1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (c) 2016-2021 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/fscrypt.h> 10 #include <linux/pagemap.h> 11 #include <linux/iomap.h> 12 #include <linux/backing-dev.h> 13 #include <linux/uio.h> 14 #include <linux/task_io_accounting_ops.h> 15 #include "trace.h" 16 17 #include "../internal.h" 18 19 /* 20 * Private flags for iomap_dio, must not overlap with the public ones in 21 * iomap.h: 22 */ 23 #define IOMAP_DIO_CALLER_COMP (1U << 26) 24 #define IOMAP_DIO_INLINE_COMP (1U << 27) 25 #define IOMAP_DIO_WRITE_THROUGH (1U << 28) 26 #define IOMAP_DIO_NEED_SYNC (1U << 29) 27 #define IOMAP_DIO_WRITE (1U << 30) 28 #define IOMAP_DIO_DIRTY (1U << 31) 29 30 struct iomap_dio { 31 struct kiocb *iocb; 32 const struct iomap_dio_ops *dops; 33 loff_t i_size; 34 loff_t size; 35 atomic_t ref; 36 unsigned flags; 37 int error; 38 size_t done_before; 39 bool wait_for_completion; 40 41 union { 42 /* used during submission and for synchronous completion: */ 43 struct { 44 struct iov_iter *iter; 45 struct task_struct *waiter; 46 } submit; 47 48 /* used for aio completion: */ 49 struct { 50 struct work_struct work; 51 } aio; 52 }; 53 }; 54 55 static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter, 56 struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf) 57 { 58 if (dio->dops && dio->dops->bio_set) 59 return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf, 60 GFP_KERNEL, dio->dops->bio_set); 61 return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL); 62 } 63 64 static void iomap_dio_submit_bio(const struct iomap_iter *iter, 65 struct iomap_dio *dio, struct bio *bio, loff_t pos) 66 { 67 struct kiocb *iocb = dio->iocb; 68 69 atomic_inc(&dio->ref); 70 71 /* Sync dio can't be polled reliably */ 72 if ((iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(iocb)) { 73 bio_set_polled(bio, iocb); 74 WRITE_ONCE(iocb->private, bio); 75 } 76 77 if (dio->dops && dio->dops->submit_io) 78 dio->dops->submit_io(iter, bio, pos); 79 else 80 submit_bio(bio); 81 } 82 83 ssize_t iomap_dio_complete(struct iomap_dio *dio) 84 { 85 const struct iomap_dio_ops *dops = dio->dops; 86 struct kiocb *iocb = dio->iocb; 87 loff_t offset = iocb->ki_pos; 88 ssize_t ret = dio->error; 89 90 if (dops && dops->end_io) 91 ret = dops->end_io(iocb, dio->size, ret, dio->flags); 92 93 if (likely(!ret)) { 94 ret = dio->size; 95 /* check for short read */ 96 if (offset + ret > dio->i_size && 97 !(dio->flags & IOMAP_DIO_WRITE)) 98 ret = dio->i_size - offset; 99 } 100 101 /* 102 * Try again to invalidate clean pages which might have been cached by 103 * non-direct readahead, or faulted in by get_user_pages() if the source 104 * of the write was an mmap'ed region of the file we're writing. Either 105 * one is a pretty crazy thing to do, so we don't support it 100%. If 106 * this invalidation fails, tough, the write still worked... 107 * 108 * And this page cache invalidation has to be after ->end_io(), as some 109 * filesystems convert unwritten extents to real allocations in 110 * ->end_io() when necessary, otherwise a racing buffer read would cache 111 * zeros from unwritten extents. 112 */ 113 if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE)) 114 kiocb_invalidate_post_direct_write(iocb, dio->size); 115 116 inode_dio_end(file_inode(iocb->ki_filp)); 117 118 if (ret > 0) { 119 iocb->ki_pos += ret; 120 121 /* 122 * If this is a DSYNC write, make sure we push it to stable 123 * storage now that we've written data. 124 */ 125 if (dio->flags & IOMAP_DIO_NEED_SYNC) 126 ret = generic_write_sync(iocb, ret); 127 if (ret > 0) 128 ret += dio->done_before; 129 } 130 trace_iomap_dio_complete(iocb, dio->error, ret); 131 kfree(dio); 132 return ret; 133 } 134 EXPORT_SYMBOL_GPL(iomap_dio_complete); 135 136 static ssize_t iomap_dio_deferred_complete(void *data) 137 { 138 return iomap_dio_complete(data); 139 } 140 141 static void iomap_dio_complete_work(struct work_struct *work) 142 { 143 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); 144 struct kiocb *iocb = dio->iocb; 145 146 iocb->ki_complete(iocb, iomap_dio_complete(dio)); 147 } 148 149 /* 150 * Set an error in the dio if none is set yet. We have to use cmpxchg 151 * as the submission context and the completion context(s) can race to 152 * update the error. 153 */ 154 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) 155 { 156 cmpxchg(&dio->error, 0, ret); 157 } 158 159 void iomap_dio_bio_end_io(struct bio *bio) 160 { 161 struct iomap_dio *dio = bio->bi_private; 162 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); 163 struct kiocb *iocb = dio->iocb; 164 165 if (bio->bi_status) 166 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); 167 if (!atomic_dec_and_test(&dio->ref)) 168 goto release_bio; 169 170 /* 171 * Synchronous dio, task itself will handle any completion work 172 * that needs after IO. All we need to do is wake the task. 173 */ 174 if (dio->wait_for_completion) { 175 struct task_struct *waiter = dio->submit.waiter; 176 177 WRITE_ONCE(dio->submit.waiter, NULL); 178 blk_wake_io_task(waiter); 179 goto release_bio; 180 } 181 182 /* 183 * Flagged with IOMAP_DIO_INLINE_COMP, we can complete it inline 184 */ 185 if (dio->flags & IOMAP_DIO_INLINE_COMP) { 186 WRITE_ONCE(iocb->private, NULL); 187 iomap_dio_complete_work(&dio->aio.work); 188 goto release_bio; 189 } 190 191 /* 192 * If this dio is flagged with IOMAP_DIO_CALLER_COMP, then schedule 193 * our completion that way to avoid an async punt to a workqueue. 194 */ 195 if (dio->flags & IOMAP_DIO_CALLER_COMP) { 196 /* only polled IO cares about private cleared */ 197 iocb->private = dio; 198 iocb->dio_complete = iomap_dio_deferred_complete; 199 200 /* 201 * Invoke ->ki_complete() directly. We've assigned our 202 * dio_complete callback handler, and since the issuer set 203 * IOCB_DIO_CALLER_COMP, we know their ki_complete handler will 204 * notice ->dio_complete being set and will defer calling that 205 * handler until it can be done from a safe task context. 206 * 207 * Note that the 'res' being passed in here is not important 208 * for this case. The actual completion value of the request 209 * will be gotten from dio_complete when that is run by the 210 * issuer. 211 */ 212 iocb->ki_complete(iocb, 0); 213 goto release_bio; 214 } 215 216 /* 217 * Async DIO completion that requires filesystem level completion work 218 * gets punted to a work queue to complete as the operation may require 219 * more IO to be issued to finalise filesystem metadata changes or 220 * guarantee data integrity. 221 */ 222 INIT_WORK(&dio->aio.work, iomap_dio_complete_work); 223 queue_work(file_inode(iocb->ki_filp)->i_sb->s_dio_done_wq, 224 &dio->aio.work); 225 release_bio: 226 if (should_dirty) { 227 bio_check_pages_dirty(bio); 228 } else { 229 bio_release_pages(bio, false); 230 bio_put(bio); 231 } 232 } 233 EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io); 234 235 static void iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio, 236 loff_t pos, unsigned len) 237 { 238 struct inode *inode = file_inode(dio->iocb->ki_filp); 239 struct page *page = ZERO_PAGE(0); 240 struct bio *bio; 241 242 bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE); 243 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 244 GFP_KERNEL); 245 bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos); 246 bio->bi_private = dio; 247 bio->bi_end_io = iomap_dio_bio_end_io; 248 249 __bio_add_page(bio, page, len, 0); 250 iomap_dio_submit_bio(iter, dio, bio, pos); 251 } 252 253 /* 254 * Figure out the bio's operation flags from the dio request, the 255 * mapping, and whether or not we want FUA. Note that we can end up 256 * clearing the WRITE_THROUGH flag in the dio request. 257 */ 258 static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio, 259 const struct iomap *iomap, bool use_fua) 260 { 261 blk_opf_t opflags = REQ_SYNC | REQ_IDLE; 262 263 if (!(dio->flags & IOMAP_DIO_WRITE)) 264 return REQ_OP_READ; 265 266 opflags |= REQ_OP_WRITE; 267 if (use_fua) 268 opflags |= REQ_FUA; 269 else 270 dio->flags &= ~IOMAP_DIO_WRITE_THROUGH; 271 272 return opflags; 273 } 274 275 static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter, 276 struct iomap_dio *dio) 277 { 278 const struct iomap *iomap = &iter->iomap; 279 struct inode *inode = iter->inode; 280 unsigned int fs_block_size = i_blocksize(inode), pad; 281 loff_t length = iomap_length(iter); 282 loff_t pos = iter->pos; 283 blk_opf_t bio_opf; 284 struct bio *bio; 285 bool need_zeroout = false; 286 bool use_fua = false; 287 int nr_pages, ret = 0; 288 size_t copied = 0; 289 size_t orig_count; 290 291 if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) || 292 !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter)) 293 return -EINVAL; 294 295 if (iomap->type == IOMAP_UNWRITTEN) { 296 dio->flags |= IOMAP_DIO_UNWRITTEN; 297 need_zeroout = true; 298 } 299 300 if (iomap->flags & IOMAP_F_SHARED) 301 dio->flags |= IOMAP_DIO_COW; 302 303 if (iomap->flags & IOMAP_F_NEW) { 304 need_zeroout = true; 305 } else if (iomap->type == IOMAP_MAPPED) { 306 /* 307 * Use a FUA write if we need datasync semantics, this is a pure 308 * data IO that doesn't require any metadata updates (including 309 * after IO completion such as unwritten extent conversion) and 310 * the underlying device either supports FUA or doesn't have 311 * a volatile write cache. This allows us to avoid cache flushes 312 * on IO completion. If we can't use writethrough and need to 313 * sync, disable in-task completions as dio completion will 314 * need to call generic_write_sync() which will do a blocking 315 * fsync / cache flush call. 316 */ 317 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) && 318 (dio->flags & IOMAP_DIO_WRITE_THROUGH) && 319 (bdev_fua(iomap->bdev) || !bdev_write_cache(iomap->bdev))) 320 use_fua = true; 321 else if (dio->flags & IOMAP_DIO_NEED_SYNC) 322 dio->flags &= ~IOMAP_DIO_CALLER_COMP; 323 } 324 325 /* 326 * Save the original count and trim the iter to just the extent we 327 * are operating on right now. The iter will be re-expanded once 328 * we are done. 329 */ 330 orig_count = iov_iter_count(dio->submit.iter); 331 iov_iter_truncate(dio->submit.iter, length); 332 333 if (!iov_iter_count(dio->submit.iter)) 334 goto out; 335 336 /* 337 * We can only do deferred completion for pure overwrites that 338 * don't require additional IO at completion. This rules out 339 * writes that need zeroing or extent conversion, extend 340 * the file size, or issue journal IO or cache flushes 341 * during completion processing. 342 */ 343 if (need_zeroout || 344 ((dio->flags & IOMAP_DIO_NEED_SYNC) && !use_fua) || 345 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) 346 dio->flags &= ~IOMAP_DIO_CALLER_COMP; 347 348 /* 349 * The rules for polled IO completions follow the guidelines as the 350 * ones we set for inline and deferred completions. If none of those 351 * are available for this IO, clear the polled flag. 352 */ 353 if (!(dio->flags & (IOMAP_DIO_INLINE_COMP|IOMAP_DIO_CALLER_COMP))) 354 dio->iocb->ki_flags &= ~IOCB_HIPRI; 355 356 if (need_zeroout) { 357 /* zero out from the start of the block to the write offset */ 358 pad = pos & (fs_block_size - 1); 359 if (pad) 360 iomap_dio_zero(iter, dio, pos - pad, pad); 361 } 362 363 /* 364 * Set the operation flags early so that bio_iov_iter_get_pages 365 * can set up the page vector appropriately for a ZONE_APPEND 366 * operation. 367 */ 368 bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua); 369 370 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); 371 do { 372 size_t n; 373 if (dio->error) { 374 iov_iter_revert(dio->submit.iter, copied); 375 copied = ret = 0; 376 goto out; 377 } 378 379 bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf); 380 fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, 381 GFP_KERNEL); 382 bio->bi_iter.bi_sector = iomap_sector(iomap, pos); 383 bio->bi_write_hint = inode->i_write_hint; 384 bio->bi_ioprio = dio->iocb->ki_ioprio; 385 bio->bi_private = dio; 386 bio->bi_end_io = iomap_dio_bio_end_io; 387 388 ret = bio_iov_iter_get_pages(bio, dio->submit.iter); 389 if (unlikely(ret)) { 390 /* 391 * We have to stop part way through an IO. We must fall 392 * through to the sub-block tail zeroing here, otherwise 393 * this short IO may expose stale data in the tail of 394 * the block we haven't written data to. 395 */ 396 bio_put(bio); 397 goto zero_tail; 398 } 399 400 n = bio->bi_iter.bi_size; 401 if (dio->flags & IOMAP_DIO_WRITE) { 402 task_io_account_write(n); 403 } else { 404 if (dio->flags & IOMAP_DIO_DIRTY) 405 bio_set_pages_dirty(bio); 406 } 407 408 dio->size += n; 409 copied += n; 410 411 nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, 412 BIO_MAX_VECS); 413 /* 414 * We can only poll for single bio I/Os. 415 */ 416 if (nr_pages) 417 dio->iocb->ki_flags &= ~IOCB_HIPRI; 418 iomap_dio_submit_bio(iter, dio, bio, pos); 419 pos += n; 420 } while (nr_pages); 421 422 /* 423 * We need to zeroout the tail of a sub-block write if the extent type 424 * requires zeroing or the write extends beyond EOF. If we don't zero 425 * the block tail in the latter case, we can expose stale data via mmap 426 * reads of the EOF block. 427 */ 428 zero_tail: 429 if (need_zeroout || 430 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { 431 /* zero out from the end of the write to the end of the block */ 432 pad = pos & (fs_block_size - 1); 433 if (pad) 434 iomap_dio_zero(iter, dio, pos, fs_block_size - pad); 435 } 436 out: 437 /* Undo iter limitation to current extent */ 438 iov_iter_reexpand(dio->submit.iter, orig_count - copied); 439 if (copied) 440 return copied; 441 return ret; 442 } 443 444 static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter, 445 struct iomap_dio *dio) 446 { 447 loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter); 448 449 dio->size += length; 450 if (!length) 451 return -EFAULT; 452 return length; 453 } 454 455 static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi, 456 struct iomap_dio *dio) 457 { 458 const struct iomap *iomap = &iomi->iomap; 459 struct iov_iter *iter = dio->submit.iter; 460 void *inline_data = iomap_inline_data(iomap, iomi->pos); 461 loff_t length = iomap_length(iomi); 462 loff_t pos = iomi->pos; 463 size_t copied; 464 465 if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap))) 466 return -EIO; 467 468 if (dio->flags & IOMAP_DIO_WRITE) { 469 loff_t size = iomi->inode->i_size; 470 471 if (pos > size) 472 memset(iomap_inline_data(iomap, size), 0, pos - size); 473 copied = copy_from_iter(inline_data, length, iter); 474 if (copied) { 475 if (pos + copied > size) 476 i_size_write(iomi->inode, pos + copied); 477 mark_inode_dirty(iomi->inode); 478 } 479 } else { 480 copied = copy_to_iter(inline_data, length, iter); 481 } 482 dio->size += copied; 483 if (!copied) 484 return -EFAULT; 485 return copied; 486 } 487 488 static loff_t iomap_dio_iter(const struct iomap_iter *iter, 489 struct iomap_dio *dio) 490 { 491 switch (iter->iomap.type) { 492 case IOMAP_HOLE: 493 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) 494 return -EIO; 495 return iomap_dio_hole_iter(iter, dio); 496 case IOMAP_UNWRITTEN: 497 if (!(dio->flags & IOMAP_DIO_WRITE)) 498 return iomap_dio_hole_iter(iter, dio); 499 return iomap_dio_bio_iter(iter, dio); 500 case IOMAP_MAPPED: 501 return iomap_dio_bio_iter(iter, dio); 502 case IOMAP_INLINE: 503 return iomap_dio_inline_iter(iter, dio); 504 case IOMAP_DELALLOC: 505 /* 506 * DIO is not serialised against mmap() access at all, and so 507 * if the page_mkwrite occurs between the writeback and the 508 * iomap_iter() call in the DIO path, then it will see the 509 * DELALLOC block that the page-mkwrite allocated. 510 */ 511 pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", 512 dio->iocb->ki_filp, current->comm); 513 return -EIO; 514 default: 515 WARN_ON_ONCE(1); 516 return -EIO; 517 } 518 } 519 520 /* 521 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO 522 * is being issued as AIO or not. This allows us to optimise pure data writes 523 * to use REQ_FUA rather than requiring generic_write_sync() to issue a 524 * REQ_FLUSH post write. This is slightly tricky because a single request here 525 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued 526 * may be pure data writes. In that case, we still need to do a full data sync 527 * completion. 528 * 529 * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL, 530 * __iomap_dio_rw can return a partial result if it encounters a non-resident 531 * page in @iter after preparing a transfer. In that case, the non-resident 532 * pages can be faulted in and the request resumed with @done_before set to the 533 * number of bytes previously transferred. The request will then complete with 534 * the correct total number of bytes transferred; this is essential for 535 * completing partial requests asynchronously. 536 * 537 * Returns -ENOTBLK In case of a page invalidation invalidation failure for 538 * writes. The callers needs to fall back to buffered I/O in this case. 539 */ 540 struct iomap_dio * 541 __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 542 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 543 unsigned int dio_flags, void *private, size_t done_before) 544 { 545 struct inode *inode = file_inode(iocb->ki_filp); 546 struct iomap_iter iomi = { 547 .inode = inode, 548 .pos = iocb->ki_pos, 549 .len = iov_iter_count(iter), 550 .flags = IOMAP_DIRECT, 551 .private = private, 552 }; 553 bool wait_for_completion = 554 is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); 555 struct blk_plug plug; 556 struct iomap_dio *dio; 557 loff_t ret = 0; 558 559 trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before); 560 561 if (!iomi.len) 562 return NULL; 563 564 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 565 if (!dio) 566 return ERR_PTR(-ENOMEM); 567 568 dio->iocb = iocb; 569 atomic_set(&dio->ref, 1); 570 dio->size = 0; 571 dio->i_size = i_size_read(inode); 572 dio->dops = dops; 573 dio->error = 0; 574 dio->flags = 0; 575 dio->done_before = done_before; 576 577 dio->submit.iter = iter; 578 dio->submit.waiter = current; 579 580 if (iocb->ki_flags & IOCB_NOWAIT) 581 iomi.flags |= IOMAP_NOWAIT; 582 583 if (iov_iter_rw(iter) == READ) { 584 /* reads can always complete inline */ 585 dio->flags |= IOMAP_DIO_INLINE_COMP; 586 587 if (iomi.pos >= dio->i_size) 588 goto out_free_dio; 589 590 if (user_backed_iter(iter)) 591 dio->flags |= IOMAP_DIO_DIRTY; 592 593 ret = kiocb_write_and_wait(iocb, iomi.len); 594 if (ret) 595 goto out_free_dio; 596 } else { 597 iomi.flags |= IOMAP_WRITE; 598 dio->flags |= IOMAP_DIO_WRITE; 599 600 /* 601 * Flag as supporting deferred completions, if the issuer 602 * groks it. This can avoid a workqueue punt for writes. 603 * We may later clear this flag if we need to do other IO 604 * as part of this IO completion. 605 */ 606 if (iocb->ki_flags & IOCB_DIO_CALLER_COMP) 607 dio->flags |= IOMAP_DIO_CALLER_COMP; 608 609 if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { 610 ret = -EAGAIN; 611 if (iomi.pos >= dio->i_size || 612 iomi.pos + iomi.len > dio->i_size) 613 goto out_free_dio; 614 iomi.flags |= IOMAP_OVERWRITE_ONLY; 615 } 616 617 /* for data sync or sync, we need sync completion processing */ 618 if (iocb_is_dsync(iocb)) { 619 dio->flags |= IOMAP_DIO_NEED_SYNC; 620 621 /* 622 * For datasync only writes, we optimistically try using 623 * WRITE_THROUGH for this IO. This flag requires either 624 * FUA writes through the device's write cache, or a 625 * normal write to a device without a volatile write 626 * cache. For the former, Any non-FUA write that occurs 627 * will clear this flag, hence we know before completion 628 * whether a cache flush is necessary. 629 */ 630 if (!(iocb->ki_flags & IOCB_SYNC)) 631 dio->flags |= IOMAP_DIO_WRITE_THROUGH; 632 } 633 634 /* 635 * Try to invalidate cache pages for the range we are writing. 636 * If this invalidation fails, let the caller fall back to 637 * buffered I/O. 638 */ 639 ret = kiocb_invalidate_pages(iocb, iomi.len); 640 if (ret) { 641 if (ret != -EAGAIN) { 642 trace_iomap_dio_invalidate_fail(inode, iomi.pos, 643 iomi.len); 644 ret = -ENOTBLK; 645 } 646 goto out_free_dio; 647 } 648 649 if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { 650 ret = sb_init_dio_done_wq(inode->i_sb); 651 if (ret < 0) 652 goto out_free_dio; 653 } 654 } 655 656 inode_dio_begin(inode); 657 658 blk_start_plug(&plug); 659 while ((ret = iomap_iter(&iomi, ops)) > 0) { 660 iomi.processed = iomap_dio_iter(&iomi, dio); 661 662 /* 663 * We can only poll for single bio I/Os. 664 */ 665 iocb->ki_flags &= ~IOCB_HIPRI; 666 } 667 668 blk_finish_plug(&plug); 669 670 /* 671 * We only report that we've read data up to i_size. 672 * Revert iter to a state corresponding to that as some callers (such 673 * as the splice code) rely on it. 674 */ 675 if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size) 676 iov_iter_revert(iter, iomi.pos - dio->i_size); 677 678 if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) { 679 if (!(iocb->ki_flags & IOCB_NOWAIT)) 680 wait_for_completion = true; 681 ret = 0; 682 } 683 684 /* magic error code to fall back to buffered I/O */ 685 if (ret == -ENOTBLK) { 686 wait_for_completion = true; 687 ret = 0; 688 } 689 if (ret < 0) 690 iomap_dio_set_error(dio, ret); 691 692 /* 693 * If all the writes we issued were already written through to the 694 * media, we don't need to flush the cache on IO completion. Clear the 695 * sync flag for this case. 696 */ 697 if (dio->flags & IOMAP_DIO_WRITE_THROUGH) 698 dio->flags &= ~IOMAP_DIO_NEED_SYNC; 699 700 /* 701 * We are about to drop our additional submission reference, which 702 * might be the last reference to the dio. There are three different 703 * ways we can progress here: 704 * 705 * (a) If this is the last reference we will always complete and free 706 * the dio ourselves. 707 * (b) If this is not the last reference, and we serve an asynchronous 708 * iocb, we must never touch the dio after the decrement, the 709 * I/O completion handler will complete and free it. 710 * (c) If this is not the last reference, but we serve a synchronous 711 * iocb, the I/O completion handler will wake us up on the drop 712 * of the final reference, and we will complete and free it here 713 * after we got woken by the I/O completion handler. 714 */ 715 dio->wait_for_completion = wait_for_completion; 716 if (!atomic_dec_and_test(&dio->ref)) { 717 if (!wait_for_completion) { 718 trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len); 719 return ERR_PTR(-EIOCBQUEUED); 720 } 721 722 for (;;) { 723 set_current_state(TASK_UNINTERRUPTIBLE); 724 if (!READ_ONCE(dio->submit.waiter)) 725 break; 726 727 blk_io_schedule(); 728 } 729 __set_current_state(TASK_RUNNING); 730 } 731 732 return dio; 733 734 out_free_dio: 735 kfree(dio); 736 if (ret) 737 return ERR_PTR(ret); 738 return NULL; 739 } 740 EXPORT_SYMBOL_GPL(__iomap_dio_rw); 741 742 ssize_t 743 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, 744 const struct iomap_ops *ops, const struct iomap_dio_ops *dops, 745 unsigned int dio_flags, void *private, size_t done_before) 746 { 747 struct iomap_dio *dio; 748 749 dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private, 750 done_before); 751 if (IS_ERR_OR_NULL(dio)) 752 return PTR_ERR_OR_ZERO(dio); 753 return iomap_dio_complete(dio); 754 } 755 EXPORT_SYMBOL_GPL(iomap_dio_rw); 756
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.