~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/inode.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * (C) 1997 Linus Torvalds
  4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
  5  */
  6 #include <linux/export.h>
  7 #include <linux/fs.h>
  8 #include <linux/filelock.h>
  9 #include <linux/mm.h>
 10 #include <linux/backing-dev.h>
 11 #include <linux/hash.h>
 12 #include <linux/swap.h>
 13 #include <linux/security.h>
 14 #include <linux/cdev.h>
 15 #include <linux/memblock.h>
 16 #include <linux/fsnotify.h>
 17 #include <linux/mount.h>
 18 #include <linux/posix_acl.h>
 19 #include <linux/buffer_head.h> /* for inode_has_buffers */
 20 #include <linux/ratelimit.h>
 21 #include <linux/list_lru.h>
 22 #include <linux/iversion.h>
 23 #include <linux/rw_hint.h>
 24 #include <trace/events/writeback.h>
 25 #include "internal.h"
 26 
 27 /*
 28  * Inode locking rules:
 29  *
 30  * inode->i_lock protects:
 31  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
 32  * Inode LRU list locks protect:
 33  *   inode->i_sb->s_inode_lru, inode->i_lru
 34  * inode->i_sb->s_inode_list_lock protects:
 35  *   inode->i_sb->s_inodes, inode->i_sb_list
 36  * bdi->wb.list_lock protects:
 37  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
 38  * inode_hash_lock protects:
 39  *   inode_hashtable, inode->i_hash
 40  *
 41  * Lock ordering:
 42  *
 43  * inode->i_sb->s_inode_list_lock
 44  *   inode->i_lock
 45  *     Inode LRU list locks
 46  *
 47  * bdi->wb.list_lock
 48  *   inode->i_lock
 49  *
 50  * inode_hash_lock
 51  *   inode->i_sb->s_inode_list_lock
 52  *   inode->i_lock
 53  *
 54  * iunique_lock
 55  *   inode_hash_lock
 56  */
 57 
 58 static unsigned int i_hash_mask __ro_after_init;
 59 static unsigned int i_hash_shift __ro_after_init;
 60 static struct hlist_head *inode_hashtable __ro_after_init;
 61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
 62 
 63 /*
 64  * Empty aops. Can be used for the cases where the user does not
 65  * define any of the address_space operations.
 66  */
 67 const struct address_space_operations empty_aops = {
 68 };
 69 EXPORT_SYMBOL(empty_aops);
 70 
 71 static DEFINE_PER_CPU(unsigned long, nr_inodes);
 72 static DEFINE_PER_CPU(unsigned long, nr_unused);
 73 
 74 static struct kmem_cache *inode_cachep __ro_after_init;
 75 
 76 static long get_nr_inodes(void)
 77 {
 78         int i;
 79         long sum = 0;
 80         for_each_possible_cpu(i)
 81                 sum += per_cpu(nr_inodes, i);
 82         return sum < 0 ? 0 : sum;
 83 }
 84 
 85 static inline long get_nr_inodes_unused(void)
 86 {
 87         int i;
 88         long sum = 0;
 89         for_each_possible_cpu(i)
 90                 sum += per_cpu(nr_unused, i);
 91         return sum < 0 ? 0 : sum;
 92 }
 93 
 94 long get_nr_dirty_inodes(void)
 95 {
 96         /* not actually dirty inodes, but a wild approximation */
 97         long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 98         return nr_dirty > 0 ? nr_dirty : 0;
 99 }
100 
101 /*
102  * Handle nr_inode sysctl
103  */
104 #ifdef CONFIG_SYSCTL
105 /*
106  * Statistics gathering..
107  */
108 static struct inodes_stat_t inodes_stat;
109 
110 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
111                           size_t *lenp, loff_t *ppos)
112 {
113         inodes_stat.nr_inodes = get_nr_inodes();
114         inodes_stat.nr_unused = get_nr_inodes_unused();
115         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 
118 static struct ctl_table inodes_sysctls[] = {
119         {
120                 .procname       = "inode-nr",
121                 .data           = &inodes_stat,
122                 .maxlen         = 2*sizeof(long),
123                 .mode           = 0444,
124                 .proc_handler   = proc_nr_inodes,
125         },
126         {
127                 .procname       = "inode-state",
128                 .data           = &inodes_stat,
129                 .maxlen         = 7*sizeof(long),
130                 .mode           = 0444,
131                 .proc_handler   = proc_nr_inodes,
132         },
133 };
134 
135 static int __init init_fs_inode_sysctls(void)
136 {
137         register_sysctl_init("fs", inodes_sysctls);
138         return 0;
139 }
140 early_initcall(init_fs_inode_sysctls);
141 #endif
142 
143 static int no_open(struct inode *inode, struct file *file)
144 {
145         return -ENXIO;
146 }
147 
148 /**
149  * inode_init_always - perform inode structure initialisation
150  * @sb: superblock inode belongs to
151  * @inode: inode to initialise
152  *
153  * These are initializations that need to be done on every inode
154  * allocation as the fields are not initialised by slab allocation.
155  */
156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158         static const struct inode_operations empty_iops;
159         static const struct file_operations no_open_fops = {.open = no_open};
160         struct address_space *const mapping = &inode->i_data;
161 
162         inode->i_sb = sb;
163         inode->i_blkbits = sb->s_blocksize_bits;
164         inode->i_flags = 0;
165         inode->i_state = 0;
166         atomic64_set(&inode->i_sequence, 0);
167         atomic_set(&inode->i_count, 1);
168         inode->i_op = &empty_iops;
169         inode->i_fop = &no_open_fops;
170         inode->i_ino = 0;
171         inode->__i_nlink = 1;
172         inode->i_opflags = 0;
173         if (sb->s_xattr)
174                 inode->i_opflags |= IOP_XATTR;
175         i_uid_write(inode, 0);
176         i_gid_write(inode, 0);
177         atomic_set(&inode->i_writecount, 0);
178         inode->i_size = 0;
179         inode->i_write_hint = WRITE_LIFE_NOT_SET;
180         inode->i_blocks = 0;
181         inode->i_bytes = 0;
182         inode->i_generation = 0;
183         inode->i_pipe = NULL;
184         inode->i_cdev = NULL;
185         inode->i_link = NULL;
186         inode->i_dir_seq = 0;
187         inode->i_rdev = 0;
188         inode->dirtied_when = 0;
189 
190 #ifdef CONFIG_CGROUP_WRITEBACK
191         inode->i_wb_frn_winner = 0;
192         inode->i_wb_frn_avg_time = 0;
193         inode->i_wb_frn_history = 0;
194 #endif
195 
196         spin_lock_init(&inode->i_lock);
197         lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
198 
199         init_rwsem(&inode->i_rwsem);
200         lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
201 
202         atomic_set(&inode->i_dio_count, 0);
203 
204         mapping->a_ops = &empty_aops;
205         mapping->host = inode;
206         mapping->flags = 0;
207         mapping->wb_err = 0;
208         atomic_set(&mapping->i_mmap_writable, 0);
209 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
210         atomic_set(&mapping->nr_thps, 0);
211 #endif
212         mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
213         mapping->i_private_data = NULL;
214         mapping->writeback_index = 0;
215         init_rwsem(&mapping->invalidate_lock);
216         lockdep_set_class_and_name(&mapping->invalidate_lock,
217                                    &sb->s_type->invalidate_lock_key,
218                                    "mapping.invalidate_lock");
219         if (sb->s_iflags & SB_I_STABLE_WRITES)
220                 mapping_set_stable_writes(mapping);
221         inode->i_private = NULL;
222         inode->i_mapping = mapping;
223         INIT_HLIST_HEAD(&inode->i_dentry);      /* buggered by rcu freeing */
224 #ifdef CONFIG_FS_POSIX_ACL
225         inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
226 #endif
227 
228 #ifdef CONFIG_FSNOTIFY
229         inode->i_fsnotify_mask = 0;
230 #endif
231         inode->i_flctx = NULL;
232 
233         if (unlikely(security_inode_alloc(inode)))
234                 return -ENOMEM;
235 
236         this_cpu_inc(nr_inodes);
237 
238         return 0;
239 }
240 EXPORT_SYMBOL(inode_init_always);
241 
242 void free_inode_nonrcu(struct inode *inode)
243 {
244         kmem_cache_free(inode_cachep, inode);
245 }
246 EXPORT_SYMBOL(free_inode_nonrcu);
247 
248 static void i_callback(struct rcu_head *head)
249 {
250         struct inode *inode = container_of(head, struct inode, i_rcu);
251         if (inode->free_inode)
252                 inode->free_inode(inode);
253         else
254                 free_inode_nonrcu(inode);
255 }
256 
257 static struct inode *alloc_inode(struct super_block *sb)
258 {
259         const struct super_operations *ops = sb->s_op;
260         struct inode *inode;
261 
262         if (ops->alloc_inode)
263                 inode = ops->alloc_inode(sb);
264         else
265                 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
266 
267         if (!inode)
268                 return NULL;
269 
270         if (unlikely(inode_init_always(sb, inode))) {
271                 if (ops->destroy_inode) {
272                         ops->destroy_inode(inode);
273                         if (!ops->free_inode)
274                                 return NULL;
275                 }
276                 inode->free_inode = ops->free_inode;
277                 i_callback(&inode->i_rcu);
278                 return NULL;
279         }
280 
281         return inode;
282 }
283 
284 void __destroy_inode(struct inode *inode)
285 {
286         BUG_ON(inode_has_buffers(inode));
287         inode_detach_wb(inode);
288         security_inode_free(inode);
289         fsnotify_inode_delete(inode);
290         locks_free_lock_context(inode);
291         if (!inode->i_nlink) {
292                 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
293                 atomic_long_dec(&inode->i_sb->s_remove_count);
294         }
295 
296 #ifdef CONFIG_FS_POSIX_ACL
297         if (inode->i_acl && !is_uncached_acl(inode->i_acl))
298                 posix_acl_release(inode->i_acl);
299         if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
300                 posix_acl_release(inode->i_default_acl);
301 #endif
302         this_cpu_dec(nr_inodes);
303 }
304 EXPORT_SYMBOL(__destroy_inode);
305 
306 static void destroy_inode(struct inode *inode)
307 {
308         const struct super_operations *ops = inode->i_sb->s_op;
309 
310         BUG_ON(!list_empty(&inode->i_lru));
311         __destroy_inode(inode);
312         if (ops->destroy_inode) {
313                 ops->destroy_inode(inode);
314                 if (!ops->free_inode)
315                         return;
316         }
317         inode->free_inode = ops->free_inode;
318         call_rcu(&inode->i_rcu, i_callback);
319 }
320 
321 /**
322  * drop_nlink - directly drop an inode's link count
323  * @inode: inode
324  *
325  * This is a low-level filesystem helper to replace any
326  * direct filesystem manipulation of i_nlink.  In cases
327  * where we are attempting to track writes to the
328  * filesystem, a decrement to zero means an imminent
329  * write when the file is truncated and actually unlinked
330  * on the filesystem.
331  */
332 void drop_nlink(struct inode *inode)
333 {
334         WARN_ON(inode->i_nlink == 0);
335         inode->__i_nlink--;
336         if (!inode->i_nlink)
337                 atomic_long_inc(&inode->i_sb->s_remove_count);
338 }
339 EXPORT_SYMBOL(drop_nlink);
340 
341 /**
342  * clear_nlink - directly zero an inode's link count
343  * @inode: inode
344  *
345  * This is a low-level filesystem helper to replace any
346  * direct filesystem manipulation of i_nlink.  See
347  * drop_nlink() for why we care about i_nlink hitting zero.
348  */
349 void clear_nlink(struct inode *inode)
350 {
351         if (inode->i_nlink) {
352                 inode->__i_nlink = 0;
353                 atomic_long_inc(&inode->i_sb->s_remove_count);
354         }
355 }
356 EXPORT_SYMBOL(clear_nlink);
357 
358 /**
359  * set_nlink - directly set an inode's link count
360  * @inode: inode
361  * @nlink: new nlink (should be non-zero)
362  *
363  * This is a low-level filesystem helper to replace any
364  * direct filesystem manipulation of i_nlink.
365  */
366 void set_nlink(struct inode *inode, unsigned int nlink)
367 {
368         if (!nlink) {
369                 clear_nlink(inode);
370         } else {
371                 /* Yes, some filesystems do change nlink from zero to one */
372                 if (inode->i_nlink == 0)
373                         atomic_long_dec(&inode->i_sb->s_remove_count);
374 
375                 inode->__i_nlink = nlink;
376         }
377 }
378 EXPORT_SYMBOL(set_nlink);
379 
380 /**
381  * inc_nlink - directly increment an inode's link count
382  * @inode: inode
383  *
384  * This is a low-level filesystem helper to replace any
385  * direct filesystem manipulation of i_nlink.  Currently,
386  * it is only here for parity with dec_nlink().
387  */
388 void inc_nlink(struct inode *inode)
389 {
390         if (unlikely(inode->i_nlink == 0)) {
391                 WARN_ON(!(inode->i_state & I_LINKABLE));
392                 atomic_long_dec(&inode->i_sb->s_remove_count);
393         }
394 
395         inode->__i_nlink++;
396 }
397 EXPORT_SYMBOL(inc_nlink);
398 
399 static void __address_space_init_once(struct address_space *mapping)
400 {
401         xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
402         init_rwsem(&mapping->i_mmap_rwsem);
403         INIT_LIST_HEAD(&mapping->i_private_list);
404         spin_lock_init(&mapping->i_private_lock);
405         mapping->i_mmap = RB_ROOT_CACHED;
406 }
407 
408 void address_space_init_once(struct address_space *mapping)
409 {
410         memset(mapping, 0, sizeof(*mapping));
411         __address_space_init_once(mapping);
412 }
413 EXPORT_SYMBOL(address_space_init_once);
414 
415 /*
416  * These are initializations that only need to be done
417  * once, because the fields are idempotent across use
418  * of the inode, so let the slab aware of that.
419  */
420 void inode_init_once(struct inode *inode)
421 {
422         memset(inode, 0, sizeof(*inode));
423         INIT_HLIST_NODE(&inode->i_hash);
424         INIT_LIST_HEAD(&inode->i_devices);
425         INIT_LIST_HEAD(&inode->i_io_list);
426         INIT_LIST_HEAD(&inode->i_wb_list);
427         INIT_LIST_HEAD(&inode->i_lru);
428         INIT_LIST_HEAD(&inode->i_sb_list);
429         __address_space_init_once(&inode->i_data);
430         i_size_ordered_init(inode);
431 }
432 EXPORT_SYMBOL(inode_init_once);
433 
434 static void init_once(void *foo)
435 {
436         struct inode *inode = (struct inode *) foo;
437 
438         inode_init_once(inode);
439 }
440 
441 /*
442  * inode->i_lock must be held
443  */
444 void __iget(struct inode *inode)
445 {
446         atomic_inc(&inode->i_count);
447 }
448 
449 /*
450  * get additional reference to inode; caller must already hold one.
451  */
452 void ihold(struct inode *inode)
453 {
454         WARN_ON(atomic_inc_return(&inode->i_count) < 2);
455 }
456 EXPORT_SYMBOL(ihold);
457 
458 static void __inode_add_lru(struct inode *inode, bool rotate)
459 {
460         if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
461                 return;
462         if (atomic_read(&inode->i_count))
463                 return;
464         if (!(inode->i_sb->s_flags & SB_ACTIVE))
465                 return;
466         if (!mapping_shrinkable(&inode->i_data))
467                 return;
468 
469         if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
470                 this_cpu_inc(nr_unused);
471         else if (rotate)
472                 inode->i_state |= I_REFERENCED;
473 }
474 
475 /*
476  * Add inode to LRU if needed (inode is unused and clean).
477  *
478  * Needs inode->i_lock held.
479  */
480 void inode_add_lru(struct inode *inode)
481 {
482         __inode_add_lru(inode, false);
483 }
484 
485 static void inode_lru_list_del(struct inode *inode)
486 {
487         if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
488                 this_cpu_dec(nr_unused);
489 }
490 
491 static void inode_pin_lru_isolating(struct inode *inode)
492 {
493         lockdep_assert_held(&inode->i_lock);
494         WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
495         inode->i_state |= I_LRU_ISOLATING;
496 }
497 
498 static void inode_unpin_lru_isolating(struct inode *inode)
499 {
500         spin_lock(&inode->i_lock);
501         WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
502         inode->i_state &= ~I_LRU_ISOLATING;
503         smp_mb();
504         wake_up_bit(&inode->i_state, __I_LRU_ISOLATING);
505         spin_unlock(&inode->i_lock);
506 }
507 
508 static void inode_wait_for_lru_isolating(struct inode *inode)
509 {
510         spin_lock(&inode->i_lock);
511         if (inode->i_state & I_LRU_ISOLATING) {
512                 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LRU_ISOLATING);
513                 wait_queue_head_t *wqh;
514 
515                 wqh = bit_waitqueue(&inode->i_state, __I_LRU_ISOLATING);
516                 spin_unlock(&inode->i_lock);
517                 __wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE);
518                 spin_lock(&inode->i_lock);
519                 WARN_ON(inode->i_state & I_LRU_ISOLATING);
520         }
521         spin_unlock(&inode->i_lock);
522 }
523 
524 /**
525  * inode_sb_list_add - add inode to the superblock list of inodes
526  * @inode: inode to add
527  */
528 void inode_sb_list_add(struct inode *inode)
529 {
530         spin_lock(&inode->i_sb->s_inode_list_lock);
531         list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
532         spin_unlock(&inode->i_sb->s_inode_list_lock);
533 }
534 EXPORT_SYMBOL_GPL(inode_sb_list_add);
535 
536 static inline void inode_sb_list_del(struct inode *inode)
537 {
538         if (!list_empty(&inode->i_sb_list)) {
539                 spin_lock(&inode->i_sb->s_inode_list_lock);
540                 list_del_init(&inode->i_sb_list);
541                 spin_unlock(&inode->i_sb->s_inode_list_lock);
542         }
543 }
544 
545 static unsigned long hash(struct super_block *sb, unsigned long hashval)
546 {
547         unsigned long tmp;
548 
549         tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
550                         L1_CACHE_BYTES;
551         tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
552         return tmp & i_hash_mask;
553 }
554 
555 /**
556  *      __insert_inode_hash - hash an inode
557  *      @inode: unhashed inode
558  *      @hashval: unsigned long value used to locate this object in the
559  *              inode_hashtable.
560  *
561  *      Add an inode to the inode hash for this superblock.
562  */
563 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
564 {
565         struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
566 
567         spin_lock(&inode_hash_lock);
568         spin_lock(&inode->i_lock);
569         hlist_add_head_rcu(&inode->i_hash, b);
570         spin_unlock(&inode->i_lock);
571         spin_unlock(&inode_hash_lock);
572 }
573 EXPORT_SYMBOL(__insert_inode_hash);
574 
575 /**
576  *      __remove_inode_hash - remove an inode from the hash
577  *      @inode: inode to unhash
578  *
579  *      Remove an inode from the superblock.
580  */
581 void __remove_inode_hash(struct inode *inode)
582 {
583         spin_lock(&inode_hash_lock);
584         spin_lock(&inode->i_lock);
585         hlist_del_init_rcu(&inode->i_hash);
586         spin_unlock(&inode->i_lock);
587         spin_unlock(&inode_hash_lock);
588 }
589 EXPORT_SYMBOL(__remove_inode_hash);
590 
591 void dump_mapping(const struct address_space *mapping)
592 {
593         struct inode *host;
594         const struct address_space_operations *a_ops;
595         struct hlist_node *dentry_first;
596         struct dentry *dentry_ptr;
597         struct dentry dentry;
598         char fname[64] = {};
599         unsigned long ino;
600 
601         /*
602          * If mapping is an invalid pointer, we don't want to crash
603          * accessing it, so probe everything depending on it carefully.
604          */
605         if (get_kernel_nofault(host, &mapping->host) ||
606             get_kernel_nofault(a_ops, &mapping->a_ops)) {
607                 pr_warn("invalid mapping:%px\n", mapping);
608                 return;
609         }
610 
611         if (!host) {
612                 pr_warn("aops:%ps\n", a_ops);
613                 return;
614         }
615 
616         if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
617             get_kernel_nofault(ino, &host->i_ino)) {
618                 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
619                 return;
620         }
621 
622         if (!dentry_first) {
623                 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
624                 return;
625         }
626 
627         dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
628         if (get_kernel_nofault(dentry, dentry_ptr) ||
629             !dentry.d_parent || !dentry.d_name.name) {
630                 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
631                                 a_ops, ino, dentry_ptr);
632                 return;
633         }
634 
635         if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0)
636                 strscpy(fname, "<invalid>");
637         /*
638          * Even if strncpy_from_kernel_nofault() succeeded,
639          * the fname could be unreliable
640          */
641         pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
642                 a_ops, ino, fname);
643 }
644 
645 void clear_inode(struct inode *inode)
646 {
647         /*
648          * We have to cycle the i_pages lock here because reclaim can be in the
649          * process of removing the last page (in __filemap_remove_folio())
650          * and we must not free the mapping under it.
651          */
652         xa_lock_irq(&inode->i_data.i_pages);
653         BUG_ON(inode->i_data.nrpages);
654         /*
655          * Almost always, mapping_empty(&inode->i_data) here; but there are
656          * two known and long-standing ways in which nodes may get left behind
657          * (when deep radix-tree node allocation failed partway; or when THP
658          * collapse_file() failed). Until those two known cases are cleaned up,
659          * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
660          * nor even WARN_ON(!mapping_empty).
661          */
662         xa_unlock_irq(&inode->i_data.i_pages);
663         BUG_ON(!list_empty(&inode->i_data.i_private_list));
664         BUG_ON(!(inode->i_state & I_FREEING));
665         BUG_ON(inode->i_state & I_CLEAR);
666         BUG_ON(!list_empty(&inode->i_wb_list));
667         /* don't need i_lock here, no concurrent mods to i_state */
668         inode->i_state = I_FREEING | I_CLEAR;
669 }
670 EXPORT_SYMBOL(clear_inode);
671 
672 /*
673  * Free the inode passed in, removing it from the lists it is still connected
674  * to. We remove any pages still attached to the inode and wait for any IO that
675  * is still in progress before finally destroying the inode.
676  *
677  * An inode must already be marked I_FREEING so that we avoid the inode being
678  * moved back onto lists if we race with other code that manipulates the lists
679  * (e.g. writeback_single_inode). The caller is responsible for setting this.
680  *
681  * An inode must already be removed from the LRU list before being evicted from
682  * the cache. This should occur atomically with setting the I_FREEING state
683  * flag, so no inodes here should ever be on the LRU when being evicted.
684  */
685 static void evict(struct inode *inode)
686 {
687         const struct super_operations *op = inode->i_sb->s_op;
688 
689         BUG_ON(!(inode->i_state & I_FREEING));
690         BUG_ON(!list_empty(&inode->i_lru));
691 
692         if (!list_empty(&inode->i_io_list))
693                 inode_io_list_del(inode);
694 
695         inode_sb_list_del(inode);
696 
697         inode_wait_for_lru_isolating(inode);
698 
699         /*
700          * Wait for flusher thread to be done with the inode so that filesystem
701          * does not start destroying it while writeback is still running. Since
702          * the inode has I_FREEING set, flusher thread won't start new work on
703          * the inode.  We just have to wait for running writeback to finish.
704          */
705         inode_wait_for_writeback(inode);
706 
707         if (op->evict_inode) {
708                 op->evict_inode(inode);
709         } else {
710                 truncate_inode_pages_final(&inode->i_data);
711                 clear_inode(inode);
712         }
713         if (S_ISCHR(inode->i_mode) && inode->i_cdev)
714                 cd_forget(inode);
715 
716         remove_inode_hash(inode);
717 
718         /*
719          * Wake up waiters in __wait_on_freeing_inode().
720          *
721          * Lockless hash lookup may end up finding the inode before we removed
722          * it above, but only lock it *after* we are done with the wakeup below.
723          * In this case the potential waiter cannot safely block.
724          *
725          * The inode being unhashed after the call to remove_inode_hash() is
726          * used as an indicator whether blocking on it is safe.
727          */
728         spin_lock(&inode->i_lock);
729         wake_up_bit(&inode->i_state, __I_NEW);
730         BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
731         spin_unlock(&inode->i_lock);
732 
733         destroy_inode(inode);
734 }
735 
736 /*
737  * dispose_list - dispose of the contents of a local list
738  * @head: the head of the list to free
739  *
740  * Dispose-list gets a local list with local inodes in it, so it doesn't
741  * need to worry about list corruption and SMP locks.
742  */
743 static void dispose_list(struct list_head *head)
744 {
745         while (!list_empty(head)) {
746                 struct inode *inode;
747 
748                 inode = list_first_entry(head, struct inode, i_lru);
749                 list_del_init(&inode->i_lru);
750 
751                 evict(inode);
752                 cond_resched();
753         }
754 }
755 
756 /**
757  * evict_inodes - evict all evictable inodes for a superblock
758  * @sb:         superblock to operate on
759  *
760  * Make sure that no inodes with zero refcount are retained.  This is
761  * called by superblock shutdown after having SB_ACTIVE flag removed,
762  * so any inode reaching zero refcount during or after that call will
763  * be immediately evicted.
764  */
765 void evict_inodes(struct super_block *sb)
766 {
767         struct inode *inode, *next;
768         LIST_HEAD(dispose);
769 
770 again:
771         spin_lock(&sb->s_inode_list_lock);
772         list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
773                 if (atomic_read(&inode->i_count))
774                         continue;
775 
776                 spin_lock(&inode->i_lock);
777                 if (atomic_read(&inode->i_count)) {
778                         spin_unlock(&inode->i_lock);
779                         continue;
780                 }
781                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
782                         spin_unlock(&inode->i_lock);
783                         continue;
784                 }
785 
786                 inode->i_state |= I_FREEING;
787                 inode_lru_list_del(inode);
788                 spin_unlock(&inode->i_lock);
789                 list_add(&inode->i_lru, &dispose);
790 
791                 /*
792                  * We can have a ton of inodes to evict at unmount time given
793                  * enough memory, check to see if we need to go to sleep for a
794                  * bit so we don't livelock.
795                  */
796                 if (need_resched()) {
797                         spin_unlock(&sb->s_inode_list_lock);
798                         cond_resched();
799                         dispose_list(&dispose);
800                         goto again;
801                 }
802         }
803         spin_unlock(&sb->s_inode_list_lock);
804 
805         dispose_list(&dispose);
806 }
807 EXPORT_SYMBOL_GPL(evict_inodes);
808 
809 /**
810  * invalidate_inodes    - attempt to free all inodes on a superblock
811  * @sb:         superblock to operate on
812  *
813  * Attempts to free all inodes (including dirty inodes) for a given superblock.
814  */
815 void invalidate_inodes(struct super_block *sb)
816 {
817         struct inode *inode, *next;
818         LIST_HEAD(dispose);
819 
820 again:
821         spin_lock(&sb->s_inode_list_lock);
822         list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
823                 spin_lock(&inode->i_lock);
824                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
825                         spin_unlock(&inode->i_lock);
826                         continue;
827                 }
828                 if (atomic_read(&inode->i_count)) {
829                         spin_unlock(&inode->i_lock);
830                         continue;
831                 }
832 
833                 inode->i_state |= I_FREEING;
834                 inode_lru_list_del(inode);
835                 spin_unlock(&inode->i_lock);
836                 list_add(&inode->i_lru, &dispose);
837                 if (need_resched()) {
838                         spin_unlock(&sb->s_inode_list_lock);
839                         cond_resched();
840                         dispose_list(&dispose);
841                         goto again;
842                 }
843         }
844         spin_unlock(&sb->s_inode_list_lock);
845 
846         dispose_list(&dispose);
847 }
848 
849 /*
850  * Isolate the inode from the LRU in preparation for freeing it.
851  *
852  * If the inode has the I_REFERENCED flag set, then it means that it has been
853  * used recently - the flag is set in iput_final(). When we encounter such an
854  * inode, clear the flag and move it to the back of the LRU so it gets another
855  * pass through the LRU before it gets reclaimed. This is necessary because of
856  * the fact we are doing lazy LRU updates to minimise lock contention so the
857  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
858  * with this flag set because they are the inodes that are out of order.
859  */
860 static enum lru_status inode_lru_isolate(struct list_head *item,
861                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
862 {
863         struct list_head *freeable = arg;
864         struct inode    *inode = container_of(item, struct inode, i_lru);
865 
866         /*
867          * We are inverting the lru lock/inode->i_lock here, so use a
868          * trylock. If we fail to get the lock, just skip it.
869          */
870         if (!spin_trylock(&inode->i_lock))
871                 return LRU_SKIP;
872 
873         /*
874          * Inodes can get referenced, redirtied, or repopulated while
875          * they're already on the LRU, and this can make them
876          * unreclaimable for a while. Remove them lazily here; iput,
877          * sync, or the last page cache deletion will requeue them.
878          */
879         if (atomic_read(&inode->i_count) ||
880             (inode->i_state & ~I_REFERENCED) ||
881             !mapping_shrinkable(&inode->i_data)) {
882                 list_lru_isolate(lru, &inode->i_lru);
883                 spin_unlock(&inode->i_lock);
884                 this_cpu_dec(nr_unused);
885                 return LRU_REMOVED;
886         }
887 
888         /* Recently referenced inodes get one more pass */
889         if (inode->i_state & I_REFERENCED) {
890                 inode->i_state &= ~I_REFERENCED;
891                 spin_unlock(&inode->i_lock);
892                 return LRU_ROTATE;
893         }
894 
895         /*
896          * On highmem systems, mapping_shrinkable() permits dropping
897          * page cache in order to free up struct inodes: lowmem might
898          * be under pressure before the cache inside the highmem zone.
899          */
900         if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
901                 inode_pin_lru_isolating(inode);
902                 spin_unlock(&inode->i_lock);
903                 spin_unlock(lru_lock);
904                 if (remove_inode_buffers(inode)) {
905                         unsigned long reap;
906                         reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
907                         if (current_is_kswapd())
908                                 __count_vm_events(KSWAPD_INODESTEAL, reap);
909                         else
910                                 __count_vm_events(PGINODESTEAL, reap);
911                         mm_account_reclaimed_pages(reap);
912                 }
913                 inode_unpin_lru_isolating(inode);
914                 spin_lock(lru_lock);
915                 return LRU_RETRY;
916         }
917 
918         WARN_ON(inode->i_state & I_NEW);
919         inode->i_state |= I_FREEING;
920         list_lru_isolate_move(lru, &inode->i_lru, freeable);
921         spin_unlock(&inode->i_lock);
922 
923         this_cpu_dec(nr_unused);
924         return LRU_REMOVED;
925 }
926 
927 /*
928  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
929  * This is called from the superblock shrinker function with a number of inodes
930  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
931  * then are freed outside inode_lock by dispose_list().
932  */
933 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
934 {
935         LIST_HEAD(freeable);
936         long freed;
937 
938         freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
939                                      inode_lru_isolate, &freeable);
940         dispose_list(&freeable);
941         return freed;
942 }
943 
944 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked);
945 /*
946  * Called with the inode lock held.
947  */
948 static struct inode *find_inode(struct super_block *sb,
949                                 struct hlist_head *head,
950                                 int (*test)(struct inode *, void *),
951                                 void *data, bool is_inode_hash_locked)
952 {
953         struct inode *inode = NULL;
954 
955         if (is_inode_hash_locked)
956                 lockdep_assert_held(&inode_hash_lock);
957         else
958                 lockdep_assert_not_held(&inode_hash_lock);
959 
960         rcu_read_lock();
961 repeat:
962         hlist_for_each_entry_rcu(inode, head, i_hash) {
963                 if (inode->i_sb != sb)
964                         continue;
965                 if (!test(inode, data))
966                         continue;
967                 spin_lock(&inode->i_lock);
968                 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
969                         __wait_on_freeing_inode(inode, is_inode_hash_locked);
970                         goto repeat;
971                 }
972                 if (unlikely(inode->i_state & I_CREATING)) {
973                         spin_unlock(&inode->i_lock);
974                         rcu_read_unlock();
975                         return ERR_PTR(-ESTALE);
976                 }
977                 __iget(inode);
978                 spin_unlock(&inode->i_lock);
979                 rcu_read_unlock();
980                 return inode;
981         }
982         rcu_read_unlock();
983         return NULL;
984 }
985 
986 /*
987  * find_inode_fast is the fast path version of find_inode, see the comment at
988  * iget_locked for details.
989  */
990 static struct inode *find_inode_fast(struct super_block *sb,
991                                 struct hlist_head *head, unsigned long ino,
992                                 bool is_inode_hash_locked)
993 {
994         struct inode *inode = NULL;
995 
996         if (is_inode_hash_locked)
997                 lockdep_assert_held(&inode_hash_lock);
998         else
999                 lockdep_assert_not_held(&inode_hash_lock);
1000 
1001         rcu_read_lock();
1002 repeat:
1003         hlist_for_each_entry_rcu(inode, head, i_hash) {
1004                 if (inode->i_ino != ino)
1005                         continue;
1006                 if (inode->i_sb != sb)
1007                         continue;
1008                 spin_lock(&inode->i_lock);
1009                 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1010                         __wait_on_freeing_inode(inode, is_inode_hash_locked);
1011                         goto repeat;
1012                 }
1013                 if (unlikely(inode->i_state & I_CREATING)) {
1014                         spin_unlock(&inode->i_lock);
1015                         rcu_read_unlock();
1016                         return ERR_PTR(-ESTALE);
1017                 }
1018                 __iget(inode);
1019                 spin_unlock(&inode->i_lock);
1020                 rcu_read_unlock();
1021                 return inode;
1022         }
1023         rcu_read_unlock();
1024         return NULL;
1025 }
1026 
1027 /*
1028  * Each cpu owns a range of LAST_INO_BATCH numbers.
1029  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1030  * to renew the exhausted range.
1031  *
1032  * This does not significantly increase overflow rate because every CPU can
1033  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1034  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1035  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1036  * overflow rate by 2x, which does not seem too significant.
1037  *
1038  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1039  * error if st_ino won't fit in target struct field. Use 32bit counter
1040  * here to attempt to avoid that.
1041  */
1042 #define LAST_INO_BATCH 1024
1043 static DEFINE_PER_CPU(unsigned int, last_ino);
1044 
1045 unsigned int get_next_ino(void)
1046 {
1047         unsigned int *p = &get_cpu_var(last_ino);
1048         unsigned int res = *p;
1049 
1050 #ifdef CONFIG_SMP
1051         if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1052                 static atomic_t shared_last_ino;
1053                 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1054 
1055                 res = next - LAST_INO_BATCH;
1056         }
1057 #endif
1058 
1059         res++;
1060         /* get_next_ino should not provide a 0 inode number */
1061         if (unlikely(!res))
1062                 res++;
1063         *p = res;
1064         put_cpu_var(last_ino);
1065         return res;
1066 }
1067 EXPORT_SYMBOL(get_next_ino);
1068 
1069 /**
1070  *      new_inode_pseudo        - obtain an inode
1071  *      @sb: superblock
1072  *
1073  *      Allocates a new inode for given superblock.
1074  *      Inode wont be chained in superblock s_inodes list
1075  *      This means :
1076  *      - fs can't be unmount
1077  *      - quotas, fsnotify, writeback can't work
1078  */
1079 struct inode *new_inode_pseudo(struct super_block *sb)
1080 {
1081         return alloc_inode(sb);
1082 }
1083 
1084 /**
1085  *      new_inode       - obtain an inode
1086  *      @sb: superblock
1087  *
1088  *      Allocates a new inode for given superblock. The default gfp_mask
1089  *      for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1090  *      If HIGHMEM pages are unsuitable or it is known that pages allocated
1091  *      for the page cache are not reclaimable or migratable,
1092  *      mapping_set_gfp_mask() must be called with suitable flags on the
1093  *      newly created inode's mapping
1094  *
1095  */
1096 struct inode *new_inode(struct super_block *sb)
1097 {
1098         struct inode *inode;
1099 
1100         inode = new_inode_pseudo(sb);
1101         if (inode)
1102                 inode_sb_list_add(inode);
1103         return inode;
1104 }
1105 EXPORT_SYMBOL(new_inode);
1106 
1107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1108 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1109 {
1110         if (S_ISDIR(inode->i_mode)) {
1111                 struct file_system_type *type = inode->i_sb->s_type;
1112 
1113                 /* Set new key only if filesystem hasn't already changed it */
1114                 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1115                         /*
1116                          * ensure nobody is actually holding i_mutex
1117                          */
1118                         // mutex_destroy(&inode->i_mutex);
1119                         init_rwsem(&inode->i_rwsem);
1120                         lockdep_set_class(&inode->i_rwsem,
1121                                           &type->i_mutex_dir_key);
1122                 }
1123         }
1124 }
1125 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1126 #endif
1127 
1128 /**
1129  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1130  * @inode:      new inode to unlock
1131  *
1132  * Called when the inode is fully initialised to clear the new state of the
1133  * inode and wake up anyone waiting for the inode to finish initialisation.
1134  */
1135 void unlock_new_inode(struct inode *inode)
1136 {
1137         lockdep_annotate_inode_mutex_key(inode);
1138         spin_lock(&inode->i_lock);
1139         WARN_ON(!(inode->i_state & I_NEW));
1140         inode->i_state &= ~I_NEW & ~I_CREATING;
1141         smp_mb();
1142         wake_up_bit(&inode->i_state, __I_NEW);
1143         spin_unlock(&inode->i_lock);
1144 }
1145 EXPORT_SYMBOL(unlock_new_inode);
1146 
1147 void discard_new_inode(struct inode *inode)
1148 {
1149         lockdep_annotate_inode_mutex_key(inode);
1150         spin_lock(&inode->i_lock);
1151         WARN_ON(!(inode->i_state & I_NEW));
1152         inode->i_state &= ~I_NEW;
1153         smp_mb();
1154         wake_up_bit(&inode->i_state, __I_NEW);
1155         spin_unlock(&inode->i_lock);
1156         iput(inode);
1157 }
1158 EXPORT_SYMBOL(discard_new_inode);
1159 
1160 /**
1161  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1162  *
1163  * Lock any non-NULL argument. Passed objects must not be directories.
1164  * Zero, one or two objects may be locked by this function.
1165  *
1166  * @inode1: first inode to lock
1167  * @inode2: second inode to lock
1168  */
1169 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1170 {
1171         if (inode1)
1172                 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1173         if (inode2)
1174                 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1175         if (inode1 > inode2)
1176                 swap(inode1, inode2);
1177         if (inode1)
1178                 inode_lock(inode1);
1179         if (inode2 && inode2 != inode1)
1180                 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1181 }
1182 EXPORT_SYMBOL(lock_two_nondirectories);
1183 
1184 /**
1185  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1186  * @inode1: first inode to unlock
1187  * @inode2: second inode to unlock
1188  */
1189 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1190 {
1191         if (inode1) {
1192                 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1193                 inode_unlock(inode1);
1194         }
1195         if (inode2 && inode2 != inode1) {
1196                 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1197                 inode_unlock(inode2);
1198         }
1199 }
1200 EXPORT_SYMBOL(unlock_two_nondirectories);
1201 
1202 /**
1203  * inode_insert5 - obtain an inode from a mounted file system
1204  * @inode:      pre-allocated inode to use for insert to cache
1205  * @hashval:    hash value (usually inode number) to get
1206  * @test:       callback used for comparisons between inodes
1207  * @set:        callback used to initialize a new struct inode
1208  * @data:       opaque data pointer to pass to @test and @set
1209  *
1210  * Search for the inode specified by @hashval and @data in the inode cache,
1211  * and if present it is return it with an increased reference count. This is
1212  * a variant of iget5_locked() for callers that don't want to fail on memory
1213  * allocation of inode.
1214  *
1215  * If the inode is not in cache, insert the pre-allocated inode to cache and
1216  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1217  * to fill it in before unlocking it via unlock_new_inode().
1218  *
1219  * Note both @test and @set are called with the inode_hash_lock held, so can't
1220  * sleep.
1221  */
1222 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1223                             int (*test)(struct inode *, void *),
1224                             int (*set)(struct inode *, void *), void *data)
1225 {
1226         struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1227         struct inode *old;
1228 
1229 again:
1230         spin_lock(&inode_hash_lock);
1231         old = find_inode(inode->i_sb, head, test, data, true);
1232         if (unlikely(old)) {
1233                 /*
1234                  * Uhhuh, somebody else created the same inode under us.
1235                  * Use the old inode instead of the preallocated one.
1236                  */
1237                 spin_unlock(&inode_hash_lock);
1238                 if (IS_ERR(old))
1239                         return NULL;
1240                 wait_on_inode(old);
1241                 if (unlikely(inode_unhashed(old))) {
1242                         iput(old);
1243                         goto again;
1244                 }
1245                 return old;
1246         }
1247 
1248         if (set && unlikely(set(inode, data))) {
1249                 inode = NULL;
1250                 goto unlock;
1251         }
1252 
1253         /*
1254          * Return the locked inode with I_NEW set, the
1255          * caller is responsible for filling in the contents
1256          */
1257         spin_lock(&inode->i_lock);
1258         inode->i_state |= I_NEW;
1259         hlist_add_head_rcu(&inode->i_hash, head);
1260         spin_unlock(&inode->i_lock);
1261 
1262         /*
1263          * Add inode to the sb list if it's not already. It has I_NEW at this
1264          * point, so it should be safe to test i_sb_list locklessly.
1265          */
1266         if (list_empty(&inode->i_sb_list))
1267                 inode_sb_list_add(inode);
1268 unlock:
1269         spin_unlock(&inode_hash_lock);
1270 
1271         return inode;
1272 }
1273 EXPORT_SYMBOL(inode_insert5);
1274 
1275 /**
1276  * iget5_locked - obtain an inode from a mounted file system
1277  * @sb:         super block of file system
1278  * @hashval:    hash value (usually inode number) to get
1279  * @test:       callback used for comparisons between inodes
1280  * @set:        callback used to initialize a new struct inode
1281  * @data:       opaque data pointer to pass to @test and @set
1282  *
1283  * Search for the inode specified by @hashval and @data in the inode cache,
1284  * and if present it is return it with an increased reference count. This is
1285  * a generalized version of iget_locked() for file systems where the inode
1286  * number is not sufficient for unique identification of an inode.
1287  *
1288  * If the inode is not in cache, allocate a new inode and return it locked,
1289  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1290  * before unlocking it via unlock_new_inode().
1291  *
1292  * Note both @test and @set are called with the inode_hash_lock held, so can't
1293  * sleep.
1294  */
1295 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1296                 int (*test)(struct inode *, void *),
1297                 int (*set)(struct inode *, void *), void *data)
1298 {
1299         struct inode *inode = ilookup5(sb, hashval, test, data);
1300 
1301         if (!inode) {
1302                 struct inode *new = alloc_inode(sb);
1303 
1304                 if (new) {
1305                         inode = inode_insert5(new, hashval, test, set, data);
1306                         if (unlikely(inode != new))
1307                                 destroy_inode(new);
1308                 }
1309         }
1310         return inode;
1311 }
1312 EXPORT_SYMBOL(iget5_locked);
1313 
1314 /**
1315  * iget5_locked_rcu - obtain an inode from a mounted file system
1316  * @sb:         super block of file system
1317  * @hashval:    hash value (usually inode number) to get
1318  * @test:       callback used for comparisons between inodes
1319  * @set:        callback used to initialize a new struct inode
1320  * @data:       opaque data pointer to pass to @test and @set
1321  *
1322  * This is equivalent to iget5_locked, except the @test callback must
1323  * tolerate the inode not being stable, including being mid-teardown.
1324  */
1325 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
1326                 int (*test)(struct inode *, void *),
1327                 int (*set)(struct inode *, void *), void *data)
1328 {
1329         struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1330         struct inode *inode, *new;
1331 
1332 again:
1333         inode = find_inode(sb, head, test, data, false);
1334         if (inode) {
1335                 if (IS_ERR(inode))
1336                         return NULL;
1337                 wait_on_inode(inode);
1338                 if (unlikely(inode_unhashed(inode))) {
1339                         iput(inode);
1340                         goto again;
1341                 }
1342                 return inode;
1343         }
1344 
1345         new = alloc_inode(sb);
1346         if (new) {
1347                 inode = inode_insert5(new, hashval, test, set, data);
1348                 if (unlikely(inode != new))
1349                         destroy_inode(new);
1350         }
1351         return inode;
1352 }
1353 EXPORT_SYMBOL_GPL(iget5_locked_rcu);
1354 
1355 /**
1356  * iget_locked - obtain an inode from a mounted file system
1357  * @sb:         super block of file system
1358  * @ino:        inode number to get
1359  *
1360  * Search for the inode specified by @ino in the inode cache and if present
1361  * return it with an increased reference count. This is for file systems
1362  * where the inode number is sufficient for unique identification of an inode.
1363  *
1364  * If the inode is not in cache, allocate a new inode and return it locked,
1365  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1366  * before unlocking it via unlock_new_inode().
1367  */
1368 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1369 {
1370         struct hlist_head *head = inode_hashtable + hash(sb, ino);
1371         struct inode *inode;
1372 again:
1373         inode = find_inode_fast(sb, head, ino, false);
1374         if (inode) {
1375                 if (IS_ERR(inode))
1376                         return NULL;
1377                 wait_on_inode(inode);
1378                 if (unlikely(inode_unhashed(inode))) {
1379                         iput(inode);
1380                         goto again;
1381                 }
1382                 return inode;
1383         }
1384 
1385         inode = alloc_inode(sb);
1386         if (inode) {
1387                 struct inode *old;
1388 
1389                 spin_lock(&inode_hash_lock);
1390                 /* We released the lock, so.. */
1391                 old = find_inode_fast(sb, head, ino, true);
1392                 if (!old) {
1393                         inode->i_ino = ino;
1394                         spin_lock(&inode->i_lock);
1395                         inode->i_state = I_NEW;
1396                         hlist_add_head_rcu(&inode->i_hash, head);
1397                         spin_unlock(&inode->i_lock);
1398                         inode_sb_list_add(inode);
1399                         spin_unlock(&inode_hash_lock);
1400 
1401                         /* Return the locked inode with I_NEW set, the
1402                          * caller is responsible for filling in the contents
1403                          */
1404                         return inode;
1405                 }
1406 
1407                 /*
1408                  * Uhhuh, somebody else created the same inode under
1409                  * us. Use the old inode instead of the one we just
1410                  * allocated.
1411                  */
1412                 spin_unlock(&inode_hash_lock);
1413                 destroy_inode(inode);
1414                 if (IS_ERR(old))
1415                         return NULL;
1416                 inode = old;
1417                 wait_on_inode(inode);
1418                 if (unlikely(inode_unhashed(inode))) {
1419                         iput(inode);
1420                         goto again;
1421                 }
1422         }
1423         return inode;
1424 }
1425 EXPORT_SYMBOL(iget_locked);
1426 
1427 /*
1428  * search the inode cache for a matching inode number.
1429  * If we find one, then the inode number we are trying to
1430  * allocate is not unique and so we should not use it.
1431  *
1432  * Returns 1 if the inode number is unique, 0 if it is not.
1433  */
1434 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1435 {
1436         struct hlist_head *b = inode_hashtable + hash(sb, ino);
1437         struct inode *inode;
1438 
1439         hlist_for_each_entry_rcu(inode, b, i_hash) {
1440                 if (inode->i_ino == ino && inode->i_sb == sb)
1441                         return 0;
1442         }
1443         return 1;
1444 }
1445 
1446 /**
1447  *      iunique - get a unique inode number
1448  *      @sb: superblock
1449  *      @max_reserved: highest reserved inode number
1450  *
1451  *      Obtain an inode number that is unique on the system for a given
1452  *      superblock. This is used by file systems that have no natural
1453  *      permanent inode numbering system. An inode number is returned that
1454  *      is higher than the reserved limit but unique.
1455  *
1456  *      BUGS:
1457  *      With a large number of inodes live on the file system this function
1458  *      currently becomes quite slow.
1459  */
1460 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1461 {
1462         /*
1463          * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1464          * error if st_ino won't fit in target struct field. Use 32bit counter
1465          * here to attempt to avoid that.
1466          */
1467         static DEFINE_SPINLOCK(iunique_lock);
1468         static unsigned int counter;
1469         ino_t res;
1470 
1471         rcu_read_lock();
1472         spin_lock(&iunique_lock);
1473         do {
1474                 if (counter <= max_reserved)
1475                         counter = max_reserved + 1;
1476                 res = counter++;
1477         } while (!test_inode_iunique(sb, res));
1478         spin_unlock(&iunique_lock);
1479         rcu_read_unlock();
1480 
1481         return res;
1482 }
1483 EXPORT_SYMBOL(iunique);
1484 
1485 struct inode *igrab(struct inode *inode)
1486 {
1487         spin_lock(&inode->i_lock);
1488         if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1489                 __iget(inode);
1490                 spin_unlock(&inode->i_lock);
1491         } else {
1492                 spin_unlock(&inode->i_lock);
1493                 /*
1494                  * Handle the case where s_op->clear_inode is not been
1495                  * called yet, and somebody is calling igrab
1496                  * while the inode is getting freed.
1497                  */
1498                 inode = NULL;
1499         }
1500         return inode;
1501 }
1502 EXPORT_SYMBOL(igrab);
1503 
1504 /**
1505  * ilookup5_nowait - search for an inode in the inode cache
1506  * @sb:         super block of file system to search
1507  * @hashval:    hash value (usually inode number) to search for
1508  * @test:       callback used for comparisons between inodes
1509  * @data:       opaque data pointer to pass to @test
1510  *
1511  * Search for the inode specified by @hashval and @data in the inode cache.
1512  * If the inode is in the cache, the inode is returned with an incremented
1513  * reference count.
1514  *
1515  * Note: I_NEW is not waited upon so you have to be very careful what you do
1516  * with the returned inode.  You probably should be using ilookup5() instead.
1517  *
1518  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1519  */
1520 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1521                 int (*test)(struct inode *, void *), void *data)
1522 {
1523         struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1524         struct inode *inode;
1525 
1526         spin_lock(&inode_hash_lock);
1527         inode = find_inode(sb, head, test, data, true);
1528         spin_unlock(&inode_hash_lock);
1529 
1530         return IS_ERR(inode) ? NULL : inode;
1531 }
1532 EXPORT_SYMBOL(ilookup5_nowait);
1533 
1534 /**
1535  * ilookup5 - search for an inode in the inode cache
1536  * @sb:         super block of file system to search
1537  * @hashval:    hash value (usually inode number) to search for
1538  * @test:       callback used for comparisons between inodes
1539  * @data:       opaque data pointer to pass to @test
1540  *
1541  * Search for the inode specified by @hashval and @data in the inode cache,
1542  * and if the inode is in the cache, return the inode with an incremented
1543  * reference count.  Waits on I_NEW before returning the inode.
1544  * returned with an incremented reference count.
1545  *
1546  * This is a generalized version of ilookup() for file systems where the
1547  * inode number is not sufficient for unique identification of an inode.
1548  *
1549  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1550  */
1551 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1552                 int (*test)(struct inode *, void *), void *data)
1553 {
1554         struct inode *inode;
1555 again:
1556         inode = ilookup5_nowait(sb, hashval, test, data);
1557         if (inode) {
1558                 wait_on_inode(inode);
1559                 if (unlikely(inode_unhashed(inode))) {
1560                         iput(inode);
1561                         goto again;
1562                 }
1563         }
1564         return inode;
1565 }
1566 EXPORT_SYMBOL(ilookup5);
1567 
1568 /**
1569  * ilookup - search for an inode in the inode cache
1570  * @sb:         super block of file system to search
1571  * @ino:        inode number to search for
1572  *
1573  * Search for the inode @ino in the inode cache, and if the inode is in the
1574  * cache, the inode is returned with an incremented reference count.
1575  */
1576 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1577 {
1578         struct hlist_head *head = inode_hashtable + hash(sb, ino);
1579         struct inode *inode;
1580 again:
1581         inode = find_inode_fast(sb, head, ino, false);
1582 
1583         if (inode) {
1584                 if (IS_ERR(inode))
1585                         return NULL;
1586                 wait_on_inode(inode);
1587                 if (unlikely(inode_unhashed(inode))) {
1588                         iput(inode);
1589                         goto again;
1590                 }
1591         }
1592         return inode;
1593 }
1594 EXPORT_SYMBOL(ilookup);
1595 
1596 /**
1597  * find_inode_nowait - find an inode in the inode cache
1598  * @sb:         super block of file system to search
1599  * @hashval:    hash value (usually inode number) to search for
1600  * @match:      callback used for comparisons between inodes
1601  * @data:       opaque data pointer to pass to @match
1602  *
1603  * Search for the inode specified by @hashval and @data in the inode
1604  * cache, where the helper function @match will return 0 if the inode
1605  * does not match, 1 if the inode does match, and -1 if the search
1606  * should be stopped.  The @match function must be responsible for
1607  * taking the i_lock spin_lock and checking i_state for an inode being
1608  * freed or being initialized, and incrementing the reference count
1609  * before returning 1.  It also must not sleep, since it is called with
1610  * the inode_hash_lock spinlock held.
1611  *
1612  * This is a even more generalized version of ilookup5() when the
1613  * function must never block --- find_inode() can block in
1614  * __wait_on_freeing_inode() --- or when the caller can not increment
1615  * the reference count because the resulting iput() might cause an
1616  * inode eviction.  The tradeoff is that the @match funtion must be
1617  * very carefully implemented.
1618  */
1619 struct inode *find_inode_nowait(struct super_block *sb,
1620                                 unsigned long hashval,
1621                                 int (*match)(struct inode *, unsigned long,
1622                                              void *),
1623                                 void *data)
1624 {
1625         struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1626         struct inode *inode, *ret_inode = NULL;
1627         int mval;
1628 
1629         spin_lock(&inode_hash_lock);
1630         hlist_for_each_entry(inode, head, i_hash) {
1631                 if (inode->i_sb != sb)
1632                         continue;
1633                 mval = match(inode, hashval, data);
1634                 if (mval == 0)
1635                         continue;
1636                 if (mval == 1)
1637                         ret_inode = inode;
1638                 goto out;
1639         }
1640 out:
1641         spin_unlock(&inode_hash_lock);
1642         return ret_inode;
1643 }
1644 EXPORT_SYMBOL(find_inode_nowait);
1645 
1646 /**
1647  * find_inode_rcu - find an inode in the inode cache
1648  * @sb:         Super block of file system to search
1649  * @hashval:    Key to hash
1650  * @test:       Function to test match on an inode
1651  * @data:       Data for test function
1652  *
1653  * Search for the inode specified by @hashval and @data in the inode cache,
1654  * where the helper function @test will return 0 if the inode does not match
1655  * and 1 if it does.  The @test function must be responsible for taking the
1656  * i_lock spin_lock and checking i_state for an inode being freed or being
1657  * initialized.
1658  *
1659  * If successful, this will return the inode for which the @test function
1660  * returned 1 and NULL otherwise.
1661  *
1662  * The @test function is not permitted to take a ref on any inode presented.
1663  * It is also not permitted to sleep.
1664  *
1665  * The caller must hold the RCU read lock.
1666  */
1667 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1668                              int (*test)(struct inode *, void *), void *data)
1669 {
1670         struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1671         struct inode *inode;
1672 
1673         RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1674                          "suspicious find_inode_rcu() usage");
1675 
1676         hlist_for_each_entry_rcu(inode, head, i_hash) {
1677                 if (inode->i_sb == sb &&
1678                     !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1679                     test(inode, data))
1680                         return inode;
1681         }
1682         return NULL;
1683 }
1684 EXPORT_SYMBOL(find_inode_rcu);
1685 
1686 /**
1687  * find_inode_by_ino_rcu - Find an inode in the inode cache
1688  * @sb:         Super block of file system to search
1689  * @ino:        The inode number to match
1690  *
1691  * Search for the inode specified by @hashval and @data in the inode cache,
1692  * where the helper function @test will return 0 if the inode does not match
1693  * and 1 if it does.  The @test function must be responsible for taking the
1694  * i_lock spin_lock and checking i_state for an inode being freed or being
1695  * initialized.
1696  *
1697  * If successful, this will return the inode for which the @test function
1698  * returned 1 and NULL otherwise.
1699  *
1700  * The @test function is not permitted to take a ref on any inode presented.
1701  * It is also not permitted to sleep.
1702  *
1703  * The caller must hold the RCU read lock.
1704  */
1705 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1706                                     unsigned long ino)
1707 {
1708         struct hlist_head *head = inode_hashtable + hash(sb, ino);
1709         struct inode *inode;
1710 
1711         RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1712                          "suspicious find_inode_by_ino_rcu() usage");
1713 
1714         hlist_for_each_entry_rcu(inode, head, i_hash) {
1715                 if (inode->i_ino == ino &&
1716                     inode->i_sb == sb &&
1717                     !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1718                     return inode;
1719         }
1720         return NULL;
1721 }
1722 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1723 
1724 int insert_inode_locked(struct inode *inode)
1725 {
1726         struct super_block *sb = inode->i_sb;
1727         ino_t ino = inode->i_ino;
1728         struct hlist_head *head = inode_hashtable + hash(sb, ino);
1729 
1730         while (1) {
1731                 struct inode *old = NULL;
1732                 spin_lock(&inode_hash_lock);
1733                 hlist_for_each_entry(old, head, i_hash) {
1734                         if (old->i_ino != ino)
1735                                 continue;
1736                         if (old->i_sb != sb)
1737                                 continue;
1738                         spin_lock(&old->i_lock);
1739                         if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1740                                 spin_unlock(&old->i_lock);
1741                                 continue;
1742                         }
1743                         break;
1744                 }
1745                 if (likely(!old)) {
1746                         spin_lock(&inode->i_lock);
1747                         inode->i_state |= I_NEW | I_CREATING;
1748                         hlist_add_head_rcu(&inode->i_hash, head);
1749                         spin_unlock(&inode->i_lock);
1750                         spin_unlock(&inode_hash_lock);
1751                         return 0;
1752                 }
1753                 if (unlikely(old->i_state & I_CREATING)) {
1754                         spin_unlock(&old->i_lock);
1755                         spin_unlock(&inode_hash_lock);
1756                         return -EBUSY;
1757                 }
1758                 __iget(old);
1759                 spin_unlock(&old->i_lock);
1760                 spin_unlock(&inode_hash_lock);
1761                 wait_on_inode(old);
1762                 if (unlikely(!inode_unhashed(old))) {
1763                         iput(old);
1764                         return -EBUSY;
1765                 }
1766                 iput(old);
1767         }
1768 }
1769 EXPORT_SYMBOL(insert_inode_locked);
1770 
1771 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1772                 int (*test)(struct inode *, void *), void *data)
1773 {
1774         struct inode *old;
1775 
1776         inode->i_state |= I_CREATING;
1777         old = inode_insert5(inode, hashval, test, NULL, data);
1778 
1779         if (old != inode) {
1780                 iput(old);
1781                 return -EBUSY;
1782         }
1783         return 0;
1784 }
1785 EXPORT_SYMBOL(insert_inode_locked4);
1786 
1787 
1788 int generic_delete_inode(struct inode *inode)
1789 {
1790         return 1;
1791 }
1792 EXPORT_SYMBOL(generic_delete_inode);
1793 
1794 /*
1795  * Called when we're dropping the last reference
1796  * to an inode.
1797  *
1798  * Call the FS "drop_inode()" function, defaulting to
1799  * the legacy UNIX filesystem behaviour.  If it tells
1800  * us to evict inode, do so.  Otherwise, retain inode
1801  * in cache if fs is alive, sync and evict if fs is
1802  * shutting down.
1803  */
1804 static void iput_final(struct inode *inode)
1805 {
1806         struct super_block *sb = inode->i_sb;
1807         const struct super_operations *op = inode->i_sb->s_op;
1808         unsigned long state;
1809         int drop;
1810 
1811         WARN_ON(inode->i_state & I_NEW);
1812 
1813         if (op->drop_inode)
1814                 drop = op->drop_inode(inode);
1815         else
1816                 drop = generic_drop_inode(inode);
1817 
1818         if (!drop &&
1819             !(inode->i_state & I_DONTCACHE) &&
1820             (sb->s_flags & SB_ACTIVE)) {
1821                 __inode_add_lru(inode, true);
1822                 spin_unlock(&inode->i_lock);
1823                 return;
1824         }
1825 
1826         state = inode->i_state;
1827         if (!drop) {
1828                 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1829                 spin_unlock(&inode->i_lock);
1830 
1831                 write_inode_now(inode, 1);
1832 
1833                 spin_lock(&inode->i_lock);
1834                 state = inode->i_state;
1835                 WARN_ON(state & I_NEW);
1836                 state &= ~I_WILL_FREE;
1837         }
1838 
1839         WRITE_ONCE(inode->i_state, state | I_FREEING);
1840         if (!list_empty(&inode->i_lru))
1841                 inode_lru_list_del(inode);
1842         spin_unlock(&inode->i_lock);
1843 
1844         evict(inode);
1845 }
1846 
1847 /**
1848  *      iput    - put an inode
1849  *      @inode: inode to put
1850  *
1851  *      Puts an inode, dropping its usage count. If the inode use count hits
1852  *      zero, the inode is then freed and may also be destroyed.
1853  *
1854  *      Consequently, iput() can sleep.
1855  */
1856 void iput(struct inode *inode)
1857 {
1858         if (!inode)
1859                 return;
1860         BUG_ON(inode->i_state & I_CLEAR);
1861 retry:
1862         if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1863                 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1864                         atomic_inc(&inode->i_count);
1865                         spin_unlock(&inode->i_lock);
1866                         trace_writeback_lazytime_iput(inode);
1867                         mark_inode_dirty_sync(inode);
1868                         goto retry;
1869                 }
1870                 iput_final(inode);
1871         }
1872 }
1873 EXPORT_SYMBOL(iput);
1874 
1875 #ifdef CONFIG_BLOCK
1876 /**
1877  *      bmap    - find a block number in a file
1878  *      @inode:  inode owning the block number being requested
1879  *      @block: pointer containing the block to find
1880  *
1881  *      Replaces the value in ``*block`` with the block number on the device holding
1882  *      corresponding to the requested block number in the file.
1883  *      That is, asked for block 4 of inode 1 the function will replace the
1884  *      4 in ``*block``, with disk block relative to the disk start that holds that
1885  *      block of the file.
1886  *
1887  *      Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1888  *      hole, returns 0 and ``*block`` is also set to 0.
1889  */
1890 int bmap(struct inode *inode, sector_t *block)
1891 {
1892         if (!inode->i_mapping->a_ops->bmap)
1893                 return -EINVAL;
1894 
1895         *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1896         return 0;
1897 }
1898 EXPORT_SYMBOL(bmap);
1899 #endif
1900 
1901 /*
1902  * With relative atime, only update atime if the previous atime is
1903  * earlier than or equal to either the ctime or mtime,
1904  * or if at least a day has passed since the last atime update.
1905  */
1906 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1907                              struct timespec64 now)
1908 {
1909         struct timespec64 atime, mtime, ctime;
1910 
1911         if (!(mnt->mnt_flags & MNT_RELATIME))
1912                 return true;
1913         /*
1914          * Is mtime younger than or equal to atime? If yes, update atime:
1915          */
1916         atime = inode_get_atime(inode);
1917         mtime = inode_get_mtime(inode);
1918         if (timespec64_compare(&mtime, &atime) >= 0)
1919                 return true;
1920         /*
1921          * Is ctime younger than or equal to atime? If yes, update atime:
1922          */
1923         ctime = inode_get_ctime(inode);
1924         if (timespec64_compare(&ctime, &atime) >= 0)
1925                 return true;
1926 
1927         /*
1928          * Is the previous atime value older than a day? If yes,
1929          * update atime:
1930          */
1931         if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1932                 return true;
1933         /*
1934          * Good, we can skip the atime update:
1935          */
1936         return false;
1937 }
1938 
1939 /**
1940  * inode_update_timestamps - update the timestamps on the inode
1941  * @inode: inode to be updated
1942  * @flags: S_* flags that needed to be updated
1943  *
1944  * The update_time function is called when an inode's timestamps need to be
1945  * updated for a read or write operation. This function handles updating the
1946  * actual timestamps. It's up to the caller to ensure that the inode is marked
1947  * dirty appropriately.
1948  *
1949  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1950  * attempt to update all three of them. S_ATIME updates can be handled
1951  * independently of the rest.
1952  *
1953  * Returns a set of S_* flags indicating which values changed.
1954  */
1955 int inode_update_timestamps(struct inode *inode, int flags)
1956 {
1957         int updated = 0;
1958         struct timespec64 now;
1959 
1960         if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1961                 struct timespec64 ctime = inode_get_ctime(inode);
1962                 struct timespec64 mtime = inode_get_mtime(inode);
1963 
1964                 now = inode_set_ctime_current(inode);
1965                 if (!timespec64_equal(&now, &ctime))
1966                         updated |= S_CTIME;
1967                 if (!timespec64_equal(&now, &mtime)) {
1968                         inode_set_mtime_to_ts(inode, now);
1969                         updated |= S_MTIME;
1970                 }
1971                 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1972                         updated |= S_VERSION;
1973         } else {
1974                 now = current_time(inode);
1975         }
1976 
1977         if (flags & S_ATIME) {
1978                 struct timespec64 atime = inode_get_atime(inode);
1979 
1980                 if (!timespec64_equal(&now, &atime)) {
1981                         inode_set_atime_to_ts(inode, now);
1982                         updated |= S_ATIME;
1983                 }
1984         }
1985         return updated;
1986 }
1987 EXPORT_SYMBOL(inode_update_timestamps);
1988 
1989 /**
1990  * generic_update_time - update the timestamps on the inode
1991  * @inode: inode to be updated
1992  * @flags: S_* flags that needed to be updated
1993  *
1994  * The update_time function is called when an inode's timestamps need to be
1995  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1996  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1997  * updates can be handled done independently of the rest.
1998  *
1999  * Returns a S_* mask indicating which fields were updated.
2000  */
2001 int generic_update_time(struct inode *inode, int flags)
2002 {
2003         int updated = inode_update_timestamps(inode, flags);
2004         int dirty_flags = 0;
2005 
2006         if (updated & (S_ATIME|S_MTIME|S_CTIME))
2007                 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
2008         if (updated & S_VERSION)
2009                 dirty_flags |= I_DIRTY_SYNC;
2010         __mark_inode_dirty(inode, dirty_flags);
2011         return updated;
2012 }
2013 EXPORT_SYMBOL(generic_update_time);
2014 
2015 /*
2016  * This does the actual work of updating an inodes time or version.  Must have
2017  * had called mnt_want_write() before calling this.
2018  */
2019 int inode_update_time(struct inode *inode, int flags)
2020 {
2021         if (inode->i_op->update_time)
2022                 return inode->i_op->update_time(inode, flags);
2023         generic_update_time(inode, flags);
2024         return 0;
2025 }
2026 EXPORT_SYMBOL(inode_update_time);
2027 
2028 /**
2029  *      atime_needs_update      -       update the access time
2030  *      @path: the &struct path to update
2031  *      @inode: inode to update
2032  *
2033  *      Update the accessed time on an inode and mark it for writeback.
2034  *      This function automatically handles read only file systems and media,
2035  *      as well as the "noatime" flag and inode specific "noatime" markers.
2036  */
2037 bool atime_needs_update(const struct path *path, struct inode *inode)
2038 {
2039         struct vfsmount *mnt = path->mnt;
2040         struct timespec64 now, atime;
2041 
2042         if (inode->i_flags & S_NOATIME)
2043                 return false;
2044 
2045         /* Atime updates will likely cause i_uid and i_gid to be written
2046          * back improprely if their true value is unknown to the vfs.
2047          */
2048         if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2049                 return false;
2050 
2051         if (IS_NOATIME(inode))
2052                 return false;
2053         if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2054                 return false;
2055 
2056         if (mnt->mnt_flags & MNT_NOATIME)
2057                 return false;
2058         if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2059                 return false;
2060 
2061         now = current_time(inode);
2062 
2063         if (!relatime_need_update(mnt, inode, now))
2064                 return false;
2065 
2066         atime = inode_get_atime(inode);
2067         if (timespec64_equal(&atime, &now))
2068                 return false;
2069 
2070         return true;
2071 }
2072 
2073 void touch_atime(const struct path *path)
2074 {
2075         struct vfsmount *mnt = path->mnt;
2076         struct inode *inode = d_inode(path->dentry);
2077 
2078         if (!atime_needs_update(path, inode))
2079                 return;
2080 
2081         if (!sb_start_write_trylock(inode->i_sb))
2082                 return;
2083 
2084         if (mnt_get_write_access(mnt) != 0)
2085                 goto skip_update;
2086         /*
2087          * File systems can error out when updating inodes if they need to
2088          * allocate new space to modify an inode (such is the case for
2089          * Btrfs), but since we touch atime while walking down the path we
2090          * really don't care if we failed to update the atime of the file,
2091          * so just ignore the return value.
2092          * We may also fail on filesystems that have the ability to make parts
2093          * of the fs read only, e.g. subvolumes in Btrfs.
2094          */
2095         inode_update_time(inode, S_ATIME);
2096         mnt_put_write_access(mnt);
2097 skip_update:
2098         sb_end_write(inode->i_sb);
2099 }
2100 EXPORT_SYMBOL(touch_atime);
2101 
2102 /*
2103  * Return mask of changes for notify_change() that need to be done as a
2104  * response to write or truncate. Return 0 if nothing has to be changed.
2105  * Negative value on error (change should be denied).
2106  */
2107 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2108                               struct dentry *dentry)
2109 {
2110         struct inode *inode = d_inode(dentry);
2111         int mask = 0;
2112         int ret;
2113 
2114         if (IS_NOSEC(inode))
2115                 return 0;
2116 
2117         mask = setattr_should_drop_suidgid(idmap, inode);
2118         ret = security_inode_need_killpriv(dentry);
2119         if (ret < 0)
2120                 return ret;
2121         if (ret)
2122                 mask |= ATTR_KILL_PRIV;
2123         return mask;
2124 }
2125 
2126 static int __remove_privs(struct mnt_idmap *idmap,
2127                           struct dentry *dentry, int kill)
2128 {
2129         struct iattr newattrs;
2130 
2131         newattrs.ia_valid = ATTR_FORCE | kill;
2132         /*
2133          * Note we call this on write, so notify_change will not
2134          * encounter any conflicting delegations:
2135          */
2136         return notify_change(idmap, dentry, &newattrs, NULL);
2137 }
2138 
2139 int file_remove_privs_flags(struct file *file, unsigned int flags)
2140 {
2141         struct dentry *dentry = file_dentry(file);
2142         struct inode *inode = file_inode(file);
2143         int error = 0;
2144         int kill;
2145 
2146         if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2147                 return 0;
2148 
2149         kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2150         if (kill < 0)
2151                 return kill;
2152 
2153         if (kill) {
2154                 if (flags & IOCB_NOWAIT)
2155                         return -EAGAIN;
2156 
2157                 error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2158         }
2159 
2160         if (!error)
2161                 inode_has_no_xattr(inode);
2162         return error;
2163 }
2164 EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2165 
2166 /**
2167  * file_remove_privs - remove special file privileges (suid, capabilities)
2168  * @file: file to remove privileges from
2169  *
2170  * When file is modified by a write or truncation ensure that special
2171  * file privileges are removed.
2172  *
2173  * Return: 0 on success, negative errno on failure.
2174  */
2175 int file_remove_privs(struct file *file)
2176 {
2177         return file_remove_privs_flags(file, 0);
2178 }
2179 EXPORT_SYMBOL(file_remove_privs);
2180 
2181 static int inode_needs_update_time(struct inode *inode)
2182 {
2183         int sync_it = 0;
2184         struct timespec64 now = current_time(inode);
2185         struct timespec64 ts;
2186 
2187         /* First try to exhaust all avenues to not sync */
2188         if (IS_NOCMTIME(inode))
2189                 return 0;
2190 
2191         ts = inode_get_mtime(inode);
2192         if (!timespec64_equal(&ts, &now))
2193                 sync_it = S_MTIME;
2194 
2195         ts = inode_get_ctime(inode);
2196         if (!timespec64_equal(&ts, &now))
2197                 sync_it |= S_CTIME;
2198 
2199         if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2200                 sync_it |= S_VERSION;
2201 
2202         return sync_it;
2203 }
2204 
2205 static int __file_update_time(struct file *file, int sync_mode)
2206 {
2207         int ret = 0;
2208         struct inode *inode = file_inode(file);
2209 
2210         /* try to update time settings */
2211         if (!mnt_get_write_access_file(file)) {
2212                 ret = inode_update_time(inode, sync_mode);
2213                 mnt_put_write_access_file(file);
2214         }
2215 
2216         return ret;
2217 }
2218 
2219 /**
2220  * file_update_time - update mtime and ctime time
2221  * @file: file accessed
2222  *
2223  * Update the mtime and ctime members of an inode and mark the inode for
2224  * writeback. Note that this function is meant exclusively for usage in
2225  * the file write path of filesystems, and filesystems may choose to
2226  * explicitly ignore updates via this function with the _NOCMTIME inode
2227  * flag, e.g. for network filesystem where these imestamps are handled
2228  * by the server. This can return an error for file systems who need to
2229  * allocate space in order to update an inode.
2230  *
2231  * Return: 0 on success, negative errno on failure.
2232  */
2233 int file_update_time(struct file *file)
2234 {
2235         int ret;
2236         struct inode *inode = file_inode(file);
2237 
2238         ret = inode_needs_update_time(inode);
2239         if (ret <= 0)
2240                 return ret;
2241 
2242         return __file_update_time(file, ret);
2243 }
2244 EXPORT_SYMBOL(file_update_time);
2245 
2246 /**
2247  * file_modified_flags - handle mandated vfs changes when modifying a file
2248  * @file: file that was modified
2249  * @flags: kiocb flags
2250  *
2251  * When file has been modified ensure that special
2252  * file privileges are removed and time settings are updated.
2253  *
2254  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2255  * time settings will not be updated. It will return -EAGAIN.
2256  *
2257  * Context: Caller must hold the file's inode lock.
2258  *
2259  * Return: 0 on success, negative errno on failure.
2260  */
2261 static int file_modified_flags(struct file *file, int flags)
2262 {
2263         int ret;
2264         struct inode *inode = file_inode(file);
2265 
2266         /*
2267          * Clear the security bits if the process is not being run by root.
2268          * This keeps people from modifying setuid and setgid binaries.
2269          */
2270         ret = file_remove_privs_flags(file, flags);
2271         if (ret)
2272                 return ret;
2273 
2274         if (unlikely(file->f_mode & FMODE_NOCMTIME))
2275                 return 0;
2276 
2277         ret = inode_needs_update_time(inode);
2278         if (ret <= 0)
2279                 return ret;
2280         if (flags & IOCB_NOWAIT)
2281                 return -EAGAIN;
2282 
2283         return __file_update_time(file, ret);
2284 }
2285 
2286 /**
2287  * file_modified - handle mandated vfs changes when modifying a file
2288  * @file: file that was modified
2289  *
2290  * When file has been modified ensure that special
2291  * file privileges are removed and time settings are updated.
2292  *
2293  * Context: Caller must hold the file's inode lock.
2294  *
2295  * Return: 0 on success, negative errno on failure.
2296  */
2297 int file_modified(struct file *file)
2298 {
2299         return file_modified_flags(file, 0);
2300 }
2301 EXPORT_SYMBOL(file_modified);
2302 
2303 /**
2304  * kiocb_modified - handle mandated vfs changes when modifying a file
2305  * @iocb: iocb that was modified
2306  *
2307  * When file has been modified ensure that special
2308  * file privileges are removed and time settings are updated.
2309  *
2310  * Context: Caller must hold the file's inode lock.
2311  *
2312  * Return: 0 on success, negative errno on failure.
2313  */
2314 int kiocb_modified(struct kiocb *iocb)
2315 {
2316         return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2317 }
2318 EXPORT_SYMBOL_GPL(kiocb_modified);
2319 
2320 int inode_needs_sync(struct inode *inode)
2321 {
2322         if (IS_SYNC(inode))
2323                 return 1;
2324         if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2325                 return 1;
2326         return 0;
2327 }
2328 EXPORT_SYMBOL(inode_needs_sync);
2329 
2330 /*
2331  * If we try to find an inode in the inode hash while it is being
2332  * deleted, we have to wait until the filesystem completes its
2333  * deletion before reporting that it isn't found.  This function waits
2334  * until the deletion _might_ have completed.  Callers are responsible
2335  * to recheck inode state.
2336  *
2337  * It doesn't matter if I_NEW is not set initially, a call to
2338  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2339  * will DTRT.
2340  */
2341 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked)
2342 {
2343         wait_queue_head_t *wq;
2344         DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2345 
2346         /*
2347          * Handle racing against evict(), see that routine for more details.
2348          */
2349         if (unlikely(inode_unhashed(inode))) {
2350                 WARN_ON(is_inode_hash_locked);
2351                 spin_unlock(&inode->i_lock);
2352                 return;
2353         }
2354 
2355         wq = bit_waitqueue(&inode->i_state, __I_NEW);
2356         prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2357         spin_unlock(&inode->i_lock);
2358         rcu_read_unlock();
2359         if (is_inode_hash_locked)
2360                 spin_unlock(&inode_hash_lock);
2361         schedule();
2362         finish_wait(wq, &wait.wq_entry);
2363         if (is_inode_hash_locked)
2364                 spin_lock(&inode_hash_lock);
2365         rcu_read_lock();
2366 }
2367 
2368 static __initdata unsigned long ihash_entries;
2369 static int __init set_ihash_entries(char *str)
2370 {
2371         if (!str)
2372                 return 0;
2373         ihash_entries = simple_strtoul(str, &str, 0);
2374         return 1;
2375 }
2376 __setup("ihash_entries=", set_ihash_entries);
2377 
2378 /*
2379  * Initialize the waitqueues and inode hash table.
2380  */
2381 void __init inode_init_early(void)
2382 {
2383         /* If hashes are distributed across NUMA nodes, defer
2384          * hash allocation until vmalloc space is available.
2385          */
2386         if (hashdist)
2387                 return;
2388 
2389         inode_hashtable =
2390                 alloc_large_system_hash("Inode-cache",
2391                                         sizeof(struct hlist_head),
2392                                         ihash_entries,
2393                                         14,
2394                                         HASH_EARLY | HASH_ZERO,
2395                                         &i_hash_shift,
2396                                         &i_hash_mask,
2397                                         0,
2398                                         0);
2399 }
2400 
2401 void __init inode_init(void)
2402 {
2403         /* inode slab cache */
2404         inode_cachep = kmem_cache_create("inode_cache",
2405                                          sizeof(struct inode),
2406                                          0,
2407                                          (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2408                                          SLAB_ACCOUNT),
2409                                          init_once);
2410 
2411         /* Hash may have been set up in inode_init_early */
2412         if (!hashdist)
2413                 return;
2414 
2415         inode_hashtable =
2416                 alloc_large_system_hash("Inode-cache",
2417                                         sizeof(struct hlist_head),
2418                                         ihash_entries,
2419                                         14,
2420                                         HASH_ZERO,
2421                                         &i_hash_shift,
2422                                         &i_hash_mask,
2423                                         0,
2424                                         0);
2425 }
2426 
2427 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2428 {
2429         inode->i_mode = mode;
2430         if (S_ISCHR(mode)) {
2431                 inode->i_fop = &def_chr_fops;
2432                 inode->i_rdev = rdev;
2433         } else if (S_ISBLK(mode)) {
2434                 if (IS_ENABLED(CONFIG_BLOCK))
2435                         inode->i_fop = &def_blk_fops;
2436                 inode->i_rdev = rdev;
2437         } else if (S_ISFIFO(mode))
2438                 inode->i_fop = &pipefifo_fops;
2439         else if (S_ISSOCK(mode))
2440                 ;       /* leave it no_open_fops */
2441         else
2442                 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2443                                   " inode %s:%lu\n", mode, inode->i_sb->s_id,
2444                                   inode->i_ino);
2445 }
2446 EXPORT_SYMBOL(init_special_inode);
2447 
2448 /**
2449  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2450  * @idmap: idmap of the mount the inode was created from
2451  * @inode: New inode
2452  * @dir: Directory inode
2453  * @mode: mode of the new inode
2454  *
2455  * If the inode has been created through an idmapped mount the idmap of
2456  * the vfsmount must be passed through @idmap. This function will then take
2457  * care to map the inode according to @idmap before checking permissions
2458  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2459  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2460  */
2461 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2462                       const struct inode *dir, umode_t mode)
2463 {
2464         inode_fsuid_set(inode, idmap);
2465         if (dir && dir->i_mode & S_ISGID) {
2466                 inode->i_gid = dir->i_gid;
2467 
2468                 /* Directories are special, and always inherit S_ISGID */
2469                 if (S_ISDIR(mode))
2470                         mode |= S_ISGID;
2471         } else
2472                 inode_fsgid_set(inode, idmap);
2473         inode->i_mode = mode;
2474 }
2475 EXPORT_SYMBOL(inode_init_owner);
2476 
2477 /**
2478  * inode_owner_or_capable - check current task permissions to inode
2479  * @idmap: idmap of the mount the inode was found from
2480  * @inode: inode being checked
2481  *
2482  * Return true if current either has CAP_FOWNER in a namespace with the
2483  * inode owner uid mapped, or owns the file.
2484  *
2485  * If the inode has been found through an idmapped mount the idmap of
2486  * the vfsmount must be passed through @idmap. This function will then take
2487  * care to map the inode according to @idmap before checking permissions.
2488  * On non-idmapped mounts or if permission checking is to be performed on the
2489  * raw inode simply pass @nop_mnt_idmap.
2490  */
2491 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2492                             const struct inode *inode)
2493 {
2494         vfsuid_t vfsuid;
2495         struct user_namespace *ns;
2496 
2497         vfsuid = i_uid_into_vfsuid(idmap, inode);
2498         if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2499                 return true;
2500 
2501         ns = current_user_ns();
2502         if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2503                 return true;
2504         return false;
2505 }
2506 EXPORT_SYMBOL(inode_owner_or_capable);
2507 
2508 /*
2509  * Direct i/o helper functions
2510  */
2511 static void __inode_dio_wait(struct inode *inode)
2512 {
2513         wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2514         DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2515 
2516         do {
2517                 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2518                 if (atomic_read(&inode->i_dio_count))
2519                         schedule();
2520         } while (atomic_read(&inode->i_dio_count));
2521         finish_wait(wq, &q.wq_entry);
2522 }
2523 
2524 /**
2525  * inode_dio_wait - wait for outstanding DIO requests to finish
2526  * @inode: inode to wait for
2527  *
2528  * Waits for all pending direct I/O requests to finish so that we can
2529  * proceed with a truncate or equivalent operation.
2530  *
2531  * Must be called under a lock that serializes taking new references
2532  * to i_dio_count, usually by inode->i_mutex.
2533  */
2534 void inode_dio_wait(struct inode *inode)
2535 {
2536         if (atomic_read(&inode->i_dio_count))
2537                 __inode_dio_wait(inode);
2538 }
2539 EXPORT_SYMBOL(inode_dio_wait);
2540 
2541 /*
2542  * inode_set_flags - atomically set some inode flags
2543  *
2544  * Note: the caller should be holding i_mutex, or else be sure that
2545  * they have exclusive access to the inode structure (i.e., while the
2546  * inode is being instantiated).  The reason for the cmpxchg() loop
2547  * --- which wouldn't be necessary if all code paths which modify
2548  * i_flags actually followed this rule, is that there is at least one
2549  * code path which doesn't today so we use cmpxchg() out of an abundance
2550  * of caution.
2551  *
2552  * In the long run, i_mutex is overkill, and we should probably look
2553  * at using the i_lock spinlock to protect i_flags, and then make sure
2554  * it is so documented in include/linux/fs.h and that all code follows
2555  * the locking convention!!
2556  */
2557 void inode_set_flags(struct inode *inode, unsigned int flags,
2558                      unsigned int mask)
2559 {
2560         WARN_ON_ONCE(flags & ~mask);
2561         set_mask_bits(&inode->i_flags, mask, flags);
2562 }
2563 EXPORT_SYMBOL(inode_set_flags);
2564 
2565 void inode_nohighmem(struct inode *inode)
2566 {
2567         mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2568 }
2569 EXPORT_SYMBOL(inode_nohighmem);
2570 
2571 /**
2572  * timestamp_truncate - Truncate timespec to a granularity
2573  * @t: Timespec
2574  * @inode: inode being updated
2575  *
2576  * Truncate a timespec to the granularity supported by the fs
2577  * containing the inode. Always rounds down. gran must
2578  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2579  */
2580 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2581 {
2582         struct super_block *sb = inode->i_sb;
2583         unsigned int gran = sb->s_time_gran;
2584 
2585         t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2586         if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2587                 t.tv_nsec = 0;
2588 
2589         /* Avoid division in the common cases 1 ns and 1 s. */
2590         if (gran == 1)
2591                 ; /* nothing */
2592         else if (gran == NSEC_PER_SEC)
2593                 t.tv_nsec = 0;
2594         else if (gran > 1 && gran < NSEC_PER_SEC)
2595                 t.tv_nsec -= t.tv_nsec % gran;
2596         else
2597                 WARN(1, "invalid file time granularity: %u", gran);
2598         return t;
2599 }
2600 EXPORT_SYMBOL(timestamp_truncate);
2601 
2602 /**
2603  * current_time - Return FS time
2604  * @inode: inode.
2605  *
2606  * Return the current time truncated to the time granularity supported by
2607  * the fs.
2608  *
2609  * Note that inode and inode->sb cannot be NULL.
2610  * Otherwise, the function warns and returns time without truncation.
2611  */
2612 struct timespec64 current_time(struct inode *inode)
2613 {
2614         struct timespec64 now;
2615 
2616         ktime_get_coarse_real_ts64(&now);
2617         return timestamp_truncate(now, inode);
2618 }
2619 EXPORT_SYMBOL(current_time);
2620 
2621 /**
2622  * inode_set_ctime_current - set the ctime to current_time
2623  * @inode: inode
2624  *
2625  * Set the inode->i_ctime to the current value for the inode. Returns
2626  * the current value that was assigned to i_ctime.
2627  */
2628 struct timespec64 inode_set_ctime_current(struct inode *inode)
2629 {
2630         struct timespec64 now = current_time(inode);
2631 
2632         inode_set_ctime_to_ts(inode, now);
2633         return now;
2634 }
2635 EXPORT_SYMBOL(inode_set_ctime_current);
2636 
2637 /**
2638  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2639  * @idmap:      idmap of the mount @inode was found from
2640  * @inode:      inode to check
2641  * @vfsgid:     the new/current vfsgid of @inode
2642  *
2643  * Check wether @vfsgid is in the caller's group list or if the caller is
2644  * privileged with CAP_FSETID over @inode. This can be used to determine
2645  * whether the setgid bit can be kept or must be dropped.
2646  *
2647  * Return: true if the caller is sufficiently privileged, false if not.
2648  */
2649 bool in_group_or_capable(struct mnt_idmap *idmap,
2650                          const struct inode *inode, vfsgid_t vfsgid)
2651 {
2652         if (vfsgid_in_group_p(vfsgid))
2653                 return true;
2654         if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2655                 return true;
2656         return false;
2657 }
2658 EXPORT_SYMBOL(in_group_or_capable);
2659 
2660 /**
2661  * mode_strip_sgid - handle the sgid bit for non-directories
2662  * @idmap: idmap of the mount the inode was created from
2663  * @dir: parent directory inode
2664  * @mode: mode of the file to be created in @dir
2665  *
2666  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2667  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2668  * either in the group of the parent directory or they have CAP_FSETID
2669  * in their user namespace and are privileged over the parent directory.
2670  * In all other cases, strip the S_ISGID bit from @mode.
2671  *
2672  * Return: the new mode to use for the file
2673  */
2674 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2675                         const struct inode *dir, umode_t mode)
2676 {
2677         if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2678                 return mode;
2679         if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2680                 return mode;
2681         if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2682                 return mode;
2683         return mode & ~S_ISGID;
2684 }
2685 EXPORT_SYMBOL(mode_strip_sgid);
2686 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php