1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/fs_context.h> 12 #include <linux/sched/mm.h> 13 #include <linux/statfs.h> 14 #include <linux/buffer_head.h> 15 #include <linux/kthread.h> 16 #include <linux/parser.h> 17 #include <linux/mount.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <linux/random.h> 21 #include <linux/exportfs.h> 22 #include <linux/blkdev.h> 23 #include <linux/quotaops.h> 24 #include <linux/f2fs_fs.h> 25 #include <linux/sysfs.h> 26 #include <linux/quota.h> 27 #include <linux/unicode.h> 28 #include <linux/part_stat.h> 29 #include <linux/zstd.h> 30 #include <linux/lz4.h> 31 32 #include "f2fs.h" 33 #include "node.h" 34 #include "segment.h" 35 #include "xattr.h" 36 #include "gc.h" 37 #include "iostat.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/f2fs.h> 41 42 static struct kmem_cache *f2fs_inode_cachep; 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 46 const char *f2fs_fault_name[FAULT_MAX] = { 47 [FAULT_KMALLOC] = "kmalloc", 48 [FAULT_KVMALLOC] = "kvmalloc", 49 [FAULT_PAGE_ALLOC] = "page alloc", 50 [FAULT_PAGE_GET] = "page get", 51 [FAULT_ALLOC_NID] = "alloc nid", 52 [FAULT_ORPHAN] = "orphan", 53 [FAULT_BLOCK] = "no more block", 54 [FAULT_DIR_DEPTH] = "too big dir depth", 55 [FAULT_EVICT_INODE] = "evict_inode fail", 56 [FAULT_TRUNCATE] = "truncate fail", 57 [FAULT_READ_IO] = "read IO error", 58 [FAULT_CHECKPOINT] = "checkpoint error", 59 [FAULT_DISCARD] = "discard error", 60 [FAULT_WRITE_IO] = "write IO error", 61 [FAULT_SLAB_ALLOC] = "slab alloc", 62 [FAULT_DQUOT_INIT] = "dquot initialize", 63 [FAULT_LOCK_OP] = "lock_op", 64 [FAULT_BLKADDR_VALIDITY] = "invalid blkaddr", 65 [FAULT_BLKADDR_CONSISTENCE] = "inconsistent blkaddr", 66 [FAULT_NO_SEGMENT] = "no free segment", 67 }; 68 69 int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, 70 unsigned long type) 71 { 72 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 73 74 if (rate) { 75 if (rate > INT_MAX) 76 return -EINVAL; 77 atomic_set(&ffi->inject_ops, 0); 78 ffi->inject_rate = (int)rate; 79 } 80 81 if (type) { 82 if (type >= BIT(FAULT_MAX)) 83 return -EINVAL; 84 ffi->inject_type = (unsigned int)type; 85 } 86 87 if (!rate && !type) 88 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 89 else 90 f2fs_info(sbi, 91 "build fault injection attr: rate: %lu, type: 0x%lx", 92 rate, type); 93 return 0; 94 } 95 #endif 96 97 /* f2fs-wide shrinker description */ 98 static struct shrinker *f2fs_shrinker_info; 99 100 static int __init f2fs_init_shrinker(void) 101 { 102 f2fs_shrinker_info = shrinker_alloc(0, "f2fs-shrinker"); 103 if (!f2fs_shrinker_info) 104 return -ENOMEM; 105 106 f2fs_shrinker_info->count_objects = f2fs_shrink_count; 107 f2fs_shrinker_info->scan_objects = f2fs_shrink_scan; 108 109 shrinker_register(f2fs_shrinker_info); 110 111 return 0; 112 } 113 114 static void f2fs_exit_shrinker(void) 115 { 116 shrinker_free(f2fs_shrinker_info); 117 } 118 119 enum { 120 Opt_gc_background, 121 Opt_disable_roll_forward, 122 Opt_norecovery, 123 Opt_discard, 124 Opt_nodiscard, 125 Opt_noheap, 126 Opt_heap, 127 Opt_user_xattr, 128 Opt_nouser_xattr, 129 Opt_acl, 130 Opt_noacl, 131 Opt_active_logs, 132 Opt_disable_ext_identify, 133 Opt_inline_xattr, 134 Opt_noinline_xattr, 135 Opt_inline_xattr_size, 136 Opt_inline_data, 137 Opt_inline_dentry, 138 Opt_noinline_dentry, 139 Opt_flush_merge, 140 Opt_noflush_merge, 141 Opt_barrier, 142 Opt_nobarrier, 143 Opt_fastboot, 144 Opt_extent_cache, 145 Opt_noextent_cache, 146 Opt_noinline_data, 147 Opt_data_flush, 148 Opt_reserve_root, 149 Opt_resgid, 150 Opt_resuid, 151 Opt_mode, 152 Opt_fault_injection, 153 Opt_fault_type, 154 Opt_quota, 155 Opt_noquota, 156 Opt_usrquota, 157 Opt_grpquota, 158 Opt_prjquota, 159 Opt_usrjquota, 160 Opt_grpjquota, 161 Opt_prjjquota, 162 Opt_offusrjquota, 163 Opt_offgrpjquota, 164 Opt_offprjjquota, 165 Opt_jqfmt_vfsold, 166 Opt_jqfmt_vfsv0, 167 Opt_jqfmt_vfsv1, 168 Opt_alloc, 169 Opt_fsync, 170 Opt_test_dummy_encryption, 171 Opt_inlinecrypt, 172 Opt_checkpoint_disable, 173 Opt_checkpoint_disable_cap, 174 Opt_checkpoint_disable_cap_perc, 175 Opt_checkpoint_enable, 176 Opt_checkpoint_merge, 177 Opt_nocheckpoint_merge, 178 Opt_compress_algorithm, 179 Opt_compress_log_size, 180 Opt_compress_extension, 181 Opt_nocompress_extension, 182 Opt_compress_chksum, 183 Opt_compress_mode, 184 Opt_compress_cache, 185 Opt_atgc, 186 Opt_gc_merge, 187 Opt_nogc_merge, 188 Opt_discard_unit, 189 Opt_memory_mode, 190 Opt_age_extent_cache, 191 Opt_errors, 192 Opt_err, 193 }; 194 195 static match_table_t f2fs_tokens = { 196 {Opt_gc_background, "background_gc=%s"}, 197 {Opt_disable_roll_forward, "disable_roll_forward"}, 198 {Opt_norecovery, "norecovery"}, 199 {Opt_discard, "discard"}, 200 {Opt_nodiscard, "nodiscard"}, 201 {Opt_noheap, "no_heap"}, 202 {Opt_heap, "heap"}, 203 {Opt_user_xattr, "user_xattr"}, 204 {Opt_nouser_xattr, "nouser_xattr"}, 205 {Opt_acl, "acl"}, 206 {Opt_noacl, "noacl"}, 207 {Opt_active_logs, "active_logs=%u"}, 208 {Opt_disable_ext_identify, "disable_ext_identify"}, 209 {Opt_inline_xattr, "inline_xattr"}, 210 {Opt_noinline_xattr, "noinline_xattr"}, 211 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 212 {Opt_inline_data, "inline_data"}, 213 {Opt_inline_dentry, "inline_dentry"}, 214 {Opt_noinline_dentry, "noinline_dentry"}, 215 {Opt_flush_merge, "flush_merge"}, 216 {Opt_noflush_merge, "noflush_merge"}, 217 {Opt_barrier, "barrier"}, 218 {Opt_nobarrier, "nobarrier"}, 219 {Opt_fastboot, "fastboot"}, 220 {Opt_extent_cache, "extent_cache"}, 221 {Opt_noextent_cache, "noextent_cache"}, 222 {Opt_noinline_data, "noinline_data"}, 223 {Opt_data_flush, "data_flush"}, 224 {Opt_reserve_root, "reserve_root=%u"}, 225 {Opt_resgid, "resgid=%u"}, 226 {Opt_resuid, "resuid=%u"}, 227 {Opt_mode, "mode=%s"}, 228 {Opt_fault_injection, "fault_injection=%u"}, 229 {Opt_fault_type, "fault_type=%u"}, 230 {Opt_quota, "quota"}, 231 {Opt_noquota, "noquota"}, 232 {Opt_usrquota, "usrquota"}, 233 {Opt_grpquota, "grpquota"}, 234 {Opt_prjquota, "prjquota"}, 235 {Opt_usrjquota, "usrjquota=%s"}, 236 {Opt_grpjquota, "grpjquota=%s"}, 237 {Opt_prjjquota, "prjjquota=%s"}, 238 {Opt_offusrjquota, "usrjquota="}, 239 {Opt_offgrpjquota, "grpjquota="}, 240 {Opt_offprjjquota, "prjjquota="}, 241 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 242 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 243 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 244 {Opt_alloc, "alloc_mode=%s"}, 245 {Opt_fsync, "fsync_mode=%s"}, 246 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 247 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 248 {Opt_inlinecrypt, "inlinecrypt"}, 249 {Opt_checkpoint_disable, "checkpoint=disable"}, 250 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 251 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 252 {Opt_checkpoint_enable, "checkpoint=enable"}, 253 {Opt_checkpoint_merge, "checkpoint_merge"}, 254 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 255 {Opt_compress_algorithm, "compress_algorithm=%s"}, 256 {Opt_compress_log_size, "compress_log_size=%u"}, 257 {Opt_compress_extension, "compress_extension=%s"}, 258 {Opt_nocompress_extension, "nocompress_extension=%s"}, 259 {Opt_compress_chksum, "compress_chksum"}, 260 {Opt_compress_mode, "compress_mode=%s"}, 261 {Opt_compress_cache, "compress_cache"}, 262 {Opt_atgc, "atgc"}, 263 {Opt_gc_merge, "gc_merge"}, 264 {Opt_nogc_merge, "nogc_merge"}, 265 {Opt_discard_unit, "discard_unit=%s"}, 266 {Opt_memory_mode, "memory=%s"}, 267 {Opt_age_extent_cache, "age_extent_cache"}, 268 {Opt_errors, "errors=%s"}, 269 {Opt_err, NULL}, 270 }; 271 272 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, 273 const char *fmt, ...) 274 { 275 struct va_format vaf; 276 va_list args; 277 int level; 278 279 va_start(args, fmt); 280 281 level = printk_get_level(fmt); 282 vaf.fmt = printk_skip_level(fmt); 283 vaf.va = &args; 284 if (limit_rate) 285 printk_ratelimited("%c%cF2FS-fs (%s): %pV\n", 286 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 287 else 288 printk("%c%cF2FS-fs (%s): %pV\n", 289 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 290 291 va_end(args); 292 } 293 294 #if IS_ENABLED(CONFIG_UNICODE) 295 static const struct f2fs_sb_encodings { 296 __u16 magic; 297 char *name; 298 unsigned int version; 299 } f2fs_sb_encoding_map[] = { 300 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 301 }; 302 303 static const struct f2fs_sb_encodings * 304 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 305 { 306 __u16 magic = le16_to_cpu(sb->s_encoding); 307 int i; 308 309 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 310 if (magic == f2fs_sb_encoding_map[i].magic) 311 return &f2fs_sb_encoding_map[i]; 312 313 return NULL; 314 } 315 316 struct kmem_cache *f2fs_cf_name_slab; 317 static int __init f2fs_create_casefold_cache(void) 318 { 319 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 320 F2FS_NAME_LEN); 321 return f2fs_cf_name_slab ? 0 : -ENOMEM; 322 } 323 324 static void f2fs_destroy_casefold_cache(void) 325 { 326 kmem_cache_destroy(f2fs_cf_name_slab); 327 } 328 #else 329 static int __init f2fs_create_casefold_cache(void) { return 0; } 330 static void f2fs_destroy_casefold_cache(void) { } 331 #endif 332 333 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 334 { 335 block_t limit = min((sbi->user_block_count >> 3), 336 sbi->user_block_count - sbi->reserved_blocks); 337 338 /* limit is 12.5% */ 339 if (test_opt(sbi, RESERVE_ROOT) && 340 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 341 F2FS_OPTION(sbi).root_reserved_blocks = limit; 342 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 343 F2FS_OPTION(sbi).root_reserved_blocks); 344 } 345 if (!test_opt(sbi, RESERVE_ROOT) && 346 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 347 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 348 !gid_eq(F2FS_OPTION(sbi).s_resgid, 349 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 350 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 351 from_kuid_munged(&init_user_ns, 352 F2FS_OPTION(sbi).s_resuid), 353 from_kgid_munged(&init_user_ns, 354 F2FS_OPTION(sbi).s_resgid)); 355 } 356 357 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 358 { 359 if (!F2FS_OPTION(sbi).unusable_cap_perc) 360 return; 361 362 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 363 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 364 else 365 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 366 F2FS_OPTION(sbi).unusable_cap_perc; 367 368 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 369 F2FS_OPTION(sbi).unusable_cap, 370 F2FS_OPTION(sbi).unusable_cap_perc); 371 } 372 373 static void init_once(void *foo) 374 { 375 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 376 377 inode_init_once(&fi->vfs_inode); 378 } 379 380 #ifdef CONFIG_QUOTA 381 static const char * const quotatypes[] = INITQFNAMES; 382 #define QTYPE2NAME(t) (quotatypes[t]) 383 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 384 substring_t *args) 385 { 386 struct f2fs_sb_info *sbi = F2FS_SB(sb); 387 char *qname; 388 int ret = -EINVAL; 389 390 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 391 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 392 return -EINVAL; 393 } 394 if (f2fs_sb_has_quota_ino(sbi)) { 395 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 396 return 0; 397 } 398 399 qname = match_strdup(args); 400 if (!qname) { 401 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 402 return -ENOMEM; 403 } 404 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 405 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 406 ret = 0; 407 else 408 f2fs_err(sbi, "%s quota file already specified", 409 QTYPE2NAME(qtype)); 410 goto errout; 411 } 412 if (strchr(qname, '/')) { 413 f2fs_err(sbi, "quotafile must be on filesystem root"); 414 goto errout; 415 } 416 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 417 set_opt(sbi, QUOTA); 418 return 0; 419 errout: 420 kfree(qname); 421 return ret; 422 } 423 424 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 425 { 426 struct f2fs_sb_info *sbi = F2FS_SB(sb); 427 428 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 429 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 430 return -EINVAL; 431 } 432 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 433 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 434 return 0; 435 } 436 437 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 438 { 439 /* 440 * We do the test below only for project quotas. 'usrquota' and 441 * 'grpquota' mount options are allowed even without quota feature 442 * to support legacy quotas in quota files. 443 */ 444 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 445 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 446 return -1; 447 } 448 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 449 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 450 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 451 if (test_opt(sbi, USRQUOTA) && 452 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 453 clear_opt(sbi, USRQUOTA); 454 455 if (test_opt(sbi, GRPQUOTA) && 456 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 457 clear_opt(sbi, GRPQUOTA); 458 459 if (test_opt(sbi, PRJQUOTA) && 460 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 461 clear_opt(sbi, PRJQUOTA); 462 463 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 464 test_opt(sbi, PRJQUOTA)) { 465 f2fs_err(sbi, "old and new quota format mixing"); 466 return -1; 467 } 468 469 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 470 f2fs_err(sbi, "journaled quota format not specified"); 471 return -1; 472 } 473 } 474 475 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 476 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 477 F2FS_OPTION(sbi).s_jquota_fmt = 0; 478 } 479 return 0; 480 } 481 #endif 482 483 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 484 const char *opt, 485 const substring_t *arg, 486 bool is_remount) 487 { 488 struct f2fs_sb_info *sbi = F2FS_SB(sb); 489 struct fs_parameter param = { 490 .type = fs_value_is_string, 491 .string = arg->from ? arg->from : "", 492 }; 493 struct fscrypt_dummy_policy *policy = 494 &F2FS_OPTION(sbi).dummy_enc_policy; 495 int err; 496 497 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 498 f2fs_warn(sbi, "test_dummy_encryption option not supported"); 499 return -EINVAL; 500 } 501 502 if (!f2fs_sb_has_encrypt(sbi)) { 503 f2fs_err(sbi, "Encrypt feature is off"); 504 return -EINVAL; 505 } 506 507 /* 508 * This mount option is just for testing, and it's not worthwhile to 509 * implement the extra complexity (e.g. RCU protection) that would be 510 * needed to allow it to be set or changed during remount. We do allow 511 * it to be specified during remount, but only if there is no change. 512 */ 513 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) { 514 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 515 return -EINVAL; 516 } 517 518 err = fscrypt_parse_test_dummy_encryption(¶m, policy); 519 if (err) { 520 if (err == -EEXIST) 521 f2fs_warn(sbi, 522 "Can't change test_dummy_encryption on remount"); 523 else if (err == -EINVAL) 524 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 525 opt); 526 else 527 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 528 opt, err); 529 return -EINVAL; 530 } 531 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 532 return 0; 533 } 534 535 #ifdef CONFIG_F2FS_FS_COMPRESSION 536 static bool is_compress_extension_exist(struct f2fs_sb_info *sbi, 537 const char *new_ext, bool is_ext) 538 { 539 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 540 int ext_cnt; 541 int i; 542 543 if (is_ext) { 544 ext = F2FS_OPTION(sbi).extensions; 545 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 546 } else { 547 ext = F2FS_OPTION(sbi).noextensions; 548 ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 549 } 550 551 for (i = 0; i < ext_cnt; i++) { 552 if (!strcasecmp(new_ext, ext[i])) 553 return true; 554 } 555 556 return false; 557 } 558 559 /* 560 * 1. The same extension name cannot not appear in both compress and non-compress extension 561 * at the same time. 562 * 2. If the compress extension specifies all files, the types specified by the non-compress 563 * extension will be treated as special cases and will not be compressed. 564 * 3. Don't allow the non-compress extension specifies all files. 565 */ 566 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 567 { 568 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 569 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 570 int ext_cnt, noext_cnt, index = 0, no_index = 0; 571 572 ext = F2FS_OPTION(sbi).extensions; 573 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 574 noext = F2FS_OPTION(sbi).noextensions; 575 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 576 577 if (!noext_cnt) 578 return 0; 579 580 for (no_index = 0; no_index < noext_cnt; no_index++) { 581 if (!strcasecmp("*", noext[no_index])) { 582 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 583 return -EINVAL; 584 } 585 for (index = 0; index < ext_cnt; index++) { 586 if (!strcasecmp(ext[index], noext[no_index])) { 587 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 588 ext[index]); 589 return -EINVAL; 590 } 591 } 592 } 593 return 0; 594 } 595 596 #ifdef CONFIG_F2FS_FS_LZ4 597 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 598 { 599 #ifdef CONFIG_F2FS_FS_LZ4HC 600 unsigned int level; 601 602 if (strlen(str) == 3) { 603 F2FS_OPTION(sbi).compress_level = 0; 604 return 0; 605 } 606 607 str += 3; 608 609 if (str[0] != ':') { 610 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 611 return -EINVAL; 612 } 613 if (kstrtouint(str + 1, 10, &level)) 614 return -EINVAL; 615 616 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) { 617 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 618 return -EINVAL; 619 } 620 621 F2FS_OPTION(sbi).compress_level = level; 622 return 0; 623 #else 624 if (strlen(str) == 3) { 625 F2FS_OPTION(sbi).compress_level = 0; 626 return 0; 627 } 628 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 629 return -EINVAL; 630 #endif 631 } 632 #endif 633 634 #ifdef CONFIG_F2FS_FS_ZSTD 635 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 636 { 637 int level; 638 int len = 4; 639 640 if (strlen(str) == len) { 641 F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 642 return 0; 643 } 644 645 str += len; 646 647 if (str[0] != ':') { 648 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 649 return -EINVAL; 650 } 651 if (kstrtoint(str + 1, 10, &level)) 652 return -EINVAL; 653 654 /* f2fs does not support negative compress level now */ 655 if (level < 0) { 656 f2fs_info(sbi, "do not support negative compress level: %d", level); 657 return -ERANGE; 658 } 659 660 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) { 661 f2fs_info(sbi, "invalid zstd compress level: %d", level); 662 return -EINVAL; 663 } 664 665 F2FS_OPTION(sbi).compress_level = level; 666 return 0; 667 } 668 #endif 669 #endif 670 671 static int parse_options(struct super_block *sb, char *options, bool is_remount) 672 { 673 struct f2fs_sb_info *sbi = F2FS_SB(sb); 674 substring_t args[MAX_OPT_ARGS]; 675 #ifdef CONFIG_F2FS_FS_COMPRESSION 676 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 677 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 678 int ext_cnt, noext_cnt; 679 #endif 680 char *p, *name; 681 int arg = 0; 682 kuid_t uid; 683 kgid_t gid; 684 int ret; 685 686 if (!options) 687 goto default_check; 688 689 while ((p = strsep(&options, ",")) != NULL) { 690 int token; 691 692 if (!*p) 693 continue; 694 /* 695 * Initialize args struct so we know whether arg was 696 * found; some options take optional arguments. 697 */ 698 args[0].to = args[0].from = NULL; 699 token = match_token(p, f2fs_tokens, args); 700 701 switch (token) { 702 case Opt_gc_background: 703 name = match_strdup(&args[0]); 704 705 if (!name) 706 return -ENOMEM; 707 if (!strcmp(name, "on")) { 708 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 709 } else if (!strcmp(name, "off")) { 710 if (f2fs_sb_has_blkzoned(sbi)) { 711 f2fs_warn(sbi, "zoned devices need bggc"); 712 kfree(name); 713 return -EINVAL; 714 } 715 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 716 } else if (!strcmp(name, "sync")) { 717 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 718 } else { 719 kfree(name); 720 return -EINVAL; 721 } 722 kfree(name); 723 break; 724 case Opt_disable_roll_forward: 725 set_opt(sbi, DISABLE_ROLL_FORWARD); 726 break; 727 case Opt_norecovery: 728 /* this option mounts f2fs with ro */ 729 set_opt(sbi, NORECOVERY); 730 if (!f2fs_readonly(sb)) 731 return -EINVAL; 732 break; 733 case Opt_discard: 734 if (!f2fs_hw_support_discard(sbi)) { 735 f2fs_warn(sbi, "device does not support discard"); 736 break; 737 } 738 set_opt(sbi, DISCARD); 739 break; 740 case Opt_nodiscard: 741 if (f2fs_hw_should_discard(sbi)) { 742 f2fs_warn(sbi, "discard is required for zoned block devices"); 743 return -EINVAL; 744 } 745 clear_opt(sbi, DISCARD); 746 break; 747 case Opt_noheap: 748 case Opt_heap: 749 f2fs_warn(sbi, "heap/no_heap options were deprecated"); 750 break; 751 #ifdef CONFIG_F2FS_FS_XATTR 752 case Opt_user_xattr: 753 set_opt(sbi, XATTR_USER); 754 break; 755 case Opt_nouser_xattr: 756 clear_opt(sbi, XATTR_USER); 757 break; 758 case Opt_inline_xattr: 759 set_opt(sbi, INLINE_XATTR); 760 break; 761 case Opt_noinline_xattr: 762 clear_opt(sbi, INLINE_XATTR); 763 break; 764 case Opt_inline_xattr_size: 765 if (args->from && match_int(args, &arg)) 766 return -EINVAL; 767 set_opt(sbi, INLINE_XATTR_SIZE); 768 F2FS_OPTION(sbi).inline_xattr_size = arg; 769 break; 770 #else 771 case Opt_user_xattr: 772 f2fs_info(sbi, "user_xattr options not supported"); 773 break; 774 case Opt_nouser_xattr: 775 f2fs_info(sbi, "nouser_xattr options not supported"); 776 break; 777 case Opt_inline_xattr: 778 f2fs_info(sbi, "inline_xattr options not supported"); 779 break; 780 case Opt_noinline_xattr: 781 f2fs_info(sbi, "noinline_xattr options not supported"); 782 break; 783 #endif 784 #ifdef CONFIG_F2FS_FS_POSIX_ACL 785 case Opt_acl: 786 set_opt(sbi, POSIX_ACL); 787 break; 788 case Opt_noacl: 789 clear_opt(sbi, POSIX_ACL); 790 break; 791 #else 792 case Opt_acl: 793 f2fs_info(sbi, "acl options not supported"); 794 break; 795 case Opt_noacl: 796 f2fs_info(sbi, "noacl options not supported"); 797 break; 798 #endif 799 case Opt_active_logs: 800 if (args->from && match_int(args, &arg)) 801 return -EINVAL; 802 if (arg != 2 && arg != 4 && 803 arg != NR_CURSEG_PERSIST_TYPE) 804 return -EINVAL; 805 F2FS_OPTION(sbi).active_logs = arg; 806 break; 807 case Opt_disable_ext_identify: 808 set_opt(sbi, DISABLE_EXT_IDENTIFY); 809 break; 810 case Opt_inline_data: 811 set_opt(sbi, INLINE_DATA); 812 break; 813 case Opt_inline_dentry: 814 set_opt(sbi, INLINE_DENTRY); 815 break; 816 case Opt_noinline_dentry: 817 clear_opt(sbi, INLINE_DENTRY); 818 break; 819 case Opt_flush_merge: 820 set_opt(sbi, FLUSH_MERGE); 821 break; 822 case Opt_noflush_merge: 823 clear_opt(sbi, FLUSH_MERGE); 824 break; 825 case Opt_nobarrier: 826 set_opt(sbi, NOBARRIER); 827 break; 828 case Opt_barrier: 829 clear_opt(sbi, NOBARRIER); 830 break; 831 case Opt_fastboot: 832 set_opt(sbi, FASTBOOT); 833 break; 834 case Opt_extent_cache: 835 set_opt(sbi, READ_EXTENT_CACHE); 836 break; 837 case Opt_noextent_cache: 838 clear_opt(sbi, READ_EXTENT_CACHE); 839 break; 840 case Opt_noinline_data: 841 clear_opt(sbi, INLINE_DATA); 842 break; 843 case Opt_data_flush: 844 set_opt(sbi, DATA_FLUSH); 845 break; 846 case Opt_reserve_root: 847 if (args->from && match_int(args, &arg)) 848 return -EINVAL; 849 if (test_opt(sbi, RESERVE_ROOT)) { 850 f2fs_info(sbi, "Preserve previous reserve_root=%u", 851 F2FS_OPTION(sbi).root_reserved_blocks); 852 } else { 853 F2FS_OPTION(sbi).root_reserved_blocks = arg; 854 set_opt(sbi, RESERVE_ROOT); 855 } 856 break; 857 case Opt_resuid: 858 if (args->from && match_int(args, &arg)) 859 return -EINVAL; 860 uid = make_kuid(current_user_ns(), arg); 861 if (!uid_valid(uid)) { 862 f2fs_err(sbi, "Invalid uid value %d", arg); 863 return -EINVAL; 864 } 865 F2FS_OPTION(sbi).s_resuid = uid; 866 break; 867 case Opt_resgid: 868 if (args->from && match_int(args, &arg)) 869 return -EINVAL; 870 gid = make_kgid(current_user_ns(), arg); 871 if (!gid_valid(gid)) { 872 f2fs_err(sbi, "Invalid gid value %d", arg); 873 return -EINVAL; 874 } 875 F2FS_OPTION(sbi).s_resgid = gid; 876 break; 877 case Opt_mode: 878 name = match_strdup(&args[0]); 879 880 if (!name) 881 return -ENOMEM; 882 if (!strcmp(name, "adaptive")) { 883 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 884 } else if (!strcmp(name, "lfs")) { 885 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 886 } else if (!strcmp(name, "fragment:segment")) { 887 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 888 } else if (!strcmp(name, "fragment:block")) { 889 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 890 } else { 891 kfree(name); 892 return -EINVAL; 893 } 894 kfree(name); 895 break; 896 #ifdef CONFIG_F2FS_FAULT_INJECTION 897 case Opt_fault_injection: 898 if (args->from && match_int(args, &arg)) 899 return -EINVAL; 900 if (f2fs_build_fault_attr(sbi, arg, 901 F2FS_ALL_FAULT_TYPE)) 902 return -EINVAL; 903 set_opt(sbi, FAULT_INJECTION); 904 break; 905 906 case Opt_fault_type: 907 if (args->from && match_int(args, &arg)) 908 return -EINVAL; 909 if (f2fs_build_fault_attr(sbi, 0, arg)) 910 return -EINVAL; 911 set_opt(sbi, FAULT_INJECTION); 912 break; 913 #else 914 case Opt_fault_injection: 915 f2fs_info(sbi, "fault_injection options not supported"); 916 break; 917 918 case Opt_fault_type: 919 f2fs_info(sbi, "fault_type options not supported"); 920 break; 921 #endif 922 #ifdef CONFIG_QUOTA 923 case Opt_quota: 924 case Opt_usrquota: 925 set_opt(sbi, USRQUOTA); 926 break; 927 case Opt_grpquota: 928 set_opt(sbi, GRPQUOTA); 929 break; 930 case Opt_prjquota: 931 set_opt(sbi, PRJQUOTA); 932 break; 933 case Opt_usrjquota: 934 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 935 if (ret) 936 return ret; 937 break; 938 case Opt_grpjquota: 939 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 940 if (ret) 941 return ret; 942 break; 943 case Opt_prjjquota: 944 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 945 if (ret) 946 return ret; 947 break; 948 case Opt_offusrjquota: 949 ret = f2fs_clear_qf_name(sb, USRQUOTA); 950 if (ret) 951 return ret; 952 break; 953 case Opt_offgrpjquota: 954 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 955 if (ret) 956 return ret; 957 break; 958 case Opt_offprjjquota: 959 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 960 if (ret) 961 return ret; 962 break; 963 case Opt_jqfmt_vfsold: 964 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 965 break; 966 case Opt_jqfmt_vfsv0: 967 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 968 break; 969 case Opt_jqfmt_vfsv1: 970 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 971 break; 972 case Opt_noquota: 973 clear_opt(sbi, QUOTA); 974 clear_opt(sbi, USRQUOTA); 975 clear_opt(sbi, GRPQUOTA); 976 clear_opt(sbi, PRJQUOTA); 977 break; 978 #else 979 case Opt_quota: 980 case Opt_usrquota: 981 case Opt_grpquota: 982 case Opt_prjquota: 983 case Opt_usrjquota: 984 case Opt_grpjquota: 985 case Opt_prjjquota: 986 case Opt_offusrjquota: 987 case Opt_offgrpjquota: 988 case Opt_offprjjquota: 989 case Opt_jqfmt_vfsold: 990 case Opt_jqfmt_vfsv0: 991 case Opt_jqfmt_vfsv1: 992 case Opt_noquota: 993 f2fs_info(sbi, "quota operations not supported"); 994 break; 995 #endif 996 case Opt_alloc: 997 name = match_strdup(&args[0]); 998 if (!name) 999 return -ENOMEM; 1000 1001 if (!strcmp(name, "default")) { 1002 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1003 } else if (!strcmp(name, "reuse")) { 1004 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 1005 } else { 1006 kfree(name); 1007 return -EINVAL; 1008 } 1009 kfree(name); 1010 break; 1011 case Opt_fsync: 1012 name = match_strdup(&args[0]); 1013 if (!name) 1014 return -ENOMEM; 1015 if (!strcmp(name, "posix")) { 1016 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1017 } else if (!strcmp(name, "strict")) { 1018 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 1019 } else if (!strcmp(name, "nobarrier")) { 1020 F2FS_OPTION(sbi).fsync_mode = 1021 FSYNC_MODE_NOBARRIER; 1022 } else { 1023 kfree(name); 1024 return -EINVAL; 1025 } 1026 kfree(name); 1027 break; 1028 case Opt_test_dummy_encryption: 1029 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 1030 is_remount); 1031 if (ret) 1032 return ret; 1033 break; 1034 case Opt_inlinecrypt: 1035 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1036 sb->s_flags |= SB_INLINECRYPT; 1037 #else 1038 f2fs_info(sbi, "inline encryption not supported"); 1039 #endif 1040 break; 1041 case Opt_checkpoint_disable_cap_perc: 1042 if (args->from && match_int(args, &arg)) 1043 return -EINVAL; 1044 if (arg < 0 || arg > 100) 1045 return -EINVAL; 1046 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1047 set_opt(sbi, DISABLE_CHECKPOINT); 1048 break; 1049 case Opt_checkpoint_disable_cap: 1050 if (args->from && match_int(args, &arg)) 1051 return -EINVAL; 1052 F2FS_OPTION(sbi).unusable_cap = arg; 1053 set_opt(sbi, DISABLE_CHECKPOINT); 1054 break; 1055 case Opt_checkpoint_disable: 1056 set_opt(sbi, DISABLE_CHECKPOINT); 1057 break; 1058 case Opt_checkpoint_enable: 1059 clear_opt(sbi, DISABLE_CHECKPOINT); 1060 break; 1061 case Opt_checkpoint_merge: 1062 set_opt(sbi, MERGE_CHECKPOINT); 1063 break; 1064 case Opt_nocheckpoint_merge: 1065 clear_opt(sbi, MERGE_CHECKPOINT); 1066 break; 1067 #ifdef CONFIG_F2FS_FS_COMPRESSION 1068 case Opt_compress_algorithm: 1069 if (!f2fs_sb_has_compression(sbi)) { 1070 f2fs_info(sbi, "Image doesn't support compression"); 1071 break; 1072 } 1073 name = match_strdup(&args[0]); 1074 if (!name) 1075 return -ENOMEM; 1076 if (!strcmp(name, "lzo")) { 1077 #ifdef CONFIG_F2FS_FS_LZO 1078 F2FS_OPTION(sbi).compress_level = 0; 1079 F2FS_OPTION(sbi).compress_algorithm = 1080 COMPRESS_LZO; 1081 #else 1082 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1083 #endif 1084 } else if (!strncmp(name, "lz4", 3)) { 1085 #ifdef CONFIG_F2FS_FS_LZ4 1086 ret = f2fs_set_lz4hc_level(sbi, name); 1087 if (ret) { 1088 kfree(name); 1089 return -EINVAL; 1090 } 1091 F2FS_OPTION(sbi).compress_algorithm = 1092 COMPRESS_LZ4; 1093 #else 1094 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1095 #endif 1096 } else if (!strncmp(name, "zstd", 4)) { 1097 #ifdef CONFIG_F2FS_FS_ZSTD 1098 ret = f2fs_set_zstd_level(sbi, name); 1099 if (ret) { 1100 kfree(name); 1101 return -EINVAL; 1102 } 1103 F2FS_OPTION(sbi).compress_algorithm = 1104 COMPRESS_ZSTD; 1105 #else 1106 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1107 #endif 1108 } else if (!strcmp(name, "lzo-rle")) { 1109 #ifdef CONFIG_F2FS_FS_LZORLE 1110 F2FS_OPTION(sbi).compress_level = 0; 1111 F2FS_OPTION(sbi).compress_algorithm = 1112 COMPRESS_LZORLE; 1113 #else 1114 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1115 #endif 1116 } else { 1117 kfree(name); 1118 return -EINVAL; 1119 } 1120 kfree(name); 1121 break; 1122 case Opt_compress_log_size: 1123 if (!f2fs_sb_has_compression(sbi)) { 1124 f2fs_info(sbi, "Image doesn't support compression"); 1125 break; 1126 } 1127 if (args->from && match_int(args, &arg)) 1128 return -EINVAL; 1129 if (arg < MIN_COMPRESS_LOG_SIZE || 1130 arg > MAX_COMPRESS_LOG_SIZE) { 1131 f2fs_err(sbi, 1132 "Compress cluster log size is out of range"); 1133 return -EINVAL; 1134 } 1135 F2FS_OPTION(sbi).compress_log_size = arg; 1136 break; 1137 case Opt_compress_extension: 1138 if (!f2fs_sb_has_compression(sbi)) { 1139 f2fs_info(sbi, "Image doesn't support compression"); 1140 break; 1141 } 1142 name = match_strdup(&args[0]); 1143 if (!name) 1144 return -ENOMEM; 1145 1146 ext = F2FS_OPTION(sbi).extensions; 1147 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1148 1149 if (strlen(name) >= F2FS_EXTENSION_LEN || 1150 ext_cnt >= COMPRESS_EXT_NUM) { 1151 f2fs_err(sbi, 1152 "invalid extension length/number"); 1153 kfree(name); 1154 return -EINVAL; 1155 } 1156 1157 if (is_compress_extension_exist(sbi, name, true)) { 1158 kfree(name); 1159 break; 1160 } 1161 1162 strcpy(ext[ext_cnt], name); 1163 F2FS_OPTION(sbi).compress_ext_cnt++; 1164 kfree(name); 1165 break; 1166 case Opt_nocompress_extension: 1167 if (!f2fs_sb_has_compression(sbi)) { 1168 f2fs_info(sbi, "Image doesn't support compression"); 1169 break; 1170 } 1171 name = match_strdup(&args[0]); 1172 if (!name) 1173 return -ENOMEM; 1174 1175 noext = F2FS_OPTION(sbi).noextensions; 1176 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1177 1178 if (strlen(name) >= F2FS_EXTENSION_LEN || 1179 noext_cnt >= COMPRESS_EXT_NUM) { 1180 f2fs_err(sbi, 1181 "invalid extension length/number"); 1182 kfree(name); 1183 return -EINVAL; 1184 } 1185 1186 if (is_compress_extension_exist(sbi, name, false)) { 1187 kfree(name); 1188 break; 1189 } 1190 1191 strcpy(noext[noext_cnt], name); 1192 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1193 kfree(name); 1194 break; 1195 case Opt_compress_chksum: 1196 if (!f2fs_sb_has_compression(sbi)) { 1197 f2fs_info(sbi, "Image doesn't support compression"); 1198 break; 1199 } 1200 F2FS_OPTION(sbi).compress_chksum = true; 1201 break; 1202 case Opt_compress_mode: 1203 if (!f2fs_sb_has_compression(sbi)) { 1204 f2fs_info(sbi, "Image doesn't support compression"); 1205 break; 1206 } 1207 name = match_strdup(&args[0]); 1208 if (!name) 1209 return -ENOMEM; 1210 if (!strcmp(name, "fs")) { 1211 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1212 } else if (!strcmp(name, "user")) { 1213 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1214 } else { 1215 kfree(name); 1216 return -EINVAL; 1217 } 1218 kfree(name); 1219 break; 1220 case Opt_compress_cache: 1221 if (!f2fs_sb_has_compression(sbi)) { 1222 f2fs_info(sbi, "Image doesn't support compression"); 1223 break; 1224 } 1225 set_opt(sbi, COMPRESS_CACHE); 1226 break; 1227 #else 1228 case Opt_compress_algorithm: 1229 case Opt_compress_log_size: 1230 case Opt_compress_extension: 1231 case Opt_nocompress_extension: 1232 case Opt_compress_chksum: 1233 case Opt_compress_mode: 1234 case Opt_compress_cache: 1235 f2fs_info(sbi, "compression options not supported"); 1236 break; 1237 #endif 1238 case Opt_atgc: 1239 set_opt(sbi, ATGC); 1240 break; 1241 case Opt_gc_merge: 1242 set_opt(sbi, GC_MERGE); 1243 break; 1244 case Opt_nogc_merge: 1245 clear_opt(sbi, GC_MERGE); 1246 break; 1247 case Opt_discard_unit: 1248 name = match_strdup(&args[0]); 1249 if (!name) 1250 return -ENOMEM; 1251 if (!strcmp(name, "block")) { 1252 F2FS_OPTION(sbi).discard_unit = 1253 DISCARD_UNIT_BLOCK; 1254 } else if (!strcmp(name, "segment")) { 1255 F2FS_OPTION(sbi).discard_unit = 1256 DISCARD_UNIT_SEGMENT; 1257 } else if (!strcmp(name, "section")) { 1258 F2FS_OPTION(sbi).discard_unit = 1259 DISCARD_UNIT_SECTION; 1260 } else { 1261 kfree(name); 1262 return -EINVAL; 1263 } 1264 kfree(name); 1265 break; 1266 case Opt_memory_mode: 1267 name = match_strdup(&args[0]); 1268 if (!name) 1269 return -ENOMEM; 1270 if (!strcmp(name, "normal")) { 1271 F2FS_OPTION(sbi).memory_mode = 1272 MEMORY_MODE_NORMAL; 1273 } else if (!strcmp(name, "low")) { 1274 F2FS_OPTION(sbi).memory_mode = 1275 MEMORY_MODE_LOW; 1276 } else { 1277 kfree(name); 1278 return -EINVAL; 1279 } 1280 kfree(name); 1281 break; 1282 case Opt_age_extent_cache: 1283 set_opt(sbi, AGE_EXTENT_CACHE); 1284 break; 1285 case Opt_errors: 1286 name = match_strdup(&args[0]); 1287 if (!name) 1288 return -ENOMEM; 1289 if (!strcmp(name, "remount-ro")) { 1290 F2FS_OPTION(sbi).errors = 1291 MOUNT_ERRORS_READONLY; 1292 } else if (!strcmp(name, "continue")) { 1293 F2FS_OPTION(sbi).errors = 1294 MOUNT_ERRORS_CONTINUE; 1295 } else if (!strcmp(name, "panic")) { 1296 F2FS_OPTION(sbi).errors = 1297 MOUNT_ERRORS_PANIC; 1298 } else { 1299 kfree(name); 1300 return -EINVAL; 1301 } 1302 kfree(name); 1303 break; 1304 default: 1305 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1306 p); 1307 return -EINVAL; 1308 } 1309 } 1310 default_check: 1311 #ifdef CONFIG_QUOTA 1312 if (f2fs_check_quota_options(sbi)) 1313 return -EINVAL; 1314 #else 1315 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1316 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1317 return -EINVAL; 1318 } 1319 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1320 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1321 return -EINVAL; 1322 } 1323 #endif 1324 1325 if (!IS_ENABLED(CONFIG_UNICODE) && f2fs_sb_has_casefold(sbi)) { 1326 f2fs_err(sbi, 1327 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1328 return -EINVAL; 1329 } 1330 1331 /* 1332 * The BLKZONED feature indicates that the drive was formatted with 1333 * zone alignment optimization. This is optional for host-aware 1334 * devices, but mandatory for host-managed zoned block devices. 1335 */ 1336 if (f2fs_sb_has_blkzoned(sbi)) { 1337 #ifdef CONFIG_BLK_DEV_ZONED 1338 if (F2FS_OPTION(sbi).discard_unit != 1339 DISCARD_UNIT_SECTION) { 1340 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1341 F2FS_OPTION(sbi).discard_unit = 1342 DISCARD_UNIT_SECTION; 1343 } 1344 1345 if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) { 1346 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature"); 1347 return -EINVAL; 1348 } 1349 #else 1350 f2fs_err(sbi, "Zoned block device support is not enabled"); 1351 return -EINVAL; 1352 #endif 1353 } 1354 1355 #ifdef CONFIG_F2FS_FS_COMPRESSION 1356 if (f2fs_test_compress_extension(sbi)) { 1357 f2fs_err(sbi, "invalid compress or nocompress extension"); 1358 return -EINVAL; 1359 } 1360 #endif 1361 1362 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1363 int min_size, max_size; 1364 1365 if (!f2fs_sb_has_extra_attr(sbi) || 1366 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1367 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1368 return -EINVAL; 1369 } 1370 if (!test_opt(sbi, INLINE_XATTR)) { 1371 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1372 return -EINVAL; 1373 } 1374 1375 min_size = MIN_INLINE_XATTR_SIZE; 1376 max_size = MAX_INLINE_XATTR_SIZE; 1377 1378 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1379 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1380 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1381 min_size, max_size); 1382 return -EINVAL; 1383 } 1384 } 1385 1386 if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) { 1387 f2fs_err(sbi, "LFS is not compatible with ATGC"); 1388 return -EINVAL; 1389 } 1390 1391 if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) { 1392 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode"); 1393 return -EINVAL; 1394 } 1395 1396 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1397 f2fs_err(sbi, "Allow to mount readonly mode only"); 1398 return -EROFS; 1399 } 1400 return 0; 1401 } 1402 1403 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1404 { 1405 struct f2fs_inode_info *fi; 1406 1407 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) 1408 return NULL; 1409 1410 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1411 if (!fi) 1412 return NULL; 1413 1414 init_once((void *) fi); 1415 1416 /* Initialize f2fs-specific inode info */ 1417 atomic_set(&fi->dirty_pages, 0); 1418 atomic_set(&fi->i_compr_blocks, 0); 1419 init_f2fs_rwsem(&fi->i_sem); 1420 spin_lock_init(&fi->i_size_lock); 1421 INIT_LIST_HEAD(&fi->dirty_list); 1422 INIT_LIST_HEAD(&fi->gdirty_list); 1423 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1424 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1425 init_f2fs_rwsem(&fi->i_xattr_sem); 1426 1427 /* Will be used by directory only */ 1428 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1429 1430 return &fi->vfs_inode; 1431 } 1432 1433 static int f2fs_drop_inode(struct inode *inode) 1434 { 1435 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1436 int ret; 1437 1438 /* 1439 * during filesystem shutdown, if checkpoint is disabled, 1440 * drop useless meta/node dirty pages. 1441 */ 1442 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1443 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1444 inode->i_ino == F2FS_META_INO(sbi)) { 1445 trace_f2fs_drop_inode(inode, 1); 1446 return 1; 1447 } 1448 } 1449 1450 /* 1451 * This is to avoid a deadlock condition like below. 1452 * writeback_single_inode(inode) 1453 * - f2fs_write_data_page 1454 * - f2fs_gc -> iput -> evict 1455 * - inode_wait_for_writeback(inode) 1456 */ 1457 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1458 if (!inode->i_nlink && !is_bad_inode(inode)) { 1459 /* to avoid evict_inode call simultaneously */ 1460 atomic_inc(&inode->i_count); 1461 spin_unlock(&inode->i_lock); 1462 1463 /* should remain fi->extent_tree for writepage */ 1464 f2fs_destroy_extent_node(inode); 1465 1466 sb_start_intwrite(inode->i_sb); 1467 f2fs_i_size_write(inode, 0); 1468 1469 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1470 inode, NULL, 0, DATA); 1471 truncate_inode_pages_final(inode->i_mapping); 1472 1473 if (F2FS_HAS_BLOCKS(inode)) 1474 f2fs_truncate(inode); 1475 1476 sb_end_intwrite(inode->i_sb); 1477 1478 spin_lock(&inode->i_lock); 1479 atomic_dec(&inode->i_count); 1480 } 1481 trace_f2fs_drop_inode(inode, 0); 1482 return 0; 1483 } 1484 ret = generic_drop_inode(inode); 1485 if (!ret) 1486 ret = fscrypt_drop_inode(inode); 1487 trace_f2fs_drop_inode(inode, ret); 1488 return ret; 1489 } 1490 1491 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1492 { 1493 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1494 int ret = 0; 1495 1496 spin_lock(&sbi->inode_lock[DIRTY_META]); 1497 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1498 ret = 1; 1499 } else { 1500 set_inode_flag(inode, FI_DIRTY_INODE); 1501 stat_inc_dirty_inode(sbi, DIRTY_META); 1502 } 1503 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1504 list_add_tail(&F2FS_I(inode)->gdirty_list, 1505 &sbi->inode_list[DIRTY_META]); 1506 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1507 } 1508 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1509 return ret; 1510 } 1511 1512 void f2fs_inode_synced(struct inode *inode) 1513 { 1514 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1515 1516 spin_lock(&sbi->inode_lock[DIRTY_META]); 1517 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1518 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1519 return; 1520 } 1521 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1522 list_del_init(&F2FS_I(inode)->gdirty_list); 1523 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1524 } 1525 clear_inode_flag(inode, FI_DIRTY_INODE); 1526 clear_inode_flag(inode, FI_AUTO_RECOVER); 1527 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1528 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1529 } 1530 1531 /* 1532 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1533 * 1534 * We should call set_dirty_inode to write the dirty inode through write_inode. 1535 */ 1536 static void f2fs_dirty_inode(struct inode *inode, int flags) 1537 { 1538 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1539 1540 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1541 inode->i_ino == F2FS_META_INO(sbi)) 1542 return; 1543 1544 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1545 clear_inode_flag(inode, FI_AUTO_RECOVER); 1546 1547 f2fs_inode_dirtied(inode, false); 1548 } 1549 1550 static void f2fs_free_inode(struct inode *inode) 1551 { 1552 fscrypt_free_inode(inode); 1553 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1554 } 1555 1556 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1557 { 1558 percpu_counter_destroy(&sbi->total_valid_inode_count); 1559 percpu_counter_destroy(&sbi->rf_node_block_count); 1560 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1561 } 1562 1563 static void destroy_device_list(struct f2fs_sb_info *sbi) 1564 { 1565 int i; 1566 1567 for (i = 0; i < sbi->s_ndevs; i++) { 1568 if (i > 0) 1569 bdev_fput(FDEV(i).bdev_file); 1570 #ifdef CONFIG_BLK_DEV_ZONED 1571 kvfree(FDEV(i).blkz_seq); 1572 #endif 1573 } 1574 kvfree(sbi->devs); 1575 } 1576 1577 static void f2fs_put_super(struct super_block *sb) 1578 { 1579 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1580 int i; 1581 int err = 0; 1582 bool done; 1583 1584 /* unregister procfs/sysfs entries in advance to avoid race case */ 1585 f2fs_unregister_sysfs(sbi); 1586 1587 f2fs_quota_off_umount(sb); 1588 1589 /* prevent remaining shrinker jobs */ 1590 mutex_lock(&sbi->umount_mutex); 1591 1592 /* 1593 * flush all issued checkpoints and stop checkpoint issue thread. 1594 * after then, all checkpoints should be done by each process context. 1595 */ 1596 f2fs_stop_ckpt_thread(sbi); 1597 1598 /* 1599 * We don't need to do checkpoint when superblock is clean. 1600 * But, the previous checkpoint was not done by umount, it needs to do 1601 * clean checkpoint again. 1602 */ 1603 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1604 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1605 struct cp_control cpc = { 1606 .reason = CP_UMOUNT, 1607 }; 1608 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1609 err = f2fs_write_checkpoint(sbi, &cpc); 1610 } 1611 1612 /* be sure to wait for any on-going discard commands */ 1613 done = f2fs_issue_discard_timeout(sbi); 1614 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) { 1615 struct cp_control cpc = { 1616 .reason = CP_UMOUNT | CP_TRIMMED, 1617 }; 1618 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1619 err = f2fs_write_checkpoint(sbi, &cpc); 1620 } 1621 1622 /* 1623 * normally superblock is clean, so we need to release this. 1624 * In addition, EIO will skip do checkpoint, we need this as well. 1625 */ 1626 f2fs_release_ino_entry(sbi, true); 1627 1628 f2fs_leave_shrinker(sbi); 1629 mutex_unlock(&sbi->umount_mutex); 1630 1631 /* our cp_error case, we can wait for any writeback page */ 1632 f2fs_flush_merged_writes(sbi); 1633 1634 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1635 1636 if (err || f2fs_cp_error(sbi)) { 1637 truncate_inode_pages_final(NODE_MAPPING(sbi)); 1638 truncate_inode_pages_final(META_MAPPING(sbi)); 1639 } 1640 1641 for (i = 0; i < NR_COUNT_TYPE; i++) { 1642 if (!get_pages(sbi, i)) 1643 continue; 1644 f2fs_err(sbi, "detect filesystem reference count leak during " 1645 "umount, type: %d, count: %lld", i, get_pages(sbi, i)); 1646 f2fs_bug_on(sbi, 1); 1647 } 1648 1649 f2fs_bug_on(sbi, sbi->fsync_node_num); 1650 1651 f2fs_destroy_compress_inode(sbi); 1652 1653 iput(sbi->node_inode); 1654 sbi->node_inode = NULL; 1655 1656 iput(sbi->meta_inode); 1657 sbi->meta_inode = NULL; 1658 1659 /* 1660 * iput() can update stat information, if f2fs_write_checkpoint() 1661 * above failed with error. 1662 */ 1663 f2fs_destroy_stats(sbi); 1664 1665 /* destroy f2fs internal modules */ 1666 f2fs_destroy_node_manager(sbi); 1667 f2fs_destroy_segment_manager(sbi); 1668 1669 /* flush s_error_work before sbi destroy */ 1670 flush_work(&sbi->s_error_work); 1671 1672 f2fs_destroy_post_read_wq(sbi); 1673 1674 kvfree(sbi->ckpt); 1675 1676 if (sbi->s_chksum_driver) 1677 crypto_free_shash(sbi->s_chksum_driver); 1678 kfree(sbi->raw_super); 1679 1680 f2fs_destroy_page_array_cache(sbi); 1681 f2fs_destroy_xattr_caches(sbi); 1682 #ifdef CONFIG_QUOTA 1683 for (i = 0; i < MAXQUOTAS; i++) 1684 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1685 #endif 1686 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1687 destroy_percpu_info(sbi); 1688 f2fs_destroy_iostat(sbi); 1689 for (i = 0; i < NR_PAGE_TYPE; i++) 1690 kvfree(sbi->write_io[i]); 1691 #if IS_ENABLED(CONFIG_UNICODE) 1692 utf8_unload(sb->s_encoding); 1693 #endif 1694 } 1695 1696 int f2fs_sync_fs(struct super_block *sb, int sync) 1697 { 1698 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1699 int err = 0; 1700 1701 if (unlikely(f2fs_cp_error(sbi))) 1702 return 0; 1703 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1704 return 0; 1705 1706 trace_f2fs_sync_fs(sb, sync); 1707 1708 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1709 return -EAGAIN; 1710 1711 if (sync) { 1712 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1713 err = f2fs_issue_checkpoint(sbi); 1714 } 1715 1716 return err; 1717 } 1718 1719 static int f2fs_freeze(struct super_block *sb) 1720 { 1721 if (f2fs_readonly(sb)) 1722 return 0; 1723 1724 /* IO error happened before */ 1725 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1726 return -EIO; 1727 1728 /* must be clean, since sync_filesystem() was already called */ 1729 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1730 return -EINVAL; 1731 1732 /* Let's flush checkpoints and stop the thread. */ 1733 f2fs_flush_ckpt_thread(F2FS_SB(sb)); 1734 1735 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1736 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1737 return 0; 1738 } 1739 1740 static int f2fs_unfreeze(struct super_block *sb) 1741 { 1742 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1743 return 0; 1744 } 1745 1746 #ifdef CONFIG_QUOTA 1747 static int f2fs_statfs_project(struct super_block *sb, 1748 kprojid_t projid, struct kstatfs *buf) 1749 { 1750 struct kqid qid; 1751 struct dquot *dquot; 1752 u64 limit; 1753 u64 curblock; 1754 1755 qid = make_kqid_projid(projid); 1756 dquot = dqget(sb, qid); 1757 if (IS_ERR(dquot)) 1758 return PTR_ERR(dquot); 1759 spin_lock(&dquot->dq_dqb_lock); 1760 1761 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1762 dquot->dq_dqb.dqb_bhardlimit); 1763 if (limit) 1764 limit >>= sb->s_blocksize_bits; 1765 1766 if (limit && buf->f_blocks > limit) { 1767 curblock = (dquot->dq_dqb.dqb_curspace + 1768 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1769 buf->f_blocks = limit; 1770 buf->f_bfree = buf->f_bavail = 1771 (buf->f_blocks > curblock) ? 1772 (buf->f_blocks - curblock) : 0; 1773 } 1774 1775 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1776 dquot->dq_dqb.dqb_ihardlimit); 1777 1778 if (limit && buf->f_files > limit) { 1779 buf->f_files = limit; 1780 buf->f_ffree = 1781 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1782 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1783 } 1784 1785 spin_unlock(&dquot->dq_dqb_lock); 1786 dqput(dquot); 1787 return 0; 1788 } 1789 #endif 1790 1791 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1792 { 1793 struct super_block *sb = dentry->d_sb; 1794 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1795 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1796 block_t total_count, user_block_count, start_count; 1797 u64 avail_node_count; 1798 unsigned int total_valid_node_count; 1799 1800 total_count = le64_to_cpu(sbi->raw_super->block_count); 1801 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1802 buf->f_type = F2FS_SUPER_MAGIC; 1803 buf->f_bsize = sbi->blocksize; 1804 1805 buf->f_blocks = total_count - start_count; 1806 1807 spin_lock(&sbi->stat_lock); 1808 1809 user_block_count = sbi->user_block_count; 1810 total_valid_node_count = valid_node_count(sbi); 1811 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1812 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1813 sbi->current_reserved_blocks; 1814 1815 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1816 buf->f_bfree = 0; 1817 else 1818 buf->f_bfree -= sbi->unusable_block_count; 1819 spin_unlock(&sbi->stat_lock); 1820 1821 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1822 buf->f_bavail = buf->f_bfree - 1823 F2FS_OPTION(sbi).root_reserved_blocks; 1824 else 1825 buf->f_bavail = 0; 1826 1827 if (avail_node_count > user_block_count) { 1828 buf->f_files = user_block_count; 1829 buf->f_ffree = buf->f_bavail; 1830 } else { 1831 buf->f_files = avail_node_count; 1832 buf->f_ffree = min(avail_node_count - total_valid_node_count, 1833 buf->f_bavail); 1834 } 1835 1836 buf->f_namelen = F2FS_NAME_LEN; 1837 buf->f_fsid = u64_to_fsid(id); 1838 1839 #ifdef CONFIG_QUOTA 1840 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1841 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1842 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1843 } 1844 #endif 1845 return 0; 1846 } 1847 1848 static inline void f2fs_show_quota_options(struct seq_file *seq, 1849 struct super_block *sb) 1850 { 1851 #ifdef CONFIG_QUOTA 1852 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1853 1854 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1855 char *fmtname = ""; 1856 1857 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1858 case QFMT_VFS_OLD: 1859 fmtname = "vfsold"; 1860 break; 1861 case QFMT_VFS_V0: 1862 fmtname = "vfsv0"; 1863 break; 1864 case QFMT_VFS_V1: 1865 fmtname = "vfsv1"; 1866 break; 1867 } 1868 seq_printf(seq, ",jqfmt=%s", fmtname); 1869 } 1870 1871 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1872 seq_show_option(seq, "usrjquota", 1873 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1874 1875 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1876 seq_show_option(seq, "grpjquota", 1877 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1878 1879 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1880 seq_show_option(seq, "prjjquota", 1881 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1882 #endif 1883 } 1884 1885 #ifdef CONFIG_F2FS_FS_COMPRESSION 1886 static inline void f2fs_show_compress_options(struct seq_file *seq, 1887 struct super_block *sb) 1888 { 1889 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1890 char *algtype = ""; 1891 int i; 1892 1893 if (!f2fs_sb_has_compression(sbi)) 1894 return; 1895 1896 switch (F2FS_OPTION(sbi).compress_algorithm) { 1897 case COMPRESS_LZO: 1898 algtype = "lzo"; 1899 break; 1900 case COMPRESS_LZ4: 1901 algtype = "lz4"; 1902 break; 1903 case COMPRESS_ZSTD: 1904 algtype = "zstd"; 1905 break; 1906 case COMPRESS_LZORLE: 1907 algtype = "lzo-rle"; 1908 break; 1909 } 1910 seq_printf(seq, ",compress_algorithm=%s", algtype); 1911 1912 if (F2FS_OPTION(sbi).compress_level) 1913 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1914 1915 seq_printf(seq, ",compress_log_size=%u", 1916 F2FS_OPTION(sbi).compress_log_size); 1917 1918 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1919 seq_printf(seq, ",compress_extension=%s", 1920 F2FS_OPTION(sbi).extensions[i]); 1921 } 1922 1923 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1924 seq_printf(seq, ",nocompress_extension=%s", 1925 F2FS_OPTION(sbi).noextensions[i]); 1926 } 1927 1928 if (F2FS_OPTION(sbi).compress_chksum) 1929 seq_puts(seq, ",compress_chksum"); 1930 1931 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1932 seq_printf(seq, ",compress_mode=%s", "fs"); 1933 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1934 seq_printf(seq, ",compress_mode=%s", "user"); 1935 1936 if (test_opt(sbi, COMPRESS_CACHE)) 1937 seq_puts(seq, ",compress_cache"); 1938 } 1939 #endif 1940 1941 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1942 { 1943 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1944 1945 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1946 seq_printf(seq, ",background_gc=%s", "sync"); 1947 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1948 seq_printf(seq, ",background_gc=%s", "on"); 1949 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1950 seq_printf(seq, ",background_gc=%s", "off"); 1951 1952 if (test_opt(sbi, GC_MERGE)) 1953 seq_puts(seq, ",gc_merge"); 1954 else 1955 seq_puts(seq, ",nogc_merge"); 1956 1957 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1958 seq_puts(seq, ",disable_roll_forward"); 1959 if (test_opt(sbi, NORECOVERY)) 1960 seq_puts(seq, ",norecovery"); 1961 if (test_opt(sbi, DISCARD)) { 1962 seq_puts(seq, ",discard"); 1963 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 1964 seq_printf(seq, ",discard_unit=%s", "block"); 1965 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 1966 seq_printf(seq, ",discard_unit=%s", "segment"); 1967 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 1968 seq_printf(seq, ",discard_unit=%s", "section"); 1969 } else { 1970 seq_puts(seq, ",nodiscard"); 1971 } 1972 #ifdef CONFIG_F2FS_FS_XATTR 1973 if (test_opt(sbi, XATTR_USER)) 1974 seq_puts(seq, ",user_xattr"); 1975 else 1976 seq_puts(seq, ",nouser_xattr"); 1977 if (test_opt(sbi, INLINE_XATTR)) 1978 seq_puts(seq, ",inline_xattr"); 1979 else 1980 seq_puts(seq, ",noinline_xattr"); 1981 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1982 seq_printf(seq, ",inline_xattr_size=%u", 1983 F2FS_OPTION(sbi).inline_xattr_size); 1984 #endif 1985 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1986 if (test_opt(sbi, POSIX_ACL)) 1987 seq_puts(seq, ",acl"); 1988 else 1989 seq_puts(seq, ",noacl"); 1990 #endif 1991 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1992 seq_puts(seq, ",disable_ext_identify"); 1993 if (test_opt(sbi, INLINE_DATA)) 1994 seq_puts(seq, ",inline_data"); 1995 else 1996 seq_puts(seq, ",noinline_data"); 1997 if (test_opt(sbi, INLINE_DENTRY)) 1998 seq_puts(seq, ",inline_dentry"); 1999 else 2000 seq_puts(seq, ",noinline_dentry"); 2001 if (test_opt(sbi, FLUSH_MERGE)) 2002 seq_puts(seq, ",flush_merge"); 2003 else 2004 seq_puts(seq, ",noflush_merge"); 2005 if (test_opt(sbi, NOBARRIER)) 2006 seq_puts(seq, ",nobarrier"); 2007 else 2008 seq_puts(seq, ",barrier"); 2009 if (test_opt(sbi, FASTBOOT)) 2010 seq_puts(seq, ",fastboot"); 2011 if (test_opt(sbi, READ_EXTENT_CACHE)) 2012 seq_puts(seq, ",extent_cache"); 2013 else 2014 seq_puts(seq, ",noextent_cache"); 2015 if (test_opt(sbi, AGE_EXTENT_CACHE)) 2016 seq_puts(seq, ",age_extent_cache"); 2017 if (test_opt(sbi, DATA_FLUSH)) 2018 seq_puts(seq, ",data_flush"); 2019 2020 seq_puts(seq, ",mode="); 2021 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 2022 seq_puts(seq, "adaptive"); 2023 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 2024 seq_puts(seq, "lfs"); 2025 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 2026 seq_puts(seq, "fragment:segment"); 2027 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2028 seq_puts(seq, "fragment:block"); 2029 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 2030 if (test_opt(sbi, RESERVE_ROOT)) 2031 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 2032 F2FS_OPTION(sbi).root_reserved_blocks, 2033 from_kuid_munged(&init_user_ns, 2034 F2FS_OPTION(sbi).s_resuid), 2035 from_kgid_munged(&init_user_ns, 2036 F2FS_OPTION(sbi).s_resgid)); 2037 #ifdef CONFIG_F2FS_FAULT_INJECTION 2038 if (test_opt(sbi, FAULT_INJECTION)) { 2039 seq_printf(seq, ",fault_injection=%u", 2040 F2FS_OPTION(sbi).fault_info.inject_rate); 2041 seq_printf(seq, ",fault_type=%u", 2042 F2FS_OPTION(sbi).fault_info.inject_type); 2043 } 2044 #endif 2045 #ifdef CONFIG_QUOTA 2046 if (test_opt(sbi, QUOTA)) 2047 seq_puts(seq, ",quota"); 2048 if (test_opt(sbi, USRQUOTA)) 2049 seq_puts(seq, ",usrquota"); 2050 if (test_opt(sbi, GRPQUOTA)) 2051 seq_puts(seq, ",grpquota"); 2052 if (test_opt(sbi, PRJQUOTA)) 2053 seq_puts(seq, ",prjquota"); 2054 #endif 2055 f2fs_show_quota_options(seq, sbi->sb); 2056 2057 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 2058 2059 if (sbi->sb->s_flags & SB_INLINECRYPT) 2060 seq_puts(seq, ",inlinecrypt"); 2061 2062 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 2063 seq_printf(seq, ",alloc_mode=%s", "default"); 2064 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2065 seq_printf(seq, ",alloc_mode=%s", "reuse"); 2066 2067 if (test_opt(sbi, DISABLE_CHECKPOINT)) 2068 seq_printf(seq, ",checkpoint=disable:%u", 2069 F2FS_OPTION(sbi).unusable_cap); 2070 if (test_opt(sbi, MERGE_CHECKPOINT)) 2071 seq_puts(seq, ",checkpoint_merge"); 2072 else 2073 seq_puts(seq, ",nocheckpoint_merge"); 2074 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2075 seq_printf(seq, ",fsync_mode=%s", "posix"); 2076 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2077 seq_printf(seq, ",fsync_mode=%s", "strict"); 2078 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2079 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2080 2081 #ifdef CONFIG_F2FS_FS_COMPRESSION 2082 f2fs_show_compress_options(seq, sbi->sb); 2083 #endif 2084 2085 if (test_opt(sbi, ATGC)) 2086 seq_puts(seq, ",atgc"); 2087 2088 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) 2089 seq_printf(seq, ",memory=%s", "normal"); 2090 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) 2091 seq_printf(seq, ",memory=%s", "low"); 2092 2093 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2094 seq_printf(seq, ",errors=%s", "remount-ro"); 2095 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE) 2096 seq_printf(seq, ",errors=%s", "continue"); 2097 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC) 2098 seq_printf(seq, ",errors=%s", "panic"); 2099 2100 return 0; 2101 } 2102 2103 static void default_options(struct f2fs_sb_info *sbi, bool remount) 2104 { 2105 /* init some FS parameters */ 2106 if (!remount) { 2107 set_opt(sbi, READ_EXTENT_CACHE); 2108 clear_opt(sbi, DISABLE_CHECKPOINT); 2109 2110 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2111 set_opt(sbi, DISCARD); 2112 2113 if (f2fs_sb_has_blkzoned(sbi)) 2114 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2115 else 2116 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2117 } 2118 2119 if (f2fs_sb_has_readonly(sbi)) 2120 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2121 else 2122 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2123 2124 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2125 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <= 2126 SMALL_VOLUME_SEGMENTS) 2127 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2128 else 2129 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2130 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2131 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2132 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2133 if (f2fs_sb_has_compression(sbi)) { 2134 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2135 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2136 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2137 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2138 } 2139 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2140 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; 2141 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE; 2142 2143 set_opt(sbi, INLINE_XATTR); 2144 set_opt(sbi, INLINE_DATA); 2145 set_opt(sbi, INLINE_DENTRY); 2146 set_opt(sbi, MERGE_CHECKPOINT); 2147 F2FS_OPTION(sbi).unusable_cap = 0; 2148 sbi->sb->s_flags |= SB_LAZYTIME; 2149 if (!f2fs_is_readonly(sbi)) 2150 set_opt(sbi, FLUSH_MERGE); 2151 if (f2fs_sb_has_blkzoned(sbi)) 2152 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2153 else 2154 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2155 2156 #ifdef CONFIG_F2FS_FS_XATTR 2157 set_opt(sbi, XATTR_USER); 2158 #endif 2159 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2160 set_opt(sbi, POSIX_ACL); 2161 #endif 2162 2163 f2fs_build_fault_attr(sbi, 0, 0); 2164 } 2165 2166 #ifdef CONFIG_QUOTA 2167 static int f2fs_enable_quotas(struct super_block *sb); 2168 #endif 2169 2170 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2171 { 2172 unsigned int s_flags = sbi->sb->s_flags; 2173 struct cp_control cpc; 2174 unsigned int gc_mode = sbi->gc_mode; 2175 int err = 0; 2176 int ret; 2177 block_t unusable; 2178 2179 if (s_flags & SB_RDONLY) { 2180 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2181 return -EINVAL; 2182 } 2183 sbi->sb->s_flags |= SB_ACTIVE; 2184 2185 /* check if we need more GC first */ 2186 unusable = f2fs_get_unusable_blocks(sbi); 2187 if (!f2fs_disable_cp_again(sbi, unusable)) 2188 goto skip_gc; 2189 2190 f2fs_update_time(sbi, DISABLE_TIME); 2191 2192 sbi->gc_mode = GC_URGENT_HIGH; 2193 2194 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2195 struct f2fs_gc_control gc_control = { 2196 .victim_segno = NULL_SEGNO, 2197 .init_gc_type = FG_GC, 2198 .should_migrate_blocks = false, 2199 .err_gc_skipped = true, 2200 .no_bg_gc = true, 2201 .nr_free_secs = 1 }; 2202 2203 f2fs_down_write(&sbi->gc_lock); 2204 stat_inc_gc_call_count(sbi, FOREGROUND); 2205 err = f2fs_gc(sbi, &gc_control); 2206 if (err == -ENODATA) { 2207 err = 0; 2208 break; 2209 } 2210 if (err && err != -EAGAIN) 2211 break; 2212 } 2213 2214 ret = sync_filesystem(sbi->sb); 2215 if (ret || err) { 2216 err = ret ? ret : err; 2217 goto restore_flag; 2218 } 2219 2220 unusable = f2fs_get_unusable_blocks(sbi); 2221 if (f2fs_disable_cp_again(sbi, unusable)) { 2222 err = -EAGAIN; 2223 goto restore_flag; 2224 } 2225 2226 skip_gc: 2227 f2fs_down_write(&sbi->gc_lock); 2228 cpc.reason = CP_PAUSE; 2229 set_sbi_flag(sbi, SBI_CP_DISABLED); 2230 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2231 err = f2fs_write_checkpoint(sbi, &cpc); 2232 if (err) 2233 goto out_unlock; 2234 2235 spin_lock(&sbi->stat_lock); 2236 sbi->unusable_block_count = unusable; 2237 spin_unlock(&sbi->stat_lock); 2238 2239 out_unlock: 2240 f2fs_up_write(&sbi->gc_lock); 2241 restore_flag: 2242 sbi->gc_mode = gc_mode; 2243 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2244 return err; 2245 } 2246 2247 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2248 { 2249 int retry = DEFAULT_RETRY_IO_COUNT; 2250 2251 /* we should flush all the data to keep data consistency */ 2252 do { 2253 sync_inodes_sb(sbi->sb); 2254 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2255 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2256 2257 if (unlikely(retry < 0)) 2258 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2259 2260 f2fs_down_write(&sbi->gc_lock); 2261 f2fs_dirty_to_prefree(sbi); 2262 2263 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2264 set_sbi_flag(sbi, SBI_IS_DIRTY); 2265 f2fs_up_write(&sbi->gc_lock); 2266 2267 f2fs_sync_fs(sbi->sb, 1); 2268 2269 /* Let's ensure there's no pending checkpoint anymore */ 2270 f2fs_flush_ckpt_thread(sbi); 2271 } 2272 2273 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2274 { 2275 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2276 struct f2fs_mount_info org_mount_opt; 2277 unsigned long old_sb_flags; 2278 int err; 2279 bool need_restart_gc = false, need_stop_gc = false; 2280 bool need_restart_flush = false, need_stop_flush = false; 2281 bool need_restart_discard = false, need_stop_discard = false; 2282 bool need_enable_checkpoint = false, need_disable_checkpoint = false; 2283 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE); 2284 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE); 2285 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2286 bool no_atgc = !test_opt(sbi, ATGC); 2287 bool no_discard = !test_opt(sbi, DISCARD); 2288 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2289 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2290 #ifdef CONFIG_QUOTA 2291 int i, j; 2292 #endif 2293 2294 /* 2295 * Save the old mount options in case we 2296 * need to restore them. 2297 */ 2298 org_mount_opt = sbi->mount_opt; 2299 old_sb_flags = sb->s_flags; 2300 2301 #ifdef CONFIG_QUOTA 2302 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2303 for (i = 0; i < MAXQUOTAS; i++) { 2304 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2305 org_mount_opt.s_qf_names[i] = 2306 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2307 GFP_KERNEL); 2308 if (!org_mount_opt.s_qf_names[i]) { 2309 for (j = 0; j < i; j++) 2310 kfree(org_mount_opt.s_qf_names[j]); 2311 return -ENOMEM; 2312 } 2313 } else { 2314 org_mount_opt.s_qf_names[i] = NULL; 2315 } 2316 } 2317 #endif 2318 2319 /* recover superblocks we couldn't write due to previous RO mount */ 2320 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2321 err = f2fs_commit_super(sbi, false); 2322 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2323 err); 2324 if (!err) 2325 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2326 } 2327 2328 default_options(sbi, true); 2329 2330 /* parse mount options */ 2331 err = parse_options(sb, data, true); 2332 if (err) 2333 goto restore_opts; 2334 2335 #ifdef CONFIG_BLK_DEV_ZONED 2336 if (f2fs_sb_has_blkzoned(sbi) && 2337 sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) { 2338 f2fs_err(sbi, 2339 "zoned: max open zones %u is too small, need at least %u open zones", 2340 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs); 2341 err = -EINVAL; 2342 goto restore_opts; 2343 } 2344 #endif 2345 2346 /* flush outstanding errors before changing fs state */ 2347 flush_work(&sbi->s_error_work); 2348 2349 /* 2350 * Previous and new state of filesystem is RO, 2351 * so skip checking GC and FLUSH_MERGE conditions. 2352 */ 2353 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2354 goto skip; 2355 2356 if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) { 2357 err = -EROFS; 2358 goto restore_opts; 2359 } 2360 2361 #ifdef CONFIG_QUOTA 2362 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2363 err = dquot_suspend(sb, -1); 2364 if (err < 0) 2365 goto restore_opts; 2366 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2367 /* dquot_resume needs RW */ 2368 sb->s_flags &= ~SB_RDONLY; 2369 if (sb_any_quota_suspended(sb)) { 2370 dquot_resume(sb, -1); 2371 } else if (f2fs_sb_has_quota_ino(sbi)) { 2372 err = f2fs_enable_quotas(sb); 2373 if (err) 2374 goto restore_opts; 2375 } 2376 } 2377 #endif 2378 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) { 2379 err = -EINVAL; 2380 f2fs_warn(sbi, "LFS is not compatible with IPU"); 2381 goto restore_opts; 2382 } 2383 2384 /* disallow enable atgc dynamically */ 2385 if (no_atgc == !!test_opt(sbi, ATGC)) { 2386 err = -EINVAL; 2387 f2fs_warn(sbi, "switch atgc option is not allowed"); 2388 goto restore_opts; 2389 } 2390 2391 /* disallow enable/disable extent_cache dynamically */ 2392 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) { 2393 err = -EINVAL; 2394 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2395 goto restore_opts; 2396 } 2397 /* disallow enable/disable age extent_cache dynamically */ 2398 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) { 2399 err = -EINVAL; 2400 f2fs_warn(sbi, "switch age_extent_cache option is not allowed"); 2401 goto restore_opts; 2402 } 2403 2404 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2405 err = -EINVAL; 2406 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2407 goto restore_opts; 2408 } 2409 2410 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2411 err = -EINVAL; 2412 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2413 goto restore_opts; 2414 } 2415 2416 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2417 err = -EINVAL; 2418 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2419 goto restore_opts; 2420 } 2421 2422 /* 2423 * We stop the GC thread if FS is mounted as RO 2424 * or if background_gc = off is passed in mount 2425 * option. Also sync the filesystem. 2426 */ 2427 if ((*flags & SB_RDONLY) || 2428 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2429 !test_opt(sbi, GC_MERGE))) { 2430 if (sbi->gc_thread) { 2431 f2fs_stop_gc_thread(sbi); 2432 need_restart_gc = true; 2433 } 2434 } else if (!sbi->gc_thread) { 2435 err = f2fs_start_gc_thread(sbi); 2436 if (err) 2437 goto restore_opts; 2438 need_stop_gc = true; 2439 } 2440 2441 if (*flags & SB_RDONLY) { 2442 sync_inodes_sb(sb); 2443 2444 set_sbi_flag(sbi, SBI_IS_DIRTY); 2445 set_sbi_flag(sbi, SBI_IS_CLOSE); 2446 f2fs_sync_fs(sb, 1); 2447 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2448 } 2449 2450 /* 2451 * We stop issue flush thread if FS is mounted as RO 2452 * or if flush_merge is not passed in mount option. 2453 */ 2454 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2455 clear_opt(sbi, FLUSH_MERGE); 2456 f2fs_destroy_flush_cmd_control(sbi, false); 2457 need_restart_flush = true; 2458 } else { 2459 err = f2fs_create_flush_cmd_control(sbi); 2460 if (err) 2461 goto restore_gc; 2462 need_stop_flush = true; 2463 } 2464 2465 if (no_discard == !!test_opt(sbi, DISCARD)) { 2466 if (test_opt(sbi, DISCARD)) { 2467 err = f2fs_start_discard_thread(sbi); 2468 if (err) 2469 goto restore_flush; 2470 need_stop_discard = true; 2471 } else { 2472 f2fs_stop_discard_thread(sbi); 2473 f2fs_issue_discard_timeout(sbi); 2474 need_restart_discard = true; 2475 } 2476 } 2477 2478 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2479 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2480 err = f2fs_disable_checkpoint(sbi); 2481 if (err) 2482 goto restore_discard; 2483 need_enable_checkpoint = true; 2484 } else { 2485 f2fs_enable_checkpoint(sbi); 2486 need_disable_checkpoint = true; 2487 } 2488 } 2489 2490 /* 2491 * Place this routine at the end, since a new checkpoint would be 2492 * triggered while remount and we need to take care of it before 2493 * returning from remount. 2494 */ 2495 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2496 !test_opt(sbi, MERGE_CHECKPOINT)) { 2497 f2fs_stop_ckpt_thread(sbi); 2498 } else { 2499 /* Flush if the prevous checkpoint, if exists. */ 2500 f2fs_flush_ckpt_thread(sbi); 2501 2502 err = f2fs_start_ckpt_thread(sbi); 2503 if (err) { 2504 f2fs_err(sbi, 2505 "Failed to start F2FS issue_checkpoint_thread (%d)", 2506 err); 2507 goto restore_checkpoint; 2508 } 2509 } 2510 2511 skip: 2512 #ifdef CONFIG_QUOTA 2513 /* Release old quota file names */ 2514 for (i = 0; i < MAXQUOTAS; i++) 2515 kfree(org_mount_opt.s_qf_names[i]); 2516 #endif 2517 /* Update the POSIXACL Flag */ 2518 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2519 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2520 2521 limit_reserve_root(sbi); 2522 adjust_unusable_cap_perc(sbi); 2523 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2524 return 0; 2525 restore_checkpoint: 2526 if (need_enable_checkpoint) { 2527 f2fs_enable_checkpoint(sbi); 2528 } else if (need_disable_checkpoint) { 2529 if (f2fs_disable_checkpoint(sbi)) 2530 f2fs_warn(sbi, "checkpoint has not been disabled"); 2531 } 2532 restore_discard: 2533 if (need_restart_discard) { 2534 if (f2fs_start_discard_thread(sbi)) 2535 f2fs_warn(sbi, "discard has been stopped"); 2536 } else if (need_stop_discard) { 2537 f2fs_stop_discard_thread(sbi); 2538 } 2539 restore_flush: 2540 if (need_restart_flush) { 2541 if (f2fs_create_flush_cmd_control(sbi)) 2542 f2fs_warn(sbi, "background flush thread has stopped"); 2543 } else if (need_stop_flush) { 2544 clear_opt(sbi, FLUSH_MERGE); 2545 f2fs_destroy_flush_cmd_control(sbi, false); 2546 } 2547 restore_gc: 2548 if (need_restart_gc) { 2549 if (f2fs_start_gc_thread(sbi)) 2550 f2fs_warn(sbi, "background gc thread has stopped"); 2551 } else if (need_stop_gc) { 2552 f2fs_stop_gc_thread(sbi); 2553 } 2554 restore_opts: 2555 #ifdef CONFIG_QUOTA 2556 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2557 for (i = 0; i < MAXQUOTAS; i++) { 2558 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2559 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2560 } 2561 #endif 2562 sbi->mount_opt = org_mount_opt; 2563 sb->s_flags = old_sb_flags; 2564 return err; 2565 } 2566 2567 static void f2fs_shutdown(struct super_block *sb) 2568 { 2569 f2fs_do_shutdown(F2FS_SB(sb), F2FS_GOING_DOWN_NOSYNC, false, false); 2570 } 2571 2572 #ifdef CONFIG_QUOTA 2573 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi) 2574 { 2575 /* need to recovery orphan */ 2576 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 2577 return true; 2578 /* need to recovery data */ 2579 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 2580 return false; 2581 if (test_opt(sbi, NORECOVERY)) 2582 return false; 2583 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG); 2584 } 2585 2586 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi) 2587 { 2588 bool readonly = f2fs_readonly(sbi->sb); 2589 2590 if (!f2fs_need_recovery(sbi)) 2591 return false; 2592 2593 /* it doesn't need to check f2fs_sb_has_readonly() */ 2594 if (f2fs_hw_is_readonly(sbi)) 2595 return false; 2596 2597 if (readonly) { 2598 sbi->sb->s_flags &= ~SB_RDONLY; 2599 set_sbi_flag(sbi, SBI_IS_WRITABLE); 2600 } 2601 2602 /* 2603 * Turn on quotas which were not enabled for read-only mounts if 2604 * filesystem has quota feature, so that they are updated correctly. 2605 */ 2606 return f2fs_enable_quota_files(sbi, readonly); 2607 } 2608 2609 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi, 2610 bool quota_enabled) 2611 { 2612 if (quota_enabled) 2613 f2fs_quota_off_umount(sbi->sb); 2614 2615 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) { 2616 clear_sbi_flag(sbi, SBI_IS_WRITABLE); 2617 sbi->sb->s_flags |= SB_RDONLY; 2618 } 2619 } 2620 2621 /* Read data from quotafile */ 2622 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2623 size_t len, loff_t off) 2624 { 2625 struct inode *inode = sb_dqopt(sb)->files[type]; 2626 struct address_space *mapping = inode->i_mapping; 2627 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2628 int offset = off & (sb->s_blocksize - 1); 2629 int tocopy; 2630 size_t toread; 2631 loff_t i_size = i_size_read(inode); 2632 struct page *page; 2633 2634 if (off > i_size) 2635 return 0; 2636 2637 if (off + len > i_size) 2638 len = i_size - off; 2639 toread = len; 2640 while (toread > 0) { 2641 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2642 repeat: 2643 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2644 if (IS_ERR(page)) { 2645 if (PTR_ERR(page) == -ENOMEM) { 2646 memalloc_retry_wait(GFP_NOFS); 2647 goto repeat; 2648 } 2649 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2650 return PTR_ERR(page); 2651 } 2652 2653 lock_page(page); 2654 2655 if (unlikely(page->mapping != mapping)) { 2656 f2fs_put_page(page, 1); 2657 goto repeat; 2658 } 2659 if (unlikely(!PageUptodate(page))) { 2660 f2fs_put_page(page, 1); 2661 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2662 return -EIO; 2663 } 2664 2665 memcpy_from_page(data, page, offset, tocopy); 2666 f2fs_put_page(page, 1); 2667 2668 offset = 0; 2669 toread -= tocopy; 2670 data += tocopy; 2671 blkidx++; 2672 } 2673 return len; 2674 } 2675 2676 /* Write to quotafile */ 2677 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2678 const char *data, size_t len, loff_t off) 2679 { 2680 struct inode *inode = sb_dqopt(sb)->files[type]; 2681 struct address_space *mapping = inode->i_mapping; 2682 const struct address_space_operations *a_ops = mapping->a_ops; 2683 int offset = off & (sb->s_blocksize - 1); 2684 size_t towrite = len; 2685 struct page *page; 2686 void *fsdata = NULL; 2687 int err = 0; 2688 int tocopy; 2689 2690 while (towrite > 0) { 2691 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2692 towrite); 2693 retry: 2694 err = a_ops->write_begin(NULL, mapping, off, tocopy, 2695 &page, &fsdata); 2696 if (unlikely(err)) { 2697 if (err == -ENOMEM) { 2698 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2699 goto retry; 2700 } 2701 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2702 break; 2703 } 2704 2705 memcpy_to_page(page, offset, data, tocopy); 2706 2707 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2708 page, fsdata); 2709 offset = 0; 2710 towrite -= tocopy; 2711 off += tocopy; 2712 data += tocopy; 2713 cond_resched(); 2714 } 2715 2716 if (len == towrite) 2717 return err; 2718 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2719 f2fs_mark_inode_dirty_sync(inode, false); 2720 return len - towrite; 2721 } 2722 2723 int f2fs_dquot_initialize(struct inode *inode) 2724 { 2725 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) 2726 return -ESRCH; 2727 2728 return dquot_initialize(inode); 2729 } 2730 2731 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode) 2732 { 2733 return F2FS_I(inode)->i_dquot; 2734 } 2735 2736 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2737 { 2738 return &F2FS_I(inode)->i_reserved_quota; 2739 } 2740 2741 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2742 { 2743 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2744 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2745 return 0; 2746 } 2747 2748 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2749 F2FS_OPTION(sbi).s_jquota_fmt, type); 2750 } 2751 2752 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2753 { 2754 int enabled = 0; 2755 int i, err; 2756 2757 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2758 err = f2fs_enable_quotas(sbi->sb); 2759 if (err) { 2760 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2761 return 0; 2762 } 2763 return 1; 2764 } 2765 2766 for (i = 0; i < MAXQUOTAS; i++) { 2767 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2768 err = f2fs_quota_on_mount(sbi, i); 2769 if (!err) { 2770 enabled = 1; 2771 continue; 2772 } 2773 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2774 err, i); 2775 } 2776 } 2777 return enabled; 2778 } 2779 2780 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2781 unsigned int flags) 2782 { 2783 struct inode *qf_inode; 2784 unsigned long qf_inum; 2785 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL; 2786 int err; 2787 2788 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2789 2790 qf_inum = f2fs_qf_ino(sb, type); 2791 if (!qf_inum) 2792 return -EPERM; 2793 2794 qf_inode = f2fs_iget(sb, qf_inum); 2795 if (IS_ERR(qf_inode)) { 2796 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2797 return PTR_ERR(qf_inode); 2798 } 2799 2800 /* Don't account quota for quota files to avoid recursion */ 2801 inode_lock(qf_inode); 2802 qf_inode->i_flags |= S_NOQUOTA; 2803 2804 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) { 2805 F2FS_I(qf_inode)->i_flags |= qf_flag; 2806 f2fs_set_inode_flags(qf_inode); 2807 } 2808 inode_unlock(qf_inode); 2809 2810 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2811 iput(qf_inode); 2812 return err; 2813 } 2814 2815 static int f2fs_enable_quotas(struct super_block *sb) 2816 { 2817 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2818 int type, err = 0; 2819 unsigned long qf_inum; 2820 bool quota_mopt[MAXQUOTAS] = { 2821 test_opt(sbi, USRQUOTA), 2822 test_opt(sbi, GRPQUOTA), 2823 test_opt(sbi, PRJQUOTA), 2824 }; 2825 2826 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2827 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2828 return 0; 2829 } 2830 2831 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2832 2833 for (type = 0; type < MAXQUOTAS; type++) { 2834 qf_inum = f2fs_qf_ino(sb, type); 2835 if (qf_inum) { 2836 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2837 DQUOT_USAGE_ENABLED | 2838 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2839 if (err) { 2840 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2841 type, err); 2842 for (type--; type >= 0; type--) 2843 dquot_quota_off(sb, type); 2844 set_sbi_flag(F2FS_SB(sb), 2845 SBI_QUOTA_NEED_REPAIR); 2846 return err; 2847 } 2848 } 2849 } 2850 return 0; 2851 } 2852 2853 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2854 { 2855 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2856 struct address_space *mapping = dqopt->files[type]->i_mapping; 2857 int ret = 0; 2858 2859 ret = dquot_writeback_dquots(sbi->sb, type); 2860 if (ret) 2861 goto out; 2862 2863 ret = filemap_fdatawrite(mapping); 2864 if (ret) 2865 goto out; 2866 2867 /* if we are using journalled quota */ 2868 if (is_journalled_quota(sbi)) 2869 goto out; 2870 2871 ret = filemap_fdatawait(mapping); 2872 2873 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2874 out: 2875 if (ret) 2876 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2877 return ret; 2878 } 2879 2880 int f2fs_quota_sync(struct super_block *sb, int type) 2881 { 2882 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2883 struct quota_info *dqopt = sb_dqopt(sb); 2884 int cnt; 2885 int ret = 0; 2886 2887 /* 2888 * Now when everything is written we can discard the pagecache so 2889 * that userspace sees the changes. 2890 */ 2891 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2892 2893 if (type != -1 && cnt != type) 2894 continue; 2895 2896 if (!sb_has_quota_active(sb, cnt)) 2897 continue; 2898 2899 if (!f2fs_sb_has_quota_ino(sbi)) 2900 inode_lock(dqopt->files[cnt]); 2901 2902 /* 2903 * do_quotactl 2904 * f2fs_quota_sync 2905 * f2fs_down_read(quota_sem) 2906 * dquot_writeback_dquots() 2907 * f2fs_dquot_commit 2908 * block_operation 2909 * f2fs_down_read(quota_sem) 2910 */ 2911 f2fs_lock_op(sbi); 2912 f2fs_down_read(&sbi->quota_sem); 2913 2914 ret = f2fs_quota_sync_file(sbi, cnt); 2915 2916 f2fs_up_read(&sbi->quota_sem); 2917 f2fs_unlock_op(sbi); 2918 2919 if (!f2fs_sb_has_quota_ino(sbi)) 2920 inode_unlock(dqopt->files[cnt]); 2921 2922 if (ret) 2923 break; 2924 } 2925 return ret; 2926 } 2927 2928 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2929 const struct path *path) 2930 { 2931 struct inode *inode; 2932 int err; 2933 2934 /* if quota sysfile exists, deny enabling quota with specific file */ 2935 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2936 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2937 return -EBUSY; 2938 } 2939 2940 if (path->dentry->d_sb != sb) 2941 return -EXDEV; 2942 2943 err = f2fs_quota_sync(sb, type); 2944 if (err) 2945 return err; 2946 2947 inode = d_inode(path->dentry); 2948 2949 err = filemap_fdatawrite(inode->i_mapping); 2950 if (err) 2951 return err; 2952 2953 err = filemap_fdatawait(inode->i_mapping); 2954 if (err) 2955 return err; 2956 2957 err = dquot_quota_on(sb, type, format_id, path); 2958 if (err) 2959 return err; 2960 2961 inode_lock(inode); 2962 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL; 2963 f2fs_set_inode_flags(inode); 2964 inode_unlock(inode); 2965 f2fs_mark_inode_dirty_sync(inode, false); 2966 2967 return 0; 2968 } 2969 2970 static int __f2fs_quota_off(struct super_block *sb, int type) 2971 { 2972 struct inode *inode = sb_dqopt(sb)->files[type]; 2973 int err; 2974 2975 if (!inode || !igrab(inode)) 2976 return dquot_quota_off(sb, type); 2977 2978 err = f2fs_quota_sync(sb, type); 2979 if (err) 2980 goto out_put; 2981 2982 err = dquot_quota_off(sb, type); 2983 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2984 goto out_put; 2985 2986 inode_lock(inode); 2987 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL; 2988 f2fs_set_inode_flags(inode); 2989 inode_unlock(inode); 2990 f2fs_mark_inode_dirty_sync(inode, false); 2991 out_put: 2992 iput(inode); 2993 return err; 2994 } 2995 2996 static int f2fs_quota_off(struct super_block *sb, int type) 2997 { 2998 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2999 int err; 3000 3001 err = __f2fs_quota_off(sb, type); 3002 3003 /* 3004 * quotactl can shutdown journalled quota, result in inconsistence 3005 * between quota record and fs data by following updates, tag the 3006 * flag to let fsck be aware of it. 3007 */ 3008 if (is_journalled_quota(sbi)) 3009 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3010 return err; 3011 } 3012 3013 void f2fs_quota_off_umount(struct super_block *sb) 3014 { 3015 int type; 3016 int err; 3017 3018 for (type = 0; type < MAXQUOTAS; type++) { 3019 err = __f2fs_quota_off(sb, type); 3020 if (err) { 3021 int ret = dquot_quota_off(sb, type); 3022 3023 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 3024 type, err, ret); 3025 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3026 } 3027 } 3028 /* 3029 * In case of checkpoint=disable, we must flush quota blocks. 3030 * This can cause NULL exception for node_inode in end_io, since 3031 * put_super already dropped it. 3032 */ 3033 sync_filesystem(sb); 3034 } 3035 3036 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 3037 { 3038 struct quota_info *dqopt = sb_dqopt(sb); 3039 int type; 3040 3041 for (type = 0; type < MAXQUOTAS; type++) { 3042 if (!dqopt->files[type]) 3043 continue; 3044 f2fs_inode_synced(dqopt->files[type]); 3045 } 3046 } 3047 3048 static int f2fs_dquot_commit(struct dquot *dquot) 3049 { 3050 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3051 int ret; 3052 3053 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 3054 ret = dquot_commit(dquot); 3055 if (ret < 0) 3056 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3057 f2fs_up_read(&sbi->quota_sem); 3058 return ret; 3059 } 3060 3061 static int f2fs_dquot_acquire(struct dquot *dquot) 3062 { 3063 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3064 int ret; 3065 3066 f2fs_down_read(&sbi->quota_sem); 3067 ret = dquot_acquire(dquot); 3068 if (ret < 0) 3069 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3070 f2fs_up_read(&sbi->quota_sem); 3071 return ret; 3072 } 3073 3074 static int f2fs_dquot_release(struct dquot *dquot) 3075 { 3076 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3077 int ret = dquot_release(dquot); 3078 3079 if (ret < 0) 3080 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3081 return ret; 3082 } 3083 3084 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 3085 { 3086 struct super_block *sb = dquot->dq_sb; 3087 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3088 int ret = dquot_mark_dquot_dirty(dquot); 3089 3090 /* if we are using journalled quota */ 3091 if (is_journalled_quota(sbi)) 3092 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 3093 3094 return ret; 3095 } 3096 3097 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 3098 { 3099 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3100 int ret = dquot_commit_info(sb, type); 3101 3102 if (ret < 0) 3103 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3104 return ret; 3105 } 3106 3107 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 3108 { 3109 *projid = F2FS_I(inode)->i_projid; 3110 return 0; 3111 } 3112 3113 static const struct dquot_operations f2fs_quota_operations = { 3114 .get_reserved_space = f2fs_get_reserved_space, 3115 .write_dquot = f2fs_dquot_commit, 3116 .acquire_dquot = f2fs_dquot_acquire, 3117 .release_dquot = f2fs_dquot_release, 3118 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 3119 .write_info = f2fs_dquot_commit_info, 3120 .alloc_dquot = dquot_alloc, 3121 .destroy_dquot = dquot_destroy, 3122 .get_projid = f2fs_get_projid, 3123 .get_next_id = dquot_get_next_id, 3124 }; 3125 3126 static const struct quotactl_ops f2fs_quotactl_ops = { 3127 .quota_on = f2fs_quota_on, 3128 .quota_off = f2fs_quota_off, 3129 .quota_sync = f2fs_quota_sync, 3130 .get_state = dquot_get_state, 3131 .set_info = dquot_set_dqinfo, 3132 .get_dqblk = dquot_get_dqblk, 3133 .set_dqblk = dquot_set_dqblk, 3134 .get_nextdqblk = dquot_get_next_dqblk, 3135 }; 3136 #else 3137 int f2fs_dquot_initialize(struct inode *inode) 3138 { 3139 return 0; 3140 } 3141 3142 int f2fs_quota_sync(struct super_block *sb, int type) 3143 { 3144 return 0; 3145 } 3146 3147 void f2fs_quota_off_umount(struct super_block *sb) 3148 { 3149 } 3150 #endif 3151 3152 static const struct super_operations f2fs_sops = { 3153 .alloc_inode = f2fs_alloc_inode, 3154 .free_inode = f2fs_free_inode, 3155 .drop_inode = f2fs_drop_inode, 3156 .write_inode = f2fs_write_inode, 3157 .dirty_inode = f2fs_dirty_inode, 3158 .show_options = f2fs_show_options, 3159 #ifdef CONFIG_QUOTA 3160 .quota_read = f2fs_quota_read, 3161 .quota_write = f2fs_quota_write, 3162 .get_dquots = f2fs_get_dquots, 3163 #endif 3164 .evict_inode = f2fs_evict_inode, 3165 .put_super = f2fs_put_super, 3166 .sync_fs = f2fs_sync_fs, 3167 .freeze_fs = f2fs_freeze, 3168 .unfreeze_fs = f2fs_unfreeze, 3169 .statfs = f2fs_statfs, 3170 .remount_fs = f2fs_remount, 3171 .shutdown = f2fs_shutdown, 3172 }; 3173 3174 #ifdef CONFIG_FS_ENCRYPTION 3175 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 3176 { 3177 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3178 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3179 ctx, len, NULL); 3180 } 3181 3182 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 3183 void *fs_data) 3184 { 3185 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3186 3187 /* 3188 * Encrypting the root directory is not allowed because fsck 3189 * expects lost+found directory to exist and remain unencrypted 3190 * if LOST_FOUND feature is enabled. 3191 * 3192 */ 3193 if (f2fs_sb_has_lost_found(sbi) && 3194 inode->i_ino == F2FS_ROOT_INO(sbi)) 3195 return -EPERM; 3196 3197 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3198 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3199 ctx, len, fs_data, XATTR_CREATE); 3200 } 3201 3202 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3203 { 3204 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3205 } 3206 3207 static bool f2fs_has_stable_inodes(struct super_block *sb) 3208 { 3209 return true; 3210 } 3211 3212 static struct block_device **f2fs_get_devices(struct super_block *sb, 3213 unsigned int *num_devs) 3214 { 3215 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3216 struct block_device **devs; 3217 int i; 3218 3219 if (!f2fs_is_multi_device(sbi)) 3220 return NULL; 3221 3222 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL); 3223 if (!devs) 3224 return ERR_PTR(-ENOMEM); 3225 3226 for (i = 0; i < sbi->s_ndevs; i++) 3227 devs[i] = FDEV(i).bdev; 3228 *num_devs = sbi->s_ndevs; 3229 return devs; 3230 } 3231 3232 static const struct fscrypt_operations f2fs_cryptops = { 3233 .needs_bounce_pages = 1, 3234 .has_32bit_inodes = 1, 3235 .supports_subblock_data_units = 1, 3236 .legacy_key_prefix = "f2fs:", 3237 .get_context = f2fs_get_context, 3238 .set_context = f2fs_set_context, 3239 .get_dummy_policy = f2fs_get_dummy_policy, 3240 .empty_dir = f2fs_empty_dir, 3241 .has_stable_inodes = f2fs_has_stable_inodes, 3242 .get_devices = f2fs_get_devices, 3243 }; 3244 #endif 3245 3246 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3247 u64 ino, u32 generation) 3248 { 3249 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3250 struct inode *inode; 3251 3252 if (f2fs_check_nid_range(sbi, ino)) 3253 return ERR_PTR(-ESTALE); 3254 3255 /* 3256 * f2fs_iget isn't quite right if the inode is currently unallocated! 3257 * However f2fs_iget currently does appropriate checks to handle stale 3258 * inodes so everything is OK. 3259 */ 3260 inode = f2fs_iget(sb, ino); 3261 if (IS_ERR(inode)) 3262 return ERR_CAST(inode); 3263 if (unlikely(generation && inode->i_generation != generation)) { 3264 /* we didn't find the right inode.. */ 3265 iput(inode); 3266 return ERR_PTR(-ESTALE); 3267 } 3268 return inode; 3269 } 3270 3271 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3272 int fh_len, int fh_type) 3273 { 3274 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3275 f2fs_nfs_get_inode); 3276 } 3277 3278 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3279 int fh_len, int fh_type) 3280 { 3281 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3282 f2fs_nfs_get_inode); 3283 } 3284 3285 static const struct export_operations f2fs_export_ops = { 3286 .encode_fh = generic_encode_ino32_fh, 3287 .fh_to_dentry = f2fs_fh_to_dentry, 3288 .fh_to_parent = f2fs_fh_to_parent, 3289 .get_parent = f2fs_get_parent, 3290 }; 3291 3292 loff_t max_file_blocks(struct inode *inode) 3293 { 3294 loff_t result = 0; 3295 loff_t leaf_count; 3296 3297 /* 3298 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3299 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3300 * space in inode.i_addr, it will be more safe to reassign 3301 * result as zero. 3302 */ 3303 3304 if (inode && f2fs_compressed_file(inode)) 3305 leaf_count = ADDRS_PER_BLOCK(inode); 3306 else 3307 leaf_count = DEF_ADDRS_PER_BLOCK; 3308 3309 /* two direct node blocks */ 3310 result += (leaf_count * 2); 3311 3312 /* two indirect node blocks */ 3313 leaf_count *= NIDS_PER_BLOCK; 3314 result += (leaf_count * 2); 3315 3316 /* one double indirect node block */ 3317 leaf_count *= NIDS_PER_BLOCK; 3318 result += leaf_count; 3319 3320 /* 3321 * For compatibility with FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{64,32} with 3322 * a 4K crypto data unit, we must restrict the max filesize to what can 3323 * fit within U32_MAX + 1 data units. 3324 */ 3325 3326 result = min(result, (((loff_t)U32_MAX + 1) * 4096) >> F2FS_BLKSIZE_BITS); 3327 3328 return result; 3329 } 3330 3331 static int __f2fs_commit_super(struct buffer_head *bh, 3332 struct f2fs_super_block *super) 3333 { 3334 lock_buffer(bh); 3335 if (super) 3336 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 3337 set_buffer_dirty(bh); 3338 unlock_buffer(bh); 3339 3340 /* it's rare case, we can do fua all the time */ 3341 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 3342 } 3343 3344 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3345 struct buffer_head *bh) 3346 { 3347 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3348 (bh->b_data + F2FS_SUPER_OFFSET); 3349 struct super_block *sb = sbi->sb; 3350 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3351 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3352 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3353 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3354 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3355 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3356 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3357 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3358 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3359 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3360 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3361 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3362 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3363 u64 main_end_blkaddr = main_blkaddr + 3364 ((u64)segment_count_main << log_blocks_per_seg); 3365 u64 seg_end_blkaddr = segment0_blkaddr + 3366 ((u64)segment_count << log_blocks_per_seg); 3367 3368 if (segment0_blkaddr != cp_blkaddr) { 3369 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3370 segment0_blkaddr, cp_blkaddr); 3371 return true; 3372 } 3373 3374 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3375 sit_blkaddr) { 3376 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3377 cp_blkaddr, sit_blkaddr, 3378 segment_count_ckpt << log_blocks_per_seg); 3379 return true; 3380 } 3381 3382 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3383 nat_blkaddr) { 3384 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3385 sit_blkaddr, nat_blkaddr, 3386 segment_count_sit << log_blocks_per_seg); 3387 return true; 3388 } 3389 3390 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3391 ssa_blkaddr) { 3392 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3393 nat_blkaddr, ssa_blkaddr, 3394 segment_count_nat << log_blocks_per_seg); 3395 return true; 3396 } 3397 3398 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3399 main_blkaddr) { 3400 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3401 ssa_blkaddr, main_blkaddr, 3402 segment_count_ssa << log_blocks_per_seg); 3403 return true; 3404 } 3405 3406 if (main_end_blkaddr > seg_end_blkaddr) { 3407 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3408 main_blkaddr, seg_end_blkaddr, 3409 segment_count_main << log_blocks_per_seg); 3410 return true; 3411 } else if (main_end_blkaddr < seg_end_blkaddr) { 3412 int err = 0; 3413 char *res; 3414 3415 /* fix in-memory information all the time */ 3416 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3417 segment0_blkaddr) >> log_blocks_per_seg); 3418 3419 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) { 3420 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3421 res = "internally"; 3422 } else { 3423 err = __f2fs_commit_super(bh, NULL); 3424 res = err ? "failed" : "done"; 3425 } 3426 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3427 res, main_blkaddr, seg_end_blkaddr, 3428 segment_count_main << log_blocks_per_seg); 3429 if (err) 3430 return true; 3431 } 3432 return false; 3433 } 3434 3435 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3436 struct buffer_head *bh) 3437 { 3438 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3439 block_t total_sections, blocks_per_seg; 3440 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3441 (bh->b_data + F2FS_SUPER_OFFSET); 3442 size_t crc_offset = 0; 3443 __u32 crc = 0; 3444 3445 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3446 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3447 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3448 return -EINVAL; 3449 } 3450 3451 /* Check checksum_offset and crc in superblock */ 3452 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3453 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3454 if (crc_offset != 3455 offsetof(struct f2fs_super_block, crc)) { 3456 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3457 crc_offset); 3458 return -EFSCORRUPTED; 3459 } 3460 crc = le32_to_cpu(raw_super->crc); 3461 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3462 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3463 return -EFSCORRUPTED; 3464 } 3465 } 3466 3467 /* only support block_size equals to PAGE_SIZE */ 3468 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3469 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3470 le32_to_cpu(raw_super->log_blocksize), 3471 F2FS_BLKSIZE_BITS); 3472 return -EFSCORRUPTED; 3473 } 3474 3475 /* check log blocks per segment */ 3476 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3477 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3478 le32_to_cpu(raw_super->log_blocks_per_seg)); 3479 return -EFSCORRUPTED; 3480 } 3481 3482 /* Currently, support 512/1024/2048/4096/16K bytes sector size */ 3483 if (le32_to_cpu(raw_super->log_sectorsize) > 3484 F2FS_MAX_LOG_SECTOR_SIZE || 3485 le32_to_cpu(raw_super->log_sectorsize) < 3486 F2FS_MIN_LOG_SECTOR_SIZE) { 3487 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3488 le32_to_cpu(raw_super->log_sectorsize)); 3489 return -EFSCORRUPTED; 3490 } 3491 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3492 le32_to_cpu(raw_super->log_sectorsize) != 3493 F2FS_MAX_LOG_SECTOR_SIZE) { 3494 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3495 le32_to_cpu(raw_super->log_sectors_per_block), 3496 le32_to_cpu(raw_super->log_sectorsize)); 3497 return -EFSCORRUPTED; 3498 } 3499 3500 segment_count = le32_to_cpu(raw_super->segment_count); 3501 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3502 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3503 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3504 total_sections = le32_to_cpu(raw_super->section_count); 3505 3506 /* blocks_per_seg should be 512, given the above check */ 3507 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg)); 3508 3509 if (segment_count > F2FS_MAX_SEGMENT || 3510 segment_count < F2FS_MIN_SEGMENTS) { 3511 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3512 return -EFSCORRUPTED; 3513 } 3514 3515 if (total_sections > segment_count_main || total_sections < 1 || 3516 segs_per_sec > segment_count || !segs_per_sec) { 3517 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3518 segment_count, total_sections, segs_per_sec); 3519 return -EFSCORRUPTED; 3520 } 3521 3522 if (segment_count_main != total_sections * segs_per_sec) { 3523 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3524 segment_count_main, total_sections, segs_per_sec); 3525 return -EFSCORRUPTED; 3526 } 3527 3528 if ((segment_count / segs_per_sec) < total_sections) { 3529 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3530 segment_count, segs_per_sec, total_sections); 3531 return -EFSCORRUPTED; 3532 } 3533 3534 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3535 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3536 segment_count, le64_to_cpu(raw_super->block_count)); 3537 return -EFSCORRUPTED; 3538 } 3539 3540 if (RDEV(0).path[0]) { 3541 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3542 int i = 1; 3543 3544 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3545 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3546 i++; 3547 } 3548 if (segment_count != dev_seg_count) { 3549 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3550 segment_count, dev_seg_count); 3551 return -EFSCORRUPTED; 3552 } 3553 } else { 3554 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3555 !bdev_is_zoned(sbi->sb->s_bdev)) { 3556 f2fs_info(sbi, "Zoned block device path is missing"); 3557 return -EFSCORRUPTED; 3558 } 3559 } 3560 3561 if (secs_per_zone > total_sections || !secs_per_zone) { 3562 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3563 secs_per_zone, total_sections); 3564 return -EFSCORRUPTED; 3565 } 3566 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3567 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3568 (le32_to_cpu(raw_super->extension_count) + 3569 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3570 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3571 le32_to_cpu(raw_super->extension_count), 3572 raw_super->hot_ext_count, 3573 F2FS_MAX_EXTENSION); 3574 return -EFSCORRUPTED; 3575 } 3576 3577 if (le32_to_cpu(raw_super->cp_payload) >= 3578 (blocks_per_seg - F2FS_CP_PACKS - 3579 NR_CURSEG_PERSIST_TYPE)) { 3580 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3581 le32_to_cpu(raw_super->cp_payload), 3582 blocks_per_seg - F2FS_CP_PACKS - 3583 NR_CURSEG_PERSIST_TYPE); 3584 return -EFSCORRUPTED; 3585 } 3586 3587 /* check reserved ino info */ 3588 if (le32_to_cpu(raw_super->node_ino) != 1 || 3589 le32_to_cpu(raw_super->meta_ino) != 2 || 3590 le32_to_cpu(raw_super->root_ino) != 3) { 3591 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3592 le32_to_cpu(raw_super->node_ino), 3593 le32_to_cpu(raw_super->meta_ino), 3594 le32_to_cpu(raw_super->root_ino)); 3595 return -EFSCORRUPTED; 3596 } 3597 3598 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3599 if (sanity_check_area_boundary(sbi, bh)) 3600 return -EFSCORRUPTED; 3601 3602 return 0; 3603 } 3604 3605 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3606 { 3607 unsigned int total, fsmeta; 3608 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3609 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3610 unsigned int ovp_segments, reserved_segments; 3611 unsigned int main_segs, blocks_per_seg; 3612 unsigned int sit_segs, nat_segs; 3613 unsigned int sit_bitmap_size, nat_bitmap_size; 3614 unsigned int log_blocks_per_seg; 3615 unsigned int segment_count_main; 3616 unsigned int cp_pack_start_sum, cp_payload; 3617 block_t user_block_count, valid_user_blocks; 3618 block_t avail_node_count, valid_node_count; 3619 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3620 int i, j; 3621 3622 total = le32_to_cpu(raw_super->segment_count); 3623 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3624 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3625 fsmeta += sit_segs; 3626 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3627 fsmeta += nat_segs; 3628 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3629 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3630 3631 if (unlikely(fsmeta >= total)) 3632 return 1; 3633 3634 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3635 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3636 3637 if (!f2fs_sb_has_readonly(sbi) && 3638 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3639 ovp_segments == 0 || reserved_segments == 0)) { 3640 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3641 return 1; 3642 } 3643 user_block_count = le64_to_cpu(ckpt->user_block_count); 3644 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3645 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3646 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3647 if (!user_block_count || user_block_count >= 3648 segment_count_main << log_blocks_per_seg) { 3649 f2fs_err(sbi, "Wrong user_block_count: %u", 3650 user_block_count); 3651 return 1; 3652 } 3653 3654 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3655 if (valid_user_blocks > user_block_count) { 3656 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3657 valid_user_blocks, user_block_count); 3658 return 1; 3659 } 3660 3661 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3662 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3663 if (valid_node_count > avail_node_count) { 3664 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3665 valid_node_count, avail_node_count); 3666 return 1; 3667 } 3668 3669 main_segs = le32_to_cpu(raw_super->segment_count_main); 3670 blocks_per_seg = BLKS_PER_SEG(sbi); 3671 3672 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3673 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3674 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3675 return 1; 3676 3677 if (f2fs_sb_has_readonly(sbi)) 3678 goto check_data; 3679 3680 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3681 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3682 le32_to_cpu(ckpt->cur_node_segno[j])) { 3683 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3684 i, j, 3685 le32_to_cpu(ckpt->cur_node_segno[i])); 3686 return 1; 3687 } 3688 } 3689 } 3690 check_data: 3691 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3692 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3693 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3694 return 1; 3695 3696 if (f2fs_sb_has_readonly(sbi)) 3697 goto skip_cross; 3698 3699 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3700 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3701 le32_to_cpu(ckpt->cur_data_segno[j])) { 3702 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3703 i, j, 3704 le32_to_cpu(ckpt->cur_data_segno[i])); 3705 return 1; 3706 } 3707 } 3708 } 3709 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3710 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3711 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3712 le32_to_cpu(ckpt->cur_data_segno[j])) { 3713 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3714 i, j, 3715 le32_to_cpu(ckpt->cur_node_segno[i])); 3716 return 1; 3717 } 3718 } 3719 } 3720 skip_cross: 3721 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3722 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3723 3724 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3725 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3726 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3727 sit_bitmap_size, nat_bitmap_size); 3728 return 1; 3729 } 3730 3731 cp_pack_start_sum = __start_sum_addr(sbi); 3732 cp_payload = __cp_payload(sbi); 3733 if (cp_pack_start_sum < cp_payload + 1 || 3734 cp_pack_start_sum > blocks_per_seg - 1 - 3735 NR_CURSEG_PERSIST_TYPE) { 3736 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3737 cp_pack_start_sum); 3738 return 1; 3739 } 3740 3741 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3742 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3743 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3744 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3745 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3746 le32_to_cpu(ckpt->checksum_offset)); 3747 return 1; 3748 } 3749 3750 nat_blocks = nat_segs << log_blocks_per_seg; 3751 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3752 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3753 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3754 (cp_payload + F2FS_CP_PACKS + 3755 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3756 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3757 cp_payload, nat_bits_blocks); 3758 return 1; 3759 } 3760 3761 if (unlikely(f2fs_cp_error(sbi))) { 3762 f2fs_err(sbi, "A bug case: need to run fsck"); 3763 return 1; 3764 } 3765 return 0; 3766 } 3767 3768 static void init_sb_info(struct f2fs_sb_info *sbi) 3769 { 3770 struct f2fs_super_block *raw_super = sbi->raw_super; 3771 int i; 3772 3773 sbi->log_sectors_per_block = 3774 le32_to_cpu(raw_super->log_sectors_per_block); 3775 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3776 sbi->blocksize = BIT(sbi->log_blocksize); 3777 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3778 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg); 3779 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3780 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3781 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3782 sbi->total_node_count = SEGS_TO_BLKS(sbi, 3783 ((le32_to_cpu(raw_super->segment_count_nat) / 2) * 3784 NAT_ENTRY_PER_BLOCK)); 3785 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3786 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3787 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3788 sbi->cur_victim_sec = NULL_SECNO; 3789 sbi->gc_mode = GC_NORMAL; 3790 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3791 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3792 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3793 sbi->migration_granularity = SEGS_PER_SEC(sbi); 3794 sbi->migration_window_granularity = f2fs_sb_has_blkzoned(sbi) ? 3795 DEF_MIGRATION_WINDOW_GRANULARITY_ZONED : SEGS_PER_SEC(sbi); 3796 sbi->seq_file_ra_mul = MIN_RA_MUL; 3797 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3798 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3799 spin_lock_init(&sbi->gc_remaining_trials_lock); 3800 atomic64_set(&sbi->current_atomic_write, 0); 3801 3802 sbi->dir_level = DEF_DIR_LEVEL; 3803 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3804 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3805 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3806 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3807 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3808 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3809 DEF_UMOUNT_DISCARD_TIMEOUT; 3810 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3811 3812 for (i = 0; i < NR_COUNT_TYPE; i++) 3813 atomic_set(&sbi->nr_pages[i], 0); 3814 3815 for (i = 0; i < META; i++) 3816 atomic_set(&sbi->wb_sync_req[i], 0); 3817 3818 INIT_LIST_HEAD(&sbi->s_list); 3819 mutex_init(&sbi->umount_mutex); 3820 init_f2fs_rwsem(&sbi->io_order_lock); 3821 spin_lock_init(&sbi->cp_lock); 3822 3823 sbi->dirty_device = 0; 3824 spin_lock_init(&sbi->dev_lock); 3825 3826 init_f2fs_rwsem(&sbi->sb_lock); 3827 init_f2fs_rwsem(&sbi->pin_sem); 3828 } 3829 3830 static int init_percpu_info(struct f2fs_sb_info *sbi) 3831 { 3832 int err; 3833 3834 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3835 if (err) 3836 return err; 3837 3838 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3839 if (err) 3840 goto err_valid_block; 3841 3842 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3843 GFP_KERNEL); 3844 if (err) 3845 goto err_node_block; 3846 return 0; 3847 3848 err_node_block: 3849 percpu_counter_destroy(&sbi->rf_node_block_count); 3850 err_valid_block: 3851 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3852 return err; 3853 } 3854 3855 #ifdef CONFIG_BLK_DEV_ZONED 3856 3857 struct f2fs_report_zones_args { 3858 struct f2fs_sb_info *sbi; 3859 struct f2fs_dev_info *dev; 3860 }; 3861 3862 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3863 void *data) 3864 { 3865 struct f2fs_report_zones_args *rz_args = data; 3866 block_t unusable_blocks = (zone->len - zone->capacity) >> 3867 F2FS_LOG_SECTORS_PER_BLOCK; 3868 3869 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3870 return 0; 3871 3872 set_bit(idx, rz_args->dev->blkz_seq); 3873 if (!rz_args->sbi->unusable_blocks_per_sec) { 3874 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 3875 return 0; 3876 } 3877 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 3878 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 3879 return -EINVAL; 3880 } 3881 return 0; 3882 } 3883 3884 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3885 { 3886 struct block_device *bdev = FDEV(devi).bdev; 3887 sector_t nr_sectors = bdev_nr_sectors(bdev); 3888 struct f2fs_report_zones_args rep_zone_arg; 3889 u64 zone_sectors; 3890 unsigned int max_open_zones; 3891 int ret; 3892 3893 if (!f2fs_sb_has_blkzoned(sbi)) 3894 return 0; 3895 3896 if (bdev_is_zoned(FDEV(devi).bdev)) { 3897 max_open_zones = bdev_max_open_zones(bdev); 3898 if (max_open_zones && (max_open_zones < sbi->max_open_zones)) 3899 sbi->max_open_zones = max_open_zones; 3900 if (sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) { 3901 f2fs_err(sbi, 3902 "zoned: max open zones %u is too small, need at least %u open zones", 3903 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs); 3904 return -EINVAL; 3905 } 3906 } 3907 3908 zone_sectors = bdev_zone_sectors(bdev); 3909 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3910 SECTOR_TO_BLOCK(zone_sectors)) 3911 return -EINVAL; 3912 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); 3913 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors), 3914 sbi->blocks_per_blkz); 3915 if (nr_sectors & (zone_sectors - 1)) 3916 FDEV(devi).nr_blkz++; 3917 3918 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3919 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3920 * sizeof(unsigned long), 3921 GFP_KERNEL); 3922 if (!FDEV(devi).blkz_seq) 3923 return -ENOMEM; 3924 3925 rep_zone_arg.sbi = sbi; 3926 rep_zone_arg.dev = &FDEV(devi); 3927 3928 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3929 &rep_zone_arg); 3930 if (ret < 0) 3931 return ret; 3932 return 0; 3933 } 3934 #endif 3935 3936 /* 3937 * Read f2fs raw super block. 3938 * Because we have two copies of super block, so read both of them 3939 * to get the first valid one. If any one of them is broken, we pass 3940 * them recovery flag back to the caller. 3941 */ 3942 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3943 struct f2fs_super_block **raw_super, 3944 int *valid_super_block, int *recovery) 3945 { 3946 struct super_block *sb = sbi->sb; 3947 int block; 3948 struct buffer_head *bh; 3949 struct f2fs_super_block *super; 3950 int err = 0; 3951 3952 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3953 if (!super) 3954 return -ENOMEM; 3955 3956 for (block = 0; block < 2; block++) { 3957 bh = sb_bread(sb, block); 3958 if (!bh) { 3959 f2fs_err(sbi, "Unable to read %dth superblock", 3960 block + 1); 3961 err = -EIO; 3962 *recovery = 1; 3963 continue; 3964 } 3965 3966 /* sanity checking of raw super */ 3967 err = sanity_check_raw_super(sbi, bh); 3968 if (err) { 3969 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3970 block + 1); 3971 brelse(bh); 3972 *recovery = 1; 3973 continue; 3974 } 3975 3976 if (!*raw_super) { 3977 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3978 sizeof(*super)); 3979 *valid_super_block = block; 3980 *raw_super = super; 3981 } 3982 brelse(bh); 3983 } 3984 3985 /* No valid superblock */ 3986 if (!*raw_super) 3987 kfree(super); 3988 else 3989 err = 0; 3990 3991 return err; 3992 } 3993 3994 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3995 { 3996 struct buffer_head *bh; 3997 __u32 crc = 0; 3998 int err; 3999 4000 if ((recover && f2fs_readonly(sbi->sb)) || 4001 f2fs_hw_is_readonly(sbi)) { 4002 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 4003 return -EROFS; 4004 } 4005 4006 /* we should update superblock crc here */ 4007 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 4008 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 4009 offsetof(struct f2fs_super_block, crc)); 4010 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 4011 } 4012 4013 /* write back-up superblock first */ 4014 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 4015 if (!bh) 4016 return -EIO; 4017 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 4018 brelse(bh); 4019 4020 /* if we are in recovery path, skip writing valid superblock */ 4021 if (recover || err) 4022 return err; 4023 4024 /* write current valid superblock */ 4025 bh = sb_bread(sbi->sb, sbi->valid_super_block); 4026 if (!bh) 4027 return -EIO; 4028 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 4029 brelse(bh); 4030 return err; 4031 } 4032 4033 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason) 4034 { 4035 unsigned long flags; 4036 4037 spin_lock_irqsave(&sbi->error_lock, flags); 4038 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0)) 4039 sbi->stop_reason[reason]++; 4040 spin_unlock_irqrestore(&sbi->error_lock, flags); 4041 } 4042 4043 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi) 4044 { 4045 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4046 unsigned long flags; 4047 int err; 4048 4049 f2fs_down_write(&sbi->sb_lock); 4050 4051 spin_lock_irqsave(&sbi->error_lock, flags); 4052 if (sbi->error_dirty) { 4053 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4054 MAX_F2FS_ERRORS); 4055 sbi->error_dirty = false; 4056 } 4057 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON); 4058 spin_unlock_irqrestore(&sbi->error_lock, flags); 4059 4060 err = f2fs_commit_super(sbi, false); 4061 4062 f2fs_up_write(&sbi->sb_lock); 4063 if (err) 4064 f2fs_err_ratelimited(sbi, 4065 "f2fs_commit_super fails to record stop_reason, err:%d", 4066 err); 4067 } 4068 4069 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag) 4070 { 4071 unsigned long flags; 4072 4073 spin_lock_irqsave(&sbi->error_lock, flags); 4074 if (!test_bit(flag, (unsigned long *)sbi->errors)) { 4075 set_bit(flag, (unsigned long *)sbi->errors); 4076 sbi->error_dirty = true; 4077 } 4078 spin_unlock_irqrestore(&sbi->error_lock, flags); 4079 } 4080 4081 static bool f2fs_update_errors(struct f2fs_sb_info *sbi) 4082 { 4083 unsigned long flags; 4084 bool need_update = false; 4085 4086 spin_lock_irqsave(&sbi->error_lock, flags); 4087 if (sbi->error_dirty) { 4088 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4089 MAX_F2FS_ERRORS); 4090 sbi->error_dirty = false; 4091 need_update = true; 4092 } 4093 spin_unlock_irqrestore(&sbi->error_lock, flags); 4094 4095 return need_update; 4096 } 4097 4098 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error) 4099 { 4100 int err; 4101 4102 f2fs_down_write(&sbi->sb_lock); 4103 4104 if (!f2fs_update_errors(sbi)) 4105 goto out_unlock; 4106 4107 err = f2fs_commit_super(sbi, false); 4108 if (err) 4109 f2fs_err_ratelimited(sbi, 4110 "f2fs_commit_super fails to record errors:%u, err:%d", 4111 error, err); 4112 out_unlock: 4113 f2fs_up_write(&sbi->sb_lock); 4114 } 4115 4116 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error) 4117 { 4118 f2fs_save_errors(sbi, error); 4119 f2fs_record_errors(sbi, error); 4120 } 4121 4122 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error) 4123 { 4124 f2fs_save_errors(sbi, error); 4125 4126 if (!sbi->error_dirty) 4127 return; 4128 if (!test_bit(error, (unsigned long *)sbi->errors)) 4129 return; 4130 schedule_work(&sbi->s_error_work); 4131 } 4132 4133 static bool system_going_down(void) 4134 { 4135 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 4136 || system_state == SYSTEM_RESTART; 4137 } 4138 4139 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, 4140 bool irq_context) 4141 { 4142 struct super_block *sb = sbi->sb; 4143 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN; 4144 bool continue_fs = !shutdown && 4145 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE; 4146 4147 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4148 4149 if (!f2fs_hw_is_readonly(sbi)) { 4150 save_stop_reason(sbi, reason); 4151 4152 if (irq_context && !shutdown) 4153 schedule_work(&sbi->s_error_work); 4154 else 4155 f2fs_record_stop_reason(sbi); 4156 } 4157 4158 /* 4159 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 4160 * could panic during 'reboot -f' as the underlying device got already 4161 * disabled. 4162 */ 4163 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC && 4164 !shutdown && !system_going_down() && 4165 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) 4166 panic("F2FS-fs (device %s): panic forced after error\n", 4167 sb->s_id); 4168 4169 if (shutdown) 4170 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 4171 4172 /* 4173 * Continue filesystem operators if errors=continue. Should not set 4174 * RO by shutdown, since RO bypasses thaw_super which can hang the 4175 * system. 4176 */ 4177 if (continue_fs || f2fs_readonly(sb) || shutdown) { 4178 f2fs_warn(sbi, "Stopped filesystem due to reason: %d", reason); 4179 return; 4180 } 4181 4182 f2fs_warn(sbi, "Remounting filesystem read-only"); 4183 4184 /* 4185 * We have already set CP_ERROR_FLAG flag to stop all updates 4186 * to filesystem, so it doesn't need to set SB_RDONLY flag here 4187 * because the flag should be set covered w/ sb->s_umount semaphore 4188 * via remount procedure, otherwise, it will confuse code like 4189 * freeze_super() which will lead to deadlocks and other problems. 4190 */ 4191 } 4192 4193 static void f2fs_record_error_work(struct work_struct *work) 4194 { 4195 struct f2fs_sb_info *sbi = container_of(work, 4196 struct f2fs_sb_info, s_error_work); 4197 4198 f2fs_record_stop_reason(sbi); 4199 } 4200 4201 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 4202 { 4203 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4204 unsigned int max_devices = MAX_DEVICES; 4205 unsigned int logical_blksize; 4206 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags); 4207 int i; 4208 4209 /* Initialize single device information */ 4210 if (!RDEV(0).path[0]) { 4211 if (!bdev_is_zoned(sbi->sb->s_bdev)) 4212 return 0; 4213 max_devices = 1; 4214 } 4215 4216 /* 4217 * Initialize multiple devices information, or single 4218 * zoned block device information. 4219 */ 4220 sbi->devs = f2fs_kzalloc(sbi, 4221 array_size(max_devices, 4222 sizeof(struct f2fs_dev_info)), 4223 GFP_KERNEL); 4224 if (!sbi->devs) 4225 return -ENOMEM; 4226 4227 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 4228 sbi->aligned_blksize = true; 4229 #ifdef CONFIG_BLK_DEV_ZONED 4230 sbi->max_open_zones = UINT_MAX; 4231 sbi->blkzone_alloc_policy = BLKZONE_ALLOC_PRIOR_SEQ; 4232 #endif 4233 4234 for (i = 0; i < max_devices; i++) { 4235 if (i == 0) 4236 FDEV(0).bdev_file = sbi->sb->s_bdev_file; 4237 else if (!RDEV(i).path[0]) 4238 break; 4239 4240 if (max_devices > 1) { 4241 /* Multi-device mount */ 4242 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 4243 FDEV(i).total_segments = 4244 le32_to_cpu(RDEV(i).total_segments); 4245 if (i == 0) { 4246 FDEV(i).start_blk = 0; 4247 FDEV(i).end_blk = FDEV(i).start_blk + 4248 SEGS_TO_BLKS(sbi, 4249 FDEV(i).total_segments) - 1 + 4250 le32_to_cpu(raw_super->segment0_blkaddr); 4251 } else { 4252 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 4253 FDEV(i).end_blk = FDEV(i).start_blk + 4254 SEGS_TO_BLKS(sbi, 4255 FDEV(i).total_segments) - 1; 4256 FDEV(i).bdev_file = bdev_file_open_by_path( 4257 FDEV(i).path, mode, sbi->sb, NULL); 4258 } 4259 } 4260 if (IS_ERR(FDEV(i).bdev_file)) 4261 return PTR_ERR(FDEV(i).bdev_file); 4262 4263 FDEV(i).bdev = file_bdev(FDEV(i).bdev_file); 4264 /* to release errored devices */ 4265 sbi->s_ndevs = i + 1; 4266 4267 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 4268 sbi->aligned_blksize = false; 4269 4270 #ifdef CONFIG_BLK_DEV_ZONED 4271 if (bdev_is_zoned(FDEV(i).bdev)) { 4272 if (!f2fs_sb_has_blkzoned(sbi)) { 4273 f2fs_err(sbi, "Zoned block device feature not enabled"); 4274 return -EINVAL; 4275 } 4276 if (init_blkz_info(sbi, i)) { 4277 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 4278 return -EINVAL; 4279 } 4280 if (max_devices == 1) 4281 break; 4282 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: Host-managed)", 4283 i, FDEV(i).path, 4284 FDEV(i).total_segments, 4285 FDEV(i).start_blk, FDEV(i).end_blk); 4286 continue; 4287 } 4288 #endif 4289 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 4290 i, FDEV(i).path, 4291 FDEV(i).total_segments, 4292 FDEV(i).start_blk, FDEV(i).end_blk); 4293 } 4294 return 0; 4295 } 4296 4297 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 4298 { 4299 #if IS_ENABLED(CONFIG_UNICODE) 4300 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 4301 const struct f2fs_sb_encodings *encoding_info; 4302 struct unicode_map *encoding; 4303 __u16 encoding_flags; 4304 4305 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 4306 if (!encoding_info) { 4307 f2fs_err(sbi, 4308 "Encoding requested by superblock is unknown"); 4309 return -EINVAL; 4310 } 4311 4312 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 4313 encoding = utf8_load(encoding_info->version); 4314 if (IS_ERR(encoding)) { 4315 f2fs_err(sbi, 4316 "can't mount with superblock charset: %s-%u.%u.%u " 4317 "not supported by the kernel. flags: 0x%x.", 4318 encoding_info->name, 4319 unicode_major(encoding_info->version), 4320 unicode_minor(encoding_info->version), 4321 unicode_rev(encoding_info->version), 4322 encoding_flags); 4323 return PTR_ERR(encoding); 4324 } 4325 f2fs_info(sbi, "Using encoding defined by superblock: " 4326 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4327 unicode_major(encoding_info->version), 4328 unicode_minor(encoding_info->version), 4329 unicode_rev(encoding_info->version), 4330 encoding_flags); 4331 4332 sbi->sb->s_encoding = encoding; 4333 sbi->sb->s_encoding_flags = encoding_flags; 4334 } 4335 #else 4336 if (f2fs_sb_has_casefold(sbi)) { 4337 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 4338 return -EINVAL; 4339 } 4340 #endif 4341 return 0; 4342 } 4343 4344 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 4345 { 4346 /* adjust parameters according to the volume size */ 4347 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) { 4348 if (f2fs_block_unit_discard(sbi)) 4349 SM_I(sbi)->dcc_info->discard_granularity = 4350 MIN_DISCARD_GRANULARITY; 4351 if (!f2fs_lfs_mode(sbi)) 4352 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) | 4353 BIT(F2FS_IPU_HONOR_OPU_WRITE); 4354 } 4355 4356 sbi->readdir_ra = true; 4357 } 4358 4359 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 4360 { 4361 struct f2fs_sb_info *sbi; 4362 struct f2fs_super_block *raw_super; 4363 struct inode *root; 4364 int err; 4365 bool skip_recovery = false, need_fsck = false; 4366 char *options = NULL; 4367 int recovery, i, valid_super_block; 4368 struct curseg_info *seg_i; 4369 int retry_cnt = 1; 4370 #ifdef CONFIG_QUOTA 4371 bool quota_enabled = false; 4372 #endif 4373 4374 try_onemore: 4375 err = -EINVAL; 4376 raw_super = NULL; 4377 valid_super_block = -1; 4378 recovery = 0; 4379 4380 /* allocate memory for f2fs-specific super block info */ 4381 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4382 if (!sbi) 4383 return -ENOMEM; 4384 4385 sbi->sb = sb; 4386 4387 /* initialize locks within allocated memory */ 4388 init_f2fs_rwsem(&sbi->gc_lock); 4389 mutex_init(&sbi->writepages); 4390 init_f2fs_rwsem(&sbi->cp_global_sem); 4391 init_f2fs_rwsem(&sbi->node_write); 4392 init_f2fs_rwsem(&sbi->node_change); 4393 spin_lock_init(&sbi->stat_lock); 4394 init_f2fs_rwsem(&sbi->cp_rwsem); 4395 init_f2fs_rwsem(&sbi->quota_sem); 4396 init_waitqueue_head(&sbi->cp_wait); 4397 spin_lock_init(&sbi->error_lock); 4398 4399 for (i = 0; i < NR_INODE_TYPE; i++) { 4400 INIT_LIST_HEAD(&sbi->inode_list[i]); 4401 spin_lock_init(&sbi->inode_lock[i]); 4402 } 4403 mutex_init(&sbi->flush_lock); 4404 4405 /* Load the checksum driver */ 4406 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 4407 if (IS_ERR(sbi->s_chksum_driver)) { 4408 f2fs_err(sbi, "Cannot load crc32 driver."); 4409 err = PTR_ERR(sbi->s_chksum_driver); 4410 sbi->s_chksum_driver = NULL; 4411 goto free_sbi; 4412 } 4413 4414 /* set a block size */ 4415 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4416 f2fs_err(sbi, "unable to set blocksize"); 4417 goto free_sbi; 4418 } 4419 4420 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4421 &recovery); 4422 if (err) 4423 goto free_sbi; 4424 4425 sb->s_fs_info = sbi; 4426 sbi->raw_super = raw_super; 4427 4428 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work); 4429 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS); 4430 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON); 4431 4432 /* precompute checksum seed for metadata */ 4433 if (f2fs_sb_has_inode_chksum(sbi)) 4434 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 4435 sizeof(raw_super->uuid)); 4436 4437 default_options(sbi, false); 4438 /* parse mount options */ 4439 options = kstrdup((const char *)data, GFP_KERNEL); 4440 if (data && !options) { 4441 err = -ENOMEM; 4442 goto free_sb_buf; 4443 } 4444 4445 err = parse_options(sb, options, false); 4446 if (err) 4447 goto free_options; 4448 4449 sb->s_maxbytes = max_file_blocks(NULL) << 4450 le32_to_cpu(raw_super->log_blocksize); 4451 sb->s_max_links = F2FS_LINK_MAX; 4452 4453 err = f2fs_setup_casefold(sbi); 4454 if (err) 4455 goto free_options; 4456 4457 #ifdef CONFIG_QUOTA 4458 sb->dq_op = &f2fs_quota_operations; 4459 sb->s_qcop = &f2fs_quotactl_ops; 4460 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4461 4462 if (f2fs_sb_has_quota_ino(sbi)) { 4463 for (i = 0; i < MAXQUOTAS; i++) { 4464 if (f2fs_qf_ino(sbi->sb, i)) 4465 sbi->nquota_files++; 4466 } 4467 } 4468 #endif 4469 4470 sb->s_op = &f2fs_sops; 4471 #ifdef CONFIG_FS_ENCRYPTION 4472 sb->s_cop = &f2fs_cryptops; 4473 #endif 4474 #ifdef CONFIG_FS_VERITY 4475 sb->s_vop = &f2fs_verityops; 4476 #endif 4477 sb->s_xattr = f2fs_xattr_handlers; 4478 sb->s_export_op = &f2fs_export_ops; 4479 sb->s_magic = F2FS_SUPER_MAGIC; 4480 sb->s_time_gran = 1; 4481 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4482 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4483 super_set_uuid(sb, (void *) raw_super->uuid, sizeof(raw_super->uuid)); 4484 super_set_sysfs_name_bdev(sb); 4485 sb->s_iflags |= SB_I_CGROUPWB; 4486 4487 /* init f2fs-specific super block info */ 4488 sbi->valid_super_block = valid_super_block; 4489 4490 /* disallow all the data/node/meta page writes */ 4491 set_sbi_flag(sbi, SBI_POR_DOING); 4492 4493 err = f2fs_init_write_merge_io(sbi); 4494 if (err) 4495 goto free_bio_info; 4496 4497 init_sb_info(sbi); 4498 4499 err = f2fs_init_iostat(sbi); 4500 if (err) 4501 goto free_bio_info; 4502 4503 err = init_percpu_info(sbi); 4504 if (err) 4505 goto free_iostat; 4506 4507 /* init per sbi slab cache */ 4508 err = f2fs_init_xattr_caches(sbi); 4509 if (err) 4510 goto free_percpu; 4511 err = f2fs_init_page_array_cache(sbi); 4512 if (err) 4513 goto free_xattr_cache; 4514 4515 /* get an inode for meta space */ 4516 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4517 if (IS_ERR(sbi->meta_inode)) { 4518 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4519 err = PTR_ERR(sbi->meta_inode); 4520 goto free_page_array_cache; 4521 } 4522 4523 err = f2fs_get_valid_checkpoint(sbi); 4524 if (err) { 4525 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4526 goto free_meta_inode; 4527 } 4528 4529 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4530 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4531 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4532 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4533 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4534 } 4535 4536 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4537 set_sbi_flag(sbi, SBI_NEED_FSCK); 4538 4539 /* Initialize device list */ 4540 err = f2fs_scan_devices(sbi); 4541 if (err) { 4542 f2fs_err(sbi, "Failed to find devices"); 4543 goto free_devices; 4544 } 4545 4546 err = f2fs_init_post_read_wq(sbi); 4547 if (err) { 4548 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4549 goto free_devices; 4550 } 4551 4552 sbi->total_valid_node_count = 4553 le32_to_cpu(sbi->ckpt->valid_node_count); 4554 percpu_counter_set(&sbi->total_valid_inode_count, 4555 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4556 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4557 sbi->total_valid_block_count = 4558 le64_to_cpu(sbi->ckpt->valid_block_count); 4559 sbi->last_valid_block_count = sbi->total_valid_block_count; 4560 sbi->reserved_blocks = 0; 4561 sbi->current_reserved_blocks = 0; 4562 limit_reserve_root(sbi); 4563 adjust_unusable_cap_perc(sbi); 4564 4565 f2fs_init_extent_cache_info(sbi); 4566 4567 f2fs_init_ino_entry_info(sbi); 4568 4569 f2fs_init_fsync_node_info(sbi); 4570 4571 /* setup checkpoint request control and start checkpoint issue thread */ 4572 f2fs_init_ckpt_req_control(sbi); 4573 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4574 test_opt(sbi, MERGE_CHECKPOINT)) { 4575 err = f2fs_start_ckpt_thread(sbi); 4576 if (err) { 4577 f2fs_err(sbi, 4578 "Failed to start F2FS issue_checkpoint_thread (%d)", 4579 err); 4580 goto stop_ckpt_thread; 4581 } 4582 } 4583 4584 /* setup f2fs internal modules */ 4585 err = f2fs_build_segment_manager(sbi); 4586 if (err) { 4587 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4588 err); 4589 goto free_sm; 4590 } 4591 err = f2fs_build_node_manager(sbi); 4592 if (err) { 4593 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4594 err); 4595 goto free_nm; 4596 } 4597 4598 /* For write statistics */ 4599 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4600 4601 /* Read accumulated write IO statistics if exists */ 4602 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4603 if (__exist_node_summaries(sbi)) 4604 sbi->kbytes_written = 4605 le64_to_cpu(seg_i->journal->info.kbytes_written); 4606 4607 f2fs_build_gc_manager(sbi); 4608 4609 err = f2fs_build_stats(sbi); 4610 if (err) 4611 goto free_nm; 4612 4613 /* get an inode for node space */ 4614 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4615 if (IS_ERR(sbi->node_inode)) { 4616 f2fs_err(sbi, "Failed to read node inode"); 4617 err = PTR_ERR(sbi->node_inode); 4618 goto free_stats; 4619 } 4620 4621 /* read root inode and dentry */ 4622 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4623 if (IS_ERR(root)) { 4624 f2fs_err(sbi, "Failed to read root inode"); 4625 err = PTR_ERR(root); 4626 goto free_node_inode; 4627 } 4628 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4629 !root->i_size || !root->i_nlink) { 4630 iput(root); 4631 err = -EINVAL; 4632 goto free_node_inode; 4633 } 4634 4635 generic_set_sb_d_ops(sb); 4636 sb->s_root = d_make_root(root); /* allocate root dentry */ 4637 if (!sb->s_root) { 4638 err = -ENOMEM; 4639 goto free_node_inode; 4640 } 4641 4642 err = f2fs_init_compress_inode(sbi); 4643 if (err) 4644 goto free_root_inode; 4645 4646 err = f2fs_register_sysfs(sbi); 4647 if (err) 4648 goto free_compress_inode; 4649 4650 #ifdef CONFIG_QUOTA 4651 /* Enable quota usage during mount */ 4652 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4653 err = f2fs_enable_quotas(sb); 4654 if (err) 4655 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4656 } 4657 4658 quota_enabled = f2fs_recover_quota_begin(sbi); 4659 #endif 4660 /* if there are any orphan inodes, free them */ 4661 err = f2fs_recover_orphan_inodes(sbi); 4662 if (err) 4663 goto free_meta; 4664 4665 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4666 goto reset_checkpoint; 4667 4668 /* recover fsynced data */ 4669 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4670 !test_opt(sbi, NORECOVERY)) { 4671 /* 4672 * mount should be failed, when device has readonly mode, and 4673 * previous checkpoint was not done by clean system shutdown. 4674 */ 4675 if (f2fs_hw_is_readonly(sbi)) { 4676 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4677 err = f2fs_recover_fsync_data(sbi, true); 4678 if (err > 0) { 4679 err = -EROFS; 4680 f2fs_err(sbi, "Need to recover fsync data, but " 4681 "write access unavailable, please try " 4682 "mount w/ disable_roll_forward or norecovery"); 4683 } 4684 if (err < 0) 4685 goto free_meta; 4686 } 4687 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4688 goto reset_checkpoint; 4689 } 4690 4691 if (need_fsck) 4692 set_sbi_flag(sbi, SBI_NEED_FSCK); 4693 4694 if (skip_recovery) 4695 goto reset_checkpoint; 4696 4697 err = f2fs_recover_fsync_data(sbi, false); 4698 if (err < 0) { 4699 if (err != -ENOMEM) 4700 skip_recovery = true; 4701 need_fsck = true; 4702 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4703 err); 4704 goto free_meta; 4705 } 4706 } else { 4707 err = f2fs_recover_fsync_data(sbi, true); 4708 4709 if (!f2fs_readonly(sb) && err > 0) { 4710 err = -EINVAL; 4711 f2fs_err(sbi, "Need to recover fsync data"); 4712 goto free_meta; 4713 } 4714 } 4715 4716 #ifdef CONFIG_QUOTA 4717 f2fs_recover_quota_end(sbi, quota_enabled); 4718 #endif 4719 reset_checkpoint: 4720 /* 4721 * If the f2fs is not readonly and fsync data recovery succeeds, 4722 * check zoned block devices' write pointer consistency. 4723 */ 4724 if (f2fs_sb_has_blkzoned(sbi) && !f2fs_readonly(sb)) { 4725 int err2; 4726 4727 f2fs_notice(sbi, "Checking entire write pointers"); 4728 err2 = f2fs_check_write_pointer(sbi); 4729 if (err2) 4730 err = err2; 4731 } 4732 if (err) 4733 goto free_meta; 4734 4735 err = f2fs_init_inmem_curseg(sbi); 4736 if (err) 4737 goto sync_free_meta; 4738 4739 /* f2fs_recover_fsync_data() cleared this already */ 4740 clear_sbi_flag(sbi, SBI_POR_DOING); 4741 4742 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4743 err = f2fs_disable_checkpoint(sbi); 4744 if (err) 4745 goto sync_free_meta; 4746 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4747 f2fs_enable_checkpoint(sbi); 4748 } 4749 4750 /* 4751 * If filesystem is not mounted as read-only then 4752 * do start the gc_thread. 4753 */ 4754 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4755 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4756 /* After POR, we can run background GC thread.*/ 4757 err = f2fs_start_gc_thread(sbi); 4758 if (err) 4759 goto sync_free_meta; 4760 } 4761 kvfree(options); 4762 4763 /* recover broken superblock */ 4764 if (recovery) { 4765 err = f2fs_commit_super(sbi, true); 4766 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4767 sbi->valid_super_block ? 1 : 2, err); 4768 } 4769 4770 f2fs_join_shrinker(sbi); 4771 4772 f2fs_tuning_parameters(sbi); 4773 4774 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4775 cur_cp_version(F2FS_CKPT(sbi))); 4776 f2fs_update_time(sbi, CP_TIME); 4777 f2fs_update_time(sbi, REQ_TIME); 4778 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4779 return 0; 4780 4781 sync_free_meta: 4782 /* safe to flush all the data */ 4783 sync_filesystem(sbi->sb); 4784 retry_cnt = 0; 4785 4786 free_meta: 4787 #ifdef CONFIG_QUOTA 4788 f2fs_truncate_quota_inode_pages(sb); 4789 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4790 f2fs_quota_off_umount(sbi->sb); 4791 #endif 4792 /* 4793 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4794 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4795 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4796 * falls into an infinite loop in f2fs_sync_meta_pages(). 4797 */ 4798 truncate_inode_pages_final(META_MAPPING(sbi)); 4799 /* evict some inodes being cached by GC */ 4800 evict_inodes(sb); 4801 f2fs_unregister_sysfs(sbi); 4802 free_compress_inode: 4803 f2fs_destroy_compress_inode(sbi); 4804 free_root_inode: 4805 dput(sb->s_root); 4806 sb->s_root = NULL; 4807 free_node_inode: 4808 f2fs_release_ino_entry(sbi, true); 4809 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4810 iput(sbi->node_inode); 4811 sbi->node_inode = NULL; 4812 free_stats: 4813 f2fs_destroy_stats(sbi); 4814 free_nm: 4815 /* stop discard thread before destroying node manager */ 4816 f2fs_stop_discard_thread(sbi); 4817 f2fs_destroy_node_manager(sbi); 4818 free_sm: 4819 f2fs_destroy_segment_manager(sbi); 4820 stop_ckpt_thread: 4821 f2fs_stop_ckpt_thread(sbi); 4822 /* flush s_error_work before sbi destroy */ 4823 flush_work(&sbi->s_error_work); 4824 f2fs_destroy_post_read_wq(sbi); 4825 free_devices: 4826 destroy_device_list(sbi); 4827 kvfree(sbi->ckpt); 4828 free_meta_inode: 4829 make_bad_inode(sbi->meta_inode); 4830 iput(sbi->meta_inode); 4831 sbi->meta_inode = NULL; 4832 free_page_array_cache: 4833 f2fs_destroy_page_array_cache(sbi); 4834 free_xattr_cache: 4835 f2fs_destroy_xattr_caches(sbi); 4836 free_percpu: 4837 destroy_percpu_info(sbi); 4838 free_iostat: 4839 f2fs_destroy_iostat(sbi); 4840 free_bio_info: 4841 for (i = 0; i < NR_PAGE_TYPE; i++) 4842 kvfree(sbi->write_io[i]); 4843 4844 #if IS_ENABLED(CONFIG_UNICODE) 4845 utf8_unload(sb->s_encoding); 4846 sb->s_encoding = NULL; 4847 #endif 4848 free_options: 4849 #ifdef CONFIG_QUOTA 4850 for (i = 0; i < MAXQUOTAS; i++) 4851 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4852 #endif 4853 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4854 kvfree(options); 4855 free_sb_buf: 4856 kfree(raw_super); 4857 free_sbi: 4858 if (sbi->s_chksum_driver) 4859 crypto_free_shash(sbi->s_chksum_driver); 4860 kfree(sbi); 4861 sb->s_fs_info = NULL; 4862 4863 /* give only one another chance */ 4864 if (retry_cnt > 0 && skip_recovery) { 4865 retry_cnt--; 4866 shrink_dcache_sb(sb); 4867 goto try_onemore; 4868 } 4869 return err; 4870 } 4871 4872 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4873 const char *dev_name, void *data) 4874 { 4875 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4876 } 4877 4878 static void kill_f2fs_super(struct super_block *sb) 4879 { 4880 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4881 4882 if (sb->s_root) { 4883 set_sbi_flag(sbi, SBI_IS_CLOSE); 4884 f2fs_stop_gc_thread(sbi); 4885 f2fs_stop_discard_thread(sbi); 4886 4887 #ifdef CONFIG_F2FS_FS_COMPRESSION 4888 /* 4889 * latter evict_inode() can bypass checking and invalidating 4890 * compress inode cache. 4891 */ 4892 if (test_opt(sbi, COMPRESS_CACHE)) 4893 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4894 #endif 4895 4896 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4897 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4898 struct cp_control cpc = { 4899 .reason = CP_UMOUNT, 4900 }; 4901 stat_inc_cp_call_count(sbi, TOTAL_CALL); 4902 f2fs_write_checkpoint(sbi, &cpc); 4903 } 4904 4905 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4906 sb->s_flags &= ~SB_RDONLY; 4907 } 4908 kill_block_super(sb); 4909 /* Release block devices last, after fscrypt_destroy_keyring(). */ 4910 if (sbi) { 4911 destroy_device_list(sbi); 4912 kfree(sbi); 4913 sb->s_fs_info = NULL; 4914 } 4915 } 4916 4917 static struct file_system_type f2fs_fs_type = { 4918 .owner = THIS_MODULE, 4919 .name = "f2fs", 4920 .mount = f2fs_mount, 4921 .kill_sb = kill_f2fs_super, 4922 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 4923 }; 4924 MODULE_ALIAS_FS("f2fs"); 4925 4926 static int __init init_inodecache(void) 4927 { 4928 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4929 sizeof(struct f2fs_inode_info), 0, 4930 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4931 return f2fs_inode_cachep ? 0 : -ENOMEM; 4932 } 4933 4934 static void destroy_inodecache(void) 4935 { 4936 /* 4937 * Make sure all delayed rcu free inodes are flushed before we 4938 * destroy cache. 4939 */ 4940 rcu_barrier(); 4941 kmem_cache_destroy(f2fs_inode_cachep); 4942 } 4943 4944 static int __init init_f2fs_fs(void) 4945 { 4946 int err; 4947 4948 err = init_inodecache(); 4949 if (err) 4950 goto fail; 4951 err = f2fs_create_node_manager_caches(); 4952 if (err) 4953 goto free_inodecache; 4954 err = f2fs_create_segment_manager_caches(); 4955 if (err) 4956 goto free_node_manager_caches; 4957 err = f2fs_create_checkpoint_caches(); 4958 if (err) 4959 goto free_segment_manager_caches; 4960 err = f2fs_create_recovery_cache(); 4961 if (err) 4962 goto free_checkpoint_caches; 4963 err = f2fs_create_extent_cache(); 4964 if (err) 4965 goto free_recovery_cache; 4966 err = f2fs_create_garbage_collection_cache(); 4967 if (err) 4968 goto free_extent_cache; 4969 err = f2fs_init_sysfs(); 4970 if (err) 4971 goto free_garbage_collection_cache; 4972 err = f2fs_init_shrinker(); 4973 if (err) 4974 goto free_sysfs; 4975 err = register_filesystem(&f2fs_fs_type); 4976 if (err) 4977 goto free_shrinker; 4978 f2fs_create_root_stats(); 4979 err = f2fs_init_post_read_processing(); 4980 if (err) 4981 goto free_root_stats; 4982 err = f2fs_init_iostat_processing(); 4983 if (err) 4984 goto free_post_read; 4985 err = f2fs_init_bio_entry_cache(); 4986 if (err) 4987 goto free_iostat; 4988 err = f2fs_init_bioset(); 4989 if (err) 4990 goto free_bio_entry_cache; 4991 err = f2fs_init_compress_mempool(); 4992 if (err) 4993 goto free_bioset; 4994 err = f2fs_init_compress_cache(); 4995 if (err) 4996 goto free_compress_mempool; 4997 err = f2fs_create_casefold_cache(); 4998 if (err) 4999 goto free_compress_cache; 5000 return 0; 5001 free_compress_cache: 5002 f2fs_destroy_compress_cache(); 5003 free_compress_mempool: 5004 f2fs_destroy_compress_mempool(); 5005 free_bioset: 5006 f2fs_destroy_bioset(); 5007 free_bio_entry_cache: 5008 f2fs_destroy_bio_entry_cache(); 5009 free_iostat: 5010 f2fs_destroy_iostat_processing(); 5011 free_post_read: 5012 f2fs_destroy_post_read_processing(); 5013 free_root_stats: 5014 f2fs_destroy_root_stats(); 5015 unregister_filesystem(&f2fs_fs_type); 5016 free_shrinker: 5017 f2fs_exit_shrinker(); 5018 free_sysfs: 5019 f2fs_exit_sysfs(); 5020 free_garbage_collection_cache: 5021 f2fs_destroy_garbage_collection_cache(); 5022 free_extent_cache: 5023 f2fs_destroy_extent_cache(); 5024 free_recovery_cache: 5025 f2fs_destroy_recovery_cache(); 5026 free_checkpoint_caches: 5027 f2fs_destroy_checkpoint_caches(); 5028 free_segment_manager_caches: 5029 f2fs_destroy_segment_manager_caches(); 5030 free_node_manager_caches: 5031 f2fs_destroy_node_manager_caches(); 5032 free_inodecache: 5033 destroy_inodecache(); 5034 fail: 5035 return err; 5036 } 5037 5038 static void __exit exit_f2fs_fs(void) 5039 { 5040 f2fs_destroy_casefold_cache(); 5041 f2fs_destroy_compress_cache(); 5042 f2fs_destroy_compress_mempool(); 5043 f2fs_destroy_bioset(); 5044 f2fs_destroy_bio_entry_cache(); 5045 f2fs_destroy_iostat_processing(); 5046 f2fs_destroy_post_read_processing(); 5047 f2fs_destroy_root_stats(); 5048 unregister_filesystem(&f2fs_fs_type); 5049 f2fs_exit_shrinker(); 5050 f2fs_exit_sysfs(); 5051 f2fs_destroy_garbage_collection_cache(); 5052 f2fs_destroy_extent_cache(); 5053 f2fs_destroy_recovery_cache(); 5054 f2fs_destroy_checkpoint_caches(); 5055 f2fs_destroy_segment_manager_caches(); 5056 f2fs_destroy_node_manager_caches(); 5057 destroy_inodecache(); 5058 } 5059 5060 module_init(init_f2fs_fs) 5061 module_exit(exit_f2fs_fs) 5062 5063 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 5064 MODULE_DESCRIPTION("Flash Friendly File System"); 5065 MODULE_LICENSE("GPL"); 5066 MODULE_SOFTDEP("pre: crc32"); 5067 5068
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.