1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2023 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length); 27 /* 28 * Structure allocated for each folio to track per-block uptodate, dirty state 29 * and I/O completions. 30 */ 31 struct iomap_folio_state { 32 spinlock_t state_lock; 33 unsigned int read_bytes_pending; 34 atomic_t write_bytes_pending; 35 36 /* 37 * Each block has two bits in this bitmap: 38 * Bits [0..blocks_per_folio) has the uptodate status. 39 * Bits [b_p_f...(2*b_p_f)) has the dirty status. 40 */ 41 unsigned long state[]; 42 }; 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static inline bool ifs_is_fully_uptodate(struct folio *folio, 47 struct iomap_folio_state *ifs) 48 { 49 struct inode *inode = folio->mapping->host; 50 51 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio)); 52 } 53 54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs, 55 unsigned int block) 56 { 57 return test_bit(block, ifs->state); 58 } 59 60 static bool ifs_set_range_uptodate(struct folio *folio, 61 struct iomap_folio_state *ifs, size_t off, size_t len) 62 { 63 struct inode *inode = folio->mapping->host; 64 unsigned int first_blk = off >> inode->i_blkbits; 65 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 66 unsigned int nr_blks = last_blk - first_blk + 1; 67 68 bitmap_set(ifs->state, first_blk, nr_blks); 69 return ifs_is_fully_uptodate(folio, ifs); 70 } 71 72 static void iomap_set_range_uptodate(struct folio *folio, size_t off, 73 size_t len) 74 { 75 struct iomap_folio_state *ifs = folio->private; 76 unsigned long flags; 77 bool uptodate = true; 78 79 if (ifs) { 80 spin_lock_irqsave(&ifs->state_lock, flags); 81 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 82 spin_unlock_irqrestore(&ifs->state_lock, flags); 83 } 84 85 if (uptodate) 86 folio_mark_uptodate(folio); 87 } 88 89 static inline bool ifs_block_is_dirty(struct folio *folio, 90 struct iomap_folio_state *ifs, int block) 91 { 92 struct inode *inode = folio->mapping->host; 93 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 94 95 return test_bit(block + blks_per_folio, ifs->state); 96 } 97 98 static unsigned ifs_find_dirty_range(struct folio *folio, 99 struct iomap_folio_state *ifs, u64 *range_start, u64 range_end) 100 { 101 struct inode *inode = folio->mapping->host; 102 unsigned start_blk = 103 offset_in_folio(folio, *range_start) >> inode->i_blkbits; 104 unsigned end_blk = min_not_zero( 105 offset_in_folio(folio, range_end) >> inode->i_blkbits, 106 i_blocks_per_folio(inode, folio)); 107 unsigned nblks = 1; 108 109 while (!ifs_block_is_dirty(folio, ifs, start_blk)) 110 if (++start_blk == end_blk) 111 return 0; 112 113 while (start_blk + nblks < end_blk) { 114 if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks)) 115 break; 116 nblks++; 117 } 118 119 *range_start = folio_pos(folio) + (start_blk << inode->i_blkbits); 120 return nblks << inode->i_blkbits; 121 } 122 123 static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start, 124 u64 range_end) 125 { 126 struct iomap_folio_state *ifs = folio->private; 127 128 if (*range_start >= range_end) 129 return 0; 130 131 if (ifs) 132 return ifs_find_dirty_range(folio, ifs, range_start, range_end); 133 return range_end - *range_start; 134 } 135 136 static void ifs_clear_range_dirty(struct folio *folio, 137 struct iomap_folio_state *ifs, size_t off, size_t len) 138 { 139 struct inode *inode = folio->mapping->host; 140 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 141 unsigned int first_blk = (off >> inode->i_blkbits); 142 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 143 unsigned int nr_blks = last_blk - first_blk + 1; 144 unsigned long flags; 145 146 spin_lock_irqsave(&ifs->state_lock, flags); 147 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks); 148 spin_unlock_irqrestore(&ifs->state_lock, flags); 149 } 150 151 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len) 152 { 153 struct iomap_folio_state *ifs = folio->private; 154 155 if (ifs) 156 ifs_clear_range_dirty(folio, ifs, off, len); 157 } 158 159 static void ifs_set_range_dirty(struct folio *folio, 160 struct iomap_folio_state *ifs, size_t off, size_t len) 161 { 162 struct inode *inode = folio->mapping->host; 163 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio); 164 unsigned int first_blk = (off >> inode->i_blkbits); 165 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits; 166 unsigned int nr_blks = last_blk - first_blk + 1; 167 unsigned long flags; 168 169 spin_lock_irqsave(&ifs->state_lock, flags); 170 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks); 171 spin_unlock_irqrestore(&ifs->state_lock, flags); 172 } 173 174 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len) 175 { 176 struct iomap_folio_state *ifs = folio->private; 177 178 if (ifs) 179 ifs_set_range_dirty(folio, ifs, off, len); 180 } 181 182 static struct iomap_folio_state *ifs_alloc(struct inode *inode, 183 struct folio *folio, unsigned int flags) 184 { 185 struct iomap_folio_state *ifs = folio->private; 186 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 187 gfp_t gfp; 188 189 if (ifs || nr_blocks <= 1) 190 return ifs; 191 192 if (flags & IOMAP_NOWAIT) 193 gfp = GFP_NOWAIT; 194 else 195 gfp = GFP_NOFS | __GFP_NOFAIL; 196 197 /* 198 * ifs->state tracks two sets of state flags when the 199 * filesystem block size is smaller than the folio size. 200 * The first state tracks per-block uptodate and the 201 * second tracks per-block dirty state. 202 */ 203 ifs = kzalloc(struct_size(ifs, state, 204 BITS_TO_LONGS(2 * nr_blocks)), gfp); 205 if (!ifs) 206 return ifs; 207 208 spin_lock_init(&ifs->state_lock); 209 if (folio_test_uptodate(folio)) 210 bitmap_set(ifs->state, 0, nr_blocks); 211 if (folio_test_dirty(folio)) 212 bitmap_set(ifs->state, nr_blocks, nr_blocks); 213 folio_attach_private(folio, ifs); 214 215 return ifs; 216 } 217 218 static void ifs_free(struct folio *folio) 219 { 220 struct iomap_folio_state *ifs = folio_detach_private(folio); 221 222 if (!ifs) 223 return; 224 WARN_ON_ONCE(ifs->read_bytes_pending != 0); 225 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending)); 226 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) != 227 folio_test_uptodate(folio)); 228 kfree(ifs); 229 } 230 231 /* 232 * Calculate the range inside the folio that we actually need to read. 233 */ 234 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 235 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 236 { 237 struct iomap_folio_state *ifs = folio->private; 238 loff_t orig_pos = *pos; 239 loff_t isize = i_size_read(inode); 240 unsigned block_bits = inode->i_blkbits; 241 unsigned block_size = (1 << block_bits); 242 size_t poff = offset_in_folio(folio, *pos); 243 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 244 size_t orig_plen = plen; 245 unsigned first = poff >> block_bits; 246 unsigned last = (poff + plen - 1) >> block_bits; 247 248 /* 249 * If the block size is smaller than the page size, we need to check the 250 * per-block uptodate status and adjust the offset and length if needed 251 * to avoid reading in already uptodate ranges. 252 */ 253 if (ifs) { 254 unsigned int i; 255 256 /* move forward for each leading block marked uptodate */ 257 for (i = first; i <= last; i++) { 258 if (!ifs_block_is_uptodate(ifs, i)) 259 break; 260 *pos += block_size; 261 poff += block_size; 262 plen -= block_size; 263 first++; 264 } 265 266 /* truncate len if we find any trailing uptodate block(s) */ 267 for ( ; i <= last; i++) { 268 if (ifs_block_is_uptodate(ifs, i)) { 269 plen -= (last - i + 1) * block_size; 270 last = i - 1; 271 break; 272 } 273 } 274 } 275 276 /* 277 * If the extent spans the block that contains the i_size, we need to 278 * handle both halves separately so that we properly zero data in the 279 * page cache for blocks that are entirely outside of i_size. 280 */ 281 if (orig_pos <= isize && orig_pos + orig_plen > isize) { 282 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 283 284 if (first <= end && last > end) 285 plen -= (last - end) * block_size; 286 } 287 288 *offp = poff; 289 *lenp = plen; 290 } 291 292 static void iomap_finish_folio_read(struct folio *folio, size_t off, 293 size_t len, int error) 294 { 295 struct iomap_folio_state *ifs = folio->private; 296 bool uptodate = !error; 297 bool finished = true; 298 299 if (ifs) { 300 unsigned long flags; 301 302 spin_lock_irqsave(&ifs->state_lock, flags); 303 if (!error) 304 uptodate = ifs_set_range_uptodate(folio, ifs, off, len); 305 ifs->read_bytes_pending -= len; 306 finished = !ifs->read_bytes_pending; 307 spin_unlock_irqrestore(&ifs->state_lock, flags); 308 } 309 310 if (finished) 311 folio_end_read(folio, uptodate); 312 } 313 314 static void iomap_read_end_io(struct bio *bio) 315 { 316 int error = blk_status_to_errno(bio->bi_status); 317 struct folio_iter fi; 318 319 bio_for_each_folio_all(fi, bio) 320 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 321 bio_put(bio); 322 } 323 324 struct iomap_readpage_ctx { 325 struct folio *cur_folio; 326 bool cur_folio_in_bio; 327 struct bio *bio; 328 struct readahead_control *rac; 329 }; 330 331 /** 332 * iomap_read_inline_data - copy inline data into the page cache 333 * @iter: iteration structure 334 * @folio: folio to copy to 335 * 336 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 337 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 338 * Returns zero for success to complete the read, or the usual negative errno. 339 */ 340 static int iomap_read_inline_data(const struct iomap_iter *iter, 341 struct folio *folio) 342 { 343 const struct iomap *iomap = iomap_iter_srcmap(iter); 344 size_t size = i_size_read(iter->inode) - iomap->offset; 345 size_t offset = offset_in_folio(folio, iomap->offset); 346 347 if (folio_test_uptodate(folio)) 348 return 0; 349 350 if (WARN_ON_ONCE(size > iomap->length)) 351 return -EIO; 352 if (offset > 0) 353 ifs_alloc(iter->inode, folio, iter->flags); 354 355 folio_fill_tail(folio, offset, iomap->inline_data, size); 356 iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset); 357 return 0; 358 } 359 360 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 361 loff_t pos) 362 { 363 const struct iomap *srcmap = iomap_iter_srcmap(iter); 364 365 return srcmap->type != IOMAP_MAPPED || 366 (srcmap->flags & IOMAP_F_NEW) || 367 pos >= i_size_read(iter->inode); 368 } 369 370 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 371 struct iomap_readpage_ctx *ctx, loff_t offset) 372 { 373 const struct iomap *iomap = &iter->iomap; 374 loff_t pos = iter->pos + offset; 375 loff_t length = iomap_length(iter) - offset; 376 struct folio *folio = ctx->cur_folio; 377 struct iomap_folio_state *ifs; 378 loff_t orig_pos = pos; 379 size_t poff, plen; 380 sector_t sector; 381 382 if (iomap->type == IOMAP_INLINE) 383 return iomap_read_inline_data(iter, folio); 384 385 /* zero post-eof blocks as the page may be mapped */ 386 ifs = ifs_alloc(iter->inode, folio, iter->flags); 387 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 388 if (plen == 0) 389 goto done; 390 391 if (iomap_block_needs_zeroing(iter, pos)) { 392 folio_zero_range(folio, poff, plen); 393 iomap_set_range_uptodate(folio, poff, plen); 394 goto done; 395 } 396 397 ctx->cur_folio_in_bio = true; 398 if (ifs) { 399 spin_lock_irq(&ifs->state_lock); 400 ifs->read_bytes_pending += plen; 401 spin_unlock_irq(&ifs->state_lock); 402 } 403 404 sector = iomap_sector(iomap, pos); 405 if (!ctx->bio || 406 bio_end_sector(ctx->bio) != sector || 407 !bio_add_folio(ctx->bio, folio, plen, poff)) { 408 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 409 gfp_t orig_gfp = gfp; 410 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 411 412 if (ctx->bio) 413 submit_bio(ctx->bio); 414 415 if (ctx->rac) /* same as readahead_gfp_mask */ 416 gfp |= __GFP_NORETRY | __GFP_NOWARN; 417 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 418 REQ_OP_READ, gfp); 419 /* 420 * If the bio_alloc fails, try it again for a single page to 421 * avoid having to deal with partial page reads. This emulates 422 * what do_mpage_read_folio does. 423 */ 424 if (!ctx->bio) { 425 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 426 orig_gfp); 427 } 428 if (ctx->rac) 429 ctx->bio->bi_opf |= REQ_RAHEAD; 430 ctx->bio->bi_iter.bi_sector = sector; 431 ctx->bio->bi_end_io = iomap_read_end_io; 432 bio_add_folio_nofail(ctx->bio, folio, plen, poff); 433 } 434 435 done: 436 /* 437 * Move the caller beyond our range so that it keeps making progress. 438 * For that, we have to include any leading non-uptodate ranges, but 439 * we can skip trailing ones as they will be handled in the next 440 * iteration. 441 */ 442 return pos - orig_pos + plen; 443 } 444 445 static loff_t iomap_read_folio_iter(const struct iomap_iter *iter, 446 struct iomap_readpage_ctx *ctx) 447 { 448 struct folio *folio = ctx->cur_folio; 449 size_t offset = offset_in_folio(folio, iter->pos); 450 loff_t length = min_t(loff_t, folio_size(folio) - offset, 451 iomap_length(iter)); 452 loff_t done, ret; 453 454 for (done = 0; done < length; done += ret) { 455 ret = iomap_readpage_iter(iter, ctx, done); 456 if (ret <= 0) 457 return ret; 458 } 459 460 return done; 461 } 462 463 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 464 { 465 struct iomap_iter iter = { 466 .inode = folio->mapping->host, 467 .pos = folio_pos(folio), 468 .len = folio_size(folio), 469 }; 470 struct iomap_readpage_ctx ctx = { 471 .cur_folio = folio, 472 }; 473 int ret; 474 475 trace_iomap_readpage(iter.inode, 1); 476 477 while ((ret = iomap_iter(&iter, ops)) > 0) 478 iter.processed = iomap_read_folio_iter(&iter, &ctx); 479 480 if (ctx.bio) { 481 submit_bio(ctx.bio); 482 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 483 } else { 484 WARN_ON_ONCE(ctx.cur_folio_in_bio); 485 folio_unlock(folio); 486 } 487 488 /* 489 * Just like mpage_readahead and block_read_full_folio, we always 490 * return 0 and just set the folio error flag on errors. This 491 * should be cleaned up throughout the stack eventually. 492 */ 493 return 0; 494 } 495 EXPORT_SYMBOL_GPL(iomap_read_folio); 496 497 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 498 struct iomap_readpage_ctx *ctx) 499 { 500 loff_t length = iomap_length(iter); 501 loff_t done, ret; 502 503 for (done = 0; done < length; done += ret) { 504 if (ctx->cur_folio && 505 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 506 if (!ctx->cur_folio_in_bio) 507 folio_unlock(ctx->cur_folio); 508 ctx->cur_folio = NULL; 509 } 510 if (!ctx->cur_folio) { 511 ctx->cur_folio = readahead_folio(ctx->rac); 512 ctx->cur_folio_in_bio = false; 513 } 514 ret = iomap_readpage_iter(iter, ctx, done); 515 if (ret <= 0) 516 return ret; 517 } 518 519 return done; 520 } 521 522 /** 523 * iomap_readahead - Attempt to read pages from a file. 524 * @rac: Describes the pages to be read. 525 * @ops: The operations vector for the filesystem. 526 * 527 * This function is for filesystems to call to implement their readahead 528 * address_space operation. 529 * 530 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 531 * blocks from disc), and may wait for it. The caller may be trying to 532 * access a different page, and so sleeping excessively should be avoided. 533 * It may allocate memory, but should avoid costly allocations. This 534 * function is called with memalloc_nofs set, so allocations will not cause 535 * the filesystem to be reentered. 536 */ 537 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 538 { 539 struct iomap_iter iter = { 540 .inode = rac->mapping->host, 541 .pos = readahead_pos(rac), 542 .len = readahead_length(rac), 543 }; 544 struct iomap_readpage_ctx ctx = { 545 .rac = rac, 546 }; 547 548 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 549 550 while (iomap_iter(&iter, ops) > 0) 551 iter.processed = iomap_readahead_iter(&iter, &ctx); 552 553 if (ctx.bio) 554 submit_bio(ctx.bio); 555 if (ctx.cur_folio) { 556 if (!ctx.cur_folio_in_bio) 557 folio_unlock(ctx.cur_folio); 558 } 559 } 560 EXPORT_SYMBOL_GPL(iomap_readahead); 561 562 /* 563 * iomap_is_partially_uptodate checks whether blocks within a folio are 564 * uptodate or not. 565 * 566 * Returns true if all blocks which correspond to the specified part 567 * of the folio are uptodate. 568 */ 569 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 570 { 571 struct iomap_folio_state *ifs = folio->private; 572 struct inode *inode = folio->mapping->host; 573 unsigned first, last, i; 574 575 if (!ifs) 576 return false; 577 578 /* Caller's range may extend past the end of this folio */ 579 count = min(folio_size(folio) - from, count); 580 581 /* First and last blocks in range within folio */ 582 first = from >> inode->i_blkbits; 583 last = (from + count - 1) >> inode->i_blkbits; 584 585 for (i = first; i <= last; i++) 586 if (!ifs_block_is_uptodate(ifs, i)) 587 return false; 588 return true; 589 } 590 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 591 592 /** 593 * iomap_get_folio - get a folio reference for writing 594 * @iter: iteration structure 595 * @pos: start offset of write 596 * @len: Suggested size of folio to create. 597 * 598 * Returns a locked reference to the folio at @pos, or an error pointer if the 599 * folio could not be obtained. 600 */ 601 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len) 602 { 603 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS; 604 605 if (iter->flags & IOMAP_NOWAIT) 606 fgp |= FGP_NOWAIT; 607 fgp |= fgf_set_order(len); 608 609 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 610 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 611 } 612 EXPORT_SYMBOL_GPL(iomap_get_folio); 613 614 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 615 { 616 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 617 folio_size(folio)); 618 619 /* 620 * If the folio is dirty, we refuse to release our metadata because 621 * it may be partially dirty. Once we track per-block dirty state, 622 * we can release the metadata if every block is dirty. 623 */ 624 if (folio_test_dirty(folio)) 625 return false; 626 ifs_free(folio); 627 return true; 628 } 629 EXPORT_SYMBOL_GPL(iomap_release_folio); 630 631 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 632 { 633 trace_iomap_invalidate_folio(folio->mapping->host, 634 folio_pos(folio) + offset, len); 635 636 /* 637 * If we're invalidating the entire folio, clear the dirty state 638 * from it and release it to avoid unnecessary buildup of the LRU. 639 */ 640 if (offset == 0 && len == folio_size(folio)) { 641 WARN_ON_ONCE(folio_test_writeback(folio)); 642 folio_cancel_dirty(folio); 643 ifs_free(folio); 644 } 645 } 646 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 647 648 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio) 649 { 650 struct inode *inode = mapping->host; 651 size_t len = folio_size(folio); 652 653 ifs_alloc(inode, folio, 0); 654 iomap_set_range_dirty(folio, 0, len); 655 return filemap_dirty_folio(mapping, folio); 656 } 657 EXPORT_SYMBOL_GPL(iomap_dirty_folio); 658 659 static void 660 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 661 { 662 loff_t i_size = i_size_read(inode); 663 664 /* 665 * Only truncate newly allocated pages beyoned EOF, even if the 666 * write started inside the existing inode size. 667 */ 668 if (pos + len > i_size) 669 truncate_pagecache_range(inode, max(pos, i_size), 670 pos + len - 1); 671 } 672 673 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 674 size_t poff, size_t plen, const struct iomap *iomap) 675 { 676 struct bio_vec bvec; 677 struct bio bio; 678 679 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 680 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 681 bio_add_folio_nofail(&bio, folio, plen, poff); 682 return submit_bio_wait(&bio); 683 } 684 685 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 686 size_t len, struct folio *folio) 687 { 688 const struct iomap *srcmap = iomap_iter_srcmap(iter); 689 struct iomap_folio_state *ifs; 690 loff_t block_size = i_blocksize(iter->inode); 691 loff_t block_start = round_down(pos, block_size); 692 loff_t block_end = round_up(pos + len, block_size); 693 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 694 size_t from = offset_in_folio(folio, pos), to = from + len; 695 size_t poff, plen; 696 697 /* 698 * If the write or zeroing completely overlaps the current folio, then 699 * entire folio will be dirtied so there is no need for 700 * per-block state tracking structures to be attached to this folio. 701 * For the unshare case, we must read in the ondisk contents because we 702 * are not changing pagecache contents. 703 */ 704 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) && 705 pos + len >= folio_pos(folio) + folio_size(folio)) 706 return 0; 707 708 ifs = ifs_alloc(iter->inode, folio, iter->flags); 709 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1) 710 return -EAGAIN; 711 712 if (folio_test_uptodate(folio)) 713 return 0; 714 715 do { 716 iomap_adjust_read_range(iter->inode, folio, &block_start, 717 block_end - block_start, &poff, &plen); 718 if (plen == 0) 719 break; 720 721 if (!(iter->flags & IOMAP_UNSHARE) && 722 (from <= poff || from >= poff + plen) && 723 (to <= poff || to >= poff + plen)) 724 continue; 725 726 if (iomap_block_needs_zeroing(iter, block_start)) { 727 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 728 return -EIO; 729 folio_zero_segments(folio, poff, from, to, poff + plen); 730 } else { 731 int status; 732 733 if (iter->flags & IOMAP_NOWAIT) 734 return -EAGAIN; 735 736 status = iomap_read_folio_sync(block_start, folio, 737 poff, plen, srcmap); 738 if (status) 739 return status; 740 } 741 iomap_set_range_uptodate(folio, poff, plen); 742 } while ((block_start += plen) < block_end); 743 744 return 0; 745 } 746 747 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos, 748 size_t len) 749 { 750 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 751 752 if (folio_ops && folio_ops->get_folio) 753 return folio_ops->get_folio(iter, pos, len); 754 else 755 return iomap_get_folio(iter, pos, len); 756 } 757 758 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret, 759 struct folio *folio) 760 { 761 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 762 763 if (folio_ops && folio_ops->put_folio) { 764 folio_ops->put_folio(iter->inode, pos, ret, folio); 765 } else { 766 folio_unlock(folio); 767 folio_put(folio); 768 } 769 } 770 771 static int iomap_write_begin_inline(const struct iomap_iter *iter, 772 struct folio *folio) 773 { 774 /* needs more work for the tailpacking case; disable for now */ 775 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 776 return -EIO; 777 return iomap_read_inline_data(iter, folio); 778 } 779 780 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos, 781 size_t len, struct folio **foliop) 782 { 783 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops; 784 const struct iomap *srcmap = iomap_iter_srcmap(iter); 785 struct folio *folio; 786 int status = 0; 787 788 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 789 if (srcmap != &iter->iomap) 790 BUG_ON(pos + len > srcmap->offset + srcmap->length); 791 792 if (fatal_signal_pending(current)) 793 return -EINTR; 794 795 if (!mapping_large_folio_support(iter->inode->i_mapping)) 796 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 797 798 folio = __iomap_get_folio(iter, pos, len); 799 if (IS_ERR(folio)) 800 return PTR_ERR(folio); 801 802 /* 803 * Now we have a locked folio, before we do anything with it we need to 804 * check that the iomap we have cached is not stale. The inode extent 805 * mapping can change due to concurrent IO in flight (e.g. 806 * IOMAP_UNWRITTEN state can change and memory reclaim could have 807 * reclaimed a previously partially written page at this index after IO 808 * completion before this write reaches this file offset) and hence we 809 * could do the wrong thing here (zero a page range incorrectly or fail 810 * to zero) and corrupt data. 811 */ 812 if (folio_ops && folio_ops->iomap_valid) { 813 bool iomap_valid = folio_ops->iomap_valid(iter->inode, 814 &iter->iomap); 815 if (!iomap_valid) { 816 iter->iomap.flags |= IOMAP_F_STALE; 817 status = 0; 818 goto out_unlock; 819 } 820 } 821 822 if (pos + len > folio_pos(folio) + folio_size(folio)) 823 len = folio_pos(folio) + folio_size(folio) - pos; 824 825 if (srcmap->type == IOMAP_INLINE) 826 status = iomap_write_begin_inline(iter, folio); 827 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 828 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 829 else 830 status = __iomap_write_begin(iter, pos, len, folio); 831 832 if (unlikely(status)) 833 goto out_unlock; 834 835 *foliop = folio; 836 return 0; 837 838 out_unlock: 839 __iomap_put_folio(iter, pos, 0, folio); 840 841 return status; 842 } 843 844 static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 845 size_t copied, struct folio *folio) 846 { 847 flush_dcache_folio(folio); 848 849 /* 850 * The blocks that were entirely written will now be uptodate, so we 851 * don't have to worry about a read_folio reading them and overwriting a 852 * partial write. However, if we've encountered a short write and only 853 * partially written into a block, it will not be marked uptodate, so a 854 * read_folio might come in and destroy our partial write. 855 * 856 * Do the simplest thing and just treat any short write to a 857 * non-uptodate page as a zero-length write, and force the caller to 858 * redo the whole thing. 859 */ 860 if (unlikely(copied < len && !folio_test_uptodate(folio))) 861 return false; 862 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len); 863 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied); 864 filemap_dirty_folio(inode->i_mapping, folio); 865 return true; 866 } 867 868 static void iomap_write_end_inline(const struct iomap_iter *iter, 869 struct folio *folio, loff_t pos, size_t copied) 870 { 871 const struct iomap *iomap = &iter->iomap; 872 void *addr; 873 874 WARN_ON_ONCE(!folio_test_uptodate(folio)); 875 BUG_ON(!iomap_inline_data_valid(iomap)); 876 877 flush_dcache_folio(folio); 878 addr = kmap_local_folio(folio, pos); 879 memcpy(iomap_inline_data(iomap, pos), addr, copied); 880 kunmap_local(addr); 881 882 mark_inode_dirty(iter->inode); 883 } 884 885 /* 886 * Returns true if all copied bytes have been written to the pagecache, 887 * otherwise return false. 888 */ 889 static bool iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 890 size_t copied, struct folio *folio) 891 { 892 const struct iomap *srcmap = iomap_iter_srcmap(iter); 893 894 if (srcmap->type == IOMAP_INLINE) { 895 iomap_write_end_inline(iter, folio, pos, copied); 896 return true; 897 } 898 899 if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 900 size_t bh_written; 901 902 bh_written = block_write_end(NULL, iter->inode->i_mapping, pos, 903 len, copied, &folio->page, NULL); 904 WARN_ON_ONCE(bh_written != copied && bh_written != 0); 905 return bh_written == copied; 906 } 907 908 return __iomap_write_end(iter->inode, pos, len, copied, folio); 909 } 910 911 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 912 { 913 loff_t length = iomap_length(iter); 914 loff_t pos = iter->pos; 915 ssize_t total_written = 0; 916 long status = 0; 917 struct address_space *mapping = iter->inode->i_mapping; 918 size_t chunk = mapping_max_folio_size(mapping); 919 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 920 921 do { 922 struct folio *folio; 923 loff_t old_size; 924 size_t offset; /* Offset into folio */ 925 size_t bytes; /* Bytes to write to folio */ 926 size_t copied; /* Bytes copied from user */ 927 size_t written; /* Bytes have been written */ 928 929 bytes = iov_iter_count(i); 930 retry: 931 offset = pos & (chunk - 1); 932 bytes = min(chunk - offset, bytes); 933 status = balance_dirty_pages_ratelimited_flags(mapping, 934 bdp_flags); 935 if (unlikely(status)) 936 break; 937 938 if (bytes > length) 939 bytes = length; 940 941 /* 942 * Bring in the user page that we'll copy from _first_. 943 * Otherwise there's a nasty deadlock on copying from the 944 * same page as we're writing to, without it being marked 945 * up-to-date. 946 * 947 * For async buffered writes the assumption is that the user 948 * page has already been faulted in. This can be optimized by 949 * faulting the user page. 950 */ 951 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 952 status = -EFAULT; 953 break; 954 } 955 956 status = iomap_write_begin(iter, pos, bytes, &folio); 957 if (unlikely(status)) { 958 iomap_write_failed(iter->inode, pos, bytes); 959 break; 960 } 961 if (iter->iomap.flags & IOMAP_F_STALE) 962 break; 963 964 offset = offset_in_folio(folio, pos); 965 if (bytes > folio_size(folio) - offset) 966 bytes = folio_size(folio) - offset; 967 968 if (mapping_writably_mapped(mapping)) 969 flush_dcache_folio(folio); 970 971 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 972 written = iomap_write_end(iter, pos, bytes, copied, folio) ? 973 copied : 0; 974 975 /* 976 * Update the in-memory inode size after copying the data into 977 * the page cache. It's up to the file system to write the 978 * updated size to disk, preferably after I/O completion so that 979 * no stale data is exposed. Only once that's done can we 980 * unlock and release the folio. 981 */ 982 old_size = iter->inode->i_size; 983 if (pos + written > old_size) { 984 i_size_write(iter->inode, pos + written); 985 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 986 } 987 __iomap_put_folio(iter, pos, written, folio); 988 989 if (old_size < pos) 990 pagecache_isize_extended(iter->inode, old_size, pos); 991 992 cond_resched(); 993 if (unlikely(written == 0)) { 994 /* 995 * A short copy made iomap_write_end() reject the 996 * thing entirely. Might be memory poisoning 997 * halfway through, might be a race with munmap, 998 * might be severe memory pressure. 999 */ 1000 iomap_write_failed(iter->inode, pos, bytes); 1001 iov_iter_revert(i, copied); 1002 1003 if (chunk > PAGE_SIZE) 1004 chunk /= 2; 1005 if (copied) { 1006 bytes = copied; 1007 goto retry; 1008 } 1009 } else { 1010 pos += written; 1011 total_written += written; 1012 length -= written; 1013 } 1014 } while (iov_iter_count(i) && length); 1015 1016 if (status == -EAGAIN) { 1017 iov_iter_revert(i, total_written); 1018 return -EAGAIN; 1019 } 1020 return total_written ? total_written : status; 1021 } 1022 1023 ssize_t 1024 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 1025 const struct iomap_ops *ops) 1026 { 1027 struct iomap_iter iter = { 1028 .inode = iocb->ki_filp->f_mapping->host, 1029 .pos = iocb->ki_pos, 1030 .len = iov_iter_count(i), 1031 .flags = IOMAP_WRITE, 1032 }; 1033 ssize_t ret; 1034 1035 if (iocb->ki_flags & IOCB_NOWAIT) 1036 iter.flags |= IOMAP_NOWAIT; 1037 1038 while ((ret = iomap_iter(&iter, ops)) > 0) 1039 iter.processed = iomap_write_iter(&iter, i); 1040 1041 if (unlikely(iter.pos == iocb->ki_pos)) 1042 return ret; 1043 ret = iter.pos - iocb->ki_pos; 1044 iocb->ki_pos = iter.pos; 1045 return ret; 1046 } 1047 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 1048 1049 static int iomap_write_delalloc_ifs_punch(struct inode *inode, 1050 struct folio *folio, loff_t start_byte, loff_t end_byte, 1051 iomap_punch_t punch) 1052 { 1053 unsigned int first_blk, last_blk, i; 1054 loff_t last_byte; 1055 u8 blkbits = inode->i_blkbits; 1056 struct iomap_folio_state *ifs; 1057 int ret = 0; 1058 1059 /* 1060 * When we have per-block dirty tracking, there can be 1061 * blocks within a folio which are marked uptodate 1062 * but not dirty. In that case it is necessary to punch 1063 * out such blocks to avoid leaking any delalloc blocks. 1064 */ 1065 ifs = folio->private; 1066 if (!ifs) 1067 return ret; 1068 1069 last_byte = min_t(loff_t, end_byte - 1, 1070 folio_pos(folio) + folio_size(folio) - 1); 1071 first_blk = offset_in_folio(folio, start_byte) >> blkbits; 1072 last_blk = offset_in_folio(folio, last_byte) >> blkbits; 1073 for (i = first_blk; i <= last_blk; i++) { 1074 if (!ifs_block_is_dirty(folio, ifs, i)) { 1075 ret = punch(inode, folio_pos(folio) + (i << blkbits), 1076 1 << blkbits); 1077 if (ret) 1078 return ret; 1079 } 1080 } 1081 1082 return ret; 1083 } 1084 1085 1086 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio, 1087 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1088 iomap_punch_t punch) 1089 { 1090 int ret = 0; 1091 1092 if (!folio_test_dirty(folio)) 1093 return ret; 1094 1095 /* if dirty, punch up to offset */ 1096 if (start_byte > *punch_start_byte) { 1097 ret = punch(inode, *punch_start_byte, 1098 start_byte - *punch_start_byte); 1099 if (ret) 1100 return ret; 1101 } 1102 1103 /* Punch non-dirty blocks within folio */ 1104 ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte, 1105 end_byte, punch); 1106 if (ret) 1107 return ret; 1108 1109 /* 1110 * Make sure the next punch start is correctly bound to 1111 * the end of this data range, not the end of the folio. 1112 */ 1113 *punch_start_byte = min_t(loff_t, end_byte, 1114 folio_pos(folio) + folio_size(folio)); 1115 1116 return ret; 1117 } 1118 1119 /* 1120 * Scan the data range passed to us for dirty page cache folios. If we find a 1121 * dirty folio, punch out the preceding range and update the offset from which 1122 * the next punch will start from. 1123 * 1124 * We can punch out storage reservations under clean pages because they either 1125 * contain data that has been written back - in which case the delalloc punch 1126 * over that range is a no-op - or they have been read faults in which case they 1127 * contain zeroes and we can remove the delalloc backing range and any new 1128 * writes to those pages will do the normal hole filling operation... 1129 * 1130 * This makes the logic simple: we only need to keep the delalloc extents only 1131 * over the dirty ranges of the page cache. 1132 * 1133 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1134 * simplify range iterations. 1135 */ 1136 static int iomap_write_delalloc_scan(struct inode *inode, 1137 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte, 1138 iomap_punch_t punch) 1139 { 1140 while (start_byte < end_byte) { 1141 struct folio *folio; 1142 int ret; 1143 1144 /* grab locked page */ 1145 folio = filemap_lock_folio(inode->i_mapping, 1146 start_byte >> PAGE_SHIFT); 1147 if (IS_ERR(folio)) { 1148 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) + 1149 PAGE_SIZE; 1150 continue; 1151 } 1152 1153 ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte, 1154 start_byte, end_byte, punch); 1155 if (ret) { 1156 folio_unlock(folio); 1157 folio_put(folio); 1158 return ret; 1159 } 1160 1161 /* move offset to start of next folio in range */ 1162 start_byte = folio_next_index(folio) << PAGE_SHIFT; 1163 folio_unlock(folio); 1164 folio_put(folio); 1165 } 1166 return 0; 1167 } 1168 1169 /* 1170 * Punch out all the delalloc blocks in the range given except for those that 1171 * have dirty data still pending in the page cache - those are going to be 1172 * written and so must still retain the delalloc backing for writeback. 1173 * 1174 * As we are scanning the page cache for data, we don't need to reimplement the 1175 * wheel - mapping_seek_hole_data() does exactly what we need to identify the 1176 * start and end of data ranges correctly even for sub-folio block sizes. This 1177 * byte range based iteration is especially convenient because it means we 1178 * don't have to care about variable size folios, nor where the start or end of 1179 * the data range lies within a folio, if they lie within the same folio or even 1180 * if there are multiple discontiguous data ranges within the folio. 1181 * 1182 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so 1183 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault 1184 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to 1185 * date. A write page fault can then mark it dirty. If we then fail a write() 1186 * beyond EOF into that up to date cached range, we allocate a delalloc block 1187 * beyond EOF and then have to punch it out. Because the range is up to date, 1188 * mapping_seek_hole_data() will return it, and we will skip the punch because 1189 * the folio is dirty. THis is incorrect - we always need to punch out delalloc 1190 * beyond EOF in this case as writeback will never write back and covert that 1191 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF, 1192 * resulting in always punching out the range from the EOF to the end of the 1193 * range the iomap spans. 1194 * 1195 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it 1196 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA 1197 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte) 1198 * returns the end of the data range (data_end). Using closed intervals would 1199 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose 1200 * the code to subtle off-by-one bugs.... 1201 */ 1202 static int iomap_write_delalloc_release(struct inode *inode, 1203 loff_t start_byte, loff_t end_byte, iomap_punch_t punch) 1204 { 1205 loff_t punch_start_byte = start_byte; 1206 loff_t scan_end_byte = min(i_size_read(inode), end_byte); 1207 int error = 0; 1208 1209 /* 1210 * Lock the mapping to avoid races with page faults re-instantiating 1211 * folios and dirtying them via ->page_mkwrite whilst we walk the 1212 * cache and perform delalloc extent removal. Failing to do this can 1213 * leave dirty pages with no space reservation in the cache. 1214 */ 1215 filemap_invalidate_lock(inode->i_mapping); 1216 while (start_byte < scan_end_byte) { 1217 loff_t data_end; 1218 1219 start_byte = mapping_seek_hole_data(inode->i_mapping, 1220 start_byte, scan_end_byte, SEEK_DATA); 1221 /* 1222 * If there is no more data to scan, all that is left is to 1223 * punch out the remaining range. 1224 */ 1225 if (start_byte == -ENXIO || start_byte == scan_end_byte) 1226 break; 1227 if (start_byte < 0) { 1228 error = start_byte; 1229 goto out_unlock; 1230 } 1231 WARN_ON_ONCE(start_byte < punch_start_byte); 1232 WARN_ON_ONCE(start_byte > scan_end_byte); 1233 1234 /* 1235 * We find the end of this contiguous cached data range by 1236 * seeking from start_byte to the beginning of the next hole. 1237 */ 1238 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte, 1239 scan_end_byte, SEEK_HOLE); 1240 if (data_end < 0) { 1241 error = data_end; 1242 goto out_unlock; 1243 } 1244 1245 /* 1246 * If we race with post-direct I/O invalidation of the page cache, 1247 * there might be no data left at start_byte. 1248 */ 1249 if (data_end == start_byte) 1250 continue; 1251 1252 WARN_ON_ONCE(data_end < start_byte); 1253 WARN_ON_ONCE(data_end > scan_end_byte); 1254 1255 error = iomap_write_delalloc_scan(inode, &punch_start_byte, 1256 start_byte, data_end, punch); 1257 if (error) 1258 goto out_unlock; 1259 1260 /* The next data search starts at the end of this one. */ 1261 start_byte = data_end; 1262 } 1263 1264 if (punch_start_byte < end_byte) 1265 error = punch(inode, punch_start_byte, 1266 end_byte - punch_start_byte); 1267 out_unlock: 1268 filemap_invalidate_unlock(inode->i_mapping); 1269 return error; 1270 } 1271 1272 /* 1273 * When a short write occurs, the filesystem may need to remove reserved space 1274 * that was allocated in ->iomap_begin from it's ->iomap_end method. For 1275 * filesystems that use delayed allocation, we need to punch out delalloc 1276 * extents from the range that are not dirty in the page cache. As the write can 1277 * race with page faults, there can be dirty pages over the delalloc extent 1278 * outside the range of a short write but still within the delalloc extent 1279 * allocated for this iomap. 1280 * 1281 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to 1282 * simplify range iterations. 1283 * 1284 * The punch() callback *must* only punch delalloc extents in the range passed 1285 * to it. It must skip over all other types of extents in the range and leave 1286 * them completely unchanged. It must do this punch atomically with respect to 1287 * other extent modifications. 1288 * 1289 * The punch() callback may be called with a folio locked to prevent writeback 1290 * extent allocation racing at the edge of the range we are currently punching. 1291 * The locked folio may or may not cover the range being punched, so it is not 1292 * safe for the punch() callback to lock folios itself. 1293 * 1294 * Lock order is: 1295 * 1296 * inode->i_rwsem (shared or exclusive) 1297 * inode->i_mapping->invalidate_lock (exclusive) 1298 * folio_lock() 1299 * ->punch 1300 * internal filesystem allocation lock 1301 */ 1302 int iomap_file_buffered_write_punch_delalloc(struct inode *inode, 1303 struct iomap *iomap, loff_t pos, loff_t length, 1304 ssize_t written, iomap_punch_t punch) 1305 { 1306 loff_t start_byte; 1307 loff_t end_byte; 1308 unsigned int blocksize = i_blocksize(inode); 1309 1310 if (iomap->type != IOMAP_DELALLOC) 1311 return 0; 1312 1313 /* If we didn't reserve the blocks, we're not allowed to punch them. */ 1314 if (!(iomap->flags & IOMAP_F_NEW)) 1315 return 0; 1316 1317 /* 1318 * start_byte refers to the first unused block after a short write. If 1319 * nothing was written, round offset down to point at the first block in 1320 * the range. 1321 */ 1322 if (unlikely(!written)) 1323 start_byte = round_down(pos, blocksize); 1324 else 1325 start_byte = round_up(pos + written, blocksize); 1326 end_byte = round_up(pos + length, blocksize); 1327 1328 /* Nothing to do if we've written the entire delalloc extent */ 1329 if (start_byte >= end_byte) 1330 return 0; 1331 1332 return iomap_write_delalloc_release(inode, start_byte, end_byte, 1333 punch); 1334 } 1335 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc); 1336 1337 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 1338 { 1339 struct iomap *iomap = &iter->iomap; 1340 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1341 loff_t pos = iter->pos; 1342 loff_t length = iomap_length(iter); 1343 loff_t written = 0; 1344 1345 /* don't bother with blocks that are not shared to start with */ 1346 if (!(iomap->flags & IOMAP_F_SHARED)) 1347 return length; 1348 /* don't bother with holes or unwritten extents */ 1349 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1350 return length; 1351 1352 do { 1353 struct folio *folio; 1354 int status; 1355 size_t offset; 1356 size_t bytes = min_t(u64, SIZE_MAX, length); 1357 bool ret; 1358 1359 status = iomap_write_begin(iter, pos, bytes, &folio); 1360 if (unlikely(status)) 1361 return status; 1362 if (iomap->flags & IOMAP_F_STALE) 1363 break; 1364 1365 offset = offset_in_folio(folio, pos); 1366 if (bytes > folio_size(folio) - offset) 1367 bytes = folio_size(folio) - offset; 1368 1369 ret = iomap_write_end(iter, pos, bytes, bytes, folio); 1370 __iomap_put_folio(iter, pos, bytes, folio); 1371 if (WARN_ON_ONCE(!ret)) 1372 return -EIO; 1373 1374 cond_resched(); 1375 1376 pos += bytes; 1377 written += bytes; 1378 length -= bytes; 1379 1380 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 1381 } while (length > 0); 1382 1383 return written; 1384 } 1385 1386 int 1387 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1388 const struct iomap_ops *ops) 1389 { 1390 struct iomap_iter iter = { 1391 .inode = inode, 1392 .pos = pos, 1393 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 1394 }; 1395 loff_t size = i_size_read(inode); 1396 int ret; 1397 1398 if (pos < 0 || pos >= size) 1399 return 0; 1400 1401 iter.len = min(len, size - pos); 1402 while ((ret = iomap_iter(&iter, ops)) > 0) 1403 iter.processed = iomap_unshare_iter(&iter); 1404 return ret; 1405 } 1406 EXPORT_SYMBOL_GPL(iomap_file_unshare); 1407 1408 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 1409 { 1410 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1411 loff_t pos = iter->pos; 1412 loff_t length = iomap_length(iter); 1413 loff_t written = 0; 1414 1415 /* already zeroed? we're done. */ 1416 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1417 return length; 1418 1419 do { 1420 struct folio *folio; 1421 int status; 1422 size_t offset; 1423 size_t bytes = min_t(u64, SIZE_MAX, length); 1424 bool ret; 1425 1426 status = iomap_write_begin(iter, pos, bytes, &folio); 1427 if (status) 1428 return status; 1429 if (iter->iomap.flags & IOMAP_F_STALE) 1430 break; 1431 1432 offset = offset_in_folio(folio, pos); 1433 if (bytes > folio_size(folio) - offset) 1434 bytes = folio_size(folio) - offset; 1435 1436 folio_zero_range(folio, offset, bytes); 1437 folio_mark_accessed(folio); 1438 1439 ret = iomap_write_end(iter, pos, bytes, bytes, folio); 1440 __iomap_put_folio(iter, pos, bytes, folio); 1441 if (WARN_ON_ONCE(!ret)) 1442 return -EIO; 1443 1444 pos += bytes; 1445 length -= bytes; 1446 written += bytes; 1447 } while (length > 0); 1448 1449 if (did_zero) 1450 *did_zero = true; 1451 return written; 1452 } 1453 1454 int 1455 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1456 const struct iomap_ops *ops) 1457 { 1458 struct iomap_iter iter = { 1459 .inode = inode, 1460 .pos = pos, 1461 .len = len, 1462 .flags = IOMAP_ZERO, 1463 }; 1464 int ret; 1465 1466 while ((ret = iomap_iter(&iter, ops)) > 0) 1467 iter.processed = iomap_zero_iter(&iter, did_zero); 1468 return ret; 1469 } 1470 EXPORT_SYMBOL_GPL(iomap_zero_range); 1471 1472 int 1473 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1474 const struct iomap_ops *ops) 1475 { 1476 unsigned int blocksize = i_blocksize(inode); 1477 unsigned int off = pos & (blocksize - 1); 1478 1479 /* Block boundary? Nothing to do */ 1480 if (!off) 1481 return 0; 1482 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 1483 } 1484 EXPORT_SYMBOL_GPL(iomap_truncate_page); 1485 1486 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 1487 struct folio *folio) 1488 { 1489 loff_t length = iomap_length(iter); 1490 int ret; 1491 1492 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1493 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1494 &iter->iomap); 1495 if (ret) 1496 return ret; 1497 block_commit_write(&folio->page, 0, length); 1498 } else { 1499 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1500 folio_mark_dirty(folio); 1501 } 1502 1503 return length; 1504 } 1505 1506 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1507 { 1508 struct iomap_iter iter = { 1509 .inode = file_inode(vmf->vma->vm_file), 1510 .flags = IOMAP_WRITE | IOMAP_FAULT, 1511 }; 1512 struct folio *folio = page_folio(vmf->page); 1513 ssize_t ret; 1514 1515 folio_lock(folio); 1516 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1517 if (ret < 0) 1518 goto out_unlock; 1519 iter.pos = folio_pos(folio); 1520 iter.len = ret; 1521 while ((ret = iomap_iter(&iter, ops)) > 0) 1522 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 1523 1524 if (ret < 0) 1525 goto out_unlock; 1526 folio_wait_stable(folio); 1527 return VM_FAULT_LOCKED; 1528 out_unlock: 1529 folio_unlock(folio); 1530 return vmf_fs_error(ret); 1531 } 1532 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1533 1534 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1535 size_t len) 1536 { 1537 struct iomap_folio_state *ifs = folio->private; 1538 1539 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs); 1540 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0); 1541 1542 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending)) 1543 folio_end_writeback(folio); 1544 } 1545 1546 /* 1547 * We're now finished for good with this ioend structure. Update the page 1548 * state, release holds on bios, and finally free up memory. Do not use the 1549 * ioend after this. 1550 */ 1551 static u32 1552 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1553 { 1554 struct inode *inode = ioend->io_inode; 1555 struct bio *bio = &ioend->io_bio; 1556 struct folio_iter fi; 1557 u32 folio_count = 0; 1558 1559 if (error) { 1560 mapping_set_error(inode->i_mapping, error); 1561 if (!bio_flagged(bio, BIO_QUIET)) { 1562 pr_err_ratelimited( 1563 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1564 inode->i_sb->s_id, inode->i_ino, 1565 ioend->io_offset, ioend->io_sector); 1566 } 1567 } 1568 1569 /* walk all folios in bio, ending page IO on them */ 1570 bio_for_each_folio_all(fi, bio) { 1571 iomap_finish_folio_write(inode, fi.folio, fi.length); 1572 folio_count++; 1573 } 1574 1575 bio_put(bio); /* frees the ioend */ 1576 return folio_count; 1577 } 1578 1579 /* 1580 * Ioend completion routine for merged bios. This can only be called from task 1581 * contexts as merged ioends can be of unbound length. Hence we have to break up 1582 * the writeback completions into manageable chunks to avoid long scheduler 1583 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1584 * good batch processing throughput without creating adverse scheduler latency 1585 * conditions. 1586 */ 1587 void 1588 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1589 { 1590 struct list_head tmp; 1591 u32 completions; 1592 1593 might_sleep(); 1594 1595 list_replace_init(&ioend->io_list, &tmp); 1596 completions = iomap_finish_ioend(ioend, error); 1597 1598 while (!list_empty(&tmp)) { 1599 if (completions > IOEND_BATCH_SIZE * 8) { 1600 cond_resched(); 1601 completions = 0; 1602 } 1603 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1604 list_del_init(&ioend->io_list); 1605 completions += iomap_finish_ioend(ioend, error); 1606 } 1607 } 1608 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1609 1610 /* 1611 * We can merge two adjacent ioends if they have the same set of work to do. 1612 */ 1613 static bool 1614 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1615 { 1616 if (ioend->io_bio.bi_status != next->io_bio.bi_status) 1617 return false; 1618 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1619 (next->io_flags & IOMAP_F_SHARED)) 1620 return false; 1621 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1622 (next->io_type == IOMAP_UNWRITTEN)) 1623 return false; 1624 if (ioend->io_offset + ioend->io_size != next->io_offset) 1625 return false; 1626 /* 1627 * Do not merge physically discontiguous ioends. The filesystem 1628 * completion functions will have to iterate the physical 1629 * discontiguities even if we merge the ioends at a logical level, so 1630 * we don't gain anything by merging physical discontiguities here. 1631 * 1632 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1633 * submission so does not point to the start sector of the bio at 1634 * completion. 1635 */ 1636 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1637 return false; 1638 return true; 1639 } 1640 1641 void 1642 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1643 { 1644 struct iomap_ioend *next; 1645 1646 INIT_LIST_HEAD(&ioend->io_list); 1647 1648 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1649 io_list))) { 1650 if (!iomap_ioend_can_merge(ioend, next)) 1651 break; 1652 list_move_tail(&next->io_list, &ioend->io_list); 1653 ioend->io_size += next->io_size; 1654 } 1655 } 1656 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1657 1658 static int 1659 iomap_ioend_compare(void *priv, const struct list_head *a, 1660 const struct list_head *b) 1661 { 1662 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1663 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1664 1665 if (ia->io_offset < ib->io_offset) 1666 return -1; 1667 if (ia->io_offset > ib->io_offset) 1668 return 1; 1669 return 0; 1670 } 1671 1672 void 1673 iomap_sort_ioends(struct list_head *ioend_list) 1674 { 1675 list_sort(NULL, ioend_list, iomap_ioend_compare); 1676 } 1677 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1678 1679 static void iomap_writepage_end_bio(struct bio *bio) 1680 { 1681 iomap_finish_ioend(iomap_ioend_from_bio(bio), 1682 blk_status_to_errno(bio->bi_status)); 1683 } 1684 1685 /* 1686 * Submit the final bio for an ioend. 1687 * 1688 * If @error is non-zero, it means that we have a situation where some part of 1689 * the submission process has failed after we've marked pages for writeback. 1690 * We cannot cancel ioend directly in that case, so call the bio end I/O handler 1691 * with the error status here to run the normal I/O completion handler to clear 1692 * the writeback bit and let the file system proess the errors. 1693 */ 1694 static int iomap_submit_ioend(struct iomap_writepage_ctx *wpc, int error) 1695 { 1696 if (!wpc->ioend) 1697 return error; 1698 1699 /* 1700 * Let the file systems prepare the I/O submission and hook in an I/O 1701 * comletion handler. This also needs to happen in case after a 1702 * failure happened so that the file system end I/O handler gets called 1703 * to clean up. 1704 */ 1705 if (wpc->ops->prepare_ioend) 1706 error = wpc->ops->prepare_ioend(wpc->ioend, error); 1707 1708 if (error) { 1709 wpc->ioend->io_bio.bi_status = errno_to_blk_status(error); 1710 bio_endio(&wpc->ioend->io_bio); 1711 } else { 1712 submit_bio(&wpc->ioend->io_bio); 1713 } 1714 1715 wpc->ioend = NULL; 1716 return error; 1717 } 1718 1719 static struct iomap_ioend *iomap_alloc_ioend(struct iomap_writepage_ctx *wpc, 1720 struct writeback_control *wbc, struct inode *inode, loff_t pos) 1721 { 1722 struct iomap_ioend *ioend; 1723 struct bio *bio; 1724 1725 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1726 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1727 GFP_NOFS, &iomap_ioend_bioset); 1728 bio->bi_iter.bi_sector = iomap_sector(&wpc->iomap, pos); 1729 bio->bi_end_io = iomap_writepage_end_bio; 1730 wbc_init_bio(wbc, bio); 1731 bio->bi_write_hint = inode->i_write_hint; 1732 1733 ioend = iomap_ioend_from_bio(bio); 1734 INIT_LIST_HEAD(&ioend->io_list); 1735 ioend->io_type = wpc->iomap.type; 1736 ioend->io_flags = wpc->iomap.flags; 1737 ioend->io_inode = inode; 1738 ioend->io_size = 0; 1739 ioend->io_offset = pos; 1740 ioend->io_sector = bio->bi_iter.bi_sector; 1741 1742 wpc->nr_folios = 0; 1743 return ioend; 1744 } 1745 1746 static bool iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t pos) 1747 { 1748 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1749 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1750 return false; 1751 if (wpc->iomap.type != wpc->ioend->io_type) 1752 return false; 1753 if (pos != wpc->ioend->io_offset + wpc->ioend->io_size) 1754 return false; 1755 if (iomap_sector(&wpc->iomap, pos) != 1756 bio_end_sector(&wpc->ioend->io_bio)) 1757 return false; 1758 /* 1759 * Limit ioend bio chain lengths to minimise IO completion latency. This 1760 * also prevents long tight loops ending page writeback on all the 1761 * folios in the ioend. 1762 */ 1763 if (wpc->nr_folios >= IOEND_BATCH_SIZE) 1764 return false; 1765 return true; 1766 } 1767 1768 /* 1769 * Test to see if we have an existing ioend structure that we could append to 1770 * first; otherwise finish off the current ioend and start another. 1771 * 1772 * If a new ioend is created and cached, the old ioend is submitted to the block 1773 * layer instantly. Batching optimisations are provided by higher level block 1774 * plugging. 1775 * 1776 * At the end of a writeback pass, there will be a cached ioend remaining on the 1777 * writepage context that the caller will need to submit. 1778 */ 1779 static int iomap_add_to_ioend(struct iomap_writepage_ctx *wpc, 1780 struct writeback_control *wbc, struct folio *folio, 1781 struct inode *inode, loff_t pos, unsigned len) 1782 { 1783 struct iomap_folio_state *ifs = folio->private; 1784 size_t poff = offset_in_folio(folio, pos); 1785 int error; 1786 1787 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos)) { 1788 new_ioend: 1789 error = iomap_submit_ioend(wpc, 0); 1790 if (error) 1791 return error; 1792 wpc->ioend = iomap_alloc_ioend(wpc, wbc, inode, pos); 1793 } 1794 1795 if (!bio_add_folio(&wpc->ioend->io_bio, folio, len, poff)) 1796 goto new_ioend; 1797 1798 if (ifs) 1799 atomic_add(len, &ifs->write_bytes_pending); 1800 wpc->ioend->io_size += len; 1801 wbc_account_cgroup_owner(wbc, &folio->page, len); 1802 return 0; 1803 } 1804 1805 static int iomap_writepage_map_blocks(struct iomap_writepage_ctx *wpc, 1806 struct writeback_control *wbc, struct folio *folio, 1807 struct inode *inode, u64 pos, unsigned dirty_len, 1808 unsigned *count) 1809 { 1810 int error; 1811 1812 do { 1813 unsigned map_len; 1814 1815 error = wpc->ops->map_blocks(wpc, inode, pos, dirty_len); 1816 if (error) 1817 break; 1818 trace_iomap_writepage_map(inode, pos, dirty_len, &wpc->iomap); 1819 1820 map_len = min_t(u64, dirty_len, 1821 wpc->iomap.offset + wpc->iomap.length - pos); 1822 WARN_ON_ONCE(!folio->private && map_len < dirty_len); 1823 1824 switch (wpc->iomap.type) { 1825 case IOMAP_INLINE: 1826 WARN_ON_ONCE(1); 1827 error = -EIO; 1828 break; 1829 case IOMAP_HOLE: 1830 break; 1831 default: 1832 error = iomap_add_to_ioend(wpc, wbc, folio, inode, pos, 1833 map_len); 1834 if (!error) 1835 (*count)++; 1836 break; 1837 } 1838 dirty_len -= map_len; 1839 pos += map_len; 1840 } while (dirty_len && !error); 1841 1842 /* 1843 * We cannot cancel the ioend directly here on error. We may have 1844 * already set other pages under writeback and hence we have to run I/O 1845 * completion to mark the error state of the pages under writeback 1846 * appropriately. 1847 * 1848 * Just let the file system know what portion of the folio failed to 1849 * map. 1850 */ 1851 if (error && wpc->ops->discard_folio) 1852 wpc->ops->discard_folio(folio, pos); 1853 return error; 1854 } 1855 1856 /* 1857 * Check interaction of the folio with the file end. 1858 * 1859 * If the folio is entirely beyond i_size, return false. If it straddles 1860 * i_size, adjust end_pos and zero all data beyond i_size. 1861 */ 1862 static bool iomap_writepage_handle_eof(struct folio *folio, struct inode *inode, 1863 u64 *end_pos) 1864 { 1865 u64 isize = i_size_read(inode); 1866 1867 if (*end_pos > isize) { 1868 size_t poff = offset_in_folio(folio, isize); 1869 pgoff_t end_index = isize >> PAGE_SHIFT; 1870 1871 /* 1872 * If the folio is entirely ouside of i_size, skip it. 1873 * 1874 * This can happen due to a truncate operation that is in 1875 * progress and in that case truncate will finish it off once 1876 * we've dropped the folio lock. 1877 * 1878 * Note that the pgoff_t used for end_index is an unsigned long. 1879 * If the given offset is greater than 16TB on a 32-bit system, 1880 * then if we checked if the folio is fully outside i_size with 1881 * "if (folio->index >= end_index + 1)", "end_index + 1" would 1882 * overflow and evaluate to 0. Hence this folio would be 1883 * redirtied and written out repeatedly, which would result in 1884 * an infinite loop; the user program performing this operation 1885 * would hang. Instead, we can detect this situation by 1886 * checking if the folio is totally beyond i_size or if its 1887 * offset is just equal to the EOF. 1888 */ 1889 if (folio->index > end_index || 1890 (folio->index == end_index && poff == 0)) 1891 return false; 1892 1893 /* 1894 * The folio straddles i_size. 1895 * 1896 * It must be zeroed out on each and every writepage invocation 1897 * because it may be mmapped: 1898 * 1899 * A file is mapped in multiples of the page size. For a 1900 * file that is not a multiple of the page size, the 1901 * remaining memory is zeroed when mapped, and writes to that 1902 * region are not written out to the file. 1903 * 1904 * Also adjust the writeback range to skip all blocks entirely 1905 * beyond i_size. 1906 */ 1907 folio_zero_segment(folio, poff, folio_size(folio)); 1908 *end_pos = round_up(isize, i_blocksize(inode)); 1909 } 1910 1911 return true; 1912 } 1913 1914 static int iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1915 struct writeback_control *wbc, struct folio *folio) 1916 { 1917 struct iomap_folio_state *ifs = folio->private; 1918 struct inode *inode = folio->mapping->host; 1919 u64 pos = folio_pos(folio); 1920 u64 end_pos = pos + folio_size(folio); 1921 unsigned count = 0; 1922 int error = 0; 1923 u32 rlen; 1924 1925 WARN_ON_ONCE(!folio_test_locked(folio)); 1926 WARN_ON_ONCE(folio_test_dirty(folio)); 1927 WARN_ON_ONCE(folio_test_writeback(folio)); 1928 1929 trace_iomap_writepage(inode, pos, folio_size(folio)); 1930 1931 if (!iomap_writepage_handle_eof(folio, inode, &end_pos)) { 1932 folio_unlock(folio); 1933 return 0; 1934 } 1935 WARN_ON_ONCE(end_pos <= pos); 1936 1937 if (i_blocks_per_folio(inode, folio) > 1) { 1938 if (!ifs) { 1939 ifs = ifs_alloc(inode, folio, 0); 1940 iomap_set_range_dirty(folio, 0, end_pos - pos); 1941 } 1942 1943 /* 1944 * Keep the I/O completion handler from clearing the writeback 1945 * bit until we have submitted all blocks by adding a bias to 1946 * ifs->write_bytes_pending, which is dropped after submitting 1947 * all blocks. 1948 */ 1949 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0); 1950 atomic_inc(&ifs->write_bytes_pending); 1951 } 1952 1953 /* 1954 * Set the writeback bit ASAP, as the I/O completion for the single 1955 * block per folio case happen hit as soon as we're submitting the bio. 1956 */ 1957 folio_start_writeback(folio); 1958 1959 /* 1960 * Walk through the folio to find dirty areas to write back. 1961 */ 1962 while ((rlen = iomap_find_dirty_range(folio, &pos, end_pos))) { 1963 error = iomap_writepage_map_blocks(wpc, wbc, folio, inode, 1964 pos, rlen, &count); 1965 if (error) 1966 break; 1967 pos += rlen; 1968 } 1969 1970 if (count) 1971 wpc->nr_folios++; 1972 1973 /* 1974 * We can have dirty bits set past end of file in page_mkwrite path 1975 * while mapping the last partial folio. Hence it's better to clear 1976 * all the dirty bits in the folio here. 1977 */ 1978 iomap_clear_range_dirty(folio, 0, folio_size(folio)); 1979 1980 /* 1981 * Usually the writeback bit is cleared by the I/O completion handler. 1982 * But we may end up either not actually writing any blocks, or (when 1983 * there are multiple blocks in a folio) all I/O might have finished 1984 * already at this point. In that case we need to clear the writeback 1985 * bit ourselves right after unlocking the page. 1986 */ 1987 folio_unlock(folio); 1988 if (ifs) { 1989 if (atomic_dec_and_test(&ifs->write_bytes_pending)) 1990 folio_end_writeback(folio); 1991 } else { 1992 if (!count) 1993 folio_end_writeback(folio); 1994 } 1995 mapping_set_error(inode->i_mapping, error); 1996 return error; 1997 } 1998 1999 int 2000 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 2001 struct iomap_writepage_ctx *wpc, 2002 const struct iomap_writeback_ops *ops) 2003 { 2004 struct folio *folio = NULL; 2005 int error; 2006 2007 /* 2008 * Writeback from reclaim context should never happen except in the case 2009 * of a VM regression so warn about it and refuse to write the data. 2010 */ 2011 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) == 2012 PF_MEMALLOC)) 2013 return -EIO; 2014 2015 wpc->ops = ops; 2016 while ((folio = writeback_iter(mapping, wbc, folio, &error))) 2017 error = iomap_writepage_map(wpc, wbc, folio); 2018 return iomap_submit_ioend(wpc, error); 2019 } 2020 EXPORT_SYMBOL_GPL(iomap_writepages); 2021 2022 static int __init iomap_init(void) 2023 { 2024 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 2025 offsetof(struct iomap_ioend, io_bio), 2026 BIOSET_NEED_BVECS); 2027 } 2028 fs_initcall(iomap_init); 2029
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.