1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 assert_spin_locked(&inode->i_lock); 124 WARN_ON_ONCE(inode->i_state & I_FREEING); 125 126 list_move(&inode->i_io_list, head); 127 128 /* dirty_time doesn't count as dirty_io until expiration */ 129 if (head != &wb->b_dirty_time) 130 return wb_io_lists_populated(wb); 131 132 wb_io_lists_depopulated(wb); 133 return false; 134 } 135 136 static void wb_wakeup(struct bdi_writeback *wb) 137 { 138 spin_lock_irq(&wb->work_lock); 139 if (test_bit(WB_registered, &wb->state)) 140 mod_delayed_work(bdi_wq, &wb->dwork, 0); 141 spin_unlock_irq(&wb->work_lock); 142 } 143 144 /* 145 * This function is used when the first inode for this wb is marked dirty. It 146 * wakes-up the corresponding bdi thread which should then take care of the 147 * periodic background write-out of dirty inodes. Since the write-out would 148 * starts only 'dirty_writeback_interval' centisecs from now anyway, we just 149 * set up a timer which wakes the bdi thread up later. 150 * 151 * Note, we wouldn't bother setting up the timer, but this function is on the 152 * fast-path (used by '__mark_inode_dirty()'), so we save few context switches 153 * by delaying the wake-up. 154 * 155 * We have to be careful not to postpone flush work if it is scheduled for 156 * earlier. Thus we use queue_delayed_work(). 157 */ 158 static void wb_wakeup_delayed(struct bdi_writeback *wb) 159 { 160 unsigned long timeout; 161 162 timeout = msecs_to_jiffies(dirty_writeback_interval * 10); 163 spin_lock_irq(&wb->work_lock); 164 if (test_bit(WB_registered, &wb->state)) 165 queue_delayed_work(bdi_wq, &wb->dwork, timeout); 166 spin_unlock_irq(&wb->work_lock); 167 } 168 169 static void finish_writeback_work(struct wb_writeback_work *work) 170 { 171 struct wb_completion *done = work->done; 172 173 if (work->auto_free) 174 kfree(work); 175 if (done) { 176 wait_queue_head_t *waitq = done->waitq; 177 178 /* @done can't be accessed after the following dec */ 179 if (atomic_dec_and_test(&done->cnt)) 180 wake_up_all(waitq); 181 } 182 } 183 184 static void wb_queue_work(struct bdi_writeback *wb, 185 struct wb_writeback_work *work) 186 { 187 trace_writeback_queue(wb, work); 188 189 if (work->done) 190 atomic_inc(&work->done->cnt); 191 192 spin_lock_irq(&wb->work_lock); 193 194 if (test_bit(WB_registered, &wb->state)) { 195 list_add_tail(&work->list, &wb->work_list); 196 mod_delayed_work(bdi_wq, &wb->dwork, 0); 197 } else 198 finish_writeback_work(work); 199 200 spin_unlock_irq(&wb->work_lock); 201 } 202 203 /** 204 * wb_wait_for_completion - wait for completion of bdi_writeback_works 205 * @done: target wb_completion 206 * 207 * Wait for one or more work items issued to @bdi with their ->done field 208 * set to @done, which should have been initialized with 209 * DEFINE_WB_COMPLETION(). This function returns after all such work items 210 * are completed. Work items which are waited upon aren't freed 211 * automatically on completion. 212 */ 213 void wb_wait_for_completion(struct wb_completion *done) 214 { 215 atomic_dec(&done->cnt); /* put down the initial count */ 216 wait_event(*done->waitq, !atomic_read(&done->cnt)); 217 } 218 219 #ifdef CONFIG_CGROUP_WRITEBACK 220 221 /* 222 * Parameters for foreign inode detection, see wbc_detach_inode() to see 223 * how they're used. 224 * 225 * These paramters are inherently heuristical as the detection target 226 * itself is fuzzy. All we want to do is detaching an inode from the 227 * current owner if it's being written to by some other cgroups too much. 228 * 229 * The current cgroup writeback is built on the assumption that multiple 230 * cgroups writing to the same inode concurrently is very rare and a mode 231 * of operation which isn't well supported. As such, the goal is not 232 * taking too long when a different cgroup takes over an inode while 233 * avoiding too aggressive flip-flops from occasional foreign writes. 234 * 235 * We record, very roughly, 2s worth of IO time history and if more than 236 * half of that is foreign, trigger the switch. The recording is quantized 237 * to 16 slots. To avoid tiny writes from swinging the decision too much, 238 * writes smaller than 1/8 of avg size are ignored. 239 */ 240 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 241 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 242 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 243 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 244 245 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 246 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 247 /* each slot's duration is 2s / 16 */ 248 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 249 /* if foreign slots >= 8, switch */ 250 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 251 /* one round can affect upto 5 slots */ 252 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 253 254 /* 255 * Maximum inodes per isw. A specific value has been chosen to make 256 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 257 */ 258 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 259 / sizeof(struct inode *)) 260 261 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 262 static struct workqueue_struct *isw_wq; 263 264 void __inode_attach_wb(struct inode *inode, struct folio *folio) 265 { 266 struct backing_dev_info *bdi = inode_to_bdi(inode); 267 struct bdi_writeback *wb = NULL; 268 269 if (inode_cgwb_enabled(inode)) { 270 struct cgroup_subsys_state *memcg_css; 271 272 if (folio) { 273 memcg_css = mem_cgroup_css_from_folio(folio); 274 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 275 } else { 276 /* must pin memcg_css, see wb_get_create() */ 277 memcg_css = task_get_css(current, memory_cgrp_id); 278 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 279 css_put(memcg_css); 280 } 281 } 282 283 if (!wb) 284 wb = &bdi->wb; 285 286 /* 287 * There may be multiple instances of this function racing to 288 * update the same inode. Use cmpxchg() to tell the winner. 289 */ 290 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 291 wb_put(wb); 292 } 293 EXPORT_SYMBOL_GPL(__inode_attach_wb); 294 295 /** 296 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 297 * @inode: inode of interest with i_lock held 298 * @wb: target bdi_writeback 299 * 300 * Remove the inode from wb's io lists and if necessarily put onto b_attached 301 * list. Only inodes attached to cgwb's are kept on this list. 302 */ 303 static void inode_cgwb_move_to_attached(struct inode *inode, 304 struct bdi_writeback *wb) 305 { 306 assert_spin_locked(&wb->list_lock); 307 assert_spin_locked(&inode->i_lock); 308 WARN_ON_ONCE(inode->i_state & I_FREEING); 309 310 inode->i_state &= ~I_SYNC_QUEUED; 311 if (wb != &wb->bdi->wb) 312 list_move(&inode->i_io_list, &wb->b_attached); 313 else 314 list_del_init(&inode->i_io_list); 315 wb_io_lists_depopulated(wb); 316 } 317 318 /** 319 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 320 * @inode: inode of interest with i_lock held 321 * 322 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 323 * held on entry and is released on return. The returned wb is guaranteed 324 * to stay @inode's associated wb until its list_lock is released. 325 */ 326 static struct bdi_writeback * 327 locked_inode_to_wb_and_lock_list(struct inode *inode) 328 __releases(&inode->i_lock) 329 __acquires(&wb->list_lock) 330 { 331 while (true) { 332 struct bdi_writeback *wb = inode_to_wb(inode); 333 334 /* 335 * inode_to_wb() association is protected by both 336 * @inode->i_lock and @wb->list_lock but list_lock nests 337 * outside i_lock. Drop i_lock and verify that the 338 * association hasn't changed after acquiring list_lock. 339 */ 340 wb_get(wb); 341 spin_unlock(&inode->i_lock); 342 spin_lock(&wb->list_lock); 343 344 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 345 if (likely(wb == inode->i_wb)) { 346 wb_put(wb); /* @inode already has ref */ 347 return wb; 348 } 349 350 spin_unlock(&wb->list_lock); 351 wb_put(wb); 352 cpu_relax(); 353 spin_lock(&inode->i_lock); 354 } 355 } 356 357 /** 358 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 359 * @inode: inode of interest 360 * 361 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 362 * on entry. 363 */ 364 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 365 __acquires(&wb->list_lock) 366 { 367 spin_lock(&inode->i_lock); 368 return locked_inode_to_wb_and_lock_list(inode); 369 } 370 371 struct inode_switch_wbs_context { 372 struct rcu_work work; 373 374 /* 375 * Multiple inodes can be switched at once. The switching procedure 376 * consists of two parts, separated by a RCU grace period. To make 377 * sure that the second part is executed for each inode gone through 378 * the first part, all inode pointers are placed into a NULL-terminated 379 * array embedded into struct inode_switch_wbs_context. Otherwise 380 * an inode could be left in a non-consistent state. 381 */ 382 struct bdi_writeback *new_wb; 383 struct inode *inodes[]; 384 }; 385 386 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 387 { 388 down_write(&bdi->wb_switch_rwsem); 389 } 390 391 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 392 { 393 up_write(&bdi->wb_switch_rwsem); 394 } 395 396 static bool inode_do_switch_wbs(struct inode *inode, 397 struct bdi_writeback *old_wb, 398 struct bdi_writeback *new_wb) 399 { 400 struct address_space *mapping = inode->i_mapping; 401 XA_STATE(xas, &mapping->i_pages, 0); 402 struct folio *folio; 403 bool switched = false; 404 405 spin_lock(&inode->i_lock); 406 xa_lock_irq(&mapping->i_pages); 407 408 /* 409 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 410 * path owns the inode and we shouldn't modify ->i_io_list. 411 */ 412 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 413 goto skip_switch; 414 415 trace_inode_switch_wbs(inode, old_wb, new_wb); 416 417 /* 418 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 419 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to 420 * folios actually under writeback. 421 */ 422 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 423 if (folio_test_dirty(folio)) { 424 long nr = folio_nr_pages(folio); 425 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); 426 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); 427 } 428 } 429 430 xas_set(&xas, 0); 431 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 432 long nr = folio_nr_pages(folio); 433 WARN_ON_ONCE(!folio_test_writeback(folio)); 434 wb_stat_mod(old_wb, WB_WRITEBACK, -nr); 435 wb_stat_mod(new_wb, WB_WRITEBACK, nr); 436 } 437 438 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { 439 atomic_dec(&old_wb->writeback_inodes); 440 atomic_inc(&new_wb->writeback_inodes); 441 } 442 443 wb_get(new_wb); 444 445 /* 446 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 447 * the specific list @inode was on is ignored and the @inode is put on 448 * ->b_dirty which is always correct including from ->b_dirty_time. 449 * The transfer preserves @inode->dirtied_when ordering. If the @inode 450 * was clean, it means it was on the b_attached list, so move it onto 451 * the b_attached list of @new_wb. 452 */ 453 if (!list_empty(&inode->i_io_list)) { 454 inode->i_wb = new_wb; 455 456 if (inode->i_state & I_DIRTY_ALL) { 457 struct inode *pos; 458 459 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 460 if (time_after_eq(inode->dirtied_when, 461 pos->dirtied_when)) 462 break; 463 inode_io_list_move_locked(inode, new_wb, 464 pos->i_io_list.prev); 465 } else { 466 inode_cgwb_move_to_attached(inode, new_wb); 467 } 468 } else { 469 inode->i_wb = new_wb; 470 } 471 472 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 473 inode->i_wb_frn_winner = 0; 474 inode->i_wb_frn_avg_time = 0; 475 inode->i_wb_frn_history = 0; 476 switched = true; 477 skip_switch: 478 /* 479 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 480 * ensures that the new wb is visible if they see !I_WB_SWITCH. 481 */ 482 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 483 484 xa_unlock_irq(&mapping->i_pages); 485 spin_unlock(&inode->i_lock); 486 487 return switched; 488 } 489 490 static void inode_switch_wbs_work_fn(struct work_struct *work) 491 { 492 struct inode_switch_wbs_context *isw = 493 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 494 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 495 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 496 struct bdi_writeback *new_wb = isw->new_wb; 497 unsigned long nr_switched = 0; 498 struct inode **inodep; 499 500 /* 501 * If @inode switches cgwb membership while sync_inodes_sb() is 502 * being issued, sync_inodes_sb() might miss it. Synchronize. 503 */ 504 down_read(&bdi->wb_switch_rwsem); 505 506 /* 507 * By the time control reaches here, RCU grace period has passed 508 * since I_WB_SWITCH assertion and all wb stat update transactions 509 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 510 * synchronizing against the i_pages lock. 511 * 512 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 513 * gives us exclusion against all wb related operations on @inode 514 * including IO list manipulations and stat updates. 515 */ 516 if (old_wb < new_wb) { 517 spin_lock(&old_wb->list_lock); 518 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 519 } else { 520 spin_lock(&new_wb->list_lock); 521 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 522 } 523 524 for (inodep = isw->inodes; *inodep; inodep++) { 525 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 526 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 527 nr_switched++; 528 } 529 530 spin_unlock(&new_wb->list_lock); 531 spin_unlock(&old_wb->list_lock); 532 533 up_read(&bdi->wb_switch_rwsem); 534 535 if (nr_switched) { 536 wb_wakeup(new_wb); 537 wb_put_many(old_wb, nr_switched); 538 } 539 540 for (inodep = isw->inodes; *inodep; inodep++) 541 iput(*inodep); 542 wb_put(new_wb); 543 kfree(isw); 544 atomic_dec(&isw_nr_in_flight); 545 } 546 547 static bool inode_prepare_wbs_switch(struct inode *inode, 548 struct bdi_writeback *new_wb) 549 { 550 /* 551 * Paired with smp_mb() in cgroup_writeback_umount(). 552 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 553 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 554 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 555 */ 556 smp_mb(); 557 558 if (IS_DAX(inode)) 559 return false; 560 561 /* while holding I_WB_SWITCH, no one else can update the association */ 562 spin_lock(&inode->i_lock); 563 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 564 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 565 inode_to_wb(inode) == new_wb) { 566 spin_unlock(&inode->i_lock); 567 return false; 568 } 569 inode->i_state |= I_WB_SWITCH; 570 __iget(inode); 571 spin_unlock(&inode->i_lock); 572 573 return true; 574 } 575 576 /** 577 * inode_switch_wbs - change the wb association of an inode 578 * @inode: target inode 579 * @new_wb_id: ID of the new wb 580 * 581 * Switch @inode's wb association to the wb identified by @new_wb_id. The 582 * switching is performed asynchronously and may fail silently. 583 */ 584 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 585 { 586 struct backing_dev_info *bdi = inode_to_bdi(inode); 587 struct cgroup_subsys_state *memcg_css; 588 struct inode_switch_wbs_context *isw; 589 590 /* noop if seems to be already in progress */ 591 if (inode->i_state & I_WB_SWITCH) 592 return; 593 594 /* avoid queueing a new switch if too many are already in flight */ 595 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 596 return; 597 598 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); 599 if (!isw) 600 return; 601 602 atomic_inc(&isw_nr_in_flight); 603 604 /* find and pin the new wb */ 605 rcu_read_lock(); 606 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 607 if (memcg_css && !css_tryget(memcg_css)) 608 memcg_css = NULL; 609 rcu_read_unlock(); 610 if (!memcg_css) 611 goto out_free; 612 613 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 614 css_put(memcg_css); 615 if (!isw->new_wb) 616 goto out_free; 617 618 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 619 goto out_free; 620 621 isw->inodes[0] = inode; 622 623 /* 624 * In addition to synchronizing among switchers, I_WB_SWITCH tells 625 * the RCU protected stat update paths to grab the i_page 626 * lock so that stat transfer can synchronize against them. 627 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 628 */ 629 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 630 queue_rcu_work(isw_wq, &isw->work); 631 return; 632 633 out_free: 634 atomic_dec(&isw_nr_in_flight); 635 if (isw->new_wb) 636 wb_put(isw->new_wb); 637 kfree(isw); 638 } 639 640 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw, 641 struct list_head *list, int *nr) 642 { 643 struct inode *inode; 644 645 list_for_each_entry(inode, list, i_io_list) { 646 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 647 continue; 648 649 isw->inodes[*nr] = inode; 650 (*nr)++; 651 652 if (*nr >= WB_MAX_INODES_PER_ISW - 1) 653 return true; 654 } 655 return false; 656 } 657 658 /** 659 * cleanup_offline_cgwb - detach associated inodes 660 * @wb: target wb 661 * 662 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 663 * to eventually release the dying @wb. Returns %true if not all inodes were 664 * switched and the function has to be restarted. 665 */ 666 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 667 { 668 struct cgroup_subsys_state *memcg_css; 669 struct inode_switch_wbs_context *isw; 670 int nr; 671 bool restart = false; 672 673 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), 674 GFP_KERNEL); 675 if (!isw) 676 return restart; 677 678 atomic_inc(&isw_nr_in_flight); 679 680 for (memcg_css = wb->memcg_css->parent; memcg_css; 681 memcg_css = memcg_css->parent) { 682 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 683 if (isw->new_wb) 684 break; 685 } 686 if (unlikely(!isw->new_wb)) 687 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 688 689 nr = 0; 690 spin_lock(&wb->list_lock); 691 /* 692 * In addition to the inodes that have completed writeback, also switch 693 * cgwbs for those inodes only with dirty timestamps. Otherwise, those 694 * inodes won't be written back for a long time when lazytime is 695 * enabled, and thus pinning the dying cgwbs. It won't break the 696 * bandwidth restrictions, as writeback of inode metadata is not 697 * accounted for. 698 */ 699 restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr); 700 if (!restart) 701 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr); 702 spin_unlock(&wb->list_lock); 703 704 /* no attached inodes? bail out */ 705 if (nr == 0) { 706 atomic_dec(&isw_nr_in_flight); 707 wb_put(isw->new_wb); 708 kfree(isw); 709 return restart; 710 } 711 712 /* 713 * In addition to synchronizing among switchers, I_WB_SWITCH tells 714 * the RCU protected stat update paths to grab the i_page 715 * lock so that stat transfer can synchronize against them. 716 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 717 */ 718 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 719 queue_rcu_work(isw_wq, &isw->work); 720 721 return restart; 722 } 723 724 /** 725 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 726 * @wbc: writeback_control of interest 727 * @inode: target inode 728 * 729 * @inode is locked and about to be written back under the control of @wbc. 730 * Record @inode's writeback context into @wbc and unlock the i_lock. On 731 * writeback completion, wbc_detach_inode() should be called. This is used 732 * to track the cgroup writeback context. 733 */ 734 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 735 struct inode *inode) 736 { 737 if (!inode_cgwb_enabled(inode)) { 738 spin_unlock(&inode->i_lock); 739 return; 740 } 741 742 wbc->wb = inode_to_wb(inode); 743 wbc->inode = inode; 744 745 wbc->wb_id = wbc->wb->memcg_css->id; 746 wbc->wb_lcand_id = inode->i_wb_frn_winner; 747 wbc->wb_tcand_id = 0; 748 wbc->wb_bytes = 0; 749 wbc->wb_lcand_bytes = 0; 750 wbc->wb_tcand_bytes = 0; 751 752 wb_get(wbc->wb); 753 spin_unlock(&inode->i_lock); 754 755 /* 756 * A dying wb indicates that either the blkcg associated with the 757 * memcg changed or the associated memcg is dying. In the first 758 * case, a replacement wb should already be available and we should 759 * refresh the wb immediately. In the second case, trying to 760 * refresh will keep failing. 761 */ 762 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 763 inode_switch_wbs(inode, wbc->wb_id); 764 } 765 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 766 767 /** 768 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 769 * @wbc: writeback_control of the just finished writeback 770 * 771 * To be called after a writeback attempt of an inode finishes and undoes 772 * wbc_attach_and_unlock_inode(). Can be called under any context. 773 * 774 * As concurrent write sharing of an inode is expected to be very rare and 775 * memcg only tracks page ownership on first-use basis severely confining 776 * the usefulness of such sharing, cgroup writeback tracks ownership 777 * per-inode. While the support for concurrent write sharing of an inode 778 * is deemed unnecessary, an inode being written to by different cgroups at 779 * different points in time is a lot more common, and, more importantly, 780 * charging only by first-use can too readily lead to grossly incorrect 781 * behaviors (single foreign page can lead to gigabytes of writeback to be 782 * incorrectly attributed). 783 * 784 * To resolve this issue, cgroup writeback detects the majority dirtier of 785 * an inode and transfers the ownership to it. To avoid unnecessary 786 * oscillation, the detection mechanism keeps track of history and gives 787 * out the switch verdict only if the foreign usage pattern is stable over 788 * a certain amount of time and/or writeback attempts. 789 * 790 * On each writeback attempt, @wbc tries to detect the majority writer 791 * using Boyer-Moore majority vote algorithm. In addition to the byte 792 * count from the majority voting, it also counts the bytes written for the 793 * current wb and the last round's winner wb (max of last round's current 794 * wb, the winner from two rounds ago, and the last round's majority 795 * candidate). Keeping track of the historical winner helps the algorithm 796 * to semi-reliably detect the most active writer even when it's not the 797 * absolute majority. 798 * 799 * Once the winner of the round is determined, whether the winner is 800 * foreign or not and how much IO time the round consumed is recorded in 801 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 802 * over a certain threshold, the switch verdict is given. 803 */ 804 void wbc_detach_inode(struct writeback_control *wbc) 805 { 806 struct bdi_writeback *wb = wbc->wb; 807 struct inode *inode = wbc->inode; 808 unsigned long avg_time, max_bytes, max_time; 809 u16 history; 810 int max_id; 811 812 if (!wb) 813 return; 814 815 history = inode->i_wb_frn_history; 816 avg_time = inode->i_wb_frn_avg_time; 817 818 /* pick the winner of this round */ 819 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 820 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 821 max_id = wbc->wb_id; 822 max_bytes = wbc->wb_bytes; 823 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 824 max_id = wbc->wb_lcand_id; 825 max_bytes = wbc->wb_lcand_bytes; 826 } else { 827 max_id = wbc->wb_tcand_id; 828 max_bytes = wbc->wb_tcand_bytes; 829 } 830 831 /* 832 * Calculate the amount of IO time the winner consumed and fold it 833 * into the running average kept per inode. If the consumed IO 834 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 835 * deciding whether to switch or not. This is to prevent one-off 836 * small dirtiers from skewing the verdict. 837 */ 838 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 839 wb->avg_write_bandwidth); 840 if (avg_time) 841 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 842 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 843 else 844 avg_time = max_time; /* immediate catch up on first run */ 845 846 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 847 int slots; 848 849 /* 850 * The switch verdict is reached if foreign wb's consume 851 * more than a certain proportion of IO time in a 852 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 853 * history mask where each bit represents one sixteenth of 854 * the period. Determine the number of slots to shift into 855 * history from @max_time. 856 */ 857 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 858 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 859 history <<= slots; 860 if (wbc->wb_id != max_id) 861 history |= (1U << slots) - 1; 862 863 if (history) 864 trace_inode_foreign_history(inode, wbc, history); 865 866 /* 867 * Switch if the current wb isn't the consistent winner. 868 * If there are multiple closely competing dirtiers, the 869 * inode may switch across them repeatedly over time, which 870 * is okay. The main goal is avoiding keeping an inode on 871 * the wrong wb for an extended period of time. 872 */ 873 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS) 874 inode_switch_wbs(inode, max_id); 875 } 876 877 /* 878 * Multiple instances of this function may race to update the 879 * following fields but we don't mind occassional inaccuracies. 880 */ 881 inode->i_wb_frn_winner = max_id; 882 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 883 inode->i_wb_frn_history = history; 884 885 wb_put(wbc->wb); 886 wbc->wb = NULL; 887 } 888 EXPORT_SYMBOL_GPL(wbc_detach_inode); 889 890 /** 891 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 892 * @wbc: writeback_control of the writeback in progress 893 * @page: page being written out 894 * @bytes: number of bytes being written out 895 * 896 * @bytes from @page are about to written out during the writeback 897 * controlled by @wbc. Keep the book for foreign inode detection. See 898 * wbc_detach_inode(). 899 */ 900 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 901 size_t bytes) 902 { 903 struct folio *folio; 904 struct cgroup_subsys_state *css; 905 int id; 906 907 /* 908 * pageout() path doesn't attach @wbc to the inode being written 909 * out. This is intentional as we don't want the function to block 910 * behind a slow cgroup. Ultimately, we want pageout() to kick off 911 * regular writeback instead of writing things out itself. 912 */ 913 if (!wbc->wb || wbc->no_cgroup_owner) 914 return; 915 916 folio = page_folio(page); 917 css = mem_cgroup_css_from_folio(folio); 918 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 919 if (!(css->flags & CSS_ONLINE)) 920 return; 921 922 id = css->id; 923 924 if (id == wbc->wb_id) { 925 wbc->wb_bytes += bytes; 926 return; 927 } 928 929 if (id == wbc->wb_lcand_id) 930 wbc->wb_lcand_bytes += bytes; 931 932 /* Boyer-Moore majority vote algorithm */ 933 if (!wbc->wb_tcand_bytes) 934 wbc->wb_tcand_id = id; 935 if (id == wbc->wb_tcand_id) 936 wbc->wb_tcand_bytes += bytes; 937 else 938 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 939 } 940 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 941 942 /** 943 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 944 * @wb: target bdi_writeback to split @nr_pages to 945 * @nr_pages: number of pages to write for the whole bdi 946 * 947 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 948 * relation to the total write bandwidth of all wb's w/ dirty inodes on 949 * @wb->bdi. 950 */ 951 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 952 { 953 unsigned long this_bw = wb->avg_write_bandwidth; 954 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 955 956 if (nr_pages == LONG_MAX) 957 return LONG_MAX; 958 959 /* 960 * This may be called on clean wb's and proportional distribution 961 * may not make sense, just use the original @nr_pages in those 962 * cases. In general, we wanna err on the side of writing more. 963 */ 964 if (!tot_bw || this_bw >= tot_bw) 965 return nr_pages; 966 else 967 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 968 } 969 970 /** 971 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 972 * @bdi: target backing_dev_info 973 * @base_work: wb_writeback_work to issue 974 * @skip_if_busy: skip wb's which already have writeback in progress 975 * 976 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 977 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 978 * distributed to the busy wbs according to each wb's proportion in the 979 * total active write bandwidth of @bdi. 980 */ 981 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 982 struct wb_writeback_work *base_work, 983 bool skip_if_busy) 984 { 985 struct bdi_writeback *last_wb = NULL; 986 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 987 struct bdi_writeback, bdi_node); 988 989 might_sleep(); 990 restart: 991 rcu_read_lock(); 992 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 993 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 994 struct wb_writeback_work fallback_work; 995 struct wb_writeback_work *work; 996 long nr_pages; 997 998 if (last_wb) { 999 wb_put(last_wb); 1000 last_wb = NULL; 1001 } 1002 1003 /* SYNC_ALL writes out I_DIRTY_TIME too */ 1004 if (!wb_has_dirty_io(wb) && 1005 (base_work->sync_mode == WB_SYNC_NONE || 1006 list_empty(&wb->b_dirty_time))) 1007 continue; 1008 if (skip_if_busy && writeback_in_progress(wb)) 1009 continue; 1010 1011 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 1012 1013 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1014 if (work) { 1015 *work = *base_work; 1016 work->nr_pages = nr_pages; 1017 work->auto_free = 1; 1018 wb_queue_work(wb, work); 1019 continue; 1020 } 1021 1022 /* 1023 * If wb_tryget fails, the wb has been shutdown, skip it. 1024 * 1025 * Pin @wb so that it stays on @bdi->wb_list. This allows 1026 * continuing iteration from @wb after dropping and 1027 * regrabbing rcu read lock. 1028 */ 1029 if (!wb_tryget(wb)) 1030 continue; 1031 1032 /* alloc failed, execute synchronously using on-stack fallback */ 1033 work = &fallback_work; 1034 *work = *base_work; 1035 work->nr_pages = nr_pages; 1036 work->auto_free = 0; 1037 work->done = &fallback_work_done; 1038 1039 wb_queue_work(wb, work); 1040 last_wb = wb; 1041 1042 rcu_read_unlock(); 1043 wb_wait_for_completion(&fallback_work_done); 1044 goto restart; 1045 } 1046 rcu_read_unlock(); 1047 1048 if (last_wb) 1049 wb_put(last_wb); 1050 } 1051 1052 /** 1053 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1054 * @bdi_id: target bdi id 1055 * @memcg_id: target memcg css id 1056 * @reason: reason why some writeback work initiated 1057 * @done: target wb_completion 1058 * 1059 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1060 * with the specified parameters. 1061 */ 1062 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, 1063 enum wb_reason reason, struct wb_completion *done) 1064 { 1065 struct backing_dev_info *bdi; 1066 struct cgroup_subsys_state *memcg_css; 1067 struct bdi_writeback *wb; 1068 struct wb_writeback_work *work; 1069 unsigned long dirty; 1070 int ret; 1071 1072 /* lookup bdi and memcg */ 1073 bdi = bdi_get_by_id(bdi_id); 1074 if (!bdi) 1075 return -ENOENT; 1076 1077 rcu_read_lock(); 1078 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1079 if (memcg_css && !css_tryget(memcg_css)) 1080 memcg_css = NULL; 1081 rcu_read_unlock(); 1082 if (!memcg_css) { 1083 ret = -ENOENT; 1084 goto out_bdi_put; 1085 } 1086 1087 /* 1088 * And find the associated wb. If the wb isn't there already 1089 * there's nothing to flush, don't create one. 1090 */ 1091 wb = wb_get_lookup(bdi, memcg_css); 1092 if (!wb) { 1093 ret = -ENOENT; 1094 goto out_css_put; 1095 } 1096 1097 /* 1098 * The caller is attempting to write out most of 1099 * the currently dirty pages. Let's take the current dirty page 1100 * count and inflate it by 25% which should be large enough to 1101 * flush out most dirty pages while avoiding getting livelocked by 1102 * concurrent dirtiers. 1103 * 1104 * BTW the memcg stats are flushed periodically and this is best-effort 1105 * estimation, so some potential error is ok. 1106 */ 1107 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); 1108 dirty = dirty * 10 / 8; 1109 1110 /* issue the writeback work */ 1111 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1112 if (work) { 1113 work->nr_pages = dirty; 1114 work->sync_mode = WB_SYNC_NONE; 1115 work->range_cyclic = 1; 1116 work->reason = reason; 1117 work->done = done; 1118 work->auto_free = 1; 1119 wb_queue_work(wb, work); 1120 ret = 0; 1121 } else { 1122 ret = -ENOMEM; 1123 } 1124 1125 wb_put(wb); 1126 out_css_put: 1127 css_put(memcg_css); 1128 out_bdi_put: 1129 bdi_put(bdi); 1130 return ret; 1131 } 1132 1133 /** 1134 * cgroup_writeback_umount - flush inode wb switches for umount 1135 * 1136 * This function is called when a super_block is about to be destroyed and 1137 * flushes in-flight inode wb switches. An inode wb switch goes through 1138 * RCU and then workqueue, so the two need to be flushed in order to ensure 1139 * that all previously scheduled switches are finished. As wb switches are 1140 * rare occurrences and synchronize_rcu() can take a while, perform 1141 * flushing iff wb switches are in flight. 1142 */ 1143 void cgroup_writeback_umount(void) 1144 { 1145 /* 1146 * SB_ACTIVE should be reliably cleared before checking 1147 * isw_nr_in_flight, see generic_shutdown_super(). 1148 */ 1149 smp_mb(); 1150 1151 if (atomic_read(&isw_nr_in_flight)) { 1152 /* 1153 * Use rcu_barrier() to wait for all pending callbacks to 1154 * ensure that all in-flight wb switches are in the workqueue. 1155 */ 1156 rcu_barrier(); 1157 flush_workqueue(isw_wq); 1158 } 1159 } 1160 1161 static int __init cgroup_writeback_init(void) 1162 { 1163 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1164 if (!isw_wq) 1165 return -ENOMEM; 1166 return 0; 1167 } 1168 fs_initcall(cgroup_writeback_init); 1169 1170 #else /* CONFIG_CGROUP_WRITEBACK */ 1171 1172 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1173 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1174 1175 static void inode_cgwb_move_to_attached(struct inode *inode, 1176 struct bdi_writeback *wb) 1177 { 1178 assert_spin_locked(&wb->list_lock); 1179 assert_spin_locked(&inode->i_lock); 1180 WARN_ON_ONCE(inode->i_state & I_FREEING); 1181 1182 inode->i_state &= ~I_SYNC_QUEUED; 1183 list_del_init(&inode->i_io_list); 1184 wb_io_lists_depopulated(wb); 1185 } 1186 1187 static struct bdi_writeback * 1188 locked_inode_to_wb_and_lock_list(struct inode *inode) 1189 __releases(&inode->i_lock) 1190 __acquires(&wb->list_lock) 1191 { 1192 struct bdi_writeback *wb = inode_to_wb(inode); 1193 1194 spin_unlock(&inode->i_lock); 1195 spin_lock(&wb->list_lock); 1196 return wb; 1197 } 1198 1199 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1200 __acquires(&wb->list_lock) 1201 { 1202 struct bdi_writeback *wb = inode_to_wb(inode); 1203 1204 spin_lock(&wb->list_lock); 1205 return wb; 1206 } 1207 1208 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1209 { 1210 return nr_pages; 1211 } 1212 1213 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1214 struct wb_writeback_work *base_work, 1215 bool skip_if_busy) 1216 { 1217 might_sleep(); 1218 1219 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1220 base_work->auto_free = 0; 1221 wb_queue_work(&bdi->wb, base_work); 1222 } 1223 } 1224 1225 #endif /* CONFIG_CGROUP_WRITEBACK */ 1226 1227 /* 1228 * Add in the number of potentially dirty inodes, because each inode 1229 * write can dirty pagecache in the underlying blockdev. 1230 */ 1231 static unsigned long get_nr_dirty_pages(void) 1232 { 1233 return global_node_page_state(NR_FILE_DIRTY) + 1234 get_nr_dirty_inodes(); 1235 } 1236 1237 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1238 { 1239 if (!wb_has_dirty_io(wb)) 1240 return; 1241 1242 /* 1243 * All callers of this function want to start writeback of all 1244 * dirty pages. Places like vmscan can call this at a very 1245 * high frequency, causing pointless allocations of tons of 1246 * work items and keeping the flusher threads busy retrieving 1247 * that work. Ensure that we only allow one of them pending and 1248 * inflight at the time. 1249 */ 1250 if (test_bit(WB_start_all, &wb->state) || 1251 test_and_set_bit(WB_start_all, &wb->state)) 1252 return; 1253 1254 wb->start_all_reason = reason; 1255 wb_wakeup(wb); 1256 } 1257 1258 /** 1259 * wb_start_background_writeback - start background writeback 1260 * @wb: bdi_writback to write from 1261 * 1262 * Description: 1263 * This makes sure WB_SYNC_NONE background writeback happens. When 1264 * this function returns, it is only guaranteed that for given wb 1265 * some IO is happening if we are over background dirty threshold. 1266 * Caller need not hold sb s_umount semaphore. 1267 */ 1268 void wb_start_background_writeback(struct bdi_writeback *wb) 1269 { 1270 /* 1271 * We just wake up the flusher thread. It will perform background 1272 * writeback as soon as there is no other work to do. 1273 */ 1274 trace_writeback_wake_background(wb); 1275 wb_wakeup(wb); 1276 } 1277 1278 /* 1279 * Remove the inode from the writeback list it is on. 1280 */ 1281 void inode_io_list_del(struct inode *inode) 1282 { 1283 struct bdi_writeback *wb; 1284 1285 wb = inode_to_wb_and_lock_list(inode); 1286 spin_lock(&inode->i_lock); 1287 1288 inode->i_state &= ~I_SYNC_QUEUED; 1289 list_del_init(&inode->i_io_list); 1290 wb_io_lists_depopulated(wb); 1291 1292 spin_unlock(&inode->i_lock); 1293 spin_unlock(&wb->list_lock); 1294 } 1295 EXPORT_SYMBOL(inode_io_list_del); 1296 1297 /* 1298 * mark an inode as under writeback on the sb 1299 */ 1300 void sb_mark_inode_writeback(struct inode *inode) 1301 { 1302 struct super_block *sb = inode->i_sb; 1303 unsigned long flags; 1304 1305 if (list_empty(&inode->i_wb_list)) { 1306 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1307 if (list_empty(&inode->i_wb_list)) { 1308 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1309 trace_sb_mark_inode_writeback(inode); 1310 } 1311 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1312 } 1313 } 1314 1315 /* 1316 * clear an inode as under writeback on the sb 1317 */ 1318 void sb_clear_inode_writeback(struct inode *inode) 1319 { 1320 struct super_block *sb = inode->i_sb; 1321 unsigned long flags; 1322 1323 if (!list_empty(&inode->i_wb_list)) { 1324 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1325 if (!list_empty(&inode->i_wb_list)) { 1326 list_del_init(&inode->i_wb_list); 1327 trace_sb_clear_inode_writeback(inode); 1328 } 1329 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1330 } 1331 } 1332 1333 /* 1334 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1335 * furthest end of its superblock's dirty-inode list. 1336 * 1337 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1338 * already the most-recently-dirtied inode on the b_dirty list. If that is 1339 * the case then the inode must have been redirtied while it was being written 1340 * out and we don't reset its dirtied_when. 1341 */ 1342 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1343 { 1344 assert_spin_locked(&inode->i_lock); 1345 1346 inode->i_state &= ~I_SYNC_QUEUED; 1347 /* 1348 * When the inode is being freed just don't bother with dirty list 1349 * tracking. Flush worker will ignore this inode anyway and it will 1350 * trigger assertions in inode_io_list_move_locked(). 1351 */ 1352 if (inode->i_state & I_FREEING) { 1353 list_del_init(&inode->i_io_list); 1354 wb_io_lists_depopulated(wb); 1355 return; 1356 } 1357 if (!list_empty(&wb->b_dirty)) { 1358 struct inode *tail; 1359 1360 tail = wb_inode(wb->b_dirty.next); 1361 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1362 inode->dirtied_when = jiffies; 1363 } 1364 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1365 } 1366 1367 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1368 { 1369 spin_lock(&inode->i_lock); 1370 redirty_tail_locked(inode, wb); 1371 spin_unlock(&inode->i_lock); 1372 } 1373 1374 /* 1375 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1376 */ 1377 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1378 { 1379 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1380 } 1381 1382 static void inode_sync_complete(struct inode *inode) 1383 { 1384 inode->i_state &= ~I_SYNC; 1385 /* If inode is clean an unused, put it into LRU now... */ 1386 inode_add_lru(inode); 1387 /* Waiters must see I_SYNC cleared before being woken up */ 1388 smp_mb(); 1389 wake_up_bit(&inode->i_state, __I_SYNC); 1390 } 1391 1392 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1393 { 1394 bool ret = time_after(inode->dirtied_when, t); 1395 #ifndef CONFIG_64BIT 1396 /* 1397 * For inodes being constantly redirtied, dirtied_when can get stuck. 1398 * It _appears_ to be in the future, but is actually in distant past. 1399 * This test is necessary to prevent such wrapped-around relative times 1400 * from permanently stopping the whole bdi writeback. 1401 */ 1402 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1403 #endif 1404 return ret; 1405 } 1406 1407 /* 1408 * Move expired (dirtied before dirtied_before) dirty inodes from 1409 * @delaying_queue to @dispatch_queue. 1410 */ 1411 static int move_expired_inodes(struct list_head *delaying_queue, 1412 struct list_head *dispatch_queue, 1413 unsigned long dirtied_before) 1414 { 1415 LIST_HEAD(tmp); 1416 struct list_head *pos, *node; 1417 struct super_block *sb = NULL; 1418 struct inode *inode; 1419 int do_sb_sort = 0; 1420 int moved = 0; 1421 1422 while (!list_empty(delaying_queue)) { 1423 inode = wb_inode(delaying_queue->prev); 1424 if (inode_dirtied_after(inode, dirtied_before)) 1425 break; 1426 spin_lock(&inode->i_lock); 1427 list_move(&inode->i_io_list, &tmp); 1428 moved++; 1429 inode->i_state |= I_SYNC_QUEUED; 1430 spin_unlock(&inode->i_lock); 1431 if (sb_is_blkdev_sb(inode->i_sb)) 1432 continue; 1433 if (sb && sb != inode->i_sb) 1434 do_sb_sort = 1; 1435 sb = inode->i_sb; 1436 } 1437 1438 /* just one sb in list, splice to dispatch_queue and we're done */ 1439 if (!do_sb_sort) { 1440 list_splice(&tmp, dispatch_queue); 1441 goto out; 1442 } 1443 1444 /* 1445 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', 1446 * we don't take inode->i_lock here because it is just a pointless overhead. 1447 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is 1448 * fully under our control. 1449 */ 1450 while (!list_empty(&tmp)) { 1451 sb = wb_inode(tmp.prev)->i_sb; 1452 list_for_each_prev_safe(pos, node, &tmp) { 1453 inode = wb_inode(pos); 1454 if (inode->i_sb == sb) 1455 list_move(&inode->i_io_list, dispatch_queue); 1456 } 1457 } 1458 out: 1459 return moved; 1460 } 1461 1462 /* 1463 * Queue all expired dirty inodes for io, eldest first. 1464 * Before 1465 * newly dirtied b_dirty b_io b_more_io 1466 * =============> gf edc BA 1467 * After 1468 * newly dirtied b_dirty b_io b_more_io 1469 * =============> g fBAedc 1470 * | 1471 * +--> dequeue for IO 1472 */ 1473 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1474 unsigned long dirtied_before) 1475 { 1476 int moved; 1477 unsigned long time_expire_jif = dirtied_before; 1478 1479 assert_spin_locked(&wb->list_lock); 1480 list_splice_init(&wb->b_more_io, &wb->b_io); 1481 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1482 if (!work->for_sync) 1483 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1484 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1485 time_expire_jif); 1486 if (moved) 1487 wb_io_lists_populated(wb); 1488 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1489 } 1490 1491 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1492 { 1493 int ret; 1494 1495 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1496 trace_writeback_write_inode_start(inode, wbc); 1497 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1498 trace_writeback_write_inode(inode, wbc); 1499 return ret; 1500 } 1501 return 0; 1502 } 1503 1504 /* 1505 * Wait for writeback on an inode to complete. Called with i_lock held. 1506 * Caller must make sure inode cannot go away when we drop i_lock. 1507 */ 1508 static void __inode_wait_for_writeback(struct inode *inode) 1509 __releases(inode->i_lock) 1510 __acquires(inode->i_lock) 1511 { 1512 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1513 wait_queue_head_t *wqh; 1514 1515 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1516 while (inode->i_state & I_SYNC) { 1517 spin_unlock(&inode->i_lock); 1518 __wait_on_bit(wqh, &wq, bit_wait, 1519 TASK_UNINTERRUPTIBLE); 1520 spin_lock(&inode->i_lock); 1521 } 1522 } 1523 1524 /* 1525 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1526 */ 1527 void inode_wait_for_writeback(struct inode *inode) 1528 { 1529 spin_lock(&inode->i_lock); 1530 __inode_wait_for_writeback(inode); 1531 spin_unlock(&inode->i_lock); 1532 } 1533 1534 /* 1535 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1536 * held and drops it. It is aimed for callers not holding any inode reference 1537 * so once i_lock is dropped, inode can go away. 1538 */ 1539 static void inode_sleep_on_writeback(struct inode *inode) 1540 __releases(inode->i_lock) 1541 { 1542 DEFINE_WAIT(wait); 1543 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1544 int sleep; 1545 1546 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1547 sleep = inode->i_state & I_SYNC; 1548 spin_unlock(&inode->i_lock); 1549 if (sleep) 1550 schedule(); 1551 finish_wait(wqh, &wait); 1552 } 1553 1554 /* 1555 * Find proper writeback list for the inode depending on its current state and 1556 * possibly also change of its state while we were doing writeback. Here we 1557 * handle things such as livelock prevention or fairness of writeback among 1558 * inodes. This function can be called only by flusher thread - noone else 1559 * processes all inodes in writeback lists and requeueing inodes behind flusher 1560 * thread's back can have unexpected consequences. 1561 */ 1562 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1563 struct writeback_control *wbc, 1564 unsigned long dirtied_before) 1565 { 1566 if (inode->i_state & I_FREEING) 1567 return; 1568 1569 /* 1570 * Sync livelock prevention. Each inode is tagged and synced in one 1571 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1572 * the dirty time to prevent enqueue and sync it again. 1573 */ 1574 if ((inode->i_state & I_DIRTY) && 1575 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1576 inode->dirtied_when = jiffies; 1577 1578 if (wbc->pages_skipped) { 1579 /* 1580 * Writeback is not making progress due to locked buffers. 1581 * Skip this inode for now. Although having skipped pages 1582 * is odd for clean inodes, it can happen for some 1583 * filesystems so handle that gracefully. 1584 */ 1585 if (inode->i_state & I_DIRTY_ALL) 1586 redirty_tail_locked(inode, wb); 1587 else 1588 inode_cgwb_move_to_attached(inode, wb); 1589 return; 1590 } 1591 1592 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1593 /* 1594 * We didn't write back all the pages. nfs_writepages() 1595 * sometimes bales out without doing anything. 1596 */ 1597 if (wbc->nr_to_write <= 0 && 1598 !inode_dirtied_after(inode, dirtied_before)) { 1599 /* Slice used up. Queue for next turn. */ 1600 requeue_io(inode, wb); 1601 } else { 1602 /* 1603 * Writeback blocked by something other than 1604 * congestion. Delay the inode for some time to 1605 * avoid spinning on the CPU (100% iowait) 1606 * retrying writeback of the dirty page/inode 1607 * that cannot be performed immediately. 1608 */ 1609 redirty_tail_locked(inode, wb); 1610 } 1611 } else if (inode->i_state & I_DIRTY) { 1612 /* 1613 * Filesystems can dirty the inode during writeback operations, 1614 * such as delayed allocation during submission or metadata 1615 * updates after data IO completion. 1616 */ 1617 redirty_tail_locked(inode, wb); 1618 } else if (inode->i_state & I_DIRTY_TIME) { 1619 inode->dirtied_when = jiffies; 1620 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1621 inode->i_state &= ~I_SYNC_QUEUED; 1622 } else { 1623 /* The inode is clean. Remove from writeback lists. */ 1624 inode_cgwb_move_to_attached(inode, wb); 1625 } 1626 } 1627 1628 /* 1629 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1630 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1631 * 1632 * This doesn't remove the inode from the writeback list it is on, except 1633 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1634 * expiration. The caller is otherwise responsible for writeback list handling. 1635 * 1636 * The caller is also responsible for setting the I_SYNC flag beforehand and 1637 * calling inode_sync_complete() to clear it afterwards. 1638 */ 1639 static int 1640 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1641 { 1642 struct address_space *mapping = inode->i_mapping; 1643 long nr_to_write = wbc->nr_to_write; 1644 unsigned dirty; 1645 int ret; 1646 1647 WARN_ON(!(inode->i_state & I_SYNC)); 1648 1649 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1650 1651 ret = do_writepages(mapping, wbc); 1652 1653 /* 1654 * Make sure to wait on the data before writing out the metadata. 1655 * This is important for filesystems that modify metadata on data 1656 * I/O completion. We don't do it for sync(2) writeback because it has a 1657 * separate, external IO completion path and ->sync_fs for guaranteeing 1658 * inode metadata is written back correctly. 1659 */ 1660 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1661 int err = filemap_fdatawait(mapping); 1662 if (ret == 0) 1663 ret = err; 1664 } 1665 1666 /* 1667 * If the inode has dirty timestamps and we need to write them, call 1668 * mark_inode_dirty_sync() to notify the filesystem about it and to 1669 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1670 */ 1671 if ((inode->i_state & I_DIRTY_TIME) && 1672 (wbc->sync_mode == WB_SYNC_ALL || 1673 time_after(jiffies, inode->dirtied_time_when + 1674 dirtytime_expire_interval * HZ))) { 1675 trace_writeback_lazytime(inode); 1676 mark_inode_dirty_sync(inode); 1677 } 1678 1679 /* 1680 * Get and clear the dirty flags from i_state. This needs to be done 1681 * after calling writepages because some filesystems may redirty the 1682 * inode during writepages due to delalloc. It also needs to be done 1683 * after handling timestamp expiration, as that may dirty the inode too. 1684 */ 1685 spin_lock(&inode->i_lock); 1686 dirty = inode->i_state & I_DIRTY; 1687 inode->i_state &= ~dirty; 1688 1689 /* 1690 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1691 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1692 * either they see the I_DIRTY bits cleared or we see the dirtied 1693 * inode. 1694 * 1695 * I_DIRTY_PAGES is always cleared together above even if @mapping 1696 * still has dirty pages. The flag is reinstated after smp_mb() if 1697 * necessary. This guarantees that either __mark_inode_dirty() 1698 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1699 */ 1700 smp_mb(); 1701 1702 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1703 inode->i_state |= I_DIRTY_PAGES; 1704 else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) { 1705 if (!(inode->i_state & I_DIRTY_PAGES)) { 1706 inode->i_state &= ~I_PINNING_NETFS_WB; 1707 wbc->unpinned_netfs_wb = true; 1708 dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */ 1709 } 1710 } 1711 1712 spin_unlock(&inode->i_lock); 1713 1714 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1715 if (dirty & ~I_DIRTY_PAGES) { 1716 int err = write_inode(inode, wbc); 1717 if (ret == 0) 1718 ret = err; 1719 } 1720 wbc->unpinned_netfs_wb = false; 1721 trace_writeback_single_inode(inode, wbc, nr_to_write); 1722 return ret; 1723 } 1724 1725 /* 1726 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1727 * the regular batched writeback done by the flusher threads in 1728 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1729 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1730 * 1731 * To prevent the inode from going away, either the caller must have a reference 1732 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1733 */ 1734 static int writeback_single_inode(struct inode *inode, 1735 struct writeback_control *wbc) 1736 { 1737 struct bdi_writeback *wb; 1738 int ret = 0; 1739 1740 spin_lock(&inode->i_lock); 1741 if (!atomic_read(&inode->i_count)) 1742 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1743 else 1744 WARN_ON(inode->i_state & I_WILL_FREE); 1745 1746 if (inode->i_state & I_SYNC) { 1747 /* 1748 * Writeback is already running on the inode. For WB_SYNC_NONE, 1749 * that's enough and we can just return. For WB_SYNC_ALL, we 1750 * must wait for the existing writeback to complete, then do 1751 * writeback again if there's anything left. 1752 */ 1753 if (wbc->sync_mode != WB_SYNC_ALL) 1754 goto out; 1755 __inode_wait_for_writeback(inode); 1756 } 1757 WARN_ON(inode->i_state & I_SYNC); 1758 /* 1759 * If the inode is already fully clean, then there's nothing to do. 1760 * 1761 * For data-integrity syncs we also need to check whether any pages are 1762 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1763 * there are any such pages, we'll need to wait for them. 1764 */ 1765 if (!(inode->i_state & I_DIRTY_ALL) && 1766 (wbc->sync_mode != WB_SYNC_ALL || 1767 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1768 goto out; 1769 inode->i_state |= I_SYNC; 1770 wbc_attach_and_unlock_inode(wbc, inode); 1771 1772 ret = __writeback_single_inode(inode, wbc); 1773 1774 wbc_detach_inode(wbc); 1775 1776 wb = inode_to_wb_and_lock_list(inode); 1777 spin_lock(&inode->i_lock); 1778 /* 1779 * If the inode is freeing, its i_io_list shoudn't be updated 1780 * as it can be finally deleted at this moment. 1781 */ 1782 if (!(inode->i_state & I_FREEING)) { 1783 /* 1784 * If the inode is now fully clean, then it can be safely 1785 * removed from its writeback list (if any). Otherwise the 1786 * flusher threads are responsible for the writeback lists. 1787 */ 1788 if (!(inode->i_state & I_DIRTY_ALL)) 1789 inode_cgwb_move_to_attached(inode, wb); 1790 else if (!(inode->i_state & I_SYNC_QUEUED)) { 1791 if ((inode->i_state & I_DIRTY)) 1792 redirty_tail_locked(inode, wb); 1793 else if (inode->i_state & I_DIRTY_TIME) { 1794 inode->dirtied_when = jiffies; 1795 inode_io_list_move_locked(inode, 1796 wb, 1797 &wb->b_dirty_time); 1798 } 1799 } 1800 } 1801 1802 spin_unlock(&wb->list_lock); 1803 inode_sync_complete(inode); 1804 out: 1805 spin_unlock(&inode->i_lock); 1806 return ret; 1807 } 1808 1809 static long writeback_chunk_size(struct bdi_writeback *wb, 1810 struct wb_writeback_work *work) 1811 { 1812 long pages; 1813 1814 /* 1815 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1816 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1817 * here avoids calling into writeback_inodes_wb() more than once. 1818 * 1819 * The intended call sequence for WB_SYNC_ALL writeback is: 1820 * 1821 * wb_writeback() 1822 * writeback_sb_inodes() <== called only once 1823 * write_cache_pages() <== called once for each inode 1824 * (quickly) tag currently dirty pages 1825 * (maybe slowly) sync all tagged pages 1826 */ 1827 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1828 pages = LONG_MAX; 1829 else { 1830 pages = min(wb->avg_write_bandwidth / 2, 1831 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1832 pages = min(pages, work->nr_pages); 1833 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1834 MIN_WRITEBACK_PAGES); 1835 } 1836 1837 return pages; 1838 } 1839 1840 /* 1841 * Write a portion of b_io inodes which belong to @sb. 1842 * 1843 * Return the number of pages and/or inodes written. 1844 * 1845 * NOTE! This is called with wb->list_lock held, and will 1846 * unlock and relock that for each inode it ends up doing 1847 * IO for. 1848 */ 1849 static long writeback_sb_inodes(struct super_block *sb, 1850 struct bdi_writeback *wb, 1851 struct wb_writeback_work *work) 1852 { 1853 struct writeback_control wbc = { 1854 .sync_mode = work->sync_mode, 1855 .tagged_writepages = work->tagged_writepages, 1856 .for_kupdate = work->for_kupdate, 1857 .for_background = work->for_background, 1858 .for_sync = work->for_sync, 1859 .range_cyclic = work->range_cyclic, 1860 .range_start = 0, 1861 .range_end = LLONG_MAX, 1862 }; 1863 unsigned long start_time = jiffies; 1864 long write_chunk; 1865 long total_wrote = 0; /* count both pages and inodes */ 1866 unsigned long dirtied_before = jiffies; 1867 1868 if (work->for_kupdate) 1869 dirtied_before = jiffies - 1870 msecs_to_jiffies(dirty_expire_interval * 10); 1871 1872 while (!list_empty(&wb->b_io)) { 1873 struct inode *inode = wb_inode(wb->b_io.prev); 1874 struct bdi_writeback *tmp_wb; 1875 long wrote; 1876 1877 if (inode->i_sb != sb) { 1878 if (work->sb) { 1879 /* 1880 * We only want to write back data for this 1881 * superblock, move all inodes not belonging 1882 * to it back onto the dirty list. 1883 */ 1884 redirty_tail(inode, wb); 1885 continue; 1886 } 1887 1888 /* 1889 * The inode belongs to a different superblock. 1890 * Bounce back to the caller to unpin this and 1891 * pin the next superblock. 1892 */ 1893 break; 1894 } 1895 1896 /* 1897 * Don't bother with new inodes or inodes being freed, first 1898 * kind does not need periodic writeout yet, and for the latter 1899 * kind writeout is handled by the freer. 1900 */ 1901 spin_lock(&inode->i_lock); 1902 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1903 redirty_tail_locked(inode, wb); 1904 spin_unlock(&inode->i_lock); 1905 continue; 1906 } 1907 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1908 /* 1909 * If this inode is locked for writeback and we are not 1910 * doing writeback-for-data-integrity, move it to 1911 * b_more_io so that writeback can proceed with the 1912 * other inodes on s_io. 1913 * 1914 * We'll have another go at writing back this inode 1915 * when we completed a full scan of b_io. 1916 */ 1917 requeue_io(inode, wb); 1918 spin_unlock(&inode->i_lock); 1919 trace_writeback_sb_inodes_requeue(inode); 1920 continue; 1921 } 1922 spin_unlock(&wb->list_lock); 1923 1924 /* 1925 * We already requeued the inode if it had I_SYNC set and we 1926 * are doing WB_SYNC_NONE writeback. So this catches only the 1927 * WB_SYNC_ALL case. 1928 */ 1929 if (inode->i_state & I_SYNC) { 1930 /* Wait for I_SYNC. This function drops i_lock... */ 1931 inode_sleep_on_writeback(inode); 1932 /* Inode may be gone, start again */ 1933 spin_lock(&wb->list_lock); 1934 continue; 1935 } 1936 inode->i_state |= I_SYNC; 1937 wbc_attach_and_unlock_inode(&wbc, inode); 1938 1939 write_chunk = writeback_chunk_size(wb, work); 1940 wbc.nr_to_write = write_chunk; 1941 wbc.pages_skipped = 0; 1942 1943 /* 1944 * We use I_SYNC to pin the inode in memory. While it is set 1945 * evict_inode() will wait so the inode cannot be freed. 1946 */ 1947 __writeback_single_inode(inode, &wbc); 1948 1949 wbc_detach_inode(&wbc); 1950 work->nr_pages -= write_chunk - wbc.nr_to_write; 1951 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; 1952 wrote = wrote < 0 ? 0 : wrote; 1953 total_wrote += wrote; 1954 1955 if (need_resched()) { 1956 /* 1957 * We're trying to balance between building up a nice 1958 * long list of IOs to improve our merge rate, and 1959 * getting those IOs out quickly for anyone throttling 1960 * in balance_dirty_pages(). cond_resched() doesn't 1961 * unplug, so get our IOs out the door before we 1962 * give up the CPU. 1963 */ 1964 blk_flush_plug(current->plug, false); 1965 cond_resched(); 1966 } 1967 1968 /* 1969 * Requeue @inode if still dirty. Be careful as @inode may 1970 * have been switched to another wb in the meantime. 1971 */ 1972 tmp_wb = inode_to_wb_and_lock_list(inode); 1973 spin_lock(&inode->i_lock); 1974 if (!(inode->i_state & I_DIRTY_ALL)) 1975 total_wrote++; 1976 requeue_inode(inode, tmp_wb, &wbc, dirtied_before); 1977 inode_sync_complete(inode); 1978 spin_unlock(&inode->i_lock); 1979 1980 if (unlikely(tmp_wb != wb)) { 1981 spin_unlock(&tmp_wb->list_lock); 1982 spin_lock(&wb->list_lock); 1983 } 1984 1985 /* 1986 * bail out to wb_writeback() often enough to check 1987 * background threshold and other termination conditions. 1988 */ 1989 if (total_wrote) { 1990 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1991 break; 1992 if (work->nr_pages <= 0) 1993 break; 1994 } 1995 } 1996 return total_wrote; 1997 } 1998 1999 static long __writeback_inodes_wb(struct bdi_writeback *wb, 2000 struct wb_writeback_work *work) 2001 { 2002 unsigned long start_time = jiffies; 2003 long wrote = 0; 2004 2005 while (!list_empty(&wb->b_io)) { 2006 struct inode *inode = wb_inode(wb->b_io.prev); 2007 struct super_block *sb = inode->i_sb; 2008 2009 if (!super_trylock_shared(sb)) { 2010 /* 2011 * super_trylock_shared() may fail consistently due to 2012 * s_umount being grabbed by someone else. Don't use 2013 * requeue_io() to avoid busy retrying the inode/sb. 2014 */ 2015 redirty_tail(inode, wb); 2016 continue; 2017 } 2018 wrote += writeback_sb_inodes(sb, wb, work); 2019 up_read(&sb->s_umount); 2020 2021 /* refer to the same tests at the end of writeback_sb_inodes */ 2022 if (wrote) { 2023 if (time_is_before_jiffies(start_time + HZ / 10UL)) 2024 break; 2025 if (work->nr_pages <= 0) 2026 break; 2027 } 2028 } 2029 /* Leave any unwritten inodes on b_io */ 2030 return wrote; 2031 } 2032 2033 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 2034 enum wb_reason reason) 2035 { 2036 struct wb_writeback_work work = { 2037 .nr_pages = nr_pages, 2038 .sync_mode = WB_SYNC_NONE, 2039 .range_cyclic = 1, 2040 .reason = reason, 2041 }; 2042 struct blk_plug plug; 2043 2044 blk_start_plug(&plug); 2045 spin_lock(&wb->list_lock); 2046 if (list_empty(&wb->b_io)) 2047 queue_io(wb, &work, jiffies); 2048 __writeback_inodes_wb(wb, &work); 2049 spin_unlock(&wb->list_lock); 2050 blk_finish_plug(&plug); 2051 2052 return nr_pages - work.nr_pages; 2053 } 2054 2055 /* 2056 * Explicit flushing or periodic writeback of "old" data. 2057 * 2058 * Define "old": the first time one of an inode's pages is dirtied, we mark the 2059 * dirtying-time in the inode's address_space. So this periodic writeback code 2060 * just walks the superblock inode list, writing back any inodes which are 2061 * older than a specific point in time. 2062 * 2063 * Try to run once per dirty_writeback_interval. But if a writeback event 2064 * takes longer than a dirty_writeback_interval interval, then leave a 2065 * one-second gap. 2066 * 2067 * dirtied_before takes precedence over nr_to_write. So we'll only write back 2068 * all dirty pages if they are all attached to "old" mappings. 2069 */ 2070 static long wb_writeback(struct bdi_writeback *wb, 2071 struct wb_writeback_work *work) 2072 { 2073 long nr_pages = work->nr_pages; 2074 unsigned long dirtied_before = jiffies; 2075 struct inode *inode; 2076 long progress; 2077 struct blk_plug plug; 2078 bool queued = false; 2079 2080 blk_start_plug(&plug); 2081 for (;;) { 2082 /* 2083 * Stop writeback when nr_pages has been consumed 2084 */ 2085 if (work->nr_pages <= 0) 2086 break; 2087 2088 /* 2089 * Background writeout and kupdate-style writeback may 2090 * run forever. Stop them if there is other work to do 2091 * so that e.g. sync can proceed. They'll be restarted 2092 * after the other works are all done. 2093 */ 2094 if ((work->for_background || work->for_kupdate) && 2095 !list_empty(&wb->work_list)) 2096 break; 2097 2098 /* 2099 * For background writeout, stop when we are below the 2100 * background dirty threshold 2101 */ 2102 if (work->for_background && !wb_over_bg_thresh(wb)) 2103 break; 2104 2105 2106 spin_lock(&wb->list_lock); 2107 2108 trace_writeback_start(wb, work); 2109 if (list_empty(&wb->b_io)) { 2110 /* 2111 * Kupdate and background works are special and we want 2112 * to include all inodes that need writing. Livelock 2113 * avoidance is handled by these works yielding to any 2114 * other work so we are safe. 2115 */ 2116 if (work->for_kupdate) { 2117 dirtied_before = jiffies - 2118 msecs_to_jiffies(dirty_expire_interval * 2119 10); 2120 } else if (work->for_background) 2121 dirtied_before = jiffies; 2122 2123 queue_io(wb, work, dirtied_before); 2124 queued = true; 2125 } 2126 if (work->sb) 2127 progress = writeback_sb_inodes(work->sb, wb, work); 2128 else 2129 progress = __writeback_inodes_wb(wb, work); 2130 trace_writeback_written(wb, work); 2131 2132 /* 2133 * Did we write something? Try for more 2134 * 2135 * Dirty inodes are moved to b_io for writeback in batches. 2136 * The completion of the current batch does not necessarily 2137 * mean the overall work is done. So we keep looping as long 2138 * as made some progress on cleaning pages or inodes. 2139 */ 2140 if (progress || !queued) { 2141 spin_unlock(&wb->list_lock); 2142 continue; 2143 } 2144 2145 /* 2146 * No more inodes for IO, bail 2147 */ 2148 if (list_empty(&wb->b_more_io)) { 2149 spin_unlock(&wb->list_lock); 2150 break; 2151 } 2152 2153 /* 2154 * Nothing written. Wait for some inode to 2155 * become available for writeback. Otherwise 2156 * we'll just busyloop. 2157 */ 2158 trace_writeback_wait(wb, work); 2159 inode = wb_inode(wb->b_more_io.prev); 2160 spin_lock(&inode->i_lock); 2161 spin_unlock(&wb->list_lock); 2162 /* This function drops i_lock... */ 2163 inode_sleep_on_writeback(inode); 2164 } 2165 blk_finish_plug(&plug); 2166 2167 return nr_pages - work->nr_pages; 2168 } 2169 2170 /* 2171 * Return the next wb_writeback_work struct that hasn't been processed yet. 2172 */ 2173 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2174 { 2175 struct wb_writeback_work *work = NULL; 2176 2177 spin_lock_irq(&wb->work_lock); 2178 if (!list_empty(&wb->work_list)) { 2179 work = list_entry(wb->work_list.next, 2180 struct wb_writeback_work, list); 2181 list_del_init(&work->list); 2182 } 2183 spin_unlock_irq(&wb->work_lock); 2184 return work; 2185 } 2186 2187 static long wb_check_background_flush(struct bdi_writeback *wb) 2188 { 2189 if (wb_over_bg_thresh(wb)) { 2190 2191 struct wb_writeback_work work = { 2192 .nr_pages = LONG_MAX, 2193 .sync_mode = WB_SYNC_NONE, 2194 .for_background = 1, 2195 .range_cyclic = 1, 2196 .reason = WB_REASON_BACKGROUND, 2197 }; 2198 2199 return wb_writeback(wb, &work); 2200 } 2201 2202 return 0; 2203 } 2204 2205 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2206 { 2207 unsigned long expired; 2208 long nr_pages; 2209 2210 /* 2211 * When set to zero, disable periodic writeback 2212 */ 2213 if (!dirty_writeback_interval) 2214 return 0; 2215 2216 expired = wb->last_old_flush + 2217 msecs_to_jiffies(dirty_writeback_interval * 10); 2218 if (time_before(jiffies, expired)) 2219 return 0; 2220 2221 wb->last_old_flush = jiffies; 2222 nr_pages = get_nr_dirty_pages(); 2223 2224 if (nr_pages) { 2225 struct wb_writeback_work work = { 2226 .nr_pages = nr_pages, 2227 .sync_mode = WB_SYNC_NONE, 2228 .for_kupdate = 1, 2229 .range_cyclic = 1, 2230 .reason = WB_REASON_PERIODIC, 2231 }; 2232 2233 return wb_writeback(wb, &work); 2234 } 2235 2236 return 0; 2237 } 2238 2239 static long wb_check_start_all(struct bdi_writeback *wb) 2240 { 2241 long nr_pages; 2242 2243 if (!test_bit(WB_start_all, &wb->state)) 2244 return 0; 2245 2246 nr_pages = get_nr_dirty_pages(); 2247 if (nr_pages) { 2248 struct wb_writeback_work work = { 2249 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2250 .sync_mode = WB_SYNC_NONE, 2251 .range_cyclic = 1, 2252 .reason = wb->start_all_reason, 2253 }; 2254 2255 nr_pages = wb_writeback(wb, &work); 2256 } 2257 2258 clear_bit(WB_start_all, &wb->state); 2259 return nr_pages; 2260 } 2261 2262 2263 /* 2264 * Retrieve work items and do the writeback they describe 2265 */ 2266 static long wb_do_writeback(struct bdi_writeback *wb) 2267 { 2268 struct wb_writeback_work *work; 2269 long wrote = 0; 2270 2271 set_bit(WB_writeback_running, &wb->state); 2272 while ((work = get_next_work_item(wb)) != NULL) { 2273 trace_writeback_exec(wb, work); 2274 wrote += wb_writeback(wb, work); 2275 finish_writeback_work(work); 2276 } 2277 2278 /* 2279 * Check for a flush-everything request 2280 */ 2281 wrote += wb_check_start_all(wb); 2282 2283 /* 2284 * Check for periodic writeback, kupdated() style 2285 */ 2286 wrote += wb_check_old_data_flush(wb); 2287 wrote += wb_check_background_flush(wb); 2288 clear_bit(WB_writeback_running, &wb->state); 2289 2290 return wrote; 2291 } 2292 2293 /* 2294 * Handle writeback of dirty data for the device backed by this bdi. Also 2295 * reschedules periodically and does kupdated style flushing. 2296 */ 2297 void wb_workfn(struct work_struct *work) 2298 { 2299 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2300 struct bdi_writeback, dwork); 2301 long pages_written; 2302 2303 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2304 2305 if (likely(!current_is_workqueue_rescuer() || 2306 !test_bit(WB_registered, &wb->state))) { 2307 /* 2308 * The normal path. Keep writing back @wb until its 2309 * work_list is empty. Note that this path is also taken 2310 * if @wb is shutting down even when we're running off the 2311 * rescuer as work_list needs to be drained. 2312 */ 2313 do { 2314 pages_written = wb_do_writeback(wb); 2315 trace_writeback_pages_written(pages_written); 2316 } while (!list_empty(&wb->work_list)); 2317 } else { 2318 /* 2319 * bdi_wq can't get enough workers and we're running off 2320 * the emergency worker. Don't hog it. Hopefully, 1024 is 2321 * enough for efficient IO. 2322 */ 2323 pages_written = writeback_inodes_wb(wb, 1024, 2324 WB_REASON_FORKER_THREAD); 2325 trace_writeback_pages_written(pages_written); 2326 } 2327 2328 if (!list_empty(&wb->work_list)) 2329 wb_wakeup(wb); 2330 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2331 wb_wakeup_delayed(wb); 2332 } 2333 2334 /* 2335 * Start writeback of all dirty pages on this bdi. 2336 */ 2337 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2338 enum wb_reason reason) 2339 { 2340 struct bdi_writeback *wb; 2341 2342 if (!bdi_has_dirty_io(bdi)) 2343 return; 2344 2345 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2346 wb_start_writeback(wb, reason); 2347 } 2348 2349 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2350 enum wb_reason reason) 2351 { 2352 rcu_read_lock(); 2353 __wakeup_flusher_threads_bdi(bdi, reason); 2354 rcu_read_unlock(); 2355 } 2356 2357 /* 2358 * Wakeup the flusher threads to start writeback of all currently dirty pages 2359 */ 2360 void wakeup_flusher_threads(enum wb_reason reason) 2361 { 2362 struct backing_dev_info *bdi; 2363 2364 /* 2365 * If we are expecting writeback progress we must submit plugged IO. 2366 */ 2367 blk_flush_plug(current->plug, true); 2368 2369 rcu_read_lock(); 2370 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2371 __wakeup_flusher_threads_bdi(bdi, reason); 2372 rcu_read_unlock(); 2373 } 2374 2375 /* 2376 * Wake up bdi's periodically to make sure dirtytime inodes gets 2377 * written back periodically. We deliberately do *not* check the 2378 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2379 * kernel to be constantly waking up once there are any dirtytime 2380 * inodes on the system. So instead we define a separate delayed work 2381 * function which gets called much more rarely. (By default, only 2382 * once every 12 hours.) 2383 * 2384 * If there is any other write activity going on in the file system, 2385 * this function won't be necessary. But if the only thing that has 2386 * happened on the file system is a dirtytime inode caused by an atime 2387 * update, we need this infrastructure below to make sure that inode 2388 * eventually gets pushed out to disk. 2389 */ 2390 static void wakeup_dirtytime_writeback(struct work_struct *w); 2391 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2392 2393 static void wakeup_dirtytime_writeback(struct work_struct *w) 2394 { 2395 struct backing_dev_info *bdi; 2396 2397 rcu_read_lock(); 2398 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2399 struct bdi_writeback *wb; 2400 2401 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2402 if (!list_empty(&wb->b_dirty_time)) 2403 wb_wakeup(wb); 2404 } 2405 rcu_read_unlock(); 2406 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2407 } 2408 2409 static int __init start_dirtytime_writeback(void) 2410 { 2411 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2412 return 0; 2413 } 2414 __initcall(start_dirtytime_writeback); 2415 2416 int dirtytime_interval_handler(const struct ctl_table *table, int write, 2417 void *buffer, size_t *lenp, loff_t *ppos) 2418 { 2419 int ret; 2420 2421 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2422 if (ret == 0 && write) 2423 mod_delayed_work(system_wq, &dirtytime_work, 0); 2424 return ret; 2425 } 2426 2427 /** 2428 * __mark_inode_dirty - internal function to mark an inode dirty 2429 * 2430 * @inode: inode to mark 2431 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2432 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2433 * with I_DIRTY_PAGES. 2434 * 2435 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2436 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2437 * 2438 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2439 * instead of calling this directly. 2440 * 2441 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2442 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2443 * even if they are later hashed, as they will have been marked dirty already. 2444 * 2445 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2446 * 2447 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2448 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2449 * the kernel-internal blockdev inode represents the dirtying time of the 2450 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2451 * page->mapping->host, so the page-dirtying time is recorded in the internal 2452 * blockdev inode. 2453 */ 2454 void __mark_inode_dirty(struct inode *inode, int flags) 2455 { 2456 struct super_block *sb = inode->i_sb; 2457 int dirtytime = 0; 2458 struct bdi_writeback *wb = NULL; 2459 2460 trace_writeback_mark_inode_dirty(inode, flags); 2461 2462 if (flags & I_DIRTY_INODE) { 2463 /* 2464 * Inode timestamp update will piggback on this dirtying. 2465 * We tell ->dirty_inode callback that timestamps need to 2466 * be updated by setting I_DIRTY_TIME in flags. 2467 */ 2468 if (inode->i_state & I_DIRTY_TIME) { 2469 spin_lock(&inode->i_lock); 2470 if (inode->i_state & I_DIRTY_TIME) { 2471 inode->i_state &= ~I_DIRTY_TIME; 2472 flags |= I_DIRTY_TIME; 2473 } 2474 spin_unlock(&inode->i_lock); 2475 } 2476 2477 /* 2478 * Notify the filesystem about the inode being dirtied, so that 2479 * (if needed) it can update on-disk fields and journal the 2480 * inode. This is only needed when the inode itself is being 2481 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2482 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2483 */ 2484 trace_writeback_dirty_inode_start(inode, flags); 2485 if (sb->s_op->dirty_inode) 2486 sb->s_op->dirty_inode(inode, 2487 flags & (I_DIRTY_INODE | I_DIRTY_TIME)); 2488 trace_writeback_dirty_inode(inode, flags); 2489 2490 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2491 flags &= ~I_DIRTY_TIME; 2492 } else { 2493 /* 2494 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2495 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2496 * in one call to __mark_inode_dirty().) 2497 */ 2498 dirtytime = flags & I_DIRTY_TIME; 2499 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2500 } 2501 2502 /* 2503 * Paired with smp_mb() in __writeback_single_inode() for the 2504 * following lockless i_state test. See there for details. 2505 */ 2506 smp_mb(); 2507 2508 if ((inode->i_state & flags) == flags) 2509 return; 2510 2511 spin_lock(&inode->i_lock); 2512 if ((inode->i_state & flags) != flags) { 2513 const int was_dirty = inode->i_state & I_DIRTY; 2514 2515 inode_attach_wb(inode, NULL); 2516 2517 inode->i_state |= flags; 2518 2519 /* 2520 * Grab inode's wb early because it requires dropping i_lock and we 2521 * need to make sure following checks happen atomically with dirty 2522 * list handling so that we don't move inodes under flush worker's 2523 * hands. 2524 */ 2525 if (!was_dirty) { 2526 wb = locked_inode_to_wb_and_lock_list(inode); 2527 spin_lock(&inode->i_lock); 2528 } 2529 2530 /* 2531 * If the inode is queued for writeback by flush worker, just 2532 * update its dirty state. Once the flush worker is done with 2533 * the inode it will place it on the appropriate superblock 2534 * list, based upon its state. 2535 */ 2536 if (inode->i_state & I_SYNC_QUEUED) 2537 goto out_unlock; 2538 2539 /* 2540 * Only add valid (hashed) inodes to the superblock's 2541 * dirty list. Add blockdev inodes as well. 2542 */ 2543 if (!S_ISBLK(inode->i_mode)) { 2544 if (inode_unhashed(inode)) 2545 goto out_unlock; 2546 } 2547 if (inode->i_state & I_FREEING) 2548 goto out_unlock; 2549 2550 /* 2551 * If the inode was already on b_dirty/b_io/b_more_io, don't 2552 * reposition it (that would break b_dirty time-ordering). 2553 */ 2554 if (!was_dirty) { 2555 struct list_head *dirty_list; 2556 bool wakeup_bdi = false; 2557 2558 inode->dirtied_when = jiffies; 2559 if (dirtytime) 2560 inode->dirtied_time_when = jiffies; 2561 2562 if (inode->i_state & I_DIRTY) 2563 dirty_list = &wb->b_dirty; 2564 else 2565 dirty_list = &wb->b_dirty_time; 2566 2567 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2568 dirty_list); 2569 2570 spin_unlock(&wb->list_lock); 2571 spin_unlock(&inode->i_lock); 2572 trace_writeback_dirty_inode_enqueue(inode); 2573 2574 /* 2575 * If this is the first dirty inode for this bdi, 2576 * we have to wake-up the corresponding bdi thread 2577 * to make sure background write-back happens 2578 * later. 2579 */ 2580 if (wakeup_bdi && 2581 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2582 wb_wakeup_delayed(wb); 2583 return; 2584 } 2585 } 2586 out_unlock: 2587 if (wb) 2588 spin_unlock(&wb->list_lock); 2589 spin_unlock(&inode->i_lock); 2590 } 2591 EXPORT_SYMBOL(__mark_inode_dirty); 2592 2593 /* 2594 * The @s_sync_lock is used to serialise concurrent sync operations 2595 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2596 * Concurrent callers will block on the s_sync_lock rather than doing contending 2597 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2598 * has been issued up to the time this function is enter is guaranteed to be 2599 * completed by the time we have gained the lock and waited for all IO that is 2600 * in progress regardless of the order callers are granted the lock. 2601 */ 2602 static void wait_sb_inodes(struct super_block *sb) 2603 { 2604 LIST_HEAD(sync_list); 2605 2606 /* 2607 * We need to be protected against the filesystem going from 2608 * r/o to r/w or vice versa. 2609 */ 2610 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2611 2612 mutex_lock(&sb->s_sync_lock); 2613 2614 /* 2615 * Splice the writeback list onto a temporary list to avoid waiting on 2616 * inodes that have started writeback after this point. 2617 * 2618 * Use rcu_read_lock() to keep the inodes around until we have a 2619 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2620 * the local list because inodes can be dropped from either by writeback 2621 * completion. 2622 */ 2623 rcu_read_lock(); 2624 spin_lock_irq(&sb->s_inode_wblist_lock); 2625 list_splice_init(&sb->s_inodes_wb, &sync_list); 2626 2627 /* 2628 * Data integrity sync. Must wait for all pages under writeback, because 2629 * there may have been pages dirtied before our sync call, but which had 2630 * writeout started before we write it out. In which case, the inode 2631 * may not be on the dirty list, but we still have to wait for that 2632 * writeout. 2633 */ 2634 while (!list_empty(&sync_list)) { 2635 struct inode *inode = list_first_entry(&sync_list, struct inode, 2636 i_wb_list); 2637 struct address_space *mapping = inode->i_mapping; 2638 2639 /* 2640 * Move each inode back to the wb list before we drop the lock 2641 * to preserve consistency between i_wb_list and the mapping 2642 * writeback tag. Writeback completion is responsible to remove 2643 * the inode from either list once the writeback tag is cleared. 2644 */ 2645 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2646 2647 /* 2648 * The mapping can appear untagged while still on-list since we 2649 * do not have the mapping lock. Skip it here, wb completion 2650 * will remove it. 2651 */ 2652 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2653 continue; 2654 2655 spin_unlock_irq(&sb->s_inode_wblist_lock); 2656 2657 spin_lock(&inode->i_lock); 2658 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2659 spin_unlock(&inode->i_lock); 2660 2661 spin_lock_irq(&sb->s_inode_wblist_lock); 2662 continue; 2663 } 2664 __iget(inode); 2665 spin_unlock(&inode->i_lock); 2666 rcu_read_unlock(); 2667 2668 /* 2669 * We keep the error status of individual mapping so that 2670 * applications can catch the writeback error using fsync(2). 2671 * See filemap_fdatawait_keep_errors() for details. 2672 */ 2673 filemap_fdatawait_keep_errors(mapping); 2674 2675 cond_resched(); 2676 2677 iput(inode); 2678 2679 rcu_read_lock(); 2680 spin_lock_irq(&sb->s_inode_wblist_lock); 2681 } 2682 spin_unlock_irq(&sb->s_inode_wblist_lock); 2683 rcu_read_unlock(); 2684 mutex_unlock(&sb->s_sync_lock); 2685 } 2686 2687 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2688 enum wb_reason reason, bool skip_if_busy) 2689 { 2690 struct backing_dev_info *bdi = sb->s_bdi; 2691 DEFINE_WB_COMPLETION(done, bdi); 2692 struct wb_writeback_work work = { 2693 .sb = sb, 2694 .sync_mode = WB_SYNC_NONE, 2695 .tagged_writepages = 1, 2696 .done = &done, 2697 .nr_pages = nr, 2698 .reason = reason, 2699 }; 2700 2701 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2702 return; 2703 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2704 2705 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2706 wb_wait_for_completion(&done); 2707 } 2708 2709 /** 2710 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2711 * @sb: the superblock 2712 * @nr: the number of pages to write 2713 * @reason: reason why some writeback work initiated 2714 * 2715 * Start writeback on some inodes on this super_block. No guarantees are made 2716 * on how many (if any) will be written, and this function does not wait 2717 * for IO completion of submitted IO. 2718 */ 2719 void writeback_inodes_sb_nr(struct super_block *sb, 2720 unsigned long nr, 2721 enum wb_reason reason) 2722 { 2723 __writeback_inodes_sb_nr(sb, nr, reason, false); 2724 } 2725 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2726 2727 /** 2728 * writeback_inodes_sb - writeback dirty inodes from given super_block 2729 * @sb: the superblock 2730 * @reason: reason why some writeback work was initiated 2731 * 2732 * Start writeback on some inodes on this super_block. No guarantees are made 2733 * on how many (if any) will be written, and this function does not wait 2734 * for IO completion of submitted IO. 2735 */ 2736 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2737 { 2738 writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2739 } 2740 EXPORT_SYMBOL(writeback_inodes_sb); 2741 2742 /** 2743 * try_to_writeback_inodes_sb - try to start writeback if none underway 2744 * @sb: the superblock 2745 * @reason: reason why some writeback work was initiated 2746 * 2747 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2748 */ 2749 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2750 { 2751 if (!down_read_trylock(&sb->s_umount)) 2752 return; 2753 2754 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2755 up_read(&sb->s_umount); 2756 } 2757 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2758 2759 /** 2760 * sync_inodes_sb - sync sb inode pages 2761 * @sb: the superblock 2762 * 2763 * This function writes and waits on any dirty inode belonging to this 2764 * super_block. 2765 */ 2766 void sync_inodes_sb(struct super_block *sb) 2767 { 2768 struct backing_dev_info *bdi = sb->s_bdi; 2769 DEFINE_WB_COMPLETION(done, bdi); 2770 struct wb_writeback_work work = { 2771 .sb = sb, 2772 .sync_mode = WB_SYNC_ALL, 2773 .nr_pages = LONG_MAX, 2774 .range_cyclic = 0, 2775 .done = &done, 2776 .reason = WB_REASON_SYNC, 2777 .for_sync = 1, 2778 }; 2779 2780 /* 2781 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2782 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2783 * bdi_has_dirty() need to be written out too. 2784 */ 2785 if (bdi == &noop_backing_dev_info) 2786 return; 2787 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2788 2789 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2790 bdi_down_write_wb_switch_rwsem(bdi); 2791 bdi_split_work_to_wbs(bdi, &work, false); 2792 wb_wait_for_completion(&done); 2793 bdi_up_write_wb_switch_rwsem(bdi); 2794 2795 wait_sb_inodes(sb); 2796 } 2797 EXPORT_SYMBOL(sync_inodes_sb); 2798 2799 /** 2800 * write_inode_now - write an inode to disk 2801 * @inode: inode to write to disk 2802 * @sync: whether the write should be synchronous or not 2803 * 2804 * This function commits an inode to disk immediately if it is dirty. This is 2805 * primarily needed by knfsd. 2806 * 2807 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2808 */ 2809 int write_inode_now(struct inode *inode, int sync) 2810 { 2811 struct writeback_control wbc = { 2812 .nr_to_write = LONG_MAX, 2813 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2814 .range_start = 0, 2815 .range_end = LLONG_MAX, 2816 }; 2817 2818 if (!mapping_can_writeback(inode->i_mapping)) 2819 wbc.nr_to_write = 0; 2820 2821 might_sleep(); 2822 return writeback_single_inode(inode, &wbc); 2823 } 2824 EXPORT_SYMBOL(write_inode_now); 2825 2826 /** 2827 * sync_inode_metadata - write an inode to disk 2828 * @inode: the inode to sync 2829 * @wait: wait for I/O to complete. 2830 * 2831 * Write an inode to disk and adjust its dirty state after completion. 2832 * 2833 * Note: only writes the actual inode, no associated data or other metadata. 2834 */ 2835 int sync_inode_metadata(struct inode *inode, int wait) 2836 { 2837 struct writeback_control wbc = { 2838 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2839 .nr_to_write = 0, /* metadata-only */ 2840 }; 2841 2842 return writeback_single_inode(inode, &wbc); 2843 } 2844 EXPORT_SYMBOL(sync_inode_metadata); 2845
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.