~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/f2fs/segment.h

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 /*
  3  * fs/f2fs/segment.h
  4  *
  5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6  *             http://www.samsung.com/
  7  */
  8 #include <linux/blkdev.h>
  9 #include <linux/backing-dev.h>
 10 
 11 /* constant macro */
 12 #define NULL_SEGNO                      ((unsigned int)(~0))
 13 #define NULL_SECNO                      ((unsigned int)(~0))
 14 
 15 #define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
 16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS        4096    /* 8GB in maximum */
 17 
 18 #define F2FS_MIN_SEGMENTS       9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 19 #define F2FS_MIN_META_SEGMENTS  8 /* SB + 2 (CP + SIT + NAT) + SSA */
 20 
 21 /* L: Logical segment # in volume, R: Relative segment # in main area */
 22 #define GET_L2R_SEGNO(free_i, segno)    ((segno) - (free_i)->start_segno)
 23 #define GET_R2L_SEGNO(free_i, segno)    ((segno) + (free_i)->start_segno)
 24 
 25 #define IS_DATASEG(t)   ((t) <= CURSEG_COLD_DATA)
 26 #define IS_NODESEG(t)   ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
 27 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
 28 
 29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
 30                                                 unsigned short seg_type)
 31 {
 32         f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
 33 }
 34 
 35 #define IS_HOT(t)       ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
 36 #define IS_WARM(t)      ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
 37 #define IS_COLD(t)      ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
 38 
 39 #define IS_CURSEG(sbi, seg)                                             \
 40         (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||    \
 41          ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||   \
 42          ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||   \
 43          ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||    \
 44          ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||   \
 45          ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||   \
 46          ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||    \
 47          ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
 48 
 49 #define IS_CURSEC(sbi, secno)                                           \
 50         (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /            \
 51           SEGS_PER_SEC(sbi)) || \
 52          ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /           \
 53           SEGS_PER_SEC(sbi)) || \
 54          ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /           \
 55           SEGS_PER_SEC(sbi)) || \
 56          ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /            \
 57           SEGS_PER_SEC(sbi)) || \
 58          ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /           \
 59           SEGS_PER_SEC(sbi)) || \
 60          ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /           \
 61           SEGS_PER_SEC(sbi)) || \
 62          ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /    \
 63           SEGS_PER_SEC(sbi)) || \
 64          ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /       \
 65           SEGS_PER_SEC(sbi)))
 66 
 67 #define MAIN_BLKADDR(sbi)                                               \
 68         (SM_I(sbi) ? SM_I(sbi)->main_blkaddr :                          \
 69                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
 70 #define SEG0_BLKADDR(sbi)                                               \
 71         (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr :                          \
 72                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
 73 
 74 #define MAIN_SEGS(sbi)  (SM_I(sbi)->main_segments)
 75 #define MAIN_SECS(sbi)  ((sbi)->total_sections)
 76 
 77 #define TOTAL_SEGS(sbi)                                                 \
 78         (SM_I(sbi) ? SM_I(sbi)->segment_count :                                 \
 79                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
 80 #define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi)))
 81 
 82 #define MAX_BLKADDR(sbi)        (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 83 #define SEGMENT_SIZE(sbi)       (1ULL << ((sbi)->log_blocksize +        \
 84                                         (sbi)->log_blocks_per_seg))
 85 
 86 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) +                    \
 87          (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno))))
 88 
 89 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
 90         (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
 91 
 92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)     ((blk_addr) - SEG0_BLKADDR(sbi))
 93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
 94         (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr)))
 95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
 96         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1))
 97 
 98 #define GET_SEGNO(sbi, blk_addr)                                        \
 99         ((!__is_valid_data_blkaddr(blk_addr)) ?                 \
100         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
101                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define CAP_BLKS_PER_SEC(sbi)                                   \
103         (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec)
104 #define CAP_SEGS_PER_SEC(sbi)                                   \
105         (SEGS_PER_SEC(sbi) -                                    \
106         BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec))
107 #define GET_SEC_FROM_SEG(sbi, segno)                            \
108         (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi))
109 #define GET_SEG_FROM_SEC(sbi, secno)                            \
110         ((secno) * SEGS_PER_SEC(sbi))
111 #define GET_ZONE_FROM_SEC(sbi, secno)                           \
112         (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
113 #define GET_ZONE_FROM_SEG(sbi, segno)                           \
114         GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
115 
116 #define GET_SUM_BLOCK(sbi, segno)                               \
117         ((sbi)->sm_info->ssa_blkaddr + (segno))
118 
119 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
120 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
121 
122 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
123         ((segno) % (sit_i)->sents_per_block)
124 #define SIT_BLOCK_OFFSET(segno)                                 \
125         ((segno) / SIT_ENTRY_PER_BLOCK)
126 #define START_SEGNO(segno)              \
127         (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128 #define SIT_BLK_CNT(sbi)                        \
129         DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130 #define f2fs_bitmap_size(nr)                    \
131         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
132 
133 #define SECTOR_FROM_BLOCK(blk_addr)                                     \
134         (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135 #define SECTOR_TO_BLOCK(sectors)                                        \
136         ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
137 
138 /*
139  * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
140  * LFS writes data sequentially with cleaning operations.
141  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
142  * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
143  * fragmented segment which has similar aging degree.
144  */
145 enum {
146         LFS = 0,
147         SSR,
148         AT_SSR,
149 };
150 
151 /*
152  * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
153  * GC_CB is based on cost-benefit algorithm.
154  * GC_GREEDY is based on greedy algorithm.
155  * GC_AT is based on age-threshold algorithm.
156  */
157 enum {
158         GC_CB = 0,
159         GC_GREEDY,
160         GC_AT,
161         ALLOC_NEXT,
162         FLUSH_DEVICE,
163         MAX_GC_POLICY,
164 };
165 
166 /*
167  * BG_GC means the background cleaning job.
168  * FG_GC means the on-demand cleaning job.
169  */
170 enum {
171         BG_GC = 0,
172         FG_GC,
173 };
174 
175 /* for a function parameter to select a victim segment */
176 struct victim_sel_policy {
177         int alloc_mode;                 /* LFS or SSR */
178         int gc_mode;                    /* GC_CB or GC_GREEDY */
179         unsigned long *dirty_bitmap;    /* dirty segment/section bitmap */
180         unsigned int max_search;        /*
181                                          * maximum # of segments/sections
182                                          * to search
183                                          */
184         unsigned int offset;            /* last scanned bitmap offset */
185         unsigned int ofs_unit;          /* bitmap search unit */
186         unsigned int min_cost;          /* minimum cost */
187         unsigned long long oldest_age;  /* oldest age of segments having the same min cost */
188         unsigned int min_segno;         /* segment # having min. cost */
189         unsigned long long age;         /* mtime of GCed section*/
190         unsigned long long age_threshold;/* age threshold */
191 };
192 
193 struct seg_entry {
194         unsigned int type:6;            /* segment type like CURSEG_XXX_TYPE */
195         unsigned int valid_blocks:10;   /* # of valid blocks */
196         unsigned int ckpt_valid_blocks:10;      /* # of valid blocks last cp */
197         unsigned int padding:6;         /* padding */
198         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
199 #ifdef CONFIG_F2FS_CHECK_FS
200         unsigned char *cur_valid_map_mir;       /* mirror of current valid bitmap */
201 #endif
202         /*
203          * # of valid blocks and the validity bitmap stored in the last
204          * checkpoint pack. This information is used by the SSR mode.
205          */
206         unsigned char *ckpt_valid_map;  /* validity bitmap of blocks last cp */
207         unsigned char *discard_map;
208         unsigned long long mtime;       /* modification time of the segment */
209 };
210 
211 struct sec_entry {
212         unsigned int valid_blocks;      /* # of valid blocks in a section */
213 };
214 
215 #define MAX_SKIP_GC_COUNT                       16
216 
217 struct revoke_entry {
218         struct list_head list;
219         block_t old_addr;               /* for revoking when fail to commit */
220         pgoff_t index;
221 };
222 
223 struct sit_info {
224         block_t sit_base_addr;          /* start block address of SIT area */
225         block_t sit_blocks;             /* # of blocks used by SIT area */
226         block_t written_valid_blocks;   /* # of valid blocks in main area */
227         char *bitmap;                   /* all bitmaps pointer */
228         char *sit_bitmap;               /* SIT bitmap pointer */
229 #ifdef CONFIG_F2FS_CHECK_FS
230         char *sit_bitmap_mir;           /* SIT bitmap mirror */
231 
232         /* bitmap of segments to be ignored by GC in case of errors */
233         unsigned long *invalid_segmap;
234 #endif
235         unsigned int bitmap_size;       /* SIT bitmap size */
236 
237         unsigned long *tmp_map;                 /* bitmap for temporal use */
238         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
239         unsigned int dirty_sentries;            /* # of dirty sentries */
240         unsigned int sents_per_block;           /* # of SIT entries per block */
241         struct rw_semaphore sentry_lock;        /* to protect SIT cache */
242         struct seg_entry *sentries;             /* SIT segment-level cache */
243         struct sec_entry *sec_entries;          /* SIT section-level cache */
244 
245         /* for cost-benefit algorithm in cleaning procedure */
246         unsigned long long elapsed_time;        /* elapsed time after mount */
247         unsigned long long mounted_time;        /* mount time */
248         unsigned long long min_mtime;           /* min. modification time */
249         unsigned long long max_mtime;           /* max. modification time */
250         unsigned long long dirty_min_mtime;     /* rerange candidates in GC_AT */
251         unsigned long long dirty_max_mtime;     /* rerange candidates in GC_AT */
252 
253         unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
254 };
255 
256 struct free_segmap_info {
257         unsigned int start_segno;       /* start segment number logically */
258         unsigned int free_segments;     /* # of free segments */
259         unsigned int free_sections;     /* # of free sections */
260         spinlock_t segmap_lock;         /* free segmap lock */
261         unsigned long *free_segmap;     /* free segment bitmap */
262         unsigned long *free_secmap;     /* free section bitmap */
263 };
264 
265 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
266 enum dirty_type {
267         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
268         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
269         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
270         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
271         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
272         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
273         DIRTY,                  /* to count # of dirty segments */
274         PRE,                    /* to count # of entirely obsolete segments */
275         NR_DIRTY_TYPE
276 };
277 
278 struct dirty_seglist_info {
279         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
280         unsigned long *dirty_secmap;
281         struct mutex seglist_lock;              /* lock for segment bitmaps */
282         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
283         unsigned long *victim_secmap;           /* background GC victims */
284         unsigned long *pinned_secmap;           /* pinned victims from foreground GC */
285         unsigned int pinned_secmap_cnt;         /* count of victims which has pinned data */
286         bool enable_pin_section;                /* enable pinning section */
287 };
288 
289 /* for active log information */
290 struct curseg_info {
291         struct mutex curseg_mutex;              /* lock for consistency */
292         struct f2fs_summary_block *sum_blk;     /* cached summary block */
293         struct rw_semaphore journal_rwsem;      /* protect journal area */
294         struct f2fs_journal *journal;           /* cached journal info */
295         unsigned char alloc_type;               /* current allocation type */
296         unsigned short seg_type;                /* segment type like CURSEG_XXX_TYPE */
297         unsigned int segno;                     /* current segment number */
298         unsigned short next_blkoff;             /* next block offset to write */
299         unsigned int zone;                      /* current zone number */
300         unsigned int next_segno;                /* preallocated segment */
301         int fragment_remained_chunk;            /* remained block size in a chunk for block fragmentation mode */
302         bool inited;                            /* indicate inmem log is inited */
303 };
304 
305 struct sit_entry_set {
306         struct list_head set_list;      /* link with all sit sets */
307         unsigned int start_segno;       /* start segno of sits in set */
308         unsigned int entry_cnt;         /* the # of sit entries in set */
309 };
310 
311 /*
312  * inline functions
313  */
314 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
315 {
316         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
317 }
318 
319 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
320                                                 unsigned int segno)
321 {
322         struct sit_info *sit_i = SIT_I(sbi);
323         return &sit_i->sentries[segno];
324 }
325 
326 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
327                                                 unsigned int segno)
328 {
329         struct sit_info *sit_i = SIT_I(sbi);
330         return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
331 }
332 
333 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
334                                 unsigned int segno, bool use_section)
335 {
336         /*
337          * In order to get # of valid blocks in a section instantly from many
338          * segments, f2fs manages two counting structures separately.
339          */
340         if (use_section && __is_large_section(sbi))
341                 return get_sec_entry(sbi, segno)->valid_blocks;
342         else
343                 return get_seg_entry(sbi, segno)->valid_blocks;
344 }
345 
346 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
347                                 unsigned int segno, bool use_section)
348 {
349         if (use_section && __is_large_section(sbi)) {
350                 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
351                 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
352                 unsigned int blocks = 0;
353                 int i;
354 
355                 for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
356                         struct seg_entry *se = get_seg_entry(sbi, start_segno);
357 
358                         blocks += se->ckpt_valid_blocks;
359                 }
360                 return blocks;
361         }
362         return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
363 }
364 
365 static inline void seg_info_from_raw_sit(struct seg_entry *se,
366                                         struct f2fs_sit_entry *rs)
367 {
368         se->valid_blocks = GET_SIT_VBLOCKS(rs);
369         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
370         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
371         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
372 #ifdef CONFIG_F2FS_CHECK_FS
373         memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
374 #endif
375         se->type = GET_SIT_TYPE(rs);
376         se->mtime = le64_to_cpu(rs->mtime);
377 }
378 
379 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
380                                         struct f2fs_sit_entry *rs)
381 {
382         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
383                                         se->valid_blocks;
384         rs->vblocks = cpu_to_le16(raw_vblocks);
385         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
386         rs->mtime = cpu_to_le64(se->mtime);
387 }
388 
389 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
390                                 struct page *page, unsigned int start)
391 {
392         struct f2fs_sit_block *raw_sit;
393         struct seg_entry *se;
394         struct f2fs_sit_entry *rs;
395         unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
396                                         (unsigned long)MAIN_SEGS(sbi));
397         int i;
398 
399         raw_sit = (struct f2fs_sit_block *)page_address(page);
400         memset(raw_sit, 0, PAGE_SIZE);
401         for (i = 0; i < end - start; i++) {
402                 rs = &raw_sit->entries[i];
403                 se = get_seg_entry(sbi, start + i);
404                 __seg_info_to_raw_sit(se, rs);
405         }
406 }
407 
408 static inline void seg_info_to_raw_sit(struct seg_entry *se,
409                                         struct f2fs_sit_entry *rs)
410 {
411         __seg_info_to_raw_sit(se, rs);
412 
413         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
414         se->ckpt_valid_blocks = se->valid_blocks;
415 }
416 
417 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
418                 unsigned int max, unsigned int segno)
419 {
420         unsigned int ret;
421         spin_lock(&free_i->segmap_lock);
422         ret = find_next_bit(free_i->free_segmap, max, segno);
423         spin_unlock(&free_i->segmap_lock);
424         return ret;
425 }
426 
427 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
428 {
429         struct free_segmap_info *free_i = FREE_I(sbi);
430         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
431         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
432         unsigned int next;
433         unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
434 
435         spin_lock(&free_i->segmap_lock);
436         clear_bit(segno, free_i->free_segmap);
437         free_i->free_segments++;
438 
439         next = find_next_bit(free_i->free_segmap,
440                         start_segno + SEGS_PER_SEC(sbi), start_segno);
441         if (next >= start_segno + usable_segs) {
442                 clear_bit(secno, free_i->free_secmap);
443                 free_i->free_sections++;
444         }
445         spin_unlock(&free_i->segmap_lock);
446 }
447 
448 static inline void __set_inuse(struct f2fs_sb_info *sbi,
449                 unsigned int segno)
450 {
451         struct free_segmap_info *free_i = FREE_I(sbi);
452         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
453 
454         set_bit(segno, free_i->free_segmap);
455         free_i->free_segments--;
456         if (!test_and_set_bit(secno, free_i->free_secmap))
457                 free_i->free_sections--;
458 }
459 
460 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
461                 unsigned int segno, bool inmem)
462 {
463         struct free_segmap_info *free_i = FREE_I(sbi);
464         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
465         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
466         unsigned int next;
467         unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
468 
469         spin_lock(&free_i->segmap_lock);
470         if (test_and_clear_bit(segno, free_i->free_segmap)) {
471                 free_i->free_segments++;
472 
473                 if (!inmem && IS_CURSEC(sbi, secno))
474                         goto skip_free;
475                 next = find_next_bit(free_i->free_segmap,
476                                 start_segno + SEGS_PER_SEC(sbi), start_segno);
477                 if (next >= start_segno + usable_segs) {
478                         if (test_and_clear_bit(secno, free_i->free_secmap))
479                                 free_i->free_sections++;
480                 }
481         }
482 skip_free:
483         spin_unlock(&free_i->segmap_lock);
484 }
485 
486 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
487                 unsigned int segno)
488 {
489         struct free_segmap_info *free_i = FREE_I(sbi);
490         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
491 
492         spin_lock(&free_i->segmap_lock);
493         if (!test_and_set_bit(segno, free_i->free_segmap)) {
494                 free_i->free_segments--;
495                 if (!test_and_set_bit(secno, free_i->free_secmap))
496                         free_i->free_sections--;
497         }
498         spin_unlock(&free_i->segmap_lock);
499 }
500 
501 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
502                 void *dst_addr)
503 {
504         struct sit_info *sit_i = SIT_I(sbi);
505 
506 #ifdef CONFIG_F2FS_CHECK_FS
507         if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
508                                                 sit_i->bitmap_size))
509                 f2fs_bug_on(sbi, 1);
510 #endif
511         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
512 }
513 
514 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
515 {
516         return SIT_I(sbi)->written_valid_blocks;
517 }
518 
519 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
520 {
521         return FREE_I(sbi)->free_segments;
522 }
523 
524 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
525 {
526         return SM_I(sbi)->reserved_segments +
527                         SM_I(sbi)->additional_reserved_segments;
528 }
529 
530 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
531 {
532         return FREE_I(sbi)->free_sections;
533 }
534 
535 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
536 {
537         return DIRTY_I(sbi)->nr_dirty[PRE];
538 }
539 
540 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
541 {
542         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
543                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
544                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
545                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
546                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
547                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
548 }
549 
550 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
551 {
552         return SM_I(sbi)->ovp_segments;
553 }
554 
555 static inline int reserved_sections(struct f2fs_sb_info *sbi)
556 {
557         return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
558 }
559 
560 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
561                         unsigned int node_blocks, unsigned int dent_blocks)
562 {
563 
564         unsigned segno, left_blocks;
565         int i;
566 
567         /* check current node sections in the worst case. */
568         for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
569                 segno = CURSEG_I(sbi, i)->segno;
570                 left_blocks = CAP_BLKS_PER_SEC(sbi) -
571                                 get_ckpt_valid_blocks(sbi, segno, true);
572                 if (node_blocks > left_blocks)
573                         return false;
574         }
575 
576         /* check current data section for dentry blocks. */
577         segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
578         left_blocks = CAP_BLKS_PER_SEC(sbi) -
579                         get_ckpt_valid_blocks(sbi, segno, true);
580         if (dent_blocks > left_blocks)
581                 return false;
582         return true;
583 }
584 
585 /*
586  * calculate needed sections for dirty node/dentry
587  * and call has_curseg_enough_space
588  */
589 static inline void __get_secs_required(struct f2fs_sb_info *sbi,
590                 unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
591 {
592         unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
593                                         get_pages(sbi, F2FS_DIRTY_DENTS) +
594                                         get_pages(sbi, F2FS_DIRTY_IMETA);
595         unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
596         unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
597         unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
598         unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
599         unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
600 
601         if (lower_p)
602                 *lower_p = node_secs + dent_secs;
603         if (upper_p)
604                 *upper_p = node_secs + dent_secs +
605                         (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
606         if (curseg_p)
607                 *curseg_p = has_curseg_enough_space(sbi,
608                                 node_blocks, dent_blocks);
609 }
610 
611 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
612                                         int freed, int needed)
613 {
614         unsigned int free_secs, lower_secs, upper_secs;
615         bool curseg_space;
616 
617         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
618                 return false;
619 
620         __get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
621 
622         free_secs = free_sections(sbi) + freed;
623         lower_secs += needed + reserved_sections(sbi);
624         upper_secs += needed + reserved_sections(sbi);
625 
626         if (free_secs > upper_secs)
627                 return false;
628         if (free_secs <= lower_secs)
629                 return true;
630         return !curseg_space;
631 }
632 
633 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
634                                         int freed, int needed)
635 {
636         return !has_not_enough_free_secs(sbi, freed, needed);
637 }
638 
639 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
640 {
641         if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
642                 return true;
643         if (likely(has_enough_free_secs(sbi, 0, 0)))
644                 return true;
645         return false;
646 }
647 
648 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
649 {
650         return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
651 }
652 
653 static inline int utilization(struct f2fs_sb_info *sbi)
654 {
655         return div_u64((u64)valid_user_blocks(sbi) * 100,
656                                         sbi->user_block_count);
657 }
658 
659 /*
660  * Sometimes f2fs may be better to drop out-of-place update policy.
661  * And, users can control the policy through sysfs entries.
662  * There are five policies with triggering conditions as follows.
663  * F2FS_IPU_FORCE - all the time,
664  * F2FS_IPU_SSR - if SSR mode is activated,
665  * F2FS_IPU_UTIL - if FS utilization is over threashold,
666  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
667  *                     threashold,
668  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
669  *                     storages. IPU will be triggered only if the # of dirty
670  *                     pages over min_fsync_blocks. (=default option)
671  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
672  * F2FS_IPU_NOCACHE - disable IPU bio cache.
673  * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
674  *                            FI_OPU_WRITE flag.
675  * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
676  */
677 #define DEF_MIN_IPU_UTIL        70
678 #define DEF_MIN_FSYNC_BLOCKS    8
679 #define DEF_MIN_HOT_BLOCKS      16
680 
681 #define SMALL_VOLUME_SEGMENTS   (16 * 512)      /* 16GB */
682 
683 #define F2FS_IPU_DISABLE        0
684 
685 /* Modification on enum should be synchronized with ipu_mode_names array */
686 enum {
687         F2FS_IPU_FORCE,
688         F2FS_IPU_SSR,
689         F2FS_IPU_UTIL,
690         F2FS_IPU_SSR_UTIL,
691         F2FS_IPU_FSYNC,
692         F2FS_IPU_ASYNC,
693         F2FS_IPU_NOCACHE,
694         F2FS_IPU_HONOR_OPU_WRITE,
695         F2FS_IPU_MAX,
696 };
697 
698 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
699 {
700         return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
701 }
702 
703 #define F2FS_IPU_POLICY(name)                                   \
704 static inline bool IS_##name(struct f2fs_sb_info *sbi)          \
705 {                                                               \
706         return SM_I(sbi)->ipu_policy & BIT(name);               \
707 }
708 
709 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
710 F2FS_IPU_POLICY(F2FS_IPU_SSR);
711 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
712 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
713 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
714 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
715 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
716 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
717 
718 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
719                 int type)
720 {
721         struct curseg_info *curseg = CURSEG_I(sbi, type);
722         return curseg->segno;
723 }
724 
725 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
726                 int type)
727 {
728         struct curseg_info *curseg = CURSEG_I(sbi, type);
729         return curseg->alloc_type;
730 }
731 
732 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
733                 unsigned int segno)
734 {
735         return segno <= (MAIN_SEGS(sbi) - 1);
736 }
737 
738 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
739 {
740         struct f2fs_sb_info *sbi = fio->sbi;
741 
742         if (__is_valid_data_blkaddr(fio->old_blkaddr))
743                 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
744                                         META_GENERIC : DATA_GENERIC);
745         verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
746                                         META_GENERIC : DATA_GENERIC_ENHANCE);
747 }
748 
749 /*
750  * Summary block is always treated as an invalid block
751  */
752 static inline int check_block_count(struct f2fs_sb_info *sbi,
753                 int segno, struct f2fs_sit_entry *raw_sit)
754 {
755         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
756         int valid_blocks = 0;
757         int cur_pos = 0, next_pos;
758         unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
759 
760         /* check bitmap with valid block count */
761         do {
762                 if (is_valid) {
763                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
764                                         usable_blks_per_seg,
765                                         cur_pos);
766                         valid_blocks += next_pos - cur_pos;
767                 } else
768                         next_pos = find_next_bit_le(&raw_sit->valid_map,
769                                         usable_blks_per_seg,
770                                         cur_pos);
771                 cur_pos = next_pos;
772                 is_valid = !is_valid;
773         } while (cur_pos < usable_blks_per_seg);
774 
775         if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
776                 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
777                          GET_SIT_VBLOCKS(raw_sit), valid_blocks);
778                 set_sbi_flag(sbi, SBI_NEED_FSCK);
779                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
780                 return -EFSCORRUPTED;
781         }
782 
783         if (usable_blks_per_seg < BLKS_PER_SEG(sbi))
784                 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
785                                 BLKS_PER_SEG(sbi),
786                                 usable_blks_per_seg) != BLKS_PER_SEG(sbi));
787 
788         /* check segment usage, and check boundary of a given segment number */
789         if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
790                                         || !valid_main_segno(sbi, segno))) {
791                 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
792                          GET_SIT_VBLOCKS(raw_sit), segno);
793                 set_sbi_flag(sbi, SBI_NEED_FSCK);
794                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
795                 return -EFSCORRUPTED;
796         }
797         return 0;
798 }
799 
800 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
801                                                 unsigned int start)
802 {
803         struct sit_info *sit_i = SIT_I(sbi);
804         unsigned int offset = SIT_BLOCK_OFFSET(start);
805         block_t blk_addr = sit_i->sit_base_addr + offset;
806 
807         f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
808 
809 #ifdef CONFIG_F2FS_CHECK_FS
810         if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
811                         f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
812                 f2fs_bug_on(sbi, 1);
813 #endif
814 
815         /* calculate sit block address */
816         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
817                 blk_addr += sit_i->sit_blocks;
818 
819         return blk_addr;
820 }
821 
822 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
823                                                 pgoff_t block_addr)
824 {
825         struct sit_info *sit_i = SIT_I(sbi);
826         block_addr -= sit_i->sit_base_addr;
827         if (block_addr < sit_i->sit_blocks)
828                 block_addr += sit_i->sit_blocks;
829         else
830                 block_addr -= sit_i->sit_blocks;
831 
832         return block_addr + sit_i->sit_base_addr;
833 }
834 
835 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
836 {
837         unsigned int block_off = SIT_BLOCK_OFFSET(start);
838 
839         f2fs_change_bit(block_off, sit_i->sit_bitmap);
840 #ifdef CONFIG_F2FS_CHECK_FS
841         f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
842 #endif
843 }
844 
845 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
846                                                 bool base_time)
847 {
848         struct sit_info *sit_i = SIT_I(sbi);
849         time64_t diff, now = ktime_get_boottime_seconds();
850 
851         if (now >= sit_i->mounted_time)
852                 return sit_i->elapsed_time + now - sit_i->mounted_time;
853 
854         /* system time is set to the past */
855         if (!base_time) {
856                 diff = sit_i->mounted_time - now;
857                 if (sit_i->elapsed_time >= diff)
858                         return sit_i->elapsed_time - diff;
859                 return 0;
860         }
861         return sit_i->elapsed_time;
862 }
863 
864 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
865                         unsigned int ofs_in_node, unsigned char version)
866 {
867         sum->nid = cpu_to_le32(nid);
868         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
869         sum->version = version;
870 }
871 
872 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
873 {
874         return __start_cp_addr(sbi) +
875                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
876 }
877 
878 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
879 {
880         return __start_cp_addr(sbi) +
881                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
882                                 - (base + 1) + type;
883 }
884 
885 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
886 {
887         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
888                 return true;
889         return false;
890 }
891 
892 /*
893  * It is very important to gather dirty pages and write at once, so that we can
894  * submit a big bio without interfering other data writes.
895  * By default, 512 pages for directory data,
896  * 512 pages (2MB) * 8 for nodes, and
897  * 256 pages * 8 for meta are set.
898  */
899 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
900 {
901         if (sbi->sb->s_bdi->wb.dirty_exceeded)
902                 return 0;
903 
904         if (type == DATA)
905                 return BLKS_PER_SEG(sbi);
906         else if (type == NODE)
907                 return SEGS_TO_BLKS(sbi, 8);
908         else if (type == META)
909                 return 8 * BIO_MAX_VECS;
910         else
911                 return 0;
912 }
913 
914 /*
915  * When writing pages, it'd better align nr_to_write for segment size.
916  */
917 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
918                                         struct writeback_control *wbc)
919 {
920         long nr_to_write, desired;
921 
922         if (wbc->sync_mode != WB_SYNC_NONE)
923                 return 0;
924 
925         nr_to_write = wbc->nr_to_write;
926         desired = BIO_MAX_VECS;
927         if (type == NODE)
928                 desired <<= 1;
929 
930         wbc->nr_to_write = desired;
931         return desired - nr_to_write;
932 }
933 
934 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
935 {
936         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
937         bool wakeup = false;
938         int i;
939 
940         if (force)
941                 goto wake_up;
942 
943         mutex_lock(&dcc->cmd_lock);
944         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
945                 if (i + 1 < dcc->discard_granularity)
946                         break;
947                 if (!list_empty(&dcc->pend_list[i])) {
948                         wakeup = true;
949                         break;
950                 }
951         }
952         mutex_unlock(&dcc->cmd_lock);
953         if (!wakeup || !is_idle(sbi, DISCARD_TIME))
954                 return;
955 wake_up:
956         dcc->discard_wake = true;
957         wake_up_interruptible_all(&dcc->discard_wait_queue);
958 }
959 
960 static inline unsigned int first_zoned_segno(struct f2fs_sb_info *sbi)
961 {
962         int devi;
963 
964         for (devi = 0; devi < sbi->s_ndevs; devi++)
965                 if (bdev_is_zoned(FDEV(devi).bdev))
966                         return GET_SEGNO(sbi, FDEV(devi).start_blk);
967         return 0;
968 }
969 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php