmap(sbi, lstart, lstart + len); 1365 1366 bio->bi_private = dc; 1367 bio->bi_end_io = f2fs_submit_discard_endio; 1368 bio->bi_opf |= flag; 1369 submit_bio(bio); 1370 1371 atomic_inc(&dcc->issued_discard); 1372 1373 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE); 1374 1375 lstart += len; 1376 start += len; 1377 total_len -= len; 1378 len = total_len; 1379 } 1380 1381 if (!err && len) { 1382 dcc->undiscard_blks -= len; 1383 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1384 } 1385 return err; 1386 } 1387 1388 static void __insert_discard_cmd(struct f2fs_sb_info *sbi, 1389 struct block_device *bdev, block_t lstart, 1390 block_t start, block_t len) 1391 { 1392 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1393 struct rb_node **p = &dcc->root.rb_root.rb_node; 1394 struct rb_node *parent = NULL; 1395 struct discard_cmd *dc; 1396 bool leftmost = true; 1397 1398 /* look up rb tree to find parent node */ 1399 while (*p) { 1400 parent = *p; 1401 dc = rb_entry(parent, struct discard_cmd, rb_node); 1402 1403 if (lstart < dc->di.lstart) { 1404 p = &(*p)->rb_left; 1405 } else if (lstart >= dc->di.lstart + dc->di.len) { 1406 p = &(*p)->rb_right; 1407 leftmost = false; 1408 } else { 1409 /* Let's skip to add, if exists */ 1410 return; 1411 } 1412 } 1413 1414 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1415 1416 rb_link_node(&dc->rb_node, parent, p); 1417 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1418 } 1419 1420 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1421 struct discard_cmd *dc) 1422 { 1423 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]); 1424 } 1425 1426 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1427 struct discard_cmd *dc, block_t blkaddr) 1428 { 1429 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1430 struct discard_info di = dc->di; 1431 bool modified = false; 1432 1433 if (dc->state == D_DONE || dc->di.len == 1) { 1434 __remove_discard_cmd(sbi, dc); 1435 return; 1436 } 1437 1438 dcc->undiscard_blks -= di.len; 1439 1440 if (blkaddr > di.lstart) { 1441 dc->di.len = blkaddr - dc->di.lstart; 1442 dcc->undiscard_blks += dc->di.len; 1443 __relocate_discard_cmd(dcc, dc); 1444 modified = true; 1445 } 1446 1447 if (blkaddr < di.lstart + di.len - 1) { 1448 if (modified) { 1449 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1, 1450 di.start + blkaddr + 1 - di.lstart, 1451 di.lstart + di.len - 1 - blkaddr); 1452 } else { 1453 dc->di.lstart++; 1454 dc->di.len--; 1455 dc->di.start++; 1456 dcc->undiscard_blks += dc->di.len; 1457 __relocate_discard_cmd(dcc, dc); 1458 } 1459 } 1460 } 1461 1462 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1463 struct block_device *bdev, block_t lstart, 1464 block_t start, block_t len) 1465 { 1466 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1467 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1468 struct discard_cmd *dc; 1469 struct discard_info di = {0}; 1470 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1471 unsigned int max_discard_blocks = 1472 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1473 block_t end = lstart + len; 1474 1475 dc = __lookup_discard_cmd_ret(&dcc->root, lstart, 1476 &prev_dc, &next_dc, &insert_p, &insert_parent); 1477 if (dc) 1478 prev_dc = dc; 1479 1480 if (!prev_dc) { 1481 di.lstart = lstart; 1482 di.len = next_dc ? next_dc->di.lstart - lstart : len; 1483 di.len = min(di.len, len); 1484 di.start = start; 1485 } 1486 1487 while (1) { 1488 struct rb_node *node; 1489 bool merged = false; 1490 struct discard_cmd *tdc = NULL; 1491 1492 if (prev_dc) { 1493 di.lstart = prev_dc->di.lstart + prev_dc->di.len; 1494 if (di.lstart < lstart) 1495 di.lstart = lstart; 1496 if (di.lstart >= end) 1497 break; 1498 1499 if (!next_dc || next_dc->di.lstart > end) 1500 di.len = end - di.lstart; 1501 else 1502 di.len = next_dc->di.lstart - di.lstart; 1503 di.start = start + di.lstart - lstart; 1504 } 1505 1506 if (!di.len) 1507 goto next; 1508 1509 if (prev_dc && prev_dc->state == D_PREP && 1510 prev_dc->bdev == bdev && 1511 __is_discard_back_mergeable(&di, &prev_dc->di, 1512 max_discard_blocks)) { 1513 prev_dc->di.len += di.len; 1514 dcc->undiscard_blks += di.len; 1515 __relocate_discard_cmd(dcc, prev_dc); 1516 di = prev_dc->di; 1517 tdc = prev_dc; 1518 merged = true; 1519 } 1520 1521 if (next_dc && next_dc->state == D_PREP && 1522 next_dc->bdev == bdev && 1523 __is_discard_front_mergeable(&di, &next_dc->di, 1524 max_discard_blocks)) { 1525 next_dc->di.lstart = di.lstart; 1526 next_dc->di.len += di.len; 1527 next_dc->di.start = di.start; 1528 dcc->undiscard_blks += di.len; 1529 __relocate_discard_cmd(dcc, next_dc); 1530 if (tdc) 1531 __remove_discard_cmd(sbi, tdc); 1532 merged = true; 1533 } 1534 1535 if (!merged) 1536 __insert_discard_cmd(sbi, bdev, 1537 di.lstart, di.start, di.len); 1538 next: 1539 prev_dc = next_dc; 1540 if (!prev_dc) 1541 break; 1542 1543 node = rb_next(&prev_dc->rb_node); 1544 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1545 } 1546 } 1547 1548 #ifdef CONFIG_BLK_DEV_ZONED 1549 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi, 1550 struct block_device *bdev, block_t blkstart, block_t lblkstart, 1551 block_t blklen) 1552 { 1553 trace_f2fs_queue_reset_zone(bdev, blkstart); 1554 1555 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1556 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen); 1557 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1558 } 1559 #endif 1560 1561 static void __queue_discard_cmd(struct f2fs_sb_info *sbi, 1562 struct block_device *bdev, block_t blkstart, block_t blklen) 1563 { 1564 block_t lblkstart = blkstart; 1565 1566 if (!f2fs_bdev_support_discard(bdev)) 1567 return; 1568 1569 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1570 1571 if (f2fs_is_multi_device(sbi)) { 1572 int devi = f2fs_target_device_index(sbi, blkstart); 1573 1574 blkstart -= FDEV(devi).start_blk; 1575 } 1576 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1577 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1578 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1579 } 1580 1581 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1582 struct discard_policy *dpolicy, int *issued) 1583 { 1584 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1585 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1586 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1587 struct discard_cmd *dc; 1588 struct blk_plug plug; 1589 bool io_interrupted = false; 1590 1591 mutex_lock(&dcc->cmd_lock); 1592 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos, 1593 &prev_dc, &next_dc, &insert_p, &insert_parent); 1594 if (!dc) 1595 dc = next_dc; 1596 1597 blk_start_plug(&plug); 1598 1599 while (dc) { 1600 struct rb_node *node; 1601 int err = 0; 1602 1603 if (dc->state != D_PREP) 1604 goto next; 1605 1606 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1607 io_interrupted = true; 1608 break; 1609 } 1610 1611 dcc->next_pos = dc->di.lstart + dc->di.len; 1612 err = __submit_discard_cmd(sbi, dpolicy, dc, issued); 1613 1614 if (*issued >= dpolicy->max_requests) 1615 break; 1616 next: 1617 node = rb_next(&dc->rb_node); 1618 if (err) 1619 __remove_discard_cmd(sbi, dc); 1620 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1621 } 1622 1623 blk_finish_plug(&plug); 1624 1625 if (!dc) 1626 dcc->next_pos = 0; 1627 1628 mutex_unlock(&dcc->cmd_lock); 1629 1630 if (!(*issued) && io_interrupted) 1631 *issued = -1; 1632 } 1633 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1634 struct discard_policy *dpolicy); 1635 1636 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1637 struct discard_policy *dpolicy) 1638 { 1639 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1640 struct list_head *pend_list; 1641 struct discard_cmd *dc, *tmp; 1642 struct blk_plug plug; 1643 int i, issued; 1644 bool io_interrupted = false; 1645 1646 if (dpolicy->timeout) 1647 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1648 1649 retry: 1650 issued = 0; 1651 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1652 if (dpolicy->timeout && 1653 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1654 break; 1655 1656 if (i + 1 < dpolicy->granularity) 1657 break; 1658 1659 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) { 1660 __issue_discard_cmd_orderly(sbi, dpolicy, &issued); 1661 return issued; 1662 } 1663 1664 pend_list = &dcc->pend_list[i]; 1665 1666 mutex_lock(&dcc->cmd_lock); 1667 if (list_empty(pend_list)) 1668 goto next; 1669 if (unlikely(dcc->rbtree_check)) 1670 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 1671 blk_start_plug(&plug); 1672 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1673 f2fs_bug_on(sbi, dc->state != D_PREP); 1674 1675 if (dpolicy->timeout && 1676 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1677 break; 1678 1679 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1680 !is_idle(sbi, DISCARD_TIME)) { 1681 io_interrupted = true; 1682 break; 1683 } 1684 1685 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1686 1687 if (issued >= dpolicy->max_requests) 1688 break; 1689 } 1690 blk_finish_plug(&plug); 1691 next: 1692 mutex_unlock(&dcc->cmd_lock); 1693 1694 if (issued >= dpolicy->max_requests || io_interrupted) 1695 break; 1696 } 1697 1698 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1699 __wait_all_discard_cmd(sbi, dpolicy); 1700 goto retry; 1701 } 1702 1703 if (!issued && io_interrupted) 1704 issued = -1; 1705 1706 return issued; 1707 } 1708 1709 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1710 { 1711 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1712 struct list_head *pend_list; 1713 struct discard_cmd *dc, *tmp; 1714 int i; 1715 bool dropped = false; 1716 1717 mutex_lock(&dcc->cmd_lock); 1718 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1719 pend_list = &dcc->pend_list[i]; 1720 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1721 f2fs_bug_on(sbi, dc->state != D_PREP); 1722 __remove_discard_cmd(sbi, dc); 1723 dropped = true; 1724 } 1725 } 1726 mutex_unlock(&dcc->cmd_lock); 1727 1728 return dropped; 1729 } 1730 1731 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1732 { 1733 __drop_discard_cmd(sbi); 1734 } 1735 1736 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1737 struct discard_cmd *dc) 1738 { 1739 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1740 unsigned int len = 0; 1741 1742 wait_for_completion_io(&dc->wait); 1743 mutex_lock(&dcc->cmd_lock); 1744 f2fs_bug_on(sbi, dc->state != D_DONE); 1745 dc->ref--; 1746 if (!dc->ref) { 1747 if (!dc->error) 1748 len = dc->di.len; 1749 __remove_discard_cmd(sbi, dc); 1750 } 1751 mutex_unlock(&dcc->cmd_lock); 1752 1753 return len; 1754 } 1755 1756 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1757 struct discard_policy *dpolicy, 1758 block_t start, block_t end) 1759 { 1760 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1761 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1762 &(dcc->fstrim_list) : &(dcc->wait_list); 1763 struct discard_cmd *dc = NULL, *iter, *tmp; 1764 unsigned int trimmed = 0; 1765 1766 next: 1767 dc = NULL; 1768 1769 mutex_lock(&dcc->cmd_lock); 1770 list_for_each_entry_safe(iter, tmp, wait_list, list) { 1771 if (iter->di.lstart + iter->di.len <= start || 1772 end <= iter->di.lstart) 1773 continue; 1774 if (iter->di.len < dpolicy->granularity) 1775 continue; 1776 if (iter->state == D_DONE && !iter->ref) { 1777 wait_for_completion_io(&iter->wait); 1778 if (!iter->error) 1779 trimmed += iter->di.len; 1780 __remove_discard_cmd(sbi, iter); 1781 } else { 1782 iter->ref++; 1783 dc = iter; 1784 break; 1785 } 1786 } 1787 mutex_unlock(&dcc->cmd_lock); 1788 1789 if (dc) { 1790 trimmed += __wait_one_discard_bio(sbi, dc); 1791 goto next; 1792 } 1793 1794 return trimmed; 1795 } 1796 1797 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1798 struct discard_policy *dpolicy) 1799 { 1800 struct discard_policy dp; 1801 unsigned int discard_blks; 1802 1803 if (dpolicy) 1804 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1805 1806 /* wait all */ 1807 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY); 1808 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1809 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY); 1810 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1811 1812 return discard_blks; 1813 } 1814 1815 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1816 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1817 { 1818 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1819 struct discard_cmd *dc; 1820 bool need_wait = false; 1821 1822 mutex_lock(&dcc->cmd_lock); 1823 dc = __lookup_discard_cmd(sbi, blkaddr); 1824 #ifdef CONFIG_BLK_DEV_ZONED 1825 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) { 1826 int devi = f2fs_bdev_index(sbi, dc->bdev); 1827 1828 if (devi < 0) { 1829 mutex_unlock(&dcc->cmd_lock); 1830 return; 1831 } 1832 1833 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1834 /* force submit zone reset */ 1835 if (dc->state == D_PREP) 1836 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC, 1837 &dcc->wait_list, NULL); 1838 dc->ref++; 1839 mutex_unlock(&dcc->cmd_lock); 1840 /* wait zone reset */ 1841 __wait_one_discard_bio(sbi, dc); 1842 return; 1843 } 1844 } 1845 #endif 1846 if (dc) { 1847 if (dc->state == D_PREP) { 1848 __punch_discard_cmd(sbi, dc, blkaddr); 1849 } else { 1850 dc->ref++; 1851 need_wait = true; 1852 } 1853 } 1854 mutex_unlock(&dcc->cmd_lock); 1855 1856 if (need_wait) 1857 __wait_one_discard_bio(sbi, dc); 1858 } 1859 1860 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1861 { 1862 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1863 1864 if (dcc && dcc->f2fs_issue_discard) { 1865 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1866 1867 dcc->f2fs_issue_discard = NULL; 1868 kthread_stop(discard_thread); 1869 } 1870 } 1871 1872 /** 1873 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT 1874 * @sbi: the f2fs_sb_info data for discard cmd to issue 1875 * 1876 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped 1877 * 1878 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false. 1879 */ 1880 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1881 { 1882 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1883 struct discard_policy dpolicy; 1884 bool dropped; 1885 1886 if (!atomic_read(&dcc->discard_cmd_cnt)) 1887 return true; 1888 1889 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1890 dcc->discard_granularity); 1891 __issue_discard_cmd(sbi, &dpolicy); 1892 dropped = __drop_discard_cmd(sbi); 1893 1894 /* just to make sure there is no pending discard commands */ 1895 __wait_all_discard_cmd(sbi, NULL); 1896 1897 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1898 return !dropped; 1899 } 1900 1901 static int issue_discard_thread(void *data) 1902 { 1903 struct f2fs_sb_info *sbi = data; 1904 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1905 wait_queue_head_t *q = &dcc->discard_wait_queue; 1906 struct discard_policy dpolicy; 1907 unsigned int wait_ms = dcc->min_discard_issue_time; 1908 int issued; 1909 1910 set_freezable(); 1911 1912 do { 1913 wait_event_freezable_timeout(*q, 1914 kthread_should_stop() || dcc->discard_wake, 1915 msecs_to_jiffies(wait_ms)); 1916 1917 if (sbi->gc_mode == GC_URGENT_HIGH || 1918 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1919 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1920 MIN_DISCARD_GRANULARITY); 1921 else 1922 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1923 dcc->discard_granularity); 1924 1925 if (dcc->discard_wake) 1926 dcc->discard_wake = false; 1927 1928 /* clean up pending candidates before going to sleep */ 1929 if (atomic_read(&dcc->queued_discard)) 1930 __wait_all_discard_cmd(sbi, NULL); 1931 1932 if (f2fs_readonly(sbi->sb)) 1933 continue; 1934 if (kthread_should_stop()) 1935 return 0; 1936 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || 1937 !atomic_read(&dcc->discard_cmd_cnt)) { 1938 wait_ms = dpolicy.max_interval; 1939 continue; 1940 } 1941 1942 sb_start_intwrite(sbi->sb); 1943 1944 issued = __issue_discard_cmd(sbi, &dpolicy); 1945 if (issued > 0) { 1946 __wait_all_discard_cmd(sbi, &dpolicy); 1947 wait_ms = dpolicy.min_interval; 1948 } else if (issued == -1) { 1949 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1950 if (!wait_ms) 1951 wait_ms = dpolicy.mid_interval; 1952 } else { 1953 wait_ms = dpolicy.max_interval; 1954 } 1955 if (!atomic_read(&dcc->discard_cmd_cnt)) 1956 wait_ms = dpolicy.max_interval; 1957 1958 sb_end_intwrite(sbi->sb); 1959 1960 } while (!kthread_should_stop()); 1961 return 0; 1962 } 1963 1964 #ifdef CONFIG_BLK_DEV_ZONED 1965 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1966 struct block_device *bdev, block_t blkstart, block_t blklen) 1967 { 1968 sector_t sector, nr_sects; 1969 block_t lblkstart = blkstart; 1970 int devi = 0; 1971 u64 remainder = 0; 1972 1973 if (f2fs_is_multi_device(sbi)) { 1974 devi = f2fs_target_device_index(sbi, blkstart); 1975 if (blkstart < FDEV(devi).start_blk || 1976 blkstart > FDEV(devi).end_blk) { 1977 f2fs_err(sbi, "Invalid block %x", blkstart); 1978 return -EIO; 1979 } 1980 blkstart -= FDEV(devi).start_blk; 1981 } 1982 1983 /* For sequential zones, reset the zone write pointer */ 1984 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1985 sector = SECTOR_FROM_BLOCK(blkstart); 1986 nr_sects = SECTOR_FROM_BLOCK(blklen); 1987 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder); 1988 1989 if (remainder || nr_sects != bdev_zone_sectors(bdev)) { 1990 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1991 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1992 blkstart, blklen); 1993 return -EIO; 1994 } 1995 1996 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) { 1997 unsigned int nofs_flags; 1998 int ret; 1999 2000 trace_f2fs_issue_reset_zone(bdev, blkstart); 2001 nofs_flags = memalloc_nofs_save(); 2002 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 2003 sector, nr_sects); 2004 memalloc_nofs_restore(nofs_flags); 2005 return ret; 2006 } 2007 2008 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen); 2009 return 0; 2010 } 2011 2012 /* For conventional zones, use regular discard if supported */ 2013 __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 2014 return 0; 2015 } 2016 #endif 2017 2018 static int __issue_discard_async(struct f2fs_sb_info *sbi, 2019 struct block_device *bdev, block_t blkstart, block_t blklen) 2020 { 2021 #ifdef CONFIG_BLK_DEV_ZONED 2022 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 2023 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 2024 #endif 2025 __queue_discard_cmd(sbi, bdev, blkstart, blklen); 2026 return 0; 2027 } 2028 2029 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 2030 block_t blkstart, block_t blklen) 2031 { 2032 sector_t start = blkstart, len = 0; 2033 struct block_device *bdev; 2034 struct seg_entry *se; 2035 unsigned int offset; 2036 block_t i; 2037 int err = 0; 2038 2039 bdev = f2fs_target_device(sbi, blkstart, NULL); 2040 2041 for (i = blkstart; i < blkstart + blklen; i++, len++) { 2042 if (i != start) { 2043 struct block_device *bdev2 = 2044 f2fs_target_device(sbi, i, NULL); 2045 2046 if (bdev2 != bdev) { 2047 err = __issue_discard_async(sbi, bdev, 2048 start, len); 2049 if (err) 2050 return err; 2051 bdev = bdev2; 2052 start = i; 2053 len = 0; 2054 } 2055 } 2056 2057 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 2058 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 2059 2060 if (f2fs_block_unit_discard(sbi) && 2061 !f2fs_test_and_set_bit(offset, se->discard_map)) 2062 sbi->discard_blks--; 2063 } 2064 2065 if (len) 2066 err = __issue_discard_async(sbi, bdev, start, len); 2067 return err; 2068 } 2069 2070 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 2071 bool check_only) 2072 { 2073 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2074 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 2075 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2076 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2077 unsigned long *discard_map = (unsigned long *)se->discard_map; 2078 unsigned long *dmap = SIT_I(sbi)->tmp_map; 2079 unsigned int start = 0, end = -1; 2080 bool force = (cpc->reason & CP_DISCARD); 2081 struct discard_entry *de = NULL; 2082 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 2083 int i; 2084 2085 if (se->valid_blocks == BLKS_PER_SEG(sbi) || 2086 !f2fs_hw_support_discard(sbi) || 2087 !f2fs_block_unit_discard(sbi)) 2088 return false; 2089 2090 if (!force) { 2091 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 2092 SM_I(sbi)->dcc_info->nr_discards >= 2093 SM_I(sbi)->dcc_info->max_discards) 2094 return false; 2095 } 2096 2097 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 2098 for (i = 0; i < entries; i++) 2099 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 2100 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 2101 2102 while (force || SM_I(sbi)->dcc_info->nr_discards <= 2103 SM_I(sbi)->dcc_info->max_discards) { 2104 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1); 2105 if (start >= BLKS_PER_SEG(sbi)) 2106 break; 2107 2108 end = __find_rev_next_zero_bit(dmap, 2109 BLKS_PER_SEG(sbi), start + 1); 2110 if (force && start && end != BLKS_PER_SEG(sbi) && 2111 (end - start) < cpc->trim_minlen) 2112 continue; 2113 2114 if (check_only) 2115 return true; 2116 2117 if (!de) { 2118 de = f2fs_kmem_cache_alloc(discard_entry_slab, 2119 GFP_F2FS_ZERO, true, NULL); 2120 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 2121 list_add_tail(&de->list, head); 2122 } 2123 2124 for (i = start; i < end; i++) 2125 __set_bit_le(i, (void *)de->discard_map); 2126 2127 SM_I(sbi)->dcc_info->nr_discards += end - start; 2128 } 2129 return false; 2130 } 2131 2132 static void release_discard_addr(struct discard_entry *entry) 2133 { 2134 list_del(&entry->list); 2135 kmem_cache_free(discard_entry_slab, entry); 2136 } 2137 2138 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 2139 { 2140 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 2141 struct discard_entry *entry, *this; 2142 2143 /* drop caches */ 2144 list_for_each_entry_safe(entry, this, head, list) 2145 release_discard_addr(entry); 2146 } 2147 2148 /* 2149 * Should call f2fs_clear_prefree_segments after checkpoint is done. 2150 */ 2151 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 2152 { 2153 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2154 unsigned int segno; 2155 2156 mutex_lock(&dirty_i->seglist_lock); 2157 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 2158 __set_test_and_free(sbi, segno, false); 2159 mutex_unlock(&dirty_i->seglist_lock); 2160 } 2161 2162 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2163 struct cp_control *cpc) 2164 { 2165 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2166 struct list_head *head = &dcc->entry_list; 2167 struct discard_entry *entry, *this; 2168 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2169 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 2170 unsigned int start = 0, end = -1; 2171 unsigned int secno, start_segno; 2172 bool force = (cpc->reason & CP_DISCARD); 2173 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 2174 DISCARD_UNIT_SECTION; 2175 2176 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 2177 section_alignment = true; 2178 2179 mutex_lock(&dirty_i->seglist_lock); 2180 2181 while (1) { 2182 int i; 2183 2184 if (section_alignment && end != -1) 2185 end--; 2186 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2187 if (start >= MAIN_SEGS(sbi)) 2188 break; 2189 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2190 start + 1); 2191 2192 if (section_alignment) { 2193 start = rounddown(start, SEGS_PER_SEC(sbi)); 2194 end = roundup(end, SEGS_PER_SEC(sbi)); 2195 } 2196 2197 for (i = start; i < end; i++) { 2198 if (test_and_clear_bit(i, prefree_map)) 2199 dirty_i->nr_dirty[PRE]--; 2200 } 2201 2202 if (!f2fs_realtime_discard_enable(sbi)) 2203 continue; 2204 2205 if (force && start >= cpc->trim_start && 2206 (end - 1) <= cpc->trim_end) 2207 continue; 2208 2209 /* Should cover 2MB zoned device for zone-based reset */ 2210 if (!f2fs_sb_has_blkzoned(sbi) && 2211 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) { 2212 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2213 SEGS_TO_BLKS(sbi, end - start)); 2214 continue; 2215 } 2216 next: 2217 secno = GET_SEC_FROM_SEG(sbi, start); 2218 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2219 if (!IS_CURSEC(sbi, secno) && 2220 !get_valid_blocks(sbi, start, true)) 2221 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2222 BLKS_PER_SEC(sbi)); 2223 2224 start = start_segno + SEGS_PER_SEC(sbi); 2225 if (start < end) 2226 goto next; 2227 else 2228 end = start - 1; 2229 } 2230 mutex_unlock(&dirty_i->seglist_lock); 2231 2232 if (!f2fs_block_unit_discard(sbi)) 2233 goto wakeup; 2234 2235 /* send small discards */ 2236 list_for_each_entry_safe(entry, this, head, list) { 2237 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2238 bool is_valid = test_bit_le(0, entry->discard_map); 2239 2240 find_next: 2241 if (is_valid) { 2242 next_pos = find_next_zero_bit_le(entry->discard_map, 2243 BLKS_PER_SEG(sbi), cur_pos); 2244 len = next_pos - cur_pos; 2245 2246 if (f2fs_sb_has_blkzoned(sbi) || 2247 (force && len < cpc->trim_minlen)) 2248 goto skip; 2249 2250 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2251 len); 2252 total_len += len; 2253 } else { 2254 next_pos = find_next_bit_le(entry->discard_map, 2255 BLKS_PER_SEG(sbi), cur_pos); 2256 } 2257 skip: 2258 cur_pos = next_pos; 2259 is_valid = !is_valid; 2260 2261 if (cur_pos < BLKS_PER_SEG(sbi)) 2262 goto find_next; 2263 2264 release_discard_addr(entry); 2265 dcc->nr_discards -= total_len; 2266 } 2267 2268 wakeup: 2269 wake_up_discard_thread(sbi, false); 2270 } 2271 2272 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2273 { 2274 dev_t dev = sbi->sb->s_bdev->bd_dev; 2275 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2276 int err = 0; 2277 2278 if (f2fs_sb_has_readonly(sbi)) { 2279 f2fs_info(sbi, 2280 "Skip to start discard thread for readonly image"); 2281 return 0; 2282 } 2283 2284 if (!f2fs_realtime_discard_enable(sbi)) 2285 return 0; 2286 2287 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2288 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2289 if (IS_ERR(dcc->f2fs_issue_discard)) { 2290 err = PTR_ERR(dcc->f2fs_issue_discard); 2291 dcc->f2fs_issue_discard = NULL; 2292 } 2293 2294 return err; 2295 } 2296 2297 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2298 { 2299 struct discard_cmd_control *dcc; 2300 int err = 0, i; 2301 2302 if (SM_I(sbi)->dcc_info) { 2303 dcc = SM_I(sbi)->dcc_info; 2304 goto init_thread; 2305 } 2306 2307 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2308 if (!dcc) 2309 return -ENOMEM; 2310 2311 dcc->discard_io_aware_gran = MAX_PLIST_NUM; 2312 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2313 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY; 2314 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE; 2315 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2316 dcc->discard_granularity = BLKS_PER_SEG(sbi); 2317 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2318 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2319 2320 INIT_LIST_HEAD(&dcc->entry_list); 2321 for (i = 0; i < MAX_PLIST_NUM; i++) 2322 INIT_LIST_HEAD(&dcc->pend_list[i]); 2323 INIT_LIST_HEAD(&dcc->wait_list); 2324 INIT_LIST_HEAD(&dcc->fstrim_list); 2325 mutex_init(&dcc->cmd_lock); 2326 atomic_set(&dcc->issued_discard, 0); 2327 atomic_set(&dcc->queued_discard, 0); 2328 atomic_set(&dcc->discard_cmd_cnt, 0); 2329 dcc->nr_discards = 0; 2330 dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi)); 2331 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2332 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2333 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2334 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2335 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL; 2336 dcc->undiscard_blks = 0; 2337 dcc->next_pos = 0; 2338 dcc->root = RB_ROOT_CACHED; 2339 dcc->rbtree_check = false; 2340 2341 init_waitqueue_head(&dcc->discard_wait_queue); 2342 SM_I(sbi)->dcc_info = dcc; 2343 init_thread: 2344 err = f2fs_start_discard_thread(sbi); 2345 if (err) { 2346 kfree(dcc); 2347 SM_I(sbi)->dcc_info = NULL; 2348 } 2349 2350 return err; 2351 } 2352 2353 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2354 { 2355 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2356 2357 if (!dcc) 2358 return; 2359 2360 f2fs_stop_discard_thread(sbi); 2361 2362 /* 2363 * Recovery can cache discard commands, so in error path of 2364 * fill_super(), it needs to give a chance to handle them. 2365 */ 2366 f2fs_issue_discard_timeout(sbi); 2367 2368 kfree(dcc); 2369 SM_I(sbi)->dcc_info = NULL; 2370 } 2371 2372 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2373 { 2374 struct sit_info *sit_i = SIT_I(sbi); 2375 2376 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2377 sit_i->dirty_sentries++; 2378 return false; 2379 } 2380 2381 return true; 2382 } 2383 2384 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2385 unsigned int segno, int modified) 2386 { 2387 struct seg_entry *se = get_seg_entry(sbi, segno); 2388 2389 se->type = type; 2390 if (modified) 2391 __mark_sit_entry_dirty(sbi, segno); 2392 } 2393 2394 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2395 block_t blkaddr) 2396 { 2397 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2398 2399 if (segno == NULL_SEGNO) 2400 return 0; 2401 return get_seg_entry(sbi, segno)->mtime; 2402 } 2403 2404 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2405 unsigned long long old_mtime) 2406 { 2407 struct seg_entry *se; 2408 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2409 unsigned long long ctime = get_mtime(sbi, false); 2410 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2411 2412 if (segno == NULL_SEGNO) 2413 return; 2414 2415 se = get_seg_entry(sbi, segno); 2416 2417 if (!se->mtime) 2418 se->mtime = mtime; 2419 else 2420 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2421 se->valid_blocks + 1); 2422 2423 if (ctime > SIT_I(sbi)->max_mtime) 2424 SIT_I(sbi)->max_mtime = ctime; 2425 } 2426 2427 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2428 { 2429 struct seg_entry *se; 2430 unsigned int segno, offset; 2431 long int new_vblocks; 2432 bool exist; 2433 #ifdef CONFIG_F2FS_CHECK_FS 2434 bool mir_exist; 2435 #endif 2436 2437 segno = GET_SEGNO(sbi, blkaddr); 2438 if (segno == NULL_SEGNO) 2439 return; 2440 2441 se = get_seg_entry(sbi, segno); 2442 new_vblocks = se->valid_blocks + del; 2443 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2444 2445 f2fs_bug_on(sbi, (new_vblocks < 0 || 2446 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2447 2448 se->valid_blocks = new_vblocks; 2449 2450 /* Update valid block bitmap */ 2451 if (del > 0) { 2452 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2453 #ifdef CONFIG_F2FS_CHECK_FS 2454 mir_exist = f2fs_test_and_set_bit(offset, 2455 se->cur_valid_map_mir); 2456 if (unlikely(exist != mir_exist)) { 2457 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2458 blkaddr, exist); 2459 f2fs_bug_on(sbi, 1); 2460 } 2461 #endif 2462 if (unlikely(exist)) { 2463 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2464 blkaddr); 2465 f2fs_bug_on(sbi, 1); 2466 se->valid_blocks--; 2467 del = 0; 2468 } 2469 2470 if (f2fs_block_unit_discard(sbi) && 2471 !f2fs_test_and_set_bit(offset, se->discard_map)) 2472 sbi->discard_blks--; 2473 2474 /* 2475 * SSR should never reuse block which is checkpointed 2476 * or newly invalidated. 2477 */ 2478 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2479 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2480 se->ckpt_valid_blocks++; 2481 } 2482 } else { 2483 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2484 #ifdef CONFIG_F2FS_CHECK_FS 2485 mir_exist = f2fs_test_and_clear_bit(offset, 2486 se->cur_valid_map_mir); 2487 if (unlikely(exist != mir_exist)) { 2488 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2489 blkaddr, exist); 2490 f2fs_bug_on(sbi, 1); 2491 } 2492 #endif 2493 if (unlikely(!exist)) { 2494 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2495 blkaddr); 2496 f2fs_bug_on(sbi, 1); 2497 se->valid_blocks++; 2498 del = 0; 2499 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2500 /* 2501 * If checkpoints are off, we must not reuse data that 2502 * was used in the previous checkpoint. If it was used 2503 * before, we must track that to know how much space we 2504 * really have. 2505 */ 2506 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2507 spin_lock(&sbi->stat_lock); 2508 sbi->unusable_block_count++; 2509 spin_unlock(&sbi->stat_lock); 2510 } 2511 } 2512 2513 if (f2fs_block_unit_discard(sbi) && 2514 f2fs_test_and_clear_bit(offset, se->discard_map)) 2515 sbi->discard_blks++; 2516 } 2517 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2518 se->ckpt_valid_blocks += del; 2519 2520 __mark_sit_entry_dirty(sbi, segno); 2521 2522 /* update total number of valid blocks to be written in ckpt area */ 2523 SIT_I(sbi)->written_valid_blocks += del; 2524 2525 if (__is_large_section(sbi)) 2526 get_sec_entry(sbi, segno)->valid_blocks += del; 2527 } 2528 2529 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2530 { 2531 unsigned int segno = GET_SEGNO(sbi, addr); 2532 struct sit_info *sit_i = SIT_I(sbi); 2533 2534 f2fs_bug_on(sbi, addr == NULL_ADDR); 2535 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2536 return; 2537 2538 f2fs_invalidate_internal_cache(sbi, addr); 2539 2540 /* add it into sit main buffer */ 2541 down_write(&sit_i->sentry_lock); 2542 2543 update_segment_mtime(sbi, addr, 0); 2544 update_sit_entry(sbi, addr, -1); 2545 2546 /* add it into dirty seglist */ 2547 locate_dirty_segment(sbi, segno); 2548 2549 up_write(&sit_i->sentry_lock); 2550 } 2551 2552 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2553 { 2554 struct sit_info *sit_i = SIT_I(sbi); 2555 unsigned int segno, offset; 2556 struct seg_entry *se; 2557 bool is_cp = false; 2558 2559 if (!__is_valid_data_blkaddr(blkaddr)) 2560 return true; 2561 2562 down_read(&sit_i->sentry_lock); 2563 2564 segno = GET_SEGNO(sbi, blkaddr); 2565 se = get_seg_entry(sbi, segno); 2566 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2567 2568 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2569 is_cp = true; 2570 2571 up_read(&sit_i->sentry_lock); 2572 2573 return is_cp; 2574 } 2575 2576 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type) 2577 { 2578 struct curseg_info *curseg = CURSEG_I(sbi, type); 2579 2580 if (sbi->ckpt->alloc_type[type] == SSR) 2581 return BLKS_PER_SEG(sbi); 2582 return curseg->next_blkoff; 2583 } 2584 2585 /* 2586 * Calculate the number of current summary pages for writing 2587 */ 2588 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2589 { 2590 int valid_sum_count = 0; 2591 int i, sum_in_page; 2592 2593 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2594 if (sbi->ckpt->alloc_type[i] != SSR && for_ra) 2595 valid_sum_count += 2596 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2597 else 2598 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i); 2599 } 2600 2601 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2602 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2603 if (valid_sum_count <= sum_in_page) 2604 return 1; 2605 else if ((valid_sum_count - sum_in_page) <= 2606 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2607 return 2; 2608 return 3; 2609 } 2610 2611 /* 2612 * Caller should put this summary page 2613 */ 2614 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2615 { 2616 if (unlikely(f2fs_cp_error(sbi))) 2617 return ERR_PTR(-EIO); 2618 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2619 } 2620 2621 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2622 void *src, block_t blk_addr) 2623 { 2624 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2625 2626 memcpy(page_address(page), src, PAGE_SIZE); 2627 set_page_dirty(page); 2628 f2fs_put_page(page, 1); 2629 } 2630 2631 static void write_sum_page(struct f2fs_sb_info *sbi, 2632 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2633 { 2634 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2635 } 2636 2637 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2638 int type, block_t blk_addr) 2639 { 2640 struct curseg_info *curseg = CURSEG_I(sbi, type); 2641 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2642 struct f2fs_summary_block *src = curseg->sum_blk; 2643 struct f2fs_summary_block *dst; 2644 2645 dst = (struct f2fs_summary_block *)page_address(page); 2646 memset(dst, 0, PAGE_SIZE); 2647 2648 mutex_lock(&curseg->curseg_mutex); 2649 2650 down_read(&curseg->journal_rwsem); 2651 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2652 up_read(&curseg->journal_rwsem); 2653 2654 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2655 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2656 2657 mutex_unlock(&curseg->curseg_mutex); 2658 2659 set_page_dirty(page); 2660 f2fs_put_page(page, 1); 2661 } 2662 2663 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2664 struct curseg_info *curseg) 2665 { 2666 unsigned int segno = curseg->segno + 1; 2667 struct free_segmap_info *free_i = FREE_I(sbi); 2668 2669 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi)) 2670 return !test_bit(segno, free_i->free_segmap); 2671 return 0; 2672 } 2673 2674 /* 2675 * Find a new segment from the free segments bitmap to right order 2676 * This function should be returned with success, otherwise BUG 2677 */ 2678 static int get_new_segment(struct f2fs_sb_info *sbi, 2679 unsigned int *newseg, bool new_sec, bool pinning) 2680 { 2681 struct free_segmap_info *free_i = FREE_I(sbi); 2682 unsigned int segno, secno, zoneno; 2683 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2684 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2685 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2686 bool init = true; 2687 int i; 2688 int ret = 0; 2689 2690 spin_lock(&free_i->segmap_lock); 2691 2692 if (time_to_inject(sbi, FAULT_NO_SEGMENT)) { 2693 ret = -ENOSPC; 2694 goto out_unlock; 2695 } 2696 2697 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) { 2698 segno = find_next_zero_bit(free_i->free_segmap, 2699 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2700 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2701 goto got_it; 2702 } 2703 2704 #ifdef CONFIG_BLK_DEV_ZONED 2705 /* 2706 * If we format f2fs on zoned storage, let's try to get pinned sections 2707 * from beginning of the storage, which should be a conventional one. 2708 */ 2709 if (f2fs_sb_has_blkzoned(sbi)) { 2710 /* Prioritize writing to conventional zones */ 2711 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning) 2712 segno = 0; 2713 else 2714 segno = max(first_zoned_segno(sbi), *newseg); 2715 hint = GET_SEC_FROM_SEG(sbi, segno); 2716 } 2717 #endif 2718 2719 find_other_zone: 2720 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2721 2722 #ifdef CONFIG_BLK_DEV_ZONED 2723 if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) { 2724 /* Write only to sequential zones */ 2725 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) { 2726 hint = GET_SEC_FROM_SEG(sbi, first_zoned_segno(sbi)); 2727 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2728 } else 2729 secno = find_first_zero_bit(free_i->free_secmap, 2730 MAIN_SECS(sbi)); 2731 if (secno >= MAIN_SECS(sbi)) { 2732 ret = -ENOSPC; 2733 f2fs_bug_on(sbi, 1); 2734 goto out_unlock; 2735 } 2736 } 2737 #endif 2738 2739 if (secno >= MAIN_SECS(sbi)) { 2740 secno = find_first_zero_bit(free_i->free_secmap, 2741 MAIN_SECS(sbi)); 2742 if (secno >= MAIN_SECS(sbi)) { 2743 ret = -ENOSPC; 2744 f2fs_bug_on(sbi, 1); 2745 goto out_unlock; 2746 } 2747 } 2748 segno = GET_SEG_FROM_SEC(sbi, secno); 2749 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2750 2751 /* give up on finding another zone */ 2752 if (!init) 2753 goto got_it; 2754 if (sbi->secs_per_zone == 1) 2755 goto got_it; 2756 if (zoneno == old_zoneno) 2757 goto got_it; 2758 for (i = 0; i < NR_CURSEG_TYPE; i++) 2759 if (CURSEG_I(sbi, i)->zone == zoneno) 2760 break; 2761 2762 if (i < NR_CURSEG_TYPE) { 2763 /* zone is in user, try another */ 2764 if (zoneno + 1 >= total_zones) 2765 hint = 0; 2766 else 2767 hint = (zoneno + 1) * sbi->secs_per_zone; 2768 init = false; 2769 goto find_other_zone; 2770 } 2771 got_it: 2772 /* set it as dirty segment in free segmap */ 2773 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2774 2775 /* no free section in conventional zone */ 2776 if (new_sec && pinning && 2777 !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) { 2778 ret = -EAGAIN; 2779 goto out_unlock; 2780 } 2781 __set_inuse(sbi, segno); 2782 *newseg = segno; 2783 out_unlock: 2784 spin_unlock(&free_i->segmap_lock); 2785 2786 if (ret == -ENOSPC) 2787 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT); 2788 return ret; 2789 } 2790 2791 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2792 { 2793 struct curseg_info *curseg = CURSEG_I(sbi, type); 2794 struct summary_footer *sum_footer; 2795 unsigned short seg_type = curseg->seg_type; 2796 2797 /* only happen when get_new_segment() fails */ 2798 if (curseg->next_segno == NULL_SEGNO) 2799 return; 2800 2801 curseg->inited = true; 2802 curseg->segno = curseg->next_segno; 2803 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2804 curseg->next_blkoff = 0; 2805 curseg->next_segno = NULL_SEGNO; 2806 2807 sum_footer = &(curseg->sum_blk->footer); 2808 memset(sum_footer, 0, sizeof(struct summary_footer)); 2809 2810 sanity_check_seg_type(sbi, seg_type); 2811 2812 if (IS_DATASEG(seg_type)) 2813 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2814 if (IS_NODESEG(seg_type)) 2815 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2816 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2817 } 2818 2819 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2820 { 2821 struct curseg_info *curseg = CURSEG_I(sbi, type); 2822 unsigned short seg_type = curseg->seg_type; 2823 2824 sanity_check_seg_type(sbi, seg_type); 2825 if (__is_large_section(sbi)) { 2826 if (f2fs_need_rand_seg(sbi)) { 2827 unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno); 2828 2829 if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint) 2830 return curseg->segno; 2831 return get_random_u32_inclusive(curseg->segno + 1, 2832 GET_SEG_FROM_SEC(sbi, hint + 1) - 1); 2833 } 2834 return curseg->segno; 2835 } else if (f2fs_need_rand_seg(sbi)) { 2836 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi)); 2837 } 2838 2839 /* inmem log may not locate on any segment after mount */ 2840 if (!curseg->inited) 2841 return 0; 2842 2843 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2844 return 0; 2845 2846 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)) 2847 return 0; 2848 2849 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2850 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2851 2852 /* find segments from 0 to reuse freed segments */ 2853 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2854 return 0; 2855 2856 return curseg->segno; 2857 } 2858 2859 /* 2860 * Allocate a current working segment. 2861 * This function always allocates a free segment in LFS manner. 2862 */ 2863 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2864 { 2865 struct curseg_info *curseg = CURSEG_I(sbi, type); 2866 unsigned int segno = curseg->segno; 2867 bool pinning = type == CURSEG_COLD_DATA_PINNED; 2868 int ret; 2869 2870 if (curseg->inited) 2871 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno)); 2872 2873 segno = __get_next_segno(sbi, type); 2874 ret = get_new_segment(sbi, &segno, new_sec, pinning); 2875 if (ret) { 2876 if (ret == -ENOSPC) 2877 curseg->segno = NULL_SEGNO; 2878 return ret; 2879 } 2880 2881 curseg->next_segno = segno; 2882 reset_curseg(sbi, type, 1); 2883 curseg->alloc_type = LFS; 2884 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2885 curseg->fragment_remained_chunk = 2886 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 2887 return 0; 2888 } 2889 2890 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2891 int segno, block_t start) 2892 { 2893 struct seg_entry *se = get_seg_entry(sbi, segno); 2894 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2895 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2896 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2897 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2898 int i; 2899 2900 for (i = 0; i < entries; i++) 2901 target_map[i] = ckpt_map[i] | cur_map[i]; 2902 2903 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start); 2904 } 2905 2906 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi, 2907 struct curseg_info *seg) 2908 { 2909 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1); 2910 } 2911 2912 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2913 { 2914 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi); 2915 } 2916 2917 /* 2918 * This function always allocates a used segment(from dirty seglist) by SSR 2919 * manner, so it should recover the existing segment information of valid blocks 2920 */ 2921 static int change_curseg(struct f2fs_sb_info *sbi, int type) 2922 { 2923 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2924 struct curseg_info *curseg = CURSEG_I(sbi, type); 2925 unsigned int new_segno = curseg->next_segno; 2926 struct f2fs_summary_block *sum_node; 2927 struct page *sum_page; 2928 2929 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); 2930 2931 __set_test_and_inuse(sbi, new_segno); 2932 2933 mutex_lock(&dirty_i->seglist_lock); 2934 __remove_dirty_segment(sbi, new_segno, PRE); 2935 __remove_dirty_segment(sbi, new_segno, DIRTY); 2936 mutex_unlock(&dirty_i->seglist_lock); 2937 2938 reset_curseg(sbi, type, 1); 2939 curseg->alloc_type = SSR; 2940 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2941 2942 sum_page = f2fs_get_sum_page(sbi, new_segno); 2943 if (IS_ERR(sum_page)) { 2944 /* GC won't be able to use stale summary pages by cp_error */ 2945 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2946 return PTR_ERR(sum_page); 2947 } 2948 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2949 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2950 f2fs_put_page(sum_page, 1); 2951 return 0; 2952 } 2953 2954 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2955 int alloc_mode, unsigned long long age); 2956 2957 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2958 int target_type, int alloc_mode, 2959 unsigned long long age) 2960 { 2961 struct curseg_info *curseg = CURSEG_I(sbi, type); 2962 int ret = 0; 2963 2964 curseg->seg_type = target_type; 2965 2966 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2967 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2968 2969 curseg->seg_type = se->type; 2970 ret = change_curseg(sbi, type); 2971 } else { 2972 /* allocate cold segment by default */ 2973 curseg->seg_type = CURSEG_COLD_DATA; 2974 ret = new_curseg(sbi, type, true); 2975 } 2976 stat_inc_seg_type(sbi, curseg); 2977 return ret; 2978 } 2979 2980 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force) 2981 { 2982 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2983 int ret = 0; 2984 2985 if (!sbi->am.atgc_enabled && !force) 2986 return 0; 2987 2988 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2989 2990 mutex_lock(&curseg->curseg_mutex); 2991 down_write(&SIT_I(sbi)->sentry_lock); 2992 2993 ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, 2994 CURSEG_COLD_DATA, SSR, 0); 2995 2996 up_write(&SIT_I(sbi)->sentry_lock); 2997 mutex_unlock(&curseg->curseg_mutex); 2998 2999 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3000 return ret; 3001 } 3002 3003 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 3004 { 3005 return __f2fs_init_atgc_curseg(sbi, false); 3006 } 3007 3008 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi) 3009 { 3010 int ret; 3011 3012 if (!test_opt(sbi, ATGC)) 3013 return 0; 3014 if (sbi->am.atgc_enabled) 3015 return 0; 3016 if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) < 3017 sbi->am.age_threshold) 3018 return 0; 3019 3020 ret = __f2fs_init_atgc_curseg(sbi, true); 3021 if (!ret) { 3022 sbi->am.atgc_enabled = true; 3023 f2fs_info(sbi, "reenabled age threshold GC"); 3024 } 3025 return ret; 3026 } 3027 3028 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 3029 { 3030 struct curseg_info *curseg = CURSEG_I(sbi, type); 3031 3032 mutex_lock(&curseg->curseg_mutex); 3033 if (!curseg->inited) 3034 goto out; 3035 3036 if (get_valid_blocks(sbi, curseg->segno, false)) { 3037 write_sum_page(sbi, curseg->sum_blk, 3038 GET_SUM_BLOCK(sbi, curseg->segno)); 3039 } else { 3040 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 3041 __set_test_and_free(sbi, curseg->segno, true); 3042 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 3043 } 3044 out: 3045 mutex_unlock(&curseg->curseg_mutex); 3046 } 3047 3048 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 3049 { 3050 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 3051 3052 if (sbi->am.atgc_enabled) 3053 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 3054 } 3055 3056 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 3057 { 3058 struct curseg_info *curseg = CURSEG_I(sbi, type); 3059 3060 mutex_lock(&curseg->curseg_mutex); 3061 if (!curseg->inited) 3062 goto out; 3063 if (get_valid_blocks(sbi, curseg->segno, false)) 3064 goto out; 3065 3066 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 3067 __set_test_and_inuse(sbi, curseg->segno); 3068 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 3069 out: 3070 mutex_unlock(&curseg->curseg_mutex); 3071 } 3072 3073 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 3074 { 3075 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 3076 3077 if (sbi->am.atgc_enabled) 3078 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 3079 } 3080 3081 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 3082 int alloc_mode, unsigned long long age) 3083 { 3084 struct curseg_info *curseg = CURSEG_I(sbi, type); 3085 unsigned segno = NULL_SEGNO; 3086 unsigned short seg_type = curseg->seg_type; 3087 int i, cnt; 3088 bool reversed = false; 3089 3090 sanity_check_seg_type(sbi, seg_type); 3091 3092 /* f2fs_need_SSR() already forces to do this */ 3093 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 3094 curseg->next_segno = segno; 3095 return 1; 3096 } 3097 3098 /* For node segments, let's do SSR more intensively */ 3099 if (IS_NODESEG(seg_type)) { 3100 if (seg_type >= CURSEG_WARM_NODE) { 3101 reversed = true; 3102 i = CURSEG_COLD_NODE; 3103 } else { 3104 i = CURSEG_HOT_NODE; 3105 } 3106 cnt = NR_CURSEG_NODE_TYPE; 3107 } else { 3108 if (seg_type >= CURSEG_WARM_DATA) { 3109 reversed = true; 3110 i = CURSEG_COLD_DATA; 3111 } else { 3112 i = CURSEG_HOT_DATA; 3113 } 3114 cnt = NR_CURSEG_DATA_TYPE; 3115 } 3116 3117 for (; cnt-- > 0; reversed ? i-- : i++) { 3118 if (i == seg_type) 3119 continue; 3120 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 3121 curseg->next_segno = segno; 3122 return 1; 3123 } 3124 } 3125 3126 /* find valid_blocks=0 in dirty list */ 3127 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 3128 segno = get_free_segment(sbi); 3129 if (segno != NULL_SEGNO) { 3130 curseg->next_segno = segno; 3131 return 1; 3132 } 3133 } 3134 return 0; 3135 } 3136 3137 static bool need_new_seg(struct f2fs_sb_info *sbi, int type) 3138 { 3139 struct curseg_info *curseg = CURSEG_I(sbi, type); 3140 3141 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 3142 curseg->seg_type == CURSEG_WARM_NODE) 3143 return true; 3144 if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) && 3145 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 3146 return true; 3147 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0)) 3148 return true; 3149 return false; 3150 } 3151 3152 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3153 unsigned int start, unsigned int end) 3154 { 3155 struct curseg_info *curseg = CURSEG_I(sbi, type); 3156 unsigned int segno; 3157 int ret = 0; 3158 3159 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3160 mutex_lock(&curseg->curseg_mutex); 3161 down_write(&SIT_I(sbi)->sentry_lock); 3162 3163 segno = CURSEG_I(sbi, type)->segno; 3164 if (segno < start || segno > end) 3165 goto unlock; 3166 3167 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 3168 ret = change_curseg(sbi, type); 3169 else 3170 ret = new_curseg(sbi, type, true); 3171 3172 stat_inc_seg_type(sbi, curseg); 3173 3174 locate_dirty_segment(sbi, segno); 3175 unlock: 3176 up_write(&SIT_I(sbi)->sentry_lock); 3177 3178 if (segno != curseg->segno) 3179 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 3180 type, segno, curseg->segno); 3181 3182 mutex_unlock(&curseg->curseg_mutex); 3183 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3184 return ret; 3185 } 3186 3187 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 3188 bool new_sec, bool force) 3189 { 3190 struct curseg_info *curseg = CURSEG_I(sbi, type); 3191 unsigned int old_segno; 3192 int err = 0; 3193 3194 if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited) 3195 goto allocate; 3196 3197 if (!force && curseg->inited && 3198 !curseg->next_blkoff && 3199 !get_valid_blocks(sbi, curseg->segno, new_sec) && 3200 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 3201 return 0; 3202 3203 allocate: 3204 old_segno = curseg->segno; 3205 err = new_curseg(sbi, type, true); 3206 if (err) 3207 return err; 3208 stat_inc_seg_type(sbi, curseg); 3209 locate_dirty_segment(sbi, old_segno); 3210 return 0; 3211 } 3212 3213 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 3214 { 3215 int ret; 3216 3217 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3218 down_write(&SIT_I(sbi)->sentry_lock); 3219 ret = __allocate_new_segment(sbi, type, true, force); 3220 up_write(&SIT_I(sbi)->sentry_lock); 3221 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3222 3223 return ret; 3224 } 3225 3226 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi) 3227 { 3228 int err; 3229 bool gc_required = true; 3230 3231 retry: 3232 f2fs_lock_op(sbi); 3233 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3234 f2fs_unlock_op(sbi); 3235 3236 if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) { 3237 f2fs_down_write(&sbi->gc_lock); 3238 err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1); 3239 f2fs_up_write(&sbi->gc_lock); 3240 3241 gc_required = false; 3242 if (!err) 3243 goto retry; 3244 } 3245 3246 return err; 3247 } 3248 3249 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 3250 { 3251 int i; 3252 int err = 0; 3253 3254 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3255 down_write(&SIT_I(sbi)->sentry_lock); 3256 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 3257 err += __allocate_new_segment(sbi, i, false, false); 3258 up_write(&SIT_I(sbi)->sentry_lock); 3259 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3260 3261 return err; 3262 } 3263 3264 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3265 struct cp_control *cpc) 3266 { 3267 __u64 trim_start = cpc->trim_start; 3268 bool has_candidate = false; 3269 3270 down_write(&SIT_I(sbi)->sentry_lock); 3271 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 3272 if (add_discard_addrs(sbi, cpc, true)) { 3273 has_candidate = true; 3274 break; 3275 } 3276 } 3277 up_write(&SIT_I(sbi)->sentry_lock); 3278 3279 cpc->trim_start = trim_start; 3280 return has_candidate; 3281 } 3282 3283 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 3284 struct discard_policy *dpolicy, 3285 unsigned int start, unsigned int end) 3286 { 3287 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 3288 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 3289 struct rb_node **insert_p = NULL, *insert_parent = NULL; 3290 struct discard_cmd *dc; 3291 struct blk_plug plug; 3292 int issued; 3293 unsigned int trimmed = 0; 3294 3295 next: 3296 issued = 0; 3297 3298 mutex_lock(&dcc->cmd_lock); 3299 if (unlikely(dcc->rbtree_check)) 3300 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 3301 3302 dc = __lookup_discard_cmd_ret(&dcc->root, start, 3303 &prev_dc, &next_dc, &insert_p, &insert_parent); 3304 if (!dc) 3305 dc = next_dc; 3306 3307 blk_start_plug(&plug); 3308 3309 while (dc && dc->di.lstart <= end) { 3310 struct rb_node *node; 3311 int err = 0; 3312 3313 if (dc->di.len < dpolicy->granularity) 3314 goto skip; 3315 3316 if (dc->state != D_PREP) { 3317 list_move_tail(&dc->list, &dcc->fstrim_list); 3318 goto skip; 3319 } 3320 3321 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3322 3323 if (issued >= dpolicy->max_requests) { 3324 start = dc->di.lstart + dc->di.len; 3325 3326 if (err) 3327 __remove_discard_cmd(sbi, dc); 3328 3329 blk_finish_plug(&plug); 3330 mutex_unlock(&dcc->cmd_lock); 3331 trimmed += __wait_all_discard_cmd(sbi, NULL); 3332 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3333 goto next; 3334 } 3335 skip: 3336 node = rb_next(&dc->rb_node); 3337 if (err) 3338 __remove_discard_cmd(sbi, dc); 3339 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3340 3341 if (fatal_signal_pending(current)) 3342 break; 3343 } 3344 3345 blk_finish_plug(&plug); 3346 mutex_unlock(&dcc->cmd_lock); 3347 3348 return trimmed; 3349 } 3350 3351 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3352 { 3353 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3354 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3355 unsigned int start_segno, end_segno; 3356 block_t start_block, end_block; 3357 struct cp_control cpc; 3358 struct discard_policy dpolicy; 3359 unsigned long long trimmed = 0; 3360 int err = 0; 3361 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3362 3363 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3364 return -EINVAL; 3365 3366 if (end < MAIN_BLKADDR(sbi)) 3367 goto out; 3368 3369 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3370 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3371 return -EFSCORRUPTED; 3372 } 3373 3374 /* start/end segment number in main_area */ 3375 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3376 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3377 GET_SEGNO(sbi, end); 3378 if (need_align) { 3379 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi)); 3380 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1; 3381 } 3382 3383 cpc.reason = CP_DISCARD; 3384 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3385 cpc.trim_start = start_segno; 3386 cpc.trim_end = end_segno; 3387 3388 if (sbi->discard_blks == 0) 3389 goto out; 3390 3391 f2fs_down_write(&sbi->gc_lock); 3392 stat_inc_cp_call_count(sbi, TOTAL_CALL); 3393 err = f2fs_write_checkpoint(sbi, &cpc); 3394 f2fs_up_write(&sbi->gc_lock); 3395 if (err) 3396 goto out; 3397 3398 /* 3399 * We filed discard candidates, but actually we don't need to wait for 3400 * all of them, since they'll be issued in idle time along with runtime 3401 * discard option. User configuration looks like using runtime discard 3402 * or periodic fstrim instead of it. 3403 */ 3404 if (f2fs_realtime_discard_enable(sbi)) 3405 goto out; 3406 3407 start_block = START_BLOCK(sbi, start_segno); 3408 end_block = START_BLOCK(sbi, end_segno + 1); 3409 3410 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3411 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3412 start_block, end_block); 3413 3414 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3415 start_block, end_block); 3416 out: 3417 if (!err) 3418 range->len = F2FS_BLK_TO_BYTES(trimmed); 3419 return err; 3420 } 3421 3422 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint) 3423 { 3424 if (F2FS_OPTION(sbi).active_logs == 2) 3425 return CURSEG_HOT_DATA; 3426 else if (F2FS_OPTION(sbi).active_logs == 4) 3427 return CURSEG_COLD_DATA; 3428 3429 /* active_log == 6 */ 3430 switch (hint) { 3431 case WRITE_LIFE_SHORT: 3432 return CURSEG_HOT_DATA; 3433 case WRITE_LIFE_EXTREME: 3434 return CURSEG_COLD_DATA; 3435 default: 3436 return CURSEG_WARM_DATA; 3437 } 3438 } 3439 3440 /* 3441 * This returns write hints for each segment type. This hints will be 3442 * passed down to block layer as below by default. 3443 * 3444 * User F2FS Block 3445 * ---- ---- ----- 3446 * META WRITE_LIFE_NONE|REQ_META 3447 * HOT_NODE WRITE_LIFE_NONE 3448 * WARM_NODE WRITE_LIFE_MEDIUM 3449 * COLD_NODE WRITE_LIFE_LONG 3450 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3451 * extension list " " 3452 * 3453 * -- buffered io 3454 * COLD_DATA WRITE_LIFE_EXTREME 3455 * HOT_DATA WRITE_LIFE_SHORT 3456 * WARM_DATA WRITE_LIFE_NOT_SET 3457 * 3458 * -- direct io 3459 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3460 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3461 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3462 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3463 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3464 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3465 */ 3466 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3467 enum page_type type, enum temp_type temp) 3468 { 3469 switch (type) { 3470 case DATA: 3471 switch (temp) { 3472 case WARM: 3473 return WRITE_LIFE_NOT_SET; 3474 case HOT: 3475 return WRITE_LIFE_SHORT; 3476 case COLD: 3477 return WRITE_LIFE_EXTREME; 3478 default: 3479 return WRITE_LIFE_NONE; 3480 } 3481 case NODE: 3482 switch (temp) { 3483 case WARM: 3484 return WRITE_LIFE_MEDIUM; 3485 case HOT: 3486 return WRITE_LIFE_NONE; 3487 case COLD: 3488 return WRITE_LIFE_LONG; 3489 default: 3490 return WRITE_LIFE_NONE; 3491 } 3492 case META: 3493 return WRITE_LIFE_NONE; 3494 default: 3495 return WRITE_LIFE_NONE; 3496 } 3497 } 3498 3499 static int __get_segment_type_2(struct f2fs_io_info *fio) 3500 { 3501 if (fio->type == DATA) 3502 return CURSEG_HOT_DATA; 3503 else 3504 return CURSEG_HOT_NODE; 3505 } 3506 3507 static int __get_segment_type_4(struct f2fs_io_info *fio) 3508 { 3509 if (fio->type == DATA) { 3510 struct inode *inode = fio->page->mapping->host; 3511 3512 if (S_ISDIR(inode->i_mode)) 3513 return CURSEG_HOT_DATA; 3514 else 3515 return CURSEG_COLD_DATA; 3516 } else { 3517 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3518 return CURSEG_WARM_NODE; 3519 else 3520 return CURSEG_COLD_NODE; 3521 } 3522 } 3523 3524 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs) 3525 { 3526 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3527 struct extent_info ei = {}; 3528 3529 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) { 3530 if (!ei.age) 3531 return NO_CHECK_TYPE; 3532 if (ei.age <= sbi->hot_data_age_threshold) 3533 return CURSEG_HOT_DATA; 3534 if (ei.age <= sbi->warm_data_age_threshold) 3535 return CURSEG_WARM_DATA; 3536 return CURSEG_COLD_DATA; 3537 } 3538 return NO_CHECK_TYPE; 3539 } 3540 3541 static int __get_segment_type_6(struct f2fs_io_info *fio) 3542 { 3543 if (fio->type == DATA) { 3544 struct inode *inode = fio->page->mapping->host; 3545 int type; 3546 3547 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3548 return CURSEG_COLD_DATA_PINNED; 3549 3550 if (page_private_gcing(fio->page)) { 3551 if (fio->sbi->am.atgc_enabled && 3552 (fio->io_type == FS_DATA_IO) && 3553 (fio->sbi->gc_mode != GC_URGENT_HIGH) && 3554 __is_valid_data_blkaddr(fio->old_blkaddr) && 3555 !is_inode_flag_set(inode, FI_OPU_WRITE)) 3556 return CURSEG_ALL_DATA_ATGC; 3557 else 3558 return CURSEG_COLD_DATA; 3559 } 3560 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3561 return CURSEG_COLD_DATA; 3562 3563 type = __get_age_segment_type(inode, fio->page->index); 3564 if (type != NO_CHECK_TYPE) 3565 return type; 3566 3567 if (file_is_hot(inode) || 3568 is_inode_flag_set(inode, FI_HOT_DATA) || 3569 f2fs_is_cow_file(inode)) 3570 return CURSEG_HOT_DATA; 3571 return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode), 3572 inode->i_write_hint); 3573 } else { 3574 if (IS_DNODE(fio->page)) 3575 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3576 CURSEG_HOT_NODE; 3577 return CURSEG_COLD_NODE; 3578 } 3579 } 3580 3581 int f2fs_get_segment_temp(int seg_type) 3582 { 3583 if (IS_HOT(seg_type)) 3584 return HOT; 3585 else if (IS_WARM(seg_type)) 3586 return WARM; 3587 return COLD; 3588 } 3589 3590 static int __get_segment_type(struct f2fs_io_info *fio) 3591 { 3592 int type = 0; 3593 3594 switch (F2FS_OPTION(fio->sbi).active_logs) { 3595 case 2: 3596 type = __get_segment_type_2(fio); 3597 break; 3598 case 4: 3599 type = __get_segment_type_4(fio); 3600 break; 3601 case 6: 3602 type = __get_segment_type_6(fio); 3603 break; 3604 default: 3605 f2fs_bug_on(fio->sbi, true); 3606 } 3607 3608 fio->temp = f2fs_get_segment_temp(type); 3609 3610 return type; 3611 } 3612 3613 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi, 3614 struct curseg_info *seg) 3615 { 3616 /* To allocate block chunks in different sizes, use random number */ 3617 if (--seg->fragment_remained_chunk > 0) 3618 return; 3619 3620 seg->fragment_remained_chunk = 3621 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 3622 seg->next_blkoff += 3623 get_random_u32_inclusive(1, sbi->max_fragment_hole); 3624 } 3625 3626 static void reset_curseg_fields(struct curseg_info *curseg) 3627 { 3628 curseg->inited = false; 3629 curseg->segno = NULL_SEGNO; 3630 curseg->next_segno = 0; 3631 } 3632 3633 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3634 block_t old_blkaddr, block_t *new_blkaddr, 3635 struct f2fs_summary *sum, int type, 3636 struct f2fs_io_info *fio) 3637 { 3638 struct sit_info *sit_i = SIT_I(sbi); 3639 struct curseg_info *curseg = CURSEG_I(sbi, type); 3640 unsigned long long old_mtime; 3641 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3642 struct seg_entry *se = NULL; 3643 bool segment_full = false; 3644 int ret = 0; 3645 3646 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3647 3648 mutex_lock(&curseg->curseg_mutex); 3649 down_write(&sit_i->sentry_lock); 3650 3651 if (curseg->segno == NULL_SEGNO) { 3652 ret = -ENOSPC; 3653 goto out_err; 3654 } 3655 3656 if (from_gc) { 3657 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3658 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3659 sanity_check_seg_type(sbi, se->type); 3660 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3661 } 3662 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3663 3664 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi)); 3665 3666 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3667 3668 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3669 if (curseg->alloc_type == SSR) { 3670 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg); 3671 } else { 3672 curseg->next_blkoff++; 3673 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 3674 f2fs_randomize_chunk(sbi, curseg); 3675 } 3676 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno)) 3677 segment_full = true; 3678 stat_inc_block_count(sbi, curseg); 3679 3680 if (from_gc) { 3681 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3682 } else { 3683 update_segment_mtime(sbi, old_blkaddr, 0); 3684 old_mtime = 0; 3685 } 3686 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3687 3688 /* 3689 * SIT information should be updated before segment allocation, 3690 * since SSR needs latest valid block information. 3691 */ 3692 update_sit_entry(sbi, *new_blkaddr, 1); 3693 update_sit_entry(sbi, old_blkaddr, -1); 3694 3695 /* 3696 * If the current segment is full, flush it out and replace it with a 3697 * new segment. 3698 */ 3699 if (segment_full) { 3700 if (type == CURSEG_COLD_DATA_PINNED && 3701 !((curseg->segno + 1) % sbi->segs_per_sec)) { 3702 write_sum_page(sbi, curseg->sum_blk, 3703 GET_SUM_BLOCK(sbi, curseg->segno)); 3704 reset_curseg_fields(curseg); 3705 goto skip_new_segment; 3706 } 3707 3708 if (from_gc) { 3709 ret = get_atssr_segment(sbi, type, se->type, 3710 AT_SSR, se->mtime); 3711 } else { 3712 if (need_new_seg(sbi, type)) 3713 ret = new_curseg(sbi, type, false); 3714 else 3715 ret = change_curseg(sbi, type); 3716 stat_inc_seg_type(sbi, curseg); 3717 } 3718 3719 if (ret) 3720 goto out_err; 3721 } 3722 3723 skip_new_segment: 3724 /* 3725 * segment dirty status should be updated after segment allocation, 3726 * so we just need to update status only one time after previous 3727 * segment being closed. 3728 */ 3729 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3730 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3731 3732 if (IS_DATASEG(curseg->seg_type)) 3733 atomic64_inc(&sbi->allocated_data_blocks); 3734 3735 up_write(&sit_i->sentry_lock); 3736 3737 if (page && IS_NODESEG(curseg->seg_type)) { 3738 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3739 3740 f2fs_inode_chksum_set(sbi, page); 3741 } 3742 3743 if (fio) { 3744 struct f2fs_bio_info *io; 3745 3746 INIT_LIST_HEAD(&fio->list); 3747 fio->in_list = 1; 3748 io = sbi->write_io[fio->type] + fio->temp; 3749 spin_lock(&io->io_lock); 3750 list_add_tail(&fio->list, &io->io_list); 3751 spin_unlock(&io->io_lock); 3752 } 3753 3754 mutex_unlock(&curseg->curseg_mutex); 3755 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3756 return 0; 3757 3758 out_err: 3759 *new_blkaddr = NULL_ADDR; 3760 up_write(&sit_i->sentry_lock); 3761 mutex_unlock(&curseg->curseg_mutex); 3762 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3763 return ret; 3764 } 3765 3766 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3767 block_t blkaddr, unsigned int blkcnt) 3768 { 3769 if (!f2fs_is_multi_device(sbi)) 3770 return; 3771 3772 while (1) { 3773 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3774 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3775 3776 /* update device state for fsync */ 3777 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3778 3779 /* update device state for checkpoint */ 3780 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3781 spin_lock(&sbi->dev_lock); 3782 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3783 spin_unlock(&sbi->dev_lock); 3784 } 3785 3786 if (blkcnt <= blks) 3787 break; 3788 blkcnt -= blks; 3789 blkaddr += blks; 3790 } 3791 } 3792 3793 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3794 { 3795 int type = __get_segment_type(fio); 3796 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3797 3798 if (keep_order) 3799 f2fs_down_read(&fio->sbi->io_order_lock); 3800 3801 if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3802 &fio->new_blkaddr, sum, type, fio)) { 3803 if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host)) 3804 fscrypt_finalize_bounce_page(&fio->encrypted_page); 3805 end_page_writeback(fio->page); 3806 if (f2fs_in_warm_node_list(fio->sbi, fio->page)) 3807 f2fs_del_fsync_node_entry(fio->sbi, fio->page); 3808 goto out; 3809 } 3810 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3811 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr); 3812 3813 /* writeout dirty page into bdev */ 3814 f2fs_submit_page_write(fio); 3815 3816 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3817 out: 3818 if (keep_order) 3819 f2fs_up_read(&fio->sbi->io_order_lock); 3820 } 3821 3822 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3823 enum iostat_type io_type) 3824 { 3825 struct f2fs_io_info fio = { 3826 .sbi = sbi, 3827 .type = META, 3828 .temp = HOT, 3829 .op = REQ_OP_WRITE, 3830 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3831 .old_blkaddr = page->index, 3832 .new_blkaddr = page->index, 3833 .page = page, 3834 .encrypted_page = NULL, 3835 .in_list = 0, 3836 }; 3837 3838 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3839 fio.op_flags &= ~REQ_META; 3840 3841 set_page_writeback(page); 3842 f2fs_submit_page_write(&fio); 3843 3844 stat_inc_meta_count(sbi, page->index); 3845 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE); 3846 } 3847 3848 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3849 { 3850 struct f2fs_summary sum; 3851 3852 set_summary(&sum, nid, 0, 0); 3853 do_write_page(&sum, fio); 3854 3855 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE); 3856 } 3857 3858 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3859 struct f2fs_io_info *fio) 3860 { 3861 struct f2fs_sb_info *sbi = fio->sbi; 3862 struct f2fs_summary sum; 3863 3864 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3865 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO) 3866 f2fs_update_age_extent_cache(dn); 3867 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3868 do_write_page(&sum, fio); 3869 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3870 3871 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE); 3872 } 3873 3874 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3875 { 3876 int err; 3877 struct f2fs_sb_info *sbi = fio->sbi; 3878 unsigned int segno; 3879 3880 fio->new_blkaddr = fio->old_blkaddr; 3881 /* i/o temperature is needed for passing down write hints */ 3882 __get_segment_type(fio); 3883 3884 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3885 3886 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3887 set_sbi_flag(sbi, SBI_NEED_FSCK); 3888 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3889 __func__, segno); 3890 err = -EFSCORRUPTED; 3891 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 3892 goto drop_bio; 3893 } 3894 3895 if (f2fs_cp_error(sbi)) { 3896 err = -EIO; 3897 goto drop_bio; 3898 } 3899 3900 if (fio->meta_gc) 3901 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1); 3902 3903 stat_inc_inplace_blocks(fio->sbi); 3904 3905 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi)) 3906 err = f2fs_merge_page_bio(fio); 3907 else 3908 err = f2fs_submit_page_bio(fio); 3909 if (!err) { 3910 f2fs_update_device_state(fio->sbi, fio->ino, 3911 fio->new_blkaddr, 1); 3912 f2fs_update_iostat(fio->sbi, fio->page->mapping->host, 3913 fio->io_type, F2FS_BLKSIZE); 3914 } 3915 3916 return err; 3917 drop_bio: 3918 if (fio->bio && *(fio->bio)) { 3919 struct bio *bio = *(fio->bio); 3920 3921 bio->bi_status = BLK_STS_IOERR; 3922 bio_endio(bio); 3923 *(fio->bio) = NULL; 3924 } 3925 return err; 3926 } 3927 3928 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3929 unsigned int segno) 3930 { 3931 int i; 3932 3933 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3934 if (CURSEG_I(sbi, i)->segno == segno) 3935 break; 3936 } 3937 return i; 3938 } 3939 3940 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3941 block_t old_blkaddr, block_t new_blkaddr, 3942 bool recover_curseg, bool recover_newaddr, 3943 bool from_gc) 3944 { 3945 struct sit_info *sit_i = SIT_I(sbi); 3946 struct curseg_info *curseg; 3947 unsigned int segno, old_cursegno; 3948 struct seg_entry *se; 3949 int type; 3950 unsigned short old_blkoff; 3951 unsigned char old_alloc_type; 3952 3953 segno = GET_SEGNO(sbi, new_blkaddr); 3954 se = get_seg_entry(sbi, segno); 3955 type = se->type; 3956 3957 f2fs_down_write(&SM_I(sbi)->curseg_lock); 3958 3959 if (!recover_curseg) { 3960 /* for recovery flow */ 3961 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3962 if (old_blkaddr == NULL_ADDR) 3963 type = CURSEG_COLD_DATA; 3964 else 3965 type = CURSEG_WARM_DATA; 3966 } 3967 } else { 3968 if (IS_CURSEG(sbi, segno)) { 3969 /* se->type is volatile as SSR allocation */ 3970 type = __f2fs_get_curseg(sbi, segno); 3971 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3972 } else { 3973 type = CURSEG_WARM_DATA; 3974 } 3975 } 3976 3977 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3978 curseg = CURSEG_I(sbi, type); 3979 3980 mutex_lock(&curseg->curseg_mutex); 3981 down_write(&sit_i->sentry_lock); 3982 3983 old_cursegno = curseg->segno; 3984 old_blkoff = curseg->next_blkoff; 3985 old_alloc_type = curseg->alloc_type; 3986 3987 /* change the current segment */ 3988 if (segno != curseg->segno) { 3989 curseg->next_segno = segno; 3990 if (change_curseg(sbi, type)) 3991 goto out_unlock; 3992 } 3993 3994 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3995 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3996 3997 if (!recover_curseg || recover_newaddr) { 3998 if (!from_gc) 3999 update_segment_mtime(sbi, new_blkaddr, 0); 4000 update_sit_entry(sbi, new_blkaddr, 1); 4001 } 4002 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 4003 f2fs_invalidate_internal_cache(sbi, old_blkaddr); 4004 if (!from_gc) 4005 update_segment_mtime(sbi, old_blkaddr, 0); 4006 update_sit_entry(sbi, old_blkaddr, -1); 4007 } 4008 4009 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 4010 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 4011 4012 locate_dirty_segment(sbi, old_cursegno); 4013 4014 if (recover_curseg) { 4015 if (old_cursegno != curseg->segno) { 4016 curseg->next_segno = old_cursegno; 4017 if (change_curseg(sbi, type)) 4018 goto out_unlock; 4019 } 4020 curseg->next_blkoff = old_blkoff; 4021 curseg->alloc_type = old_alloc_type; 4022 } 4023 4024 out_unlock: 4025 up_write(&sit_i->sentry_lock); 4026 mutex_unlock(&curseg->curseg_mutex); 4027 f2fs_up_write(&SM_I(sbi)->curseg_lock); 4028 } 4029 4030 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 4031 block_t old_addr, block_t new_addr, 4032 unsigned char version, bool recover_curseg, 4033 bool recover_newaddr) 4034 { 4035 struct f2fs_summary sum; 4036 4037 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 4038 4039 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 4040 recover_curseg, recover_newaddr, false); 4041 4042 f2fs_update_data_blkaddr(dn, new_addr); 4043 } 4044 4045 void f2fs_wait_on_page_writeback(struct page *page, 4046 enum page_type type, bool ordered, bool locked) 4047 { 4048 if (folio_test_writeback(page_folio(page))) { 4049 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 4050 4051 /* submit cached LFS IO */ 4052 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 4053 /* submit cached IPU IO */ 4054 f2fs_submit_merged_ipu_write(sbi, NULL, page); 4055 if (ordered) { 4056 wait_on_page_writeback(page); 4057 f2fs_bug_on(sbi, locked && 4058 folio_test_writeback(page_folio(page))); 4059 } else { 4060 wait_for_stable_page(page); 4061 } 4062 } 4063 } 4064 4065 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 4066 { 4067 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4068 struct page *cpage; 4069 4070 if (!f2fs_meta_inode_gc_required(inode)) 4071 return; 4072 4073 if (!__is_valid_data_blkaddr(blkaddr)) 4074 return; 4075 4076 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 4077 if (cpage) { 4078 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 4079 f2fs_put_page(cpage, 1); 4080 } 4081 } 4082 4083 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 4084 block_t len) 4085 { 4086 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4087 block_t i; 4088 4089 if (!f2fs_meta_inode_gc_required(inode)) 4090 return; 4091 4092 for (i = 0; i < len; i++) 4093 f2fs_wait_on_block_writeback(inode, blkaddr + i); 4094 4095 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len); 4096 } 4097 4098 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 4099 { 4100 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4101 struct curseg_info *seg_i; 4102 unsigned char *kaddr; 4103 struct page *page; 4104 block_t start; 4105 int i, j, offset; 4106 4107 start = start_sum_block(sbi); 4108 4109 page = f2fs_get_meta_page(sbi, start++); 4110 if (IS_ERR(page)) 4111 return PTR_ERR(page); 4112 kaddr = (unsigned char *)page_address(page); 4113 4114 /* Step 1: restore nat cache */ 4115 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4116 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 4117 4118 /* Step 2: restore sit cache */ 4119 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4120 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 4121 offset = 2 * SUM_JOURNAL_SIZE; 4122 4123 /* Step 3: restore summary entries */ 4124 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4125 unsigned short blk_off; 4126 unsigned int segno; 4127 4128 seg_i = CURSEG_I(sbi, i); 4129 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 4130 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 4131 seg_i->next_segno = segno; 4132 reset_curseg(sbi, i, 0); 4133 seg_i->alloc_type = ckpt->alloc_type[i]; 4134 seg_i->next_blkoff = blk_off; 4135 4136 if (seg_i->alloc_type == SSR) 4137 blk_off = BLKS_PER_SEG(sbi); 4138 4139 for (j = 0; j < blk_off; j++) { 4140 struct f2fs_summary *s; 4141 4142 s = (struct f2fs_summary *)(kaddr + offset); 4143 seg_i->sum_blk->entries[j] = *s; 4144 offset += SUMMARY_SIZE; 4145 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 4146 SUM_FOOTER_SIZE) 4147 continue; 4148 4149 f2fs_put_page(page, 1); 4150 page = NULL; 4151 4152 page = f2fs_get_meta_page(sbi, start++); 4153 if (IS_ERR(page)) 4154 return PTR_ERR(page); 4155 kaddr = (unsigned char *)page_address(page); 4156 offset = 0; 4157 } 4158 } 4159 f2fs_put_page(page, 1); 4160 return 0; 4161 } 4162 4163 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 4164 { 4165 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4166 struct f2fs_summary_block *sum; 4167 struct curseg_info *curseg; 4168 struct page *new; 4169 unsigned short blk_off; 4170 unsigned int segno = 0; 4171 block_t blk_addr = 0; 4172 int err = 0; 4173 4174 /* get segment number and block addr */ 4175 if (IS_DATASEG(type)) { 4176 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 4177 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 4178 CURSEG_HOT_DATA]); 4179 if (__exist_node_summaries(sbi)) 4180 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 4181 else 4182 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 4183 } else { 4184 segno = le32_to_cpu(ckpt->cur_node_segno[type - 4185 CURSEG_HOT_NODE]); 4186 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 4187 CURSEG_HOT_NODE]); 4188 if (__exist_node_summaries(sbi)) 4189 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 4190 type - CURSEG_HOT_NODE); 4191 else 4192 blk_addr = GET_SUM_BLOCK(sbi, segno); 4193 } 4194 4195 new = f2fs_get_meta_page(sbi, blk_addr); 4196 if (IS_ERR(new)) 4197 return PTR_ERR(new); 4198 sum = (struct f2fs_summary_block *)page_address(new); 4199 4200 if (IS_NODESEG(type)) { 4201 if (__exist_node_summaries(sbi)) { 4202 struct f2fs_summary *ns = &sum->entries[0]; 4203 int i; 4204 4205 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) { 4206 ns->version = 0; 4207 ns->ofs_in_node = 0; 4208 } 4209 } else { 4210 err = f2fs_restore_node_summary(sbi, segno, sum); 4211 if (err) 4212 goto out; 4213 } 4214 } 4215 4216 /* set uncompleted segment to curseg */ 4217 curseg = CURSEG_I(sbi, type); 4218 mutex_lock(&curseg->curseg_mutex); 4219 4220 /* update journal info */ 4221 down_write(&curseg->journal_rwsem); 4222 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 4223 up_write(&curseg->journal_rwsem); 4224 4225 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 4226 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 4227 curseg->next_segno = segno; 4228 reset_curseg(sbi, type, 0); 4229 curseg->alloc_type = ckpt->alloc_type[type]; 4230 curseg->next_blkoff = blk_off; 4231 mutex_unlock(&curseg->curseg_mutex); 4232 out: 4233 f2fs_put_page(new, 1); 4234 return err; 4235 } 4236 4237 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 4238 { 4239 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 4240 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 4241 int type = CURSEG_HOT_DATA; 4242 int err; 4243 4244 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 4245 int npages = f2fs_npages_for_summary_flush(sbi, true); 4246 4247 if (npages >= 2) 4248 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 4249 META_CP, true); 4250 4251 /* restore for compacted data summary */ 4252 err = read_compacted_summaries(sbi); 4253 if (err) 4254 return err; 4255 type = CURSEG_HOT_NODE; 4256 } 4257 4258 if (__exist_node_summaries(sbi)) 4259 f2fs_ra_meta_pages(sbi, 4260 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 4261 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 4262 4263 for (; type <= CURSEG_COLD_NODE; type++) { 4264 err = read_normal_summaries(sbi, type); 4265 if (err) 4266 return err; 4267 } 4268 4269 /* sanity check for summary blocks */ 4270 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 4271 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 4272 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 4273 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 4274 return -EINVAL; 4275 } 4276 4277 return 0; 4278 } 4279 4280 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 4281 { 4282 struct page *page; 4283 unsigned char *kaddr; 4284 struct f2fs_summary *summary; 4285 struct curseg_info *seg_i; 4286 int written_size = 0; 4287 int i, j; 4288 4289 page = f2fs_grab_meta_page(sbi, blkaddr++); 4290 kaddr = (unsigned char *)page_address(page); 4291 memset(kaddr, 0, PAGE_SIZE); 4292 4293 /* Step 1: write nat cache */ 4294 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4295 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 4296 written_size += SUM_JOURNAL_SIZE; 4297 4298 /* Step 2: write sit cache */ 4299 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4300 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 4301 written_size += SUM_JOURNAL_SIZE; 4302 4303 /* Step 3: write summary entries */ 4304 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4305 seg_i = CURSEG_I(sbi, i); 4306 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) { 4307 if (!page) { 4308 page = f2fs_grab_meta_page(sbi, blkaddr++); 4309 kaddr = (unsigned char *)page_address(page); 4310 memset(kaddr, 0, PAGE_SIZE); 4311 written_size = 0; 4312 } 4313 summary = (struct f2fs_summary *)(kaddr + written_size); 4314 *summary = seg_i->sum_blk->entries[j]; 4315 written_size += SUMMARY_SIZE; 4316 4317 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 4318 SUM_FOOTER_SIZE) 4319 continue; 4320 4321 set_page_dirty(page); 4322 f2fs_put_page(page, 1); 4323 page = NULL; 4324 } 4325 } 4326 if (page) { 4327 set_page_dirty(page); 4328 f2fs_put_page(page, 1); 4329 } 4330 } 4331 4332 static void write_normal_summaries(struct f2fs_sb_info *sbi, 4333 block_t blkaddr, int type) 4334 { 4335 int i, end; 4336 4337 if (IS_DATASEG(type)) 4338 end = type + NR_CURSEG_DATA_TYPE; 4339 else 4340 end = type + NR_CURSEG_NODE_TYPE; 4341 4342 for (i = type; i < end; i++) 4343 write_current_sum_page(sbi, i, blkaddr + (i - type)); 4344 } 4345 4346 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4347 { 4348 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 4349 write_compacted_summaries(sbi, start_blk); 4350 else 4351 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 4352 } 4353 4354 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4355 { 4356 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 4357 } 4358 4359 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 4360 unsigned int val, int alloc) 4361 { 4362 int i; 4363 4364 if (type == NAT_JOURNAL) { 4365 for (i = 0; i < nats_in_cursum(journal); i++) { 4366 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 4367 return i; 4368 } 4369 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 4370 return update_nats_in_cursum(journal, 1); 4371 } else if (type == SIT_JOURNAL) { 4372 for (i = 0; i < sits_in_cursum(journal); i++) 4373 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 4374 return i; 4375 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 4376 return update_sits_in_cursum(journal, 1); 4377 } 4378 return -1; 4379 } 4380 4381 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 4382 unsigned int segno) 4383 { 4384 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 4385 } 4386 4387 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 4388 unsigned int start) 4389 { 4390 struct sit_info *sit_i = SIT_I(sbi); 4391 struct page *page; 4392 pgoff_t src_off, dst_off; 4393 4394 src_off = current_sit_addr(sbi, start); 4395 dst_off = next_sit_addr(sbi, src_off); 4396 4397 page = f2fs_grab_meta_page(sbi, dst_off); 4398 seg_info_to_sit_page(sbi, page, start); 4399 4400 set_page_dirty(page); 4401 set_to_next_sit(sit_i, start); 4402 4403 return page; 4404 } 4405 4406 static struct sit_entry_set *grab_sit_entry_set(void) 4407 { 4408 struct sit_entry_set *ses = 4409 f2fs_kmem_cache_alloc(sit_entry_set_slab, 4410 GFP_NOFS, true, NULL); 4411 4412 ses->entry_cnt = 0; 4413 INIT_LIST_HEAD(&ses->set_list); 4414 return ses; 4415 } 4416 4417 static void release_sit_entry_set(struct sit_entry_set *ses) 4418 { 4419 list_del(&ses->set_list); 4420 kmem_cache_free(sit_entry_set_slab, ses); 4421 } 4422 4423 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4424 struct list_head *head) 4425 { 4426 struct sit_entry_set *next = ses; 4427 4428 if (list_is_last(&ses->set_list, head)) 4429 return; 4430 4431 list_for_each_entry_continue(next, head, set_list) 4432 if (ses->entry_cnt <= next->entry_cnt) { 4433 list_move_tail(&ses->set_list, &next->set_list); 4434 return; 4435 } 4436 4437 list_move_tail(&ses->set_list, head); 4438 } 4439 4440 static void add_sit_entry(unsigned int segno, struct list_head *head) 4441 { 4442 struct sit_entry_set *ses; 4443 unsigned int start_segno = START_SEGNO(segno); 4444 4445 list_for_each_entry(ses, head, set_list) { 4446 if (ses->start_segno == start_segno) { 4447 ses->entry_cnt++; 4448 adjust_sit_entry_set(ses, head); 4449 return; 4450 } 4451 } 4452 4453 ses = grab_sit_entry_set(); 4454 4455 ses->start_segno = start_segno; 4456 ses->entry_cnt++; 4457 list_add(&ses->set_list, head); 4458 } 4459 4460 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4461 { 4462 struct f2fs_sm_info *sm_info = SM_I(sbi); 4463 struct list_head *set_list = &sm_info->sit_entry_set; 4464 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4465 unsigned int segno; 4466 4467 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4468 add_sit_entry(segno, set_list); 4469 } 4470 4471 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4472 { 4473 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4474 struct f2fs_journal *journal = curseg->journal; 4475 int i; 4476 4477 down_write(&curseg->journal_rwsem); 4478 for (i = 0; i < sits_in_cursum(journal); i++) { 4479 unsigned int segno; 4480 bool dirtied; 4481 4482 segno = le32_to_cpu(segno_in_journal(journal, i)); 4483 dirtied = __mark_sit_entry_dirty(sbi, segno); 4484 4485 if (!dirtied) 4486 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4487 } 4488 update_sits_in_cursum(journal, -i); 4489 up_write(&curseg->journal_rwsem); 4490 } 4491 4492 /* 4493 * CP calls this function, which flushes SIT entries including sit_journal, 4494 * and moves prefree segs to free segs. 4495 */ 4496 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4497 { 4498 struct sit_info *sit_i = SIT_I(sbi); 4499 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4500 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4501 struct f2fs_journal *journal = curseg->journal; 4502 struct sit_entry_set *ses, *tmp; 4503 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4504 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4505 struct seg_entry *se; 4506 4507 down_write(&sit_i->sentry_lock); 4508 4509 if (!sit_i->dirty_sentries) 4510 goto out; 4511 4512 /* 4513 * add and account sit entries of dirty bitmap in sit entry 4514 * set temporarily 4515 */ 4516 add_sits_in_set(sbi); 4517 4518 /* 4519 * if there are no enough space in journal to store dirty sit 4520 * entries, remove all entries from journal and add and account 4521 * them in sit entry set. 4522 */ 4523 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4524 !to_journal) 4525 remove_sits_in_journal(sbi); 4526 4527 /* 4528 * there are two steps to flush sit entries: 4529 * #1, flush sit entries to journal in current cold data summary block. 4530 * #2, flush sit entries to sit page. 4531 */ 4532 list_for_each_entry_safe(ses, tmp, head, set_list) { 4533 struct page *page = NULL; 4534 struct f2fs_sit_block *raw_sit = NULL; 4535 unsigned int start_segno = ses->start_segno; 4536 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4537 (unsigned long)MAIN_SEGS(sbi)); 4538 unsigned int segno = start_segno; 4539 4540 if (to_journal && 4541 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4542 to_journal = false; 4543 4544 if (to_journal) { 4545 down_write(&curseg->journal_rwsem); 4546 } else { 4547 page = get_next_sit_page(sbi, start_segno); 4548 raw_sit = page_address(page); 4549 } 4550 4551 /* flush dirty sit entries in region of current sit set */ 4552 for_each_set_bit_from(segno, bitmap, end) { 4553 int offset, sit_offset; 4554 4555 se = get_seg_entry(sbi, segno); 4556 #ifdef CONFIG_F2FS_CHECK_FS 4557 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4558 SIT_VBLOCK_MAP_SIZE)) 4559 f2fs_bug_on(sbi, 1); 4560 #endif 4561 4562 /* add discard candidates */ 4563 if (!(cpc->reason & CP_DISCARD)) { 4564 cpc->trim_start = segno; 4565 add_discard_addrs(sbi, cpc, false); 4566 } 4567 4568 if (to_journal) { 4569 offset = f2fs_lookup_journal_in_cursum(journal, 4570 SIT_JOURNAL, segno, 1); 4571 f2fs_bug_on(sbi, offset < 0); 4572 segno_in_journal(journal, offset) = 4573 cpu_to_le32(segno); 4574 seg_info_to_raw_sit(se, 4575 &sit_in_journal(journal, offset)); 4576 check_block_count(sbi, segno, 4577 &sit_in_journal(journal, offset)); 4578 } else { 4579 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4580 seg_info_to_raw_sit(se, 4581 &raw_sit->entries[sit_offset]); 4582 check_block_count(sbi, segno, 4583 &raw_sit->entries[sit_offset]); 4584 } 4585 4586 __clear_bit(segno, bitmap); 4587 sit_i->dirty_sentries--; 4588 ses->entry_cnt--; 4589 } 4590 4591 if (to_journal) 4592 up_write(&curseg->journal_rwsem); 4593 else 4594 f2fs_put_page(page, 1); 4595 4596 f2fs_bug_on(sbi, ses->entry_cnt); 4597 release_sit_entry_set(ses); 4598 } 4599 4600 f2fs_bug_on(sbi, !list_empty(head)); 4601 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4602 out: 4603 if (cpc->reason & CP_DISCARD) { 4604 __u64 trim_start = cpc->trim_start; 4605 4606 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4607 add_discard_addrs(sbi, cpc, false); 4608 4609 cpc->trim_start = trim_start; 4610 } 4611 up_write(&sit_i->sentry_lock); 4612 4613 set_prefree_as_free_segments(sbi); 4614 } 4615 4616 static int build_sit_info(struct f2fs_sb_info *sbi) 4617 { 4618 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4619 struct sit_info *sit_i; 4620 unsigned int sit_segs, start; 4621 char *src_bitmap, *bitmap; 4622 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4623 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4624 4625 /* allocate memory for SIT information */ 4626 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4627 if (!sit_i) 4628 return -ENOMEM; 4629 4630 SM_I(sbi)->sit_info = sit_i; 4631 4632 sit_i->sentries = 4633 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4634 MAIN_SEGS(sbi)), 4635 GFP_KERNEL); 4636 if (!sit_i->sentries) 4637 return -ENOMEM; 4638 4639 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4640 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4641 GFP_KERNEL); 4642 if (!sit_i->dirty_sentries_bitmap) 4643 return -ENOMEM; 4644 4645 #ifdef CONFIG_F2FS_CHECK_FS 4646 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4647 #else 4648 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4649 #endif 4650 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4651 if (!sit_i->bitmap) 4652 return -ENOMEM; 4653 4654 bitmap = sit_i->bitmap; 4655 4656 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4657 sit_i->sentries[start].cur_valid_map = bitmap; 4658 bitmap += SIT_VBLOCK_MAP_SIZE; 4659 4660 sit_i->sentries[start].ckpt_valid_map = bitmap; 4661 bitmap += SIT_VBLOCK_MAP_SIZE; 4662 4663 #ifdef CONFIG_F2FS_CHECK_FS 4664 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4665 bitmap += SIT_VBLOCK_MAP_SIZE; 4666 #endif 4667 4668 if (discard_map) { 4669 sit_i->sentries[start].discard_map = bitmap; 4670 bitmap += SIT_VBLOCK_MAP_SIZE; 4671 } 4672 } 4673 4674 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4675 if (!sit_i->tmp_map) 4676 return -ENOMEM; 4677 4678 if (__is_large_section(sbi)) { 4679 sit_i->sec_entries = 4680 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4681 MAIN_SECS(sbi)), 4682 GFP_KERNEL); 4683 if (!sit_i->sec_entries) 4684 return -ENOMEM; 4685 } 4686 4687 /* get information related with SIT */ 4688 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4689 4690 /* setup SIT bitmap from ckeckpoint pack */ 4691 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4692 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4693 4694 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4695 if (!sit_i->sit_bitmap) 4696 return -ENOMEM; 4697 4698 #ifdef CONFIG_F2FS_CHECK_FS 4699 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4700 sit_bitmap_size, GFP_KERNEL); 4701 if (!sit_i->sit_bitmap_mir) 4702 return -ENOMEM; 4703 4704 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4705 main_bitmap_size, GFP_KERNEL); 4706 if (!sit_i->invalid_segmap) 4707 return -ENOMEM; 4708 #endif 4709 4710 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4711 sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs); 4712 sit_i->written_valid_blocks = 0; 4713 sit_i->bitmap_size = sit_bitmap_size; 4714 sit_i->dirty_sentries = 0; 4715 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4716 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4717 sit_i->mounted_time = ktime_get_boottime_seconds(); 4718 init_rwsem(&sit_i->sentry_lock); 4719 return 0; 4720 } 4721 4722 static int build_free_segmap(struct f2fs_sb_info *sbi) 4723 { 4724 struct free_segmap_info *free_i; 4725 unsigned int bitmap_size, sec_bitmap_size; 4726 4727 /* allocate memory for free segmap information */ 4728 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4729 if (!free_i) 4730 return -ENOMEM; 4731 4732 SM_I(sbi)->free_info = free_i; 4733 4734 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4735 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4736 if (!free_i->free_segmap) 4737 return -ENOMEM; 4738 4739 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4740 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4741 if (!free_i->free_secmap) 4742 return -ENOMEM; 4743 4744 /* set all segments as dirty temporarily */ 4745 memset(free_i->free_segmap, 0xff, bitmap_size); 4746 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4747 4748 /* init free segmap information */ 4749 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4750 free_i->free_segments = 0; 4751 free_i->free_sections = 0; 4752 spin_lock_init(&free_i->segmap_lock); 4753 return 0; 4754 } 4755 4756 static int build_curseg(struct f2fs_sb_info *sbi) 4757 { 4758 struct curseg_info *array; 4759 int i; 4760 4761 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4762 sizeof(*array)), GFP_KERNEL); 4763 if (!array) 4764 return -ENOMEM; 4765 4766 SM_I(sbi)->curseg_array = array; 4767 4768 for (i = 0; i < NO_CHECK_TYPE; i++) { 4769 mutex_init(&array[i].curseg_mutex); 4770 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4771 if (!array[i].sum_blk) 4772 return -ENOMEM; 4773 init_rwsem(&array[i].journal_rwsem); 4774 array[i].journal = f2fs_kzalloc(sbi, 4775 sizeof(struct f2fs_journal), GFP_KERNEL); 4776 if (!array[i].journal) 4777 return -ENOMEM; 4778 if (i < NR_PERSISTENT_LOG) 4779 array[i].seg_type = CURSEG_HOT_DATA + i; 4780 else if (i == CURSEG_COLD_DATA_PINNED) 4781 array[i].seg_type = CURSEG_COLD_DATA; 4782 else if (i == CURSEG_ALL_DATA_ATGC) 4783 array[i].seg_type = CURSEG_COLD_DATA; 4784 reset_curseg_fields(&array[i]); 4785 } 4786 return restore_curseg_summaries(sbi); 4787 } 4788 4789 static int build_sit_entries(struct f2fs_sb_info *sbi) 4790 { 4791 struct sit_info *sit_i = SIT_I(sbi); 4792 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4793 struct f2fs_journal *journal = curseg->journal; 4794 struct seg_entry *se; 4795 struct f2fs_sit_entry sit; 4796 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4797 unsigned int i, start, end; 4798 unsigned int readed, start_blk = 0; 4799 int err = 0; 4800 block_t sit_valid_blocks[2] = {0, 0}; 4801 4802 do { 4803 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4804 META_SIT, true); 4805 4806 start = start_blk * sit_i->sents_per_block; 4807 end = (start_blk + readed) * sit_i->sents_per_block; 4808 4809 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4810 struct f2fs_sit_block *sit_blk; 4811 struct page *page; 4812 4813 se = &sit_i->sentries[start]; 4814 page = get_current_sit_page(sbi, start); 4815 if (IS_ERR(page)) 4816 return PTR_ERR(page); 4817 sit_blk = (struct f2fs_sit_block *)page_address(page); 4818 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4819 f2fs_put_page(page, 1); 4820 4821 err = check_block_count(sbi, start, &sit); 4822 if (err) 4823 return err; 4824 seg_info_from_raw_sit(se, &sit); 4825 4826 if (se->type >= NR_PERSISTENT_LOG) { 4827 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4828 se->type, start); 4829 f2fs_handle_error(sbi, 4830 ERROR_INCONSISTENT_SUM_TYPE); 4831 return -EFSCORRUPTED; 4832 } 4833 4834 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4835 4836 if (!f2fs_block_unit_discard(sbi)) 4837 goto init_discard_map_done; 4838 4839 /* build discard map only one time */ 4840 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4841 memset(se->discard_map, 0xff, 4842 SIT_VBLOCK_MAP_SIZE); 4843 goto init_discard_map_done; 4844 } 4845 memcpy(se->discard_map, se->cur_valid_map, 4846 SIT_VBLOCK_MAP_SIZE); 4847 sbi->discard_blks += BLKS_PER_SEG(sbi) - 4848 se->valid_blocks; 4849 init_discard_map_done: 4850 if (__is_large_section(sbi)) 4851 get_sec_entry(sbi, start)->valid_blocks += 4852 se->valid_blocks; 4853 } 4854 start_blk += readed; 4855 } while (start_blk < sit_blk_cnt); 4856 4857 down_read(&curseg->journal_rwsem); 4858 for (i = 0; i < sits_in_cursum(journal); i++) { 4859 unsigned int old_valid_blocks; 4860 4861 start = le32_to_cpu(segno_in_journal(journal, i)); 4862 if (start >= MAIN_SEGS(sbi)) { 4863 f2fs_err(sbi, "Wrong journal entry on segno %u", 4864 start); 4865 err = -EFSCORRUPTED; 4866 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL); 4867 break; 4868 } 4869 4870 se = &sit_i->sentries[start]; 4871 sit = sit_in_journal(journal, i); 4872 4873 old_valid_blocks = se->valid_blocks; 4874 4875 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; 4876 4877 err = check_block_count(sbi, start, &sit); 4878 if (err) 4879 break; 4880 seg_info_from_raw_sit(se, &sit); 4881 4882 if (se->type >= NR_PERSISTENT_LOG) { 4883 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4884 se->type, start); 4885 err = -EFSCORRUPTED; 4886 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 4887 break; 4888 } 4889 4890 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4891 4892 if (f2fs_block_unit_discard(sbi)) { 4893 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4894 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4895 } else { 4896 memcpy(se->discard_map, se->cur_valid_map, 4897 SIT_VBLOCK_MAP_SIZE); 4898 sbi->discard_blks += old_valid_blocks; 4899 sbi->discard_blks -= se->valid_blocks; 4900 } 4901 } 4902 4903 if (__is_large_section(sbi)) { 4904 get_sec_entry(sbi, start)->valid_blocks += 4905 se->valid_blocks; 4906 get_sec_entry(sbi, start)->valid_blocks -= 4907 old_valid_blocks; 4908 } 4909 } 4910 up_read(&curseg->journal_rwsem); 4911 4912 if (err) 4913 return err; 4914 4915 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { 4916 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4917 sit_valid_blocks[NODE], valid_node_count(sbi)); 4918 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT); 4919 return -EFSCORRUPTED; 4920 } 4921 4922 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > 4923 valid_user_blocks(sbi)) { 4924 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", 4925 sit_valid_blocks[DATA], sit_valid_blocks[NODE], 4926 valid_user_blocks(sbi)); 4927 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT); 4928 return -EFSCORRUPTED; 4929 } 4930 4931 return 0; 4932 } 4933 4934 static void init_free_segmap(struct f2fs_sb_info *sbi) 4935 { 4936 unsigned int start; 4937 int type; 4938 struct seg_entry *sentry; 4939 4940 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4941 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4942 continue; 4943 sentry = get_seg_entry(sbi, start); 4944 if (!sentry->valid_blocks) 4945 __set_free(sbi, start); 4946 else 4947 SIT_I(sbi)->written_valid_blocks += 4948 sentry->valid_blocks; 4949 } 4950 4951 /* set use the current segments */ 4952 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4953 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4954 4955 __set_test_and_inuse(sbi, curseg_t->segno); 4956 } 4957 } 4958 4959 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4960 { 4961 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4962 struct free_segmap_info *free_i = FREE_I(sbi); 4963 unsigned int segno = 0, offset = 0, secno; 4964 block_t valid_blocks, usable_blks_in_seg; 4965 4966 while (1) { 4967 /* find dirty segment based on free segmap */ 4968 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4969 if (segno >= MAIN_SEGS(sbi)) 4970 break; 4971 offset = segno + 1; 4972 valid_blocks = get_valid_blocks(sbi, segno, false); 4973 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4974 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4975 continue; 4976 if (valid_blocks > usable_blks_in_seg) { 4977 f2fs_bug_on(sbi, 1); 4978 continue; 4979 } 4980 mutex_lock(&dirty_i->seglist_lock); 4981 __locate_dirty_segment(sbi, segno, DIRTY); 4982 mutex_unlock(&dirty_i->seglist_lock); 4983 } 4984 4985 if (!__is_large_section(sbi)) 4986 return; 4987 4988 mutex_lock(&dirty_i->seglist_lock); 4989 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) { 4990 valid_blocks = get_valid_blocks(sbi, segno, true); 4991 secno = GET_SEC_FROM_SEG(sbi, segno); 4992 4993 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) 4994 continue; 4995 if (IS_CURSEC(sbi, secno)) 4996 continue; 4997 set_bit(secno, dirty_i->dirty_secmap); 4998 } 4999 mutex_unlock(&dirty_i->seglist_lock); 5000 } 5001 5002 static int init_victim_secmap(struct f2fs_sb_info *sbi) 5003 { 5004 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5005 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 5006 5007 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 5008 if (!dirty_i->victim_secmap) 5009 return -ENOMEM; 5010 5011 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 5012 if (!dirty_i->pinned_secmap) 5013 return -ENOMEM; 5014 5015 dirty_i->pinned_secmap_cnt = 0; 5016 dirty_i->enable_pin_section = true; 5017 return 0; 5018 } 5019 5020 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 5021 { 5022 struct dirty_seglist_info *dirty_i; 5023 unsigned int bitmap_size, i; 5024 5025 /* allocate memory for dirty segments list information */ 5026 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 5027 GFP_KERNEL); 5028 if (!dirty_i) 5029 return -ENOMEM; 5030 5031 SM_I(sbi)->dirty_info = dirty_i; 5032 mutex_init(&dirty_i->seglist_lock); 5033 5034 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 5035 5036 for (i = 0; i < NR_DIRTY_TYPE; i++) { 5037 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 5038 GFP_KERNEL); 5039 if (!dirty_i->dirty_segmap[i]) 5040 return -ENOMEM; 5041 } 5042 5043 if (__is_large_section(sbi)) { 5044 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 5045 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 5046 bitmap_size, GFP_KERNEL); 5047 if (!dirty_i->dirty_secmap) 5048 return -ENOMEM; 5049 } 5050 5051 init_dirty_segmap(sbi); 5052 return init_victim_secmap(sbi); 5053 } 5054 5055 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 5056 { 5057 int i; 5058 5059 /* 5060 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 5061 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 5062 */ 5063 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 5064 struct curseg_info *curseg = CURSEG_I(sbi, i); 5065 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 5066 unsigned int blkofs = curseg->next_blkoff; 5067 5068 if (f2fs_sb_has_readonly(sbi) && 5069 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 5070 continue; 5071 5072 sanity_check_seg_type(sbi, curseg->seg_type); 5073 5074 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 5075 f2fs_err(sbi, 5076 "Current segment has invalid alloc_type:%d", 5077 curseg->alloc_type); 5078 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 5079 return -EFSCORRUPTED; 5080 } 5081 5082 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 5083 goto out; 5084 5085 if (curseg->alloc_type == SSR) 5086 continue; 5087 5088 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) { 5089 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 5090 continue; 5091 out: 5092 f2fs_err(sbi, 5093 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 5094 i, curseg->segno, curseg->alloc_type, 5095 curseg->next_blkoff, blkofs); 5096 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 5097 return -EFSCORRUPTED; 5098 } 5099 } 5100 return 0; 5101 } 5102 5103 #ifdef CONFIG_BLK_DEV_ZONED 5104 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 5105 struct f2fs_dev_info *fdev, 5106 struct blk_zone *zone) 5107 { 5108 unsigned int zone_segno; 5109 block_t zone_block, valid_block_cnt; 5110 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 5111 int ret; 5112 unsigned int nofs_flags; 5113 5114 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5115 return 0; 5116 5117 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 5118 zone_segno = GET_SEGNO(sbi, zone_block); 5119 5120 /* 5121 * Skip check of zones cursegs point to, since 5122 * fix_curseg_write_pointer() checks them. 5123 */ 5124 if (zone_segno >= MAIN_SEGS(sbi)) 5125 return 0; 5126 5127 /* 5128 * Get # of valid block of the zone. 5129 */ 5130 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true); 5131 if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) { 5132 f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]", 5133 zone_segno, valid_block_cnt, 5134 blk_zone_cond_str(zone->cond)); 5135 return 0; 5136 } 5137 5138 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) || 5139 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL)) 5140 return 0; 5141 5142 if (!valid_block_cnt) { 5143 f2fs_notice(sbi, "Zone without valid block has non-zero write " 5144 "pointer. Reset the write pointer: cond[%s]", 5145 blk_zone_cond_str(zone->cond)); 5146 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 5147 zone->len >> log_sectors_per_block); 5148 if (ret) 5149 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5150 fdev->path, ret); 5151 return ret; 5152 } 5153 5154 /* 5155 * If there are valid blocks and the write pointer doesn't match 5156 * with them, we need to report the inconsistency and fill 5157 * the zone till the end to close the zone. This inconsistency 5158 * does not cause write error because the zone will not be 5159 * selected for write operation until it get discarded. 5160 */ 5161 f2fs_notice(sbi, "Valid blocks are not aligned with write " 5162 "pointer: valid block[0x%x,0x%x] cond[%s]", 5163 zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond)); 5164 5165 nofs_flags = memalloc_nofs_save(); 5166 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH, 5167 zone->start, zone->len); 5168 memalloc_nofs_restore(nofs_flags); 5169 if (ret == -EOPNOTSUPP) { 5170 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp, 5171 zone->len - (zone->wp - zone->start), 5172 GFP_NOFS, 0); 5173 if (ret) 5174 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)", 5175 fdev->path, ret); 5176 } else if (ret) { 5177 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)", 5178 fdev->path, ret); 5179 } 5180 5181 return ret; 5182 } 5183 5184 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 5185 block_t zone_blkaddr) 5186 { 5187 int i; 5188 5189 for (i = 0; i < sbi->s_ndevs; i++) { 5190 if (!bdev_is_zoned(FDEV(i).bdev)) 5191 continue; 5192 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 5193 zone_blkaddr <= FDEV(i).end_blk)) 5194 return &FDEV(i); 5195 } 5196 5197 return NULL; 5198 } 5199 5200 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 5201 void *data) 5202 { 5203 memcpy(data, zone, sizeof(struct blk_zone)); 5204 return 0; 5205 } 5206 5207 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 5208 { 5209 struct curseg_info *cs = CURSEG_I(sbi, type); 5210 struct f2fs_dev_info *zbd; 5211 struct blk_zone zone; 5212 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 5213 block_t cs_zone_block, wp_block; 5214 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 5215 sector_t zone_sector; 5216 int err; 5217 5218 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5219 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5220 5221 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5222 if (!zbd) 5223 return 0; 5224 5225 /* report zone for the sector the curseg points to */ 5226 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5227 << log_sectors_per_block; 5228 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5229 report_one_zone_cb, &zone); 5230 if (err != 1) { 5231 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5232 zbd->path, err); 5233 return err; 5234 } 5235 5236 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5237 return 0; 5238 5239 /* 5240 * When safely unmounted in the previous mount, we could use current 5241 * segments. Otherwise, allocate new sections. 5242 */ 5243 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 5244 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 5245 wp_segno = GET_SEGNO(sbi, wp_block); 5246 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 5247 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 5248 5249 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 5250 wp_sector_off == 0) 5251 return 0; 5252 5253 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 5254 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno, 5255 cs->next_blkoff, wp_segno, wp_blkoff); 5256 } 5257 5258 /* Allocate a new section if it's not new. */ 5259 if (cs->next_blkoff || 5260 cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) { 5261 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff; 5262 5263 f2fs_allocate_new_section(sbi, type, true); 5264 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 5265 "[0x%x,0x%x] -> [0x%x,0x%x]", 5266 type, old_segno, old_blkoff, 5267 cs->segno, cs->next_blkoff); 5268 } 5269 5270 /* check consistency of the zone curseg pointed to */ 5271 if (check_zone_write_pointer(sbi, zbd, &zone)) 5272 return -EIO; 5273 5274 /* check newly assigned zone */ 5275 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5276 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5277 5278 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5279 if (!zbd) 5280 return 0; 5281 5282 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5283 << log_sectors_per_block; 5284 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5285 report_one_zone_cb, &zone); 5286 if (err != 1) { 5287 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5288 zbd->path, err); 5289 return err; 5290 } 5291 5292 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5293 return 0; 5294 5295 if (zone.wp != zone.start) { 5296 f2fs_notice(sbi, 5297 "New zone for curseg[%d] is not yet discarded. " 5298 "Reset the zone: curseg[0x%x,0x%x]", 5299 type, cs->segno, cs->next_blkoff); 5300 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block, 5301 zone.len >> log_sectors_per_block); 5302 if (err) { 5303 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5304 zbd->path, err); 5305 return err; 5306 } 5307 } 5308 5309 return 0; 5310 } 5311 5312 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5313 { 5314 int i, ret; 5315 5316 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 5317 ret = fix_curseg_write_pointer(sbi, i); 5318 if (ret) 5319 return ret; 5320 } 5321 5322 return 0; 5323 } 5324 5325 struct check_zone_write_pointer_args { 5326 struct f2fs_sb_info *sbi; 5327 struct f2fs_dev_info *fdev; 5328 }; 5329 5330 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 5331 void *data) 5332 { 5333 struct check_zone_write_pointer_args *args; 5334 5335 args = (struct check_zone_write_pointer_args *)data; 5336 5337 return check_zone_write_pointer(args->sbi, args->fdev, zone); 5338 } 5339 5340 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5341 { 5342 int i, ret; 5343 struct check_zone_write_pointer_args args; 5344 5345 for (i = 0; i < sbi->s_ndevs; i++) { 5346 if (!bdev_is_zoned(FDEV(i).bdev)) 5347 continue; 5348 5349 args.sbi = sbi; 5350 args.fdev = &FDEV(i); 5351 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 5352 check_zone_write_pointer_cb, &args); 5353 if (ret < 0) 5354 return ret; 5355 } 5356 5357 return 0; 5358 } 5359 5360 /* 5361 * Return the number of usable blocks in a segment. The number of blocks 5362 * returned is always equal to the number of blocks in a segment for 5363 * segments fully contained within a sequential zone capacity or a 5364 * conventional zone. For segments partially contained in a sequential 5365 * zone capacity, the number of usable blocks up to the zone capacity 5366 * is returned. 0 is returned in all other cases. 5367 */ 5368 static inline unsigned int f2fs_usable_zone_blks_in_seg( 5369 struct f2fs_sb_info *sbi, unsigned int segno) 5370 { 5371 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5372 unsigned int secno; 5373 5374 if (!sbi->unusable_blocks_per_sec) 5375 return BLKS_PER_SEG(sbi); 5376 5377 secno = GET_SEC_FROM_SEG(sbi, segno); 5378 seg_start = START_BLOCK(sbi, segno); 5379 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5380 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi); 5381 5382 /* 5383 * If segment starts before zone capacity and spans beyond 5384 * zone capacity, then usable blocks are from seg start to 5385 * zone capacity. If the segment starts after the zone capacity, 5386 * then there are no usable blocks. 5387 */ 5388 if (seg_start >= sec_cap_blkaddr) 5389 return 0; 5390 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr) 5391 return sec_cap_blkaddr - seg_start; 5392 5393 return BLKS_PER_SEG(sbi); 5394 } 5395 #else 5396 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5397 { 5398 return 0; 5399 } 5400 5401 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5402 { 5403 return 0; 5404 } 5405 5406 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5407 unsigned int segno) 5408 { 5409 return 0; 5410 } 5411 5412 #endif 5413 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5414 unsigned int segno) 5415 { 5416 if (f2fs_sb_has_blkzoned(sbi)) 5417 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5418 5419 return BLKS_PER_SEG(sbi); 5420 } 5421 5422 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5423 unsigned int segno) 5424 { 5425 if (f2fs_sb_has_blkzoned(sbi)) 5426 return CAP_SEGS_PER_SEC(sbi); 5427 5428 return SEGS_PER_SEC(sbi); 5429 } 5430 5431 /* 5432 * Update min, max modified time for cost-benefit GC algorithm 5433 */ 5434 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5435 { 5436 struct sit_info *sit_i = SIT_I(sbi); 5437 unsigned int segno; 5438 5439 down_write(&sit_i->sentry_lock); 5440 5441 sit_i->min_mtime = ULLONG_MAX; 5442 5443 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) { 5444 unsigned int i; 5445 unsigned long long mtime = 0; 5446 5447 for (i = 0; i < SEGS_PER_SEC(sbi); i++) 5448 mtime += get_seg_entry(sbi, segno + i)->mtime; 5449 5450 mtime = div_u64(mtime, SEGS_PER_SEC(sbi)); 5451 5452 if (sit_i->min_mtime > mtime) 5453 sit_i->min_mtime = mtime; 5454 } 5455 sit_i->max_mtime = get_mtime(sbi, false); 5456 sit_i->dirty_max_mtime = 0; 5457 up_write(&sit_i->sentry_lock); 5458 } 5459 5460 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5461 { 5462 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5463 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5464 struct f2fs_sm_info *sm_info; 5465 int err; 5466 5467 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5468 if (!sm_info) 5469 return -ENOMEM; 5470 5471 /* init sm info */ 5472 sbi->sm_info = sm_info; 5473 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5474 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5475 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5476 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5477 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5478 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5479 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5480 sm_info->rec_prefree_segments = sm_info->main_segments * 5481 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5482 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5483 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5484 5485 if (!f2fs_lfs_mode(sbi)) 5486 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC); 5487 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5488 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5489 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi); 5490 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5491 sm_info->min_ssr_sections = reserved_sections(sbi); 5492 5493 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5494 5495 init_f2fs_rwsem(&sm_info->curseg_lock); 5496 5497 err = f2fs_create_flush_cmd_control(sbi); 5498 if (err) 5499 return err; 5500 5501 err = create_discard_cmd_control(sbi); 5502 if (err) 5503 return err; 5504 5505 err = build_sit_info(sbi); 5506 if (err) 5507 return err; 5508 err = build_free_segmap(sbi); 5509 if (err) 5510 return err; 5511 err = build_curseg(sbi); 5512 if (err) 5513 return err; 5514 5515 /* reinit free segmap based on SIT */ 5516 err = build_sit_entries(sbi); 5517 if (err) 5518 return err; 5519 5520 init_free_segmap(sbi); 5521 err = build_dirty_segmap(sbi); 5522 if (err) 5523 return err; 5524 5525 err = sanity_check_curseg(sbi); 5526 if (err) 5527 return err; 5528 5529 init_min_max_mtime(sbi); 5530 return 0; 5531 } 5532 5533 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5534 enum dirty_type dirty_type) 5535 { 5536 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5537 5538 mutex_lock(&dirty_i->seglist_lock); 5539 kvfree(dirty_i->dirty_segmap[dirty_type]); 5540 dirty_i->nr_dirty[dirty_type] = 0; 5541 mutex_unlock(&dirty_i->seglist_lock); 5542 } 5543 5544 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5545 { 5546 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5547 5548 kvfree(dirty_i->pinned_secmap); 5549 kvfree(dirty_i->victim_secmap); 5550 } 5551 5552 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5553 { 5554 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5555 int i; 5556 5557 if (!dirty_i) 5558 return; 5559 5560 /* discard pre-free/dirty segments list */ 5561 for (i = 0; i < NR_DIRTY_TYPE; i++) 5562 discard_dirty_segmap(sbi, i); 5563 5564 if (__is_large_section(sbi)) { 5565 mutex_lock(&dirty_i->seglist_lock); 5566 kvfree(dirty_i->dirty_secmap); 5567 mutex_unlock(&dirty_i->seglist_lock); 5568 } 5569 5570 destroy_victim_secmap(sbi); 5571 SM_I(sbi)->dirty_info = NULL; 5572 kfree(dirty_i); 5573 } 5574 5575 static void destroy_curseg(struct f2fs_sb_info *sbi) 5576 { 5577 struct curseg_info *array = SM_I(sbi)->curseg_array; 5578 int i; 5579 5580 if (!array) 5581 return; 5582 SM_I(sbi)->curseg_array = NULL; 5583 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5584 kfree(array[i].sum_blk); 5585 kfree(array[i].journal); 5586 } 5587 kfree(array); 5588 } 5589 5590 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5591 { 5592 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5593 5594 if (!free_i) 5595 return; 5596 SM_I(sbi)->free_info = NULL; 5597 kvfree(free_i->free_segmap); 5598 kvfree(free_i->free_secmap); 5599 kfree(free_i); 5600 } 5601 5602 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5603 { 5604 struct sit_info *sit_i = SIT_I(sbi); 5605 5606 if (!sit_i) 5607 return; 5608 5609 if (sit_i->sentries) 5610 kvfree(sit_i->bitmap); 5611 kfree(sit_i->tmp_map); 5612 5613 kvfree(sit_i->sentries); 5614 kvfree(sit_i->sec_entries); 5615 kvfree(sit_i->dirty_sentries_bitmap); 5616 5617 SM_I(sbi)->sit_info = NULL; 5618 kvfree(sit_i->sit_bitmap); 5619 #ifdef CONFIG_F2FS_CHECK_FS 5620 kvfree(sit_i->sit_bitmap_mir); 5621 kvfree(sit_i->invalid_segmap); 5622 #endif 5623 kfree(sit_i); 5624 } 5625 5626 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5627 { 5628 struct f2fs_sm_info *sm_info = SM_I(sbi); 5629 5630 if (!sm_info) 5631 return; 5632 f2fs_destroy_flush_cmd_control(sbi, true); 5633 destroy_discard_cmd_control(sbi); 5634 destroy_dirty_segmap(sbi); 5635 destroy_curseg(sbi); 5636 destroy_free_segmap(sbi); 5637 destroy_sit_info(sbi); 5638 sbi->sm_info = NULL; 5639 kfree(sm_info); 5640 } 5641 5642 int __init f2fs_create_segment_manager_caches(void) 5643 { 5644 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5645 sizeof(struct discard_entry)); 5646 if (!discard_entry_slab) 5647 goto fail; 5648 5649 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5650 sizeof(struct discard_cmd)); 5651 if (!discard_cmd_slab) 5652 goto destroy_discard_entry; 5653 5654 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5655 sizeof(struct sit_entry_set)); 5656 if (!sit_entry_set_slab) 5657 goto destroy_discard_cmd; 5658 5659 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", 5660 sizeof(struct revoke_entry)); 5661 if (!revoke_entry_slab) 5662 goto destroy_sit_entry_set; 5663 return 0; 5664 5665 destroy_sit_entry_set: 5666 kmem_cache_destroy(sit_entry_set_slab); 5667 destroy_discard_cmd: 5668 kmem_cache_destroy(discard_cmd_slab); 5669 destroy_discard_entry: 5670 kmem_cache_destroy(discard_entry_slab); 5671 fail: 5672 return -ENOMEM; 5673 } 5674 5675 void f2fs_destroy_segment_manager_caches(void) 5676 { 5677 kmem_cache_destroy(sit_entry_set_slab); 5678 kmem_cache_destroy(discard_cmd_slab); 5679 kmem_cache_destroy(discard_entry_slab); 5680 kmem_cache_destroy(revoke_entry_slab); 5681 } 5682
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.