1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/fcntl.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/syscalls.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/fs.h> 13 #include <linux/filelock.h> 14 #include <linux/file.h> 15 #include <linux/fdtable.h> 16 #include <linux/capability.h> 17 #include <linux/dnotify.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/pipe_fs_i.h> 21 #include <linux/security.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/rcupdate.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/user_namespace.h> 27 #include <linux/memfd.h> 28 #include <linux/compat.h> 29 #include <linux/mount.h> 30 #include <linux/rw_hint.h> 31 32 #include <linux/poll.h> 33 #include <asm/siginfo.h> 34 #include <linux/uaccess.h> 35 36 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME) 37 38 static int setfl(int fd, struct file * filp, unsigned int arg) 39 { 40 struct inode * inode = file_inode(filp); 41 int error = 0; 42 43 /* 44 * O_APPEND cannot be cleared if the file is marked as append-only 45 * and the file is open for write. 46 */ 47 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode)) 48 return -EPERM; 49 50 /* O_NOATIME can only be set by the owner or superuser */ 51 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME)) 52 if (!inode_owner_or_capable(file_mnt_idmap(filp), inode)) 53 return -EPERM; 54 55 /* required for strict SunOS emulation */ 56 if (O_NONBLOCK != O_NDELAY) 57 if (arg & O_NDELAY) 58 arg |= O_NONBLOCK; 59 60 /* Pipe packetized mode is controlled by O_DIRECT flag */ 61 if (!S_ISFIFO(inode->i_mode) && 62 (arg & O_DIRECT) && 63 !(filp->f_mode & FMODE_CAN_ODIRECT)) 64 return -EINVAL; 65 66 if (filp->f_op->check_flags) 67 error = filp->f_op->check_flags(arg); 68 if (error) 69 return error; 70 71 /* 72 * ->fasync() is responsible for setting the FASYNC bit. 73 */ 74 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) { 75 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0); 76 if (error < 0) 77 goto out; 78 if (error > 0) 79 error = 0; 80 } 81 spin_lock(&filp->f_lock); 82 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK); 83 filp->f_iocb_flags = iocb_flags(filp); 84 spin_unlock(&filp->f_lock); 85 86 out: 87 return error; 88 } 89 90 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type, 91 int force) 92 { 93 write_lock_irq(&filp->f_owner.lock); 94 if (force || !filp->f_owner.pid) { 95 put_pid(filp->f_owner.pid); 96 filp->f_owner.pid = get_pid(pid); 97 filp->f_owner.pid_type = type; 98 99 if (pid) { 100 const struct cred *cred = current_cred(); 101 security_file_set_fowner(filp); 102 filp->f_owner.uid = cred->uid; 103 filp->f_owner.euid = cred->euid; 104 } 105 } 106 write_unlock_irq(&filp->f_owner.lock); 107 } 108 EXPORT_SYMBOL(__f_setown); 109 110 int f_setown(struct file *filp, int who, int force) 111 { 112 enum pid_type type; 113 struct pid *pid = NULL; 114 int ret = 0; 115 116 type = PIDTYPE_TGID; 117 if (who < 0) { 118 /* avoid overflow below */ 119 if (who == INT_MIN) 120 return -EINVAL; 121 122 type = PIDTYPE_PGID; 123 who = -who; 124 } 125 126 rcu_read_lock(); 127 if (who) { 128 pid = find_vpid(who); 129 if (!pid) 130 ret = -ESRCH; 131 } 132 133 if (!ret) 134 __f_setown(filp, pid, type, force); 135 rcu_read_unlock(); 136 137 return ret; 138 } 139 EXPORT_SYMBOL(f_setown); 140 141 void f_delown(struct file *filp) 142 { 143 __f_setown(filp, NULL, PIDTYPE_TGID, 1); 144 } 145 146 pid_t f_getown(struct file *filp) 147 { 148 pid_t pid = 0; 149 150 read_lock_irq(&filp->f_owner.lock); 151 rcu_read_lock(); 152 if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) { 153 pid = pid_vnr(filp->f_owner.pid); 154 if (filp->f_owner.pid_type == PIDTYPE_PGID) 155 pid = -pid; 156 } 157 rcu_read_unlock(); 158 read_unlock_irq(&filp->f_owner.lock); 159 return pid; 160 } 161 162 static int f_setown_ex(struct file *filp, unsigned long arg) 163 { 164 struct f_owner_ex __user *owner_p = (void __user *)arg; 165 struct f_owner_ex owner; 166 struct pid *pid; 167 int type; 168 int ret; 169 170 ret = copy_from_user(&owner, owner_p, sizeof(owner)); 171 if (ret) 172 return -EFAULT; 173 174 switch (owner.type) { 175 case F_OWNER_TID: 176 type = PIDTYPE_PID; 177 break; 178 179 case F_OWNER_PID: 180 type = PIDTYPE_TGID; 181 break; 182 183 case F_OWNER_PGRP: 184 type = PIDTYPE_PGID; 185 break; 186 187 default: 188 return -EINVAL; 189 } 190 191 rcu_read_lock(); 192 pid = find_vpid(owner.pid); 193 if (owner.pid && !pid) 194 ret = -ESRCH; 195 else 196 __f_setown(filp, pid, type, 1); 197 rcu_read_unlock(); 198 199 return ret; 200 } 201 202 static int f_getown_ex(struct file *filp, unsigned long arg) 203 { 204 struct f_owner_ex __user *owner_p = (void __user *)arg; 205 struct f_owner_ex owner = {}; 206 int ret = 0; 207 208 read_lock_irq(&filp->f_owner.lock); 209 rcu_read_lock(); 210 if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) 211 owner.pid = pid_vnr(filp->f_owner.pid); 212 rcu_read_unlock(); 213 switch (filp->f_owner.pid_type) { 214 case PIDTYPE_PID: 215 owner.type = F_OWNER_TID; 216 break; 217 218 case PIDTYPE_TGID: 219 owner.type = F_OWNER_PID; 220 break; 221 222 case PIDTYPE_PGID: 223 owner.type = F_OWNER_PGRP; 224 break; 225 226 default: 227 WARN_ON(1); 228 ret = -EINVAL; 229 break; 230 } 231 read_unlock_irq(&filp->f_owner.lock); 232 233 if (!ret) { 234 ret = copy_to_user(owner_p, &owner, sizeof(owner)); 235 if (ret) 236 ret = -EFAULT; 237 } 238 return ret; 239 } 240 241 #ifdef CONFIG_CHECKPOINT_RESTORE 242 static int f_getowner_uids(struct file *filp, unsigned long arg) 243 { 244 struct user_namespace *user_ns = current_user_ns(); 245 uid_t __user *dst = (void __user *)arg; 246 uid_t src[2]; 247 int err; 248 249 read_lock_irq(&filp->f_owner.lock); 250 src[0] = from_kuid(user_ns, filp->f_owner.uid); 251 src[1] = from_kuid(user_ns, filp->f_owner.euid); 252 read_unlock_irq(&filp->f_owner.lock); 253 254 err = put_user(src[0], &dst[0]); 255 err |= put_user(src[1], &dst[1]); 256 257 return err; 258 } 259 #else 260 static int f_getowner_uids(struct file *filp, unsigned long arg) 261 { 262 return -EINVAL; 263 } 264 #endif 265 266 static bool rw_hint_valid(u64 hint) 267 { 268 BUILD_BUG_ON(WRITE_LIFE_NOT_SET != RWH_WRITE_LIFE_NOT_SET); 269 BUILD_BUG_ON(WRITE_LIFE_NONE != RWH_WRITE_LIFE_NONE); 270 BUILD_BUG_ON(WRITE_LIFE_SHORT != RWH_WRITE_LIFE_SHORT); 271 BUILD_BUG_ON(WRITE_LIFE_MEDIUM != RWH_WRITE_LIFE_MEDIUM); 272 BUILD_BUG_ON(WRITE_LIFE_LONG != RWH_WRITE_LIFE_LONG); 273 BUILD_BUG_ON(WRITE_LIFE_EXTREME != RWH_WRITE_LIFE_EXTREME); 274 275 switch (hint) { 276 case RWH_WRITE_LIFE_NOT_SET: 277 case RWH_WRITE_LIFE_NONE: 278 case RWH_WRITE_LIFE_SHORT: 279 case RWH_WRITE_LIFE_MEDIUM: 280 case RWH_WRITE_LIFE_LONG: 281 case RWH_WRITE_LIFE_EXTREME: 282 return true; 283 default: 284 return false; 285 } 286 } 287 288 static long fcntl_get_rw_hint(struct file *file, unsigned int cmd, 289 unsigned long arg) 290 { 291 struct inode *inode = file_inode(file); 292 u64 __user *argp = (u64 __user *)arg; 293 u64 hint = READ_ONCE(inode->i_write_hint); 294 295 if (copy_to_user(argp, &hint, sizeof(*argp))) 296 return -EFAULT; 297 return 0; 298 } 299 300 static long fcntl_set_rw_hint(struct file *file, unsigned int cmd, 301 unsigned long arg) 302 { 303 struct inode *inode = file_inode(file); 304 u64 __user *argp = (u64 __user *)arg; 305 u64 hint; 306 307 if (copy_from_user(&hint, argp, sizeof(hint))) 308 return -EFAULT; 309 if (!rw_hint_valid(hint)) 310 return -EINVAL; 311 312 WRITE_ONCE(inode->i_write_hint, hint); 313 314 /* 315 * file->f_mapping->host may differ from inode. As an example, 316 * blkdev_open() modifies file->f_mapping. 317 */ 318 if (file->f_mapping->host != inode) 319 WRITE_ONCE(file->f_mapping->host->i_write_hint, hint); 320 321 return 0; 322 } 323 324 /* Is the file descriptor a dup of the file? */ 325 static long f_dupfd_query(int fd, struct file *filp) 326 { 327 CLASS(fd_raw, f)(fd); 328 329 /* 330 * We can do the 'fdput()' immediately, as the only thing that 331 * matters is the pointer value which isn't changed by the fdput. 332 * 333 * Technically we didn't need a ref at all, and 'fdget()' was 334 * overkill, but given our lockless file pointer lookup, the 335 * alternatives are complicated. 336 */ 337 return f.file == filp; 338 } 339 340 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg, 341 struct file *filp) 342 { 343 void __user *argp = (void __user *)arg; 344 int argi = (int)arg; 345 struct flock flock; 346 long err = -EINVAL; 347 348 switch (cmd) { 349 case F_DUPFD: 350 err = f_dupfd(argi, filp, 0); 351 break; 352 case F_DUPFD_CLOEXEC: 353 err = f_dupfd(argi, filp, O_CLOEXEC); 354 break; 355 case F_DUPFD_QUERY: 356 err = f_dupfd_query(argi, filp); 357 break; 358 case F_GETFD: 359 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0; 360 break; 361 case F_SETFD: 362 err = 0; 363 set_close_on_exec(fd, argi & FD_CLOEXEC); 364 break; 365 case F_GETFL: 366 err = filp->f_flags; 367 break; 368 case F_SETFL: 369 err = setfl(fd, filp, argi); 370 break; 371 #if BITS_PER_LONG != 32 372 /* 32-bit arches must use fcntl64() */ 373 case F_OFD_GETLK: 374 #endif 375 case F_GETLK: 376 if (copy_from_user(&flock, argp, sizeof(flock))) 377 return -EFAULT; 378 err = fcntl_getlk(filp, cmd, &flock); 379 if (!err && copy_to_user(argp, &flock, sizeof(flock))) 380 return -EFAULT; 381 break; 382 #if BITS_PER_LONG != 32 383 /* 32-bit arches must use fcntl64() */ 384 case F_OFD_SETLK: 385 case F_OFD_SETLKW: 386 fallthrough; 387 #endif 388 case F_SETLK: 389 case F_SETLKW: 390 if (copy_from_user(&flock, argp, sizeof(flock))) 391 return -EFAULT; 392 err = fcntl_setlk(fd, filp, cmd, &flock); 393 break; 394 case F_GETOWN: 395 /* 396 * XXX If f_owner is a process group, the 397 * negative return value will get converted 398 * into an error. Oops. If we keep the 399 * current syscall conventions, the only way 400 * to fix this will be in libc. 401 */ 402 err = f_getown(filp); 403 force_successful_syscall_return(); 404 break; 405 case F_SETOWN: 406 err = f_setown(filp, argi, 1); 407 break; 408 case F_GETOWN_EX: 409 err = f_getown_ex(filp, arg); 410 break; 411 case F_SETOWN_EX: 412 err = f_setown_ex(filp, arg); 413 break; 414 case F_GETOWNER_UIDS: 415 err = f_getowner_uids(filp, arg); 416 break; 417 case F_GETSIG: 418 err = filp->f_owner.signum; 419 break; 420 case F_SETSIG: 421 /* arg == 0 restores default behaviour. */ 422 if (!valid_signal(argi)) { 423 break; 424 } 425 err = 0; 426 filp->f_owner.signum = argi; 427 break; 428 case F_GETLEASE: 429 err = fcntl_getlease(filp); 430 break; 431 case F_SETLEASE: 432 err = fcntl_setlease(fd, filp, argi); 433 break; 434 case F_NOTIFY: 435 err = fcntl_dirnotify(fd, filp, argi); 436 break; 437 case F_SETPIPE_SZ: 438 case F_GETPIPE_SZ: 439 err = pipe_fcntl(filp, cmd, argi); 440 break; 441 case F_ADD_SEALS: 442 case F_GET_SEALS: 443 err = memfd_fcntl(filp, cmd, argi); 444 break; 445 case F_GET_RW_HINT: 446 err = fcntl_get_rw_hint(filp, cmd, arg); 447 break; 448 case F_SET_RW_HINT: 449 err = fcntl_set_rw_hint(filp, cmd, arg); 450 break; 451 default: 452 break; 453 } 454 return err; 455 } 456 457 static int check_fcntl_cmd(unsigned cmd) 458 { 459 switch (cmd) { 460 case F_DUPFD: 461 case F_DUPFD_CLOEXEC: 462 case F_DUPFD_QUERY: 463 case F_GETFD: 464 case F_SETFD: 465 case F_GETFL: 466 return 1; 467 } 468 return 0; 469 } 470 471 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg) 472 { 473 struct fd f = fdget_raw(fd); 474 long err = -EBADF; 475 476 if (!f.file) 477 goto out; 478 479 if (unlikely(f.file->f_mode & FMODE_PATH)) { 480 if (!check_fcntl_cmd(cmd)) 481 goto out1; 482 } 483 484 err = security_file_fcntl(f.file, cmd, arg); 485 if (!err) 486 err = do_fcntl(fd, cmd, arg, f.file); 487 488 out1: 489 fdput(f); 490 out: 491 return err; 492 } 493 494 #if BITS_PER_LONG == 32 495 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, 496 unsigned long, arg) 497 { 498 void __user *argp = (void __user *)arg; 499 struct fd f = fdget_raw(fd); 500 struct flock64 flock; 501 long err = -EBADF; 502 503 if (!f.file) 504 goto out; 505 506 if (unlikely(f.file->f_mode & FMODE_PATH)) { 507 if (!check_fcntl_cmd(cmd)) 508 goto out1; 509 } 510 511 err = security_file_fcntl(f.file, cmd, arg); 512 if (err) 513 goto out1; 514 515 switch (cmd) { 516 case F_GETLK64: 517 case F_OFD_GETLK: 518 err = -EFAULT; 519 if (copy_from_user(&flock, argp, sizeof(flock))) 520 break; 521 err = fcntl_getlk64(f.file, cmd, &flock); 522 if (!err && copy_to_user(argp, &flock, sizeof(flock))) 523 err = -EFAULT; 524 break; 525 case F_SETLK64: 526 case F_SETLKW64: 527 case F_OFD_SETLK: 528 case F_OFD_SETLKW: 529 err = -EFAULT; 530 if (copy_from_user(&flock, argp, sizeof(flock))) 531 break; 532 err = fcntl_setlk64(fd, f.file, cmd, &flock); 533 break; 534 default: 535 err = do_fcntl(fd, cmd, arg, f.file); 536 break; 537 } 538 out1: 539 fdput(f); 540 out: 541 return err; 542 } 543 #endif 544 545 #ifdef CONFIG_COMPAT 546 /* careful - don't use anywhere else */ 547 #define copy_flock_fields(dst, src) \ 548 (dst)->l_type = (src)->l_type; \ 549 (dst)->l_whence = (src)->l_whence; \ 550 (dst)->l_start = (src)->l_start; \ 551 (dst)->l_len = (src)->l_len; \ 552 (dst)->l_pid = (src)->l_pid; 553 554 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl) 555 { 556 struct compat_flock fl; 557 558 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock))) 559 return -EFAULT; 560 copy_flock_fields(kfl, &fl); 561 return 0; 562 } 563 564 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl) 565 { 566 struct compat_flock64 fl; 567 568 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64))) 569 return -EFAULT; 570 copy_flock_fields(kfl, &fl); 571 return 0; 572 } 573 574 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl) 575 { 576 struct compat_flock fl; 577 578 memset(&fl, 0, sizeof(struct compat_flock)); 579 copy_flock_fields(&fl, kfl); 580 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock))) 581 return -EFAULT; 582 return 0; 583 } 584 585 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl) 586 { 587 struct compat_flock64 fl; 588 589 BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start)); 590 BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len)); 591 592 memset(&fl, 0, sizeof(struct compat_flock64)); 593 copy_flock_fields(&fl, kfl); 594 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64))) 595 return -EFAULT; 596 return 0; 597 } 598 #undef copy_flock_fields 599 600 static unsigned int 601 convert_fcntl_cmd(unsigned int cmd) 602 { 603 switch (cmd) { 604 case F_GETLK64: 605 return F_GETLK; 606 case F_SETLK64: 607 return F_SETLK; 608 case F_SETLKW64: 609 return F_SETLKW; 610 } 611 612 return cmd; 613 } 614 615 /* 616 * GETLK was successful and we need to return the data, but it needs to fit in 617 * the compat structure. 618 * l_start shouldn't be too big, unless the original start + end is greater than 619 * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return 620 * -EOVERFLOW in that case. l_len could be too big, in which case we just 621 * truncate it, and only allow the app to see that part of the conflicting lock 622 * that might make sense to it anyway 623 */ 624 static int fixup_compat_flock(struct flock *flock) 625 { 626 if (flock->l_start > COMPAT_OFF_T_MAX) 627 return -EOVERFLOW; 628 if (flock->l_len > COMPAT_OFF_T_MAX) 629 flock->l_len = COMPAT_OFF_T_MAX; 630 return 0; 631 } 632 633 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd, 634 compat_ulong_t arg) 635 { 636 struct fd f = fdget_raw(fd); 637 struct flock flock; 638 long err = -EBADF; 639 640 if (!f.file) 641 return err; 642 643 if (unlikely(f.file->f_mode & FMODE_PATH)) { 644 if (!check_fcntl_cmd(cmd)) 645 goto out_put; 646 } 647 648 err = security_file_fcntl(f.file, cmd, arg); 649 if (err) 650 goto out_put; 651 652 switch (cmd) { 653 case F_GETLK: 654 err = get_compat_flock(&flock, compat_ptr(arg)); 655 if (err) 656 break; 657 err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock); 658 if (err) 659 break; 660 err = fixup_compat_flock(&flock); 661 if (!err) 662 err = put_compat_flock(&flock, compat_ptr(arg)); 663 break; 664 case F_GETLK64: 665 case F_OFD_GETLK: 666 err = get_compat_flock64(&flock, compat_ptr(arg)); 667 if (err) 668 break; 669 err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock); 670 if (!err) 671 err = put_compat_flock64(&flock, compat_ptr(arg)); 672 break; 673 case F_SETLK: 674 case F_SETLKW: 675 err = get_compat_flock(&flock, compat_ptr(arg)); 676 if (err) 677 break; 678 err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock); 679 break; 680 case F_SETLK64: 681 case F_SETLKW64: 682 case F_OFD_SETLK: 683 case F_OFD_SETLKW: 684 err = get_compat_flock64(&flock, compat_ptr(arg)); 685 if (err) 686 break; 687 err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock); 688 break; 689 default: 690 err = do_fcntl(fd, cmd, arg, f.file); 691 break; 692 } 693 out_put: 694 fdput(f); 695 return err; 696 } 697 698 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, 699 compat_ulong_t, arg) 700 { 701 return do_compat_fcntl64(fd, cmd, arg); 702 } 703 704 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, 705 compat_ulong_t, arg) 706 { 707 switch (cmd) { 708 case F_GETLK64: 709 case F_SETLK64: 710 case F_SETLKW64: 711 case F_OFD_GETLK: 712 case F_OFD_SETLK: 713 case F_OFD_SETLKW: 714 return -EINVAL; 715 } 716 return do_compat_fcntl64(fd, cmd, arg); 717 } 718 #endif 719 720 /* Table to convert sigio signal codes into poll band bitmaps */ 721 722 static const __poll_t band_table[NSIGPOLL] = { 723 EPOLLIN | EPOLLRDNORM, /* POLL_IN */ 724 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND, /* POLL_OUT */ 725 EPOLLIN | EPOLLRDNORM | EPOLLMSG, /* POLL_MSG */ 726 EPOLLERR, /* POLL_ERR */ 727 EPOLLPRI | EPOLLRDBAND, /* POLL_PRI */ 728 EPOLLHUP | EPOLLERR /* POLL_HUP */ 729 }; 730 731 static inline int sigio_perm(struct task_struct *p, 732 struct fown_struct *fown, int sig) 733 { 734 const struct cred *cred; 735 int ret; 736 737 rcu_read_lock(); 738 cred = __task_cred(p); 739 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) || 740 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) || 741 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) && 742 !security_file_send_sigiotask(p, fown, sig)); 743 rcu_read_unlock(); 744 return ret; 745 } 746 747 static void send_sigio_to_task(struct task_struct *p, 748 struct fown_struct *fown, 749 int fd, int reason, enum pid_type type) 750 { 751 /* 752 * F_SETSIG can change ->signum lockless in parallel, make 753 * sure we read it once and use the same value throughout. 754 */ 755 int signum = READ_ONCE(fown->signum); 756 757 if (!sigio_perm(p, fown, signum)) 758 return; 759 760 switch (signum) { 761 default: { 762 kernel_siginfo_t si; 763 764 /* Queue a rt signal with the appropriate fd as its 765 value. We use SI_SIGIO as the source, not 766 SI_KERNEL, since kernel signals always get 767 delivered even if we can't queue. Failure to 768 queue in this case _should_ be reported; we fall 769 back to SIGIO in that case. --sct */ 770 clear_siginfo(&si); 771 si.si_signo = signum; 772 si.si_errno = 0; 773 si.si_code = reason; 774 /* 775 * Posix definies POLL_IN and friends to be signal 776 * specific si_codes for SIG_POLL. Linux extended 777 * these si_codes to other signals in a way that is 778 * ambiguous if other signals also have signal 779 * specific si_codes. In that case use SI_SIGIO instead 780 * to remove the ambiguity. 781 */ 782 if ((signum != SIGPOLL) && sig_specific_sicodes(signum)) 783 si.si_code = SI_SIGIO; 784 785 /* Make sure we are called with one of the POLL_* 786 reasons, otherwise we could leak kernel stack into 787 userspace. */ 788 BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL)); 789 if (reason - POLL_IN >= NSIGPOLL) 790 si.si_band = ~0L; 791 else 792 si.si_band = mangle_poll(band_table[reason - POLL_IN]); 793 si.si_fd = fd; 794 if (!do_send_sig_info(signum, &si, p, type)) 795 break; 796 } 797 fallthrough; /* fall back on the old plain SIGIO signal */ 798 case 0: 799 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type); 800 } 801 } 802 803 void send_sigio(struct fown_struct *fown, int fd, int band) 804 { 805 struct task_struct *p; 806 enum pid_type type; 807 unsigned long flags; 808 struct pid *pid; 809 810 read_lock_irqsave(&fown->lock, flags); 811 812 type = fown->pid_type; 813 pid = fown->pid; 814 if (!pid) 815 goto out_unlock_fown; 816 817 if (type <= PIDTYPE_TGID) { 818 rcu_read_lock(); 819 p = pid_task(pid, PIDTYPE_PID); 820 if (p) 821 send_sigio_to_task(p, fown, fd, band, type); 822 rcu_read_unlock(); 823 } else { 824 read_lock(&tasklist_lock); 825 do_each_pid_task(pid, type, p) { 826 send_sigio_to_task(p, fown, fd, band, type); 827 } while_each_pid_task(pid, type, p); 828 read_unlock(&tasklist_lock); 829 } 830 out_unlock_fown: 831 read_unlock_irqrestore(&fown->lock, flags); 832 } 833 834 static void send_sigurg_to_task(struct task_struct *p, 835 struct fown_struct *fown, enum pid_type type) 836 { 837 if (sigio_perm(p, fown, SIGURG)) 838 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type); 839 } 840 841 int send_sigurg(struct fown_struct *fown) 842 { 843 struct task_struct *p; 844 enum pid_type type; 845 struct pid *pid; 846 unsigned long flags; 847 int ret = 0; 848 849 read_lock_irqsave(&fown->lock, flags); 850 851 type = fown->pid_type; 852 pid = fown->pid; 853 if (!pid) 854 goto out_unlock_fown; 855 856 ret = 1; 857 858 if (type <= PIDTYPE_TGID) { 859 rcu_read_lock(); 860 p = pid_task(pid, PIDTYPE_PID); 861 if (p) 862 send_sigurg_to_task(p, fown, type); 863 rcu_read_unlock(); 864 } else { 865 read_lock(&tasklist_lock); 866 do_each_pid_task(pid, type, p) { 867 send_sigurg_to_task(p, fown, type); 868 } while_each_pid_task(pid, type, p); 869 read_unlock(&tasklist_lock); 870 } 871 out_unlock_fown: 872 read_unlock_irqrestore(&fown->lock, flags); 873 return ret; 874 } 875 876 static DEFINE_SPINLOCK(fasync_lock); 877 static struct kmem_cache *fasync_cache __ro_after_init; 878 879 /* 880 * Remove a fasync entry. If successfully removed, return 881 * positive and clear the FASYNC flag. If no entry exists, 882 * do nothing and return 0. 883 * 884 * NOTE! It is very important that the FASYNC flag always 885 * match the state "is the filp on a fasync list". 886 * 887 */ 888 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp) 889 { 890 struct fasync_struct *fa, **fp; 891 int result = 0; 892 893 spin_lock(&filp->f_lock); 894 spin_lock(&fasync_lock); 895 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 896 if (fa->fa_file != filp) 897 continue; 898 899 write_lock_irq(&fa->fa_lock); 900 fa->fa_file = NULL; 901 write_unlock_irq(&fa->fa_lock); 902 903 *fp = fa->fa_next; 904 kfree_rcu(fa, fa_rcu); 905 filp->f_flags &= ~FASYNC; 906 result = 1; 907 break; 908 } 909 spin_unlock(&fasync_lock); 910 spin_unlock(&filp->f_lock); 911 return result; 912 } 913 914 struct fasync_struct *fasync_alloc(void) 915 { 916 return kmem_cache_alloc(fasync_cache, GFP_KERNEL); 917 } 918 919 /* 920 * NOTE! This can be used only for unused fasync entries: 921 * entries that actually got inserted on the fasync list 922 * need to be released by rcu - see fasync_remove_entry. 923 */ 924 void fasync_free(struct fasync_struct *new) 925 { 926 kmem_cache_free(fasync_cache, new); 927 } 928 929 /* 930 * Insert a new entry into the fasync list. Return the pointer to the 931 * old one if we didn't use the new one. 932 * 933 * NOTE! It is very important that the FASYNC flag always 934 * match the state "is the filp on a fasync list". 935 */ 936 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new) 937 { 938 struct fasync_struct *fa, **fp; 939 940 spin_lock(&filp->f_lock); 941 spin_lock(&fasync_lock); 942 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 943 if (fa->fa_file != filp) 944 continue; 945 946 write_lock_irq(&fa->fa_lock); 947 fa->fa_fd = fd; 948 write_unlock_irq(&fa->fa_lock); 949 goto out; 950 } 951 952 rwlock_init(&new->fa_lock); 953 new->magic = FASYNC_MAGIC; 954 new->fa_file = filp; 955 new->fa_fd = fd; 956 new->fa_next = *fapp; 957 rcu_assign_pointer(*fapp, new); 958 filp->f_flags |= FASYNC; 959 960 out: 961 spin_unlock(&fasync_lock); 962 spin_unlock(&filp->f_lock); 963 return fa; 964 } 965 966 /* 967 * Add a fasync entry. Return negative on error, positive if 968 * added, and zero if did nothing but change an existing one. 969 */ 970 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp) 971 { 972 struct fasync_struct *new; 973 974 new = fasync_alloc(); 975 if (!new) 976 return -ENOMEM; 977 978 /* 979 * fasync_insert_entry() returns the old (update) entry if 980 * it existed. 981 * 982 * So free the (unused) new entry and return 0 to let the 983 * caller know that we didn't add any new fasync entries. 984 */ 985 if (fasync_insert_entry(fd, filp, fapp, new)) { 986 fasync_free(new); 987 return 0; 988 } 989 990 return 1; 991 } 992 993 /* 994 * fasync_helper() is used by almost all character device drivers 995 * to set up the fasync queue, and for regular files by the file 996 * lease code. It returns negative on error, 0 if it did no changes 997 * and positive if it added/deleted the entry. 998 */ 999 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp) 1000 { 1001 if (!on) 1002 return fasync_remove_entry(filp, fapp); 1003 return fasync_add_entry(fd, filp, fapp); 1004 } 1005 1006 EXPORT_SYMBOL(fasync_helper); 1007 1008 /* 1009 * rcu_read_lock() is held 1010 */ 1011 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band) 1012 { 1013 while (fa) { 1014 struct fown_struct *fown; 1015 unsigned long flags; 1016 1017 if (fa->magic != FASYNC_MAGIC) { 1018 printk(KERN_ERR "kill_fasync: bad magic number in " 1019 "fasync_struct!\n"); 1020 return; 1021 } 1022 read_lock_irqsave(&fa->fa_lock, flags); 1023 if (fa->fa_file) { 1024 fown = &fa->fa_file->f_owner; 1025 /* Don't send SIGURG to processes which have not set a 1026 queued signum: SIGURG has its own default signalling 1027 mechanism. */ 1028 if (!(sig == SIGURG && fown->signum == 0)) 1029 send_sigio(fown, fa->fa_fd, band); 1030 } 1031 read_unlock_irqrestore(&fa->fa_lock, flags); 1032 fa = rcu_dereference(fa->fa_next); 1033 } 1034 } 1035 1036 void kill_fasync(struct fasync_struct **fp, int sig, int band) 1037 { 1038 /* First a quick test without locking: usually 1039 * the list is empty. 1040 */ 1041 if (*fp) { 1042 rcu_read_lock(); 1043 kill_fasync_rcu(rcu_dereference(*fp), sig, band); 1044 rcu_read_unlock(); 1045 } 1046 } 1047 EXPORT_SYMBOL(kill_fasync); 1048 1049 static int __init fcntl_init(void) 1050 { 1051 /* 1052 * Please add new bits here to ensure allocation uniqueness. 1053 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY 1054 * is defined as O_NONBLOCK on some platforms and not on others. 1055 */ 1056 BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ != 1057 HWEIGHT32( 1058 (VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) | 1059 __FMODE_EXEC | __FMODE_NONOTIFY)); 1060 1061 fasync_cache = kmem_cache_create("fasync_cache", 1062 sizeof(struct fasync_struct), 0, 1063 SLAB_PANIC | SLAB_ACCOUNT, NULL); 1064 return 0; 1065 } 1066 1067 module_init(fcntl_init) 1068
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.